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Abstract. We introduce the notion of frequency-constrained substring
complexity. For any finite string, it counts the distinct substrings of the
string per length and frequency class. For a string x of length n and a
partition of [n] in τ intervals, I = I1, . . . , Iτ , the frequency-constrained
substring complexity of x is the function fx,I(i, j) that maps i, j to the
number of distinct substrings of length i of x occurring at least αj and at
most βj times in x, where Ij = [αj , βj ]. We extend this notion as follows.
For a string x, a dictionary D of d strings (documents), and a partition
of [d] in τ intervals I1, . . . , Iτ , we define a 2D array S = S[1 . . |x|, 1 . . τ ]
as follows: S[i, j] is the number of distinct substrings of length i of x
occurring in at least αj and at most βj documents, where Ij = [αj , βj ].
Array S can thus be seen as the distribution of the substring complexity
of x into τ document frequency classes. We show that after a linear-time
preprocessing of D, for any x and any partition of [d] in τ intervals given
online, array S can be computed in near-optimal O(|x|τ log log d) time.

Keywords: Substring complexity · Suffix tree · Predecessor search.

1 Introduction

The substring complexity or subword complexity of an infinite string x is the func-
tion that maps i to the number of distinct substrings (subwords) of length i in
x. Substring complexity is one of the main topics in combinatorics on words [22].
The ultimate goal is to find explicit formulas for (or estimates of) the number of
distinct fragments of length i occurring in a given infinite string [17, 9]. Substring
complexity in finite strings plays also a crucial role in data compression [21]; it
underlies a promising compressibility measure for repetitive sequences [13, 14].

We introduce the notion of frequency-constrained substring complexity of
finite strings. For any finite string, it counts the distinct substrings of the string
per length and frequency class. For a string x of length n and a partition of [n] 6

6 By the notation [u] we denote {1, 2, . . . , u}.
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in τ intervals I = I1, . . . , Iτ , the frequency-constrained substring complexity of
x is the function fx,I(i, j) that maps i, j to the number of distinct substrings
of length i of x occurring at least αj and at most βj times in x, where Ij =
[αj , βj ]. We extend this notion as follows. For a string x, a dictionary D of
d strings (documents) and a partition of [d] in τ intervals I = I1, . . . , Iτ , the
function fx,D,I(i, j) maps i, j to the number of distinct substrings of length i of
x occurring in at least αj and at most βj documents in D, where Ij = [αj , βj ]. In
fact, computing fx,D,I efficiently is the main problem we consider in this paper.

The frequency-constrained substring complexity of x is very descriptive as
it provides subtle information about the substrings of x. It can thus help us
tune string processing algorithms by setting bounds on the substrings length or
on frequency; for example, when τ = 2, the substrings of x are classified into
frequent and infrequent [19]. We can also tune the output size of a document
retrieval algorithm [20], the term’s length used by a tf-idf algorithm [15], or
the seed length used by seed-and-extend sequence alignment algorithms [5, 16].

Example 1. Let D = {a,ananan,baba,ban,banna,nana}. For x = banana and
I1 = [1, 2], I2 = [3, 4], I3 = [5, 6], we have fx,D,I(2, 2) = 3: ba occurs in 3 ∈ I2
documents; an occurs in 4 ∈ I2 documents; and na occurs in 3 ∈ I2 documents.

Our contribution. Let S be a 2D array such that S[i, j] = fx,D,I(i, j). We
show that after a linear-time preprocessing of D, for any x and any partition
I of [d] in τ intervals given online, array S can be computed in near-optimal
O(|x|τ log log d) time. Since array S is of size |x|×τ , our data structure is nearly-
optimal with respect to the preprocessing and query times. The main ingredients
of our data structure are suffix trees [23, 7, 4] and predecessor search [6, 18].

2 The Data Structure

Let us denote by D = {y1, . . . , yd} the input dictionary consisting of d = |D|
strings (documents). We assume that all strings in D are over an integer alphabet
Σ of size σ ≤ ||D||O(1), where ||D|| is the total length of all the strings in D.

Let us denote by y = y1$1 . . . yd$d the concatenation of the d documents in
D in some arbitrary but fixed order; the $i letters, i ∈ [1, d], are unique letters
not from Σ. We construct the suffix tree ST(y) of y (with suffix links) in linear
time [7]. We implement O(1)-time transitions in the suffix tree in linear time
using perfect hashing [10]. For any string w, we define its document frequency
in D as the number of distinct documents in D in which w has at least one
occurrence. We decorate each node u of ST(y) with the document frequency of
the string spelled from the root of ST(y) to u. This is done in linear time [12].

Upon a query string x, we construct the suffix tree ST(x) of x in O(|x|)
time [7]: if any letter of x is not in D, which is checked using ST(y), we replace it
with a unique letter not in Σ, and hash the letters of x into the range [0, |x|] [10].
We first show how to compute, for each node u of ST(x), the document frequency
of the string spelled from the root of ST(x) to u in O(|x|) total time.
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We perform a DFS on ST(x). Every leaf in a standard suffix tree is la-
beled with the starting position of the suffix it represents. While traversing
ST(x), we propagate upwards the labels of the leaf nodes maintaining only the
smallest label (starting position) in every node. For any ST(·), we denote the
smallest label i for node u by start(u) = i. Consider now a node u of ST(x)
which stores label start(u). Then the path from the root to u spells the string
x[start(u) . . start(u) + d(u) − 1], where d(u) is the string depth of node u. At
the end of the DFS, we group the nodes per label i, for all i ∈ [1, |x|], using
radix sort. Specifically, two nodes u, v of ST(x) are in group Gi if and only if
start(u) = start(v) = i. By construction (i.e., by choosing the smallest label) one
node represents a prefix of the other node. The whole process takes O(|x|) time.

We run the matching statistics algorithm [3, 11] using x and ST(y): for each
starting position i in x, we compute the longest match of length ℓi ≥ 0 in any
document in D. In particular, this algorithm gives us a locus on ST(y), which
represents the longest match x[i . . i + ℓi − 1], for all i ∈ [1, |x|]. More formally,
a locus in a suffix tree is a pair (v, ℓi) where d(parent(v)) < ℓi ≤ d(v), for some
node v of the suffix tree and some string depth ℓi. Provided that ST(y) is already
constructed, computing the matching statistics takes O(|x|) time [11].

Let this locus on ST(y) be (v, ℓi) and let it represent y[start(v) . . start(v) +
ℓi − 1]. In particular, substring x[i . . i + ℓi − 1] = y[start(v) . . start(v) + ℓi − 1]
is precisely this longest match. We consider Gi: the group of nodes from ST(x)
having label i. Say we are processing such a node u ∈ Gi. We have two cases:

– If ℓi < d(u) the frequency assigned to node u is 0. This is correct because
x[start(u) . . start(u)+d(u)−1] does not occur in any document in D otherwise
a longer than the longest match would be output by the matching statistics.

– If ℓi ≥ d(u) then we ask a weighted ancestor query [8] to locate the substring
y[start(v) . . start(v)+d(u)−1] of y, and it gives us a locus (w, d(u)) in constant
time after a linear-time preprocessing of y [2]. More formally, the weighted
ancestor problem on suffix trees is defined as follows: given ST(y), we are
asked to preprocess it so that can find the locus of any substring y[p . . q] of y
on ST(y). We read the frequency stored at node w, and this is precisely the
frequency we assign to node u. This is correct, because x[start(u) . . start(u)+
d(u)−1] is a prefix of x[start(u) . . start(u)+ℓi−1], by ℓi ≥ d(u), and because
x[start(u) . . start(u) + d(u)− 1] = y[start(v) . . start(v) + d(u)− 1].

Since the matching statistics algorithm finds a locus (v, ℓi) for every starting
position i of x, we can assign the correct document frequency to every node of
ST(x) in O(|x|) total time. We obtain the following result, which we refine next.

Lemma 1. The document frequency for all nodes of ST(x) can be computed in
the optimal O(|x|) time after a linear-time preprocessing of dictionary D.

Let us now describe in detail how we can efficiently compute array S. The
first step is to construct ST(x) and compute for all of its nodes the document
frequency using Lemma 1. This takes O(|x|) time after a linear-time preprocess-
ing of dictionary D. Up to this point, we have correctly identified the document
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Fig. 1. ST(y) with nodes weighted by document frequency for D =
{a,ananan,baba,ban,banna,nana} from Example 1. A successor weighted an-
cestor query of the blue node with argument αj = 3, takes us to the ancestor of the
blue node with the smallest frequency at least 3. This is the red node. Any such query
can be answered in O(log log d) time after a linear-time preprocessing of ST(y) [8, 1].

frequency for every substring of x that is spelled from the root of ST(x) ending
exactly at some node of ST(x). However, we have no access to the document
frequency of the substrings of x that end in the middle of an edge of ST(x).

We thus need to have an efficient way to subdivide the edges of ST(x) ac-
cordingly. The crucial observation is that we have only τ frequency intervals
I = I1, . . . , Iτ , and thus it suffices to split every edge of ST(x) in at most τ sub-
edges. To achieve this, we also preprocess ST(y) for successor weighted ancestor
queries with respect to document frequency as node weights. This is possible be-
cause of the max-heap property : any node on ST(y) has equal or smaller weight
than any of its ancestors. Recall that for any node u in ST(x) we can find the
corresponding locus (w, d(u)) in ST(y) (see Lemma 1) in O(|x|) total time. In
the second step, we enhance ST(x) with at most τ new nodes per edge using τ
weighted ancestor queries on ST(y). In particular, we ask one weighted ancestor
query αj per interval Ij = [αj , βj ] (see Figure 1). Each new node stores a docu-
ment frequency and it takes O(log log d) time to find its locus on ST(y) using a
weighted ancestor query, after a linear-time preprocessing of ST(y) [8, 1].

The third step is to traverse the enhanced ST(x) and construct a collection of
labeled length intervals [i, j]f , one for each node u of ST(x), defined as follows:
i = d(parent(u))+ 1, j = d(u), and f is the document frequency stored in u. We
do this in O(τ |x|) total time because we have O(τ |x|) nodes in ST(x). We ignore
labeled length intervals with f = 0 (no occurrence) or j = 0 (empty string).

The fourth step is to sort these intervals and view each interval, say of node u,
as a line starting at point (i, u) and ending at point (j, u) on the [0, |x|]×[0, 2τ |x|]
plane. The y-axis represents the distinct lines (we have no more than 2τ |x|
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Fig. 2. Step 1 from Example 2. We assume that x ends with a unique letter $ /∈ Σ.

intervals because we have no more than 2τ |x| nodes), and the x-axis represents
the lengths of substrings x (the maximum length is |x|). We can do this in
O(τ |x|) time using radix sort because for any interval [i, j]f , i, j ∈ [|x|].

In the last step, for each length in [|x|], we count how many lines it stabs after
classifying the lines in frequency intervals. For the latter, we employ predeces-
sor/successor search after O(d)-time and space preprocessing [6]: we insert the
endpoints of every interval in O(τ log log d) total time as we have 2τ endpoints
in total. A line with frequency f belongs to the frequency interval Ij = [αj , βj ]
if and only if the predecessor of f is αj and its successor is βj . The search takes
O(log log d) time per line [6]. The endpoints are then deleted from the structure
in O(τ log log d) total time [6]. We sweep through the lines from left to right and
maintain counters on the sum of currently “active” lines per frequency interval.
We do this in O(τ) time per length. We have arrived at the following result.

Theorem 1 (Main Result). After a linear-time preprocessing of a dictionary
D of d strings, for any query string x and any partition I of [d] in τ intervals,
array S, such that S[i, j] = fx,D,I(i, j), can be computed in O(|x|τ log log d) time.

Example 2. Consider the dictionary D, the query string x = x[1 . . |x|] = banana,
and the partition I from Example 1. We show in Figure 2 (on the left) the suffix
tree ST(x) and the smallest label start(u) (underlined) for every node u after the
DFS. We have three groups of nodes: G1 = {-banana}, G2 = {-a,-ana,-anana}
and G3 = {-na,-nana}. (Here we use the notation - before a string to denote a
node.) From the matching statistics algorithm, we know the longest match for
each position i of x: L = [3, 5, 4, 3, 2, 1]; e.g., ℓ1 = L[1] = 3 tells us that the
longest match of x[1 . . 6] = banana in D is x[1 . . 3] = ban. For the only node in
G1 we have frequency 0 since 3 < |banana|. For G2, we first find the document
frequency for the deepest node -anana and we reach the node -ananan in ST(y)
(see Figure 1). Then from this node (-ananan) we ask for depths 3 and 1 (using
weighted ancestor queries), and get to nodes -ana and -a in ST(y), which give
the corresponding document frequencies in ST(x). Similarly we process G3 and
get the ST(x) in Figure 2 (on the right) with document frequencies (Lemma 1).

We next show in Figure 3 how we enhance ST(x) (on the left) with at most
τ nodes per edge (on the right) using weighted ancestor queries on ST(y). Let
us consider the edge -banana, for which we need to add new nodes. First, we
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Fig. 4. Steps 3-4 from Example 2. On the left: the added nodes are in red; the nodes
with f = 0 are pruned. On the right: the length intervals labeled by frequency interval.

have L[1] = 3. We add a node at depth 3 and separate -banana to -ban-ana.
From ST(y), we know the frequency of node -ban is 2. Then we ask whether
node -ban in ST(y) has an ancestor node with a frequency at least 3 (I2) or at
least 5 (I3). Indeed we find that node -ba in ST(y) has frequency 3, and so we
add a node in ST(x) subdividing -ban to -ba-n. No ancestor of -ban in ST(y)
has a frequency of at least 5, so we do not need to add any more nodes in ST(x).

After the end of the second step, we construct a labeled length interval for
each node of the enhanced ST(x), and so we get the tree in Figure 4 (on the
left). In the fourth step, we sort these length intervals and view them as lines
(on the right). In the last step, after classifying the lines in frequency intervals,
we sweep through them from left to right, and compute array S.

S [1,2] [3,4] [5,6]
1 0 2 1
2 0 3 0
3 3 0 0
4 2 0 0
5 1 0 0
6 0 0 0
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