
Hardware-efficient entangled measurements for variational quantum algorithms

Francisco Escudero,1, 2 David Fernández-Fernández,1, 3 Gabriel Jaumà,1 Guillermo F. Peñas,1 and Luciano Pereira1, ∗

1Instituto de Física Fundamental, IFF-CSIC, Calle Serrano 113b, 28006 Madrid, Spain
2CWI & QuSoft, Science Park 123, 1098 XG Amsterdam, The Netherlands

3Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, 28049 Madrid, Spain

Variational algorithms have received significant attention in recent years due to their potential
to solve practical problems using noisy intermediate-scale quantum (NISQ) devices. A fundamen-
tal step of these algorithms is the evaluation of the expected value of Hamiltonians, and hence
efficient schemes to perform this task are required. The standard approach employs local measure-
ments of Pauli operators and requires a large number of circuits. An alternative is to use entangled
measurements, which might introduce additional gates between physically disconnected qubits that
harm the performance. To solve this problem, we propose hardware-efficient entangled measure-
ments (HEEM), that is, measurements that permit only entanglement between physically connected
qubits. We show that this strategy enhances the evaluation of molecular Hamiltonians in NISQ de-
vices by reducing the required circuits without increasing their depth. We provide quantitative
metrics of how this approach offers better results than local measurements and arbitrarily entangled
measurements. We estimate the ground-state energy of the H2O molecule with classical simulators
and quantum hardware using the variational quantum eigensolver with HEEM.

I. INTRODUCTION.

We are currently in the era of noisy intermediate-scale
quantum computers (NISQ). The main limitations of
these devices are short coherence times and noisy entan-
glement gates; therefore, NISQ circuits must inevitably
have a low depth [1]. Given that, a lot of effort has
been devoted to the design and implementation of quan-
tum algorithms that only use low-depth circuits [2–5].
Among such algorithms, one family that has gained at-
tention is variational quantum algorithms (VQAs) [6–
8]: hybrid quantum-classical methods where a classical
computer guides a quantum computer to produce vari-
ational quantum states and to measure their expected
value, with the goal of minimizing an objective function
encoded in a Hamiltonian. The most famous VQAs are
the variational quantum eigensolver (VQE) [9] and the
quantum approximate optimization algorithm (QAOA)
[10]. Multiple VQAs have been applied in a wide range of
areas, such as chemistry [11–14], finance [15, 16], traffic
prediction [17], machine learning [18–21], entanglement
detection [22–24], and differential equations [25–27].

Despite the great advances made in recent years, im-
plementing VQA remains a challenge. One of the main
drawbacks is the large number of measurements required
to evaluate the objective function. Such evaluation can
be done by decomposing the Hamiltonian on the basis
of tensor products of Pauli operators, also called Pauli
strings, and then measuring each of these terms inde-
pendently. Using this approach, the number of measure-
ments needed to evaluate the objective function is equal
to the Pauli terms of the Hamiltonian, which scales as
N4 for typical instances such as second-quantized chem-
ical Hamiltonians on N qubits [28, 29]. The preparation

∗ luciano.ivan@iff.csic.es

and measurement of each circuit require a non-negligible
amount of time and resources; thus, decreasing the num-
ber of circuits is essential to speed up VQAs and to reach
realistic applications of quantum computing.

Several methods have been proposed to reduce the to-
tal number of measurements required to efficiently mea-
sure observables, such as classical shadows [30, 31], quan-
tum tomography [32–35], machine learning [36, 37], sam-
pling methods [38, 39], hamiltonian moments [40], and
adaptive protocols [41]. Other proposals are grouping
methods, which exploit the commutative relation be-
tween the Pauli strings to make groups that can be mea-
sured simultaneously, reducing the total number of re-
quired experiments. The most widely known approach
is the grouping with tensor product basis (TPB) [12–
14, 42, 43], which uses qubit-wise commutativity and
does not require entanglement. Another alternative is
to use entangled measurements, which further reduces
the number of measurements compared to TPB [44–47].
However, this last approach assumes unlimited entan-
glement resources and is unsuitable for NISQ devices.
There is a midpoint between the two extreme alterna-
tives of assuming limitless entanglement or none at all:
using measurements whose entanglement requirements
are within the limits of NISQ devices. There are sev-
eral works in this line [48–51], nevertheless, none of these
techniques takes into account the connectivity of the par-
ticular quantum processor where the algorithm is run.

In this article, we address the problem of group-
ing Pauli strings with entangled measurements (EMs),
but only between physically connected qubits, that is,
hardware-efficient entangled measurements (HEEMs).
Given a set of Pauli strings and the processor connec-
tivity, there is a vast number of possible HEEMs, some
of which will be more effective than others. Finding
the optimal HEEM requires, among other things, find-
ing the optimal mapping between the theoretical qubits
of the algorithm and the physical qubits of the device.

Typeset by REVTEX

mailto:luciano.ivan@iff.csic.es

2

We have named this issue the processor embedding prob-
lem. We propose heuristic algorithms to solve the pro-
cessor embedding problem and to perform the grouping
with HEEMs. We run VQE with HEEM to estimate the
ground-state energy of the H2O molecule using both clas-
sical simulators and quantum hardware. The proposed
method reduces the number of measurements due to the
entangled measurements and avoids long-range qubit in-
teractions involving noisy, deep circuits, thanks to the
hardware-efficient approach.

II. HARDWARE-EFFICIENT GROUPING

A general N -qubit Hamiltonian can be expanded in
terms of Pauli strings as

H =
∑

α

hαPα, (1)

where Pα are the tensor products of the identity and
Pauli operators (I,X, Y, Z), and hα ∈ R are the coeffi-
cients of each Pauli string. The standard routine to com-
pute the expected value of H consists of measuring each
Pauli string Pi with a TPB measurement, which are the
tensor products of the bases of eigenstates of the Pauli op-
erators {X ,Y,Z}, with X = {|0⟩± |1⟩}, Y = {|0⟩± i |1⟩}
and Z = {|0⟩ , |1⟩}.

Multiple Pauli strings can be evaluated simultaneously
with a single TPB. In this case, we say that they are
compatible with that TPB. For example, the 3-qubit
Pauli strings XIZ and XY Z are compatible with TPB
X ⊗Y ⊗Z. This property allows us to define a grouping
method [42], which consists of searching for the smallest
set of TPB that can be used to evaluate the expected
value of H. Finding the best TPB grouping for a given
Hamiltonian is equivalent to finding the best coloring for
its Pauli graph, which is NP-Complete [43, 52].

One can go beyond the TPB grouping and measure
the expected value of H with fewer groups thanks to
EM, that is, measuring after an entangling operation. In
[48] the authors proposed a heuristic algorithm to con-
struct groups using EM between pairs of qubits (see Ap-
pendix A). The EM grouping proved to be more efficient
than the TPB grouping, significantly reducing the num-
ber of measurements and the uncertainty in evaluating
the observables. One drawback of this approach is that
it neglects the error of entangling gates in NISQ devices,
and hence, it might worsen the results in some scenar-
ios. This is particularly pronounced when performing
entangling operations between nonphysically connected
qubits, since these require the usage of mediating qubit—
and hence additional entangling gates—that increase the
depth and thus the error of the circuits.

As a solution to this problem, we propose three heuris-
tic algorithms to group Pauli strings with HEEM (see
Appendix B). These algorithms introduce two important
improvements to the algorithm proposed by Hamamura
et al. [48]. First, the algorithms check whether two

Pauli strings are simultaneously measurable by an EM
given the connectivity of a device, isolating from all pos-
sible EM only those that are hardware efficient. Second,
since the groups obtained by our algorithms or by Hama-
mura’s algorithms depend on the orders followed by sev-
eral loops, we introduce three algorithms to choose these
orders. This is explained in the next section.

A. The processor embedding problem

Multiple factors determine the performance of our
grouping algorithms, for instance, the orders that its
loops follow to run through the qubits, the assignable
measurements, and the Pauli strings (here we refer to
the orders of Subroutine 2 in Appendix B 2 a). These or-
ders can be optimized considering the processor embed-
ding problem: the problem of finding the optimal way to
map the theoretical qubits of the Hamiltonian into the
physical qubits of the device. In this section, we intro-
duce a heuristic approach to solve this problem, allowing
us to optimize the order of the loops in the qubits and in
the assignable measurements.

Given the Hamiltonian shown in Eq. (1), we define its
compatibility matrix C as an N × N symmetric matrix
whose non-diagonal entries Cij are equal to the number of
compatible entangled measurements (see Table II in the
Appendix A) involving qubits i and j. Diagonal entries
of C are irrelevant for the processor embedding problem.

The number of compatible entangled measurements
that involve qubits (i, j) is defined in the following way.
The factors i and j of each Pauli string Pα can be re-
garded as a set of Pauli sub-strings of 2 qubits, {P ij

α },
and the number of compatible entangled measurements
that involve qubits (i, j) is the number of pairs of Pauli
sub-strings {P ij

α } that are compatible through an entan-
gled measurement. Thus, the compatibility matrix en-
capsulates how many entangled measurements can be es-
tablished between two qubits. As an example, consider
the following set of Pauli strings

Pα




XXZ
Y Y Z
Y ZZ

⇒ P 01
α




XX
Y Y
Y Z

⇒ C01 = C10 = 2.

In this example C10 = C01 = 2 because XX and Y Y
can be measured simultaneously with a Bell measure-
ment and XX and Y Z with an ΩX measurement (see
Appendix A2). However, Y Y and Y Z cannot be mea-
sured simultaneously, i.e., [Y Y, Y Z] ̸= 0.

With the compatibility matrix, we can tackle the pro-
cessor embedding problem by maximizing the number of
potential entangled measurements between neighboring
qubits. We formulate this problem in terms of graphs, as
shown in Fig. 1. Let G′ := (V ′, E′, C) be the weighted
graph defined by the vertices V ′ := {0, . . . , N − 1},
where N is the number of theoretical qubits, the edges
E′ := V ′ × V ′ and the weights Cij . In this way, G′ rep-
resents the compatibility between the theoretical qubits

3

A B C

G

D

0

1

3

2

4

F

5

6
E

A B C

GFE

D

0 1

3

2

4 5 6

0

1

3

2

4

5

6

A C

GFE

B

D D

Figure 1. Schematic representation of the processor embed-
ding problem. a) Compatibility graph of theoretical qubits,
G′. Given a set of Pauli strings, the width of the edges {i, j} of
this graph represents the number of entangled measurements
that can be established between qubits i and j, Cij . b) Con-
nectivity graph of the physical qubits of the ibmq_jakarta
device, G. c) and d) are good and bad processor embedding
maps τ , respectively.

(Fig. 1 a)). Let G := (V,E) be the graph defined by the
vertices V := {0, . . . ,M − 1}, with M ≥ N the number
of physical qubits and the edges E := {(i, j) ∈ V × V :
qubits i and j that are physically connected}. In this
way, G represents the topology of the chip (Fig. 1 b)).
The objective is to find the map τ : {0, . . . , N − 1} →
{0, . . . ,M − 1} that maximizes

ω(τ) =
∑

(τ(i),τ(j))∈E

Cij . (2)

Note that ω(τ) is the total number of compatibilities be-
tween theoretical qubits once they are mapped to physi-
cal qubits through τ . For the example shown in Fig. 1 a),
where the thin edges correspond to Cij = 1 and the wide
ones to Cij = 2, the optimal processor embedding map
(Fig. 1 c)) results in ω(τ) = 12, while a bad mapping
(Fig. 1 d)) gives a lower value ω(τ) = 6.

The problem of finding the best τ is what we refer to
by the processor embedding problem, which we know is
NP-Hard, and hence there is no efficient algorithm for
the general case. There are several ways to prove that
the processor embedding problem is NP-Hard. For ex-
ample, the max-cliqué problem, which is itself NP-Hard
[53], can be regarded as a simplification of the processor
embedding problem so that all nondiagonal entries of C
are positive and equal. Additionally, the k-densest sub-
graph problem is NP-Complete and can also be seen as
a particular instance of the processor embedding prob-
lem [54, 55]. Efficient algorithms could be found for the

Ref. [48]A set of N-qubit Pauli strings, Pα

Input Output
An assignment of
measurements M,
one for each Pα

The connectivity
of the processor
A B C

D

E F G

Algorithm 2

Respecting the
connectivity of
the processor

Optimizing the
order of the
iterative loops

Ensuring that
the resulting
embedding map
is connected

Algorithm 1

Algorithm 3

Algorithm 1

Figure 2. Flow chart of the different algorithms used in this
work. The algorithm shown in [48] is referred in the main text
as EM. The Algorithms 1, 2 and 3 are named naive, order-
disconnected, and order-connected, respectively. These three
algorithms are gathered under HEEM grouping.

physically relevant instances of the processor embedding
problem if one finds some kind of structure within them.
For now, we propose two heuristic algorithms (see Ap-
pendix B 2 b) to construct the map τ . The first is the
order-disconnected map (Algorithm 2 and Subroutine 3).
Here, each pair of theoretical qubits (i, j) with the high-
est entries Cij is assigned to physically connected qubits.
The second alternative is the order-connected map (Algo-
rithm 3 and Subroutine 4). This algorithm does the same
as the previous but also ensures that the graph τ(G′) is
a connected sub-graph of G. The third alternative is the
naive map (Algorithm 1). This is simply the trivial map
τ(i) = i for i ∈ {0, . . . , N −1}, and it allows us to bench-
mark our order-connected and order-disconnected maps.
An schematic flow chart of the different algorithms is
shown in Fig. 2.

Once the map τ has been chosen, one can propose an
order for the loops of our grouping algorithm (Subrou-
tine 2), both in qubits and measurements. For this pur-
pose, we introduce the τ -compatibility matrix Cτ

Cτ
ij :=

{
Cij if (τ(i), τ(j)) ∈ E
0 if (τ(i), τ(j)) /∈ E.

(3)

Let CQτ be the N -vector whose i entry is given by

CQτ
i := CXi + CYi + CZi +

∑

j ̸=i

Cτ
ij , (4)

where CXi, CYi, and CZi are the numbers of compat-
ibilities involving the qubit i through measurements X ,
Y, and Z, respectively. In this way, CQτ

i is the number
of compatibilities involving the qubit i, since τ has been
chosen as the embedding map of the processor. Now, we
make the natural choice of running through the qubits in
descending order of CQτ .

4

LiH BeH2 H2O CH4 C2H2

molecule

0

50

100

150

200

250

300

350

400

g
ro

u
p
s

a)

ibmq guadalupe ibmq montreal ibmq brooklyn

device

200

250

300

350

400

g
ro

u
p
s

b)

5 10 15

theoretical qubits

0

5

10

ti
m

e
(s

)

20 40 60
physical qubits

10

20

ti
m

e
(s

)

#

ibmq_guadalupe ibmq_montreal ibmq_brooklynLiH BeH2 H2O CH4 C2H2

Figure 3. Results for grouping algorithms. The violins correspond to the distributions on the number of groups after running
a Monte Carlo method over the order of the Pauli strings and the order of the theoretical qubits for different a) molecules,
and b) devices. Blue violins correspond to the naive algorithm (see Appendix B Algorithm 1), green violins correspond to the
order-disconnected algorithm (Algorithm 2), and orange violins to the order-connected algorithm (Algorithm 3). The colored
dots represent the mean value in the number of groups in each case. The insets show the average execution time of the grouping
algorithm. In a) the algorithms are grouped according to HEEM with the connectivity of ibmq_montreal. In b) the number
of groups corresponds to the C2H2 molecule.

Let CMτ be the 9-vector given by

CMτ := (CMX , CMY , CMZ , CM
τ
Bell,

CMτ
ΩX , CM

τ
ΩY , CM

τ
ΩZ , CM

τ
χ , CM

τ
χ̃), (5)

where CMτ
Bell is the number of compatibilities due to Bell

measurement once τ has been chosen as the processor
embedding map. CMτ

ΩX , CMτ
ΩY , Cτ

ΩZ , CMτ
χ and CMτ

χ̃

are defined analogously for the other entangled measure-
ments (see Appendix A). CMX , CMY and CMZ are the
numbers of compatibilities by the measurements X , Y
and Z (these numbers do not depend on τ because these
measurements are separable). Now, similarly to what we
did for the order of the qubits, we choose to run through
the measurements in descending order of CMτ .

An additional optimization that remains is the itera-
tive order in which the algorithms visit each of the Pauli
strings. As the processor embedding map does not pro-
vide means to optimize this order, we adopt the tradi-
tional approach. This consists of building the Pauli graph
and visiting the Pauli strings in descending order with re-
spect to their degree in this graph, similar to what is done
in the largest degree-first coloring algorithm (LDFC) [56].

Finally, we must emphasize that the processor embed-
ding problem is not only relevant in choosing the best
orders for the loops of our grouping algorithm (Subrou-
tine 2), but also affects the number of groups obtained.
For example, suppose that we have N = M = 3, two
Pauli strings XXZ and ZXX and E = {(0, 1), (1, 2)}. If
we choose τ : 0 → 0, 1 → 1, 2 → 2 we need to measure
both strings separately, but choosing τ̃ : 0 → 1, 1 →
0, 2 → 2 a single measurement suffices. In addition, the

processor embedding problem is crucial to reduce the er-
ror caused by the gates on NISQ computers, as a good
choice of τ would also reduce the number of CNOTs used
in the algorithm that precedes the measurement, which
is a relevant task in the physical layout problem [57].
In fact, if we had to apply a theoretical CNOT in our
algorithm between qubits i and j that are mapped to
physical qubits whose distance on the chip is D, then
in practice we would need to apply O(D) CNOTs be-
tween physically connected qubits, so reducing D using
an appropriate τ is essential. Also, in a real device, the
accuracy of the CNOT gates between connected qubits
will vary depending on the chosen qubits. If one takes
into account these other tasks and not only the grouping,
the weights of G′ should vary: it should depend not only
on the compatibility matrix, but also on those other fea-
tures. This extension that takes into account both the
quantum algorithm and the measurement scheme will be
addressed in future works.

III. RESULTS

We begin by comparing the three different HEEM
grouping algorithms that we have proposed: the naive,
the order-disconnected, and the order-connected meth-
ods (Algorithms 1, 2 and 3). The reasons that led us
to develop the order-connected and order-disconnected
methods were improving the naive method and reduc-
ing its dependence on the order followed in its loops. To
verify the enhancements, we studied the performance of
the three algorithms in several molecular Hamiltonians.

5

Qubits No grouping Grouping CNOTs Relative error (%)
TPB EM HEEM EM HEEM TPB EM HEEM

H2 2 5 2 2 2 1 1 2.9± 0.3 2.5± 0.2 2.4± 0.3
LiH 4 100 25 11 10 8 8 0± 1 0± 1 0.2± 0.9
BeH2 6 95 24 15 13 74 18 - - -
H2O 8 444 93 51 47 563 80 7± 1 9± 1 3.2± 0.8
CH4 10 1181 246 113 117 2677 224 15± 2 11± 2 6± 3
C2H2 16 1884 457 189 258 8969 433 16± 2 19± 2 12± 3
CH3OH 22 9257 2225 682 1503 9830 2770 25± 5 31± 3 20± 4
C2H6 26 8919 2069 758 1529 55809 2873 34± 7 40± 3 22± 4

Table I. Number of groups, number of CNOTs, and relative error of the energy evaluation for some molecules using different
grouping strategies. TPB groups have been obtained using the LDFC algorithm. EM groups are those proposed by [48]. HEEM
groups have been obtained using the best performing method among Algorithms 1, 2 and 3 in each case, and assuming that
the physical qubits have the connectivity of the device ibmq_montreal. The relative error refers to the error in estimating
energy for an initial state |0⟩⊗N . Simulations are carried out considering the noise model of the device ibmq_montreal, and the
uncertainty in relative error is given by the standard deviation for a total of 25 simulations. Each simulation has a total of 214

shots evenly distributed across all measurements in each grouping. We omit the relative error of BeH2 because the expected
energy is equal to zero.

They were constructed from their fermionic counterpart
on STO3G basis [58] with the parity map [59]. In ad-
dition, we freeze the core and remove the unoccupied
orbital of the molecules to reduce their number of qubits
(for more details, see [60]).

Despite the optimizations implemented in the algo-
rithms, their effectiveness still depends on the initial or-
der of the theoretical qubits and the Pauli strings in the
Hamiltonian. To address this dependency, we employed
a Monte Carlo method to evaluate the average perfor-
mance of the three algorithms. For a given Hamiltonian,
we consider the set of all permutations of the order of the
theoretical qubits and of the Pauli strings of that specific
Hamiltonian. Each element of this set represents a po-
tential input for the grouping algorithms. Monte Carlo
is executed by randomly selecting elements on this set.
Figure 3 a) shows that the order-connected and order-
disconnected algorithms are better on average and disper-
sion than the naive algorithm, reducing their dependence
on the iterative orders. The order-connected algorithm
is the one that performs best by having the lowest av-
erage value and the smallest dispersion. Notice that the
absolute minimum number of groups is obtained with
the naive algorithm. This feature can be used to find the
best grouping in small-scale Hamiltonians by running the
Monte Carlo method, as we explained before. However,
this procedure is impractical for large-scale Hamiltoni-
ans, where only a small fraction of all potential inputs
can be explored. Thus, in this case, the order-connected
scheme is the best alternative because its performance
is concentrated around the smallest average number of
groupings.

In terms of execution time, the order-connected and
order-disconnected algorithms are much faster than the
naive one. The time complexity of the order-connected
and disconnected algorithms is O

(
N5
)

on the number

of qubits in the Hamiltonian, versus the time complex-
ity O

(
N5.5

)
needed for a naive grouping. Figure 3 b)

compares the performance of these three algorithms with
three different processor architectures. It shows that the
execution time of the non-naive algorithms does not de-
pend on the architecture in contrast to the naive one.
This result is important for the practical application of
the proposed algorithms on quantum devices with a large
number of qubits. The opposite situation occurs for the
grouping configurations: the naive algorithm does not
differentiate between processors, while the other two do.
Thus, only the non-naive algorithms have the desired be-
havior with respect to different architectures: they are
always quickly executed and can take advantage of the
topology of the chip.

Let us now confront our grouping methods with the
previous ones. Table I shows the number of groups ob-
tained from Pauli strings of molecules of sizes between
2 and 26 qubits using different methods: TPB group-
ing [42], EM grouping [48], and HEEM grouping with
the connectivity of the quantum device ibmq_montreal.
Analogously to the results of Fig. 3, the Hamiltonians
were constructed with the parity map on the basis of
STO3G, freezing the core and removing unoccupied or-
bitals [60]. The results of the HEEM grouping corre-
spond to the minimum number of groups obtained with
our Monte Carlo study. Table I also includes the num-
ber of CNOTs required to measure the groups. On the
one hand, the HEEM grouping significantly outperforms
TPB in terms of the number of groups. However, the
EM grouping has a smaller number of groups than the
HEEM but uses a number of CNOTs that grows much
more rapidly with the size of the molecules. The num-
ber of groups with HEEM scales as O

(
N2.45

)
with the

number of qubits. Furthermore, HEEM circuits involve
only one layer of entangling gates, while the depth of EM

6

circuits depends on the distance between the qubits to be
connected. All the scalings shown here were obtained by
fitting the numerical results obtained with each grouping.
More details on this topic, together with the asymptotic
scaling values for other magnitudes, can be found in the
Appendix C.

Both the number of CNOTs, which translates into ex-
perimental error, and the number of groups, which trans-
lates into statistical error for a fixed total number of
shots, are relevant for the final accuracy of the method.
This means that the results discussed so far do not com-
pletely conclude which is the best grouping method. In
Table I we show the relative error for the energy eval-
uation of the state |ψ⟩ = |0⟩⊗N for different molecule
Hamiltonians and grouping methods. We consider this
state because, having no entanglement, it is prepared
with high accuracy. This implies that in the simulations
only the error due to the energy evaluation appears. We
set the total number of shots at 214 for all molecules and
methods, and these shots are divided equally between all
circuits of each scenario. The relative error is computed
as

Relative error = |(Eexact − Esimulation)/Eexact|, (6)

where the exact energy is obtained as Eexact = ⟨ψ|H |ψ⟩,
while Esimulation is calculated considering the noise model
of the device ibmq_montreal. This simulation is repeated
25 times and from there we compute the average relative
error shown in Table I. The uncertainty in this relative
error is defined by the standard deviation between the
different runs.

With TPB grouping, no entangled measurements are
performed, and hence there are no errors due to two-qubit
gates. However, the total number of circuits to compute
the energy is the largest, and consequently, TPB has the
lowest number of shots per circuit and the highest statis-
tical error. With EM, the scenario is the opposite; this
method has the lowest statistical error, but the highest
experimental error due to the large number of CNOT
gates used to connect distant qubits. HEEM takes the
best of both methods, as it uses fewer groups than TPB,
reducing the statistical error, and it does not connect dis-
tant qubits, reducing the experimental error. Because of
this, as can be seen in Table I, HEEM provides the lowest
relative error for all the studied molecules.

Finally, to study the performance of the HEEM group-
ing in a practical scenario, we have run noisy simulations
and a NISQ experiment of the VQE for the H2O molecule
at its bond distance. The Hamiltonian was constructed
by the parity map from the fermionic Hamiltonian on
STO3G basis. In addition, we freeze the core and re-
move unoccupied orbitals of the H2O molecule to reduce
the number of theoretical qubits to 8, so that the min-
imum energy is given by −13.9 Ha. Figure 4 a) shows
the mean energy per iteration of 240 instances of noisy
VQE simulations using TPB, EM and HEEM. They were
carried out using the noise model and the connectivity
of ibmq_montreal, provided by IBM-Q [61]. The varia-

tional ansatz is composed of 2 layers of local gates and 1
layer of CNOT between the physically connected qubits
(see Appendix D). The minimum energy attainable with
this ansatz is −12.3 Ha. The groups used for HEEM
correspond to the best groups obtained among the three
proposed algorithms. We can see that the better per-
formance grouping scheme is HEEM, achieving energies
below −12.0 Ha after 200 iterations, while neither TPB
nor EM reaches this value in 300 iterations. The inset of
Fig. 4 a) shows the mean energy in terms of the number
of circuits. We can see that the HEEM grouping achieves
energy below −12.0 Ha with about 1200 circuits, while
TPB and EM only attain −11.6 Ha and −11.2 Ha, re-
spectively. This means that HEEM allows us to obtain
the same results as the previous approaches, but with
fewer circuits.

We also performed an experimental implementation
of the VQE for the H2O molecule with TPB, EM,
and HEEM in an IBM quantum device. The experi-
ment was carried out on the first 8 qubits of the device
ibmq_guadalupe. This is a quantum device of 16 qubits,
32 of quantum volume, and 1.245×10−2 of average error
in the CNOT gates. The VQE was implemented with
the same configuration as the simulations, that is, the
same Hamiltonian, ansatz, and classical optimizer. Fig-
ure 4 b) shows the results of the experiments. We can
see that TPB and HEEM outperform EM in precision at
the same number of iterations, while HEEM provides a
slight advantage over TPB. The realization of TPB was
very favorable, being approximately one standard devia-
tion below the mean shown in the simulations. Although
HEEM performs similarly to TPB in the number of it-
erations, the scenario differs in the number of circuits.
The inset of Fig. 4 b), which are results of experimen-
tal VQEs in terms of the number of circuits, shows that
HEEM overcomes both TPB and EM in the number of
circuits, achieving better energies at the same number
of circuits. Grouping with HEEM also provides an ad-
vantage over TPB and EM at runtime. The time for
each experiment was 3.8 hours with TPB, 4.4 hours with
EM, and 2.7 hours with HEEM. Thus, HEEM provides a
speed-up with respect to the other grouping approaches
in real hardware.

IV. CONCLUSIONS AND OUTLOOK

In the NISQ era, in order to achieve a quantum ad-
vantage with variational algorithms, we need efficient
techniques to evaluate the expected values of Hamilto-
nians. In this article, we introduce the Hardware Ef-
ficient Entangled Measurements (HEEMs). They allow
one to evaluate the expected value of a Hamiltonian by si-
multaneously measuring groups of Pauli strings and only
employing entangled gates between qubits that are phys-
ically connected on the device. This makes HEEM an
efficient and noise-robust alternative for evaluating ex-
pected values and speeding up variational algorithms in

7

0 50 100 150 200 250

iterations

−12

−11

−10

−9

en
er

g
y

[H
a
]

a)

0 25 50 75 100 125

iterations

−12

−11

−10

−9

en
er

gy
[H

a]

b)

0 5000 10000

circuits

−12

−11

en
er

g
y

[H
a
]

0 2500 5000

circuits

−12

−10

en
er

gy
[H

a
]

Figure 4. Simulation a), and experimental implementation
b), of the VQE for the 8-qubits H2O Hamiltonian, with a
distance of d = 0.96 Å between hydrogen and oxygen atoms,
for TPB in blue, EM in orange, and HEEM in green lines.
The simulations were performed considering the basis gate,
noise model, and connectivity of ibmq_montreal, while the
real experiment is performed in ibmq_guadalupe. The clas-
sical optimizer used was SPSA with 300 iterations for the
simulations and 150 iterations for the experiment. There are
214 shots per circuit in both cases. a) Each point represents
240 independent instances of VQE where the solid lines cor-
respond to the mean energy and the shaded region to the
standard deviation. In both panels, the insets show the mean
energy versus the number of circuits needed to measure the
Hamiltonian.

NISQ devices. Since there are multiple ways to group
a set of Pauli strings with HEEM, we have introduced
three algorithms to carry out the grouping. The first is
the naive HEEM, which does not optimize the order of
the grouping loops. The other two are order-connected
HEEM and the order-disconnected HEEM. They opti-
mize the grouping loops by using the processor embed-
ding problem, the problem of finding the optimal map of
the theoretical qubits into the physical qubits.

We compare our methods and conclude that the order-
connected and order-disconnected algorithms outperform
the naive algorithm on the average number of groups
and the time execution. Our methods improve previous
works, using fewer groups than TPB [42], with a slight

increase in the number of required CNOTs. Furthermore,
HEEM requires fewer CNOTs than EM [48], using only a
few more groups. Note that the number of groups quan-
tifies the statistical error, while the number of CNOTs
quantifies the experimental error. Then, taking both
sources of errors into account, HEEM outperforms both
TPB and EM. We have shown, with noisy simulations
and experiments, that HEEM achieves better results with
the same number of circuits. In addition, HEEM is faster
than TPB and EM to be implemented both in an exper-
iment and in a simulation for practical scenarios. HEEM
grouping can be useful not only in variational algorithms,
but also in any task that requires the evaluation of several
Pauli strings, such as full quantum tomography [62, 63],
compressed sensing [64, 65], reduced density matrix to-
mography [33, 34], classical shadows [30, 31], or direct
fidelity estimation [66, 67].

Several extensions can be incorporated into our pro-
posal. The grouping of Pauli strings by HEEM can be
improved by considering entanglement between a larger
number of qubits. This would allow for further reduction
of the number of groups at the expense of more entan-
glement resources. The method can also be refined by
including the error of the CNOT gates of the chip as
weights in the graph that represents the connectivity of
the chip. This would produce better results by ensuring
that the majority of entangling operations are performed
over pairs of qubits with the lowest CNOT gate errors.
Given that the number of groups and CNOTs are prox-
ies for the error of the measurement, we can explore the
behavior of HEEM using more elaborate metrics, such as
those proposed in [49]. In this article, it is suggested to
sort the Pauli strings according to their weights in the
Hamiltonian, which could improve HEEM in practical
scenarios. The combination of HEEM with other esti-
mation protocols could provide an even more accurate
estimate of observables on current devices, such as error
mitigation techniques [68–70] or adaptive schemes [41].

The code for reproducing the algorithms and figures in
this article can be found in [60].

V. ACKNOWLEDGEMENTS

The authors thank Juan José García-Ripoll for valu-
able feedback on the manuscript. This work has
been supported by the CSIC Interdisciplinary The-
matic Platform (PTI+) on Quantum Technologies (PTI-
QTEP+). G. F. P. and G. J. acknowledge sup-
port from the European Union’s Horizon 2020 FET-
Open project SuperQuLAN (899354). F. E. G. was
supported by a Marie Skłodowska-Curie Action from
the EC (COFUND grant no. 945045), and by the
NWO Gravitation project NETWORKS (grant no.
024.002.003). D. F. F. acknowledges support from
the FPU Program No. FPU20/04762. L. P. was
supported by ANID-PFCHA/DOCTORADO-BECAS-
CHILE/2019-77220027, CAM/FEDER Project No.

8

S2018/TCS-4342 (QUITEMAD-CM), and the Proyecto
Sinergico CAM 2020 Y2020/TCS-6545 (NanoQuCo-
CM). The authors thank the IBM Quantum Team for
making multiple devices available to the CSIC-IBM

Quantum Hub via the IBM Quantum Experience. The
views expressed are those of the authors and do not re-
flect the official policy or position of IBM or the IBM
Quantum team.

Appendix A: Entangled measurements

We have identified the two-qubit measurements that allow us to measure all maximal sets of compatible Pauli
strings of length two. They are displayed in Fig. 5. In the last two entangled measurements, the gate U2 refers to the
following operation in matrix form

U2(ϕ, λ) =
1√
2

(
1 −eiλ
eiϕ ei(ϕ+λ)

)
. (A1)

Bell measurement

q0 : H

q1 :

ΩX measurement

q0 : S H H

q1 : S

ΩY measurement

q0 : H H

q1 :

ΩZ measurement

q0 : S H

q1 :

χ measurement

q0 : U2(π/2, π) H

q1 :

χ̃ measurement

q0 : U2(0, π/2) H

q1 :

Figure 5. Circuits to implement the entanglement measurements. The gates H and S are Hadamard and π/2-phase gate,
respectively, and the gate U2 is given by Eq. (A1)

1. Computing the expected values of Hamiltonians with a certain grouping

In this section, we explain how to obtain the expected value of a Hamiltonian once we have grouped its Pauli strings.
Let H =

∑
α hαPα be a multi-qubit Hamiltonian and suppose that the m first Pauli strings are compatible with a

single HEEM measurement into the basis B = B1⊗ · · ·⊗Bt, with Bi single- or two-qubit bases with i = 1, . . . , t. This
means that the Pauli strings Pα with α = 1, . . . ,m are diagonal on the basis of B. Let be W⃗P = DiagB{P} the vector
with the diagonal entries of the Pauli string P on the basis of B. The elements of W⃗P correspond to the eigenvalues
of P , each of them repeated by its multiplicity. Therefore, if P⃗ is the probability distribution of a measurement on
the basis B, the expected value of the compatible Pauli strings is given by

〈
m∑

α=1

hαPα

〉
=

(
m∑

α=1

hαW⃗Pα , P⃗
)
, (A2)

9

where (·, ·) is the usual inner product. To illustrate the procedure, we evaluate the energy of a simple Hamiltonian
consisting only of two Pauli strings,

H = 2IZY + 4ZXZ. (A3)

We have to check in Table II on which basis, if possible, these two strings can be measured together. After a careful
look, we realize that the operators I and Z of the first qubits are compatible with Z, and that the operators ZY
and XZ of the second and third qubits are compatible with χ̃. The basis Z allows us to diagonalize the operators
I = + |0⟩ ⟨0|+ |1⟩ ⟨1| , and Z = + |0⟩ ⟨0| − |1⟩ ⟨1|, while the basis χ̃ the 2-qubit operators

Y X = − |χ̃0⟩ ⟨χ̃0|+ |χ̃1⟩ ⟨χ̃1|+ |χ̃2⟩ ⟨χ̃2| − |χ̃3⟩ ⟨χ̃3| , (A4)
ZY = + |χ̃0⟩ ⟨χ̃0|+ |χ̃1⟩ ⟨χ̃1| − |χ̃2⟩ ⟨χ̃2| − |χ̃3⟩ ⟨χ̃3| , (A5)
XZ = + |χ̃0⟩ ⟨χ̃0| − |χ̃1⟩ ⟨χ̃1|+ |χ̃2⟩ ⟨χ̃2| − |χ̃3⟩ ⟨χ̃3| . (A6)

One last important thing that we need is the explicit expression of the vectors of the χ̃ basis in the computational
basis, to correctly relate the vector of weights with the vector of outcomes

|χ̃0⟩ = +i|00⟩ − |01⟩+ i|10⟩+ |11⟩, (A7)
|χ̃1⟩ = +|00⟩+ i|01⟩ − |10⟩+ i|11⟩, (A8)
|χ̃2⟩ = +i|00⟩+ |01⟩+ i|10⟩ − |11⟩, (A9)
|χ̃3⟩ = −|00⟩+ i|01⟩+ |10⟩+ i|11⟩. (A10)

See subsection A 2 for explicit expressions of how to construct every entangled measurement and the diagonal rep-
resentation of pairs of observables in all of these bases. Now we can tackle the problem of evaluating the energy of
Eq. (A3) with a measurement on the basis B = Z1 ⊗ χ̃2,3, where the subscripts refer to the subspace spanned by such
qubits. For the Pauli string IZY , we have DiagZ {I} = [+1,+1] and Diagχ̃ {ZY } = [+1,+1,−1,−1]. The vector
W⃗IZY is computed as the Kronecker product of the vectors DiagZ and Diagχ̃. Thus,

hIZY W⃗IZY = 2× [+1,+1]⊗ [+1,+1,−1,−1] = [+2,+2,−2,−2,+2,+2,−2,−2]. (A11)

Analogously, for the string ZXZ, we have DiagZ {Z} = [+1,−1] and Diagχ̃ {XZ} = [+1,−1,+1,−1]. Then

hZXZW⃗ZXZ = 4× [+1,−1]⊗ [+1,−1,+1,−1] = [+4,−4,+4,−4,−4,+4,−4,+4]. (A12)

Therefore, we have that

m∑

α=1

hαW⃗Pα = [+6,−2,+2,−6,−2,+6,−6,+2]. (A13)

In summary, what our algorithm does once it has identified which Pauli strings can be measured together is to check
with which measurement basis it can do so and in which order these basis vectors have to be taken into account.
After sorting out all the plus and minus signs, all that is left to do is multiply by the weight in the Hamiltonian hα,
and finally plug in the actual result of the experiment with Eq. (A2).

XX Y Z ZY Y Y XZ ZX ZZ XY Y X

XX — ΩX ΩX Bell ✖ ✖ Bell ✖ ✖

Y Z — ΩX ✖ ✖ χ ✖ χ ✖
ZY — ✖ χ̃ ✖ ✖ ✖ χ̃
Y Y — ΩY ΩY Bell ✖ ✖

XZ — ΩY ✖ ✖ χ̃
ZX — ✖ χ ✖

ZZ — ΩZ ΩZ

XY — ΩZ

Y X —

Table II. Compatibility relation between two-qubit Pauli strings. The symbol ✖ indicates that the corresponding Pauli strings
are not jointly measurable. The other boxes contain the entangled measurements that are compatible with the corresponding
Pauli strings. See Appendix A 2 for the definitions of these measurements.

10

2. Jointly diagonalizable pairs in all entangled bases.

Bell :

|Φ0⟩ = |00⟩+ |11⟩ Commuting pairs
Φ1⟩ =	00⟩ −	11⟩ XX = +	Φ0⟩ ⟨Φ0	−	Φ1⟩ ⟨Φ1	+	Φ2⟩ ⟨Φ2	−	Φ3⟩ ⟨Φ3
Φ2⟩ =	01⟩+	10⟩ Y Y = −	Φ0⟩ ⟨Φ0	+	Φ1⟩ ⟨Φ1	+	Φ2⟩ ⟨Φ2	−	Φ3⟩ ⟨Φ3
Φ3⟩ =	01⟩ −	10⟩ ZZ = +	ϕ0⟩ ⟨Φ0	+	Φ1⟩ ⟨Φ1	−	Φ2⟩ ⟨Φ2	−	Φ3⟩ ⟨Φ3

ΩX :

|ΩX
0 ⟩ = +|00⟩ − i|01⟩ − i|10⟩+ |11⟩ Commuting pairs

|ΩX
1 ⟩ = +|00⟩ − i|01⟩+ i|10⟩ − |11⟩ Y Z = −

∣∣ΩX
0

〉 〈
ΩX

0

∣∣+
∣∣ΩY

1

〉 〈
ΩX

1

∣∣−
∣∣ΩX

2

〉 〈
ΩX

2

∣∣+
∣∣ΩX

3

〉 〈
ΩX

3

∣∣
|ΩX

2 ⟩ = +|00⟩+ i|01⟩ − i|10⟩ − |11⟩ XX = +
∣∣ΩX

0

〉 〈
ΩX

0

∣∣−
∣∣ΩX

1

〉 〈
ΩX

1

∣∣−
∣∣ΩX

2

〉 〈
ΩX

2

∣∣+
∣∣ΩX

3

〉 〈
ΩX

3

∣∣
|ΩX

3 ⟩ = −|00⟩ − i|01⟩ − i|10⟩ − |11⟩ ZY = −
∣∣ΩX

0

〉 〈
ΩX

0

∣∣−
∣∣ΩX

1

〉 〈
ΩX

1

∣∣+
∣∣ΩX

2

〉 〈
ΩX

2

∣∣+
∣∣ΩX

3

〉 〈
ΩX

3

∣∣

ΩY :

|ΩY
0 ⟩ = +|00⟩+ |01⟩+ |10⟩ − |11⟩ Commuting pairs

|ΩY
1 ⟩ = +|00⟩+ |01⟩ − |10⟩+ |11⟩ XZ = +

∣∣ΩY
0

〉 〈
ΩY

0

∣∣−
∣∣ΩY

1

〉 〈
ΩY

1

∣∣+
∣∣ΩY

2

〉 〈
ΩY

2

∣∣−
∣∣ΩY

3

〉 〈
ΩY

3

∣∣
|ΩY

2 ⟩ = +|00⟩ − |01⟩+ |10⟩+ |11⟩ Y Y = +
∣∣ΩY

0

〉 〈
ΩY

0

∣∣−
∣∣ΩY

1

〉 〈
ΩY

1

∣∣−
∣∣ΩY

2

〉 〈
ΩY

2

∣∣+
∣∣ΩY

3

〉 〈
ΩY

3

∣∣
|ΩY

3 ⟩ = −|00⟩+ |01⟩+ |10⟩+ |11⟩ ZX = +
∣∣ΩY

0

〉 〈
ΩY

0

∣∣+
∣∣ΩY

1

〉 〈
ΩY

1

∣∣−
∣∣ΩY

2

〉 〈
ΩY

2

∣∣−
∣∣ΩY

3

〉 〈
ΩY

3

∣∣

ΩZ :

|ΩZ
0 ⟩ = +|00⟩ − i|11⟩ Commuting pairs

|ΩZ
1 ⟩ = +|00⟩+ i|11⟩ XY = −

∣∣ΩZ
0

〉 〈
ΩZ

0

∣∣+
∣∣ΩZ

1

〉 〈
ΩZ

1

∣∣−
∣∣ΩZ

2

〉 〈
ΩZ

2

∣∣+
∣∣ΩZ

3

〉 〈
ΩZ

3

∣∣
|ΩZ

2 ⟩ = +|01⟩+ i|10⟩ Y X = −
∣∣ΩZ

0

〉 〈
ΩZ

0

∣∣+
∣∣ΩZ

1

〉 〈
ΩZ

1

∣∣+
∣∣ΩZ

2

〉 〈
ΩZ

2

∣∣−
∣∣ΩZ

3

〉 〈
ΩZ

3

∣∣
|ΩZ

3 ⟩ = +|00⟩ − i|10⟩ ZZ = +
∣∣ΩZ

0

〉 〈
ΩZ

0

∣∣+
∣∣ΩZ

1

〉 〈
ΩZ

1

∣∣−
∣∣ΩZ

2

〉 〈
ΩZ

2

∣∣−
∣∣ΩZ

3

〉 〈
ΩZ

3

∣∣

χ :

|χ0⟩ = −|00⟩+ |01⟩ − i|10⟩+ i|11⟩ Commuting pairs
χ1⟩ = +	00⟩+	01⟩+ i	10⟩ − i	11⟩ XY = +	χ0⟩ ⟨χ0	−	χ1⟩ ⟨χ1	+	χ2⟩ ⟨χ2	−	χ3⟩ ⟨χ3
χ2⟩ = +	00⟩ −	01⟩+ i	10⟩+ i	11⟩ Y Z = −	χ0⟩ ⟨χ0	+	χ1⟩ ⟨χ1	+	χ2⟩ ⟨χ2	−	χ3⟩ ⟨χ3
χ3⟩ = −	00⟩+	01⟩+ i	10⟩+ i	11⟩ ZX = +	χ0⟩ ⟨χ0	+	χ1⟩ ⟨χ1	−	χ2⟩ ⟨χ2	−	χ3⟩ ⟨χ3

χ̃ :

|χ̃0⟩ = +i|00⟩ − |01⟩+ i|10⟩+ |11⟩ Commuting pairs
χ̃1⟩ = +	00⟩+ i	01⟩ −	10⟩+ i	11⟩ Y X = −	χ̃0⟩ ⟨χ̃0	+	χ̃1⟩ ⟨χ̃1	+	χ̃2⟩ ⟨χ̃2	−	χ̃3⟩ ⟨χ̃3
χ̃2⟩ = +i	00⟩+	01⟩+ i	10⟩ −	11⟩ ZY = +	χ̃0⟩ ⟨χ̃0	+	χ̃1⟩ ⟨χ̃1	−	χ̃2⟩ ⟨χ̃2	−	χ̃3⟩ ⟨χ̃3
χ̃3⟩ = −	00⟩+ i	01⟩+	10⟩+ i	11⟩ XZ = +	χ̃0⟩ ⟨χ̃0	−	χ̃1⟩ ⟨χ̃1	+	χ̃2⟩ ⟨χ̃2	−	χ̃3⟩ ⟨χ̃3

11

Appendix B: Algorithms

In this appendix, we present the heuristic algorithms announced in the main text. All of them can be found in
[60]. For the pseudo-code shown in this appendix, we only use variables representing integers, booleans, strings, and
lists. Other data structures, such as hash maps or queues, can be used to improve performance. However, we stick
to the most common data structures to increase code readability. Items within the lists can be integers or other lists
to represent matrices. To index the lists, we use square brackets as List[i], with the indices starting at 0. Lists are
created as List = [item1, item2, . . .]. When calling other functions, we use parentheses as FunctionName(parameter1,
parameter2, . . .). Finally, comments inside the codes start with //. Note that the notation used in this appendix
may be different from the one shown in the main text, this is so as to have a notation closer to common programming
languages in the pseudo codes, thus facilitating their understanding.

1. Grouping algorithms

All our grouping algorithms (naive, order-connected, and order-disconnected) take into account the connectivity of
the chip, but differ in the way theoretical qubits are mapped onto physical qubits. The naive algorithm (Algorithm 1)
maps the i-th theoretical qubit to the i-th physical qubit (i.e., it chooses the trivial processor embedding map τ [i] = i).
The order-disconnected (Algorithm 2) uses a subroutine that generates a processor embedding map τ that maps the
theoretical qubits to the physical ones seeking a high number of measurement compatibilities. The order-connected
(Algorithm 3) does the same as the order-disconnected, but with the additional requirement that the graph G′ of
theoretical qubits is connected once it is mapped to the graph G of physical qubits through τ , i.e., τ [G′] is a connected
subgraph of G (which can always be done if G is connected and has at least the same number of vertices as G′). This
requirement aims to ensure that all connections of the chip are useful to measure, as explained in Figures 8 and 9.

The core of our algorithms is Subroutine 1, which takes the following inputs: a set of Pauli strings, a processor
embedding map τ , and the order in which the subroutine runs over the qubits and measurements. All algorithms
use Subroutine 7 to decide the orders in which Subroutine 1 runs over the qubits and measurements. The naive
algorithm does that assuming the trivial processor embedding map τ [i] = i, while the order-disconnected algorithm
uses Subroutine 3 to design τ and the order-connected uses Subroutine 4 for the same purpose.

Finally, we would like to remark that despite that Algorithm 3 may look like an arbitrary modification of Algo-
rithm 2, the results show that performance improves when imposing that τ [G′] is connected (see Figure 3 of the main
text or Figures 8 and 9).

Algorithm 1: Naive grouping
Input: n Pauli strings PS of N qubits and chip’s connectivity G

1 Define the trivial map τ [i] = i
2 CMτ , CQτ = Orders(PS, τ , G) // (Subroutine 7) CMτ encodes the measurements and CQτ the qubits
3 M , Gr = Grouping(PS, τ , G, CMτ , CQτ) // (Subroutine 1) M encodes the measurements and Gr the groups
4 return M , Gr

Algorithm 2: Order-disconnected grouping
Input: n Pauli strings PS of N qubits and chip’s connectivity G

1 τ = DisonnectedMap(PS, G) // Subroutine 3
2 CMτ , CQτ = Order(PS, τ , G) // (Subroutine 7) CMτ encodes the measurements and CQτ the qubits
3 M , Gr = Grouping(PS, τ , G, CMτ , CQτ) // (Subroutine 1) M encodes the measurements and Gr the groups
4 return M , Gr

Algorithm 3: Order-connected grouping
Input: n Pauli strings PS of N qubits and chip’s connectivity G

1 τ = ConnectedMap(PS, G) // Subroutine 4
2 CMτ , CQτ = Orders(PS, τ , G) // (Subroutine 7) CMτ encodes the measurements and CQτ the qubits
3 M , Gr = Grouping(PS, τ , G, CMτ , CQτ) // (Subroutine 1) M encodes the measurements and Gr the groups
4 return M , Gr

12

2. Subroutines

In this subsection, we present the subroutines used in Algorithms 1, 2 and 3, and provide examples that illustrate
how they work.

a. Grouping taking chip’s connectivity into account

Herewith we describe the core subroutine of our grouping algorithms, which is inspired by the algorithm of [48].
Our subroutine allows for a non-trivial processor embedding map and optimizes the orders in which the algorithm
runs through qubits and measurements, while the algorithm in [48] does not.

Subroutine 1: Greedy grouping taking chip’s connectivity into account
Input: n Pauli strings PS, chip’s connectivity G, processor embedding map τ , and vectors CMτ and CQτ

encoding the orders of measurements and qubits, respectively
1 Build the Pauli graph PG of PS // The elements PG[i] are the Pauli strings
2 Sort PG in descending order according to the nodes degree
3 M = [] // Measurements
4 Gr = [] // Groups
5 for i in [0, . . . , n− 1] do
6 if i not in Gr then
7 m = []
8 gr = [i]
9 for j in [i+ 1, . . . , n− 1] do

10 if j not in Gr then
11 success, m̃ = CheckCompatibility(PG[i], PG[j], G, m, τ , CMτ , CQτ) // Subroutine 2
12 if success then
13 m = m̃
14 Append j to gr

15 Let U be the list of qubits not measured in m
16 for q in U do
17 Let b be the basis compatible with the Pauli operator at position q in PG[i]
18 Append [b, q] to m
19 Append m to M
20 Append gr to Gr

21 return M , Gr

13

IY IY

ZXZZ

ZXY YIY ZX

ZZIY

ZIY I
0

1

2 3

4

5

Subroutine 2
ZXZZ

IY ZX

ZZIY

ZXY Y

ZIY I

Gr[0] = [0, 1]

M [0] = [[Z, q0], [χ̃, [q1, q3]]]

ZXY Y

M [0] = []

Gr[0] = []

+

+

}

Subroutine 2 Incompatible

Incompatible

Incompatible

ZXZZ}

+

IY IY
+

ZXZZ}

Subroutine 2

ZXZZ}

+

Subroutine 2

Incompatible

Subroutine 2
ZXZZ}

Gr[0] = [0, 1, 3]

M [0] = [[Z, q0], [χ̃, [q1, q3]], [Z, q2]]

+(G, τ, CM τ , CQτ)

Subroutine 2

M [1] = []

Gr[1] = []

+ }

Subroutine 2+ }
Gr[1] = [2, 5]

M [1] = [[Z, q0], [Y, q1], [Y, q2], [Y, q3]]

Gr[2] = [4]

M [2] = [[Z, q0], [X , q1], [Y, q2], [Y, q3]]

IY IY

IY IY

ZXY Y

ZIY I

Figure 6. Example of Subroutine 1 (greedy Grouping taking chip’s connectivity into account). In the example,
there are six Pauli strings to be grouped. On the top, the Pauli graph is depicted and on the bottom, a diagram details the
algorithm used by Subroutine 1. On the one hand, if we used the LDFC algorithm to group the Pauli strings in the TPB, we
would obtain five groups, represented by the five different colors in the Pauli graph. On the other hand, if we use Subroutine 1
we obtain only three groups. The algorithm begins by sorting the Pauli strings in descending order of degree with respect
to the Pauli graph. Then, it picks the highest degree string, ZXZZ in our example, and tries to group it with the other
strings using the Subroutine 2. Note that this subroutine also needs the chip’s connectivity G, the processor embedding map
τ , the order for the measurements CMτ , and the order for the qubits CQτ . However, these extra inputs are not depicted for
simplicity. If the grouping is successful (green arrow), the Subroutine 2 outputs the measurements and the qubits to which it
must be performed, encoded in M [i], and updates the list that encodes the Pauli strings grouped Gr[i]. For the next iteration,
the current measurements are provided to the Subroutine 2 so that all the grouped strings are compatible with each other. If
grouping is not possible (red arrow), the algorithm does not update the measurements and passes to the next string. Once
all Pauli strings are tested, we pick the next string with the highest degree which has not been grouped yet, and repeat the
process until all strings are measured.

14

Subroutine 2: Greedy measurement assignment taking chip’s connectivity into account
Input: Two Pauli strings PSi and PSj, chip’s connectivity G, current assignment of measurements m,

processor embedding map τ , and vectors CMτ and CQτ encoding the orders of measurements and
qubits, respectively

1 if PSj is not compatible with m then
2 return False, m
3 Copy m in m̃ // Partial measurements
4 Initialize U as the list of qubits not measured in m
5 Sort U in descending order according to CQτ

6 Remove from U the indices where PSi and PSj coincide
7 B = [X , Y, Z, Bell, ΩX , ΩY , ΩZ , χ, χ̃]
8 Sort B in descending order according to CMτ

9 while Length(U) ̸= 0 do
10 for ε in B do
11 for p in permutations of U of size equal to the number of qubits where ε acts do
12 if ε acts on one qubit then
13 if PSi[p] and PSj[p] are compatible with ε then
14 Append [ε, p] to m̃
15 Remove qubit in p from U
16 Go to line 9

17 else if τ [p] connected in G then
18 if PSi[p] and PSj[p] are compatible with ε then
19 Append [ε, p] to m̃
20 Remove qubits in p from U
21 Go to line 9

22 return False, m
23 return True, m̃

15

A

B D

C

E

F

G

q0

q1

q4

q3

q5

q2

Physical

Theoretical

m = [[Y, q0]]

m̃ = [[Y, q0]]

CM τ = [15, 16, 9, 2, 17, 4, 11, 20, 8]

CQτ = [9, 10, 12, 6, 3, 15]

τ = [A,B,D, F,C,E]

PSi = Y Y ZXZY

PSj = IXZZXX

p = (q5, q1) disconnected
(q5, q3) connected

(q1, q4) connected

(q1, q4) connected

(q3, q5) connected

(Y,X) and (X,Z) are not compatible with χ

(Y, Z) and (X,X) are not compatible with χ

(q1, q4) connected
(Z, Y) and (X,X) are not compatible with χ

(Y, Z) and (X,X) are compatible with ΩX

(X,Y) and (Z,X) are compatible with χ

ε = χ

ε = ΩX

U = [q5, q1, q3, q4]

U = [q1, q4]

m̃ = [[Y, q0], [χ, [q3, q5]]]

U = []

m̃ = [[Y, q0], [χ, [q3, q5]],

[ΩX , [q1, q4]]]

G =

q0q1q2q3q4q5

X ,Y,Z,Bell,ΩX ,ΩY ,ΩZ , χ, χ̃

B = [χ,ΩX ,Y,X ,ΩZ ,Z, χ̃,ΩY ,Bell]

Figure 7. Example of Subroutine 2 (Greedy measurement assignment taking chip’s connectivity into account).
In this example, the algorithm has to either find HEEMs that can simultaneously measure the Pauli strings Y Y ZXZY and
IXZZXX (assuming that the theoretical qubit q0 has been assigned the measurement Y) or otherwise state the impossibility
of the task. First of all, the algorithm creates U , which is the list of theoretical qubits where there is no assigned measurement
nor the Pauli strings coincide. Note that U is sorted in descending order of CQτ . B is the vector of possible measurements,
sorted in descending order of CMτ . The first measurement to check is χ. The qubits q1 and q5 are not connected, so we try to
measure the qubits q5 and q3, which in fact are compatible with χ. Then the algorithm tries to measure the qubits q1 and q4,
but they are not compatible with χ. Thus, the algorithm checks if they are compatible with the second preferred measurement
according to CMτ , which is ΩX . It succeeds in doing that, so both Pauli strings are compatible with HEEMs. Thus, the
subroutine succeeds in finding HEEMs compatible with PSj, PSi, and the previous measurement defined in m.

16

b. Building the processor embedding map

In this section, we provide heuristic subroutines to build the processor embedding map (Subroutines 3 and 4) and
the compatibility matrix (Subroutine 6).

Subroutine 3: Processor embedding map construction, without ensuring that τ(G′) is connected
Input: n Pauli strings PS of N qubits the chip’s connectivity G

1 C = Subroutine 6(PS) // Compatibility matrix
2 AQ = [] // Assigned qubits
3 Initialize τ as a list of size N // Embedding map
4 while Length(AQ) ̸= N do
5 Choose i, j such that C[i, j] = Max(C)
6 if (i in AQ) xor (j in AQ) then
7 if j in AQ then
8 Swap i ↔ j // Ensure that i ∈ AQ and j /∈ AQ

9 Let J be an unassigned neighbor of τ [i] in G
10 τ [j] = J
11 Append j to AQ

12 else if (i not in AQ) and (j not in AQ) then
13 Choose physical qubits I and J that are connected in G and unassigned
14 τ [i] = I
15 τ [j] = J
16 Append i and j to AQ

17 RemoveAssignedQubits(C, τ [i], AQ, G, τ) // Subroutine 5
18 RemoveAssignedQubits(C, τ [j], AQ, G, τ) // Subroutine 5
19 C[i, j] = C[j, i] = NaN

20 return τ

Subroutine 4: Processor embedding map construction, ensuring that τ(G′) is connected
Input: n Pauli strings PS of N qubits and chip’s connectivity G

1 C = Subroutine 6(PS) // Compatibility matrix
2 AQ = [] // Assigned qubits
3 Initialize τ as a list of size N // Embedding map
4 Choose i, j such that C[i, j] = Max(C)
5 Choose I, J a pair of connected qubits in G
6 τ [i] = I
7 τ [j] = J
8 Append i and j to AQ
9 C[i, j] = C[j, i] = NaN

10 RemoveAssignedQubits(C, τ [i], AQ, G, τ) // Subroutine 5
11 while Length(AQ) ̸= N do
12 C ′ = C[AQ, :]
13 Choose i, j such that C ′[i, j] = Max(C ′)
14 if j not in AQ then
15 Let J be an unassigned neighbor of τ [i] in G
16 τ [j] = J
17 Append j to AQ
18 RemoveAssignedQubits(C, τ [j], AQ, G, τ) // Subroutine 5
19 C[i, j] = C[j, i] = NaN
20 return τ

17

Max

C =




NaN 0 0 9 5
0 NaN 20 8 7
0 20 NaN 0 6
9 8 0 NaN 0
5 7 6 0 NaN




A B C D E F

q0 q1 q2 q3 q4

q1 q2

C =




NaN NaN 0 9 5
NaN NaN NaN NaN NaN

0 NaN NaN 0 6
9 NaN 0 NaN 0
5 NaN 6 0 NaN




A B C D E F

q0 q1 q2 q3 q4

q1 q2 q0 q3

C =




NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN
NaN NaN NaN NaN 0
NaN NaN NaN 0 NaN




A B C D E F

q0 q1 q2 q3 q4

q1 q2 q0 q3 q4

A B C D E F

Output:

τ = [C,A,B,D,E]

20

20 0 9

20 0 9 0

Figure 8. Example of Subroutine 3 (Processor embedding map construction, without ensuring that τ(G′) is
connected). The subroutine begins by mapping the pair of theoretical qubits (q1, q2), corresponding to the highest entry of
the compatibility matrix C, to a pair of physically connected qubits. Then, it updates the compatibility matrix, setting to NaN
all the entries corresponding to q1, as it has been mapped to a physical qubit with no more available connections. After that,
it repeats this step two more times and determines a τ with a total number of 20 + 0 + 9 + 0 = 29 compatibilities, which is
11 less than what the Subroutine 4 would get, as shown in Figure 9. Note that the physical connections B-C and D-E are not
going to be useful to measure entangled pairs, which is something Subroutine 4 precludes.

18

Max

C =




NaN 0 0 9 5
0 NaN 20 8 7
0 20 NaN 0 6
9 8 0 NaN 0
5 7 6 0 NaN




A B C D E F

q0 q1 q2 q3 q4

Assigned qubits

C =




NaN NaN 0 9 5
NaN NaN NaN NaN NaN

0 NaN NaN 0 6
9 NaN 0 NaN 0
5 NaN 6 0 NaN




q1 q2

A B C D E F

q0 q1 q2 q3 q4

q1 q2 q4

C =




NaN NaN NaN 9 5
NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN

9 NaN NaN NaN 0
5 NaN NaN 0 NaN




A B C D E F

q0 q1 q2 q3 q4

q1 q2 q4 q0

C =




NaN NaN NaN 9 NaN
NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN

9 NaN NaN NaN NaN
NaN NaN NaN NaN NaN




A B C D E F

q0 q1 q2 q3 q4

q1 q2 q4 q0 q3

A B C D E F

Output:

τ = [D,A,B,E,C]

20

20 6

20 6 5

20 6 5 9

Figure 9. Example of Subroutine 4 (Processor embedding map construction, ensuring that τ(G′) is connected).
The subroutine begins by mapping the pair of theoretical qubits (q1, q2), corresponding to the highest entry of the compatibility
matrix C, to a pair of physically connected qubits. Then it updates the compatibility matrix, setting NaN for all entries
corresponding to q1, since it has been assigned to a physical qubit with no more available connections. Then, we search for the
entry with maximum compatibility among the ones shared with the assigned qubits (blue shadow). This step ensures that no
physical connection in the chip is wasted. The same procedure is repeated until all theoretical qubits have been assigned and
ends up with a τ that has 20 + 6 + 5 + 9 = 40 compatibilities, 11 more than Subroutine 3, as shown in Figure 8.

19

Subroutine 5: Remove qubits with no free neighbors
Input: Compatibility matrix C, physical qubit I, assigned qubits AQ, chip’s connectivity G and processor

embedding map τ
1 Let PQs be the list of assigned neighbors of I in G
2 Append I to PQs
3 for S in PQs do
4 Let s be the theoretical qubit assigned to S in τ
5 if all neighbors of S in G are assigned then
6 C[s, :] = C[:, s] = NaN

Subroutine 6: Construction of compatibility matrix
Input: n Pauli strings PS of N qubits

1 Initialize C as an N ×N matrix of zeros
2 Set diagonal entries of C equal to NaN
3 for i in [0, . . . , N − 2] do
4 for j in [i+ 1, . . . , N − 1] do
5 nII = 0
6 for ps in PS do
7 nII += (ps[i, j] == II) // 1 if True, 0 if False
8 // Same for nXX, nY Y , . . .
9 nBell = Binomial(nII + nXX + nY Y + nZZ, 2)

10 nΩX = Binomial(nII + nXX + nY Z + nZY , 2)
11 // Repeat for all other measurements
12 .
13 .
14 .
15 C[i, j] = C[j, i] = nBell + nΩX + nΩY + nΩZ + nχ+ nχ̃

16 return C

Y Y

XZ

ZY

Y X

XY

II

Bell =
(
2
2

)
= 1

ΩX =
(
2
2

)
= 1

ΩY =
(
3
2

)
= 3

ΩZ =
(
3
2

)
= 3

χ =
(
2
2

)
= 1

χ̃ =
(
4
2

)
= 6

Total = 15

q1q3

C =




NaN 2 8 2
2 NaN 1 15
8 1 NaN 2
2 15 2 NaN




q0 q1 q2 q3

Figure 10. Example of Subroutine 6 (Construction of compatibility matrix). The example shows how to compute the
entry of the compatibility matrix corresponding to the compatibilities between q1 and q3 (these sub Pauli strings are those that
come from the example of Figure 6). The graph on the left has an edge between a size 2 Pauli string and a HEEM if that Pauli
string can be measured with that HEEM. Hence, the number of compatibilities due to the χ̃ measurement is

(
4
2

)
because χ̃ is

compatible with 4 Pauli strings and one can make
(
4
2

)
different sets out of 4 different elements. The analog is true for the rest

of the HEEMs. Summing all these numbers gives the total number of compatibilities between the theoretical qubits q1 and q3.

20

c. Choosing the iterative orders

Finally, Subroutine 7 outputs the τ -compatibility matrix Cτ and the vectors CMτ and CQτ , which determines the
order in which Subroutine 2 runs through the iterative elements.
Subroutine 7: Choosing the iterative orders
Input: n Pauli strings PS of N qubits, processor embedding map τ and chip’s connectivity G

1 Initialize Cτ as an N ×N matrix of zeros // Compatibility matrix
2 Set diagonal entries of Cτ equal to NaN
3 Initialize CMτ as a list of size 9 with zeros // Measurement compabilities
4 Initialize CQτ as a list of size N with zeros // Qubit compabilities
5 Identify X = 0, Y = 1, Z = 2, Bell = 3, ΩX = 4, . . . // Analogue for all measurements
6 for i in [0, . . . , N − 1] do
7 nI = 0
8 for ps in PS do
9 nI += (ps[i] == I) // 1 if True, 0 if False

10 // Same for nX, nY and nZ
11 CQτ [i] += Binomial(nI + nX, 2) + Binomial(nI + nY , 2) + Binomial(nI + nZ, 2)
12 CMτ [X] += Binomial(nI + nX, 2)
13 CMτ [Y] += Binomial(nI + nY , 2)
14 CMτ [Z] += Binomial(nI + nZ, 2)
15 for j in [i+ 1, . . . , N − 1] do
16 if τ [i] and τ [j] connected in G then
17 Define nXX, nXY , nXZ, . . ., similar to nI for ps[i, j]
18 nBell = Binomial(nII + nXX + nY Y + nZZ, 2)
19 nΩX = Binomial(nII + nXX + nY Z + nZY , 2)
20 // Repeat for all other measurements
21 .
22 .
23 .
24 Cτ [i, j] = Cτ [j, i] = nBell + nΩX + nΩY + nΩZ + nχ+ nχ̃
25 CMτ [Bell] += nBell

26 CMτ [ΩX] += nΩX

27 .
28 .
29 .
30 CQτ [i] += Cτ [i, j]
31 CQτ [j] += Cτ [i, j]

32 return Cτ , CMτ , CQτ

21

A B C

q0 q2 q1

Physical

Theoretical

τ = [A,C,B]
G =

PS = [IYI, YZX, ZXI, ZII, XIZ, XXZ]

i = 0 → q0

j = 2 → [q1, q2]

CM τ [χ̃]+ =
(
2
2

)
= 1CM τ [χ]+ =

(
2
2

)
= 1CM τ [ΩY]+ =

(
3
2

)
= 3

Cτ [1, 2] = Cτ [2, 1] = 5CQτ [2]+ = 5CQτ [1]+ = 5

j = 2 → [q0, q2]

j = 1 → [q0, q1]

CM τ [χ̃]+ =
(
4
2

)
= 6CM τ [ΩZ]+ =

(
2
2

)
= 1CM τ [ΩY]+ =

(
3
2

)
= 3

CM τ [X]+ =
(
3
2

)
= 3 CM τ [Y]+ =

(
2
2

)
= 1 CM τ [Z]+ =

(
3
2

)
= 3

Cτ [0, 2] = Cτ [2, 0] = 10CQτ [2]+ = 10CQτ [0]+ = 10

CQτ [0]+ = 7

i = 1 → q1

CM τ [X]+ =
(
4
2

)
= 6 CM τ [Y]+ =

(
2
2

)
= 1 CM τ [Z]+ =

(
4
2

)
= 6 CQτ [1]+ = 13

i = 2 → q2

CM τ [X]+ =
(
4
2

)
= 6 CM τ [Y]+ =

(
3
2

)
= 3 CM τ [Z]+ =

(
5
2

)
= 10 CQτ [2]+ = 19

Cτ =




0 0 10
0 0 5
10 5 0




q0 q1 q2

CM τ = [15, 7, 16, 0, 0, 6, 1, 1, 7]

CQτ = [17, 18, 34]

Inputs

Outputs

Disconnected

X ,Y,Z,Bell,ΩX ,ΩY ,ΩZ , χ, χ̃

Figure 11. Example of Subroutine 6 (Choosing the iterative orders). The subroutine inputs a list of Pauli strings PS
and a processor embedding map τ , and chooses an adequate way of running through the qubits’ and measurements’ loops of
Subroutine 2. To do that, it computes the vectors CMτ and CQτ , respectively. It begins by choosing the first theoretical qubit,
q0. Then it computes how many one-qubit X -compatibilities arise in that qubit and adds them to CMτ [X] and to CQτ [0]. The
same is done for Y and Z. Then, it runs through all pairs of theoretical qubits including q0. First, it checks if τ maps the pair
of qubits to connected physical qubits. If so, it counts the compatibilities due to two-qubit measurements involving that pair
and adds them to the corresponding entries of Cτ , CMτ , and CQτ . After that, the same is done with the remaining qubits.

22

Appendix C: Asymptotic scaling

In Fig. 12 a), we show the dependence of the number of groups on the total number of Pauli strings in the
Hamiltonian of different molecules. We found that TPB obtains the largest number of groups for all molecules, while
EM results in a significant reduction in the number of groups. HEEM obtains better results than TPB, but due to
the constraint in the non-connected measurements, it does not reach the results of EM. However, in Fig. 12 b), we
find a considerable improvement in the total number of CNOT gates. After transpiling, taking into account a real
quantum device architecture, EM needs more CNOT gates to perform SWAP gates between non-connected qubits.
This problem is solved by using HEEM, which does not need any SWAP gate, resulting in fewer CNOT gates.

102 103

Pauli strings

101

102

103

104

C
N

O
T

s

y = O(x1.95)

y = O(x1.19)

101 102 103 104

Pauli strings

100

101

102

103

gr
ou

p
s

y = O(x0.93)

y = O(x0.79)

y = O(x0.89)

103 104

Pauli strings

100

101

102

103

104

105

si
m

u
la

ti
on

ti
m

e
(s

)

y = O(x3.19)

y = O(x3.69)

y = O(x3.08)

102 103 104

Pauli strings

10−1

100

101

102

103

gr
ou

p
in

g
ti
m

e
(s

)

y = O(x2.07)

y = O(x2.18)

y = O(x2.26)

a) b)

c) d)

#

#

Figure 12. Dependence of a) the total number of groups, b) the number of CNOTs gates, c) CPU time for the grouping,
and d) CPU time for the simulation of different molecules on the number of Pauli strings. The grouping algorithms used are
TPB (red), EM (green), and HEEM (blue). The dashed lines represent a fit to the function y = βxα. Both EM and HEEM
use ibmq_montreal connectivity. In d), the simulation mimics the architecture, base gate, and noise of the quantum device
ibmq_montreal. Each simulation has a total of 214 shots evenly distributed across all measurements in each grouping. The
simulation is performed using the qasm HPC simulator provided by IBMQ. The transpiling and queue times are not included
in these times.

It is also important to consider the time needed to perform the grouping on a classical CPU, see Fig. 12 c). All three
algorithms begin with the construction of the Pauli graph, which contains information about the commutative Pauli
strings. Once the graph is obtained, TPB uses LDFC for graph coloring, whose time complexity is O

(
n2
)
, where n is

the total number of Pauli strings. EM uses a more sophisticated algorithm which needs to run through the graph and
check if it can group a pair of terms with any of the existing bases. This extra check results in a slower algorithm.
Furthermore, HEEM also checks if the grouping is compatible with the chip’s connectivity. However, despite the fact
that the HEEM grouping is slower than the other methods, looking at the simulation time, Fig. 12 d), it is clear that
the reduction in the simulation time is notorious. Even if TPB circuits do not require CNOT gates, the number of
circuits to simulate is much larger than that of HEEM. On the other hand, EM grouping results in lower circuits, but
the number of SWAP gates needed to perform the simulation grows much faster than that of HEEM, making it the
slower algorithm to simulate.

23

Appendix D: Variational circuits

To compute the VQE of the H2O molecule given in the main text, we use a circuit similar to the one shown below.
First, the circuit is initialized with a Hartree-Fock state. The variational ansatz used is known as EfficientSU2, which
is composed of a first layer of one-qubit rotations around the y-axis with the angles θi, and a second layer of one-qubit
rotations around the z-axis. Then the entangling layer is composed of CNOT gates for all well-connected qubits on
the chip. After that, two more one-qubit rotations around the y- and z-axes are applied. There is a total of 4N
degrees of freedom, where N is the total number of qubits. Finally, we apply different one- and two-qubit gates to
group the Hamiltonian terms, as explained in the main text, and measure the qubits.

well-connected

...
...

...
...

...

q0

H
A
R
T
R
E
E

F
O
C
K

RY (θ0) RZ(θN) RY (θ2N) RZ(θ3N)

G
R
O
U
P
I
N
G

q1 RY (θ1) RZ(θN+1) RY (θ2N+1) RZ(θ3N+1)

q2 RY (θ2) RZ(θN+2) RY (θ2N+2) RZ(θ3N+2)

q3 RY (θ3) RZ(θN+3) RY (θ2N+3) RZ(θ3N+3)

...

qN−1 RY (θN−1) RZ(θ2N−1) RY (θ3N−1) RZ(θ4N−1)

initialize ansatz

Figure 13. Variational circuit for variational quantum eigensolver with a total of N qubits, and 4N rotation angles θi. The
entangling gates are only performed between qubits that are connected in the quantum chip.

[1] J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2, 79 (2018).
[2] I. G. Ryabinkin, S. N. Genin, and A. F. Izmaylov, Constrained variational quantum eigensolver: Quantum computer search

engine in the fock space, Journal of Chemical Theory and Computation 15, 249 (2018).
[3] J. Romero, R. Babbush, J. R. McClean, C. Hempel, P. J. Love, and A. Aspuru-Guzik, Strategies for quantum computing

molecular energies using the unitary coupled cluster ansatz, Quantum Science and Technology 4, 014008 (2018).
[4] I. G. Ryabinkin, T.-C. Yen, S. N. Genin, and A. F. Izmaylov, Qubit coupled cluster method: A systematic approach to

quantum chemistry on a quantum computer, Journal of Chemical Theory and Computation 14, 6317 (2018).
[5] W. Kirby, B. Fuller, C. Hadfield, and A. Mezzacapo, Second-quantized fermionic operators with polylogarithmic qubit and

gate complexity, PRX Quantum 3, 020351 (2022).
[6] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann,

T. Menke, W.-K. Mok, S. Sim, L.-C. Kwek, and A. Aspuru-Guzik, Noisy intermediate-scale quantum algorithms, Rev.
Mod. Phys. 94, 015004 (2022).

[7] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig, I. Rungger, G. H. Booth, and J. Tennyson,
The variational quantum eigensolver: A review of methods and best practices, Physics Reports 986, 1 (2022).

[8] A. F. Izmaylov, T.-C. Yen, and I. G. Ryabinkin, Revising the measurement process in the variational quantum eigensolver:
is it possible to reduce the number of separately measured operators?, Chemical Science 10, 3746 (2019).

[9] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, A
variational eigenvalue solver on a photonic quantum processor, Nat. Commun. 5 (2014).

[10] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm (2014), arXiv:1411.4028 [quant-
ph].

[11] N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow, A. Cross, D. J. Egger, S. Filipp, A. Fuhrer, J. M. Gambetta, M. Ganzhorn,
A. Kandala, A. Mezzacapo, P. Müller, W. Riess, G. Salis, J. Smolin, I. Tavernelli, and K. Temme, Quantum optimization
using variational algorithms on near-term quantum devices, Quantum Science and Technology 3, 030503 (2018).

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1021/ACS.JCTC.8B00943
https://doi.org/10.1088/2058-9565/AAD3E4
https://doi.org/10.1021/ACS.JCTC.8B00932
https://doi.org/10.1103/PRXQuantum.3.020351
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1039/C8SC05592K
https://doi.org/10.1038/ncomms5213
http://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
https://doi.org/10.1088/2058-9565/AAB822

24

[12] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta, Hardware-efficient
variational quantum eigensolver for small molecules and quantum magnets, Nature 549, 242 (2017).

[13] C. Hempel, C. Maier, J. Romero, J. McClean, T. Monz, H. Shen, P. Jurcevic, B. P. Lanyon, P. Love, R. Babbush,
A. Aspuru-Guzik, R. Blatt, and C. F. Roos, Quantum chemistry calculations on a trapped-ion quantum simulator, Phys.
Rev. X 8, 031022 (2018).

[14] Y. Nam, J. S. Chen, N. C. Pisenti, K. Wright, C. Delaney, D. Maslov, K. R. Brown, S. Allen, J. M. Amini, J. Apisdorf,
K. M. Beck, A. Blinov, V. Chaplin, M. Chmielewski, C. Collins, S. Debnath, K. M. Hudek, A. M. Ducore, M. Keesan,
S. M. Kreikemeier, J. Mizrahi, P. Solomon, M. Williams, J. D. Wong-Campos, D. Moehring, C. Monroe, and J. Kim,
Ground-state energy estimation of the water molecule on a trapped-ion quantum computer, npj Quantum Information 6,
33 (2020).

[15] D. J. Egger, C. Gambella, J. Marecek, S. McFaddin, M. Mevissen, R. Raymond, A. Simonetto, S. Woerner, and E. Yndurain,
Quantum computing for finance: State-of-the-art and future prospects, IEEE Transactions on Quantum Engineering 1, 1
(2020).

[16] P. Vikstål, M. Grönkvist, M. Svensson, M. Andersson, G. Johansson, and G. Ferrini, Applying the quantum approximate
optimization algorithm to the tail-assignment problem, Physical Review Applied 14, 1 (2020).

[17] F. Neukart, G. Compostella, C. Seidel, D. von Dollen, S. Yarkoni, and B. Parney, Traffic flow optimization using a quantum
annealer, Frontiers in ICT 4, 29 (2017).

[18] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Quantum machine learning, Nature 549, 195
(2017).

[19] M. Benedetti, E. Grant, L. Wossnig, and S. Severini, Adversarial quantum circuit learning for pure state approximation,
New Journal of Physics 21, 043023 (2019).

[20] A. Patterson, H. Chen, L. Wossnig, S. Severini, D. Browne, and I. Rungger, Quantum state discrimination using noisy
quantum neural networks, Physical Review Research 3, 013063 (2021).

[21] H. Chen, L. Wossnig, S. Severini, H. Neven, and M. Mohseni, Universal discriminative quantum neural networks, Quantum
Machine Intelligence 3, 1 (2021).

[22] X. Wang, Z. Song, and Y. Wang, Variational quantum singular value decomposition, Quantum 5, 483 (2021).
[23] K. Wang, Z. Song, X. Zhao, Z. Wang, and X. Wang, Detecting and quantifying entanglement on near-term quantum

devices (2020), arXiv:2012.14311 [quant-ph].
[24] A. D. Muñoz-Moller, L. Pereira, L. Zambrano, J. Cortés-Vega, and A. Delgado, Variational determination of multi-qubit

geometrical entanglement in nisq computers (2021), arXiv:2110.03709 [quant-ph].
[25] X. Yuan, S. Endo, Q. Zhao, Y. Li, and S. C. Benjamin, Theory of variational quantum simulation, Quantum 3, 191 (2019).
[26] T. Jones, S. Endo, S. McArdle, X. Yuan, and S. C. Benjamin, Variational quantum algorithms for discovering hamiltonian

spectra, Phys. Rev. A 99, 062304 (2019).
[27] P. García-Molina, J. Rodríguez-Mediavilla, and J. J. García-Ripoll, Quantum fourier analysis for multivariate functions

and applications to a class of schrödinger-type partial differential equations, Physical Review A 105, 012433 (2022).
[28] P. Jordan, E. Wigner, P. Jordan, and E. Wigner, Über das paulische Äquivalenzverbot, Eur. Phys. J. A 47, 631 (1928).
[29] S. B. Bravyi and A. Y. Kitaev, Fermionic quantum computation, Ann. Phys. 298, 210 (2002).
[30] H. Y. Huang, R. Kueng, and J. Preskill, Predicting many properties of a quantum system from very few measurements,

Nature Physics 16, 1050 (2020).
[31] S. Chen, W. Yu, P. Zeng, and S. T. Flammia, Robust shadow estimation, PRX Quantum 2, 030348 (2021).
[32] S. Aaronson, Shadow tomography of quantum states, SIAM Journal on Computing 49, STOC18 (2020).
[33] J. Cotler and F. Wilczek, Quantum overlapping tomography, Physical Review Letters 124, 100401 (2020).
[34] X. Bonet-Monroig, R. Babbush, and T. E. O’Brien, Nearly optimal measurement scheduling for partial tomography of

quantum states, Phys. Rev. X 10, 031064 (2020).
[35] N. C. Rubin, R. Babbush, and J. McClean, Application of fermionic marginal constraints to hybrid quantum algorithms,

New Journal of Physics 20, 053020 (2018).
[36] R. G. Melko, G. Carleo, J. Carrasquilla, and J. I. Cirac, Restricted boltzmann machines in quantum physics, Nature

Physics 15, 887 (2019).
[37] G. Torlai, G. Mazzola, G. Carleo, and A. Mezzacapo, Precise measurement of quantum observables with neural-network

estimators, Physical Review Research 2, 022060 (2020).
[38] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, The theory of variational hybrid quantum-classical algo-

rithms, New Journal of Physics 18, 023023 (2016).
[39] A. Arrasmith, L. Cincio, R. D. Somma, and P. J. Coles, Operator sampling for shot-frugal optimization in variational

algorithms (2020), arXiv:2004.06252.
[40] H. J. Vallury, M. A. Jones, C. D. Hill, and L. C. L. Hollenberg, Quantum computed moments correction to variational

estimates, Quantum 4, 373 (2020).
[41] A. Shlosberg, A. J. Jena, P. Mukhopadhyay, J. F. Haase, F. Leditzky, and L. Dellantonio, Adaptive estimation of quantum

observables (2021), arXiv:2110.15339 [quant-ph].
[42] S. Bravyi, J. M. Gambetta, A. Mezzacapo, and K. Temme, Tapering off qubits to simulate fermionic hamiltonians (2017),

arXiv:1701.08213 [quant-ph].
[43] T.-C. Yen, V. Verteletskyi, and A. F. Izmaylov, Measuring all compatible operators in one series of single-qubit measure-

ments using unitary transformations, Journal of Chemical Theory and Computation 16, 2400 (2020).
[44] V. Verteletskyi, T.-C. Yen, and A. F. Izmaylov, Measurement optimization in the variational quantum eigensolver using a

minimum clique cover, The Journal of Chemical Physics 152, 124114 (2020).

https://doi.org/10.1038/nature23879
https://doi.org/10.1103/PhysRevX.8.031022
https://doi.org/10.1103/PhysRevX.8.031022
https://doi.org/10.1038/s41534-020-0259-3
https://doi.org/10.1038/s41534-020-0259-3
https://doi.org/10.1109/TQE.2020.3030314
https://doi.org/10.1109/TQE.2020.3030314
https://doi.org/10.1103/PhysRevApplied.14.034009
https://doi.org/10.3389/fict.2017.00029
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1088/1367-2630/ab14b5
https://doi.org/10.1103/PhysRevResearch.3.013063
https://doi.org/10.1007/s42484-020-00025-7
https://doi.org/10.1007/s42484-020-00025-7
https://doi.org/10.22331/q-2021-06-29-483
http://arxiv.org/abs/2012.14311
http://arxiv.org/abs/2012.14311
https://arxiv.org/abs/2012.14311
https://arxiv.org/abs/2110.03709
https://arxiv.org/abs/2110.03709
https://arxiv.org/abs/2110.03709
https://doi.org/10.22331/q-2019-10-07-191
https://doi.org/10.1103/PhysRevA.99.062304
https://doi.org/10.1103/physreva.105.012433
https://doi.org/10.1007/BF01331938
https://doi.org/10.1006/APHY.2002.6254
https://doi.org/10.1038/s41567-020-0932-7
https://doi.org/10.1103/PRXQuantum.2.030348
https://doi.org/10.1137/18m120275x
https://doi.org/10.1103/PhysRevLett.124.100401
https://doi.org/10.1103/PhysRevX.10.031064
https://doi.org/10.1088/1367-2630/aab919
https://doi.org/10.1038/s41567-019-0545-1
https://doi.org/10.1038/s41567-019-0545-1
https://doi.org/10.1103/PhysRevResearch.2.022060
https://doi.org/10.1088/1367-2630/18/2/023023
https://arxiv.org/abs/2004.06252v1
https://arxiv.org/abs/2004.06252v1
https://arxiv.org/abs/arXiv:2004.06252
https://doi.org/10.22331/q-2020-12-15-373
http://arxiv.org/abs/2110.15339
http://arxiv.org/abs/2110.15339
https://arxiv.org/abs/2110.15339
http://arxiv.org/abs/1701.08213
https://arxiv.org/abs/1701.08213
https://doi.org/10.1021/acs.jctc.0c00008
https://doi.org/10.1063/1.5141458

25

[45] P. Gokhale, O. Angiuli, Y. Ding, K. Gui, T. Tomesh, M. Suchara, M. Martonosi, and F. T. Chong, Minimizing state
preparations in variational quantum eigensolver by partitioning into commuting families (2019), arXiv:1907.13623 [quant-
ph].

[46] R. Kondo, Y. Sato, S. Koide, S. Kajita, and H. Takamatsu, Computationally Efficient Quantum Expectation with Extended
Bell Measurements, Quantum 6, 688 (2022).

[47] A. F. Izmaylov, T.-C. Yen, R. A. Lang, and V. Verteletskyi, Unitary partitioning approach to the measurement problem
in the variational quantum eigensolver method, Journal of Chemical Theory and Computation 16, 190 (2020).

[48] I. Hamamura and T. Imamichi, Efficient evaluation of quantum observables using entangled measurements, npj Quantum
Information 6, 56 (2020).

[49] O. Crawford, B. van Straaten, D. Wang, T. Parks, E. Campbell, and S. Brierley, Efficient quantum measurement of pauli
operators in the presence of finite sampling error, Quantum 5, 385 (2021).

[50] A. Zhao, A. Tranter, W. M. Kirby, S. F. Ung, A. Miyake, and P. J. Love, Measurement reduction in variational quantum
algorithms, Phys. Rev. A 101, 062322 (2020).

[51] A. Jena, S. Genin, and M. Mosca, Pauli partitioning with respect to gate sets (2019), arXiv:1907.07859 [quant-ph].
[52] P. Formanowicz and K. Tanaś, A survey of graph coloring - its types, methods and applications, Foundations of Computing

and Decision Sciences 37, 223 (2012).
[53] R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations (Springer US, 1972)

pp. 85–103.
[54] P. Manurangsi, Almost-polynomial ratio eth-hardness of approximating densest k-subgraph, in Proceedings of the 49th

Annual ACM SIGACT Symposium on Theory of Computing , STOC 2017 (Association for Computing Machinery, New
York, NY, USA, 2017) p. 954–961.

[55] R. Sotirov, On solving the densest k-subgraph problem on large graphs, Optimization Methods and Software 35, 1160
(2020).

[56] C. Avanthay, A. Hertz, and N. Zufferey, A variable neighborhood search for graph coloring, European Journal of Operational
Research 151, 379 (2003).

[57] B. Tan and J. Cong, Optimal layout synthesis for quantum computing, in Proceedings of the 39th International Conference
on Computer-Aided Design (ACM, 2020).

[58] D. C. Young, Computational Chemistry (John Wiley & Sons, Inc., 2001).
[59] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X. Yuan, Quantum computational chemistry, Rev. Mod.

Phys. 92, 015003 (2020).
[60] F. Escudero, D. Fernández-Fernández, G. Jaumà, G. F. Peñas, and L. Pereira, Hardware efficient variational quantum

eigensolver with entangled measurements: Code repository (2023).
[61] IBM Quantum Computing (2022).
[62] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, Measurement of qubits, Phys. Rev. A 64, 052312 (2001).
[63] H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. C. al kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O.

Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, Scalable multiparticle entanglement of trapped ions, Nature 438,
643 (2005).

[64] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert, Quantum state tomography via compressed sensing, Phys.
Rev. Lett. 105, 150401 (2010).

[65] C. A. Riofrío, D. Gross, S. T. Flammia, T. Monz, D. Nigg, R. Blatt, and J. Eisert, Experimental quantum compressed
sensing for a seven-qubit system, Nature Communications 8, 15305 (2017).

[66] S. T. Flammia and Y.-K. Liu, Direct fidelity estimation from few pauli measurements, Phys. Rev. Lett. 106, 230501 (2011).
[67] M. P. da Silva, O. Landon-Cardinal, and D. Poulin, Practical characterization of quantum devices without tomography,

Phys. Rev. Lett. 107, 210404 (2011).
[68] S. Endo, Z. Cai, S. C. Benjamin, and X. Yuan, Hybrid quantum-classical algorithms and quantum error mitigation, Journal

of the Physical Society of Japan 90, 032001 (2021).
[69] K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation for short-depth quantum circuits, Phys. Rev. Lett. 119,

180509 (2017).
[70] Y. Li and S. C. Benjamin, Efficient variational quantum simulator incorporating active error minimization, Phys. Rev. X

7, 021050 (2017).

https://arxiv.org/abs/1907.13623
https://arxiv.org/abs/1907.13623
https://arxiv.org/abs/1907.13623
https://arxiv.org/abs/1907.13623
https://doi.org/10.22331/q-2022-04-13-688
https://doi.org/10.1021/acs.jctc.9b00791
https://doi.org/10.1038/s41534-020-0284-2
https://doi.org/10.1038/s41534-020-0284-2
https://doi.org/10.22331/q-2021-01-20-385
https://doi.org/10.1103/PhysRevA.101.062322
https://arxiv.org/abs/1907.07859
https://arxiv.org/abs/1907.07859
https://doi.org/10.2478/v10209-011-0012-y
https://doi.org/10.2478/v10209-011-0012-y
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/3055399.3055412
https://doi.org/10.1145/3055399.3055412
https://doi.org/10.1080/10556788.2019.1595620
https://doi.org/10.1080/10556788.2019.1595620
https://doi.org/10.1016/S0377-2217(02)00832-9
https://doi.org/10.1016/S0377-2217(02)00832-9
https://doi.org/10.1145/3400302.3415620
https://doi.org/10.1145/3400302.3415620
https://doi.org/10.1002/0471220655
https://doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.5281/zenodo.7920360
https://doi.org/10.5281/zenodo.7920360
https://quantum-computing.ibm.com/
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1038/nature04279
https://doi.org/10.1038/nature04279
https://doi.org/10.1103/PhysRevLett.105.150401
https://doi.org/10.1103/PhysRevLett.105.150401
https://doi.org/10.1038/ncomms15305
https://doi.org/10.1103/PhysRevLett.106.230501
https://doi.org/10.1103/PhysRevLett.107.210404
https://doi.org/10.7566/JPSJ.90.032001
https://doi.org/10.7566/JPSJ.90.032001
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevX.7.021050
https://doi.org/10.1103/PhysRevX.7.021050

	Hardware-efficient entangled measurements for variational quantum algorithms
	Abstract
	Introduction.
	Hardware-efficient grouping
	The processor embedding problem

	Results
	Conclusions and Outlook
	Acknowledgements
	Entangled measurements
	Computing the expected values of Hamiltonians with a certain grouping
	Jointly diagonalizable pairs in all entangled bases.

	Algorithms
	Grouping algorithms
	Subroutines
	Grouping taking chip's connectivity into account
	Building the processor embedding map
	Choosing the iterative orders

	Asymptotic scaling
	Variational circuits
	References

