
Shrink-Perturb Improves Architecture Mixing during
Population Based Training for Neural Architecture Search

Alexander Chebykina;*, Arkadiy Dushatskiya, Tanja Alderliestenb and Peter Bosmana, c

aCentrum Wiskunde & Informatica
bLeiden University Medical Center, Department of Radiation Oncology

cDelft University of Technology
ORCiD ID: Alexander Chebykin https://orcid.org/0000-0002-3549-3533,

Arkadiy Dushatskiy https://orcid.org/0000-0003-0945-0262,
Tanja Alderliesten https://orcid.org/0000-0003-4261-7511, Peter Bosman https://orcid.org/0000-0002-4186-6666

Abstract.
In this work, we show that simultaneously training and mixing

neural networks is a promising way to conduct Neural Architecture
Search (NAS). For hyperparameter optimization, reusing the par-
tially trained weights allows for efficient search, as was previously
demonstrated by the Population Based Training (PBT) algorithm. We
propose PBT-NAS, an adaptation of PBT to NAS where architec-
tures are improved during training by replacing poorly-performing
networks in a population with the result of mixing well-performing
ones and inheriting the weights using the shrink-perturb technique.
After PBT-NAS terminates, the created networks can be directly used
without retraining. PBT-NAS is highly parallelizable and effective: on
challenging tasks (image generation and reinforcement learning) PBT-
NAS achieves superior performance compared to baselines (random
search and mutation-based PBT).

1 Introduction
Neural Architecture Search (NAS) is the process of automatically find-
ing a neural network architecture that performs well on a target task
(such as image classification [28], natural language processing [24],
image generation [15]). One of the key questions for NAS is the ques-
tion of efficiency, since evaluating every promising architecture by
fully training it would require an extremely large amount of computa-
tional resources.

Many approaches have been proposed for increasing the search
efficiency: low-fidelity evaluation [53, 37], using weight sharing via a
supernetwork [34, 6], estimating architecture quality via training-free
metrics [31, 1]. Typically, each approach has two stages: first, finding
an architecture efficiently, then, training it (or its scaled-up version)
from scratch. This final training usually requires a manual intervention
(e.g., if an architecture of a cell is searched, determining how many
of these cells should be used), which diminishes the benefit of an
automatic approach (potentially, this could also be automated, but we
are not aware of such studies in the literature). Ideally, an architecture
itself (not its proxy version) should be searched on the target problem,
with the search result being immediately usable after the search (such
single-stage NAS approaches exist but are limited: e.g., they restrict
potential search spaces [20] or require costly pretraining [6, 43]).
∗ Corresponding Author. Email: a.chebykin@cwi.nl.

For the task of hyperparameter optimization (which is closely re-
lated to NAS), effective and efficient single-stage algorithms exist
in the form of Population Based Training (PBT) [22] and its exten-
sions [27, 10]. The key idea of PBT is to train many networks with
different hyperparameters (a population) in parallel: as the training
progresses, worse networks are replaced by copies of better ones
(including the weights), with hyperparameter values explored via ran-
dom perturbation. PBT is highly efficient due to the weight reuse, and
due to its parallel nature: given a sufficient amount of computational
resources, running PBT takes approximately the same wall-clock time
as training just one network.

Determining the best way to adapt PBT to NAS is an open re-
search question [10]: if a network architecture has been perturbed,
the partly-trained weights cannot be reused (because, e.g., weights
of a convolutional layer cannot be used in a linear one). The naive
approach of initializing them randomly does not work well (see Sec-
tion 5.3), and existing algorithms extending PBT to NAS [14, 42]
sidestep the issue at the cost of parallelizability or performance (see
Section 2.2).

We propose to adapt PBT to NAS by modifying the search to rely
not on random perturbations but on mixing layers of the networks in
the population. An example of this principle is combining an encoder
and a decoder from two different autoencoder networks, ultimately
obtaining a better-performing network. In this setting, the source of
the weights for the changed layers is natural: they can be copied
from the parent networks. Furthermore, we explore if additionally
adapting the copied weights with the shrink-perturb technique [3]
(reducing weight magnitude and adding noise) is helpful for achieving
a successful transfer of a layer from one network to another.

For many standard tasks (such as image classification), single-
objective NAS algorithms are matched by (or show only a small
improvement over) the simple baseline of random search [26, 51]. In
order to make the potential benefit of PBT-NAS clear, experiments
in this paper are conducted in two challenging settings: Generative
Adversarial Network (GAN) training, and Reinforcement Learning
(RL) for visual continuous control. We further advocate for harder
tasks and search spaces in Section 6.

While our approach could potentially be extended to include hyper-
parameter optimization, this paper is focused on architecture search.

The contributions of this work are threefold:

ar
X

iv
:2

30
7.

15
62

1v
1

 [
cs

.L
G

]
 2

8
Ju

l 2
02

3

https://orcid.org/0000-0002-3549-3533
https://orcid.org/0000-0003-0945-0262
https://orcid.org/0000-0003-4261-7511
https://orcid.org/0000-0002-4186-6666

Architectures at epoch e

...

Best

Worst

Quality

Continue
training

...

Replace worst
with a mix of best

...

Weights and type
of each layer are
copied from the
corresponding

architecture

Architectures at epoch e + e_step

...

...

...

...
Figure 1. In each iteration of PBT-NAS, architectures in the population continue training for several epochs and then are sorted by performance. Every

architecture from the bottom percentile is replaced with a mix of two architectures from the top percentile. During mixing, each layer is copied from one of these
two architectures (weights from the architecture with worse performance are shrink-perturbed). Different shapes represent different types of layers.

1. We propose to conduct NAS by training a population of different
architectures and mixing them on-the-fly to create better ones
(while inheriting the weights).

2. We investigate if applying shrink-perturb [3] to the weights is a
superior technique for weight inheritance compared to copying or
random reinitialization.

3. Integrating these ideas, we introduce PBT-NAS, an efficient and
general NAS algorithm, and evaluate it on challenging NAS search
spaces and tasks.

2 Related work
2.1 Neural Architecture Search

NAS is the automatic process of finding a well-performing neural net-
work architecture for a specific task. Already in early NAS work [53],
efficiency concerns played a role: candidate architectures were trained
for only a few epochs. Similar low-fidelity search methods save com-
pute by using fewer layers [30], or only a subset of the data [37].
Another way to save compute is by utilizing a training-free metric to
perform NAS without any training [31, 1].

ENAS [34] introduced the idea of weight sharing: all candidate ar-
chitectures are viewed as subsets of a supernetwork, with the weights
of the common parts reused across the architectures. The final archi-
tecture is scaled up and trained from scratch. This approach greatly de-
creased cost of the search to just several GPU-days. DARTS [28] fur-
ther increased efficiency by continuously relaxing the problem. Many
approaches build upon DARTS by e.g., reducing memory usage [48]
or improving performance [8]. AdversarialNAS [15] extends the ap-
proach to GAN training, outperforming previous algorithms [16].

In OnceForAll [6], a supernetwork is pretrained such that subnet-
works would perform well without retraining, in AttentiveNAS [43]
and AlphaNet [36] performance is further improved. These ap-
proaches are a good fit for multi-objective NAS (where in contrast to
single-objective NAS, multiple architectures with different trade-offs
between objectives such as performance and latency are searched).
However, the costs for the proposed pretraining reach thousands of
GPU-hours. Additionally, in any supernetwork approach, the diversity
and size of the architectures are restricted by the supernetwork.

Our approach of exchanging layers and weights between different
networks is distinct from the supernetwork-based weight sharing. The
weights in the supernetwork are constrained to perform well in a
variety of subnetworks, while in our approach, after the weights have

been copied to the network with a novel architecture, they can be
freely adapted to it, independently of what happens to their original
version in the parent network.

The general idea of creating new architectures by modifying ex-
isting ones and reusing the weights has been explored in NAS ap-
proaches [12, 23] relying on network morphisms[7, 44]. Network
morphisms are operators that change the architecture of a neural
network without influencing its functionality. Although [12, 23] suc-
cessfully used morphisms, the idea was later challenged [45] with
experiments demonstrating that random initialization of new layers is
superior to morphisms. Morphisms are different from our work: while
they create a new architecture by modifying one existing architecture,
we seek to mix two distinct architectures and reuse their weights.

2.2 Population Based Training

In hyperparameter optimization, hyperparameters of neural net-
work training, such as learning rate or weight decay, are optimized.
Bayesian optimization algorithms [21, 13] are commonly used for se-
quentially evaluating promising hyperparameter configurations. Other
approaches include Evolutionary Algorithms [29, 27], and random
search [4], a simple but reasonably good baseline.

In contrast to the approaches that train weights for each hyperpa-
rameter configuration from scratch, PBT [22] reuses partly-trained
weights when exploring hyperparameters (see Section 1 for short
description and [22] for details).

To the best of our knowledge, two algorithms were proposed for in-
cluding architecture search into PBT: SEARL [14] and BG-PBT [42].
In SEARL, the architecture is modified by mutation, which can add
a linear layer, add neurons to an existing layer, change an activation
function, or add noise to the weights. We use a SEARL-like mutation
as a baseline. In BG-PBT, there are multiple generations; in each gen-
eration, network architectures are sampled, initialized with random
weights, and their training is sped up via distillation from the best net-
work of the previous generation. This approach adds complexity in the
form of multiple generations (the number of which must be manually
determined) and using distillation (that would require adaptation to
each setting, e.g., GAN training). In addition, sequential generations
decrease parallelizability. Both SEARL and BG-PBT were proposed
exclusively for RL tasks, while we construct PBT-NAS to be a general
NAS algorithm.

2

2.3 Combining several neural networks into one

Neural networks can be combined in various ways. In evolutionary
NAS [30] where weights are trained from scratch for each considered
architecture, crossover is performed between encodings of architec-
tures. Alternatively, there exist methods combining only the weights
of networks that have the same architecture [41, 2]. Naively averaging
the weights leads to a large loss in performance [2], which moti-
vated these approaches to align neurons so that they would represent
similar features. Averaging weights without alignment is possible if
the weights of the networks are closely related. The idea of model
soups [47] is to start with a pretrained model, fine-tune it with different
sets of hyperparameters, and greedily search which of the fine-tuned
models to average.

In our approach, we mix different architectures together with the
weights during training, in contrast to evolutionary NAS algorithms
combining only architecture encodings, and training the weights from
scratch. We also avoid the additional complexity of aligning neurons,
instead we continue to train the created network, and allow the gra-
dient descent procedure to adapt the neurons to each other (which is
facilitated by shrink-perturb [3], see Section 3.3).

3 Method
3.1 Problem setting

The goal of single-objective NAS is to find a network architecture α∗

from a search space Ω that maximizes an objective function f after
training the weights θ:

α∗ = argmax
α∈Ω

f(α; θ) (1)

Ω typically includes network architecture properties such as the num-
ber of layers, types of each layer, and its hyperparameters (e.g., con-
volution size). We will describe an architecture α by M categorical
variables {xi}i=0..M−1, each taking li possible values. Note that in
the case where more than one architecture is searched for (e.g., gener-
ator and discriminator of a GAN), we consider, for simplicity, α to
include architecture parameters of all architectures.

3.2 Algorithm overview

In our algorithm, PBT-NAS, we follow the general structure of PBT,
where N networks are trained in parallel1. In each iteration of the
algorithm, every network is trained for e_step epochs. Then, each of
the worst τ% of the networks is replaced by a mix of two networks
from the best τ% (according to the objective function f). Over time,
better architectures are created. Mixing architectures during training
is the key component of PBT-NAS. In Section 3.3, we motivate the
choice to do NAS by mixing networks. Further details of how we mix
architectures are given in Section 3.4.

A visual representation of one iteration of PBT-NAS is shown in
Figure 1, and the pseudocode is listed in Algorithm 1.

3.3 Key question when modifying architecture during
training: where to get the weights from?

PBT relies on random perturbations of hyperparameters for exploring
the search space while the network weights are being continuously

1 Note that since each network has a different architecture, it has a different
training speed, so to avoid biasing the search towards models that require
less training time, we use the synchronous variant of PBT.

Algorithm 1 PBT-NAS

Input: search space Ω, number of variables M , population size N ,
number of epochs e_total, step size e_step, selection parameter τ ,
probability p of replacing a layer, parameters λ, γ of shrink-perturb

1: pop← {N random architectures from Ω}
2: e← 0
3: while e < e_total do
4: for i← 0 to N − 1 do // in parallel
5: train popi for e_step epochs
6: popi.fitness← evaluate(popi)
7: end for
8: sort pop by fitness
9: best_nets← the best τ% nets

10: worst_indices← indices of the worst τ% nets
11: for j in worst_indices do
12: popj ← create_architecture(best_nets, p,M, λ, γ)

// the result of mixing, see Algorithm 2
13: end for
14: e← e+ e_step
15: end while

trained. This works well when searching for hyperparameters that
can be replaced independently of the weights: e.g., after changing the
learning rate, the training can continue with the same weights.

However, searching for an architecture means introducing changes
that impact the weights, e.g., changing the type of a layer from linear
to convolutional. After such a change, the training process is disturbed:
the weights of one type of layer cannot be used in another one.

To follow the paradigm of PBT and continue training the network
after an architectural change, the source of the weights needs to be
determined. We consider three potential approaches (Figure 2).

Weight
tensor

(a) Copy (b) Shrink-perturb (c) Reinitialize randomly

Parent

Parent

Figure 2. Three potential operations to perform on the weight tensor when
copying the corresponding layer from the parent.

One approach is initializing the new weights randomly. Intuitively,
this could be problematic, as replacing weights of a whole layer
with random ones can substantially disrupt the learned connections
between neurons across the whole network.

Instead of being initialized randomly, the weights of the modified
part can come from another network in the population. If the new
value of the type of the layer is not generated randomly but copied
from another solution, the corresponding layer weights can be copied
from it too. Straightforward weight copying may be better than ran-
dom initialization but it faces the following issue: even though the
layers at the same depth of different networks should perform simi-
lar transformations (when trained on the same task), the actual data

3

Algorithm 2 create_architecture

Input: set of networks to potentially mix nets, probability p of replac-
ing a layer, number of variables M , parameters λ, γ of shrink-perturb

1: net1, net2 ← randomly sample from nets
2: if net1.fitness < net2.fitness then
3: net1, net2 ← net2, net1 // sort by fitness
4: end if
5: netnew ← copy(net1)
6: for i = 0 to M − 1 do // iterate over architecture variables
7: if random_uniform() < p then
8: netnew.αi ← net2.αi // copy the value of the variable
9: if ∃net2.W i then

10: // if the variable is a layer, copy and modify its weights
11: Wnew ← copy(net2.W

i)
12: shrink_perturb(Wnew, λ, γ)
13: netnew.W

i ←Wnew

14: end if
15: end if
16: end for
17: return netnew

representations in each network are likely to be different. The copied
weights would need to be adapted to a different representation space,
but it might be difficult for gradient descent to adapt them quickly.

Shrink-perturb [3] is potentially helpful in this scenario. It was
motivated by the observation that in online learning, continuing train-
ing from already trained weights when new data comes in can be
worse than retraining from scratch using all the available data. Shrink-
perturb consists of modifying the weights of a neural network by
shrinking (multiplying by a constant λ) and perturbing them (adding
noise multiplied by a constant γ; a new initialization of the network
architecture is used as the source of noise).

Applying shrink-perturb to the copied weights is the middle ground
between copying the weights as-is, and initializing them randomly.
This preserves some useful information in the weights, while also
potentially making their adaptation to the new architecture easier.

3.4 Mixing networks

Algorithm 2 shows our procedure for creating a new network. Firstly,
two parent networks are randomly sampled from the top τ percentile
of the population. An offspring solution is created by copying the
better parent, and replacing with probability p each layer with the
layer from the worse parent (including the weights, which are shrink-
perturbed). Our mixing is a version of uniform crossover [39] where
only one offspring solution is produced. Note that our mixing requires
that layers in the same position can be substituted for each other
(i.e., the output can be used as the input of the next layer), with
the architecture remaining valid after a layer is replaced. We further
discuss this limitation in Section 6.

Unlike existing approaches to combining neural networks (see
Section 2.3), we do not expect (or need) the new network to perform
well right away. Instead, it will be trained for several epochs in the
next iteration of PBT-NAS, the same as the other networks in the
population.

4 Experiment setup
4.1 General

We evaluate PBT-NAS on two tasks known to require careful tuning of
network architecture and hyperparameters: GAN training and RL for

visual control. In these settings, architecture can strongly influence
performance [17, 38]. We consider non-trivial architecture search
spaces, see Sections 4.2 and 4.3. We would like to emphasize that
achieving a state-of-the-art result on the chosen tasks is not our goal,
instead we aim to demonstrate the feasibility of architecture search
via simultaneous training and architecture mixing on tasks where
performance strongly depends on architecture.

Hyperparameters of PBT-NAS are population size N , step size
e_step, selection parameter τ (we use the default value from PBT,
25%, in all experiments), probability p of replacing a layer (which is
also set to 25%). We aim to avoid unnecessary hyperparameter tuning
to see if our approach is robust enough to perform well without it and
to save computational resources.

The experiments were run in a distributed way, the details on used
hardware and on GPU-hour costs of experiments are given in Ap-
pendix F. The algorithms used the amount of compute equivalent
to training N networks. Every experiment was run three times, we
report the mean and standard deviation of the performance of the
best solution from each run. We use the Wilcoxon signed-rank test
with Bonferroni correction for statistical testing (target p-value 0.05,
4 tests, corrected p 0.0125, mentions of statistical significance in the
text imply smaller p, all p-values are reported in Appendix C). Our
code is available at https://github.com/AwesomeLemon/PBT-NAS, it
includes configuration files for all experiments.

4.2 GANs

In AdversarialNAS [15], the authors describe searching for a GAN
architecture (for unconditional generation) in a search space where
random search achieved poor results — this motivated us to adopt
this search space, which we refer to as Gan. In AdversarialNAS, both
generator and discriminator architectures are searched for but we
noticed that in the official implementation, the searched discriminator
is discarded, and an architecture from the literature [16] is used instead.
This prompted us to create an extended version of the search space
(which we call GanHard) that includes discriminator architectures
resembling the one manually selected by the AdversarialNAS authors.
AdversarialNAS cannot be used to search in GanHard because some
of the options cannot be searched for via continuous relaxation (one
example is searching whether a layer should downsample: since output
tensors with and without downsampling have different dimensions, a
weighted combination cannot be created).

Specifics of search spaces are not critical for our research, so we
give condensed descriptions here, see Appendix E and our code for
more details.

In Gan, operations for three DARTS-like [28] cells are searched
(each cell is a Directed Acyclic Graph (DAG) with operations on the
edges; in contrast to DARTS, each cell may have a different architec-
ture). Additionally, inspecting the code of AdversarialNAS showed
that the output of some cells is pointwise summed with a projection of
a part of a latent vector. Each such projection is a single linear layer
mapping a part of a latent vector to a tensor of the same dimensionality
as the cell output: (#channels, width, height). These projections
contain many parameters and are therefore an important part of the
architecture. In the code of AdversarialNAS, these projections are
adjusted for each dataset. As to the discriminator, the architecture
from [16] is used.

Next, we describe GanHard. In GanHard, the parameters of the pro-
jections in the generator can be searched for. We additionally treat the
layer mapping latent vector to the input of the generator as a projec-
tion, since it is conceptually similar. The projections (one per cell) can

4

https://github.com/AwesomeLemon/PBT-NAS

be enabled or disabled, except for the first one (connected to generator
input) which is always enabled. A projection can take as input either
the whole latent vector or the corresponding one-third of it (the first
third of the vector for the first projection, etc.). There are three options
for the spatial dimensions of the output of a projection: target (equal
to the output dimensions of the corresponding cell), smallest (equal
to the input dimensions of the first cell), and previous (equal to the
output dimensions of the previous cell). Since the projection output is
summed with the cell output pointwise, the dimensions need to match,
which is not the case for the last two options. To upsample the tensor
to the target dimensions, either bilinear or nearest_neighbour in-
terpolation is used, which is also a part of the search space. Finally,
given that a projection is a large linear layer with potentially millions
of parameters (which makes overfitting plausible), we introduce an
option for a dropout layer in the projection, with possible parameters
0.0, 0.1, 0.2.

The discriminator search space in GanHard is based on the one in
AdversarialNAS, the discriminator has 4 cells (each being a DAG with
two branches), each cell has a downsampling operation in the end.
However, we noticed that the fixed architecture from [16] that is used
for final training of AdversarialNAS downsamples only in the first two
cells. Additionally, in the first cell, the input is downsampled rather
than the output. We amend the discriminator search space to contain
a similar architecture. Firstly, we search whether each cell should
downsample or not. Secondly, we add options for downsampling
operations that are performed at the start of each branch rather than at
the end of them. To enrich the search space further, we add two more
nodes to each cell.

The number of variables in Gan is 21 and the size of the search
space is ≈ 3.4 · 1019. In GanHard, there are 72 variables (32 for the
generator, 40 for the discriminator), and the size of the search space
is ≈ 2.9 · 1053.

Following AdversarialNAS, we run the experiments on CIFAR-
10 [25] and STL-10 [9], using both Gan and GanHard. In Adversar-
ialNAS, the networks were trained for 600 epochs. We reduce that
number to 300 epochs to save computation time (preliminary experi-
ments showed diminishing returns to longer training), for the other
hyperparameters, the same values as in AdversarialNAS are used.

The Frechet Inception Distance (FID) [19] is a commonly used
metric for measuring GAN quality. We use its negation as the objec-
tive function, computing it on 5,000 images during the search. For
reporting the final result, the FID for the best network is computed on
50,000 images. We additionally report the Inception Score (IS) [35],
another common metric of GAN quality. The idea behind both FID
and IS is to compare representations of real and generated images.

Based on preliminary experiments, the population size N is set to
24, and e_step is set to 10.

4.3 RL

We build upon DrQ-v2 [50], a model-free RL algorithm for visual
continuous control. DrQ-v2 achieves great results on the Deep Mind
Control benchmark [40], solving many tasks. Searching for architec-
tures for solved tasks is not necessary, therefore for our experiments
we chose tasks where DrQ-v2 did not achieve the maximum possible
performance: Quadruped Run, Walker Run, Humanoid Run.

DrQ-v2 is an actor-critic algorithm with three components: 1) an
encoder that creates a representation of the pixel-based environment
observation, 2) an actor that, given the representation, outputs prob-
abilities of actions, and 3) a critic that, given the representation, es-
timates the Q-value of the state-action pair (the critic contains two

networks because double Q-learning is used).
We design the search space to include the architectures of all the

components of DrQ-v2. Each network has three searchable layers. For
the encoder, the options are Identity, Convolution {3x3, 5x5, 7x7},
ResNet [18] block {3x3, 5x5, 7x7}, Separable convolution {3x3, 5x5,
7x7}. For the actor and both networks of the critic, the available
layers are Identity, Linear, and Residual [5] with multiplier 0.5 or 2.0.
Additionally, we search whether to use Spectral Normalization [32]
(for each network separately) and which activation function to use in
each layer (options: Identity, Tanh, ReLU, Swish). We also search the
dimensionality of representation: in DrQ-v2 it was set to either 50 or
100 depending on the task, we have 25, 50, 100, and 150 as options.

There are 36 variables in total, the search space size is≈ 4.6 · 1021.
The hyperparameters of DrQ-v2 are used without additional tuning.

For the Walker and Humanoid tasks, DrQ-v2 uses a replay buffer of
size 106. Our servers do not have enough RAM to allow for such
a buffer size when many agents are training in parallel, therefore
for these tasks, we use a shared replay buffer (proposed in [14]):
different agents can learn from the experiences of each other. To run
in a distributed scenario with no shared storage, the buffers are only
shared by the networks on the same machine. For fairness, all the
baselines also use a shared buffer per machine.

Based on preliminary experiments, the population size N is set to
12. For the Quadruped and the Walker tasks, the DrQ-v2 agent used
3 · 106 frames. We use the same number of frames per agent, which
means that N times more total frames are used. For the Humanoid
task, 3 · 107 frames were used in DrQ-v2, we use only 1.5 · 107 per
agent to save computation time. For uniformness of notation with
GANs, we also use "epoch" in the context of RL, one epoch is defined
as 104 frames. This means that 300 epochs are used for the Quadruped
and Walker tasks, the same as for GANs, and e_step is also set to 10.
Similar to BG-PBT [42], our preliminary experiments showed that
having longer periods without selection at the start of the training
is beneficial, therefore during the first half of the training, e_step is
doubled from 10 to 20 epochs for the Quadruped and Walker tasks.
Since for Humanoid only half the training is performed (in terms of
frames per agent), the step size is fixed at 100 epochs (scaled up from
10 proportionally to the increase in the number of frames).

4.4 Baselines

We consider two general baselines that parallelize well and that can
search in the proposed challenging search spaces.

1. Random search. N architectures are randomly sampled and
trained.

2. SEARL-like mutation. In order to fairly evaluate the performance
of a mutation-based architecture search approach like SEARL [14],
we replace the mixing operator of PBT-NAS with the mutation
operator from SEARL, adapting it to be applicable to both GAN
and RL settings: with equal probability, either (a) one variable in
the architecture encoding is resampled, (b) weights are mutated
using the procedure from SEARL, or (c) no change is performed.

AdversarialNAS is a specialized baseline only capable of searching
in Gan. In [15], the performance for only one seed was reported. We
run the official implementation with 5 seeds and report the mean and
standard deviation of performance.

5

Table 1. Results for GAN training (mean ± st. dev.). The best value in each column is in bold.

FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ IS ↑

AdversarialNAS [15] 12.29±0.80 8.47±0.14 — — — —
Random search 13.39±0.28 8.22±0.15 16.79±0.97 7.80±0.14 28.58±1.77 9.33±0.18

SEARL-like mutation [14] 13.78±1.02 8.38±0.05 15.72±2.22 8.26±0.21 26.94±0.93 9.66±0.27

PBT-NAS 12.21±0.16 8.63±0.17 13.25±1.64 8.25±0.27 25.11±0.94 9.71±0.09

Algorithm

CIFAR-10 STL-10

Gan GanHard GanHard

5 Results
5.1 PBT-NAS vs. the baselines

As can be seen in Table 1, PBT-NAS achieves the best performance
among all tested approaches in all GAN settings2. The improvements
in FID over both random search and SEARL-based mutation are sta-
tistically significant. Despite the claim of [15] that random search
performs poorly in Gan, we find that the gap between it and Adver-
sarialNAS [15] on CIFAR-10 is small, and the difference between all
algorithms is overall not large. The decreased performance of random
search in GanHard shows that GanHard is indeed a more challenging
search space. The results of searching in this space for CIFAR-10 and
STL-10 show a clear improvement of PBT-NAS over the baselines in
terms of FID. IS is better in the majority of settings.

PBT-NAS is also the best among alternatives on RL tasks, achieving
better anytime performance, as shown in Figure 3 (the improvements
in score over both random search and SEARL-based mutation are
statistically significant). For Walker Run, there is no meaningful
difference between algorithms, as the task is solved by all tested
approaches, demonstrating that for differences between performance
of the algorithms to be clear, both the RL task and the search space
need to be of significant complexity.

0 1 2 3
Total frames 1e7

0

200

400

600

800

Sc
or

e

Random search
SEARL-like mutation
PBT-NAS

(a) Quardruped Run

0 1 2 3
Total frames 1e7

0

200

400

600

800

Sc
or

e

Random search
SEARL-like mutation
PBT-NAS

(b) Walker Run

0.0 0.5 1.0 1.5
Total frames 1e8

0
50

100
150
200
250
300
350

Sc
or

e

Random search
SEARL-like mutation
PBT-NAS

(c) Humanoid Run

Figure 3. Results for RL tasks, mean ± st. dev. (shaded area).

5.2 Mixing networks is better than cloning good
networks

In order to show that creating new architectures makes a difference, we
run a "No mixing" ablation: every component of PBT-NAS is kept the

2 When searching in Gan for STL-10, we faced reproducibility issues (de-
spite using the official implementation), see Appendix D for results and
discussion.

same, except that a new model is created by mixing a well-performing
model with itself (rather than with another well-performing model).
This way, no new architecture is produced, but the other benefits of
PBT-NAS remain (e.g., replacing poorly-performing networks with
well-performing ones). As seen in Table 2, this degrades the perfor-
mance, clearly showing the impact that creating a better architecture
can have.

Table 2. Results of ablation studies (mean ± st. dev.). The best value in each
column is in bold.

FID ↓ Score ↑
(CIFAR-10, (Quadruped Run)
GanHard)

PBT-NAS (default) 13.25±1.64 801±70

No mixing 14.90±1.29 672±53

Shrink-perturb coefficients:
[1, 0] — copy exactly 14.94±0.56 699±4

[0, 1] — reinitialize randomly 15.06±2.59 532±62

Algorithm

5.3 Shrink-perturb is the superior way of weight
inheritance

Table 2 shows that copying weights from the donor without change
(shrink-perturb parameters [1, 0]), or replacing them with random
weights (shrink perturb [0, 1]) leads to worse results in comparison to
the usage of shrink-perturb. Thus, in our settings, using shrink-perturb
is the best method to inherit the weights. The default parameters
of shrink-perturb from [52] ([0.4, 0.1]) worked well in PBT-NAS
without any tuning.

In [52], shrink-perturb was found to benefit performance, thus
raising the question if using it gives PBT-NAS an unfair advantage that
is not related to NAS. In order to test this, we added shrink-perturb
to random search. As shown in Table 3, performance deteriorates,
indicating that using shrink-perturb with default parameters in our
setting is not helpful outside the context of NAS.

Table 3. The effect of using shrink-perturb in random search

Use shrink-perturb FID ↓ Score ↑
in random search (CIFAR-10, GanHard) (Quadruped Run)

No (default) 16.79±0.97 616±53

Yes 22.39±2.64 498±30

5.4 Increasing population size improves performance

We design our algorithm to be highly parallel and scalable. Figure 4
demonstrates that as the population size increases, the performance
strictly improves (although diminishing returns can be observed).
Given enough GPUs, the increased population size will not meaning-
fully increase wall-clock time, since every population member can be
evaluated in parallel.

6

12 24 36
Population size

15

20

25

FI
D

(lo
we

r i
s b

et
te

r) Random search
PBT-NAS

(a) CIFAR-10, GanHard (FID ↓)

6 12 18
Population size

500

600

700

800

Sc
or

e
(h

ig
he

r i
s b

et
te

r)

Random search
PBT-NAS

(b) Quadruped Run (Score ↑)

Figure 4. Impact of scaling population size, mean ± st. dev.

5.5 Model soups

As mentioned in Section 2.3, the idea of a model soup [47] is to
improve performance by averaging weights of closely-related neural
networks. As such, it seems like an especially good fit for the PBT
setting: although the networks in the population start from different
weights (and different architectures in the case of PBT-NAS), as worse
networks are replaced by offspring of better networks, the population
gradually converges. Since creating a model soup is done after training
and requires a negligible amount of computation (evaluating at most
N models), its inclusion into PBT-like algorithms could give an almost
free performance improvement. Therefore, we create model soups
following the greedy algorithm from [47].

Table 4 shows that soups improve GAN FID by approximately
0.4 points. For RL, however, there is no improvement when both
the encoder and the actor are averaged (Table 5). We hypothesize
that different actors may have dissimilar internal representations im-
plementing different behaviour logic, unlike the encoders that only
convert pixel inputs into representations. Therefore, we tried to sepa-
rately average encoders, or actors. The results with averaged encoders
are the best overall but they still do not lead to improved performance.
For Walker Run, the task where performance is saturated, there is no
difference between settings.

Table 4. The difference in metrics between a model soup and the best
individual model (GAN), mean ± st. dev.

∆ FID ↓ ∆ IS ↑

CIFAR-10 −0.48±0.34 0.07±0.05

STL-10 −0.35±0.26 0.04±0.25

Dataset
GanHard

Table 5. The difference in score between a model soup and the best individual
model (RL), mean ± st. dev.

Quadruped Walker Humanoid

Encoder −6±10 −1±4 −23±19

Actor −196±275 −4±7 −244±32

Both −142±193 0±6 −223±20

What to average
∆ Score ↑

Previously, soups were only demonstrated for classification tasks,
so it is interesting to see that they could also be beneficial in GANs.
While no improvement was seen for RL, the fact that only the vision-
related network, the encoder, could be averaged without large perfor-
mance degradation hints at the limitations of the technique.

6 Discussion
We have introduced PBT-NAS, a NAS algorithm that creates new
architectures by simultaneously training and mixing a population of

neural networks. PBT-NAS brings the efficiency of PBT (designed
for hyperparameter optimization) to NAS, providing a novel way
to search for architectures. As computation power grows, especially
in the form of multiple affordable GPUs, having parallelizable and
scalable algorithms such as PBT-NAS becomes more important. At
the same time, this computation power is not limitless, and reusing the
partly-trained weights during architecture search is important from
the perspective of search efficiency.

Currently, a large amount of effort in single-objective NAS research
is directed at searching classifier architectures in cell-based search
spaces, which are quite restrictive, and where random search achieves
competitive results [26, 49]. We think that pivoting to more chal-
lenging search spaces and tasks could lead to NAS having a larger
impact (e.g., in constructing state-of-the-art architectures, which is
still mostly done by hand), and to comparisons between NAS algo-
rithms leading to clearer differences. In Section 5.1, we showed that
PBT-NAS could search in the challenging GanHard space, where an
existing efficient algorithm, AdversarialNAS, could not be applied.

One limitation of exchanging layers during training is the require-
ment that different layer options (in the same position) need to be
interoperable: the activation tensors they produce should be possible
for the next layer to take as input (so that after replacing a layer, the
architecture remains valid). This means that the number of neurons
can be searched only when it does not influence the output shape. This
could be addressed by e.g., duplicating neurons if there are too few
of them and removing excessive ones if there are too many. Another
limitation arises due to the greedy nature of PBT-NAS: architectures
are selected based on their intermediate performance, and, therefore,
suboptimal architectures can be selected when early performance of
an architecture is not representative of the final one.

Achieving good performance in different tasks with minimal hyper-
parameter tuning is a desirable property for a NAS algorithm. We used
hyperparameters from the literature without tuning both in GAN train-
ing and in RL, as well as relying on default selection strategy from
PBT. PBT-NAS outperformed baselines despite using these default
values, tuning them could potentially further improve the results.

7 Conclusion
In this paper we designed and evaluated PBT-NAS, a novel way to
search for an architecture by mixing different architectures while
they are being trained. We find that adapting the weights with the
shrink-perturb technique during mixing is advantageous compared to
copying or randomly reinitializing them.

PBT-NAS is shown to be effective on challenging tasks (GAN
training, RL), where it outperformed considered baselines. At the
same time, it is efficient, requiring training of only tens of networks
to explore large search spaces. The algorithm is straightforward, par-
allelizes and scales well, and has few hyperparameters.

While in this work only NAS was considered, in the future, PBT-
NAS could be adapted to simultaneously search for hyperparameters
of neural network training, and of the algorithm itself, both of which
would be necessary in order to fully automate the process of neural
network training.

Acknowledgements
This work is part of the research projects DAEDALUS (funded via
the Open Technology Programme of the Dutch Research Council
(NWO), project number 18373; part of the funding is provided by
Elekta and ORTEC LogiqCare) and OPTIMAL (funded by NWO,
project OCENW.GROOT.2019.015).

7

References

[1] Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and
Nicholas D Lane, ‘Zero-cost proxies for lightweight NAS’, arXiv
preprint arXiv:2101.08134, (2021).

[2] Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa, ‘Git
re-basin: Merging models modulo permutation symmetries’, arXiv
preprint arXiv:2209.04836, (2022).

[3] Jordan Ash and Ryan P Adams, ‘On warm-starting neural network
training’, Advances in Neural Information Processing Systems, (2020).

[4] James Bergstra and Yoshua Bengio, ‘Random search for hyper-parameter
optimization.’, JMLR, 13(2), (2012).

[5] Nils Bjorck, Carla P Gomes, and Kilian Q Weinberger, ‘Towards deeper
deep reinforcement learning with spectral normalization’, Advances in
Neural Information Processing Systems, 34, 8242–8255, (2021).

[6] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han,
‘Once for all: Train one network and specialize it for efficient deploy-
ment’, in International Conference on Learning Representations, (2020).

[7] Tianqi Chen, Ian Goodfellow, and Jonathon Shlens, ‘Net2net: Accelerat-
ing learning via knowledge transfer’, arXiv:1511.05641, (2015).

[8] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian, ‘Progressive DARTS:
Bridging the optimization gap for nas in the wild’, International Journal
of Computer Vision, 129, 638–655, (2021).

[9] Adam Coates, Andrew Ng, and Honglak Lee, ‘An analysis of single-
layer networks in unsupervised feature learning’, in Proceedings of
AISTATS. JMLR Workshop and Conference Proceedings, (2011).

[10] Valentin Dalibard and Max Jaderberg, ‘Faster improvement rate popula-
tion based training’, arXiv preprint arXiv:2109.13800, (2021).

[11] Olive Jean Dunn, ‘Multiple comparisons among means’, Journal of the
American statistical association, 56(293), 52–64, (1961).

[12] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter, ‘Efficient multi-
objective neural architecture search via lamarckian evolution’, arXiv
preprint arXiv:1804.09081, (2018).

[13] Stefan Falkner, Aaron Klein, and Frank Hutter, ‘Bohb: Robust and effi-
cient hyperparameter optimization at scale’, in International conference
on machine learning, pp. 1437–1446. PMLR, (2018).

[14] Jörg KH Franke, Gregor Köhler, André Biedenkapp, and Frank Hutter,
‘Sample-efficient automated deep reinforcement learning’, arXiv preprint
arXiv:2009.01555, (2020).

[15] Chen Gao, Yunpeng Chen, Si Liu, Zhenxiong Tan, and Shuicheng Yan,
‘AdversarialNAS: Adversarial neural architecture search for GANs’,
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5680–5689, (2020).

[16] Xinyu Gong, Shiyu Chang, Yifan Jiang, and Zhangyang Wang, ‘Auto-
GAN: Neural architecture search for generative adversarial networks’,
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 3224–3234, (2019).

[17] Jie Gui, Zhenan Sun, Yonggang Wen, Dacheng Tao, and Jieping Ye,
‘A review on generative adversarial networks: Algorithms, theory, and
applications’, IEEE Transactions on Knowledge and Data Engineering,
(2021).

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, ‘Deep resid-
ual learning for image recognition’, in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 770–778, (2016).

[19] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard
Nessler, and Sepp Hochreiter, ‘GANs trained by a two time-scale up-
date rule converge to a local nash equilibrium’, Advances in Neural
Information Processing Systems, 30, (2017).

[20] Shoukang Hu, Sirui Xie, Hehui Zheng, Chunxiao Liu, Jianping Shi, Xun-
ying Liu, and Dahua Lin, ‘DSNAS: Direct neural architecture search
without parameter retraining’, in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, (2020).

[21] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown, ‘Sequential
model-based optimization for general algorithm configuration’, in Learn-
ing and Intelligent Optimization: 5th International Conference, pp. 507–
523. Springer, (2011).

[22] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czar-
necki, Jeff Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning,
Karen Simonyan, et al., ‘Population based training of neural networks’,
arXiv preprint arXiv:1711.09846, (2017).

[23] Haifeng Jin, Qingquan Song, and Xia Hu, ‘Auto-Keras: An efficient
neural architecture search system’, in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 1946–1956, (2019).

[24] Nikita Klyuchnikov, Ilya Trofimov, Ekaterina Artemova, Mikhail Sal-
nikov, Maxim Fedorov, Alexander Filippov, and Evgeny Burnaev, ‘NAS-
Bench-NLP: neural architecture search benchmark for natural language
processing’, IEEE Access, 10, 45736–45747, (2022).

[25] Alex Krizhevsky and Geoffrey Hinton, ‘Learning multiple layers of fea-
tures from tiny images’, Master’s thesis, University of Toronto, (2009).

[26] Liam Li and Ameet Talwalkar, ‘Random search and reproducibility for
neural architecture search’, in Uncertainty in Artificial Intelligence, pp.
367–377. PMLR, (2020).

[27] Jason Liang, Santiago Gonzalez, Hormoz Shahrzad, and Risto Miikku-
lainen, ‘Regularized evolutionary population-based training’, in Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp.
323–331, (2021).

[28] Hanxiao Liu, Karen Simonyan, and Yiming Yang, ‘DARTS: Differen-
tiable architecture search’, arXiv preprint arXiv:1806.09055, (2018).

[29] Ilya Loshchilov and Frank Hutter, ‘CMA-ES for hyperparameter opti-
mization of deep neural networks’, arXiv:1604.07269, (2016).

[30] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy
Deb, Erik Goodman, and Wolfgang Banzhaf, ‘NSGA-Net: neural archi-
tecture search using multi-objective genetic algorithm’, in Proceedings
of the Genetic and Evolutionary Computation Conference, (2019).

[31] Joe Mellor, Jack Turner, Amos Storkey, and Elliot J Crowley, ‘Neural
architecture search without training’, in International Conference on
Machine Learning, pp. 7588–7598. PMLR, (2021).

[32] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida,
‘Spectral normalization for generative adversarial networks’, arXiv
preprint arXiv:1802.05957, (2018).

[33] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I Jordan, et al., ‘Ray: A distributed framework for emerging AI
applications’, in 13th USENIX Symposium on Operating Systems Design
and Implementation, pp. 561–577, (2018).

[34] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean, ‘Effi-
cient neural architecture search via parameters sharing’, in International
Conference on Machine Learning, pp. 4095–4104. PMLR, (2018).

[35] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec
Radford, and Xi Chen, ‘Improved techniques for training GANs’, Ad-
vances in neural information processing systems, 29, (2016).

[36] Rishab Sharma, Rahul Deora, and Anirudha Vishvakarma, ‘AlphaNet:
An attention guided deep network for automatic image matting’, in 2020
International Conference on Omni-layer Intelligent Systems, (2020).

[37] Jae-hun Shim, Kyeongbo Kong, and Suk-Ju Kang, ‘Core-set
sampling for efficient neural architecture search’, arXiv preprint
arXiv:2107.06869, (2021).

[38] Samarth Sinha, Homanga Bharadhwaj, Aravind Srinivas, and Animesh
Garg, ‘D2rl: Deep dense architectures in reinforcement learning’, arXiv
preprint arXiv:2010.09163, (2020).

[39] Gilbert Syswerda et al., ‘Uniform crossover in genetic algorithms.’, in
ICGA, volume 3, pp. 2–9, (1989).

[40] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li,
Diego de Las Casas, David Budden, Abbas Abdolmaleki, Josh Merel,
Andrew Lefrancq, et al., ‘Deepmind control suite’, arXiv preprint
arXiv:1801.00690, (2018).

[41] Thomas Uriot and Dario Izzo, ‘Safe crossover of neural networks
through neuron alignment’, in Proceedings of the 2020 Genetic and
Evolutionary Computation Conference, pp. 435–443, (2020).

[42] Xingchen Wan, Cong Lu, Jack Parker-Holder, Philip J Ball, Vu Nguyen,
Binxin Ru, and Michael Osborne, ‘Bayesian generational population-
based training’, in International Conference on Automated Machine
Learning, pp. 14–1. PMLR, (2022).

[43] Dilin Wang, Meng Li, Chengyue Gong, and Vikas Chandra, ‘Atten-
tivenas: Improving neural architecture search via attentive sampling’,
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 6418–6427, (2021).

[44] Tao Wei, Changhu Wang, Yong Rui, and Chang Wen Chen, ‘Network
morphism’, in International conference on Machine Learning, pp. 564–
572. PMLR, (2016).

[45] Wei Wen, Feng Yan, Yiran Chen, and Hai Li, ‘Autogrow: Automatic
layer growing in deep convolutional networks’, in Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pp. 833–841, (2020).

[46] Frank Wilcoxon, Individual comparisons by ranking methods, Springer,
1992.

[47] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs,

8

Raphael Gontijo-Lopes, Ari S Morcos, Hongseok Namkoong, Ali
Farhadi, Yair Carmon, Simon Kornblith, et al., ‘Model soups: aver-
aging weights of multiple fine-tuned models improves accuracy without
increasing inference time’, in International Conference on Machine
Learning, pp. 23965–23998. PMLR, (2022).

[48] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian,
and Hongkai Xiong, ‘PC-DARTS: Partial channel connections for
memory-efficient architecture search’, in International Conference on
Learning Representations, (2020).

[49] Antoine Yang, Pedro M Esperança, and Fabio M Carlucci, ‘NAS eval-
uation is frustratingly hard’, in International Conference on Learning
Representations, (2020).

[50] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto, ‘Master-
ing visual continuous control: Improved data-augmented reinforcement
learning’, in International Conference on Learning Representations,
(2022).

[51] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat, and
Mathieu Salzmann, ‘Evaluating the search phase of neural architec-
ture search’, in International Conference on Learning Representations,
(2020).

[52] Sheheryar Zaidi, Tudor Berariu, Hyunjik Kim, Jörg Bornschein, Clau-
dia Clopath, Yee Whye Teh, and Razvan Pascanu, ‘When does re-
initialization work?’, (arXiv:2206.10011), (Jun 2022).

[53] Barret Zoph and Quoc V Le, ‘Neural architecture search with reinforce-
ment learning’, arXiv preprint arXiv:1611.01578, (2016).

A Visualizing search progress

In order to visualize the search process, we track the origin of all the
layers in the population. Initially, the layers of the i-th population
member are specified to have origin i. When a new network is created
by mixing different networks, its layers will have different origins.
Over time, as worse-performing networks are replaced with the results
of mixing better-performing ones, the successful layers constitute an
increasing proportion of all layers in the population.

We visualize the experiments on the Quadruped Run task that
achieved the best (Figure 5(a)) and the worst (Figure 5(b)) scores
(out of the three seeds). In the experiment in Figure 5(a), many archi-
tectures are successfully mixed, with the final population containing
layers coming from several initial architectures. On the contrary, in
the experiment in Figure 5(b), one architecture largely takes over,
with a small part inherited from a second architecture.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Total frames 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 la
ye

rs

(a) Score 910

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Total frames 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 la
ye

rs

(b) Score 725

Figure 5. Proportion of layers from different initial architectures in the
population over time (Quadruped Run). The experiments with the best (a) and

the worst (b) scores are shown.

B Additional Bayesian Optimization baseline

In this section we compare PBT-NAS to an additional baseline,
Bayesian Optimization Hyperband (BOHB) [13]. BOHB is a well-
established, efficient, and parallel Bayesian Optimization (BO) algo-
rithm designed for hyperparameter optimization and NAS.

BO algorithms can be applied to almost any NAS search space, but
typically have limited parallelization capability, and can struggle in
high-dimensional spaces, especially if there are too few evaluations
available. Our experiments in the main text were conducted in ex-
actly such a scenario: the search spaces were high-dimensional (the
GanHard space has 72 variables, the RL space has 36), and the num-
ber of total evaluations is smaller than the number of variables (24
evaluations for GanHard, 12 for RL). In addition, PBT-NAS and the
baselines considered in the main text are fully parallelizable (unlike
BO algorithms).

We report the performance of BOHB in two settings (in which
all our ablations were done). BOHB is run with the same budget as
PBT-NAS both for Reinforcement Learning (the Quadruped Run task,
total number of epochs equal to fully training 12 architectures) and
GAN training (GanHard space, CIFAR-10 dataset, total number of
epochs equal to fully training 24 architectures). Same as in the main
text, every experiment is repeated three times, we report the mean and
standard deviation of the performance of the best architecture.

Table 6. Results of running BOHB. The best value in each column is in bold.

Algorithm FID ↓ Score ↑
(CIFAR-10, GanHard) (Quadruped Run)

PBT-NAS 13.25±1.64 801±70

BOHB 18.95±1.48 621±28

As can be seen in Table 6, BOHB is outperformed by PBT-NAS
in both settings. The BOHB results for GAN training are particularly
poor, we speculate that BOHB suffers from excessive greediness in
this setting (it early-stops two-thirds of solutions at each fidelity).
PBT-NAS, while also greedy, has lower selection pressure, so it is
affected less.

C Statistical testing
Table 7 lists p-values for one-sided Wilcoxon pairwise rank tests [46]
with Bonferroni correction [11]. In the GAN setting, the null hypothe-
sis is that Algorithm 1 has a higher FID than Algorithm 2. In the RL
setting the null hypothesis is that Algorithm 1 has a lower score than
Algorithm 2.

In the GAN setting, results for CIFAR-10 using Gan, GanHard,
and STL-10 using GanHard are tested together to increase sample
size (total sample size is 9). Similarly to increase sample size, in the
RL setting all the tasks (Quadruped Run, Walker Run, Humanoid
Run) are tested together (total sample size is 9). P-values below the
significance threshold of 0.0125 are highlighted (target p-value=0.05,
4 tests, corrected p=0.0125).

Table 7. P-values of conducted experiments.

Algorithm 1 Algorithm 2 Setting P-value

PBT-NAS Random search GAN 0.001953125
PBT-NAS SEARL-like mutation GAN 0.00390625
PBT-NAS Random search RL 0.001953125
PBT-NAS SEARL-like mutation RL 0.005859375

D Reproducibility issues with Gan on STL-10
In [15], results for STL-10 are reported on a single seed, we ran the
experiment 5 times using the official implementation. The resulting
FID for STL-10 increases by about 10 points, which is a substantial

9

Table 8. Additional results for GAN training (mean ± st. dev.).

FID ↓ IS ↑

AdversarialNAS (reported in [15]) 26.98 9.63
AdversarialNAS (reproduced) 36.87±3.62 8.90±0.32

Random search 32.54±3.20 9.15±0.08

SEARL-like mutation [14] 33.98±4.36 8.98±0.19

PBT-NAS 29.51±0.91 9.19±0.05

Algorithm

STL-10

Gan

drop in performance (see Table 8). The immediate cause is the diver-
gence of the training procedure before good results could be achieved.
However, as the official implementation was used, it is unclear why
this divergence appeared consistently for all seeds and why none of
the five seeds achieved the performance reported in [15]. The authors
did not respond when we notified them of the problem. We are also
aware of an independent reproduction attempt running into the same
issue.

Since our code relies on the AdversarialNAS codebase, whatever
the issue is, it influenced all our experiments with Gan on STL-10,
bringing their validity into question. Nonetheless, for transparency,
our results (for three seeds) are reported in Table 8. PBT-NAS achieves
the best performance out of the approaches tested by us.

Note that we did not face the reproducibility issue with Gan on
CIFAR-10, as the reproduced result (FID 12.29±0.80) was close to
the reported one (FID 10.87 [15]). Also of note is that with GanHard
on STL-10, results were even better than in [15] (see Table 1 in the
main text): FID of 25.11±0.94. Since the same training code was used
for Gan and GanHard, this implies that architectures could be the root
cause of the problem, with architectures from Gan being a poor fit
for STL-10, in contrast to architectures from GanHard. This is not
consistent with the results from the main text for CIFAR-10, where,
controlled for the amount of computational effort, better architectures
could be found in Gan than in GanHard.

We would also like to note that GanHard was designed before any
experiments with STL-10 were run, precluding the possibility that
better STL-10 results with GanHard (compared to Gan) were achieved
by deliberate search space adaptation to the dataset. STL-10 was our
test dataset, the results for which did not influence any design or
hyperparameter choices made in the paper.

E Illustrations of GAN search spaces

Cell 1

Cell 2

Cell 3

+

Latent vector

+

Figure 6. Projections from parts of a latent vector in the macro architecture of
AdversarialNAS. Each projection (dark orange) is a linear layer, the output of
which is reshaped and pointwise summed with the output of the corresponding
cell (except for the first projection, the output of which is the input of the first

cell).

0

1

2 3

out

2' 3'

(a) Gan

0

1

2

out

2'

1'

2''

1''

1* 3

1**

3''

3'

4 5

4' 5'

(b) GanHard

Figure 7. Discriminator cell search spaces. Black arrows correspond to
normal operations (same as in [15], possible operations for the edges are
None, Identity, Convolution 1x1 with Dilation=1, Convolution {3x3, 5x5}

with Dilation={1, 2}), dark orange arrows represent downsampling operations
(Average Pooling, Max Pooling, Convolution {3x3, 5x5} with Dilation={1,

2}; only parameterless operations (Average Pooling, Max Pooling) are
allowed at the start of the branch because they will be applied to several

inputs), dashed arrows represent identity. All inputs to a node are summed.
For GanHard, downsampling will be either at the start or at the end of a

branch (or disabled entirely).

F Implementation details
The experiments were run on servers equipped with three Nvidia
A5000 GPUs each. Each server is equipped with 2 Intel(R) Xeon(R)
Bronze 3206R CPUs, and 96 GB of RAM. The used OS is Fedora
Linux 36. The Ray [33] framework was used to run the experiments
in a distributed fashion. The configuration files specifying versions of
all software libraries are included in the source code.

The experiment costs in total GPU hours vary by the setting
(CIFAR-10|Gan: 200, CIFAR-10|GanHard: 270, STL-10|Gan: 720,
STL-10|GanHard: 1200, Quadruped Run: 210, Walker Run: 330, Hu-
manoid Run: 1300).

10

	Introduction
	Related work
	Neural Architecture Search
	Population Based Training
	Combining several neural networks into one

	Method
	Problem setting
	Algorithm overview
	Key question when modifying architecture during training: where to get the weights from?
	Mixing networks

	Experiment setup
	General
	GANs
	RL
	Baselines

	Results
	PBT-NAS vs. the baselines
	Mixing networks is better than cloning good networks
	Shrink-perturb is the superior way of weight inheritance
	Increasing population size improves performance
	Model soups

	Discussion
	Conclusion
	Visualizing search progress
	Additional Bayesian Optimization baseline
	Statistical testing
	Reproducibility issues with Gan on STL-10
	Illustrations of GAN search spaces
	Implementation details

