
A polynomial optimization problem asks for minimizing a polynomial function 
(cost) given a set of constraints (rules) represented by polynomial inequalities and 
equations. Many hard problems in combinatorial optimization and applications 
in operations research can be naturally encoded as polynomial optimization 
problems. A common approach for addressing such computationally hard problems 
is by considering variations of the original problem that give an approximate 
solution, and that can be solved efficiently. One such approach for attacking hard 
combinatorial problems and, more generally, polynomial optimization problems, 
is given by the so-called sum-of-squares approximations. This thesis focuses on 
studying whether these approximations find the optimal solution of the original 
problem. 

We investigate this question in two main settings: 1) Copositive programs and 
2) parameters dealing with independent sets in graphs. Among our main new 
results, we characterize the matrix sizes for which sum-of-squares approximations 
are able to capture all copositive matrices. In addition, we show finite convergence 
of the sums-of-squares approximations for maximum independent sets in graphs 
based on their continuous copositive reformulations. 
 
We also study sum-of-squares approximations for parameters asking for maximum 
balanced independent sets in bipartite graphs. In particular, we find connections 
with the Lovász theta number and we design eigenvalue bounds for several related 
parameters when the graphs satisfy some symmetry properties.
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Introduction

This thesis explores the connection between three main topics in real al-
gebraic geometry, optimization, and graph theory. Specifically, we study rela-
tions between sums of squares and nonnegative polynomials with a focus on
their applications to problems involving copositive matrices and graph param-
eters.

Many combinatorial problems, such as the stable set problem, are known
to be hard. Specifically, assuming the well-believed conjecture claiming that
P �=NP, there is no efficient algorithm for solving such problems. A common
approach for addressing this hardness issue is by considering variations of the
original problem that give an approximate solution, and that can be com-
puted efficiently. One of these approaches for attacking hard combinatorial
problems and, more generally, polynomial optimization problems, is given by
the so-called sum-of-squares hierarchies.

The interest for studying sums of squares of polynomials in the context of
optimization has increased in the last decades thanks to the following crucial
fact: A polynomial p ∈ R[x] of degree 2d is a sum of squares if and only if
there exists a positive semidefinite matrix Q such that

p(x) = [x]TdQ[x]d,

where [x]d = (x1, . . . , xn, x1x2, . . . , x
d
n)

T is the vector of monomials of degree
at most d. Then, optimization problems that involve constraints asking for the
existence of a decomposition using sums of squares can be modeled by a semi-
definite program. This key observation motivates to study approximations for
hard problems using sums of squares. This is the starting point for defining
the so-called sum-of-squares hierarchies for polynomial optimization, as shown
by Lasserre [Las01b]. In addition, as we will see, sums of squares of poly-
nomials also provide tractable approximations for copositive programming, as
first shown by Parrilo [Par00].

Sums of squares of polynomials and polynomial optimization

Given a multivariate polynomial p ∈ R[x], the problem of determining
whether p is nonnegative, i.e., p(x) ≥ 0 for all x ∈ Rn, is a well-known hard
problem. A first try for showing that the polynomial p is nonnegative is by

1
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2 INTRODUCTION

looking for a decomposition as a sum of squares. A polynomial p ∈ R[x] is
called a sum of squares if

p = q21 + q22 + · · ·+ q2m

for some other polynomials q1, . . . , qm ∈ R[x]. Clearly, if p is a sum of squares,
then p is globally nonnegative. The connection between nonnegative polyno-
mials and sums of squares has been studied in depth in the last centuries. In
1888, Hilbert [Hilb88] showed that there exist nonnegative polynomials that
cannot be written as a sum of squares. Moreover, he characterized the degrees
and dimensions for which every nonnegative polynomial can be written as a
sum of squares. Later in 1927, Artin [Art27] showed that every nonnega-
tive polynomial can be written as a sum of squares of ratios of polynomials,
solving affirmatively Hilbert’s 17-th problem. This last result by Artin shows
that it is indeed possible to prove that a polynomial is nonnegative by us-
ing sums of squares of polynomials in a certain way. Later, the results by
Pólya [Poly28] and Reznick [Rez95] show the existence of such certificates
in a more structured form for homogenous polynomials that satisfy a strict
positivity condition.

The question of determining whether a polynomial p is nonnegative over a
basic closed semialgebraic set K (i.e., described by finitely many polynomial
inequalities) has also been studied. The results by Schmüdgen [Schm91] and
Putinar [Put93] showing the existence of sum-of-squares certificates for p on
K (under some technical assumptions) have been the basis for constructing
tractable approximations for polynomial optimization problems, as described
by Lasserre [Las01a] and Parrilo [Par00].

A polynomial optimization problem asks for minimizing a polynomial func-
tion f ∈ R[x] over a set defined by polynomial inequalities (gi(x) ≥ 0 for
i = 1, . . . ,m) and polynomial equations (hj(x) = 0 for j = 1, . . . l). Thus, it
reads

min
x∈K

f(x), where K =
{
x ∈ Rn : gi(x) ≥ 0 for i ∈ [m], hj(x) = 0 for j ∈ [l]

}
.

Polynomial optimization permits to model many hard problems. Since
the constraint “xi = 0 or xi = 1” can be modeled by the polynomial equation
x2i − xi = 0, many hard combinatorial problems, such as the stability number
of a graph or MAX-CUT, can be naturally encoded as polynomial optimiza-
tion problems and the machinery of sums of squares approximations can be
applied. Other instances of polynomial optimization, such as linear and qua-
dratic optimization over the standard simplex Δn, or optimization over the
unit sphere Sn−1, have been shown to have many applications in portfolio
optimization, energy optimization, and combinatorial optimization. See, for
example, [Las09].
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CERTIFICATES FOR COPOSITIVITY USING SUMS OF SQUARES 3

Copositive matrices

A main object of study in this thesis is the cone of copositive matrices,
known as the copositive cone. An n × n symmetric matrix M is said to be
copositive if the associated quadratic form xTMx =

∑n
i,j=1Mijxixj is non-

negative over the nonnegative orthant Rn
+. The set of copositive matrices is a

cone, the copositive cone COPn, thus defined as

COPn = {M ∈ Sn : xTMx ≥ 0 ∀x ∈ Rn
+}.

Copositive matrices were first introduced by Motzkin [Mot52] in 1952
and they have been an active research topic since then. Some of the topics
that have been studied are: methods for determining copositivity [CHL70],
description of the extreme rays of COPn ([Hil12, HA22]), copositive com-
pletion problems [HJR05] and optimization [BdK02].

The connection between the copositive cone and optimization received
great attention since 2000, when Bomze et al. [BDdKRQT00] established a
formulation of an NP-hard problem as a linear optimization over COPn and
introduced the term copositive programming. Since then, many combinatorial
problems, including the stability and chromatic number of a graph, have been
formulated as copositive programs. We refer to the survey [Dür10] for more
examples and applications. Later, in 2009, Burer [Bu09] showed a much
more general result: every quadratic program including continuous and binary
variables can be encoded as a copositive program. As expected, optimizing
over COPn is hard. Moreover, the problem of determining whether a matrix
is copositive is a co-NP-complete problem [MK87]. These results motivate
to study tractable approximations for copositive programs and certificates for
copositivity.

The copositive cone can be equivalently defined as

COPn = {M ∈ Sn : (x◦2)TMx◦2 ≥ 0 ∀x ∈ Rn}, (0.1)

where we set x◦2 = (x21, . . . , x
2
n). Hence, determining whether a matrix M is

copositive is equivalent to determine whether the quartic form

(x◦2)TMx◦2

is globally nonnegative. A main topic in this thesis is a study of certificates
for copositivity using sums of squares of polynomials.

Certificates for copositivity using sums of squares

As mentioned before, determining whether a matrix M is copositive
amounts to determine whether the associated polynomial (x◦2)TMx◦2 is non-
negative. It was shown (see [Dian62, Par00]) that, for every n×n copositive
matrix M with n ≤ 4, the polynomial (x◦2)TMx◦2 is a sum of squares. This
result does not extend to n ≥ 5. Nevertheless, there are two alternative recipes
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for certifying that a matrix is copositive by using sums of squares. First, if for
some r ∈ N, the polynomial( n∑

i=1

x2i

)r
(x◦2)TMx◦2 is a sum of squares, (0.2)

then M is copositive. This certificate was proposed by Parrilo in [Par00] and
it is based on the certificates for nonnegative polynomials by Pólya [Poly28]
and Reznick [Rez95]. It is shown that every matrix in the interior of the
copositive cone admits a certificate as in (0.2). A central topic in this thesis is
an intensive study for understanding whether this certificate exists for matrices
in the boundary of the copositive cone. These certificates were used by Parrilo
for optimization purposes [Par00], and later used by de Klerk and Pasechnik

[dKP02] who defined the following cones K(r)
n ⊆ COPn for approximating the

stability number of a graph:

K(r)
n =

{
M ∈ Sn :

( n∑
i=1

x2i

)r
(x◦2)TMx◦2 is a sum of squares

}
.

The key point is that, while linear optimization over COPn is hard, optimizing

a linear function over K(r)
n can be done via semidefinite programming. Thus,

the cones K(r)
n give tractable approximations for linear optimization problems

over COPn.

Alternatively, if there exist sums of squares σ0, σ1, . . . , σn and q ∈ R[x]
such that

xTMx = σ0 + x1σ1 + · · ·+ σnxn + q
( n∑

i=1

xi − 1
)
, (0.3)

then the matrix M is copositive. This certificate is based on Putinar’s Pos-
itivistellensatz [Put93] and the Lasserre sum-of-squares hierarchy for poly-
nomial optimization [Las01a]. Similarly, every matrix in the interior of the
copositive cone admits a certificate as in (0.3). In addition, we will show that
every matrix satisfying a certificate as in (0.3) also admits a certificate as in
(0.2). We consider several other certificates for copositivity (e.g., the ones us-

ing the cones Q(r)
n proposed by de Peña, Vera and Zuluaga in [PVZ07], or the

ones using the cones C(r)
n proposed by de Klerk and Pasechnik in [dKP02]).

We study in detail properties that permit to show the existence of these cer-
tificates.

One of the main results of this thesis is a full characterization of the matrix
sizes for which every copositive matrix admits a certificate as in (0.2). In other

words, we characterize the matrix sizes n for which the cones K(r)
n cover the full
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copositive cone COPn. The proof of this result has two main technical steps
that require different techniques, as we will show in Chapter 2 and Chapter 6.

The stability number of a graph

Given a graph G = (V,E), a subset of vertices S ⊆ V is stable (or inde-
pendent) if S contains no edge, i.e., {i, j} /∈ E for any i, j ∈ S. The stability
number of G, denoted by α(G), is the maximum cardinality of a stable set
in G. Computing α(G) is a central problem in combinatorial optimization,
well-known to be NP-hard, with many applications in various areas, such as
scheduling, social networks analysis, and bioinformatics (see, e.g., [BBPP99],
[WH15]). Several approaches for approximating α(G) have been proposed,
including the use of semidefinite programming. The best-known bound for
α(G) is the Lovász-theta number ϑ(G), defined by Lovász [Lov79] in his sem-
inal paper in 1979, with the purpose of computing the Shannon capacity of
graphs. De Klerk and Pasechnik [dKP02] established a formulation of α(G)
as a copositive program:

α(G) = min
{
t : t(AG + I)− J ∈ COPn

}
.

From this formulation, we obtain that for every graph G the matrix

MG := α(G)(AG + I)− J

is copositive. This class of copositive matrices offers a very rich playground
for analyzing properties of the copositivity certificates as well as complexity
aspects of polynomial optimization problems, as will see in Chapters 4, 5 and 6.

De Klerk and Pasechnik [dKP02] used the cones K(r)
n for defining a hi-

erarchy of upper bounds for α(G) that strengthen the bound given by the
Lovász-theta number ϑ(G):

ϑ(r)(G) := min
{
t : t(AG + I)− J ∈ K(r)

n

}
.

These bounds are shown to converge asymptotically to α(G) as r → ∞. It
was conjectured in [dKP02] that finite convergence takes place after α(G)−1

steps. In this thesis, we study the parameters ϑ(r)(G) in detail. As a main

result, we obtain the finite convergence of the hierarchy ϑ(r)(G) to α(G). The
proof of this result consists of two main steps. First, in Chapter 5, we show
that the hierarchy ϑ(r)(G) has finite convergence for every graph if and only if

the finite convergence of ϑ(r)(G) is preserved after the simple graph operation
of adding an isolated node. Then, in Chapter 6, we show that this last prop-
erty holds for every graph. For this, we develop an algebraic tool for showing
membership in quadratic modules.

We study situations in which the low level approximations ϑ(r)(G)
(r = 0, 1) are exact and show that the graph structure (e.g., critical edges and
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isolated nodes) plays a crucial role in this analysis. We also study the analo-
gous bounds obtained by using other sum-of-squares certificates for copositiv-
ity and we analyze the behavior and exactness of these bounds. This a central
topic in Chapters 4 and 5.

Bicliques and biindependent pairs in bipartite graphs

Let G = (V1 ∪ V2, E) be a bipartite graph. A pair (A,B) with A ⊆ V1,
B ⊆ V2 is biindependent if A ∪ B is independent (or stable) in G. In this
thesis, we study the parameters g(G) and h(G) defined, respectively, as the
maximum product |A| · |B|, and the maximum ratio |A| · |B|/|A ∪ B| taken
over all biindependent pairs (A,B) in G. Thus,

g(G) := max{|A| · |B| : (A,B) is a bipartite biindependent pair in G},

h(G) := max
{

|A|·|B|
|A|+|B| : (A,B) is a bipartite biindependent pair in G

}
.

The parameter g(·) is NP-hard to compute [Pe03]. This parameter per-
mits to model maximum edge cardinality bicliques in bipartite (or general)
graphs [DKT97, ST98] and has many applications such as reducing assembly
times in product manufacturing lines [DKST01]. We show that the parame-
ter h(·) is also NP-hard to compute. This parameter was first introduced by
Vallentin [Val20] who observed its relevance to maximum product-free sub-
sets in groups. The related parameter αbal(G) asking for the maximum of
|A| + |B| taken over balanced biindependent sets (e.g., (A,B) biindependent
with |A| = |B|) is also considered in this thesis. We show that computing
αbal(G) is NP-hard. This parameter has applications in VLSI design (e.g.,
[AYRP07, RL88, Tah06]), and in the analysis of biological data.

The hardness results for the parameters g(·) and h(·) motivate to study
tractable approximations for them. We formulate g(·) and h(·) as polyno-
mial optimization problems and consider their corresponding Lasserre sum-
of-squares hierarchies. In particular, we study the first level bounds obtained
from both hierarchies and we observe that they can be seen as quadratic
variations of the Lovász-theta number. In addition, we give closed-form eigen-
value bounds for the parameters h(·) and g(·), and we show relationships with
earlier spectral parameters by Hoffman [Haem21], Haemers [Haem01], and
Vallentin [Val20]. We also investigate semidefinite bounds for the balanced
parameter αbal(G) and their links to the theta number.

Societal and scientific relevance

In this thesis, we study tractable approximations using sum-of-squares
polynomials in two general settings: for approximating the copositive cone
and for approximating graph parameters such as the stability number of a
graph and parameters in bipartite graphs. Copositive programming permits
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to model any quadratic program with binary variables. Then, a broad class
of real-life problems can be modeled as copositive programs. Some of the
remarkable applications are in dynamical systems and optimal control (e.g.,
[QDM92]), modeling friction, and contact problems in body rigid mechanics
(e.g., [ACP97, AP02]) and in network problems such as in queueing, traffic,
and reliability (e.g., [KM96, MK99]). Our results give a comparison be-
tween several different approaches for copositive programming based on sums
of squares of polynomials.

The problem of computing the stability number of a graph (and the related
problem of finding the maximum clique) has many applications in different
areas, among others, in scheduling, social networks analysis and bioinformatics
(see [BBPP99], [WH15]). In this thesis we also study parameters in bipartite
graphs that, as mentioned earlier, have applications in product manufacturing,
VLSI design [AYRP07, RL88, Tah06], in the analysis of biological data
[YWWY05] and in the analysis of interactions of proteins [MRU87]).

Organization

The thesis is organized as follows. In Chapter 1, we introduce the general
background of positive polynomials, sums of squares and polynomial optimiza-
tion. We also describe several conic approximations for the copositive cone
COPn based on sums of squares of polynomials, that will be studied through-
out in different contexts in the rest of the thesis.

In Chapter 2, we study the question of whether the conic approximations
for COPn defined in Chapter 1 are exact. In other words, we study situations
in which some sum-of-squares certificates for matrix copositivity exist. For
this, we show links between the various approximation cones and we study
the exactness of each of them independently. In particular, we give special
attention to the cone of 5 × 5 copositive matrices that, as we will show, is
arguably the most interesting case to study.

In Chapter 3, we introduce some classical semidefinite bounds for the sta-
bility number α(G), including the Lovász theta number. We also recall the
formulation of α(G) as a copositive program and some hierarchies of approxi-
mations for α(G) defined in the literature. In particular, we recall the bounds

ϑ(r)(G) and summarize the main known results about this hierarchy.

In Chapter 4, we consider the Motzkin-Straus formulation, a well-known
formulation for α(G) as a standard quadratic program, and its corresponding
Lasserre sum-of-squares hierarchy. We characterize the graphs for which their
corresponding Lasserre hierarchy has finite convergence. As an application,
we obtain two complexity results about polynomial optimization problems and



618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas
Processed on: 3-10-2023Processed on: 3-10-2023Processed on: 3-10-2023Processed on: 3-10-2023 PDF page: 14PDF page: 14PDF page: 14PDF page: 14

8 INTRODUCTION

their corresponding Lasserre sum-of-squares hierarchies.

In Chapter 5, we study the low order bounds ϑ(0)(G) and ϑ(1)(G) and show
how some simple graph operations play a crucial role in their analysis. We
also show that the hierarchy ϑ(r)(G) has finite convergence for every graph

G if and only if the finite convergence of ϑ(r)(G) is preserved after adding
isolated nodes. This result will be used in Chapter 6 for showing the finite
convergence of the hierarchy ϑ(r)(G). In addition, we develop a tool for show-
ing that certain copositive matrices arising from graphs require a high degree
sum-of-squares certificate.

In Chapter 6, we develop an algebraic tool for showing membership in qua-
dratic modules. As a main application, we show the existence of certificates
for copositivity for two classes of copositive matrices: the 5× 5 copositive ma-
trices and the graph matrices MG. This permits to show two main results of

this thesis: Namely, COP5 =
⋃

r≥0K
(r)
n , and the hierarchy ϑ(r)(G) has finite

convergence to α(G) for every graph G.

In Chapter 7, we study several parameters in bipartite graphs. We show
that these parameters are NP-hard to compute and we propose semidefinite
formulation to approximate them, as well as closed-form eigenvalue bounds.

Finally, in Chapter 8, we briefly summarize the main results of the the-
sis and we highlight some open questions and possible directions for future
research.

Publications

This thesis is based on the following three published papers, a book chap-
ter, a preprint, and a work in preparation:

[LV22a] M. Laurent, L.F. Vargas, Finite convergence of sum-of-squares hier-
archies for the stability number of a graph. SIAM Journal on Opti-
mization, 32(2):491-518, 2022.

[LV22b] M. Laurent, L.F. Vargas, Exactness of Parrilo’s conic approximations
for copositive matrices and associated low order bounds for the stabil-
ity number of a graph. Mathematics of Operations Research, 48(2):
1017-1043, 2022.

[LV22c] M. Laurent, L.F. Vargas, On the exactness of sum-of-squares approx-
imations for the cone of 5×5 copositive matrices. Linear Algebra and
its Applications, 651:26–50, 2022.

[VL23] L.F. Vargas, M. Laurent. Copositive matrices, sums of squares and
the stability number of a graph. Michal Kočvara, Bernard Mourrain,
Cordian Riener (eds.). In: Polynomial Optimization, Moments, and
Applications, Springer, pp. 99-132, in press.
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CHAPTER 1

The copositive cone and sums of squares of
polynomials

1.1. The copositive cone

An n × n symmetric matrix M is said to be copositive if the associated
quadratic form xTMx =

∑n
i,j=1Mijxixj is nonnegative over the nonnegative

orthant Rn
+. The set of copositive matrices is a cone, the copositive cone COPn,

thus defined as

COPn = {M ∈ Sn : xTMx ≥ 0 ∀x ∈ Rn
+}. (1.1)

Equivalently, the copositive cone is defined as

COPn = {M ∈ Sn : (x◦2)TMx◦2 ≥ 0 ∀x ∈ Rn}, (1.2)

where we let x◦2 = (x21, . . . , x
2
n). Hence, determining whether a matrix M is

copositive amounts to determine whether the quartic form

(x◦2)TMx◦2

is globally nonnegative. As mentioned in the Introduction, optimizing over
COPn is hard as many hard problems, including the stability and chromatic
number of a graph, can be encoded as a linear optimization problem over
COPn. Moreover, the problem of determining whether a matrix is copositive
is a co-NP-complete problem [MK87]. Motivated by these hardness results,
some conic semidefinite approximations for the copositive cone have been pro-
posed. In particular, some of them are based on using sums of squares of
polynomials. In this chapter, we recall the general background of polynomial
optimization. In particular, we recall several results for certifying the non-
negativity of a polynomial by using sums of squares of polynomials. These
results are used for building tractable approximations for polynomial opti-
mization problems. Moreover, these certificates also permit to build inner
conic approximations for COPn, as described in Section 1.6.

1.2. Polynomial optimization

Polynomial optimization asks for minimizing a polynomial over a semi-
algebraic set. That is, given polynomials f, g1, . . . , gm, h1, . . . , hl ∈ R[x], the

11
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task is to find (or approximate) the infimum of the following problem:

f∗ = inf
x∈K

f(x), (1.3)

where

K =
{
x ∈ Rn : gi(x) ≥ 0 for i = 1, . . . ,m and hi(x) = 0 for i = 1, . . . , l

}
(1.4)

is a semialgebraic set. Problem (1.3) can be equivalently rewritten as

f∗ = sup{λ : f(x)− λ ≥ 0 for all x ∈ K}. (1.5)

In view of this new formulation, finding lower bounds for a polynomial opti-
mization problem amounts to finding certificates that certain polynomials are
nonnegative on the semialgebraic set K.

1.3. Sum-of-squares certificates for nonnegativity

Testing whether a polynomial is nonnegative on a semialgebraic set is hard
in general. Even testing whether a polynomial is globally nonnegative (non-
negative on K = Rn) is a hard task in general. An easy sufficient condition
for a polynomial to be globally nonnegative is being a sum of squares. A
polynomial p ∈ R[x] is said to be a sum of squares if it can be written as
a sum of squares of other polynomials, i.e., if p = q21 + · · · + q2m for some
q1, . . . , qm ∈ R[x]. We denote by Σ the set of sums of squares of polynomials
and set Σr = Σ ∩ R[x]r, where R[x]r denotes the set of polynomials of degree
at most r. Hilbert [Hilb88, Hilb93] showed that every nonnegative poly-
nomial of degree 2d in n variables is a sum of squares in the following cases:
(2d, n)=(2d, 1), (2, n), or (4, 2). Moreover, he showed that for any other pair
(2d, n) there exist nonnegative polynomials that are not sums of squares. The
first explicit example of a nonnegative polynomial that is not a sum of squares
was given by Motzkin [Mot67] in 1967.

Example 1.1. The following polynomial in two variables is known as the
Motzkin polynomial:

h(x, y) = x4y2 + x2y4 − 3x2y2 + 1. (1.6)

The Motzkin polynomial is nonnegative on R2. This can be seen, e.g., by using
the Arithmetic-Geometric Mean inequality, which gives

x4y2 + x2y4 + 1

3
≥ 3
√
x4y2 · x2y4 · 1 = x2y2.

However, h(x, y) cannot be written as a sum of squares. This can be checked
using “brute force”: assume h =

∑
i q

2
i and examine the coefficients on both

sides (starting from the coefficients of the monomials x6, y6, etc.; see, e.g.,
[Rez00]).
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The Motzkin form is the homogenization of h, thus the homogeneous polyno-
mial in three variables:

m(x, y, z) = x4y2 + x2y4 − 3x2y2z2 + z6. (1.7)

Hence, the Motzkin form is nonnegative on R3 and it cannot be written as a
sum of squares.

In 1927, Artin [Art27] proved that any globally nonnegative polynomial f
can be written as a sum of squares of rational functions, i.e., f =

∑
i(

pi
qi
)2 for

some pi, qi ∈ R[x], solving affirmatively Hilbert’s 17th problem. Equivalently,
Artin’s result shows that for any nonnegative polynomial f there exists a
polynomial q such that q2f ∈ Σ. The following result shows that, when f is
homogeneous and strictly positive on Rn \{0}, the multiplier q2 can be chosen
to be a power of (

∑n
i=1 x

2
i ).

Theorem 1.2 (Reznick [Rez95]). Let f ∈ R[x] be a homogeneous polynomial
such that f(x) > 0 for all x ∈ Rn \ {0}. Then the following holds:( n∑

i=1

x2i

)r
f ∈ Σ for some r ∈ N. (1.8)

Scheiderer [Sche06] shows that the strict positivity condition can be omit-
ted for n = 3: any nonnegative form f in three variables admits a certificate
as in (1.8). On the negative side, this is not the case for n ≥ 4: there exist
nonnegative forms in n ≥ 4 variables that do not admit a positivity certificate
as in (1.8). An example is given in Example 1.4.

Example 1.3. Let h(x, y) = x4y2+x2y4−3x2y2+1 be the Motzkin polynomial,
which is nonnegative and not a sum of squares. However,

(x2 + y2)2h(x, y) = x2y2(x2 + y2 + 1)(x2 + y2 − 2)2 + (x2 − y2)2

is a sum of squares. This sum-of-squares certificate thus shows (again) that h
is nonnegative on R2.

Example 1.4. Let q(x, y, z, w) := m(x, y, z)2 +w6m(x, y, z), where m(x, y, z)
is the Motzkin form from (1.7). Clearly, q is nonnegative on R4, as m is
nonnegative on R3. Assume that the polynomial (x2+y2+z2+w2)rq is a sum
of squares for some r ∈ N. Then,

q′ := (x2 + y2 + z2 + 1)rq(x, y, z, 1) = (x2 + y2 + z2 + 1)r(m2 +m)

is also a sum of squares. As q′ is a sum of squares, one can check that
also its lowest degree homogeneous part is a sum of squares (see Chapter 2,
Lemma 2.6). However, the lowest degree homogeneous part of q′ is m, which
is not a sum of squares. Hence this shows that (x2 + y2 + z2 + w2)rq �∈ Σ for
all r ∈ N.
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Next, we give some positivity certificates for polynomials on semialgebraic
sets. The following result shows the existence of a positivity certificate for
polynomials that are strictly positive on the nonnegative orthant Rn

+.

Theorem 1.5 (Pólya [Poly28]). Let f be a homogeneous polynomial such
that f(x) > 0 for all x ∈ Rn

+ \ {0}. Then the following holds:( n∑
i=1

xi

)r
f has nonnegative coefficients for some r ∈ N. (1.9)

In addition, Castle, Powers, and Reznick [CPR09] show that nonnegative
polynomials on Rn

+ with simple zeros also admit a certificate as in (1.9). Given
a homogeneous polynomial p ∈ R[x] of degree d, a simple zero of p is a zero
of the form x = ei (i ∈ [n]), where the coefficient of xdi in p is zero, and the

coefficient of xd−1
i xj is positive for all j �= i.

Theorem 1.6 ([CPR09]). Let p ∈ R[x] be a homogeneous polynomial. As-
sume p is nonnegative on Δn, and p only has simple zeros in Δn. Then, p
admits a certificate as in (1.9).

Now we consider positivity certificates for polynomials restricted to com-
pact semialgebraic sets. Let g = {g1, . . . , gm} and h = {h1, . . . , hl} be sets
of polynomials and consider the semialgebraic set K defined as in (1.4). The
quadratic module generated by g, denoted by M(g), is defined as

M(g) :=
{ m∑

i=0

σigi : σi ∈ Σ for i = 0, 1, . . . ,m, and g0 := 1
}
, (1.10)

and the preordering generated by g, denoted by T (g), is defined as

T (g) :=
{ ∑

J⊆[m]

σJ
∏
i∈J

gi : σJ ∈ Σ for J ⊆ {1, . . .m}, and g∅ := 1
}
. (1.11)

The ideal generated by the polynomial set h is defined as

I(h) :=
{ l∑

i=1

pihi : pi ∈ R[x] for i ∈ [l]
}
.

Observe that, if for a polynomial f we have

f ∈ M(g) + I(h), (1.12)

or f ∈ T (g) + I(h), (1.13)

then f is nonnegative on K. Moreover, if a polynomial admits a certificate as
in (1.12), then it also admits a certificate as in (1.13), because M(g) ⊆ T (g).
We will refer to the quadratic module and preordering associated to the set

x = {x1, . . . , xn}



618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas
Processed on: 3-10-2023Processed on: 3-10-2023Processed on: 3-10-2023Processed on: 3-10-2023 PDF page: 21PDF page: 21PDF page: 21PDF page: 21

1.3. SUM-OF-SQUARES CERTIFICATES FOR NONNEGATIVITY 15

as follows:

M(x) := M({x1, . . . , xn}) T (x) := T ({x1, . . . , xn}). (1.14)

Also, we refer to the ideal generated by the polynomials
∑n

i=1 xi − 1 and∑n
i=1 x

2
i − 1, respectively, as the simplex and sphere ideal and we write

IΔn := I
( n∑

i=1

xi − 1
)

and ISn−1 := I
( n∑

i=1

x2i − 1
)
.

Example 1.7. Consider the polynomial p(x, y) = x2+y2−xy in two variables
x, y. We show that p is nonnegative on R2

+ in two different ways. The following
identities hold:

(x+ y)p(x, y) = x3 + y3,

p(x, y) = (x− y)2 + xy,

which both certify that p is nonnegative on R2
+. The first identity is a certificate

as in (1.9): x3 + y3 has nonnegative coefficients. The second identity shows
that p ∈ T ({x, y}), i.e., gives a certificate as in (1.13).

The following two theorems show that under certain conditions on the
semialgebraic setK (and on the sets g and h defining it), every strictly positive
polynomial admits certificates as in (1.12) or (1.13).

Theorem 1.8 (Schmüdgen [Schm91]). Let g = {g1, g2 . . . , gm} and
h = {h1, . . . , hl} be sets of polynomials. Assume the semialgebraic set K
defined by g and h as in (1.4) is compact. Let f ∈ R[x] such that f(x) > 0
for all x ∈ K. Then we have f ∈ T (g) + I(h).

We say that the sets of polynomials g = {g1, . . . , gm} and h = {h1, . . . , hl}
satisfy the Archimedean condition if

N −
n∑

i=1

x2i ∈ M(g) + I(h) for some N ∈ N. (1.15)

Note this implies that the associated set K is compact. We have the following
result.

Theorem 1.9 (Putinar [Put93]). Assume that the sets of polynomials
g = {g1, . . . , gm} and h = {h1, . . . , hl} satisfy the Archimedean condition
(1.15). Let K be the semialgebraic set defined by the sets g and h as in
(1.4). Let f ∈ R[x] be such that f(x) > 0 for all x ∈ K. Then we have
f ∈ M(g) + I(h).
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1.4. Semidefinite programming and sums of squares

In this section, we recall the relation between semidefinite programming
and sums of squares of polynomials. A key point is that positive semidefinite
matrices permit to model sums of squares of polynomials. A symmetric matrix
M ∈ Sn is said to be positive semidefinite, and we write M � 0, if any of the
following equivalent assertions holds:

(i): xTMx ≥ 0 for all x ∈ Rn.
(ii): The eigenvalues of M are nonnegative, i.e., M =

∑n
i=1 λiuiu

T
i for

some nonnegative scalars λi ∈ R+ and orthonormal vectors ui ∈ Rn

for i ∈ [n].

We write A � B if A− B � 0. We say that a matrix is positive definite, and
we write M 
 0, if xTMx > 0 whenever x �= 0. A useful result for testing
whether a matrix is positive semidefinite is the following.

Lemma 1.10 (Schur Complement). Let X ∈ Sn be a matrix in block form

X =

(
A B
BT C

)
,

where A ∈ Sm, C ∈ Sn−m and B ∈ Rm×(n−m). If A is nonsingular, then

X � 0 ⇐⇒ A � 0 and C −BTA−1B � 0.

1.4.1. Semidefinite programming. Let C,A1, . . . , Am ∈ Sn be sym-
metric matrices and let b1, . . . , bm ∈ R. A program of the form

p∗ = sup{〈C,X〉 : 〈Ai, X〉 = bi for i = 1, . . . ,m, X � 0} (P)

is called a semidefinite program (SDP). If the program (P) is not feasible we
set p = −∞ and we set p = ∞ if the program is unbounded. The associated
dual program of (P) is the following:

d∗ = inf
y∈Rm

{ m∑
i=1

yibi :

m∑
i=1

yiAi − C � 0
}
. (D)

The programs (P) and (D) satisfy weak duality, i.e., p∗ ≤ d∗. In general, this
inequality could be strict, and we say that strong duality holds if p∗ = d∗.
A sufficient condition for having strong duality is the existence of a feasible
solution X for (P) satisfying X 
 0. There exist efficient algorithms for
solving semidefinite programs (up to any arbitrary precision, and under some
technical assumptions). See, e.g., [BTN01, dK02].

1.4.2. Sums of squares and semidefinite programming. In this sec-
tion, we recall an observation already made in [CLR95] showing that the ex-
istence of a decomposition of a polynomial as a sum of squares can be modeled
with a semidefinite program.
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1.5. APPROXIMATION HIERARCHIES FOR POLYNOMIAL OPTIMIZATION 17

Consider a polynomial p ∈ R[x]2d. Then we have,

p ∈ Σ2d ⇐⇒ p = [x]TdM [x]d for some M � 0, (1.16)

where [x]d = (xα)|α|≤d denotes the vector of monomials with degree at most d.

Indeed, if p ∈ Σ2d then p =
∑m

i=1 q
2
i for some qi ∈ R[x]d. We can write

qi = [x]Td vi for an appropriate vector vi. Then, we obtain p =
∑m

i=1 q
2
i =

[x]Td (
∑m

i=1 viv
T
i )[x]

T
d = [x]TdM [x]d, where M :=

∑m
i=1 viv

T
i is a positive semi-

definite matrix.
Conversely, assume p = [x]TdM [x]d with M � 0. Then M =

∑m
i=1 viv

T
i for

some vectors v1, . . . , vm. Hence, p =
∑m

i=1([x]
T
d vi)

2 is a sum of squares.
So, relation (1.16) shows that testing whether a given polynomial is a sum

of squares can be modeled as a semidefinite program.

1.5. Approximation hierarchies for polynomial optimization

Based on the result in Putinar’s theorem, and motivated by the fact
that sums of squares can be modeled via semidefinite programming, Lasserre
[Las01b] proposed a hierarchy of approximations (f (r))r∈N for problem (1.3).
Given an integer r ∈ N, the quadratic module truncated at degree r (generated
by the set g = {g1, . . . , gm}) is defined as

M(g)r :=
{ m∑

i=0

σigi : σi ∈ Σr−deg(gi) for i ∈ {0, 1, . . . ,m}, and g0 = 1
}
.

(1.17)

The preordering truncated at degree r (generated by the set g = {g1, . . . , gm})
is defined as

T (g)r :=
{ ∑

J⊆[m]

σJ
∏
i∈J

gi : σJ ∈ Σr−|J | for J ⊆ {1, . . .m}, and g∅ := 1
}
.

Similarly, the truncated ideal at degree r generated by the set h = {h1, . . . , hl}
is defined as

I(h)r :=
{ l∑

i=1

pihi : pi ∈ R[x]r−deg(hi), for i ∈ [l]
}
.

Then, one defines the parameter f (r) as

f (r) := sup{λ : f − λ ∈ M(g)2r + I(h)2r}. (1.18)

Clearly, f (r) ≤ f (r+1) ≤ f∗ for all r ∈ N. The hierarchy of parameters f (r) is
also known as Lasserre sum-of-squares hierarchy for problem (1.3).

Under the Archimedean condition, by Putinar’s theorem, we have asymp-
totic convergence of the Lasserre hierarchy: f (r) → f∗ as r → ∞. We say
that finite convergence holds if f (r) = f∗ for some r ∈ N. In general, finite
convergence does not hold, as the following example shows.
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18 1. THE COPOSITIVE CONE AND SUMS OF SQUARES OF POLYNOMIALS

Example 1.11. Consider the problem

min x1x2 s.t. x ∈ Δ3, i.e., x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x1 + x2 + x3 = 1.

The optimal value of this problem is 0 and is attained, for example, in x =
(0, 0, 1). This problem does not have finite convergence, as we will see in
Chapter 2 in the proof of Theorem 2.18.

Finite convergence and optimality conditions. The question of iden-
tifying sufficient conditions for which the Lasserre hierarchy of a polynomial
optimization problem has finite convergence has been much studied in the
literature. For example, in the works by Scheiderer [Sche05, Sche06], Mar-
shall [Mar06, Mar08, Mar09], Kriel and Schweighofer [KS18a, KS18b].
Assume f is a polynomial nonnegative on a basic closed semialgebraic set
K defined by polynomial inequalities g, whose associated quadratic module
M(g) is Archimedean. Marshall [Mar09, Theorem 1.3] gives a set of alge-
braic conditions on the zeros of the polynomial f in the set K, known as the
Boundary Hessian Condition (BHC), that guarantees that f belongs to the
quadratic module M(g). Nie [Nie12] shows that (BHC) holds if the natural
sufficient optimality conditions hold at all the global minimizers of f over K
and thus the Lasserre hierarchy has finite convergence in this case. In this
section, we recall this result of Nie [Nie12].

We start with a quick recap on these optimality conditions, which we state
here for problem (1.3) though they hold in a more general setting (see, e.g.,
[Bert99]).
Let u be a local minimizer of problem (1.3) and let

J(u) = {j ∈ [m] : gj(u) = 0}

be the index set of the active inequality constraints at u. We say that the
constraint qualification condition (CQC) holds at u if the gradients of the
active constraints at u are linearly independent. Namely,

The vectors in {∇gj(u) : j ∈ J(u)}∪{∇hi(u) : i ∈ [l]} are linearly independent.
(CQC)

If (CQC) holds at u then there exist multipliers λ1, . . . , λk, μ1, . . . , μm ∈ R

satisfying

∇f(u) =

l∑
i=1

λi∇hi(u) +

m∑
j=1

μj∇gj(u), (FOOC)

μ1g1(u) = 0, . . . , μmgm(u) = 0, μ1 ≥ 0, . . . , μm ≥ 0. (CC)

The condition (FOOC) is known as the first order optimality condition and
(CC) as the complementarity condition. If it holds that

μj > 0 for every j ∈ J(u), μj = 0 for j ∈ [m] \ J(u), (SCC)



618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas
Processed on: 3-10-2023Processed on: 3-10-2023Processed on: 3-10-2023Processed on: 3-10-2023 PDF page: 25PDF page: 25PDF page: 25PDF page: 25

1.5. APPROXIMATION HIERARCHIES FOR POLYNOMIAL OPTIMIZATION 19

then we say that the strict complementarity condition (SCC) holds at u. Define
the Lagrangian function

L(x) = f(x)−
l∑

i=1

λihi(x)−
∑

j∈J(u)
μjgj(x).

Another necessary condition for u to be a local minimizer is the second order
necessity condition (SONC):

vT∇2L(u)v ≥ 0 for all v ∈ G(u)⊥, (SONC)

where G(u) is the matrix with rows the gradients of the active constraints at
u and G(u)⊥ is its kernel:

G(u)⊥ = {x ∈ Rn : xT∇gj(u) = 0 for all j ∈ J(u) and

xT∇hi(u) = 0 for all i ∈ [l]}
If it holds that

vT∇2L(u)v > 0 for all 0 �= v ∈ G(u)⊥, (SOSC)

then we say that the second order sufficiency condition (SOSC) holds at u.
The relations between these optimality conditions and the local minimizers
are summarized in the following classical result.

Theorem 1.12 (see, e.g., [Bert99]). Let u be a feasible for problem (1.3).

(i): Assume u is a local minimizer of (1.3) and (CQC) holds at u. Then
the conditions (FOOC), (CC) and (SONC) hold at u.

(ii): Assume that (FOOC), (SCC) and (SOSC) hold at u. Then u is a
strict local minimizer of (1.3).

The relation between the optimality conditions for problem (1.3) and finite

convergence of the parameters f (r) is given by the following result of Nie
[Nie12].

Theorem 1.13 (Nie [Nie12]). Assume that the Archimedean condition (1.15)
holds for the polynomial sets g and h in problem (1.3). If the constraint quali-
fication condition (CQC), the strict complementarity condition (SCC), and the
second order sufficiency condition (SOSC) hold at every global minimizer of

(1.3), then the Lasserre hierarchy (1.18) has finite convergence, i.e., f (r) = f∗

for some r ∈ N.

We say that a x∗ is a strict minimizer of problem (1.3) if it is a global
minimizer and it is a strict local minimizer. Note that, under the assumptions
of Theorem 1.13, all global minimizers of (1.3) are strict minimizers (by Theo-
rem 1.12 (ii)) and thus problem (1.3) has finitely many global minimizers. (If
not, then there exists a sequence (xi)i ⊆ K, where all xi are global minimiz-
ers of f over K. Under the Archimedean condition, K is compact and thus
this sequence has an accumulation point x∗ ∈ K. Then x∗ is also a global
minimizer, but it is not a strict minimizer, yielding a contradiction.)
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1.6. Sum-of-squares approximations for COPn

As mentioned in the Introduction, optimizing over the copositive cone is a
hard problem, this motivates to design tractable conic inner approximations
for it. One classical cone that is often used as an inner approximation of COPn

is the cone SPNn, defined as

SPNn := {M ∈ Sn : M = P +N where P � 0, N ≥ 0}. (1.19)

In this section, we explore several hierarchies of conic approximations for
COPn, strengthening SPNn, based on sums of squares of polynomials. They
are inspired by the positivity certificates (1.8), (1.9), (1.12), and (1.13).

1.6.1. Cones based on Pólya’s nonnegativity certificate. In view
of relation (1.1), a matrix is copositive if the homogeneous polynomial xTMx
is nonnegative on Rn

+. Motivated by the nonnegativity certificate (1.9) in

Pólya’s theorem, de Klerk and Pasechnik [dKP02] introduced the cones C(r)
n ,

defined as

C(r)
n :=

{
M ∈ Sn :

( n∑
i=1

xi

)r
xTMx has nonnegative coefficients

}
(1.20)

for any r ∈ N. Clearly, C(r)
n ⊆ C(r+1)

n ⊆ COPn. By Pólya’s theorem (Theo-

rem 1.5), the cones C(r)
n cover the interior of COPn, i.e.,

int(COPn) ⊆
⋃
r≥0

C(r)
n .

This follows from the fact that M ∈ int(COPn) precisely when xTMx > 0 for

all x ∈ Rn
+\{0}. The cones C

(r)
n were introduced in [dKP02] for approximating

the stability number of a graph, as we will see in Chapter 3.
In a similar way, in view of relation (1.2), a matrix is copositive if the

homogeneous polynomial (x◦2)TMx◦2 is globally nonnegative. As mentioned
in the introduction, de Klerk and Pasechnik [dKP02] proposed the following

cones K(r)
n based on the idea of Parrilo [Par00] of certyfing matrix copositivity

by using certificate (1.8):

K(r)
n :=

{
M ∈ Sn :

( n∑
i=1

x2i

)r
(x◦2)TMx◦2 ∈ Σ

}
. (1.21)

Clearly, C(r)
n ⊆ K(r)

n ⊆ COPn, and thus

int(COPn) ⊆
⋃
r≥0

K(r)
n .

This inclusion also follows from Reznick’s theorem (Theorem 1.2).
The following result by Peña, Vera and Zuluaga [ZVP06] gives informa-

tion about the structure of the homogeneous polynomials f for which f(x◦2) is
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a sum of squares. As a byproduct, this gives the reformulations for the cones

K(r)
n from relations (1.23) and (1.24) below.

Theorem 1.14 (Peña, Vera, Zuluaga [ZVP06]). Let f ∈ R[x] be a homo-
geneous polynomial with degree d. Then, the polynomial f(x◦2) is a sum of
squares if and only if f admits a decomposition of the form

f =
∑

S⊆[n],|S|≤d
|S|≡d (mod 2)

σSx
S for some σS ∈ Σd−|S|. (1.22)

In particular, for any r ≥ 0, we have

K(r)
n =

{
M ∈ Sn :

( n∑
i=1

xi

)r
xTMx =

∑
S⊆[n]

|S|≤r+2
|S|≡r (mod 2)

σSx
S with σS ∈ Σr+2−|S|

}
.

(1.23)

Alternatively, the cones K(r)
n may be defined as

K(r)
n =

{
M ∈ Sn :

( n∑
i=1

xi

)r
xTMx =

∑
β∈Nn

|β|≤r+2
|β|≡r(mod 2)

σβx
β for some σβ ∈ Σr+2−|β|

}
,

(1.24)

where, in (1.23), one replaces square-free monomials by arbitrary monomials.

Based on this reformulation of the cones K(r)
n , Peña et al. [ZVP06] introduced

the cones Q(r)
n ⊆ K(r)

n , defined as

Q(r)
n :=

{
M ∈ Sn :

( n∑
i=1

xi

)r
xTMx =

∑
β∈Nn,

|β|=r,r+2

σβx
β for some σβ ∈ Σr+2−|β|

}
.

(1.25)

So, Q(r)
n is a restrictive version of the formulation (1.24) for the cone K(r)

n , in
which the decomposition only allows sums of squares of degree 0 and 2. Then,
we have

C(r)
n ⊆ Q(r)

n ⊆ K(r)
n , (1.26)

and thus

int(COPn) ⊆
⋃
r≥0

C(r)
n ⊆

⋃
r≥0

Q(r)
n ⊆

⋃
r≥0

K(r)
n . (1.27)
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1.6.2. Lasserre-type approximation cones. Recall the definitions
(1.1) and (1.2) of the copositive cone. Clearly, in (1.1), the nonnegativity
condition of the form xTMx can be restricted to the simplex Δn and, in (1.2),
the nonnegativity condition of the form (x◦2)TMx◦2 can be restricted to the
unit sphere Sn−1. Based on these observations, one can now use the positivity
certificate (1.12) or (1.13) to certify the nonnegativity on Δn or Sn−1. This
leads naturally to defining the following cones (as done in [LV22c]): for an
integer r ≥ 2,

LAS
(r)
Δn

=
{
M ∈ Sn : xTMx ∈ M(x)r + IΔn

}
, (1.28)

LAS
(r)
Δn,T =

{
M ∈ Sn : xTMx ∈ T (x)r + IΔn

}
, (1.29)

and for an integer r ≥ 4,

LAS
(r)
Sn−1 =

{
M ∈ Sn : (x◦2)TMx◦2 ∈ Σr + ISn−1

}
. (1.30)

Clearly, we have

LAS
(r)
Δn

⊆ LAS
(r)
Δn,T ,

and, by Putinar’s theorem (Theorem 1.9),

int(COPn) ⊆
⋃
r≥0

LAS
(r)
Δn

, int(COPn) ⊆
⋃
r≥0

LAS
(r)
Sn−1 . (1.31)

Here, we are using the well-known fact that the quadratic modules M(x)+IΔn

and Σ + ISn−1 are Archimedean. We refer to relation (2.17) for an argu-
ment that M(x) + IΔn is Archimedean. The quadratic module Σ + ISn−1 is
Archimedean because

∑n
i=1 x

2
i − 1 ∈ ISn−1 .

In the next chapter, we will study the exact relation between these ap-

proximation cones. In particular, we will show that the conic hierarchies K(r)
n ,

LAS
(r)
T ,Δn

and LAS
(r)
Sn−1 are equivalent (see relation (2.1) and Theorem 2.10).
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CHAPTER 2

Exactness of sum-of-squares approximations for
COPn

The main results of this chapter are from my joint work [LV22c] with
Monique Laurent. However, the language used here is slightly different. Se-
lected results from my works [LV22a] and [LV22b] with Monique Laurent are
also included as will be specified throughout. In particular, the results from
Section 2.1 are from [LV22b].

In this chapter, we study the question of whether the hierarchies of cones
introduced in Section 1.6 cover the full copositive cone COPn. For this, we
first study the relation between these cones and show the following links: for
any integer r ≥ 2, we have

LAS
(r)
Δn

⊆ K(r−2)
n = LAS

(r)
Δn,T = LAS

(2r)
Sn−1 . (2.1)

(see Theorem 2.10). We are particularly interested in analyzing the conic ap-

proximations K(r)
n , which are equivalent to the conic approximations LAS

(r)
Sn−1

and LAS
(r)
Δn,T , in view of relation (2.1).

The cone K(0)
n is known to be equal to the cone SPNn from (1.19) (see [Par00]):

K(0)
n = SPNn. (2.2)

Diananda [Dian62] showed that the equality SPNn = COPn holds for n ≤ 4.
Then,

COPn = K(0)
n for n ≤ 4. (2.3)

It is known that the inclusionK(0)
5 ⊆ COP5 is strict. For instance, the following

matrix, known as the Horn matrix,

H =

⎛⎜⎜⎜⎜⎝
1 1 −1 −1 1
1 1 1 −1 −1
−1 1 1 1 −1
−1 −1 1 1 1
1 −1 −1 1 1

⎞⎟⎟⎟⎟⎠ (2.4)

is copositive, but it does not belong to the cone K(0)
5 (a proof of this well-

known fact will be shown in Example 5.28) in Chapter 5. On the other hand,

23
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Parrilo [Par00] showed that H belongs to the cone K(1)
5 .

The notion of positive diagonal scaling plays a crucial role in the analysis

of the exactness of the conic approximations K(r)
n . Let us first introduce the

set of positive diagonal matrices Dn
++.

Dn
++ := {D ∈ Sn : D is a diagonal matrix with Dii > 0 for all i ∈ [n]}.

Given a symmetric matrix M ∈ Sn a positive diagonal scaling of M is a matrix
of the form DMD, where D ∈ Dn

++. Clearly, any positive diagonal scaling of
a copositive matrix remains a copositive matrix. However, this operation does

not preserve the cone K(r)
n for r ≥ 1 (see [DDGH13]). For instance, H ∈ K(1)

5 ,

but not every positive diagonal scaling of H belongs to K(1)
5 (see Theorem 5.6

for a characterization of the diagonal matrices D for which DHD ∈ K(1)
5 ).

Moreover, it is shown in [DDGH13] that the set of diagonal scalings of the

Horn matrix is not contained in a single cone K(r)
5 . As a consequence, the

inclusion K(r)
n ⊆ COPn is strict for every n ≥ 5, r ≥ 0. Hence, the remaining

question is whether the union of the cones K(r)
n covers the full copositive cone

COPn.

Question 2.1. Does the equality
⋃

r≥0K
(r)
n = COPn hold for some n ≥ 5?

In this chapter, we show that for n ≥ 6 the inclusion
⋃

r≥0K
(r)
n ⊆ COPn is

strict (see Theorem 2.7). The remaining case n = 5 is answered affirmatively
in this thesis.

Theorem 2.2. We have
⋃

r≥0K
(r)
5 = COP5.

The proof of this result is divided into two main steps. The first step is to
reduce the problem to the positive diagonal scalings of the Horn matrix. This
is the main result of this chapter.

Theorem 2.3. Equality
⋃

r≥0K
(r)
5 = COP5 holds if and only if DHD belongs

to
⋃

r≥0K
(r)
5 for all positive diagonal matrices D.

The second step, i.e., that every positive diagonal scaling of the Horn

matrix belongs to
⋃

r≥0K
(r)
5 , is shown in Chapter 6.

We now summarize the main ingredients of the proof of Theorem 2.3. In

order to show that any 5×5 copositive matrix lies in some K(r)
5 , we can restrict

our attention to copositive matrices that lie on the boundary ∂COP5 of the

copositive cone, since, as saw earlier, int(COP5) ⊆
⋃

r≥0K
(r)
5 . Moreover, it

suffices to consider matrices that lie on an extreme ray of COP5.
A crucial ingredient for the proof of Theorem 2.3 is the fact that all the

extreme rays of the cone COP5 are known. They have been characterized by
Hildebrand [Hil12], who defined the following matrices
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T (ψ) =

⎛⎝ 1 − cosψ4 cos(ψ4 + ψ5) cos(ψ2 + ψ3) − cosψ3

− cosψ4 1 − cosψ5 cos(ψ5 + ψ1) cos(ψ3 + ψ4)
cos(ψ4 + ψ5) − cosψ5 1 − cosψ1 cos(ψ1 + ψ2)
cos(ψ2 + ψ3) cos(ψ5 + ψ1) − cosψ1 1 − cosψ2

− cosψ3 cos(ψ3 + ψ4) cos(ψ1 + ψ2) − cosψ2 1

⎞⎠, (2.5)

where ψ ∈ R5, and proved the following theorem.

Theorem 2.4 ([Hil12]). Let M ∈ COP5 be an extreme matrix, and assume

that M is neither an element of K(0)
5 nor a positive diagonal scaling (of a

row/column permutation) of the Horn matrix. Then M is of the form

M = P ·D · T (ψ) ·D · P T ,

where P is a permutation matrix, D ∈ D5
++, and the quintuple ψ is an element

of the set

Ψ =
{
ψ ∈ R5 :

5∑
i=1

ψi < π, ψi > 0 for i ∈ [5]
}
. (2.6)

In summary, the extreme matrices M of COP5 can be divided into three
categories:

(i): M ∈ K(0)
n ,

(ii): M is (up to row/column permutation) a positive diagonal scaling
of the Horn matrix,

(iii): M is (up to row/column permutation) a positive diagonal scaling
of a matrix T (ψ) for some ψ ∈ Ψ.

Our main result in this chapter is to show that every matrix from the third

category of extreme matrices of COP5 belongs to some cone LAS
(r)
Δ5

and thus,

in view of (2.1), to some cone K(r)
5 .

Theorem 2.5. Let D ∈ D++ be a positive diagonal matrix. Then, for all

ψ ∈ Ψ, we have D · T (ψ) ·D ∈
⋃

r≥0 LAS
(r)
Δ5

⊆
⋃

r≥0K
(r)
5 .

In view of Theorem 2.4, Theorem 2.3 directly follows from Theorem 2.5.
The proof of Theorem 2.5 forms the main technical part of the chapter, which,
as we will explain below, relies on following an optimization approach.

Organization of the chapter. In Section 2.1, we construct copositive

matrices that do not lie in any cone K(r)
n for n ≥ 6. For n ≥ 7, these matri-

ces can be taken with an all-ones diagonal, thus disproving a conjecture from
[DDGH13]. In Section 2.2, we will investigate the relation between the cones

LAS
(r)
Δn

, LAS
(r)
Δn,T , LAS

(r)
Sn−1 , K(r)

n and Q(r)
n defined in Section 1.6 for approx-

imating COPn. In particular, we will show relation (2.1). In Section 2.3, we

analyze the membership in the cones LAS
(r)
Δn

, and we characterize the cases

for which the inclusion LAS
(r)
Δn

⊆ COPn is strict. In Section 2.4, we show
Theorem 2.5. For this, we use optimization techniques for giving sufficient
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conditions on a copositive matrix M such that M and all its diagonal scalings

belong to
⋃

r≥0 LAS
(r)
Δn

.

2.1. Constructing copositive matrices outside
⋃

r≥0K
(r)
n

In this section, we show a result that permits to construct copositive ma-

trices that do not belong to any of the cones K(r)
n . In particular, we show

that the inclusion
⋃

r≥0K
(r)
n ⊆ COPn is strict for n ≥ 6. We also disprove

a conjecture from [DDGH13] claiming that every copositive matrix with an

all-ones diagonal belongs to some cone K(r)
n .

We start with a preliminary result on sums of squares of polynomials.

Lemma 2.6. Let f be a polynomial of degree 2d in n variables. Write f =
fr+fr+1+· · ·+f2d, where fr �= 0 and, for r ≤ j ≤ 2d, each fj is a homogeneous
polynomial with degree j. If f is a sum of squares, then fr is a sum of squares.

Proof. Since f is a sum of squares, we have f =
∑m

i=1 q
2
i for some poly-

nomials qi ∈ R[x] with deg(qi) ≤ d for all i ∈ [m]. Then, each qi has the

form qi =
∑d

j=0 a
(j)
i , where each nonzero a

(j)
i is a homogeneous polynomial of

degree j. For i ∈ [m] set Li = min{j : a(j)i �= 0} and set L = min{Li : i ∈ [m]}.
Note that there is no monomial with degree less than 2L in

∑
i q

2
i = f and

f2L =
∑m

i=1(a
(L)
i )2 �= 0. Hence, it follows that fr = f2L is a sum of squares. �

Theorem 2.7. Let M1 ∈ COPn and M2 ∈ COPm be two copositive matrices.

Assume that M1 /∈ K(0)
n and that there exists 0 �= z ∈ Rm

+ such that zTM2z = 0.
Then we have (

M1 0
0 M2

)
∈ COPn+m \

⋃
r∈N

K(r)
n+m. (2.7)

Proof. Assume by contradiction M1 ⊕M2 ∈ K(r)
n+m, i.e., the polynomial

(PM1(x) + PM2(y))(
∑n

i=1 x
2
i +
∑m

j=1 y
2
j )

r is a sum of squares. Here, for con-

venience, we denote the n +m variables as xi (i ∈ [n]) and yj (j ∈ [m]) and
we set PM1(x) = (x◦2)TM1x

◦2 and PM2(y) = (y◦2)TM2y
◦2. Write z = y◦2 for

some y ∈ Rm, so that PM2(y) = 0, and c :=
∑m

j=1 y
2
j > 0. Then, the polyno-

mial f(x) := PM1(x)(
∑n

i=1 x
2
i + c)r is a sum of squares. By decomposing f as

a sum of homogeneous polynomials, we see that its least degree homogeneous
part is the polynomial crPM1(x), with degree 4. Using Lemma 2.6, we obtain

that crPM1(x) is a sum of squares, i.e, M1 ∈ K(0)
n , yielding a contradiction. �

Now we give explicit examples of copositive matrices of size n ≥ 6 that do

not belong to any of the cones K(r)
n .
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Example 2.8. Let M1 = H be the Horn matrix, known to be copositive with

H /∈ K(0)
n . For the matrix M2 we first consider the 1× 1 matrix M2 = 0 and,

as a second example, we consider M2 =

(
1 −1
−1 1

)
∈ COP2. Then, as an

application of Proposition 2.7 (taking z = 1 and z = (1, 1), respectively), we
obtain(

H 0
0 0

)
∈ COP6 \

⋃
r∈N

K(r)
6 ,

⎛⎝ H 0

0
1 −1
−1 1

⎞⎠ ∈ COP7 \
⋃
r∈N

K(r)
7 .

(2.8)
The leftmost matrix in (2.8) is copositive, it has all its diagonal entries equal

to 0 or 1, and it does not belong to any of the cones K(r)
6 . Selecting for M2

the zero matrix of size m ≥ 1 gives a matrix in COPn \
⋃

r≥0K
(r)
n for any

size n ≥ 6. The rightmost matrix in (2.8) is copositive, it has all its diagonal

entries equal to 1, and it does not lie in any of the cones K(r)
7 . More generally,

if we select the matrix M2 = 1
m−1(mIm − Jm), which is positive semidefinite

with eTM2e = 0, then we obtain a matrix in COPn\
⋃

r≥0K
(r)
n with an all-ones

diagonal for any size n ≥ 7. In contrast, it was shown in [DDGH13] that

any copositive 5 × 5 matrix with an all-ones diagonal belongs to K(1)
5 . The

situation for the case of 6× 6 copositive matrices remains open.

Question 2.9. Is it true that any 6 × 6 copositive matrix with an all-ones

diagonal belongs to K(r)
6 for some r ∈ N?

2.2. Links between the approximation cones for COPn

In this section, we show the relationships from (2.1) between the cones

K(r)
n , LAS

(r)
Δn

, LAS
(r)
Δn,T and LAS

(r)
Sn−1 introduced in Section 1.6. In addition, we

highlight the relationship to the cones Q(r)
n introduced in [PVZ07] and point

out how these cones can all be seen as distinct variations within a common
framework.

Theorem 2.10. Let r ≥ 2 and n ≥ 1, then we have

LAS
(r)
Δn

⊆ K(r−2)
n = LAS

(r)
Δn,T = LAS

(2r)
Sn−1 .

We begin with observing that in the definition (1.29) of the cone LAS
(r)
Δn,T

we may assume that the summation only involves sets S ⊆ [n] with |S| ≡ r
(mod 2).

Lemma 2.11. We have

LAS
(r)
Δn,T =

{
M ∈ Sn : xTMx =

∑
S⊆[n],|S|≤r
|S|≡r(mod 2)

σSx
S + q with σS ∈ Σr−|S|, q ∈ IΔn

}
.
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Proof. To see this, consider a term xSσS , where |S| ≤ r, |S| �≡ r (mod 2)
and σS ∈ Σr−|S|. Then |S| ≤ r−1, deg(σS) ≤ r−|S|−1 and thus, modulo the

ideal IΔn , we can replace xSσS by xSσS(
∑n

i=1 xi). Now expand this expression

as
∑

i∈S xS\{i} · σSx2i +
∑

i∈[n]\S xS∪{i}σS . So each term in this summation is

of the form xTσT with |T | ≤ r, |T | ≡ r (mod 2), and deg(σT ) ≤ r − |T |. �

Note the similarity between the description of LAS
(r)
Δn,T in Lemma 2.11

and that of K(r−2)
n in relation (1.23). The difference lies in the fact that

for LAS
(r)
Δn,T we have a representation of xTMx modulo the ideal IΔn , while

for K(r−2)
n we have a representation of (

∑n
i=1 xi)

r−2xTMx. The next lemma
(whose main idea was already used, e.g., in [dKLP05]) gives a simple trick,
useful to navigate between these two types of representations.

Lemma 2.12. Let f, g ∈ R[x] and assume f is homogeneous. The following
assertions hold.

(i): If (
∑n

i=1 xi)
rf(x) = g(x), then f − g ∈ IΔn.

(ii): Let deg(f) = d, deg(g) = d+ r (r ∈ N), and define

g̃(x) = (

n∑
i=1

xi)
d+rg(x/(

n∑
i=1

xi)).

Then, g̃ is a homogeneous polynomial of degree d + r. Moreover, if
f − g ∈ IΔn, then (

∑n
i=1 xi)

rf(x) = g̃(x).

Proof. The assertion (i) follows by expanding (
∑n

i=1 xi)
r as the sum( n∑

i=1

xi

)r
=
( n∑

i=1

xi − 1+ 1
)r

= 1+
( n∑

i=1

xi − 1
)( r∑

k=1

(
r

k

)( n∑
i=1

xi − 1
)k−1)

.

We now show (ii). The claim that g̃ is a homogeneous polynomial of degree d+r
is easy to check. Assume now f−g ∈ IΔn . By evaluating f−g at x/(

∑n
i=1 xi),

we obtain f(x/(
∑n

i=1 xi)) = g(x/(
∑n

i=1 xi)). As f is homogeneous of degree

d this implies f(x) = (
∑n

i=1 xi)
dg(x/(

∑n
i=1 xi)), and the result follows after

multiplying both sides by (
∑n

i=1 xi)
r. �

We will also use the following simple fact.

Lemma 2.13. Let σ ∈ Σk and define σ̃(x) = (
∑n

i=1 xi)
kσ(x/(

∑n
i=1 xi)).

Then σ̃ is a homogeneous polynomial of degree k. Moreover,

(i) If k ≡ deg(σ) (mod 2), then σ̃ ∈ Σ.
(ii) If k �≡ deg(σ) (mod 2), then σ̃ = (

∑n
i=1 xi)σ̂, where σ̂ ∈ Σ.

Proof. Note that σ̃ = (
∑n

i=1 xi)
k−deg(σ)σ′, where

σ′ :=
( n∑

i=1

xi

)deg(σ)
σ
(
x/
( n∑

i=1

xi

))
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is a homogeneous polynomial with degree deg(σ). It suffices now to observe

that (
∑n

i=1 xi)
k−deg(σ) is a square if k−deg(σ) is even, and it is a square times

(
∑

i xi) if k − deg(σ) is odd. �

Using these two lemmas, we can now relate the two cones LAS
(r)
Δn,T and

K(r−2)
n .

Lemma 2.14. For any r ≥ 2, we have LAS
(r)
Δn,T = K(r−2)

n .

Proof. First assume M ∈ LAS
(r)
Δn,T . Using Lemma 2.11, we have a de-

composition of the form xTMx = g(x) + q(x), where q ∈ IΔn and
g(x) =

∑
|S|≤r,|S|≡r(mod 2) σSx

S , with σS ∈ Σr−|S|. Using Lemma 2.12(ii),
we get( n∑

i=1

xi

)r−2
xTMx =

( n∑
i=1

xi

)r
g
( x∑

i xi

)
=
∑
|S|≤r
|S|≡r

xS
( n∑

i=1

xi

)r−|S|
σS

( x∑
i xi

)
︸ ︷︷ ︸

=σ̃S(x)

.

As r − |S| ≡ deg(σS) (mod 2), we have σ̃S ∈ Σr−|S| by Lemma 2.13(i). In

view of relation (1.23), this shows that M ∈ K(r−2)
n .

Conversely, assume M ∈ K(r−2)
n . Then, in view of (1.23), we have a

decomposition of the form( n∑
i=1

xi

)r−2
xTMx =

∑
|S|≤r

|S|≡r(mod 2)

σSx
S ,

where σS ∈ Σr−|S|. By applying Lemma 2.12(i), we obtain

xTMx =
∑
|S|≤r

|S|≡r(mod 2)

σSx
S + q,

where q ∈ IΔn . Combining with Lemma 2.11, this shows M ∈ LAS
(r)
Δn,T . �

To complete the proof of Theorem 2.10 we now establish the relation to

the cone LAS
(r)
Sn−1 , which follows from the following result in [dKLP05].

Proposition 2.15 ([dKLP05]). Let f be a homogeneous polynomial of de-

gree 2d and r ∈ N. Then, f
(∑n

i=1 x
2
i

)r
∈ Σ if and only if

f = σ + u(1−
n∑

i=1

x2i ), for some σ ∈ Σ2r+2d and u ∈ R[x].



618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas
Processed on: 3-10-2023Processed on: 3-10-2023Processed on: 3-10-2023Processed on: 3-10-2023 PDF page: 36PDF page: 36PDF page: 36PDF page: 36

30 2. EXACTNESS OF SUM-OF-SQUARES APPROXIMATIONS FOR COPn

In particular, for any r ≥ 2, we have

LAS
(2r)
Sn−1 =

{
M ∈ Sn :

( n∑
i=1

x2i

)r−2
(x◦2)TMx◦2 ∈ Σ

}
= K(r−2)

n . (2.9)

We conclude this section with a reformulation for the cone LAS
(r)
Δn

in the

same vein as the reformulation of LAS
(r)
Δn,T in Lemma 2.11.

Lemma 2.16. Let r ≥ 2. If r is odd, then we have

LAS
(r)
Δn

=
{
M ∈ Sn :

( n∑
i=1

xi

)r−2
xTMx =

n∑
i=1

σixi with σi ∈ Σr−1

}
. (2.10)

If r is even and r ≥ 4, then we have LAS
(r)
Δn

= LAS
(r−1)
Δn

.

Proof. The proof is similar to that of Lemma 2.11, except we now have
a summation that involves only sets S ⊆ [n] with |S| ≤ 1. We spell out
the details for clarity. Consider first the case when r is odd. Assume that

M ∈ LAS
(r)
Δn

, so that xTMx = σ0 +
∑n

i=1 σixi + q, where q ∈ IΔ, σ0 ∈ Σr,
and σi ∈ Σr−1. Combining Lemma 2.12(ii) and Lemma 2.13 we obtain a
decomposition as in (2.10). Conversely, starting from a decomposition as in
(2.10) we get a decomposition as in (1.28) by applying Lemma 2.12(i).

Consider now the case r ≥ 4 even. Assume M ∈ LAS
(r)
Δn

, we show that

M ∈ LAS
(r−1)
Δn

. Starting from a decomposition as in (1.28) and using as above
Lemma 2.12(i) and Lemma 2.13, we obtain a decomposition

(
n∑

j=1

xj)
r−2xTMx = σ̃0 + (

n∑
j=1

xj)

n∑
i=1

σ̃ixi,

where σ̃0 ∈ Σr and σ̃i ∈ Δr−1. From this, it follows that the polynomial∑n
j=1 xj divides σ̃0, which implies its square divides σ̃0. Then we can divide

out by
∑n

j=1 xj and obtain an expression as in (2.10) (replacing r by r − 1),

that certifies membership of M in LAS
(r−1)
Δn

. �

We finish by observing that the cones C(r)
n and Q(r)

n , introduced in (1.20)
and (1.25) and defined by requiring a special decomposition of the polyno-
mial (

∑n
i=1 xi)

rxTMx, can be equivalently defined, in view of Lemmas 2.12
and 2.13, by requiring an analogous decomposition of the polynomial xTMx
modulo the ideal IΔn .
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Lemma 2.17. For n ≥ 1, r ≥ 0 we have

C(r)
n =

{
M ∈ Sn : xTMx =

∑
β∈Nn

|β|=r+2

cβx
β + q for cβ ≥ 0 and q ∈ IΔn

}
,

(2.11)

Q(r)
n =

{
M ∈ Sn : xTMx =

∑
β∈Nn

|β|=r,r+2

σβx
β + q for σβ ∈ Σr+2−|β| and q ∈ IΔn

}
.

(2.12)

To conclude, we illustrate how membership in the cones LAS
(r)
Δn

, LAS
(r)
Δn,T ,

C(r)
n , and Q(r)

n can also be viewed as ‘restrictive’ versions of membership in the

cone K(r−2)
n . Indeed, as we saw above, K(r−2)

n = LAS
(r)
Δn,T , and thus a matrix

M belongs to K(r−2)
n if and only if the form xTMx has a decomposition of the

form (2.13).

On the other hand, membership in the cones LAS
(r)
Δn

, C(r−2)
n , and Q(r−2)

n

corresponds to restricting to decompositions that allow only some of the terms
appearing in (2.13):

σ0 +
n∑

i=1

xiσi︸ ︷︷ ︸
for cones LAS

(r)
Δn

+ · · ·+

for cones Q(r−2)
n︷ ︸︸ ︷∑

β∈Nn,|β|=r−2

xβσβ +
∑

β∈Nn,|β|=r

xβcβ︸ ︷︷ ︸
for cones C(r−2)

n

+ q(
n∑

i=1

xi − 1)︸ ︷︷ ︸
for cones

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

LAS
(r)
Δn

Q(r−2)
n

C(r−2)
n

.

(2.13)

2.3. Characterizing the equality
⋃

r≥0 LAS
(r)
Δn

= COPn

In this section, we characterize the matrix sizes n for which the hierarchy

of cones LAS
(r)
Δn

covers the full copositive cone COPn.

Theorem 2.18. We have COP2 = LAS
(3)
Δ2

and for n ≥ 3, the inclusion⋃
r≥0 LAS

(r)
Δn

⊆ COPn is strict.

Proof. First, assume M =

(
a c
c b

)
∈ COP2, we show M ∈ LAS

(3)
Δ2

. Note

that a, b ≥ 0 and c ≥ −
√
ab (using the fact that uTMu ≥ 0 with u = (1, 0),

(0, 1), and (
√
b,
√
a)). Then, we can write

xTMx = (
√
ax1 −

√
bx2)

2 + 2(c+
√
ab)x1x2,
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which, modulo the ideal IΔ2 , is equal to

(
√
ax1 −

√
bx2)

2(x1 + x2) + 2(c+
√
ab)(x22x1 + x21x2),

thus showing M ∈ LAS
(3)
Δ2

.
For n = 3, the matrix

M :=

⎛⎝0 1 0
1 0 0
0 0 0

⎞⎠ (2.14)

is copositive (since nonnegative), but does not belong to any of the cones

LAS
(r)
Δ3

. To see this, assume, by way of contradiction, that M ∈ LAS
(r)
Δ3

for

some r ∈ N. Then, the polynomial xTMx = 2x1x2 can be written as

2x1x2 = σ0 +

3∑
i=1

xiσi + q
( 3∑

i=1

xi − 1
)
, (2.15)

for some σi ∈ Σ for i = 0, 1, 2, 3 and q ∈ R[x]. For a scalar t ∈ (0, 1), define
the vector ut := (t, 0, 1− t) ∈ Δ3. Now we evaluate equation (2.15) at x+ ut
and obtain

2x1x2 + 2tx2 = σ0(x+ ut) + (x1 + t)σ1(x+ ut) + x2σ2(x+ ut)

+(x3 + 1− t)σ3(x+ ut) + q(x+ ut)(x1 + x2 + x3)

for any fixed t ∈ (0, 1). We compare the coefficients of the polynomials in x
at both sides of the above identity. Observe that there is no constant term
on the left hand side, so σ0(ut) + tσ1(ut) + (1 − t)σ3(ut) = 0, which implies
σi(ut) = 0 for i = 0, 1, 3 as σi ∈ Σ and thus σi(ut) ≥ 0. Then, for i = 0, 1, 3,
the polynomial σi(x + ut) has no constant term, and thus it has no linear
terms. Now, by comparing the coefficient of x1 at both sides, we get q(ut) = 0.
Finally, by comparing the coefficient of x2 at both sides, we get t = σ2(ut) for
all t ∈ (0, 1). This implies σ2(ut) = t as polynomial in the variable t. This is
a contradiction because σ2(ut) is a sum of squares in t. �

By Theorems 2.10 and 2.18, we have
⋃

r≥0 LAS
(r)
Δn

⊆
⋃

r≥0K
(r)
n , with equal-

ity if n = 2. This inclusion is strict for any n ≥ 3. Indeed, the matrix M

in (2.14) is an example of a matrix that does not belong to any cone LAS
(r)
Δ3

while it belongs to the cone K(0)
3 (because M is copositive and COP3 = K(0)

3 ).
Following a similar argument as the one used for showing that the matrix

in (2.14) does not belong to
⋃

r≥0 LAS
(r)
Δ3

, we can show that the Horn matrix

does not belong to
⋃

r≥0 LAS
(r)
Δ5

. The full proof can be found in ([LV22c],

Lemma 3.10).

Proposition 2.19. We have H /∈ LAS
(r)
Δ5

for any r ∈ N.
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We just saw two examples of copositive matrices that do not belong to

any cone LAS
(r)
Δn

. In both cases, the structure of the infinitely many zeros
plays a crucial role. We will now discuss some tools that can be used to show

membership in some cone LAS
(r)
Δn

in the case when the quadratic form xTMx
has finitely many zeros in Δn. These tools will be useful for showing that the

matrices T (ψ) from (2.5) belong to
⋃

r≥0 LAS
(r)
Δ5

, and thus to
⋃

r≥0K
(r)
5 .

2.4. Main result

Recall that, if a matrix M lies in the interior of the cone COPn, then it

belongs to some cone LAS
(r)
Δn

(see relation (1.31)). Therefore, we now assume
that M lies on the boundary of COPn, denoted by ∂COPn.

Consider a matrix M ∈ ∂COPn. The objective of this section is to give
sufficient conditions on M that permit us to conclude that every positive

diagonal scaling of M belongs to
⋃

r≥0 LAS
(r)
Δn

. This will be very useful since

we will show that the matrices T (ψ) (ψ ∈ Ψ) satisfy these sufficient conditions
and thus we will be able to conclude the proof of Theorem 2.5. Our strategy
is to apply the result from Nie’s theorem (Theorem 1.13) to the setting of
standard quadratic programs. Let us define the following standard quadratic
program:

min{xTMx : x ∈ Δn} (SQPM )

and the corresponding Lasserre hierarchy

p
(r)
M = sup

{
λ : xTMx− λ ∈ M(x)2r + IΔn

}
. (2.16)

Note the optimal value of (SQPM ) is zero as M ∈ ∂COPn. Now, we will apply
Nie’s theorem (Theorem 1.13) to problem (SQPM ). The set K = Δn indeed
satisfies the Archimedean condition. For this, note that, for any i ∈ [n], we
have

1− xi = 1−
n∑

k=1

xk +
∑

k∈[n]\{i}
xk,

1− x2i =
(1 + xi)

2

2
(1− xi) +

(1− xi)
2

2
(1 + xi).

(2.17)

This implies n−
∑n

i=1 x
2
i ∈ M(x) + IΔn , thus showing that the Archimedean

condition holds. By [Mar03, Theorem 3.1], the feasible region of the Lasserre
hierarchy (2.16) associated to problem (SQPM ) is a closed set. Hence, the
‘sup’ in program (2.16) can be changed to a ’max’. As a consequence, for a
matrix M ∈ ∂COPn, having finite convergence of the Lasserre hierachy (2.16)

associated to problem (SQPM ) is equivalent to having M ∈
⋃

r≥0 LAS
(r)
Δn

. So
we obtain the following corollary.
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Corollary 2.20. Let M ∈ ∂COPn. If the optimality conditions (CQC),
(SCC), and (SOSC) hold at every global minimizer of problem (SQPM ), then

M ∈
⋃

r≥0 LAS
(r)
Δn

.

2.4.1. Optimality conditions of problem (SQPM). In this section,

we give sufficient conditions on M that permit to claim DMD ∈
⋃

r≥0 LAS
(r)
Δn

for all D ∈ Dn
++. For this, we will apply Corollary 2.20, combined with the

following result, which will be a key ingredient in our argument.

Theorem 2.21. If the optimality conditions (CQC), (SCC), and (SOSC) hold
at every minimizer of problem (SQPM ) for a matrix M ∈ ∂COPn, then, for
every D ∈ Dn

++, they also hold at every minimizer of problem (SQPDMD).

In what follows we will prove Theorem 2.21. Given M ∈ ∂COPn and
D ∈ Dn

++, let us consider the standard quadratic program associated toDMD:

min{xTDMDx : x ∈ Δn}. (SQPDMD)

Observe that DMD ∈ ∂COPn, i.e., the optimal value of program (SQPDMD)
is zero. Indeed, if u ∈ Δn is a minimizer of problem (SQPM ), then the

vector D−1u
‖D−1u‖1 ∈ Δn is a minimizer of problem (SQPDMD). Conversely, if

v ∈ Δn is a minimizer of (SQPDMD), then
Dv

‖Dv‖1 is a minimizer of (SQPM ).

Hence, the minimizers of both problems are in one-to-one correspondence, and
thus problem (SQPM ) has finitely many minimizers if and only if problem
(SQPDMD) has finitely many minimizers.

Now, we analyze the optimality conditions (CQC), (SCC), and (SOSC) for
problems (SQPM ) and (SQPDMD). Observe that the constraint qualification
condition (CQC) is satisfied at every minimizer. Indeed, if u ∈ Δn, then the
set of inequalities that are active at u is J(u) = {i ∈ [n] : xi = 0}, and the
vectors e, ei (for i ∈ J(u)) are linearly independent. This last claim follows
from the fact that J(u) �= [n] as

∑n
i=1 xi = 1.

Let us recall a result from [Dian62] about the support of optimal solutions
for problem (SQPM ), which we will use for the analysis of the conditions (SCC)
and (SOSC). We give a short proof for clarity.

Lemma 2.22. [Dian62, Lemma 7 (i)] Let M ∈ COPn and let x ∈ Rn
+ be

such that xTMx = 0. Let S = Supp(x) be the support of x. Then M [S], the
principal submatrix of M indexed by S, is positive semidefinite.

Proof. Let x̃ = x|S be the restriction of x to the coordinates indexed by
S, so x̃TM [S]x̃ = 0. Assume by contradiction that M [S] is not positive semi-
definite. Then there exists y ∈ RS such that yTM [S]y < 0 and we can assume
that yTM [S]x̃ ≤ 0 (else replace y by −y). Since all entries of x̃ are positive,
there exists λ ≥ 0 such that the vector λx̃ + y has all its entries positive.
Thus, (λx̃ + y)TM [S](λx̃ + y) = λ2x̃TM [S]x̃ + 2λx̃TM [S]y + yTM [S]y < 0,
contradicting that M [S] is copositive. �



618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas
Processed on: 3-10-2023Processed on: 3-10-2023Processed on: 3-10-2023Processed on: 3-10-2023 PDF page: 41PDF page: 41PDF page: 41PDF page: 41

2.4. MAIN RESULT 35

We now characterize the minimizers for which the strict complementarity
condition (SCC) holds. Moreover, we show that, if a minimizer u of problem

(SQPM ) satisfies (SCC), then the corresponding minimizer D−1u
‖D−1u‖ of problem

(SQPDMD) also satisfies (SCC).

Lemma 2.23. Let M ∈ ∂COPn, D ∈ Dn
++, and let u be a minimizer of

problem (SQPM ). The strict complementarity condition (SCC) holds at u if
and only if Supp(Mu) = [n] \ Supp(u) or, equivalently, (Mu)i > 0 for all
i ∈ [n] \ Supp(u).

As a consequence, (SCC) holds at u (for problem (SQPM )) if and only if

(SCC) holds at D−1u
‖D−1u‖ (for problem (SQPDMD)).

Proof. Let S = Supp(u). We first prove that (Mu)i = 0 for any i ∈ S.
Let ũ = u|S denote the restriction of vector u to the coordinates indexed by
S. Then, we have 0 = uTMu = ũTM [S]ũ. By Lemma 2.22, M [S] is positive
semidefinite, and thus ũ ∈ Ker(M [S]). Thus, 0 = (M [S]ũ)i = (Mu)i for any
i ∈ S. This shows Supp(Mu) ⊆ [n] \ S. Hence equality Supp(Mu) = [n] \ S
holds if and only if (Mu)i =

∑
j∈Supp(u)Mijuj > 0 for all i ∈ [n] \ Supp(u). It

suffices now to show the link to (SCC).
In problem (SQPM ) the strict complementarity condition (SCC) reads:

Mu = λe+
∑

j∈[n]\S
μjej with μj > 0 for j ∈ [n] \ S.

By looking at the coordinate indexed by i ∈ S we obtain that 0 = (Mu)i = λ.
Hence, (Mu)j = μj for any j ∈ [n] \ S. Therefore (SCC) holds if and only if
(Mu)j > 0 for all j ∈ [n] \ S.

The last claim of the lemma follows using the above characterization, com-
bined with the correspondence between the minimizers u of (SQPM ) andD−1u
(up to scaling) of (SQPDMD) and the fact that Supp(Mu) = Supp(DMu) and
Supp(D−1u) = Supp(u) (as D is positive diagonal). �

As observed, e.g., in [Nie12], if the sufficient optimality conditions (CQC),
(SCC), (SOSC) hold at every global minimizer, then the number of minimizers
must be finite. We now show a useful fact: if a standard quadratic program
has finitely many minimizers, then (SOSC) holds at all of them.

Lemma 2.24. Let M ∈ ∂COPn, so that problem (SQPM ) has optimal value
zero. If (SQPM ) has finitely many minimizers, then (SOSC) holds at every
global minimizer.

Proof. Assume M ∈ ∂COPn and (SQPM ) has finitely many minimizers.
We first prove that, given S ⊆ [n], problem (SQPM ) has at most one optimal
solution with support S. For this, assume by contradiction that u �= v ∈ Δn

are solutions of xTMx = 0 with support S. By Lemma 2.22 the matrix M [S]
is positive semidefinite. Let ũ and ṽ be the restrictions of the vectors u and
v to the entries indexed by S. Hence, ũTM [S]ũ = ṽTM [S]ṽ = 0, and thus
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M [S]ũ = M [S]ṽ = 0. This implies that every convex combination of ũ, ṽ
belongs to the kernel of M [S], so that the form xTM [S]x has infinitely many
zeros on Δ|S|. Hence, xTMx has infinitely many zeros on Δn, contradicting
the assumption.

Let u be a minimizer of problem (SQPM ) with support S and consider

as above its restriction ũ ∈ R|S|. Observe that the second order sufficiency
condition (SOSC) for problem (SQPM ) at u reads

vTMv > 0 for all v ∈ Rn \ {0} such that

n∑
i=1

vi = 0 and vj = 0 ∀j ∈ [n] \ S,

or, equivalently, aTM [S]a > 0 for all a ∈ R|S| \ {0} such that
∑
i∈S

ai = 0.

Assume that aTM [S]a = 0, we show a = 0. Since M [S] � 0 we have that
M [S]a = 0, so that M [S](λũ+ a) = 0 for all λ ∈ R. Pick λ > 0 large enough
so that all entries of λũ+a are positive. Then, λũ+a should be a multiple of ũ
because u is the only minimizer over the simplex with support S. Combining
with the fact that eTa = 0, this implies a = 0. �

As previously observed, the minimizers of problems (SQPM ) and
(SQPDMD) are in one-to-one correspondence. Thus, as a consequence of
Lemma 2.24, (SOSC) holds at every global minimizer of (SQPM ) if and only
if it holds at every global minimizer of problem (SQPDMD). Moreover, we
have shown in Lemma 2.23 that (SCC) holds for all minimizers of problem
(SQPDMD) if and only if it holds for all minimizers of (SQPM ). Therefore, we
have now completed the proof of Theorem 2.21. Moreover, combining Corol-
lary 2.20 and the characterization of (SCC) in Lemma 2.23, we obtain the
following result, useful for further reference.

Theorem 2.25. Let M ∈ ∂COPn and assume problem (SQPM ) has finitely
many minimizers. Assume moreover that, for every minimizer u of problem
(SQPM ), we have (Mu)i > 0 for all i ∈ [n] \ Supp(u). Then we have

DMD ∈
⋃
r≥0

LAS
(r)
Δn

for all D ∈ Dn
++.

The following example shows a copositive matrix M for which the form

xTMx has a unique zero in Δn; however M does not belong to
⋃

r≥0K
(r)
n , and

thus it also does not belong to
⋃

r≥0 LAS
(r)
Δn

(in view of relation (2.1)). Hence,
the condition on the support of the zeros in Theorem 2.25 cannot be omitted.

Example 2.26. Let M1 be a matrix lying in int(COPn) \K(0)
n . Such a matrix

exists for any n ≥ 5. As an example for M1, one may take the Horn matrix
H in (2.4), in which we replace all entries 1 by t, where t is a given scalar
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such that 1 < t <
√
5− 1 (see [LV22b]). By Theorem 2.7, we have

M :=

⎛⎝ M1 0

0
1 −1
−1 1

⎞⎠ ∈ COPn+2 \
⋃
r≥0

K(r)
n+2. (2.18)

Now, we prove that the quadratic form xTMx has a unique zero in the simplex.
For this, let x ∈ Δn+2 such that xTMx = 0. As M1 is strictly copositive (see
e.g. [dKP02]) and y := (x1, . . . , xn) is a zero of the quadratic form yTM1y it
follows that x1 = . . . = xn = 0. Hence, (xn+1, xn+2) is a zero of the quadratic
form x2n+1−2xn+1xn+2+x2n+2 in the simplex Δ2 and thus xn+1 = xn+2 = 1/2.

This shows that the only zero of the quadratic form xTMx in the simplex Δn

is x = (0, 0, . . . , 0, 12 ,
1
2), as desired.

2.4.2. Proof of Theorem 2.5. Now, we can prove the result of Theo-

rem 2.5; that is, we show that DT (ψ)D ∈
⋃

r≥0 LAS
(r)
Δn

for all D ∈ Dn
++ and

ψ ∈ Ψ. We show this result as an application of Theorem 2.25. It thus remains
to check that the two assumptions in Theorem 2.25 hold. First, by combining
two results from [Hil12], the description of the (finitely many) minimizers of
problem (SQPM ) for M = T (ψ) (ψ ∈ Ψ) can be found.

Lemma 2.27. The minimizers of problem (SQPM ) associated to the matrix
M = T (ψ) (with ψ ∈ Ψ) are the vectors vi =

ui
‖ui‖1 for i ∈ [5], where the ui’s

are defined by

u1 =

⎛⎜⎜⎜⎜⎝
sinψ5

sin(ψ4 + ψ5)
sinψ4

0
0

⎞⎟⎟⎟⎟⎠ , u2 =

⎛⎜⎜⎜⎜⎝
sin(ψ3 + ψ4)

sinψ3

0
0

sinψ4

⎞⎟⎟⎟⎟⎠ , u3 =

⎛⎜⎜⎜⎜⎝
0

sinψ1

sin(ψ1 + ψ5)
sinψ5

0

⎞⎟⎟⎟⎟⎠ , u4 =

⎛⎜⎜⎜⎜⎝
0
0

sinψ2

sin(ψ1 + ψ2)
sinψ1

⎞⎟⎟⎟⎟⎠ , u5 =

⎛⎜⎜⎜⎜⎝
sinψ2

0
0

sinψ3

sin(ψ2 + ψ3)

⎞⎟⎟⎟⎟⎠.

Proof. By [Hil12, Theorem 2.5]) it follows that there are exactly five
minimizers and that they are supported, respectively, by the sets {1, 2, 3},
{1, 2, 5}, {2, 3, 4}, {3, 4, 5} and {1, 4, 5}. Next, using [Hil12, Lemma 3.2]), we
obtain that the minimizers take the desired form. �

We finally check that the second assumption of Theorem 2.25 holds for the
matrices M = T (ψ) (ψ ∈ Ψ).

Lemma 2.28. Let ψ ∈ Ψ and let v be a minimizer of problem (SQPM ) where
M = T (ψ). Then, we have (Mv)i > 0 for all i ∈ [5] \ Supp(v).

Proof. By symmetry, it is enough to check this condition for one of the
minimizers, say v1 (as given in Lemma 2.27). Since multiplying by a positive
constant does not affect the sign we verify the condition for the vector u1. For
convenience, we set u = u1. As Supp(u) = {1, 2, 3}, the condition we want to
check reads as follows

3∑
i=1

T (ψ)i4ui > 0 and

3∑
i=1

T (ψ)i5ui > 0.
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Again, it suffices to check just the first inequality since the second one is anal-
ogous (up to index permutation). We will now check that the first expression
is positive. Indeed we have

3∑
i=1

T (ψ)i4ui

=cos(ψ2 + ψ3) sinψ5 + cos(ψ5 + ψ1) sin(ψ4 + ψ5)− cosψ1 sinψ4

=cos(ψ2 + ψ3) sinψ5

+ (cosψ5 cosψ1 − sinψ5 sinψ1)(sinψ4 cosψ5 + cosψ4 sinψ5)− cosψ1 sinψ4

=cos(ψ2 + ψ3) sinψ5 + (cos2 ψ5 − 1) cosψ1 sinψ4 + cosψ5 cosψ1 cosψ4 sinψ5

− sinψ5 sinψ1 sinψ4 cosψ5 − sin2 ψ5 sinψ1 cosψ4

=cos(ψ2 + ψ3) sin(ψ5)− sin2 ψ5 sin(ψ1 + ψ4) + sinψ5 cosψ5 cos(ψ1 + ψ4)

= cos(ψ2 + ψ3) sinψ5 + sinψ5 cos(ψ1 + ψ4 + ψ5)

= sinψ5(cos(ψ2 + ψ3) + cos(ψ1 + ψ4 + ψ5)).

We finish the proof by showing that both factors in the last expression are
positive for ψ ∈ Ψ. By the definition of Ψ,

∑5
i=1 ψi < π and ψi > 0 for

i ∈ [5], so that ψ5 ∈ (0, π) and thus sinψ5 > 0. Now, we use that cosine is a
monotone decreasing function in the interval (0, π). Observe that ψ2+ψ3 and
π − (ψ1 + ψ4 + ψ5) belong to (0, π) and ψ2 + ψ3 < π − (ψ1 + ψ4 + ψ5). Thus,
cos(ψ2+ψ3) > cos(π− (ψ1+ψ4+ψ5)) = − cos(ψ1+ψ4+ψ5), completing the
proof. �
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CHAPTER 3

Semidefinite approximations for the stability
number

This chapter provides background about different approaches based on semi-
definite programming for bounding the stability number of a graph, that will
be studied in the rest of this thesis. The results from Section 3.4.2 are new,
unless otherwise specified.

Given a graph G = (V,E), recall that a subset S ⊆ V is stable if S contains
no edge, i.e., {i, j} /∈ E for any pair of nodes i, j ∈ S. Recall also that the
stability number of G, denoted by α(G), is the maximum cardinality of a stable
set in G. We say that a set is α-stable if it is stable with cardinality α(G). As
mentioned in the introduction, computing α(G) is well-known to be NP-hard
[Kar72]. In this section, we recall some approaches for approximating α(G)
via semidefinite programming. We give special attention to the upper bounds
ϑ(r)(G) introduced by de Klerk and Pasechnik in [dKP02] (see Section 3.4).

3.1. Lovász ϑ-number

The Lovász ϑ-number was defined by Lovász in his seminal paper [Lov79]
with the goal of estimating the Shannon capacity of a graph. There are many
ways for defining ϑ(G) (see, for example, the survey [Knuth94]). We recall
one of its definitions:

ϑ(G) := max
X∈Sn

{〈J,X〉 : Xij = 0 for {i, j} ∈ E,Tr(X) = 1, X � 0}. (3.1)

From the definition it is easy to observe that

α(G) ≤ ϑ(G).

Indeed, if S is a stable set of size α(G), then the matrix X = 1
α(G)χ

S(χS)T

is feasible for program (3.1) with value α(G), where χS ∈ RV is the indicator
vector of S.

The clique covering number of G, denoted by χ(G), is the minimum num-
ber of cliques in G needed to cover V . In other words, χ(G) is the chromatic
number of the graph G, so χ(G) = χ(G). We have that α(G) ≤ χ(G) since a
clique cannot contain two vertices from an independent set. This inequality

39



618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas
Processed on: 3-10-2023Processed on: 3-10-2023Processed on: 3-10-2023Processed on: 3-10-2023 PDF page: 46PDF page: 46PDF page: 46PDF page: 46

40 3. SEMIDEFINITE APPROXIMATIONS FOR THE STABILITY NUMBER

can be strict. For example, for the 5-cycle G = C5 we have α(G) = 2 while
χ(G) = 3.

Lovász showed that the parameter ϑ(G) lies in-between α(G) and χ(G).

Lemma 3.1 (Sandwich Lemma [Lov79]). Let G be a graph. We have

α(G) ≤ ϑ(G) ≤ χ(G).

A graph G is called perfect if the equality α(H) = χ(H) holds for all
induced subgraph H of G. From Lemma 3.1, it follows that for any perfect
graph α(G) = ϑ(G), and thus α(G) can be computed in polynomial time
for perfect graphs (by computing ϑ(G) with accuracy 1

4). Moreover, it was
shown by Grötschel, Lovász and Schrijver in [GLS93] that one can also find a
maximum stable set and a minimum coloring in perfect graphs in polynomial
time using the parameter ϑ(G). A strengthening of ϑ(G) was proposed by
Schrijver in [Schr79] (see also [Mc79] for an equivalent definition) by re-
stricting program (3.1) to matrices with nonnegative entries:

ϑ′(G) := max
X∈Sn

{〈J,X〉 : Xij = 0 for {i, j} ∈ E,Tr(X) = 1, X � 0, X ≥ 0}.
(3.2)

Then, we have

α(G) ≤ ϑ′(G) ≤ ϑ(G) ≤ χ(G). (3.3)

The inequality ϑ′(G) ≤ ϑ(G) can be strict. For example, when G is the graph
with vertex set {0, 1}6 and two vectors are adjacent if their Hamming distance
is at most 3. As pointed out in [Schr79], it was shown by M.R. Best that for
this graph we have 4 = α(G) = ϑ′(G) < ϑ(G) = 16

3 .

3.2. Polynomial optimization formulations

In this section, we present some formulations for α(G) as instance of poly-
nomial optimization problems. Then, we will consider approximation hierar-
chies based on sums of squares of polynomials.

3.2.1. Discrete formulation. The first formulation arises naturally by
considering the 0-1 formulation for α(G):

α(G) = max
{ n∑

i=1

xi : xixj = 0 for {i, j} ∈ E, x2i − xi = 0 for i ∈ V
}
. (3.4)

We can now consider the corresponding Lasserre sum-of-squares hierarchy for
(3.4). We first define the graph ideal given by the graph G:

IG := I
(
{xi − x2i : i ∈ V } ∪ {xixj : {i, j} ∈ E}

)
, (3.5)
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and the corresponding 2r-truncated graph ideal given by G:

I2r,G := I
(
{xi − x2i : i ∈ V } ∪ {xixj : {i, j} ∈ E}

)
2r
. (3.6)

So, the Lasserre hierarchy for problem (3.4) reads

lasr(G) = min{λ : λ−
n∑

i=1

xi ∈ Σ2r + I2r,G}. (3.7)

As is well-known (see, for example, Chapter 7) the level r = 1 of the hierarchy
(3.7) corresponds to ϑ(G), i.e.,

las1(G) = ϑ(G).

Also, it is known that the hierarchy lasr(G) converges to α(G) after α(G)
steps (see, for example [Lau03]).

Theorem 3.2. Let G be a graph. Then, lasα(G)(G) = α(G).

This last result follows from the following more general fact (see [Las01a]
and [Lau03]):

p ≥ 0 on
{
x ∈ RV : xi − x2i = 0 for i ∈ V, xixj = 0 for {i, j} ∈ E

}
⇐⇒ p ∈ Σα(G) + IG.

(3.8)

Gvozdenović and Laurent [GL07] consider the following strengthening of
the hierarchy lasr(G):

las(r)(G) = min
{
λ : λ−

n∑
i=1

xi = σ + p+
∑
I⊂[n]

|I|=r+1

aIx
I ,

where σ ∈ Σ2r, p ∈ I2r,G, aI ≥ 0
}
.

(3.9)

Hence, α(G) ≤ las(r)(G) ≤ lasr(G) and thus, in view of Theorem 3.2, we have

las(α(G))(G) = α(G). It was shown in [GL07] that the level r = 1 corresponds
to the bound ϑ′(G):

las(1)(G) = ϑ′(G).

3.2.2. Continuous formulation. Another starting point for defining hi-
erarchies of approximations for the stability number is the following formu-
lation by Motzkin and Straus [MS65], which expresses 1

α(G) via quadratic

optimization over the standard simplex Δn.

Theorem 3.3 ([MS65]). Let G = ([n], E) be a graph with stability number
α(G). Then, we have

1

α(G)
= min

{
xT (AG + I)x : x ∈ Δn

}
. (M-S)
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Here, AG is the adjacency matrix of G. i.e., AG ∈ Sn, (AG)ij = 1 if {i, j} ∈ E
and (AG)ij = 0 if {i, j} /∈ E.

Let χS ∈ Rn be the indicator vector of the set S, i.e., (χS)i = 1 for i ∈ S
and (χS)i = 0 for i /∈ S. Observe that for any α-stable set S of G the vector

x = χS

α(G) is a minimizer of problem (M-S). In general, these are not the only

minimizers. The minimizers of (M-S) are fully characterized in Chapter 4 and
this characterization will be crucial for the analysis of the convergence of the
corresponding Lasserre hierarchy for problem (M-S).

It turns out that the formulation (M-S) (and some variations of it) pro-
vides a rich playground for analyzing complexity aspects of polynomial opti-
mization problems and their Lasserre hierarchies. Indeed, in Chapter 4, we
will use a perturbation of program (M-S) for showing that it is NP-hard to de-
cide whether a standard quadratic program has finitely many minimizers, and
that it is NP-hard to decide whether the Lasserre hierarchy of a polynomial
optimization problem has finite convergence.

3.3. Copositive formulation

In this section, we focus on the hierarchies of approximations that naturally
arise when considering the following copositive reformulation for α(G), given
by de Klerk and Pasechnik [dKP02]:

α(G) = min{t : t(I +AG)− J ∈ COPn}. (3.10)

Recall that AG, I, and J are, respectively, the adjacency matrix of G, the
identity, and the all-ones matrix. As a consequence, it follows from (3.10)
that the following graph matrix

MG := α(G)(I +AG)− J (3.11)

belongs to COPn. The copositive reformulation (3.10) for α(G) can be seen
as an application of the quadratic formulation by Motzkin and Straus shown
in (M-S). Indeed, it is easy to observe that if t is feasible for (3.10), then the
diagonal entries of t(AG + I) − J are nonnegative and thus t ≥ 1. Then, we
have:

t(AG + I)− J ∈ COPn

⇐⇒ xT (t(AG + I)− J)x ≥ 0 ∀x ∈ Δn

⇐⇒ txT (AG + I)x− 1 ≥ 0 ∀x ∈ Δn

⇐⇒ xT (AG + I)x ≥ 1

t
∀x ∈ Δn.

Using the result of Theorem 3.3, we obtain that the optimal value of program
(3.10) is α(G), as desired.

De Klerk and Pasechnik proposed two hierarchies of approximations using

the cones C(r)
n and K(r)

n defined in relations (1.20) and (1.21). For clarity, we
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recall the definition of these cones:

C(r)
n =

{
M :
( n∑

i=1

xi

)r
xTMx ∈ R+[x]

}
,

K(r)
n =

{
M :
( n∑

i=1

x2i

)r
(x◦2)TMx◦2 ∈ Σ

}
.

The hierarchy ζ(r)(G). The parameters ζ(r)(G) were defined by replac-

ing the cone COPn by C(r)
n in problem (3.10). Then, for an integer r ≥ 0, we

have

ζ(r)(G) := min{t : t(AG + I)− J ∈ C(r)
n }. (3.12)

Since int(COPn) ⊆
⋃

r≥0 C
(r)
n , it follows directly that the parameters ζ(r)(G)

converge asymptotically to α(G) as r → ∞. Note that, if G = Kn is a
complete graph, then α(G) = 1 and the matrix I +AG− J is the zero matrix,

thus belonging trivially to the cone C(0)
n , so that 1 = α(Kn) = ζ(0)(Kn).

However, finite convergence does not hold if G is not a complete graph.

Theorem 3.4 (de Klerk, Pasechnik [dKP02]). Assume G is not a complete

graph. Then, we have ζ(r)(G) > α(G) for all r ∈ N.

By the definition of the cone C(r)
n , the parameter ζ(r)(G) can be formulated

as a linear program, asking for the smallest scalar t for which all the coeffi-
cients of the polynomial (

∑n
i=1 xi)

r xT (t(I +AG)− J)x are nonnegative. The

parameter ζ(r)(G) is very well understood. Indeed, Peña, Vera and Zuluaga
[PVZ07] give a closed-form expression for it in terms of α(G).

Theorem 3.5 (Peña, Vera, Zuluaga [PVZ07]). Write r + 2 = uα(G) + v,
where u, v are nonnegative integers such that v ≤ α(G)− 1. Then we have

ζ(r)(G) =

(
r+2
2

)(
u
2

)
α(G) + uv

,

where we set ζ(r)(G) = ∞ if r ≤ α(G)− 2 (since then the denominator in the
above formula is equal to 0).

A consequence of this result is that after r = α(G)2−1 steps we find α(G)
up to rounding. (See also [dKP02] where this result is shown for r = α(G)2).

Corollary 3.6 ([PVZ07]). We have equality �ζ(r)(G)� = α(G) if and only if
r ≥ α(G)2 − 1.

3.4. The hierarchy ϑ(r)(G)

We now dedicate a separate section to the parameters ϑ(r)(G), for r ∈ N,
which play a central role in this thesis. In this section, we will give the basic
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definitions and facts that will be used in Chapters 4, 5 and 6. The hierarchy
ϑ(r)(G) was defined as follows in [dKP02]:

ϑ(r)(G) := min{t : t(AG + I)− J ∈ K(r)
n }. (3.13)

Since C(r)
n ⊆ K(r)

n ⊆ COPn we have α(G) ≤ ϑ(r)(G) ≤ ζ(r)(G) for any r ≥ 0,

and thus the parameters ϑ(r)(G) converge asymptotically to α(G) as r → ∞.

At order r = 0, while ζ(0)(G) = ∞, the parameter ϑ(0)(G) provides a useful

bound for α(G). Indeed, it is shown in [dKP02] that ϑ(0)(G) coincides with
ϑ′(G) defined in at the beginning of this section. So, we have the inequalities

α(G) ≤ ϑ′(G) = ϑ(0)(G) ≤ ϑ(G).

This connection in fact motivates the choice of the notation ϑ(r)(G).

3.4.1. Convergence properties of ϑ(r) and conjecture. In Theo-
rem 3.4, we saw that the bounds ζ(r)(G) are never exact unless G is a com-
plete graph. This naturally raises the question of whether the (stronger)

bounds ϑ(r)(G) may be exact. Recall the definition of the graph matrix
MG = α(G)(AG + I)− J in (3.11), and define the following polynomials

qG := xTMGx. (3.14)

fG := qG(x
◦2) = (x◦2)TMGx

◦2. (3.15)

Then, for any r ∈ N, we have

ϑ(r)(G) = α(G) ⇐⇒ MG ∈ K(r)
n ⇐⇒

( n∑
i=1

x2i

)r
fG ∈ Σ. (3.16)

As MG is copositive, the polynomial fG is globally nonnegative. The point,
however, is that fG has zeros in Rn \ {0}. In particular, for every stable set
S ⊆ V of cardinality α(G), the indicator vector of S, denoted by χS , is a zero
of fG. Thus, the question of whether fG admits a positivity certificate of the
form (

∑n
i=1 x

2
i )

rfG ∈ Σ for some r ∈ N (as in (1.8)) is nontrivial. In [dKP02]
it was in fact conjectured that such a certificate exists at order r = α(G)− 1;

in other words, that the parameter ϑ(r)(G) is exact at order r = α(G)− 1.

Conjecture 3.7 (de Klerk and Pasechnik [dKP02]). For any graph G, we

have ϑ(α(G)−1)(G) = α(G), or, equivalently, we have MG ∈ K(α(G)−1)
n .

In relation (3.9) we introduced the parameters las(r)(G). In [GL07] it is

shown that, for any integer r ≥ 1, we have α(G) ≤ las(r)(G) ≤ ϑ(r)(G). As

mentioned before, the bounds las(r)(G) are known to converge to α(G) in α(G)

steps, i.e., las(α(G))(G) = α(G). Thus, Conjecture 3.7 asks whether a similar
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property holds for the parameters ϑ(r)(G). While the finite convergence prop-
erty for the Lasserre-type bounds is relatively easy to prove (by exploiting the
fact that one works modulo the ideal generated by x2i − xi for i ∈ V and xixj
for {i, j} ∈ E)), proving Conjecture 3.7 seems much more challenging.

Conjecture 3.7 is known to hold for some graph classes. For instance, we
saw above that it holds for perfect graphs (with r = 0), but it also holds
for odd cycles and their complements – that are not perfect (with r = 1, see
[dKP02]). In [GL07], Conjecture 3.7 was shown to hold for all graphs G
with α(G) ≤ 8 (see also [PVZ07] for the case α(G) ≤ 6). In fact, a stronger
result is shown there: the proof relies on a technical construction of matrices

that permit to certify membership of MG in the cones Q(r)
n (and thus in the

cones K(r)
n ). Whether Conjecture 3.7 holds in general is still an open problem.

However, a weaker form of it is shown in this thesis; namely we show finite
convergence of the hierarchy ϑ(r)(G) to α(G), or, equivalently, membership of

the graph matrices MG in
⋃

r≥0K
(r)
n . This result will be shown in Chapter 6.

Theorem 3.8. Let G be a graph. Then, there exists r ∈ N such that
ϑ(r)(G) = α(G).

3.4.2. ϑ-rank and simple graph operations. We define the ϑ-rank of
G as the number of steps that the hierarchy ϑ(r)(G) takes to converge to α(G).

Definition 3.9. Let G be a graph. We define the ϑ-rank of G as

ϑ-rank(G) = min{r ∈ N : ϑ(r)(G) = α(G)}.
We set ϑ-rank(G) = ∞ if such r does not exist.

In this section we discuss the behavior of the ϑ-rank under simple graph
operations: deleting a node belonging to a twin pair, deleting non-critical
edges, and adding isolated nodes. The last two operations will be analyzed in
more detail in Chapter 5.

Twin pairs. A pair of distinct nodes (u, v) is called a twin pair if {u, v} ∈ E
and NG(u) = NG(v). It is clear that if (u, v) is a twin pair, then α(G) =
α(G \ u). We show that the ϑ-rank is invariant under deleting a node that
belongs to a twin pair. Moreover, we show that membership of MG in the

cones LAS
(r)
Δn

is also invariant under this operation. The first part of this
result (relation (3.17)) was already shown in [GL07].

Lemma 3.10. Let G = ([n], E) be a graph. Assume (u, v) is a twin pair.
Then, the following two equivalences hold.

MG ∈ K(r)
n ⇐⇒ MG\u ∈ K(r)

n−1, (3.17)

MG ∈ LAS
(r)
Δn

⇐⇒ MG\u ∈ LAS
(r)
Δn−1

. (3.18)
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Proof. Assume (u, v) = (1, 2). The implications ‘=⇒’ in both relations
(3.17) and (3.18) follow directly by setting x1 = 0 in any of the definitions of

the cones K(r)
n and LAS

(r)
Δn

(e.g., (1.21) and (1.28)). For the reverse implica-
tions ‘⇐=’ , we first observe that the following relation holds:

qG(x1, x2, x3, . . . , xn) = qG\1(x1 + x2, x3, . . . , xn). (3.19)

(Recall the definition of qG in (3.14)). First, assume that MG\1 ∈ K(r)
n−1. Then,

using relation (1.24) for defining the cone K(r)
n−1, we have( n∑

i=2

xi

)r
qG\1(x2, . . . , xn) =

∑
β∈Nn−1

|β|≤r+2

σβx
β for some σβ ∈ Σr+2−|β|.

By replacing x2 by x1 + x2, and using relation (3.19), we obtain( n∑
i=1

xi

)r
qG(x1, . . . , xn) =

∑
β∈Nn

|β|≤r+2

σ̃βx
β for some σ̃β ∈ Σr+2−|β|,

showing that MG ∈ K(r)
n .

Finally, assume MG\1 ∈ LAS
(r)
Δn−1

. Then, using definition (1.28) for LAS
(r)
Δn−1

,

qG\1(x2, . . . , xn) = σ0 +

n∑
i=2

σixi + q ·
( n∑

i=2

xi − 1
)

for σ0 ∈ Σr, σi ∈ Σr−1, q ∈ R[x2, x3, . . . , xn]. Again, replacing x2 by x1 + x2
and using relation (3.19), we obtain

qG(x1, . . . , xn) = σ̃0 + (x1 + x2)σ̃2 +
n∑

i=3

σ̃ixi + q̃ ·
( n∑

i=1

xi − 1
)
,

for some σ̃0 ∈ Σr, σ̃i ∈ Σr−1, q̃ ∈ R[x]. This shows MG ∈ LAS
(r)
Δn

. �

Critical edges. One notion that is going to be crucial throughout is the
criticality of edges and graphs.

Definition 3.11. Let G = (V,E) be a graph. An edge e ∈ E is called α-critical
(or, simply, critical) if α(G \ e) = α(G) + 1. We say that G is α-critical (or,
simply, critical) if all its edges are critical. We say that G is acritical if no
edge of G is critical.

We now make an observation about the structure of the critical edges.
Recall that the symmetric difference of two sets A and B, denoted by A�B,
is defined as (A ∪B) \ (A ∩B).
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Observation 3.12. An edge {u, v} is critical if and only if there exists I ⊆ V
such that I ∪ {u} and I ∪ {v} are maximum stable sets in G. Hence, a graph
is acritical if and only if, for any pair of maximum stable sets S1 and S2, we
have that |S1�S2| ≥ 4.

Notice that odd cycles are α-critical graphs while even cycles are acritical.
Critical edges and critical graphs have been studied in the literature; see, e.g.
[LP86]. It turns out that the notion of critical edges plays a central role in
the study of the convergence of the above hierarchies of bounds.

On the one hand, it can be easily observed that deleting noncritical edges
can only increase the ϑ-rank (see Lemma 5.10). Hence, after iteratively delet-
ing noncritical edges, we obtain a subgraph H of G, which is critical with
α(H) = α(G) and satisfies: ϑ-rank(G) ≤ ϑ-rank(H). Therefore, finite con-

vergence of the parameters ϑ(r)(G) for the class of critical graphs implies the
same property for general graphs. Analogously, it would suffice to show Con-
jecture 3.7 for the class of critical graphs.

On the other hand, as we will see in Chapter 4, we show that, for acritical

graphs, the matrix MG belongs to some cone LAS
(r)
Δn

(see Theorem 4.14).

This implies, in particular, finite convergence of the hierarchy ϑ(r)(G) for the
class of acritical graphs, in view Theorem 2.10 and relation (3.16). A crucial
point for showing this result is that the number of zeros of xTMGx in Δn (or,
equivalently, the number of minimizers of problem (M-S)) is finite precisely
when G is acritical (see Theorem 4.11).

The notion of critical edges plays also a crucial role in the analysis of the
graphs with ϑ-rank 0 and 1. In Chapter 5, we can indeed characterize the
critical graphs with ϑ-rank 0. Namely, the graphs that are disjoint union of
cliques. In addition, we show that the problem of deciding whether a graph
has ϑ-rank 0 can be algorithmically reduced to the same question restricted
to the class of acritical graphs (see Theorem 5.38).

Papadimitriou and Wolfe [PW88] showed that given a graph G and an
integer k, the problem of deciding whether G is critical with stability number
k is DP-complete. The complexity class DP was introduced by Papadim-
itriou and Yannakakis [PY84] as the languages that can be obtained as in-
tersection of a language in NP and a language in co-NP. In this thesis, we
show that the problem of deciding whether an edge is critical in a graph is
NP-hard (see Theorem 4.24) and the problem of computing the stability num-
ber for acritical graphs is also NP-hard (see Theorem 4.28).

Isolated nodes. The graph G⊕i is the graph obtained by adding the isolated
node i to the graph G. Understanding the relation between ϑ-rank(G) and
ϑ-rank(G ⊕ i) is surprisingly hard, and this is one of the main difficulties for
attacking Conjecture 3.7. It was shown in [GL07] that Conjecture 3.7 holds
if the ϑ-rank does not increase when adding isolated nodes, i.e., if we have
ϑ-rank(G ⊕ i) ≤ ϑ-rank(G) for all graphs G. However, in Chapter 5, we find
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counterexamples for this last assertion. For example, ifG is the graph obtained
by adding 8 isolated nodes to C5, then ϑ-rank(G) = 1, but ϑ-rank(G⊕ i) ≥ 2
(see Corollary 5.56).

In Chapter 5, we show that a weaker version of this refuted assertion
implies the finite convergence of the hierarchy ϑ(r)(G). Namely, if ϑ-rank(G)

remains finite when adding isolated nodes, then the hierarchy ϑ(r)(G) has finite
convergence for all graphs G (see Proposition 5.19). Finally, in Chaper 6, we

use this reduction to prove the finite convergence of the hierarchy ϑ(r)(G).
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CHAPTER 4

Simplex-based approximations for α(G)

This chapter is mainly based on my work [LV22a] with Monique Laurent.
Here, we adopt the notation from our works [LV22c] and [VL23]. This chap-
ter also includes several results that are not yet published. In particular:

• Theorem 4.17 in Section 4.4, characterizing the graphs for which the

simplex-based Lasserre hierarchy p
(r)
G has finite convergence.

• Corollary 4.27 in Section 4.5, showing that it is NP-hard to decide
whether the Lasserre sum-of-squares hierarchy of a polynomial opti-
mization problem has finite convergence.

• Proposition 4.28 in Section 4.5, showing that it is NP-hard to find
the stability number for acritical graphs.

4.1. Introduction

In this chapter, we analyze the hierarchy p
(r)
G (r ∈ N) arising as the Lasserre

hierarchy of problem (M-S) (introduced in Section 3.2.2), thus defined as

p
(r)
G := max

{
λ : xT(AG + I)x− λ ∈ M(x)2r + IΔn

}
. (4.1)

A motivation for studying the bound p
(r)
G is that it can be linked to the pa-

rameter ϑ(r)(G) as follows (see Corollary 4.7): for any integer r ≥ 0,

1

α(G)
≥ 1

ϑ(2r)(G)
≥ p

(r+1)
G . (4.2)

Therefore, the finite convergence of the hierarchy p
(r)
G (to 1

α(G)) would imply

the finite convergence of the hierarchy ϑ(r)(G) (to α(G)), which is one of the
central questions of this thesis. It has been observed (e.g., in Section 3.4) that

showing finite convergence of the hierarchy ϑ(r)(G) is equivalent to showing

that MG belongs to some cone K(r)
n . For the parameters p

(r)
G , a similar relation

holds: The hierarchy p
(r)
G has finite convergence if and only if MG belongs to

some cone LAS
(r)
Δn

(see relation (4.4)). The main result of this chapter is a

characterization of the graphs for which the hierarchy p
(r)
G has finite conver-

gence: if G does not have twin pairs, then p
(r)
G has finite convergence if and

only if G is acritical (see Theorem 4.14). Notice that the presence of twin pairs

49
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does not affect the finite convergence of the hierarchy p
(r)
G , as it was observed

earlier in Lemma 3.10.
We observe that the bound p

(r)
G can be rewritten as follows, using the

definition of the cones LAS
(r)
Δn

(see Section 4.2 for a complete exposition),

p
(r)
G = max

{
λ : AG + I − λJ ∈ LAS

(2r)
Δn

}
. (4.3)

Hence, the following holds:

p
(r)
G has finite convergence ⇐⇒ MG ∈

⋃
r≥0

LAS
(r)
Δn

. (4.4)

Recall that MG = α(G)(AG + I) − J lies in the boundary of the copos-
itive cone. Our approach relies on applying the result of Theorem 2.25,
where we developed sufficient conditions for showing that a copositive matrix

M ∈ ∂COPn belongs to some cone LAS
(r)
Δn

. One restriction of this result is
that it can only be applied when problem (SQPM ) has finitely many minimiz-
ers. We will see that, for the matrix MG, this is precisely the case when G is
acritical. This is the central topic of Section 4.3, where we characterize the
minimizers of the Motzkin-Straus formulation in the more general setting of
the weighted stable set problem. Observe that the minimizers of (M-S) are
precisely the zeros of the form xTMGx on Δn.

Number of global minimizers and finite convergence. A main reason
why critical edges play a role in the study of finite convergence comes from
the fact that problem (M-S) has infinitely many global minimizers when G has
critical edges. Indeed, next to the global minimizers arising from the maximum
stable sets (of the form χS/α(G) with S stable of size α(G)), also some special
convex combinations of them are global minimizers when G has critical edges
(see Corollary 4.12). Note that the existence of spurious minimizers (i.e., not
directly arising from maximum stable sets) is well-known, see, e.g., [Bom97,

PJ96]. Our approach to prove finite convergence of the bounds p
(r)
G is to apply

Theorem 2.25, which is based on Nie’s theorem (Theorem 1.13), and requires
to check whether the classical sufficient optimality conditions hold at all global
minimizers of (M-S). These conditions imply, in particular, that the problem
must have finitely many minimizers, which explains why we can only apply it
to acritical graphs.

There is a well-known easy remedy to force having finitely many minimiz-
ers, simply by perturbing the Motzkin-Straus formulation (M-S). Indeed, if
we replace the adjacency matrix AG by (1+ ε)AG for any ε > 0, then the cor-
responding standard quadratic program still has optimal value 1/α(G), but
now the only global minimizers are those arising from the maximum stable
sets. To get this property it would suffice to perturb the adjacency matrix at
the positions corresponding to the critical edges of G. For the hierarchies of
parameters obtained via this perturbed formulation, we can show the finite
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convergence property, see Theorem 4.15 (which applies to the general setting
of weighted graphs as discussed below). However, since we do not know a
bound on the order of convergence, which does not depend on ε, it remains
unclear how this can be used to derive the finite convergence of the original
(unperturbed) parameters.

As a byproduct of our analysis of the minimizers of the (perturbed) Motzkin-
Straus formulation, we can show NP-hardness of the problem of deciding
whether a standard quadratic optimization problem has finitely many global
minimizers. Moreover, we can show that it is NP-hard to determine whether
the Lasserre hierarchy of a polynomial optimization problem has finite con-
vergence. The key idea is to reduce it to the problem of testing critical edges,
which is itself NP-hard (see Section 4.5).

Extension to the weighted stable set problem. Our results extend to
the general setting of weighted graphs (G,w), where w ∈ RV is a positive
node weight vector, i.e., with wi > 0 for all i ∈ V . Then, α(G,w) denotes the
maximum weight w(S) =

∑
i∈S wi of a stable set S in G, with α(G, e) = α(G)

for the all-ones weight vector w = e = (1, . . . , 1). The following analog of
Motzkin-Straus formulation has been shown in [GHPR97]:

1

α(G,w)
= min{pB(x) = xTBx : x ∈ Δn}, (M-S-weighted)

where the matrix B is of the form B = Bw + A, with (Bw)ii = 1/wi, Aii = 0
(i ∈ V ), (Bw)ij = (1/wi+1/wj)/2, Aij ≥ 0 ({i, j} ∈ E), and (Bw)ij = Aij = 0
({i, j} �∈ E). In the case w = e we have Be = I + AG; hence, if we select
A = 0, then we find the original Motzkin-Straus program (M-S) and if we select
A = εAG, then we find the perturbed Motzkin-Straus formulation mentioned
in the previous paragraph. There is a natural weighted analog of critical
edges: call an edge {i, j} w-critical in G if there exists R ⊆ V such that both
R ∪ {i} and R ∪ {j} are stable sets with α(G,w) = w(R ∪ {i}) = w(R ∪ {j}).
Then, program (M-S-weighted) has finitely many minimizers if and only if
Aij > 0 for all edges {i, j} ∈ E that are w-critical and, in that case, the
sufficient optimality conditions hold at all minimizers (see Proposition 4.13).
In addition, in that case, we can show the finite convergence of the semidefinite
bounds ϑ(r)(G,w) (the weighted analogs of ϑ(r)(G)) to α(G,w) when G has
no w-critical edge (see Section 4.4).

Exactness of low order bounds. There is also interest in the literature in
understanding when the first level of Lasserre hierarchy (also known as the
Shor relaxation or the basic semidefinite relaxation) is exact when applied to
quadratic optimization problems (see, e.g., the recent papers [BY20, WK21]
and further references therein). For standard quadratic programs, where one
wants to minimize a quadratic form pM (x) = xTMx over Δn, we characterize
the set of matrices M for which the first level relaxation is exact. Moreover,
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we show that this holds precisely when the first level relaxation is feasible (see
Lemma 4.3). In the special case of problem (M-S), when M = I + AG, the

first level relaxation gives the parameter p
(1)
G , which will be shown to be exact

(i.e., equal to 1/α(G)) precisely when the graph G is a disjoint union of cliques
(see Lemma 4.8).

4.2. Sum-of-squares hierarchies for standard quadratic programs

Let M ∈ Sn be a symmetric matrix and let pM := xTMx. We recall the
following standard quadratic optimization problem, defined earlier in (SQPM ),
asking for the minimum of pM (x) on Δn:

p∗M = min
{
xTMx : x ∈ Δn

}
, (SQPM )

which can be equivalently reformulated as the problem of minimizing a quartic
function over the unit sphere:

p∗M = min
{
(x◦2)TMx◦2 : x ∈ Rn,

n∑
i=1

x2i = 1
}
. (SQP-Q)

We can define the corresponding sum-of-squares hierarchies for both problems
(SQPM ) and (SQP-Q), and the preordering-based hierarchy for the simplex
formulation (SQPM ), leading to the parameters

p
(r)
M = max

{
λ : xTMx− λ ∈ M(x)2r + IΔn

}
, (4.5)

p
(r)
M,T = max

{
λ : xTMx− λ ∈ T (x)2r + IΔn

}
, (4.6)

p
(r)
M,S = max

{
λ : (x◦2)TMx◦2 − λ ∈ Σ2r + ISn−1

}
. (4.7)

For r ≥ 1, using that xTJx = (
∑n

i=1 xi)
2 and that

∑n
i=1 xi ≡ 1 mod IΔn ,

we can rewrite the programs (4.5) and (4.6) as

p
(r)
M = max

{
λ : M − λJ ∈ LAS

(2r)
Δn

}
, (4.8)

p
(r)
M,T = max

{
λ : M − λJ ∈ LAS

(2r)
Δn,T

}
. (4.9)

Similarly, for r ≥ 2 we can write the program (4.7) as

p
(r)
M,S = max

{
λ : M − λJ ∈ LAS

(2r)
Sn−1

}
. (4.10)

Alternatively, following [BDdKRQT00, dKP02], problem (SQPM ) can
be reformulated as a copositive program:

p∗M = max
{
λ : M − λJ ∈ COPn

}
. (4.11)
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By replacing the cone COPn by its subcone K(r)
n , we now obtain the following

lower bound for p∗M :

Θ
(r)
M := max

{
λ : M − λJ ∈ K(r)

n

}
(4.12)

for any integer r ≥ 0. Then, by Theorem 2.10, we have the following link
between these hierarchies.

Theorem 4.1. For any M ∈ Sn and r ≥ 1, we have:

p∗M ≥ p
(2r)
M,S = Θ

(2r−2)
M = p

(r)
M,T ≥ p

(r)
M . (4.13)

This theorem shows that, in essence, there are two different sum-of-squares
bounds for standard quadratic programs. In order to analyze the finite con-

vergence of the hierarchy p
(r)
M , observe that the following equivalence holds:

p
(r)
M has finite convergence to p∗M ⇐⇒ M − p∗MJ ∈

⋃
r≥0

LAS
(r)
Δn

, (4.14)

which follows from relation (4.8). Observe also that the matrix M − p∗MJ lies

in the boundary ∂COPn. Then, for showing membership in
⋃

r≥0 LAS
(r)
Δn

, we
can use Theorem 2.25. This result can only be applied when the problem

min
{
xT(M − p∗MJ)x : x ∈ Δn

}
has finitely many minimizers. This corresponds to the case when problem
(SQPM ) has finitely many minimizers. Then, we have the following result
that follows directly from Theorem 2.25.

Corollary 4.2. Let M ∈ Sn. Consider the problem (SQPM ) and its cor-

responding Lasserre hierarchy p
(r)
M . Assume that (SQPM ) has finitely many

minimizers. If, for every minimizer x ∈ Δn of problem (SQPM ), it holds that

(Mx)i > p∗M for all i ∈ [n] \ Supp(x),

then p
(r)
M has finite convergence to p∗M .

4.2.1. The bound p
(1)
M . Now, we characterize the set of matrices M for

which the program (4.5) is feasible at order r = 1. Moreover, we prove that

in that case, the program is exact, i.e., p
(1)
M = p∗M .

Lemma 4.3. Given a symmetric matrix M ∈ Sn, the following assertions are
equivalent.

(i): The program (4.5) is feasible for r = 1, i.e., p
(1)
M is finite.

(ii): There exist λ ∈ R and a ∈ Rn
+ such that

M − λJ − (aeT + eaT)/2 � 0.

(iii): p
(1)
M = p∗M .
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Proof. We first prove (i) ⇐⇒ (ii). Assume program (4.5) is feasible, i.e.,
there exist λ ∈ R, a ∈ Rn

+, Q � 0 and u(x) ∈ R[x] such that

xTMx− λ = xTQx+ aTx+ (eTx− 1)u(x).

Then, there exists v(x) ∈ R[x] such that

xTMx− λ(eTx)2 = xTQx+ (aTx)(eTx) + (eTx− 1)v(x).

Indeed, we can select v(x) = u(x)− λ(1 + eTx), which follows from

xTMx− λ(eTx)2 = xTMx− λ+ λ(1− (eTx)2)

= xTQx+ aTx+ (eTx− 1)(u(x)− λ(1 + eTx)).

Hence, the quadratic polynomial xT(M−λJ−Q−(aeT+eaT)/2)x vanishes on
{x : eTx = 1} and thus on Rn. This implies M −λJ −Q− (aeT+ eaT)/2 = 0,
and thus (ii) holds. The argument can be clearly reversed, which shows the
equivalence of (i) and (ii).

As (iii) implies (i), it suffices now to show (ii) =⇒ (iii). By the above
argument, if (ii) holds, then we have

p
(1)
M = sup{λ : λ ∈ R, a ∈ Rn

+, M − λJ − (aeT + eaT )/2 � 0}. (4.15)

Define the matrices Ai = (eie
T + eeTi )/2 for i ∈ [n]. Then, the dual program

of (4.15) reads

inf{〈M,X〉 : 〈J,X〉 = 1, 〈Ai, X〉 ≥ 0 (i ∈ [n]), X � 0}. (4.16)

As program (4.16) is strictly feasible and bounded from below by p
(1)
M , strong

duality holds and the optimum value of (4.16) is equal to p
(1)
M . We now show

that p∗M ≤ p
(1)
M . For this, let X be feasible for (4.16) and define the vector

x = Xe. Then, x ∈ Δn, since xi = 〈Ai, X〉 ≥ 0 for all i ∈ [n], and eTx =
〈J,X〉 = 1, which implies xTMx ≥ p∗M . In addition, we have X − xxT � 0,
which follows from the fact that(

1 xT

x X

)
� 0,

(as X � 0, x = Xe and eTXe = 1). We now show 〈M,X〉 ≥ xTMx. For this,
consider also a feasible solution (λ, a) to (4.15), then M−λJ−

∑n
i=1 aiAi � 0.

Then we have 〈M − λJ −
∑

i aiAi, X − xxT 〉 ≥ 0, which, combined with
〈J,X − xxT 〉 = 0 and 〈Ai, X − xxT 〉 = 0 for all i ∈ [n], implies that 〈M,X〉 ≥
xTMx ≥ p∗M and thus p

(1)
M ≥ p∗M , as desired. �

Here is an immediate consequence of the reformulation of the parameter

p
(1)
M given in (4.15), that we will need later.

Lemma 4.4. Assume that the program (4.15) defining p
(1)
M is feasible, i.e.,

M = λJ + Q + (aeT + eaT )/2 for some λ ∈ R, Q � 0 and a ∈ Rn
+. Then,
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for any i �= j ∈ [n], we have Mii + Mjj − 2Mij = Qii + Qjj − 2Qij ≥ 0. In
addition, if Mii +Mjj − 2Mij = 0 then Q(ei − ej) = 0.

Proof. Direct verification. �
On the other hand, note that the program (4.12) defining Θ

(0)
M is always

feasible. Indeed, λ = mini,j Mij provides a feasible solution, since then M−λJ

is nonnegative and thus belongs to K(0)
n .

Remark 4.5. In view of the formulation (4.15) for the parameter p
(1)
M , the

difference with the parameter p
(1)
M,T = p

(2)
M,S = Θ

(0)
M lies in the fact that, while

for p
(1)
M we search for a decomposition M = λJ +Q+ (eaT + aeT )/2 � 0 with

Q � 0 and a ∈ Rn
+, in the definition of Θ

(0)
M we search for a decomposition

M = λJ +Q+N � 0 with Q � 0, but now N can be an arbitrary entry-wise
nonnegative matrix.

4.2.2. Application to the stable set problem. Here, we apply the
above results to the formulation of the stability number α(G) via the Motzkin-
Straus formulation (M-S), the special instance of a standard quadratic pro-
gram, where we select the matrix M = I + AG as the extended adjacency
matrix of G. We set

pG := pAG+I , (4.17)

p
(r)
G := p

(r)
AG+I . (4.18)

We can link the parameters ϑ(r)(G) and Θ
(r)
M for the matrix M = I +AG.

Lemma 4.6. For any graph G and r ≥ 0, we have: Θ
(r)
I+AG

=
1

ϑ(r)(G)
.

Proof. Directly from the definitions of ϑ(r)(G) in (3.13) and of Θ
(r)
I+AG

in

(4.12). �
We obtain the following result as a direct application of relation (4.13).

Corollary 4.7. For any graph G and r ≥ 0, we have

1

α(G)
≥ 1

ϑ(2r)(G)
≥ p

(r+1)
G .

We now use the result of Lemma 4.3 to characterize when the parameter

p
(1)
G is feasible (and thus exact).

Lemma 4.8. For any graph G, the parameter p
(1)
G is finite or, equivalently,

p
(1)
G = 1/α(G), if and only if G is a disjoint union of cliques.

Proof. We use Lemma 4.3 applied to the matrix M = I + AG. First,
assume M = λJ + Q + (aeT + eaT )/2 for some λ ∈ R, Q � 0 and a ∈
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Rn
+, we show that G is a disjoint union of cliques. For this it suffices to

show that {1, 2}, {1, 3} ∈ E implies {2, 3} ∈ E. This follows easily using
Lemma 4.4. Indeed, if {1, 2} ∈ E then we have M11 +M22 − 2M12 = 0 and
thus Q(e1− e2) = 0. In the same way, {1, 3} ∈ E implies Q(e1− e3) = 0. This
implies Q(e2 − e3) = 0, and thus M22 +M33 − 2M23 = 0, i.e., {2, 3} ∈ E.
Conversely, assume G is a disjoint union of cliques, say V = C1 ∪ . . . ∪ Ck

where k = α(G) and each Ci is a clique of G. We show that p
(1)
M = 1

α(G) . For

this note that, for any x ∈ Δn, we have

xT (I +AG)x =

k∑
i=1

(∑
j∈Ci

xj

)2
≥ 1

k
=

1

α(G)
.

Here, we use Cauchy-Schwartz inequality combined with
∑k

i=1

(∑
j∈Ci

xj
)
= 1

to derive the inner inequality. This shows p
(1)
M ≥ p∗ and thus equality holds.

�

In Section 4.4, we will investigate the finite convergence of the simplex-

based Lasserre hierarchy p
(r)
G , which, in view of Corollary 4.7, directly im-

plies finite convergence of the hierarchy ϑ(r)(G). We will use Corollary 4.2.
This requires to understand the structure of the global minimizers of problem
(M-S), which is what we do in the next section, in the general setting of the
weighted stable set problem.

4.3. Minimizers of the (weighted) Motzkin-Straus formulation

In this section, we prove some properties of the minimizers of the Motzkin-
Straus formulation, in the general setting of the weighted stable set problem.
We consider a graphG = ([n], E) equipped with positive node weights w ∈ RV ,
i.e., with wi > 0 for i ∈ V . A stable set S ⊆ V is said to be w-maximum
if it maximizes the function w(S) =

∑
i∈S wi over all stable sets of G and

α(G,w) denotes the maximum weight of a stable set in G. We say that an
edge {i, j} ∈ E is w-critical in G if there exists a set R ⊆ V such that both sets
R ∪ {i} and R ∪ {j} are w-maximum stable sets; note this implies α(G,w) =
w(R) + wi = w(R) + wj and thus equality wi = wj . When w = e = (1, . . . , 1)
is the all-ones weight vector, the w-maximum stable sets are the maximum
stable sets, α(G, e) = α(G), and the w-critical edges are the critical edges of
G.

Following [GHPR97], let us define the matrix Bw ∈ Sn, with entries

(Bw)ii =
1

wi
(i ∈ [n]), (Bw)ij =

1

2

( 1
wi

+
1

wj

)
({i, j} ∈ E),

(Bw)ij = 0 ({i, j} ∈ E),

(4.19)
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and the matrix spaces

N (G) = {A ∈ Sn : Aii = 0 (i ∈ [n]), Aij ≥ 0 ({i, j} ∈ E),

Aij = 0 ({i, j} ∈ E)},
(4.20)

M(G,w) = Bw +N (G) = {Bw +A : A ∈ N (G)}, (4.21)

so that

M(G,w) =
{
B ∈ Sn : Bii =

1
wi

(i ∈ V ), Bij ≥ 1
2(Bii +Bjj) ({i, j} ∈ E),

Bij = 0 ({i, j} ∈ E)
}
.

(4.22)
For the all-ones node weights w = e = (1, 1, . . . , 1), we have Bw = I+AG. We
will also need the set

M∗(G,w) = {B ∈ M(G,w) : 2Bij > Bii +Bjj for all {i, j} w-critical}.
(4.23)

ClearlyM∗(G,w) contains all matrices lying in the relative interior ofM(G,w)
and M∗(G,w) = M(G,w) if there is no w-critical edge in G.

In [GHPR97] it is shown that, for any matrix B ∈ M(G,w), the weighted
stable set problem can be reformulated via the following weighted analog of
the Motzkin-Straus formulation

1

α(G,w)
= min{xTBx : x ∈ Δn}. (M-S-weighted)

We now investigate the minimizers of problem (M-S-weighted), whose struc-
ture depends on the weighted graph (G,w) and on the choice of the matrix
B in the set M(G,w). In particular, we will show that their number is finite
precisely when B belongs to the set M∗(G,w). As mentioned earlier the prop-
erty of having finitely many minimizers is indeed important in the analysis of
the finite convergence of the corresponding Lasserre hierarchy.

We start with a useful property of local minimizers for a class of standard
quadratic programs. The proof is essentially along the lines of the proof of
[GHPR97, Theorem 5] (and is the key argument for showing the equality in
(M-S-weighted)).

Lemma 4.9. Consider the standard quadratic program

p∗M = min{pM (x) = xTMx : x ∈ Δn}, (4.24)

where M is a matrix of the form

M =

⎛⎝a1 b cT1
b a2 cT2
c1 c2 M0

⎞⎠ , (4.25)

with a1, a2 > 0, b ∈ R satisfying 2b ≥ a1 + a2, c1, c2 ∈ Rn−2 and M0 ∈ Sn−2.
Assume x is a local minimizer of problem (4.24) with x1, x2 > 0 and define the
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vectors x̃ = x+ x2(e1 − e2) and x = x− x1(e1 − e2) ∈ Δn. Then, 2b = a1 + a2
holds and, for any scalar λ ∈ [0, 1], we have pM (λx̃+ (1− λ)x) = pM (x).

Proof. Consider the problem

min
t∈[−x2,x1]

pM (x1 − t, x2 + t, x3, . . . , xn),

which can be rewritten as

min
t∈[−x2,x1]

t2(a1 + a2 − 2b) + βt+ γ, (4.26)

where β, γ are scalars depending on M . By assumption, t = 0 lies in the
interior of the interval [−x2, x1] and it is a local minimizer of problem (4.26).
If a1+a2−2b < 0, then the objective function of (4.26) is strictly concave, and
thus it cannot have a local minimum at an interior point of [−x2, x1]. Hence
a1 + a2 = 2b holds. If β �= 0, then the objective function is linear and thus it
again cannot have a local minimum in the interior of [−x2, x1]. Hence we must
have β = 0, so that pM (x) = pM (x1− t, x2+ t, x3, . . . , xn) for any t ∈ [−x2, x1]
or, equivalently, pM (λx̃+ (1− λ)x) = pM (x) for any λ ∈ [0, 1]. �

We recall a result of [GHPR97] that characterizes the global minimizers
of (M-S-weighted) whose support is a stable set.

Lemma 4.10 ([GHPR97]). Assume B ∈ M(G,w). Let x ∈ Δn and assume
its support S = Supp(x) is a stable set of G. If x is a global minimizer of
problem (M-S-weighted), then S is a w-maximum stable set, xi =

wi
α(w,G) for

i ∈ S and xi = 0 for i ∈ V \ S.

Proof. The argument is classical and based on Cauchy-Schwartz inequal-
ity. We have

1 =
∑
i∈S

xi√
wi

√
wi ≤

√√√√∑
i∈S

x2i
wi

√∑
i∈S

wi =
√
xTBx

√
w(S) ≤

√
xTBx

√
α(G,w),

where the last two (in)equalities hold since S is a stable set. By assumption,
xTBx = 1/α(G,w) since x is a global minimizer of ((M-S-weighted). Hence,
equality holds throughout. Then, equality in the first (Cauchy-Schwartz) in-
equality implies the desired result. �

We now characterize the global minimizers of problem (M-S-weighted).

Proposition 4.11. Assume B ∈ M(G,w). Let x ∈ Δn with support
S = Supp(x) and let C1, . . . , Ck denote the connected components of the graph
G[S]. Then, x is a global minimizer of problem (M-S-weighted) if and only if
the following conditions hold:

(i): wi = wj for all i, j ∈ Ch and h ∈ [k],
(ii): Ch is a clique of G for all h ∈ [k],
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(iii):
∑

i∈Ch
xi =

wih
α(G,w) , where ih is any given node in Ch, for all

h ∈ [k],
(iv): 2Bij = Bii +Bjj =

1
wi

+ 1
wj

for all edges {i, j} of G[S].

In that case all the edges of G[S] are w-critical.

Proof. We first show the ‘if part’. Assume that (i)-(iv) hold, we show
that xTBx = 1/α(G,w) holds. Using (i)-(iv), we obtain

1

α(G,w)
≤ xTBx =

k∑
h=1

1

wih

( ∑
i∈Ch

xi
)2

=

k∑
h=1

1

wih

( wih

α(G,w)

)2
=

1

α(G,w)2

k∑
h=1

wih .

Note that
∑k

h=1wih ≤ α(G,w) since the set {ih : h ∈ [k]} is a stable set in G.
Hence, equality holds throughout, which shows the desired result.

We now show the ‘only if’ part. Assume x is a global minimizer, we show
that (i)-(iv) hold. Condition (iv) follows directly using Lemma 4.9 applied
to the matrix B. Consider nodes i1 ∈ C1, . . . , ik ∈ Ck lying in the different
connected components of G[S]. Then, I = {i1, . . . , ik} is a stable set of G.
Define the vector y ∈ Δn, with entries yih =

∑
i∈Ch

xi for h ∈ [k] and yi = 0

for all remaining vertices i ∈ V \ I. By applying iteratively Lemma 4.9 (with
the matrix B, using the edges in a spanning tree in each connected component
Ch), we obtain that yTBy = xTBx. Hence, y is a global minimizer of (M-S-
weighted) whose support is a stable set, and thus, by Lemma 4.10, we obtain
that I is a w-maximum stable set and

∑
i∈Ch

xi = yih = wih/w(I) for all

h ∈ [k], so that (iii) holds. Next, we check (ii), i.e., that each component
(say) C1 is a clique. Indeed, if i �= j ∈ C1 are not adjacent, then the set
{i, j} ∪ {i2, . . . , ik} is stable and w({i, j} ∪ {i2, . . . , ik}) > w({i, i2, . . . , ik}) =
α(G,w). Moreover, the edge {i, j} is w-critical since both sets {i, i2, . . . , ik}
and {j, i2, . . . , ik} are w-maximum stable sets. Thus (i) holds and the proof is
complete. �

As a direct application, we obtain the characterization of the global mini-
mizers of the (unweighted) Motzkin-Straus problem (M-S).

Corollary 4.12. Let x ∈ Δn with support S = Supp(x) and let C1, . . . , Ck

denote the connected components of the graph G[S]. Then, x is a global min-
imizer of problem (M-S) if and only if the following conditions hold:

(i): k = α(G),
(ii): Ch is a clique for all h ∈ [k],
(iii):

∑
i∈Ch

xi = 1/k for all h ∈ [k].
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In that case, all the edges of G[S] are critical.

As another application, we can characterize when problem (M-S-weighted)
has finitely many minimizers, and in addition, we show that in this case the
sufficient optimality conditions hold at all minimizers.

Proposition 4.13. Assume B ∈ M(G,w). The following assertions are
equivalent.

(i): Problem (M-S-weighted) has finitely many global minimizers.
(ii): Bij >

1
2

(
1
wi

+ 1
wj

)
for all edges {i, j} ∈ E that are w-critical.

In that case the global minimizers are the vectors x ∈ Δn with entries
xi = wi/α(G,w) for i ∈ S and xi = 0 for i ∈ V \S, where S is a w-maximum
stable set of G. Additionally, for any minimizer x it holds that

(Bx)i >
1

α(G,w)

for any i ∈ [n] \ Supp(x).
Proof. We first show (i) =⇒ (ii). For this, assume for contradiction that

there exists a w-critical edge (say) {1, 2} ∈ E such that B12 =
1
2(1/w1+1/w2),

we show that the number of minimizers is infinite. As {1, 2} is w-critical,
there exists R ⊆ V such that both sets R ∪ {1} and R ∪ {2} are w-maximum
stable sets. For any scalar t ∈ [0, 1], consider the point x ∈ Δn with support
S = R ∪ {1, 2} and entries x1 = tw1/α(G,w), x2 = (1 − t)w2/α(G,w) and
xi = wi/α(G,w) for i ∈ R. Then, by Proposition 4.11, x is a minimizer
for all t ∈ [0, 1]. Now, we show (ii) =⇒ (i). By Proposition 4.11 x should be
supported in a stable set and for any i ∈ Supp(x) we have xi =

wi
α(G,w) , showing

additionally the next part of this Proposition. We are left with computing
(Bx)i for i ∈ [n] \ Supp(x). We have (Bx)i =

1
α(G,w)

∑
j∈Supp(x)Bijwj . Note

that wjBij ≥ wj

2wi
+ 1

2 > 1
2 for all j ∈ NS(i). Hence, we have (Bx)i >

1
α(G,w) if |NS(i)| ≥ 2. So, assume now |NS(i)| = 1, say NS(i) = {j} so that∑

j∈Supp(x)Bijwj = Bijwj ≥ wj

2wi
+ 1

2 . As S is a w-maximum stable set and the

set S \ {j} ∪ {i} is stable, we have w(S \ {j} ∪ {i}) ≤ w(S) and thus wi ≤ wj .
If wj > wi, then we have Bijwj > 0 as desired. So, assume now wi = wj ,
which implies that the edge {i, j} is w-critical. Then, by assumption (ii), we
must have wjBij >

wj

2wi
+ 1

2 = 1, which again implies shows (Bx)i >
1

α(G,w) ,

as desired. �
Hence, problem (M-S-weighted) has finitely many minimizers if and only

if we choose the matrix B in the set M∗(G,w) as defined in (4.23). This is the
case, for example, when B lies in the relative interior ofM(G,w) as observed in
[GHPR97]. Clearly, M∗(G,w) = M(G,w) if there is no w-critical edge in G.
In the unweighted case, one can, for instance, select B = I +2AG ∈ M∗(G, e)
as the perturbation of the adjacency matrix, as already observed earlier, e.g., in
[Bom97, PJ96]. Recent work, e.g., in [BRZ21, HR19], uses such perturbed
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(aka regularized) formulations to approximate the maximum stable problem
by applying first-order methods.

4.4. Finite convergence and perturbed hierarchies

In this section, we study the finite convergence of the sum-of-squares hi-
erarchies arising by considering problem (M-S-weighted) and its copositive
reformulation.

4.4.1. Finite convergence of the Lasserre hierarchy for the
(weighted) Motzkin-Straus formulation. In this section, we study the
finite convergence of the Lasserre hierarchy for the (weighted) Motzkin-Straus

formulation (M-S-weighted), that is, for the hierarchies p
(r)
B withB ∈ M(G,w).

As a main result, we characterize the graphs G for which the hierarchy p
(r)
G

(i.e., p
(r)
B where w = e and B = I +AG) has finite convergence.

Theorem 4.14. Let G be a graph without twin pairs. The hierarchy p
(r)
G has

finite convergence if and only if G is acritical.

We recall that deleting a node belonging to a twin pair does not affect the

finite convergence of the hierarchy p
(r)
G (see Lemma 3.10). Combining this fact

with Theorem 4.14, we obtain that p
(r)
G has finite convergence if and only if G

is obtained by replicating nodes in an acritical graph.
In Section 4.3, we showed that, if in the (weighted) Motzkin-Straus prob-

lem (M-S-weighted) we choose the matrix B to lie in the set M∗(G,w) from
(4.23), then there are finitely many minimizers and all of them satisfy one extra
technical condition (see Proposition 4.13). Hence, we can then apply Corol-
lary 4.2 and conclude the finite convergence of the corresponding Lasserre

hierarchy p
(r)
B in (4.5) and thus also of the bounds Θ

(r)
B in (4.12).

Theorem 4.15. Let (G,w) be a weighted graph with positive node weights
w > 0. Consider problem (M-S-weighted), where the matrix B belongs to
M∗(G,w). Then the following holds.

(i): p
(r)
B = 1

α(G,w) for some r ∈ N.

(ii): Θ
(r)
B = 1

α(G,w) for some r ∈ N.

In particular, if G has no w-critical edge, then (i), (ii) hold for any matrix
B ∈ M(G,w) and thus for the matrix Bw.

Proof. By Proposition 4.13, for any minimizer x we have (Bx)i >
1

α(G,w) .

Then, by Corollary 4.2, we obtain (i). Then, (ii) follows from (i) in view of
Theorem 4.1. �

Applying this result to the setting w = e, we obtain finite convergence of

the hierarchy p
(r)
G (and thus ϑ(r)(G)) for acritical graphs.
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Corollary 4.16. Assume G is a graph with no critical edges. Then, the fol-
lowing holds.

(i): p
(r)
G = 1

α(G) for some r ∈ N, i.e., MG ∈
⋃

r≥0 LAS
(r)
Δn

.

(ii): ϑ(r)(G) = α(G) for some r ∈ N, i.e., MG ∈
⋃

r≥0K
(r)
n .

Proof. This is a direct consequence of Theorem 4.15, applied to the all-
ones node weights w = e and the matrix B = I + AG, in which case we have

p
(r)
G = p

(r)
B and ϑ(r)(G) = 1

Θ
(r)
B

. �

4.4.2. Finite convergence and critical edges. The result of Corollary
4.16 shows the ‘if part’ of Theorem 4.14. In order to finish the proof of
Theorem 4.14, it remains to show that if G does not have twin pairs and has

critical edges, then the hierarchy p
(r)
G does not have finite convergence. We

show a more general result that we will use later in Section 4.5.
We consider a graph G without weights, i.e., w = e, and we fix a matrix

B ∈ M(G). That is, Bii = 1 for i ∈ V , Bij ≥ 1 for {i, j} ∈ E and Bij = 0 for
{i, j} /∈ E. Then, we have

1

α(G)
= min

{
xTBx : x ∈ Δn

}
. (4.27)

We have the following result about the finite convergence of the corresponding

Lasserre hierarchy p
(r)
B for problem (4.27).

Theorem 4.17. Let G be a graph without twin pairs and let B ∈ M(G). The

Lasserre hierarchy p
(r)
B has finite convergence to 1

α(G) if and only if, for any

critical edge {l,m} of G, we have Blm > 1.

Proof. The ‘if’ part follows directly from Theorem 4.15. For the ‘only
if’ part we proceed by contradiction as follows. Assume there is a critical

edge {l,m} such that Blm = 1. We assume, moreover, that p
(r)
B has finite

convergence, that is, there exist σ, σi ∈ Σ for i ∈ V , and q ∈ R[x] such that

xTBx− 1

α(G)
= σ +

∑
i∈V

xiσi + q
( n∑

i=1

xi − 1
)
. (4.28)

Since the edge {l,m} is critical there exists S ⊆ V such that S ∪ {l} and
S ∪ {m} are α-stable sets in G. By Proposition 4.11, for t ∈ (0, 1), the vector

ut =
1

α(G)
(tχS∪{l} + (1− t)χS∪{m})
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is an optimal solution of problem (4.27), i.e., uTt But =
1

α(G) and ut ∈ Δn. We

evaluate relation (4.28) at x+ ut and we obtain

xTBx+ 2xTBut = σ(x+ ut) +
n∑

i=1

(x+ ut)iσi(x+ ut) + q(x+ ut)(
n∑

i=1

xi).

(4.29)

Now, we will reach a contradiction by comparing coefficients at both sides in
relation (4.29). First, since there is no constant term on the left hand side the
constant term on the right hand side is equal to zero. That is,

σ(ut) +
1

α(G)

∑
s∈S

σs(ut) +
t

α(G)
σl(ut) +

1− t

α(G)
σm(ut) = 0.

This implies that, for any t ∈ (0, 1), the polynomials σ(x+ ut), and σi(x+ ut)
(for i ∈ S ∪ {l,m}}) do not have a constant term and therefore do not have
linear terms. Now, we compare the coefficient of xs, where s ∈ S. In the right
hand side of (4.29), it is equal to 2

∑
i∈S∪{l,m}Bsi(ut)i = 2Bss(ut)s =

2
α(G) . On

the left hand side of (4.29), the polynomials σ(x+ ut) and (x+ ut)iσi(x+ ut)
for i ∈ S ∪ {l,m} have no linear term, and for i ∈ V \ (S ∪ {l,m}), the
polynomials (x + ut)iσ(x + ut) are divisible by xi. Hence, the coefficient of
xs is q(ut). Therefore, q(ut) = 2

α(G) . Let j ∈ V be such that j ∈ NG(l)

and j /∈ NG(m). Here, we use that l and m are not twin nodes (we switch
l and m if necessary). We compare the coefficient of xj at both sides of
(4.29). In the left hand side, the coefficient of xj is 2

∑
i∈S∪{l,m}Bij(ut)i =

2
α(G)Bljt +

2
α(G)

∑
i∈S Bij . Finally, On the right hand side, the coefficient of

xj is σj(ut) + q(ut) = σj(ut) +
2

α(G) . Hence, we obtain

σj(ut) =
2

α(G)
Bljt+

2

α(G)

∑
i∈S

Bij −
2

α(G)
.

This is a contradiction because σj(ut) is a sum of squares of polynomials in t,
while the polynomial in the right hand has degree 1 (since Blj ≥ 1). �

As a direct application, taking B = AG + I in Theorem 4.17, we obtain
the ‘only if’ part of Theorem 4.14.

4.4.3. Copositive-based bounds for the (weighted) Motzkin-Straus
formulation. Let (G,w) be a weighted graph with positive node weights
w > 0. As a direct consequence of the weighted Motzkin-Straus formula-
tion (M-S-weighted), for any matrix B ∈ M(G,w), we obtain the following
copositive programming formulation

α(G,w) = min{t : tB − J ∈ COPn} (4.30)

for the weighted stability number. Let us write B = Bw + A, where A lies in
the set N (G) from (4.20). In analogy to (3.12) and (3.13), we can define the
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associated linear and semidefinite bounds

ζ
(r)
A (G,w) = min{t : t(Bw +A)− J ∈ C(r)

n }, (4.31)

ϑ
(r)
A (G,w) = min{t : t(Bw +A)− J ∈ K(r)

n }, (4.32)

that satisfy

α(G,w) ≤ ϑ
(r)
A (G,w) ≤ ζ

(r)
A (G,w) for all A ∈ N (G).

For the zero matrix A = 0, we may omit the index and simply write

ζ
(r)
0 (G,w) = ζ(r)(G,w) and ϑ

(r)
0 (G,w) = ζ(r)(G,w).

In addition, in the unweighted case when w = e, we have

ζ(r)(G, e) = ζ(r)(G) and ϑ(r)(G, e) = ϑ(r)(G).

Note also that for any matrix A we have

ϑ
(r)
A (G,w) =

1

Θ
(r)
Bw+A

,

where Θ
(r)
Bw+A is as defined in (4.12).

From the previous section, we know that the hierarchy ϑ
(r)
A (G,w) converges

in finitely many steps to α(G,w) when the matrix Bw +A belongs to the set
M∗(G,w). Recall that Bw + A belongs to the set M∗(G,w) precisely when
A ∈ N (G) and Aij > 0 for any w-critical edge {i, j}. In general, one may ask
whether this holds for any choice of A ∈ N (G). In fact, it would suffice to
show this for the case A = 0, which follows from the monotonicity properties
of the bounds with respect to the choice of A, shown in the next lemma.

Lemma 4.18. Let A1, A2 ∈ N (G). If A1 ≥ A2 then ζ
(r)
A1

(G,w) ≤ ζ
(r)
A2

(G,w)

and ϑ
(r)
A1

(G,w) ≤ ϑ
(r)
A2

(G,w) for all r ∈ N. In particular, we have ζ
(r)
A (G,w) ≤

ζ(r)(G,w) and ϑ
(r)
A ≤ ϑ(r)(G,w) for all A ∈ N (G).

Proof. Assume t is feasible for ζ
(r)
A2

(G,w), i.e., t(Bw + A2) − J ∈ C(r)
n .

Then, t(Bw +A1)− J = t(Bw +A2)− J + t(A1 −A2) ∈ C(r)
n since the matrix

t(A1 − A2) is entrywise nonnegative and thus belongs to C(r)
n . Hence, t is

feasible for ζ
(r)
A1

(G,w), which shows ζ
(r)
A1

(G,w) ≤ ζ
(r)
A2

(G,w). The same argu-

ment shows ϑ
(r)
A1

(G,w) ≤ ϑ
(r)
A2

(G,w), and the last claim follows since A ≥ 0 for

A ∈ N (G). �

As we now show, the linear bounds ζ
(r)
A (G,w) in fact do not depend on

the specific choice of the matrix A in N (G).

Theorem 4.19. For all r ∈ N and A ∈ N (G), we have

ζ
(r)
A (G,w) = ζ(r)(G,w).
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Proof. We only need to show the inequality ζ
(r)
A (G,w) ≥ ζ(r)(G,w). For

this, assume the matrix t(Bw +A)− J belongs to the cone C(r)
n , we show that

also the matrix tBw − J belongs to C(r)
n , which implies the desired inequality.

For short, set B = Bw +A. By assumption, tB − J ∈ C(r)
n , which means that

the polynomial (
∑

i xi)
rxT (tB − J)x has nonnegative coefficients. Following

[BdK02], for any matrix M and r ∈ N, we have( n∑
i=1

xi

)r
xTMx =

∑
β∈Nn

|β|=r+2

r!

β!
cβx

2β , with cβ := βTMβ − βTdiag(M),

where diag(M) ∈ Rn is the vector (Mii)
n
i=1 consisting of the diagonal entries

of M . Hence, the polynomial (
∑

i xi)
rxTMx has nonnegative coefficients if

and only if cβ ≥ 0 for all β ∈ Nn with |β| = r+2. We will now prove that, for
the matrix M = tB − J = t(Bw + A) − J , the property of having cβ ≥ 0 for
all β ∈ Nn with |β| = r+ 2 is in fact independent on the choice of A ∈ N (G).
For this, let β ∈ Nn with |β| = r+2. Using the fact that eTβ = r+2, we have

cβ = βT (tB − J)β − βTdiag(tB − J) = t(βTBβ − βTdiag(Bw))− (r + 1)(r + 2).

Therefore, cβ ≥ 0 for all β ∈ Nn with |β| = r + 2 if and only if tϕ∗ ≥
(r + 1)(r + 2), where ϕ∗ is defined by

ϕ∗ := min{ϕ(β) := βTBβ − βTdiag(Bw) : β ∈ Nn, |β| = r + 2}. (4.33)

We now show that the optimum value of the program (4.33) is attained
at some β whose support is a stable set of G, using a similar argument as for
Lemma 4.9. Assume β∗ = (β∗

1 , β
∗
2 , . . . , β

∗
n) is a minimizer of problem (4.33)

with β∗
1 , β

∗
2 > 0 for some edge {1, 2} ∈ E. We show that there exists another

minimizer β of (4.33) of the form β = (β∗
1 + β∗

2 , 0, β
∗
3 , . . . , β

∗
n) or (0, β∗

1 +
β∗
2 , β

∗
3 , . . . , β

∗
n), thus with β1β2 = 0. For this, we consider problem (4.33)

restricted to the vectors of the form (β∗
1 − λ, β∗

2 + λ, β∗
3 , . . . , β

∗
n) with λ ∈

Z ∩ [−β∗
2 , β

∗
1 ], which reads

min
λ∈Z∩[−β∗2 ,β

∗
1 ]
ϕ(β∗

1 − λ, β∗
2 + λ, β∗

3 , . . . , β
∗
n). (4.34)

Observe that the objective value of problem (4.34) takes the form

ϕ(β∗
1 − λ, β∗

2 + λ, β∗
3 , . . . , β

∗
n) = λ2(B11 +B22 − 2B12) + cλ+ d

for some scalars c, d, and thus it is concave in λ. Hence, the minimum value of
(4.34) is attained at one of the endpoints of the interval Z ∩ [−β∗

2 , β
∗
1 ], which

shows the desired result. Repeating this reasoning to any other edge contained
in the support of β∗, we obtain another minimizer β of (4.33) whose support
is a stable set of G. This shows that the optimum value of (4.33) remains the
same when selecting A = 0. Therefore, if the polynomial (

∑
i xi)

rxT (tB−J)x
has nonnegative coefficients, then also the polynomial (

∑
i xi)

rxT (tBw − J)x
has nonnegative coefficients. This concludes the proof. �
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In [dKP02] it is shown that strict inequality α(G) < ζ(r)(G) holds for
all r ∈ N when G is not a complete graph (recall Theorem 3.4). We extend

this result to the weighted case and characterize when equality ζ(r)(G,w) =
α(G,w) holds for some r ∈ N.

Lemma 4.20. Consider a graph (G,w) with positive node weights, ordered
(say) as w1 ≥ w2 ≥ . . . ≥ wn > 0, and let A ∈ N (G). Then, equality

ζ
(r)
A (G,w) = α(G,w) holds for some r ∈ N if and only if α(G,w) = w1.

Proof. By Theorem 4.19, it suffices to consider A = 0. Assume

ζ(r)(G,w) = α(G,w)

for some r ∈ N. Then, the polynomial q(x) = (
∑

i xi)
rxT (α(G,w)Bw − J)xT

has nonnegative coefficients. Let S be a w-maximum stable set and let u be
the corresponding minimizer (i.e. a zero of q(x)), with entries ui = wi/α(G,w)
for i ∈ S and ui = 0 otherwise. We show that the coefficient of xr+2

i for i ∈ S
in q(x) is zero. Let ci such coefficient. Since q has nonnegative coefficients we
have 0 = q(u) ≥ ciu

r+2
i ≥ 0, showing that ci = 0. On the other hand, the

coefficient of xr+2
i is −1+α(G,w)/wi. Then, α(G,w) = wi. This implies that

S = {i} and thus wi = w1 = α(G,w).

Conversely, assume α(G,w) = w1; we show ζ(r)(G,w) = α(G,w), i.e., that

M := α(G,w)Bw − J ∈ C(r)
n , for some r ∈ N. Note that the set R = {i ∈ V :

wi = w1} induces a clique in G. Then, the columns/rows of M indexed by
nodes in R are all identical. Since deleting repeated rows/columns preserves

membership in the cone C(r), we can assume without loss of generality that
R = {1}. Hence, {1} is the only w-maximum stable set and the polynomial
pM (x) = xTMx has a unique zero in the simplex, located at the corner e1.
Note also M1j = (w1/wj − 1)/2 > 0 for all j ∈ V \ {1}. Hence, we may apply
Theorem 1.6, and conclude that there exists an r ∈ N for which the polynomial

(
∑n

i=1 xi)
rxTMx has nonnegative coefficients, so that M ∈ C(r)

n . �

In Theorem 4.19 we saw that the linear hierarchy ζ
(r)
A (G,w) does not

depend on the choice of A ∈ N (G). For the semidefinite hierarchy ϑ
(r)
A (G,w)

we can prove this property only for the first level of the hierarchy.

Lemma 4.21. For any A ∈ N (G) and node weights w > 0, we have

ϑ
(0)
A (G,w) = ϑ(0)(G,w) and thus, in particular, ϑ

(0)
A (G) = ϑ(0)(G).

Proof. We need to show the inequality ϑ(0)(G,w) ≤ ϑ
(0)
A (G,w) (the re-

verse follows from Lemma 4.18). For this, let t be feasible for ϑ
(0)
A (G,w), we

show that t is also feasible for ϑ(r)(G). Set B = Bw + A. By assumption,

the matrix tB − J belongs to K(0)
n , i.e., there exists a matrix P � 0 such that

diag(P ) = diag(tB − J) and P ≤ tB − J (recall the characterization of K(0)
n

in relation (2.2)). As diag(tB − J) = diag(tBw − J) and both B and Bw have
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zero entries at positions corresponding to non-edges, it suffices to check that,
for any edge {i, j} ∈ E, Pij ≤ (tBw − J)ij . This follows directly from the fact
2Pij ≤ Pii + Pjj = (tBw − J)ii + (tBw − J)jj = 2(tBw − J)ij , where the first
inequality holds since P � 0. �
Question 4.22. Given a weighted graph (G,w) with positive node weights

w > 0, is it true that, for any A ∈ N (G) and any r ∈ N, we have ϑ
(r)
A (G,w) =

ϑ(r)(G,w)?

Clearly, a positive answer to this question for the all-ones node weights
w = e would imply the finite convergence of the hierarchy ϑ(r)(G). In fact, a
positive answer to the following question would also suffice.

Question 4.23. Given a graph G, is it true that there exists a matrix
A ∈ N (G) such that I + A ∈ M∗(G, e) (i.e., Aij > 0 for all critical edges

{i, j} ∈ E) and ϑ
(r)
A (G) = ϑ(r)(G) for all r ∈ N?

We will see in Chapter 6 that the hierarchy ϑ(r)(G) has finite convergence.
However, the technique used will be different from the one developed in this
chapter. It remains open whether we can show the finite convergence of the
parameters ϑ(r)(G) via a positive answer to Question 4.23.

4.5. Complexity results

As we saw earlier, having finitely many minimizers is a property that plays
an important role in the study of finite convergence of the Lasserre hierarchy
for polynomial optimization. This raises the question of understanding the
complexity status of the following two problems. Consider a polynomial opti-
mization problem (P) as in (1.3).

FINITE-MIN: Determine whether (P) has finitely many minimizers.

FINITE-CONV: Determine whether the corresponding Lasserre hierarchy
of (P) has finite convergence.

We will show that problems (FINITE-MIN) and (FINITE-CONV) are NP-
hard, already for standard quadratic programs of the form (M-S-weighted).
The complexity of several other decision problems about minimizers in poly-
nomial optimization has been studied recently in [AZ2020a, AZ2020b]. In
particular, Ahmadi and Zhang [AZ2020b] show that it is strongly NP-hard
to decide whether a polynomial of degree 4 has a local minimizer over Rn;
they also show that the same holds for deciding if a quadratic polynomial has
a local minimizer (or a strict local minimizer) over a polyhedron. In addition,
they show that unless P=NP there cannot be a polynomial-time algorithm
that finds a point within Euclidean distance cn (for any constant c ≥ 0) of a
local minimizer of an n-variate quadratic polynomial over a polytope.
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4.5.1. Linear programs. Consider first the case when (P) is a linear
optimization problem:

p∗ = inf
{
cTx : aTi x ≤ bi for i = 1, . . .m

}
. (L-P)

In this case, both problems (FINITE-MIN) and (FINITE-CONV) can be
solved in polynomial time.
First, since the problem is convex, if x and y are two distinct global minimizers
then, for every 0 ≤ t ≤ 1, the point z = tx+(1− t)y is also a global minimizer.
Hence, the problem has finitely many minimizers if and only if it has a unique
one. Therefore, the problem of deciding whether a linear program has finitely
many global minimizers is equivalent to the problem of deciding whether it has
a unique optimal solution, and a polynomial-time algorithm for this problem
was given by Appa [App02].

Now, we observe that the first level of the Lasserre sum-of-squares hierar-
chy for problem (L-P) finds its optimum p∗. It is easy to note that the first

level of the hierarchy p(1) reads

p(1) = sup{λ : cTx− λ =

m∑
i=1

λi(a
T
i x− ci), where , λi ∈ R+ for i ∈ [m]}.

Note that this is precisely the dual linear program of (L-P). Hence, finite
convergence always holds for linear programs.

4.5.2. Hardness in standard quadratic programs. We show that
the problems (FINITE-MIN) and (FINITE-CONV) are NP-hard already for
the class of standard quadratic programs. Our approach consists in using the
results from Section 4.4, combined with the fact that deciding whether an edge
is critical in a graph is an NP-hard problem. We consider the following two
problems.

CRITICAL-EDGE: Given a graph G = (V,E) without twin pairs and an
edge e ∈ E, is e a critical edge of G?

STABLE-SET: Given a graph G and k ∈ N, does α(G) ≥ k hold?
The problem STABLE-SET is well-known to be NP-Complete [Kar72].

From this, we now prove that unless P=NP there is no polynomial-time algo-
rithm to decide whether an edge is critical.

Theorem 4.24. If there is a polynomial-time algorithm that solves the prob-
lem CRITICAL-EDGE, then P=NP.

Proof. Assume there is a poly-time algorithm A for solving CRITICAL-
EDGE. We show that we can find the stability number of an arbitrary graph
in polynomial time. Let G be a graph. We can check whether G has twin pairs
in polynomial time by checking each pair of nodes and their set of neighbors.
If there is a twin pair (u, v), then update the graph G → G \u by deleting the
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node u, and we have α(G) = α(G \ u). We repeat the procedure until G has
no twin pairs. Then, we take an edge e ∈ E and, using the algorithm A, we
check if e is critical in G. We update graph G → G \ e by deleting the edge
e, for which α(G \ e) = α(G) if e is not critical and α(G \ e) = α(G) + 1 if e
is critical. We stop if the graph has no edges. This process is going to finish
since at any step we delete either a node or an edge. The algorithm will finish
with a graph G̃ with |V | − d nodes, where d is the number of node deletions

done in the process. Then, we have α(G̃) = |V | − d = α(G)+ c, where c is the
number of times we found a critical edge at the edge deletion step. Hence, we
can compute α(G) in poly-time using algorithm A. �

We will now use this complexity result to settle the complexity of problems
FINITE-MIN and FINITE-CONV. For this, let G = (V,E) be a graph without
twin pairs and let e ∈ E, and consider the problem

1

α(G)
= min

{
xT(AG + I +AG\e)x : x ∈ Δn

}
. (4.35)

Here, in the matrix defining the objective function, all edges of G get weight
2, except the selected edge e which keeps weight 1. The fact that the optimum
value of (4.35) is equal to 1/α(G) follows since this is an instance of problem
(M-S-weighted) with B = Bw + A, where w = e is the all-ones weight vector,
Be = I+AG andA = AG\e. We have the following result as a direct application
of Proposition 4.13 and Theorem 4.17.

Corollary 4.25. Let G = (V,E) be a graph without twin pairs, and let e ∈ E
be an edge. The following assertions are equivalent.

(i): e is not a critical edge of G.
(ii): Problem (4.35) has finitely many global minimizers.
(iii): The Lasserre hierarchy of problem (4.35) has finite convergence.

Proof. The equivalence (i) ⇐⇒ (ii) follows from Proposition 4.13, and
(i) ⇐⇒ (iii) follows from Theorem 4.17. �

Combining Theorem 4.24 and Corollary 4.25, we obtain the following hard-
ness results.

Corollary 4.26. The problem of deciding whether a standard quadratic pro-
gram has finitely many minimizers is NP-hard.

Corollary 4.27. The problem of deciding whether the Lasserre hierarchy of a
standard quadratic program has finite convergence is NP-hard.

4.5.3. Hardness of findind α(G) for acritical graphs. We finish by
showing that finding α(G) is already an NP-hard problem for the class of
acritical graphs.

Proposition 4.28. Computing the stability number α(G) is an NP-hard prob-
lem for the class of acritical graphs.
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Proof. We show that given an arbitrary graph H, we can construct in
polynomial time an acritical graph G with α(G) = 2α(H). Thus, computing
α(G) is NP-hard. We construct G as follows: For any vertex v of H we
construct two vertices v1, v2 in G, and for any edge {v, w} in H, we construct
the four edges {v1, w1}, {v1, w2}, {v2, w1} and {v2, w2} in G. First, observe
that if SG is stable in G, then the set SH = {v : v1 ∈ S or v2 ∈ S} is stable in
H. Hence, |SH | ≤ α(H). Since |SG| ≤ 2|SH |, we obtain α(G) ≤ 2α(H). Now,
if SH is stable inH, then the set SG = {v1 : v ∈ SH}∪{v2 : v ∈ SH} is stable in
G, and thus α(G) ≥ 2α(H). Then, we have α(G) = 2α(H) and, moreover, all
maximum stable sets of G take the form SG = {v1 : v ∈ SH} ∪ {v2 : v ∈ SH},
where SH is a maximum stable set in H. This implies that the symmetric
difference between two different maximum stable sets of G is at least 4. Thus,
in view of Observation 3.12, G is acritical. �
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CHAPTER 5

Low order sum-of-squares bounds for the stability
number

This chapter is mainly based on my work [LV22b] with Monique Laurent.
It also includes some new results that have not been published. In particular,
all results and the discussion from Section 5.5, about constructing graphs with
high ν-rank, are new.

In this chapter, we investigate new tools for computing (and bounding) the
parameter ϑ-rank(G) (defined in Definition 3.9) for some classes of graphs. We
give special attention to the study of the graphs with ϑ-rank 0 and 1. Another
contribution of this chapter is investigating the behavior of the ϑ-rank under
the simple graph operation of adding an isolated node. This graph operation
turns out to be important in the analysis of the convergence of the hierarchy
ϑ(r), as pointed out in Chapter 3 (see also [GL07]). In what follows we briefly
describe the main topics of this chapter with their motivation and the main
contributions.

Membership in the cones K(0)
n and K(1)

n . A central topic of this chapter
is an analysis of the graphs with ϑ-rank 0 or 1, i.e., the graphs for which the

matrix MG = α(G)(AG + I)− J belongs to K(0)
n or to K(1)

n . For this, we will

use the explicit characterization of the cones K(0)
n and K(1)

n provided by Parrilo
[Par00]. As we recalled in Chapter 2 (see also relation (5.2)), M ∈ Sn belongs

to K(0)
n if and only if M admits a decomposition M = P + N with P � 0,

N ≥ 0 and Nii = 0 for all i ∈ [n]; we call such matrix P a K(0)-certificate for

M . Similarly, a matrix M belongs to K(1)
n if there exist positive semidefinite

matrices P (1), P (2), . . . , P (n) satisfying some linear constraints (see Lemma

5.1); we say that such matrices form a K(1)-certificate for M . We exploit the
structure of the zeros of the quadratic form xTMx to obtain information about
the kernels of the matrices in the K(0)- and K(1)-certificates for M . In some
cases, this permits to show uniqueness of the certificates, a useful property for
the study of the ϑ-rank. As an example, the Horn matrix H (which is equal

to the graph matrix MC5 of the 5-cycle) has a unique K(1)-certificate and this
uniqueness property permits to characterize the diagonal scalings of H that

belong to K(1)
5 (see Section 5.1).

71
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Graphs with ϑ-rank 0. The study of the graphs with ϑ-rank 0 is relevant
to the question of understanding when the basic semidefinite relaxation (also
known as the Shor relaxation) of a quadratic (or, more generally, polynomial)
optimization problem is exact. This question has received increased atten-
tion in the years. We refer, e.g., to the works [BY20, GY21, WK21] (and
references therein), which investigate this question for various classes of qua-
dratic problems, such as random instances in [BY20] and standard quadratic
programs in [GY21].

Another motivation for the study of the graphs with ϑ-rank 0 comes from
its relevance to fundamental questions in complexity theory. Deciding whether
a graph G has ϑ-rank(G) = 0 amounts to deciding whether the polynomial
fG(x) = (x◦2)TMGx

◦2 is a sum of squares, i.e, whether an associated semidef-
inite program is feasible. Equivalently, as mentioned above, ϑ-rank(G) = 0 if
and only if there exists a positive semidefinite matrix P ∈ Sn satisfying the
linear constraints: Pii = α(G)−1 for i ∈ V and Pij ≤ −1 for {i, j} /∈ E, which
thus again asks about the feasibility of a semidefinite program. Recall that the
complexity status of deciding the feasibility of a semidefinite program is still
unknown. On the positive side, it was shown in [PK97] that one can test the
feasibility of a semidefinite program involving matrices of size n and with m
linear constraints in polynomial time when n or m is fixed. In addition, it was
shown in [Ram97] that this problem belongs to the class NP if and only if it
belongs to co-NP. Understanding the complexity status for the class of semi-
definite programs related to the question of testing whether ϑ-rank(G) = 0
offers a rich playground to be explored later.

Our main results about graphs with ϑ-rank 0 are as follows. We charac-
terize the critical graphs with ϑ-rank 0 as the disjoint unions of cliques, and
we reduce the problem of deciding whether a graph has ϑ-rank 0 to the same
problem for the class of acritical graphs (see Section 5.3). This reduction can
be done in polynomial time for the class of graphs G with a fixed value of α(G).

We recall that in Chapter 4 (Lemma 4.8), we fully characterized the graphs

for which the parameter p
(1)
G is exact (i.e., when p

(1)
G = 1/α(G)) also as the

disjoint union of cliques. In contrast, finding a characterization for the graphs
for which ϑ(0)(G) = α(G) seems much more challenging.

Isolated nodes and graphs with ϑ-rank 1. In [GL07] it was conjec-
tured that adding an isolated node to a graph does not increase the ϑ-rank
(see Conjecture 4 in [GL07]). Additionally, it was shown that a positive an-
swer to this conjecture would imply a positive answer to Conjeture 3.7. In
this chapter, we show that adding an isolated node to a graph with ϑ-rank 1
may produce a graph with ϑ-rank at least 2, thus disproving the conjecture
from [GL07]. We also characterize the maximum number of isolated nodes
that can be added to some graphs with ϑ-rank 1 (such as odd cycles and their
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complements) while preserving the ϑ-rank 1 property (see Section 5.4). For
example, for the graph C5, this maximum number of nodes is shown to be
equal to 8.

Nevertheless, studying the behaviour of the ϑ-rank after adding an isolated
node also plays a role for studying the finite convergence of the hierarchy
ϑ(r)(G). We show that we have finite convergence of the hierarchy ϑ(r)(G) for
every graph if and only if adding an isolated node preserves the finiteness of
the ϑ-rank (see Proposition 5.19). In fact, this reduction will be used later in

Chapter 6 for showing the finite convergence of the hierarchy ϑ(r)(G).

Parameters ν(r) and membership in the cones Q(r)
n . In Section 5.5,

we analyze the parameters ν(r)(G) which arises naturally by changing the

cones K(r)
n by the cones Q(r)

n in the definition of the parameters ϑ(r)(G). These
parameters converge asymptotically to α(G) as r → ∞. We construct classes

of graphs for which the hierarchy ν(r)(G) takes an unbounded number of steps
to converge to α(G), partially solving an open question from [PVZ07] and
[DV15]. For this, we extend the techniques developed in Section 5.1 for testing

the membership in the cones K(0)
n and K(1)

n to study the membership in the

cones Q(r)
n .

5.1. Preliminaries on the cones K(0)
n and K(1)

n

We recall the reformulation (1.24) of the cones K(r)
n given by Peña, Vera

and Zuluaga in [ZVP06] as an application of Theorem 1.14:

K(r)
n =

{
M ∈ Sn :

( n∑
i=1

xi

)r
xTMx =

∑
β∈Nn

|β|≤r+2

σβx
β for some σβ ∈ Σr+2−|β|

}
,

Using this definition, we obtain that M ∈ K(0)
n if and only if there exist a

matrix P � 0 and scalars cij ≥ 0 for 1 ≤ i < j ≤ n such that

xTMx = xTPx+
∑

0≤i<j≤n

cijxixj . (5.1)

This corresponds to the characterization shown in (2.2) of the cone K(0)
n given

by Parrilo in [Par00]. We recall this relation:

K(0)
n = {P +N : P � 0, N ≥ 0}. (5.2)

Note that in (5.2) we can indeed assume, without loss of generality, that

Nii = 0 for all i ∈ [n]. We say that P is a K(0)-certificate for M if P � 0,

P ≤ M and Pii = Mii for all i ∈ [n]. In other words, P is a K(0)-certificate
for M if there exist scalars cij ≥ 0 for 1 ≤ i < j ≤ n for which equation (5.1)
holds.
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Similarly, M ∈ K(1)
n if and only if there exist matrices P (i) � 0 for i ∈ [n]

and scalars cijk ≥ 0 for distinct i, j, k ∈ [n] such that( n∑
i=1

xi

)
xTMx =

n∑
i=1

xix
TP (i)x+

∑
1≤i<j<k≤n

cijkxixjxk. (5.3)

From this, we get the characterization of the cone K(1)
n from Parrilo [Par00]

(see also [dKP02]).

Lemma 5.1. A matrix M belongs to the cone K(1)
n if and only if there exist

matrices P (i) � 0 for i ∈ [n] and scalars cijk ≥ 0 for 1 ≤ i < j < k ≤ n
satisfying Equation (5.3). Equivalently, there exist matrices P (i) ∈ Sn for
i ∈ [n] satisfying the following conditions:

(i): P (i) � 0 for all i ∈ [n],
(ii): P (i)ii = Mii for all i ∈ [n],
(iii): 2P (i)ij + P (j)ii = 2Mij +Mii for all i �= j ∈ [n],
(iv): P (i)jk + P (j)ik + P (k)ij ≤ Mij + Mik + Mjk for all distinct

i, j, k ∈ [n].

Proof. As observed above, M ∈ K(1)
n if and only if there exist matrices

P (i) � 0 for i ∈ [n] and scalars cijk ≥ 0 satisfying Eq.(5.3). We now obtain
the conditions (ii)-(iv) by comparing coefficients at both sides of (5.3). We
give the details since they will be useful later. First, we start with the left
hand side in (5.3):( n∑

i=1

xi

)
xTMx =

n∑
i=1

Miix
3
i +

∑
i �=j∈[n]

x2ixj(Mii + 2Mij)

+
∑

1≤i<i<j<k≤n

xixjxk(Mij +Mjk +Mik).

(5.4)

Now, we expand the right hand side in (5.3):

n∑
i=1

xix
TP (i)x+

∑
1≤i<j<k≤n

cijkxixjxk =

n∑
i=1

x3iP (i)ii

+
∑

i �=j∈[n]
x2ixj(P (j)ii + 2P (i)ij)

+
∑

1≤i<j<k≤n

xixjxk(P (i)jk + P (j)ik + P (k)ij + cijk).

(5.5)

Comparing coefficients at both sides we obtain the desired result. �
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4 3

2

1

5

Figure 5.1. Graph C5

Remark 5.2. Observe that Lemma 5.1 remains valid if in (i) we replace

the condition P (i) � 0 by the weaker condition P (i) ∈ K(0)
n . Indeed, since

K(0)
n = Sn

++Rn×n
+ , the ‘only if ’ part is clear since Sn

+ ⊆ K(0)
n , and the ‘if part’

follows easily from the fact that (x◦2)TNx◦2 ∈ Σ for any N ∈ Rn×n
+ .

We say that the matrices P (1), P (2), . . . , P (n) are a K(1)-certificate for M
if they satisfy the conditions (i)-(iv) of Lemma 5.1. In other words, the matri-

ces P (1), . . . , P (n) are a K(1)-certificate of M if they are positive semidefinite
and there exist scalars cijk ≥ 0 for 1 ≤ i < j < k ≤ n satisfying Equation
(5.3).

Now we show two results about K(0)- and K(1)-certificates, involving their
kernel, that will be repeatedly used in this chapter.

Lemma 5.3. Let M ∈ K(0)
n and let P be a K(0)-certificate of M . If x ∈ Rn

+

and xTMx = 0, then Px = 0 and P [S] = M [S], where S = {i ∈ [n] : xi > 0}
is the support of x.

Proof. Since P is a K(0)-certificate there exists a matrix N ≥ 0 such that
M = P +N . Hence, 0 = xTMx = xTPx+ xTNx. Then, xTPx = 0 = xTNx
as P � 0 and N ≥ 0. This implies Px = 0 since P � 0. On the other hand,
since xTNx = 0 and N ≥ 0, we get Nij = 0 for i, j ∈ S. Hence, M [S] = P [S],
as M = P +N . �

Lemma 5.4. Let M ∈ K(1)
n and let P (1), . . . , P (n) be a K(1)-certificate of M .

Let x ∈ Rn
+ such that xTMx = 0. Then the following holds:

(i): If xi > 0 then P (i)x = 0.
(ii): If xi, xj , xk > 0 then Mij +Mjk +Mik = P (i)jk +P (j)ik +P (k)ij.

Proof. By evaluating Equation (5.3) at x, we get that the left hand side
is zero while all terms on the right hand side are nonnegative, so all of them
vanish. Hence, if xi > 0 then xTP (i)x = 0, which implies P (i)x = 0 as
P (i) � 0. On the other hand, if xixjxk > 0 then cijk = 0, which implies the
desired identity (see Equation (5.4) and Equation (5.5)). �

Example 5.5. Consider the 5-cycle C5 shown in Figure 5.1 and its associated
graph matrix MC5 = 2(AC5 + I)− J , equal the Horn matrix;
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H = MC5 =

⎛⎜⎜⎜⎜⎝
1 1 −1 −1 1
1 1 1 −1 −1
−1 1 1 1 −1
−1 −1 1 1 1
1 −1 −1 1 1

⎞⎟⎟⎟⎟⎠ .

The Horn matrix H is known to belong to K(1)
n [Par00]. As we now show,

it admits a unique K(1)-certificate, where the matrices P (1), . . . , P (5) are of
the form shown below:

P (1) =

⎛⎝ 1 1 −1 −1 1
1 1 −1 −1 1
−1 −1 1 1 −1
−1 −1 1 1 −1
1 1 −1 −1 1

⎞⎠ , P (i) =

⎛⎝
i⊥︷ ︸︸ ︷

1 1 1

V \ i⊥︷ ︸︸ ︷
− 1 −1

1 1 1 −1 −1
1 1 1 −1 −1
−1 −1 −1 1 1
−1 −1 −1 1 1

⎞⎠ for i ∈ [5].

(5.6)
Here, i⊥ denote the extended neighborhood of i, i.e., {i} ∪ NG(i). Up to
symmetry it suffices to show that P (1) has the above shape. Let C1, C2,
C3, C4, C5 denote its columns. Since the vectors (1, 0, 1, 0, 0), (1, 0, 0, 1, 0),
(1, 1, 0, 2, 0), (1, 0, 2, 0, 1) are zeros of the form xTHx, by Lemma 5.4 (i), we
obtain C1 = −C3, C1 = −C4, C1 + C2 + 2C4 = 0 and C1 + C5 + 2C3 = 0.
Hence, C1 = C2 = C5 = −C3 = −C4. Since P (1)11 = 1 the above conditions
determine the first row and column and therefore the rest of the matrix P (1),
which thus has the desired shape.

Characterizing the diagonal scalings of the Horn matrix in K(1)
5 .

As shown in Chapter 2, for studying the question of whether the union
⋃

r≥0K
(r)
5

covers the full cone COP5, it is crucial to understand the membership of the

Horn matrix and its diagonal scalings in the cones K(r)
5 (recall Theorem 2.3).

Here, we give a full characterization of the diagonal scalings of the Horn ma-

trix that belong to K(1)
5 . A key ingredient for this is the fact that the Horn

matrix admits a unique K(1)-certificate, as was observed in Example 5.5.

Theorem 5.6. Let D = diag(d1, d2, d3, d4, d5) with d1, . . . , d5 > 0 and let H

be the Horn matrix. Then, DHD belongs to K(1)
5 if and only if d1, . . . , d5

satisfy the following inequalities

di−1di + didi+1 ≥ di−1di+1 for i ∈ [5] (indices taken modulo 5). (5.7)

Proof. Set M := DHD. First, we show the ‘if part’. Assume d1, . . . , d5
satisfy conditions (5.7); we show M ∈ K(1)

5 . For this, consider the matrices

Q(i) := DP (i)D, where the matrices P (i) are the K(1)-certificate for H from

(5.6); we show that the matrices Q(i) form a K(1)-certificate for M , i.e., satisfy
the conditions (i)-(iv) from Lemma 5.1. Clearly, Q(i) � 0 and Q(i)ii = d2i for
all i ∈ [5], so (i), (ii) hold. Also, 2Q(i)ij + Q(j)ii = 2didjP (i)ij + d2iP (j)ii =
2Mij +Mii since P (i)ij = Hij and P (j)ii = Hii, so (iii) holds. We now check
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(iv), i.e., Q(i)jk+Q(j)ik+Q(k)ij ≤ Mij+Mjk+Mik for any distinct i, j, k ∈ [5].
There are two possible patterns (up to symmetry): (i, j, k) = (1, 2, 4) and
(i, j, k) = (5, 1, 2). For the first pattern, we get

Q(1)24 +Q(2)14 +Q(4)12 = d2d4P (1)24 + d1d4P (2)14 + d1d2P (4)12

= M24 +M14 +M12.

For the second pattern we get

M12 +M25 +M15 − (Q(5)12 +Q(1)25 +Q(2)15)
= d1d2 − d2d5 + d1d5 − (d1d2P (5)12 + d2d5P (1)25 + d1d5P (2)15)
= d1d2 − d2d5 + d1d5 − (−d1d2 + d2d5 − d1d5)
= 2(d1d2 − d2d5 + d1d5),

which is nonnegative if and only if (5.7) holds. Hence, the conditions (5.7)
indeed imply that the condition (iii) of Lemma 5.1 holds for the matrices Q(i)

and thus they form a K(1)-certificate for M , as desired.

Conversely, assume M = DHD ∈ K(1)
5 and let Q(i) (i ∈ [5]) be a K(1)-

certificate for M ; we show Q(i) = DP (i)D for i ∈ [5], where the matrices

P (i) are the unique K(1)-certificate for H from (5.6). In view of the above,
this implies that the di’s satisfy the conditions (5.7), as desired. Up to sym-
metry, it suffices to show Q(1) = DP (1)D. For this note that if zTHz = 0
for z ∈ Rn

+, then yTMy = 0 for y := D−1z ∈ Rn
+ and thus, by Lemma

5.4, Q(i)y = 0 whenever yi > 0. Consider the vectors z1 = (1, 0, 1, 0, 0),
z2 = (1, 0, 0, 1, 0), z3 = (1, 1, 0, 2, 0), z4 = (1, 0, 2, 0, 1), which are zeros of
xTHx, and the corresponding vectors yi = D−1zi for i = 1, 2, 3, 4, which are
zeros of xTMx. Let C1, . . . , C5 denote the columns of Q(1). Then, using the
zeros y1, . . . , y5 of xTMx we obtain the relations

C1

d1
+

C3

d3
= 0,

C1

d1
+

C4

d4
= 0,

C1

d1
+

C2

d2
+ 2

C4

d4
= 0,

C1

d1
+ 2

C3

d3
+

C5

d5
= 0,

which imply C1
d1

= C2
d2

= C5
d5

= −C3
d3

= −C4
d4
. As Q(1)11 = d21 one easily deduces

Q(1) = DP (1)D, as desired. �
Zeros of the form xTMGx. As shown in the previous lemmas, the zeros

of the quadratic form xTMx give us information about the kernel of K(0)- and
K(1)-certificates for M . For the graph matrices MG = α(G)(AG + I) − J we
have a full characterization of the zeros of the associated quadratic form in Δn

(and thus in Rn
+). As observed in Chapter 4, for x ∈ Δn, we have x

TMGx = 0
if and only if x is an optimal solution of the program (M-S):

1

α(G)
= min{xT (I +AG)x : x ∈ Δn}. (M-S)

Indeed, we have

xTMGx = 0 ⇐⇒ α(G)xT (AG + I)x− xTJx = 0 ⇐⇒ xT (AG + I)x =
1

α(G)
.

(5.8)
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By Proposition 4.11, we have a full characterization of the zeros of the form
xTMGx in Δn. This characterization holds in the more general setting of
weighted graphs. Here, we recall the result of Proposition 4.11 for the case of
unweighted graphs.

Theorem 5.7. Let x ∈ Δn with support S = {i ∈ [n] : xi > 0}, and let
V1, V2, . . . , Vk denote the connected components of the graph G[S]. Then, x
is an optimal solution of (M-S) if and only if k = α(G), Vi is a clique and∑

j∈Vi
xj = 1

α(G) for all i ∈ [k]. In that case, all edges in G[S] are critical

edges of G.

In particular, if S is a stable set of size α(G), then we have

(χS)TMGχ
S = 0. (5.9)

5.2. ϑ-rank, simple graph operations and some examples

Recall that the ϑ-rank of G is the minimum integer r such that
ϑ(r)(G) = α(G). In this section, we present some useful ideas for bound-
ing the ϑ-rank based on simple graph operations. Namely, we investigate the
role of isolated nodes and critical edges, and their impact on the convergence
behavior of the hierarchy ϑ(r)(G). In particular, we will show that the hier-

archy ϑ(r)(G) has finite convergence to α(G) for every graph if and only if
the ϑ-rank remains finite under the operation of adding isolated nodes. This
reduction will be used in Chapter 6 for showing the finite convergence of the
hierarchy ϑ(r).

We start with a lemma relating the ϑ-rank of a graph and that of its
induced subgraphs with the same stability number, which we will use later on.

Lemma 5.8. Let G = (V = [n], E) be a graph and let H be an induced
subgraph of G such that α(G) = α(H). Then, ϑ-rank(H) ≤ ϑ-rank(G).

Proof. Assume G and H have, respectively, n and m nodes and we as-
sume the nodes of H are {1, 2, . . . ,m}. As α(G) = α(H) =: α we have
MG = α(AG+ I)−J and MH = α(AH + I)−J . As H is an induced subgraph
of G, MH is a principal submatrix of MG. Assume ϑ-rank(G) = r, hence

MG ∈ K(r)
n , that is, (

∑n
i=1 x

2
i )

r(x◦2)TMGx
◦2 is a sum of squares. By setting

xi = 0 for i ∈ {m+1, . . . , n}, we obtain that (
∑m

i=1 x
2
i )

r(x◦2)TMHx◦2 is a sum

of squares, thus MH ∈ K(r)
m , so ϑ-rank(H) ≤ r. �

Remark 5.9. Let G be the graph obtained by adding a pendant edge to C5

(see the leftmost graph in Fig. 5.2), so that α(G) = 3 = α(C5) + 1. Then,
G has ϑ-rank 0 as it can be covered by α(G) = 3 cliques (see relation 5.14).
However, C5 is an induced subgraph of G and has ϑ-rank 1 (see Example 5.5).
This shows that the condition of having the same stability number in Lemma
5.8 cannot be dropped.
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Figure 5.2. Graph G (left), graph H1 (middle), graph H2

(right)

5.2.1. Role of critical edges. In this section, we present two results
that are useful for bounding the ϑ-rank and show the role of critical edges in
this context. On the one hand, deleting non-critical edges can only increase
the ϑ-rank. On the other hand, we can strengthen a result from [GL07] for
the class of acritical graphs.

Lemma 5.10. Let G = (V,E) be a graph and let e ∈ E. If e is not a critical
edge, i.e., α(G) = α(G \ e), then ϑ-rank(G) ≤ ϑ-rank(G \ e).

Proof. Assume MG\e ∈ K(r)
n . Then, MG = MG\e+(MG−MG\e) belongs

to K(r)
n , since MG − MG\e = α(G)(AG − AG\e) is a nonnegative matrix and

thus belongs to K(r)
n . �

Hence, it suffices to show Conjecture 3.7 (i.e., ϑ-rank(G) ≤ α(G) − 1 for
all graphs G) and Theorem 3.8 (i.e., ϑ-rank(G) < ∞ for all graphs G) for the
class of critical graphs.

Remark 5.11. Let G = (V,E) be a graph. Then, one can find a subgraph
H = (V, F ) of G (with F ⊆ E), which is critical and has the same stability
number: α(G) = α(H). Indeed, to get such a graph H it suffices to delete
successively any non-critical edge until getting a subgraph where all edges are
critical. Then, by Lemma 5.10, for any such H we have

ϑ-rank(G) ≤ ϑ-rank(H). (5.10)

As shown in Example 5.12 below the inequality (5.10) can be strict.

Example 5.12. Consider the graph G in Figure 5.2, obtained by adding one
pendant node to the cycle C5. Then, α(G) = 3 = χ(G) and thus we have
ϑ-rank(G) = 0. Note that G has two critical subgraphs H1 and H2 with
α(H1) = α(H2) = 3, shown in Figure 5.2: H1 is C5 with an isolated node,
which has ϑ-rank(H1) = 1 (see, e.g., [dKP02] or Corollary 5.56), while
H2 consists of three independent edges with ϑ-rank(H2) = 0 (since α(H2) =
χ(H2) = 3).

In the above lemma it was observed that critical edges play a role in the
study of the ϑ-rank, namely it would suffice to bound the ϑ-rank of critical
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graphs. On the other hand, we now prove a stronger version of Conjecture
3.7 for acritical graphs with α(G) ≤ 8. In [GL07] the authors proposed the
following conjecture and proved that it implies Conjecture 3.7.

Conjecture 5.13 ([GL07]). For any r ≥ 1, we have

ϑ(r)(G) ≤ r + max
S⊆V, S stable, |S|=r

ϑ(0)(G \ S⊥). (5.11)

Theorem 5.14 ([GL07]). Conjecture 5.13 holds for r ≤ min(6, α(G) − 1)
and for r = 7 = α(G)− 1. In particular, Conjecture 3.7 holds for graphs with
α(G) ≤ 8, i.e., ϑ-rank(G) ≤ α(G)− 1.

In the case of acritical graphs, we can show a stronger bound on the ϑ-rank
for graphs with α(G) ≤ 8.

Proposition 5.15. Let G be an acritical graph with α(G) ≤ 8. Then,
ϑ-rank(G) ≤ α(G)− 2.

Proof. It suffices to show ϑ(0)(G \ S⊥) ≤ 2 if S is stable of size α(G)− 2
since then the result follows from relation (5.11). Let S = {i1, i2, . . . , iα(G)−2}
be a stable set of size α(G)− 2 in G, so that α(G \S⊥) ≤ 2. If α(G \S⊥) = 1,

then ϑ(0)(G \S⊥) = 1 and we are done. So, assume that α(G \S⊥) = 2. Then
the graph H := (G \S⊥)⊕S is an induced subgraph of G with α(H) = α(G).
We claim that H is acritical. This follows from the fact that any critical
edge of H should also be a critical edge of G. Indeed, if e is critical in H,
then there exists a stable set in H \ e of size α(H) + 1 = α(G) + 1, which
is then also stable in G \ e as H is an induced subgraph of G, so that e is
critical in G. As H is acritical also the graph G \ S⊥ is acritical. We claim
that G \ S⊥ is perfect. For if not then, by the strong perfect graph theorem
([CRST06]), G \ S⊥ contains C5 or C2n+1 (n ≥ 2) as an induced subgraph.
Since these graphs have stability number equal to α(G\S⊥) = 2 they must be
acritical graphs by the above argument. Thus we reach a contradiction since
C5 and C2n+1 have critical edges. Hence, G \ S⊥ is perfect and thus we have

ϑ(0)(G \ S⊥) = α(G \ S⊥) = 2, which completes the proof. �

5.2.2. Role of isolated nodes. Recall that the graph G⊕ i is the graph
obtained by adding the isolated node i to the graph G. We recall a result from
[GL07], which is useful for bounding the ϑ-rank of a graph in terms of the
ϑ-rank of certain subgraphs with an added isolated node. We recall also the
proof of this result for the sake of completeness.

Proposition 5.16 ([GL07]). For any graph G = (V,E) we have:

ϑ-rank(G) ≤ 1 + max
i∈V

ϑ-rank((G \ i⊥)⊕ i). (5.12)

Proof. Set Gi := G \ i⊥ ⊕ Ki⊥ . By applying Lemma 3.10 repeatedly,

we have ϑ-rank(Gi) = ϑ-rank(G \ i⊥ ⊕ i). Assume that MGi ∈ K(r−1)
n for all
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i ∈ V , we prove that MG ∈ K(r)
n . Note that each matrix

P (i) := MGi + (α(G)− α(Gi))(I +AGi) = α(G)(I +AGi)− J

belongs to K(r−1)
n , since it is the sum of two matrices in K(r−1)

n as α(G) −
α(Gi) ≥ 0. We have( n∑

i=1

x2i

)r
(x◦2)TMGx

◦2

=
( n∑

i=1

x2i

)r−1( n∑
i=1

x2i (x
◦2)TP (i)x◦2 +

n∑
i=1

x2i (x
◦2)T (MG − P (i))x◦2

)
=

n∑
i=1

x2i

(
(

n∑
i=1

x2i )
r−1(x◦2)TP (i)x◦2︸ ︷︷ ︸

=σ1

)

+
(∑n

i=1 x
2
i

)r−1( n∑
i=1

x2i (x
◦2)T (MG − P (i))x◦2︸ ︷︷ ︸

=σ2

)
.

We show that this polynomial is a sum of squares, thus showing MG ∈ K(r)
n .

Indeed, σ1 ∈ Σ since each P (i) belongs to K(r−1)
n . In addition, one can check

that the matrices P (i) satisfy the conditions (ii)-(iv) of Lemma 5.1. Then,
using the identity (5.3) we obtain that σ2 has nonnegative coefficients, and
thus σ2 ∈ Σ, which concludes the proof. �

In view of Proposition 5.16, understanding how adding isolated nodes
changes the ϑ-rank is crucial for understanding the convergence behavior of
the bounds ϑ(r)(G). On the one hand, it was shown in [GL07] that if adding
an isolated node does not increase the ϑ-rank, then Conjecture 3.7 holds.

Proposition 5.17 ([GL07]). Assume ϑ-rank(G ⊕ i0) ≤ ϑ-rank(G) for any
graph G. Then Conjecture 3.7 holds.

As we now show, if after adding an isolated node the ϑ-rank can increase
by at most an absolute constant a ∈ N, then we can bound ϑ-rank(G) in terms
of α(G). In particular, when a = 0, we recover Proposition 5.17.

Proposition 5.18. Let a ∈ N. Assume that for all graphs G we have that
ϑ-rank(G ⊕ i0) ≤ ϑ-rank(G) + a. Then ϑ-rank(G) ≤ (a + 1)α(G) − 1 for all
graphs G.

Proof. We proceed by induction on α(G). First, if α(G) = 1, then
ϑ-rank(G) = 0 ≤ a. Assume now α(G) ≥ 2. Using Proposition 5.16, and
the assumption, we get ϑ-rank(G) ≤ a + 1 + maxi∈V ϑ-rank(G \ i⊥). Since
α(G \ i⊥) ≤ α(G) − 1, we can apply the induction assumption to G \ i⊥

and obtain ϑ-rank(G \ i⊥) ≤ (a + 1)(α(G) − 1) − 1. This gives ϑ-rank(G) ≤
a+ 1 + (a+ 1)(α(G)− 1)− 1 = (a+ 1)α(G)− 1. �
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On the other hand, as we now show, the hierarchy ϑ(r)(G) has finite con-
vergence to α(G) (i.e., ϑ-rank(G) is finite for all G) if and only if the ϑ-rank
remains finite after adding an isolated node.

Proposition 5.19. ϑ(r)(G) has finite convergence for every graph G if and
only if ϑ-rank(G) < ∞ implies ϑ-rank(G⊕ i0) < ∞.

Proof. The ‘only if’ part is clear. We show the ‘if’ part by contradiction.
So, assume that ϑ-rank(G) < ∞ implies ϑ-rank(G ⊕ i0) < ∞. Assume also

ϑ(r)(G) does not have finite convergence for some graph G. Assume, more-
over, that G is a counterexample with the minimum number of nodes. By
Proposition 5.16, we obtain that ϑ-rank(G\ i⊥⊕ i) = ∞ for some i ∈ V . If i is
not isolated in G, then G\ i⊥⊕ i would be a counterexample with fewer nodes
than G, contradicting the minimality of G. Hence, i is isolated in G, and thus
we have G = (G \ i⊥) ⊕ i. Using again the minimality assumption, we know
that ϑ-rank(G\i⊥) < ∞, which implies ϑ-rank(G) = ϑ-rank((G\i⊥)⊕i) < ∞,
thus yielding a contradiction. �

Clearly, if G has an isolated node i0, then G \ i⊥0 ⊕ i0 = G and thus the
above result in Proposition 5.16 is of no use to derive information about the
ϑ-rank of G from the ϑ-rank of the graphs G\i⊥⊕i. This observation (already
made in [GL07]) points out the difficulty of analyzing the ϑ-rank of graphs
with isolated nodes. We will investigate this question in Section 5.4.2 below.

On the other hand, adding an isolated node to a graph with ϑ-rank = 0
preserves the property of having ϑ-rank = 0, as observed in [GL07]. To see
this, consider a graph G and set α(G) = α, so that α(G⊕ i0) = α+ 1. Then,
we have

MG⊕i0 =

(
α −1
−1 1

αJ

)
+

α+ 1

α

(
0 0
0 α(I +AG)− J

)
, (5.13)

where the blocks are indexed by i0 and V respectively. Then, MG⊕i0 belongs

to K(0)
n+1 if MG ∈ K(0)

n . Indeed, the first matrix in the sum in (5.13) is posi-

tive semidefinite and the second one belongs to K(0)
n+1 because adding a zero

row/column preserves the cone K(0). Observe that this decomposition is use-
less for analyzing the behavior of the ϑ-rank after adding isolated nodes to
graphs with ϑ-rank at least one, because the second matrix on the right hand

side does not belong to any cone K(r)
n+1 if MG /∈ K(0)

n (recall Theorem 2.7).
Since adding an isolated node preserves the ϑ-rank = 0 property, the next

result follows as a direct application of Proposition 5.16.

Lemma 5.20 ([dKP02]). If ϑ-rank(G \ i⊥) = 0 for all i ∈ V , then we have
ϑ-rank(G) ≤ 1.

Example 5.21. As an application of Lemma 5.20 we obtain that

ϑ-rank(C2n+1) ≤ 1 and ϑ-rank(C2n+1) ≤ 1.
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Moreover, if G is a graph with α(G) = 2, then, for all nodes i ∈ V , the
graph G \ i⊥ is a clique and thus has ϑ-rank 0. Hence, by Lemma 5.20,
ϑ-rank(G) ≤ 1 and thus Conjecture 3.7 holds for graphs with α(G) = 2 (as
shown in [dKP02]).

Let G = C5 ⊕ i0 be the graph obtained by adding one isolated node to the
5-cycle. As shown in [dKP02], G has ϑ-rank 1 and the graph G \ i⊥0 is the
5-cycle which also has ϑ-rank 1. This shows that Lemma 5.20 does not permit
to characterize, in general, graphs with ϑ-rank 1. For details on the impact of
adding isolated nodes to C5, see Corollary 5.56.

As we will see in the next section, we can compute the ϑ-rank of a more
general class of graphs containing odd cycles and their complements.

5.2.3. (α, ω)-graphs and critically imperfect graphs. A graph G is
called critically imperfect if it is not perfect and every induced subgraphH ofG
is perfect. For example, odd cycles of length at least 5, and their complements
are critically imperfect. It was conjectured by Berge in [Ber61] that odd cycles
(of length at least 5) and their complements are the only critically imperfect
graphs. In 2006, Chudnovsky et. al [CRST06] show that this conjecture
holds. This result is known as the Strong Perfect Graph Theorem and is one
of the most celebrated results in graph theory in the last decades.

Theorem 5.22. [CRST06] The only critically imperfect graphs are the odd
cycles of length at least 5 and their complements.

Earlier, in 1972, Lovász [Lov72] proved the following result known as the
Perfect Graph Theorem: A graph G = (V,E) is perfect if and only if its com-
plement G = (V,E) is perfect. Additionally, in the attempt of showing the
Strong Perfect Graph Theorem (Conjecture back then), Lovász defined the
notion of (α, ω)-graphs, and showed that every critically imperfect graph is an
(α, ω)-graph. A graph G = (V,E) with |V | = αω + 1 is an (α, ω)-graph if, for
every vertex v, the vertices of G\v can be partitioned into α cliques of size ω,
and into ω independent sets of size α.

In general, there are many (α, ω)-graphs that are not critically imperfect.
However, in [Lov83], Lovász pointed out that critically imperfect graphs and
(α, ω)-graphs satisfy many similar properties: he wrote

“it seems that virtually all the structural results which we know for critically
imperfect graphs also follow for (α, ω)-graphs. This indicates the main diffi-
culty in the proof of the Strong Perfect Graph Conjecture - it is difficult to
determine that an (α, ω)-graph is not critically imperfect”.

This motivates us to study the ϑ-rank for (α, ω)-graphs, as an attempt to
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possibly find properties that separate critically imperfect graphs from (α, ω)-
graphs. Unfortunately, this attempt fails since we can show that every (α, ω)-
graph has ϑ-rank 1 (see Theorem 5.24 below). In what follows we show this
result.

For showing that ϑ-rank(G) = 1, we shall prove that ϑ(0)(G) > α(G)

and that ϑ(1)(G) = α(G). Lovász [Lov83] showed that ϑ(G) > α(G) for ev-
ery (α, ω)-graph G. Ahmadi and Dibek [AD2022] observed that the proof of
Lovász can be extended to the parameter ϑ′, thus showing that
ϑ′(G) = ϑ(0)(G) > α(G) for (α, ω)-graphs. We give a new proof of this known

fact using the properties of the K(0)-certificates developed in Section 5.1 (see
Proof of Theorem 5.24). On the other hand, we use Lemma 5.20 for showing
that ϑ-rank(G) ≤ 1 for every (α, ω)-graph G.

We recall some structural properties of (α, ω)-graphs that will be useful
for showing Theorem 5.24 below. It was shown by Lovász [Lov83] that if G
is an (α, ω)-graph, then α(G) = α and ω(G) = ω. Moreover, we have the
following result.

Theorem 5.23 (Lovász [Lov83]). Let G be an (α, ω)-graph with |V | = n.
Then, the following assertions hold.

(i) G has exactly n cliques of size ω.
(ii) G has exactly n stable sets of size α.
(iii) Every vertex is in exactly ω cliques of size ω.
(iv) Every vertex is in exactly α stable sets of size α.
(v) Every independent set of size α is disjoint from exactly one clique of

size w.

Now we can show the following result.

Theorem 5.24. Let G be an (α, ω)-graph, then ϑ-rank(G) = 1.

Proof. We first show that ϑ-rank(G) ≤ 1. For this, we show that
ϑ-rank(G \ i⊥) = 0 for every i ∈ V , and use Lemma 5.20. Let i ∈ V . It
is easy to observe from the definition that no vertex in an (α, ω)-graph is iso-
lated, so there exists j ∈ NG(i). Since G is an (α, ω)-graph, the vertices of
G\j can be partitioned into α cliques C1, C2, . . . , Cα. Assume i ∈ C1. Then,
the vertices of G\i⊥ can be partitioned by the α(G)−1 cliques C2, C3, . . . , Cα.
Since every vertex belongs to a stable set of size α (see Theorem 5.23), then
α(G \ i⊥) = α(G) − 1. This shows that α(G \ i⊥) = χ(G \ i⊥), and thus
ϑ-rank(G \ i⊥) = 0.

We show now that ϑ-rank(G) > 0 i.e., ϑ(0)(G) > α(G)1. Assume by

contradiction that ϑ-rank(G) = 0, i.e., MG ∈ K(0)
n . Let P be a K(0)-certificate

1This fact was already proved in [AD2022]. We give a new proof.
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for MG. For any stable set S of size α we have that (χS)TMGχ
S = 0 (recall

relation (5.9)). Then, by Lemma 5.3, χS ∈ kerP for any stable set S of size
α. Therefore, ∑

S is stable
|S|=α

χS ∈ kerP.

By Theorem 5.23 (iv), every vertex belongs to exactly α stable sets of size α.
Hence,

1

α
·
∑

S is stable
|S|=α

χS = e ∈ kerP.

By definition of (α, ω)-graphs, for any i ∈ V , the vertices of G\i can be
partitioned into ω stable sets S1, S2, . . . , Sω of size α. Then, we have

χS1 + χS2 + . . . χSω = e− χ{i} ∈ kerP.

This, combined with the fact that e ∈ kerP , shows that χ{i} = ei ∈ kerP
for every vertex i. Hence, the matrix P is the zero matrix. Since P is
K(0)-certificate for MG, we have P ≤ MG. Then, G is a complete graph,
which yields a contradiction. �

5.3. Towards characterizing graphs with ϑ-rank 0

In this section, we investigate the graphs G with ϑ-rank 0, i.e., such that

ϑ(0)(G) = α(G) or, equivalently, MG ∈ K(0)
n . Recall the well-known ‘sandwich

inequality’ from [Lov79] (see also Chapter 3):

α(G) ≤ ϑ′(G) = ϑ(0)(G) ≤ ϑ(G) ≤ χ(G). (5.14)

If G can be covered by α(G) cliques (i.e., χ(G) = α(G)), then G has ϑ-rank 0.
In addition, if α(G) = α and V1, V2, . . . , Vα are cliques partitioning V , then
the matrix

P :=

⎛⎜⎜⎜⎝
(α− 1)J −J · · · −J

−J (α− 1)J · · · −J
...

...
. . .

...
−J −J · · · (α− 1)J

⎞⎟⎟⎟⎠ ,

whose block-structure is induced by the partition V = V1 ∪ · · · ∪ Vα, is a
K(0)-certificate for MG. In this section, we show that the reverse is true for
critical graphs and for graphs with α(G) ≤ 2. We also provide an algorithmic
method that permits to reduce the characterization of ϑ-rank 0 graphs to the
same property for the class of acritical graphs.

Throughout we often set α := α(G) to simplify notation.
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5.3.1. Characterizing critical graphs with ϑ-rank 0. The next result
will be repeatedly used.

Lemma 5.25. Let G be a graph with α(G) = α and let S be an α-stable set.

Assume MG ∈ K(0)
n and let P be a K(0)-certificate for MG. Then, χS ∈ ker(P )

and P [S] = αIα − Jα.

Proof. Directly from Lemma 5.3 (recall relation (5.9)). �

Proposition 5.26. Let G = (V,E) be a graph, let Ec denote the set of crit-
ical edges of G and let Gc = (V,Ec) be the corresponding subgraph of G. If
ϑ-rank(G) = 0, then each connected component of the graph Gc is a clique
of G.

Proof. By assumption, ϑ-rank(G) = 0. Let P be a K(0)-certificate for
MG. Let V1, V2, . . . , Vp be the connected components of the graphGc. We show
that each component Vi is a clique in G. For this, pick two nodes u �= v ∈ Vi

that are connected in Gc. As the edge {u, v} is critical, there exists a set
I ⊆ V such that I ∪{u} and I ∪{v} are α-stable in G. Then, by Lemma 5.25,

the characteristic vectors χI∪{u} and χI∪{v} both belong to the kernel of P
and thus χ{u} − χ{v} ∈ kerP . From this, we deduce that the columns of P
indexed by the nodes in Vi are all equal. Combining this with the fact that
the diagonal entries of P are equal to α − 1 and that P is symmetric we can
conclude that, with respect to the partition V = V1 ∪ . . . ∪ Vp, the matrix P
has the following block-form:

P =

⎛⎜⎜⎜⎝
(α− 1)J|V1| a12J|V1|×|V2| · · · a1pJ|V1|×|Vp|
a21J|V2|×|V1| (α− 1)J|V2| · · · a2pJ|V2|×|Vp|

...
...

. . .
...

ap1J|Vp|×|V1| ap2J|Vp|×|V2| · · · (α− 1)J|Vp|

⎞⎟⎟⎟⎠ (5.15)

for some scalars aij (1 ≤ i < j ≤ p). We can now show that each Vi is
a clique of G. For this, pick two distinct nodes u, v ∈ Vi. Then, we have
Puv = α − 1 ≤ (MG)uv, which implies that (MG)uv = α − 1 and thus {u, v}
is an edge of G. Here, we use the fact that the off-diagonal entries of MG

are equal to α − 1 for positions corresponding to edges and to −1 for non-
edges. Hence, we have shown that each component Vi is a clique of G, which
concludes the proof. �

Corollary 5.27. Assume G = (V,E) is a critical graph, i.e., all its edges
are critical. Then, we have ϑ-rank(G) = 0 if and only if G is the disjoint
union of α(G) cliques. In particular, we have ϑ-rank(G) = 0 if and only if
χ(G) = α(G).

Proof. The ‘only if’ part follows from Proposition 5.26 and the ‘if part’
follows from relation (5.14). The last claim follows directly. �
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Figure 5.3. Graph H9, acritical

In Theorem 5.24, we show that every (α, ω)-graph has ϑ-rank 1. In par-
ticular, odd cycles and their complements have ϑ-rank 1. This last claim
was already shown in [PVZ07]. We give a new proof of this last fact using
Proposition 5.26 and Corollary 5.27.

Example 5.28. Let n ≥ 2. We saw in Example 5.21 that ϑ-rank(C2n+1) ≤ 1
and ϑ-rank(C2n+1) ≤ 1. Here, we can show that their ϑ-rank is equal 1.

(i) C2n+1 is critical and connected (and not a clique) and thus, by Corol-
lary 5.27, ϑ-rank(C2n+1) ≥ 1.

(ii) The critical edges of the graph G = C2n+1 are those of the form
{i, i+ 2} (for i ∈ [2n+ 1], indices taken modulo 2n+ 1). Hence, the
subgraph Gc (of critical edges) is connected (and not a clique) and
thus ϑ-rank(C2n+1) ≥ 1.

Observe that this gives an alternative proof for the fact that H ∈ K(1)
5 \ K(0)

5 ,
using that H = MC5.

Next, we give an example of an acritical graph with ϑ-rank 1.

Example 5.29. Consider the graph H9 from Figure 5.3. Note that α(H9) = 4
and that C9 is a critical subgraph of H9 with the same stability number. Hence,
by Remark 5.11, ϑ-rank(H9) ≤ ϑ-rank(C9) = 1.

Now, we show that ϑ-rank(H9) ≥ 1. For this, assume for contradiction,

that P is a K(0)-certificate for MH9 and let C1, C2, . . . , C9 denote the columns
of P . Since the sets {1, 3, 5, 8}, {2, 4, 7, 9}, {3, 5, 7, 9} and {2, 4, 6, 8} are stable
sets of size 4 in H9, by applying Lemma 5.25 we obtain

(1) C1 + C3 + C5 + C8 = 0, (2) C2 + C4 + C7 + C9 = 0,

(3) C3 + C5 + C7 + C9 = 0, (4) C2 + C4 + C6 + C8 = 0.

By combining (2) and (4) we get that C7 + C9 = C6 + C8. By combining
(2) and (3) we get C2 +C4 = C3 +C5. Using these two identities and (2), we
get C3 + C5 + C6 + C8 = 0. Finally, using (1) and the last identity we obtain
C6 = C1. This implies P16 = P11 = 3 > −1, which yields a contradiction since
P16 ≤ −1 as {1, 6} is a non-edge.
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5.3.2. Characterizing graphs with α(G) = 2 and ϑ-rank(G) = 0.
Here, we observe that the result of Corollary 5.27 holds for all (not necessarily
critical) graphs with α(G) ≤ 2.

Lemma 5.30. Let G be a graph with α(G) ≤ 2. Then, ϑ-rank(G) = 0 if and
only if χ(G) = α(G).

Proof. It suffices to show the ‘only if’ part. The case α(G) = 1 is trivial.

So, assume α(G) = 2 and ϑ-rank(G) = 0. Let P be a K(0)-certificate for MG,
i.e., P � 0, MG ≥ P and Pii = α(G) − 1 = 1 for all i ∈ V . As P � 0 with
diagonal entries equal to 1 it follows that −1 ≤ Pij ≤ 1 for all i, j ∈ V . On
the other hand, P ≤ MG implies Pij ≤ −1 for all positions corresponding to
non-edges. Therefore we have Pij = −1 for every non-edge {i, j}.

As P � 0 we may assume that P is the Gram matrix of unit vectors
v1, . . . , vn ∈ Rn, i.e., P = (vTi vj)i,j∈V . Then, for any two non-adjacent vertices

i, j, we have vTi vj = −1 and thus vi = −vj . Pick a unit vector r ∈ Rn such
that rT vi �= 0 for all i ∈ V (such a vector exists since the kernel of P is
nontrivial by Lemma 5.25). Define the sets V1 = {i ∈ V : rT vi > 0} and
V2 = {i ∈ V : rT vi < 0}. Then V1 and V2 are two cliques of G that cover
V . �

Example 5.31. We give some examples showing that the characterization in
Corollary 5.27 and Lemma 5.30 of ϑ-rank 0 graphs as those with χ(G) = α(G)
does not hold if α(G) ≥ 3 and G has some non-critical edges.

Let G be the Petersen graph. Then G has rank 0, since ϑ(G) = ϑ(0)(G) =
α(G) (= 4), but χ(G) = 5 > α(G) = 4 (see [Lov79]). Note that the Petersen
graph is in fact acritical. The graph G = G13 considered in [MR16] provides

another example with 3 = α(G) = ϑ(0)(G) < χ(G) = 4 and ϑ-rank(G) = 0.
A class of counterexamples is provided by the Kneser graphs Gn,k when

n ≥ 2k+1 and k does not divide n. Recall Gn,k has as vertex set the collection
of all k-subsets of [n], where two vertices are adjacent if the corresponding
subsets are disjoint. Note that G5,2 is the Petersen graph. It has been shown
by Lovász [Lov79, LK78] that

ϑ(Gn,k) = α(Gn,k) =

(
n− 1

k − 1

)
and ω(Gn,k) (= α(Gn,k)) = �n

k
�.

Therefore, ϑ-rank(Gn,k) = 0. However, χ(Gn,k) ≥
(
n
k

)
/�n/k� >

(
n−1
k−1

)
=

α(Gn,k) if k does not divide n.
Note that Gn,k is acritical for any n > 2k. To see this one can use a result

of Erdös et al. [Erd61] who proved that for n > 2k the maximum stable sets
of the Kneser graph Gn,k are of the form Aj := {S ⊆ [n] : j ∈ S, |S| = k} for
j ∈ [n]. To see that Gn,k is acritical, assume, for contradiction, that {A,B}
is a critical edge. Then, there exists a collection I of k-subsets of [n] such
that I ∪ {A} = Ai and I ∪ {B} = Aj for i �= j ∈ [n]. Hence, every element
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of I contains both i and j, so that |I| ≤
(
n−2
k−2

)
. This gives a contradiction as

|I|+ 1 = |Aj | =
(
n−1
k−1

)
.

5.3.3. Reduction of ϑ-rank 0 graphs to the class of acritical graphs.
Here, we further investigate the structure of graphs with ϑ-rank 0. We intro-
duce a reduction procedure, which we use to reduce the task of checking the
ϑ-rank 0 property to the same property for the class of acritical graphs. This
procedure relies on the following graph construction, which is motivated by
Proposition 5.26.

Definition 5.32. Let G = (V,E) be a graph and let Gc = (V,Ec) be the
subgraph of G, where Ec is the set of critical edges of G. Let V1, . . . , Vp denote
the connected components of Gc. Assume that each of V1, . . . , Vp is a clique
in G. We define the graph Γ(G) with vertex set {1, 2, . . . , p}, where a pair
{i, j} ⊆ [p] is an edge of Γ(G) if Vi ∪ Vj is a clique of G.

We show that this graph construction preserves the ϑ-rank 0 property and
the stability number.

Lemma 5.33. Assume G is a graph with ϑ-rank(G) = 0 and let Γ(G) be the
graph as in Definition 5.32. Then, we have ϑ-rank(Γ(G)) = 0 and α(Γ(G)) =
α(G).

Proof. Set α = α(G). First, we prove that α(Γ(G)) ≥ α. For this, let
S be an α-stable set in G and, for each v ∈ S, let Vv denote the connected
component of Gc that contains v. Since each Vi is a clique of G (by Lemma
5.26), we have Vv �= Vu for u �= v ∈ S and moreover Vu∪Vv is not a clique in G.
Hence, by defininition of the graph Γ(G), it follows that the set {Vv : v ∈ S}
provides a stable set of size α in Γ(G).

Next, we show that ϑ-rank(Γ(G)) = 0. By assumption, ϑ-rank(G) = 0
and thus MG = P + N , where P � 0, N ≥ 0 and Pii = α − 1 for all i ∈ V .
As shown in the proof of Lemma 5.26, the matrix P has the block-form (5.15)
with respect to the partition V = V1∪ . . .∪Vp. Then the following p×p matrix

P ′ :=

⎛⎜⎜⎜⎝
α− 1 a12 · · · a1p
a21 α− 1 · · · a2p
...

...
. . .

...
ap1 ap2 · · · α− 1

⎞⎟⎟⎟⎠
is positive semidefinite. We show that P ′ ≤ MΓ(G), thus proving that Γ(G) has
ϑ-rank 0. As P ′ � 0, we have |aij | ≤ α− 1 ≤ α(Γ(G))− 1 for all i, j ∈ [p]. It
suffices to check that aij ≤ −1 if {i, j} is not an edge of Γ(G). Indeed, in this
case, Vi∪Vj is not an clique in G and thus there exist vertices u ∈ Vi and v ∈ Vj

such that {u, v} is not an edge in G, which implies aij = Puv ≤ (MG)uv = −1,
and thus aij ≤ −1 as desired.

Finally, we prove α(Γ(G)) ≤ α. For this, let I ⊆ [p] be an α(Γ(G))-stable
set. For any i �= j ∈ I the set Vi ∪ Vj is not a clique in G and thus aij ≤ −1
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(as observed above). Consider the principal submatrix P ′[I] of P ′ indexed by
I. Then, we have

0 ≤ eTP ′[I]e ≤ (α− 1)|I| − |I|(|I| − 1),

which implies |I| ≤ α and thus α(Γ(G)) ≤ α, concluding the proof. �

Lemma 5.34. Assume ϑ-rank(G) = 0. Then we have χ(Γ(G)) ≥ χ(G). In
particular, if Γ(G) is covered by α(Γ(G)) cliques, then G is covered by α(G)
cliques.

Proof. If C ⊆ [p] is a clique of Γ(G), then
⋃

i∈C Ci is a clique in G.
Therefore, if we can cover V (Γ(G)) = [p] by k cliques of Γ(G), then we can
cover V (G) by k cliques of G. The last claim follows from the fact that
α(Γ(G)) = α(G) (Lemma 5.33). �

Now, we provide a partial converse to the result of Lemma 5.33.

Lemma 5.35. Let G = (V,E) be a graph and let Gc = (V,Ec) be its subgraph
of critical edges. Assume that the connected components V1, . . . , Vp of Gc are
cliques in G and let Γ(G) be as in Definition 5.32. If ϑ-rank(Γ(G)) = 0 and
α(Γ(G)) ≤ α(G), then we have ϑ-rank(G) = 0.

Proof. By assumption, ϑ-rank(Γ(G)) = 0. Hence there exists a matrix
P � 0 such that MΓ(G) ≥ P and Pii = αΓ := α(Γ(G)) for each i ∈ [p]. Write
P as

P =

⎛⎜⎜⎜⎝
αΓ − 1 a12 · · · a1p
a21 αΓ − 1 · · · a2p
...

...
. . .

...
ap1 ap2 · · · αΓ − 1

⎞⎟⎟⎟⎠
and consider the matrix indexed by V (G) = V1 ∪ . . . ∪ Vp with the following
block-form

P ′ =

⎛⎜⎜⎜⎝
(αΓ − 1)J|V1| a12J|V1|×|V2| · · · a1pJ|V1|×|Vp|
a21J|V2|×|V1| (αΓ − 1)J|V2| · · · a2pJ|V2|×|Vp|

...
...

. . .
...

ap1J|Vp|×|V1| ap2J|Vp|×|V2| · · · (αΓ − 1)J|Vp|

⎞⎟⎟⎟⎠ .

Then, P ′ � 0. We claim that P ′ ≤ MG holds. This is true for the diagonal
entries and for the positions corresponding to edges of G (since we assume
αΓ ≤ α(G)). Consider now a pair {u, v} ⊆ V of vertices that are not adjacent
in G. Say u ∈ Vi, v ∈ Vj . Then, as Vi∪Vj is not a clique in G, the two vertices
i �= j ∈ [p] are not adjacent in Γ(G) and thus aij ≤ −1 since P ≤ MΓ(G). �

So, we have shown that if we apply the Γ-operator to a graph G with
ϑ-rank 0, then we obtain a new graph Γ(G) with ϑ-rank 0, with the same
stability number and with |V (Γ(G))| ≤ |V (G)|, where the inequality is strict
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if G has critical edges. We may iterate this construction until obtaining a
graph without critical edges.

Definition 5.36. Let G be a graph with ϑ-rank(G) = 0. We define the residual
graph R(G) of G as the graph Γk(G), where k is the smallest integer such that
Γk(G) has no critical edge, after setting Γi+1(G) = Γ(Γi(G)) for any i ≥ 0.

As a direct application of Lemmas 5.33 and 5.34 we obtain the following
result.

Lemma 5.37. Let G be a graph with ϑ-rank(G) = 0 and let R(G) be its
residual graph as defined in Definition 5.36. Then, R(G) has no critical edges
and we have ϑ-rank(R(G)) = 0, α(R(G)) = α(G), and χ(R(G)) ≥ χ(G).

Based on the above results, we now present an algorithmic procedure that
permits to reduce the task of checking whether a graph has ϑ-rank 0 to the
same task restricted to the class of graphs with no critical edges.

Algorithm: REDUCE-TO-ACRITICAL

Input: A graph G = (V,E).

Output: Either: ϑ-rank(G) ≥ 1. Or: the graph R(G), which is acritical with
α(R(G)) = α(G) and such that ϑ-rank(G) = 0 ⇐⇒ ϑ-rank(R(G)) = 0.

(1) Compute the connected components V1, V2, . . . , Vp of the graph Gc =
(V,Ec), where Ec is the set of critical edges of G.

(2) If Vi is a clique in G for all i ∈ [p], go to Step 3. Otherwise return:
ϑ-rank(G) ≥ 1.

(3) Compute the graph Γ(G), with set of vertices {1, 2, . . . , p} and where
{i, j} is an edge if Vi ∪ Vj is a clique in G. If α(Γ(G)) = α(G) then
go to Step 4. Otherwise return: ϑ-rank(G) ≥ 1.

(4) If Γ(G) is acritical then return: Γ(G). Otherwise, set G = Γ(G) and
go to Step 1.

We verify the correctness of the output of the above algorithm. For this,
let us assume the algorithm does not output ϑ-rank(G) ≥ 1. In view of
Definition 5.36, the returned graph at step 4 is the residual graph R(G), which
is acritical by construction. In addition, in view of Step 3, we have α(R(G)) =
α(G). Remains to check that ϑ-rank(G) = 0 if and only if ϑ-rank(R(G)) = 0.
Indeed, the ‘only if’ part follows using iteratively Lemma 5.33, and the ‘if part’
follows using Lemma 5.35.

Observe that, if we apply the above algorithm to a class of graphs with
a fixed stability number, then the algorithm runs in polynomial time, so we
have shown the following theorem.

Theorem 5.38. For any fixed integer α, the problem of deciding whether a
graph with stability number α has ϑ-rank 0 is reducible in polynomial time to
the problem of deciding whether a graph with no critical edges and stability
number α has ϑ-rank 0.
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Figure 5.4. From right to left, the graphs G, Gc (consisting
of the critical edges of G), Γ(G), R(G) = Γ2(G)

Example 5.39. We illustrate in Figure 5.4 the construction of the residual
graph R(G) when G is the cycle C5 with a pendant edge. We show the subgraph
Gc (consisting of the critical edges of G) and the graph Γ(G), which is critical,
so that Γ(G) = Γ(G)c. Finally, as Γ2(G) = K3 has no critical edge, we
have R(G) = Γ2(G) = K3. Clearly, ϑ-rank(R(G)) = 0, which shows again
ϑ-rank(G) = 0.

Remark 5.40. The results from this section can be adapted to the Lovász
parameter ϑ(G) instead of ϑ(0)(G). Recall from [Lov79] that ϑ(G) = α(G)
if and only if there exists a positive semidefinite matrix P such that Pii =
α(G) − 1 for i ∈ V and Pij = −1 for {i, j} ∈ E; call such a P a Lovász-
exactness certificate for G. Then one can restate all results from this section
by replacing the notion ‘ϑ-rank(G) = 0’ by ‘ϑ(G) = α(G)’ and the notion

of ‘K(0)-certificate’ by ‘Lovász-exactness certificate’. As a consequence, we
obtain the following analogous result: For any fixed integer α and for graphs
with α(G) = α, the problem of deciding whether ϑ(G) = α is reducible in
polynomial time to the same problem for graphs with no critical edges.

5.3.4. Acritical graphs with large stability number and ϑ-rank 0.
Motivated by the reduction to acritical graphs from the previous section, we
now consider acritical graphs with large stability number. We show that if
G = (V,E) is acritical with α(G) ≥ |V | − 4, then V can be covered by α(G)
cliques and thus G has ϑ-rank 0.

Proposition 5.41. Let G = (V,E) be a graph and assume α(G) ≥ |V | − 4.

(i) If α(G) ≥ |V | − 2, then χ(G) = α(G) and thus ϑ-rank(G) = 0.
(ii) If α(G) = |V | − 3, then χ(G) = α(G) and thus ϑ-rank(G) = 0,

unless G is the disjoint union of C5 and isolated nodes in which case
ϑ-rank(G) ≥ 1 and G is critical.

(iii) If α(G) = |V | − 4 and G is acritical, then χ(G) = α(G) and thus
ϑ-rank(G) = 0.

Proof. Throughout we set α = α(G). We will use the fact that perfect
graphs satisfy χ(G) = α(G) and their characterization via the strong perfect
graph theorem. We distinguish several cases depending on the value of n = |V |.
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Case 1: α(G) ≥ |V | − 2.
We claim that G is perfect. For, if not, then G contains an induced subgraph
H = C2k+1 or H = C2k+1 (k ≥ 2); as every stable set of G should exclude at
least 3 vertices of H this implies α(G) ≤ |V | − 3, yielding a contradiction.

Case 2: α(G) = |V | − 3.
Let S be an α-stable set and set V \ S = {x, y, z}. Assume G is not covered
by α cliques, we show that G is the disjoint union of C5 and n − 5 isolated
vertices. As χ(G) �= α(G), the graph G is not perfect and thus it contains
an induced subgraph H which is an odd cycle C2k+1 or its complement C2k+1

with k ≥ 2. As |V (H) ∩ S| ≥ 2k − 2, it follows that α(H) ≥ 2k − 2. If
H = C2k+1, then α(H) = k ≥ 2k − 2 implies k ≤ 2 and, if H = C2k+1, then
α(H) = 2 ≥ 2k−2 again implies k ≤ 2. Hence, k = 2, H = C5, andH contains
two nodes of S and the three nodes x, y, z. Say H is the cycle (x, u, y, w, z)
with u,w ∈ S. If there exists a node u0 ∈ S \ {u,w} that is adjacent to a
node in {x, y, z} then one can cover the nodes in {u,w, u0, x, y, z} with three
edges and thus V with α cliques, which we had excluded. Therefore, one must
have NS({x, y, z}) = {u,w}, which implies that G is C5 together with n − 5
isolated nodes.

Case 3: α(G) = |V | − 4 and G acritical.
Let S be an α-stable set and set T = {x, y, z, w} = V \ S. Note that every
vertex of T has at least two neighbors in S, otherwise the edge between that
vertex and S would be a critical edge of G. In addition, if there is a matching
between T and S that covers all the nodes in T , then V is covered by α cliques
(the four edges of the matching and the remaining α− 4 vertices in S) and we
are done. Hence, we may now assume that there is no matching between S and
T that covers T . By Hall’s theorem (see [Hall35]), there exists W ⊆ T such
that |NS(W )| ≤ |W | − 1. Then, |W | ≥ 3 since |NS(W )| ≥ 2. We distinguish
two cases.

Case 3a: First, assume |W | = 3, say W = {x, y, z}. Then |NS(W )| = 2,
say NS(W ) = {u, v}. So, NS(x) = NS(y) = NS(z) = {u, v}. Since the set
(S\{u, v})∪{x, y, z} is not stable, there is an edge between the vertices x, y, z,
say {x, y} ∈ E. If w has a neighbor in S different from u and v, say {w, t} ∈ E
for t ∈ S \ {u, v}, then V is covered by the cliques {x, y, u}, {z, v}, {w, t} and
the α − 3 singleton nodes in S \ {u, v, t}, showing χ(G) = α(G). So, we now
assume that NS(w) = {u, v}. Note that χ(G) = α(G) holds in each of the
following two cases: (i) when T contains a clique of size 3 (say, {x, y, z}) and
(ii) when T contains two disjoint edges (say, {x, y}, {z, w} ∈ E) since then G
is covered by the cliques {x, y, z, u}, {v, w} in case (i), or {x, y, u}, {z, w, v}
in case (ii), and the α − 2 singletons in S \ {u, v}. So we may now assume
that T does not contain a triangle nor two disjoint edges. But then we reach
a contradiction with the fact that each of the two sets S \ {u, v} ∪ {x, z, w}
and S \ {u, v} ∪ {y, z, w} is not a stable set and thus contains an edge.
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f

e

g

Figure 5.5. Graph G9 has α(G9) = 4, ϑ(G9) = ϑ(0)(G9) =
4.155, χ(G9) = 5

Case 3b: Assume now W = T = {x, y, z, w} and |NS(W )| = 2, 3. If
|NS(W )| = 2, then we are in the situation NS(x) = NS(y) = NS(z) =
NS(w) = {u, v} ⊆ S, already considered in the previous case. So, we now
assume |NS(W )| = 3, say NS(W ) = {u, v, t} ⊆ S. We may also assume that
G is not perfect (else we are done), so G contains an induced subgraph H
which is C2k+1 or C2k+1 with k ≥ 2. As V (H) ⊆ W ∪ NS(W ), we have
2k+1 ≤ 7, so H is C5, C7 or C7. Note H cannot be C7 since α(C7) = 2 while
the set {u, v, t} is stable. If H = C7, then G is C7 together with n− 7 isolated
nodes, but then we contradict the assumption that G is acritical. So, assume
now H = C5. Then |V (H) ∩ S| = 1 or 2. We distinguish these two cases:
• Assume |V (H) ∩ S| = 1, say V (H) ∩ S = {u} and H is the 5-cycle
(x, y, z, w, u). As H is an induced subgraph of G it follows that {y, u}, {z, u} �∈
E. As each of the vertices y and z has at least two neighbors is S, they are
both adjacent to both v and t and thus {y, z, v} and {y, z, t} are cliques. Node
w is adjacent to at least two nodes in S and thus w is adjacent to v or t. If w
is adjacent to v (resp., to t), then G is covered by the cliques {x, u}, {y, z, t},
{w, v} (resp., {y, z, v}, {w, t}) and the α− 3 singletons in S \ {u, v, t}.
• Assume |V (H) ∩ S| = 2, say V (H) ∩ S = {u, v} and H is the 5-cycle
(x, y, v, z, u). As x, y must have at least two neighbors in S, this implies
{x, t}, {y, t} ∈ E and thus {x, y, t} is a clique. As w has at least two neighbors
in S, it follows that w is adjacent to u or v. Say, w is adjacent to u. Then,
G is covered by the cliques {x, y, t}, {w, u}, {z, v} and the α− 3 singletons in
S \ {u, v, t}. This concludes the proof. �

Remark 5.42. (i) As we just saw in Proposition 5.41 (ii), the only
graphs G with α(G) = |V | − 3 that do not have ϑ-rank 0 are of
the form G = C5 ⊕Kn−5, the disjoint union of C5 and n− 5 isolated
nodes. In fact, we will show that ϑ-rank(C5 ⊕Kn−5) = 1 if and only
if n ≤ 13 (see Corollary 5.56 in Section 5.4.2).

(ii) Proposition 5.41 shows that any acritical graph for which we have
α(G) ≥ |V | − 4 satisfies χ(G) = α(G) and thus has ϑ-rank 0. The
same holds for graphs with α(G) = 2 (Lemma 5.30). The next natural
case to consider are graphs with α(G) = 3 and n ≥ 8 nodes. Polak
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[Pol21] verified (using computer) that if G is an acritical graph on 8
nodes with α(G) = 3, then χ(G) = α(G) holds (and thus ϑ-rank(G) =
0). In addition, if G is acritical on 9 nodes with α(G) = 3, then
ϑ-rank(G) = 0 holds as well (but sometimes with χ(G) > α(G)).
On the other hand, there exist acritical graphs on n = 10 nodes with
α(G) = 3 that do not have ϑ-rank 0.

(iii) There are acritical graphs G with 4 ≤ α(G) ≤ |V | − 5 that cannot be
covered by α(G) cliques. As a first example, consider the graph G9 in
Figure 5.5, which is acritical, with |V | = 9, α(G9) = 4, χ(G9) = 5,

and ϑ(G9) = ϑ(0)(G9) = 4.155, and thus ϑ-rank(G9) ≥ 1. Moreover,
with e, f, g being the three labeled edges in G9, each of the three graphs
G9 \ e,G9 \ {f, g} and G9 \ {e, f} is acritical and satisfies ϑ(0)(G) =
ϑ(G) > α(G). This gives four non-isomorphic acritical graphs on 9
vertices that have ϑ-rank at least 1 (and thus cannot be covered by
α(G) cliques). Polak [Pol21] verified (using computer) that these are
the only non-isomorphic acritical graphs on 9 vertices that do not
have ϑ-rank 0.

(iv) Finally, we use the graph H9 from Example 5.29 to construct a class
of acritical graphs with χ(G) > α(G) and ϑ-rank(G) ≥ 1. For any
pair (n, α) with 4 ≤ α ≤ n − 5, we construct an acritical graph G
on n nodes with α(G) = α and χ(G) > α(G). For this, we let the
vertex set of G be partitioned as V = V0 ∪ V1 ∪ V2, where |V0| = 9,
|V1| = n− 5− α and |V2| = α− 4, and we select the following edges:
on V0 we put a copy of H9, on V1 we put a clique, we let every node of
V1 be adjacent to every node of V0, and we let V2 consist of isolated
nodes. Then, it is easy to see that α(G) = α, G is acritical and
χ(G) > α(G). One can show that ϑ-rank(G) = ϑ-rank(H9 ⊕Kα−4).
This follows from the following (easy-to-check) property: If {i, j} is
an edge and N(i) ⊆ N(j) then ϑ-rank(G \ j) = ϑ-rank(G). Since
ϑ-rank(H9) = 1 one can now deduce that ϑ-rank(G) ≥ 1.

5.4. On the impact of isolated nodes on the ϑ-rank

As mentioned in Proposition 5.17, if the ϑ-rank does not increase under
the simple graph operation of adding an isolated node, then Conjecture 3.7
holds. In [GL07] it was conjectured that adding isolated nodes indeed does
not increase the ϑ-rank. In this section, we investigate this question and in
fact disprove the latter conjecture, already for graphs with ϑ-rank 1. For this,
we first observe that critical edges provide a lot of structure on the matrices
P (i) (i ∈ V ) appearing in K(1)-certificates, which can be exploited for verify-
ing whether a graph has ϑ-rank 1.

We investigate the impact of adding isolated nodes to certain classes of
graphs H with ϑ-rank 1. First, when the subgraph of critical edges of H
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is connected, we give an upper bound on the number of isolated nodes that
can be added to H while preserving the ϑ-rank 1 property (Theorem 5.48).
Second, we show that adding this number of isolated nodes indeed produces a
graph with ϑ-rank 1 whenH satisfies the property ϑ-rank(H\i⊥) = 0 for all its
nodes (Theorem 5.55). As an application, we are able to determine the exact
number of isolated nodes that can be added to an odd cycle C2n+1 (n ≥ 2) or
its complement while preserving the ϑ-rank 1 property (see Corollary 5.56).
As a byproduct, we obtain that adding an isolated node to a graph with ϑ-rank
1 can produce a graph with ϑ-rank ≥ 2. For instance, C5 ⊕K8 has ϑ-rank 1,
but C5 ⊕K9 has ϑ-rank 2.

5.4.1. Properties of the kernel of K(1)-certificates. We first inves-
tigate properties on the K(1)-certificates applied to the matrices MG. The
following results are based on the kernel property shown in Lemma 5.4.

Lemma 5.43. Let G = (V = [n], E) be a graph with ϑ-rank(G) = 1. Let

{P (j) : j ∈ V } be a K(1)-certificate for MG, let i ∈ V and let C1, C2, . . . , Cn

denote the columns of the matrix P (i). Then the following holds.

(i): If S is an α-stable set and i ∈ S, then we have
∑

j∈S Cj = 0.

(ii): If {i, j} ∈ E is a critical edge of G, then we have Ci = Cj.

(iii): If α(G\ i⊥) = α(G)−1 and {l,m} ∈ E is a critical edge of G\ i⊥,
then we have Cl = Cm.

In particular, if G is critical and G \ i⊥ is critical and connected, then the
matrix P (i) takes the form

P (i) =

(
(α− 1)J|i⊥| −1

−1 1
α−1J|V \i⊥|

)
, (5.16)

where the blocks are indexed by i⊥ and V \ i⊥, respectively.

Proof. Set α := α(G) for short. Part (i) follows directly from Lemma
5.4 (i), which claims P (i)x = 0 as xTMGx = 0 for x = χS .

We now show part (ii). Since the edge {i, j} is critical in G, there exists
I ⊆ V such that I ∪{i} and I ∪{j} are α-stable sets in G; then, using part (i),

we get Ci = −
∑

k∈I Ck . Now, observe that the vector y = 1
2α(χ

I∪{i}+χI∪{j})
satisfies yTMy = 0 (recall relation (5.8) and Theorem 5.7). Using Lemma 5.4

(i), we obtain P (i)y = 0 and thus Ci
2 +

Cj

2 +
∑

k∈I Ck = 0. Combining the two
equations we get Ci = Cj .

Finally, we show part (iii). If α(G \ i⊥) = α − 1 and {l,m} is critical in
G \ i⊥, then there exists I ⊆ V with i ∈ I such that I ∪ {l} and I ∪ {m} are
stable of size α in G. Then, using again part (i), we get Cl = −

∑
k∈I Ck = Cm.

Finally, assume G is critical and G \ i⊥ is critical and connected. Since G is
critical, by part (ii), we have Ci = Cj for all j ∈ i⊥. Moreover, as G is critical,

i belongs to an α-stable set and thus α(G \ i⊥) = α − 1. Then, part (iii) can
be applied, and using the connectivity and criticality of G \ i⊥ we obtain that
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Figure 5.6. A critical graph with stability number 2

Cl = Cm for all l,m ∈ V \ i⊥. Therefore, P (i) takes a block structure indexed
by i⊥ and V \ i⊥. Using an α-stable set of the form {i} ∪ I (with I ⊆ V \ i⊥)
we have Ci +

∑
k∈I Ck = 0 which, combined with the fact that P (i)ii = α− 1,

implies the desired structure for the matrix P (i). �

Using Lemma 5.43, we can show that for some ϑ-rank 1 graphs, the con-
struction of the matrices P (i) in a K(1)-certificate is, in fact, unique. We al-
ready saw that this is the case for the 5-cycle in Example 5.5, we now extend
this to any critical graph with α(G) = 2 and to the graph C5 ⊕ i0. We show
in Figure 5.6 an example of a critical graph with stability number α(G) = 2;
of course, C5 is another such example.

Example 5.44. Let G = (V,E) be a critical graph with α(G) = 2. Then,

MG ∈ K(1) (recall Theorem 5.14). Let {P (i) : i ∈ V } be a K(1)-certificate
for MG. We show that the matrices P (i) are uniquely determined using
Lemma 5.16. Indeed, as α(G) = 2, for any i ∈ V the graph G \ i⊥ is a
clique and thus it is critical and connected with α(G \ i⊥) = 1 = α(G) − 1.
Hence, Lemma 5.43 can be applied and we obtain that for every i ∈ V the
matrix P (i) takes the form (5.16).

Example 5.45. Let G = C5 ⊕ i0 = ([5] ∪ {i0}, E), so that G \ i⊥0 = C5. As
α(G\ i⊥0 ) = α(G)−1 = 2 and G\ i⊥0 is critical and connected, by Lemma 5.43
we conclude that the matrix P (i0) takes the form (5.16) (also displayed below).
In particular, we have P (i0)ij = 1/2 and P (i0)i0i = −1 for all i, j ∈ [5]. We
now show that for any i ∈ [5] also the matrices P (i) are uniquely determined;
by symmetry, it suffices to show this for matrix P (1).

Since G is critical, by Lemma 5.43 (ii) (applied to the edges {1, 2} and
{1, 5}), the columns of P (1) indexed by nodes 1, 2, and 5 are identical. As
the edge {3, 4} is critical in the graph G \ 1⊥, by Lemma 5.43 (iii), also the
two columns of P (1) indexed by 3 and 4 are identical. This implies that the
matrix P (1) takes a block structure indexed by the partition of its index set
into {1, 2, 5}, {3, 4} and {i0}. By Lemma 5.1, we have P (1)11 = α − 1 = 2,
2P (1)1,i0 + P (i0)1,1 = α − 3 = 0 and P (1)i0,i0 + 2P (i0)1,i0 = α − 3 = 0.
Combining with the fact that P (i0)11 = 1

2 and P (i0)1,i0 = −1, we obtain that

P (1)1,i0 = −1
4 and P (1)i0,i0 = 2. Finally, since {1, 3, i0} is stable, using

Lemma 5.43(i) we obtain that the columns indexed by 1,3 and i0 sum up to
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Figure 5.7. The graph G8 (critical, α(G8) = 3)
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Figure 5.8. The graph H8 (critical, α(H8) = 3)

0, which enables us to complete the rest of the matrix P (1), whose shape is
shown below.

P (i0) =

( i0 [5]

i0 2 −1
[5] −1 1/2

)
, P (1) =

⎛⎝
i0 {3, 4} {1, 2, 5}

i0 2 −7/4 −1/4
{3, 4} −7/4 7/2 −7/4
{1, 2, 5} −1/4 −7/4 2

⎞⎠.
Lemma 5.46. Let G = (V,E) be a graph with MG ∈ K(1)

n and let P (1),

P (2), . . . , P (n) be a K(1)-certificate for MG. Assume that for S ⊆ V the
induced subgraph G[S] is the disjoint union of α(G) cliques. Then, for any
{i, j, k} ⊆ S, we have

P (i)jk+P (j)ik+P (k)ij = (MG)ij+(MG)jk+(MG)ik = α(G) |E({i, j, k})|−3.

Proof. By Theorem 5.7 there exists x ∈ Δn such that xTMGx = 0 and
Supp(x) = S. Then Lemma 5.4 (ii) gives the desired result. �

Example 5.47. Consider the graph G8 shown in Figure 5.7, which is criti-
cal with α(G8) = 3. We show that ϑ-rank(G8) ≥ 2 (which was verified nu-

merically in [PVZ07]). Assume for contradiction that MG ∈ K(1)
8 and let

P (1), . . . , P (8) be a K(1)-certificate for MG. Notice that for i = 1, 2, 3, 4 the
graph G \ i⊥ = C5 is critical and connected. Hence, by Lemma 5.43, the
matrices P (1), P (2), P (3) and P (4) take the form (5.16) and thus we have
P (1)23 + P (2)13 + P (3)12 = −1− 1 + 1

2 = −3
2 . However, as the graph induced

by {1, 2, 3, 6} is the disjoint union of α(G) cliques, in view of Lemma 5.46
one should have P (1)23 + P (2)13 + P (3)12 = 3 × 1 − 3 = 0, so we reach a
contradiction.

It can also be shown that ϑ-rank(H8) ≥ 2, the arguments are similar but
technical, so we omit them. So, we have ϑ-rank(G8) = ϑ-rank(H8) = 2. In



618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas
Processed on: 3-10-2023Processed on: 3-10-2023Processed on: 3-10-2023Processed on: 3-10-2023 PDF page: 105PDF page: 105PDF page: 105PDF page: 105

5.4. ON THE IMPACT OF ISOLATED NODES ON THE ϑ-rank 99

fact, G8 and H8 are the only critical graphs on 8 nodes with ϑ-rank = 2. To
see this, one can use the list of critical graphs on 8 nodes from [Sma15] and
verify that all of them have ϑ-rank at most 1 except G8 and H8. Note also
that, as observed in [PVZ07], any graph with at most 7 nodes has ϑ-rank at
most 1.

5.4.2. Adding isolated nodes to graphs with ϑ-rank 1. As we saw
in Section 5.2, it is crucial to understand the role of isolated nodes for the
ϑ-rank of a graph (recall Proposition 5.17). Here, we investigate how many
isolated nodes can be added to a graph H with ϑ-rank 1 (and satisfying certain
properties) without increasing its ϑ-rank. As an application, we show that
adding an isolated node to some ϑ-rank 1 graphs may produce a graph with
ϑ-rank ≥ 2.

Throughout this section, we consider a graph of the form G = H ⊕Kα−k,
where H = (V,E) has α(H) =: k, so that α(G) = α. Here, α and k are
integers such that α ≥ k ≥ 2. Note that, if k = 1, then H is a clique and thus
G has ϑ-rank 0 for any α. We let W denote the set of isolated nodes that are
added to H, so that |W | = α − k and G = (V ∪W,E). We also consider the
subgraph Hc = (V,Ec) of H, where Ec is the set of critical edges of H.

Upper bound on the number of isolated nodes. First, we investigate
some necessary conditions about the parameters α and k that must hold if
ϑ-rank(G) = 1.

Theorem 5.48. Given integers α > k ≥ 2, let H = (V,E) be a graph with
α(H) = k and let G = H⊕Kα−k. Assume the graph Hc = (V,Ec) is connected
and ϑ-rank(G) = 1. Then, we have

α ≤ k(k + 3)

k − 1
= k + 4 +

4

k − 1
. (5.17)

The rest of the section is devoted to the proof of Theorem 5.48. Through-
out we assume that G and H are as defined in Theorem 5.48, so that

MG = α(AG + I) − J ∈ K(1)
n . We will use the following result of Dobre

and Vera [DV15], which shows the existence of a K(1)-certificate for MG,
which inherits some symmetry properties of MG.

Proposition 5.49 ([DV15]). Assume M ∈ K(1)
n . Then, M has a K(1)-certificate

P (1), . . . , P (n) satisfying the following symmetry property: σ(P (i)) = P (σ(i))
for all σ ∈ Sym(n) such that σ(M) = M .

So, let {P (i) : i ∈ V } be a K(1)-certificate for MG satisfying the sym-
metry property from Proposition 5.49. In particular, since any permutation
σ ∈ Sym(W ) of the isolated nodes leaves the graph G invariant, it follows that

σ(P (i)) = P (σ(i)), i.e., P (i)σ(j)σ(k) = P (σ(i))jk

for all σ ∈ Sym(W ) and j, k ∈ V ∪W.
(5.18)



618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas
Processed on: 3-10-2023Processed on: 3-10-2023Processed on: 3-10-2023Processed on: 3-10-2023 PDF page: 106PDF page: 106PDF page: 106PDF page: 106

100 5. LOW ORDER SUM-OF-SQUARES BOUNDS FOR THE STABILITY NUMBER

We will use this symmetry property repeatedly in the proof. We mention a
simple identity that follows as a direct application of Lemma 5.46, which we
will also repeatedly use in the rest of the section:

P (i)jk + P (j)ik + P (k)ij = −3

if {i, j, k} is contained in a stable set of G with size α(G).
(5.19)

Now we prove some preliminary lemmas and we end with Lemma 5.53,
which will directly imply Theorem 5.48. We start with a general property
about the structure of the submatrices P (i)[W ] when i ∈ W is an isolated
node.

Lemma 5.50. There exists a scalar b ∈ R such that the following holds:

(i): P (i)ij = b for all distinct i, j ∈ W ,
(ii): P (i)jj = α− 2b− 3 for all distinct i, j ∈ W ,
(iii): P (i)jk = −1 for all distinct i, j, k ∈ W .

Proof. Let i, j, k ∈ W be distinct (isolated) nodes and set b := P (i)ij .
First, we show that b does not depend on the choice of i, j ∈ W . For this, we
use the symmetry property from (5.18), which claims P (i)σ(i)σ(j) = P (σ(i))ij
for any σ ∈ Sym(W ). Using the permutation σ = (j, k) we get P (i)ij =
P (i)ik = b, and using σ = (i, j) we get P (i)ij = P (j)ij = b, thus showing
(i). Now, by Lemma 5.1, we have P (i)jj + 2P (j)ij = α − 3, which implies
P (i)jj = α− 2b− 3 and thus (ii) holds. Using again (5.18) with σ = (i, k) we
obtain P (i)σ(i),σ(j) = P (σ(i))i,j , and thus P (i)jk = P (k)ij . Similarly, using
σ = (i, j) we get P (i)σ(i)σ(k) = P (σ(i))ik and thus P (i)jk = P (j)ik. By using
Eq. (5.19) for the nodes i, j, k we obtain P (i)jk = P (j)ik = P (k)ij = −1, thus
showing (iii). �

So, we know the structure of the submatrix P (i)[W ] when i ∈ W is an
isolated node. When the graph Hc (consisting of the critical edges of H) is
connected we can also derive the structure of the rest of the matrix P (i).

Lemma 5.51. Assume the graph Hc is connected. Then, the matrix P (i)
takes the form

P (i) =

⎛⎜⎜⎜⎜⎜⎜⎝

i W \ i V

i d . . . d
βJ

W \ i
d

V
... βJ γJ
d

⎞⎟⎟⎟⎟⎟⎟⎠ for all i ∈ W,

where the blocks are indexed by {i},W \{i} and V , respectively, and the scalars
d, β, γ are given by

d =
b(k + 1) + 1− α− bα

k
, β =

b+ 1− k

k
, γ =

α− k

k
.
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Proof. Fix an isolated node i ∈ W . Let {l,m} ∈ Ec be a critical edge
of H. By Lemma 5.43(iii) we get that the two columns of P (i) indexed by l
and m are identical. Since Hc is connected it follows that the columns of P (i)
indexed by V are all identical. From this follows that P (i)[V ] (the submatrix
of P (i) indexed by V ) is of the form γiJ for some scalar γi and there exists a
vector bi ∈ RW such that P (i)jh = (bi)j for all j ∈ W,h ∈ V .

Let j �= k ∈ W \{i} and v ∈ V . By applying Eq. (5.18) to the permutation
σ = (j, k), we obtain P (i)σ(k)σ(v) = P (σ(i))kv, and thus P (i)jv = P (i)kv.
Therefore, the entries of bi indexed by W \ {i} are all equal, say to a scalar
βi. We set di := (bi)i. Finally, we show that the scalars βi, γi, di in fact do not
depend on the choice of i ∈ W and take the values claimed in the lemma.

For this, consider an α-stable set S of G. Then, i ∈ S and thus, by
Lemma 5.43(i), the columns of P (i) indexed by S sum up to zero. Using
the identities of Lemma 5.50 combined with the above facts on the remaining
entries of P (i), we obtain

(α− 1) + (α− k − 1)b+ kdi = 0 =⇒ di =
b(k + 1) + 1− α− bα

k
,

b− (α− k − 2) + (α− 2b− 3) + kβi = 0 =⇒ βi =
b+ 1− k

k
,

di + (α− k − 1)βi + kγi = 0 =⇒ γi =
α− k

k
.

This concludes the proof. �

We now are able to conclude some properties on the structure of the ma-
trices P (j) for j ∈ V .

Lemma 5.52. Assume Hc is connected. For any v ∈ V the submatrix P (v)[W∪
{v}] takes the form

P (v)[W ∪ {v}] =
(

Mb
α
2 − α

2k − 1
α
2 − α

2k − 1 α− 1

)
, (5.20)

where the blocks are indexed by W and {v}, respectively. Here, b ∈ R is the
constant from Lemma 5.50 and the matrix Mb is indexed by V and takes the
form

Mb =

⎛⎜⎜⎜⎝
a c · · · c
c a · · · c
...

...
. . .

...
c c · · · a

⎞⎟⎟⎟⎠ ,

with a = α− 3− 2

k

(
b(k + 1) + 1− α− bα

)
, c = −1− 2

k
(b+ 1).

(5.21)
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Proof. Consider an isolated node i ∈ W . By Lemma 5.1, we have that
P (v)ii + 2P (i)iv = α− 3. This implies P (v)ii = α− 3− 2d and thus P (v)ii =
α− 3− 2

k (b(k + 1) + 1− α− bα), which shows the claimed value of a.
Consider i �= j ∈ W . As Hc is connected, v belongs to a critical edge and

thus there exists an α-stable set of G that contains i, j, v. Then, by (5.19), we
have P (i)vj + P (j)iv + P (v)ij = −3. This implies P (v)ij = −3− 2β and thus

P (v)ij = −1− 2(b+1)
k , which shows the claimed value of c.

Let i ∈ W . Using again Lemma 5.1, we get 2P (v)iv + P (i)vv = α − 3.

Hence, P (v)iv = α−3−γ
2 , which implies P (v)iv = α

2 − α
2k − 1. This completes

the proof. �

The following lemma gives necessary and sufficient conditions for the ma-
trix in Equation (5.20) to be positive semidefinite. In particular, the part (ii)
of the lemma shows Theorem 5.48.

Lemma 5.53. The matrix in Eq. (5.20) is positive semidefinite if and only if
the following two conditions hold:

(i): a ≥ c,
(ii): α ≤ k + 4 + 4

k−1 .

Proof. By taking the Schur complement of the matrix P (v)[W ∪ {v}] in
(5.20) with respect to its (v, v)-entry, we obtain that P (v)[W ∪{v}] � 0 if and
only if

(a− c)Iα−k +
(
c− 1

α− 1

(α
2
− α

2k
− 1
)2)

Jα−k � 0.

This happens if and only a ≥ c and the following inequality holds:

a− c+ (α− k)
(
c− 1

α− 1

(α
2
− α

2k
− 1
)2) ≥ 0.

We show that this last inequality holds if and only if (ii) holds. First, notice
that a+ (α− k− 1)c = k. Indeed, if we see this expression as a polynomial in
b, then the coefficient of b is

−2

k
(k − α+ 1)− 2

k
(α− k − 1) = 0

and the constant coefficient is

α− 3− 2(1− α)

k
+ (α− k − 1)(−1− 2

k
) = k.

Therefore, the inequality a−c+(α−k)(c− 1
α−1(

α
2 −

α
2k −1)2) ≥ 0 is equivalent

to

k(α− 1) ≥ (α− k)
(α
2
− α

2k
− 1
)2

.

Multiplying both sides by 4k2, this is equivalent to

4k3(α− 1) ≥ (α− k)(α(k − 1)− 2k)2

⇐⇒ 4k3α− 4k3 ≥ (α− k)(α2(k − 1)2 − 4k(k − 1)α+ 4k2)
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⇐⇒ 4k3α− 4k3 ≥ α3(k − 1)2 − α2k(k − 1)2 − 4α2k(k − 1) + 4αk3 − 4k3

after canceling terms on the right hand side. Cancelling terms at both sides
and dividing by α2(k − 1) (as k ≥ 2), we obtain α(k − 1)− 4k − k(k − 1) ≤ 0
and thus the desired inequality (ii). �

Lower bound on the number of isolated nodes. In Theorem 5.48 we
saw that if the subgraph Hc of critical edges of H is connected and the graph
G = H ⊕ Kα−k, obtained by adding α − k isolated nodes to a graph H
with α(H) = k, has ϑ-rank 1, then the parameters α and k must satisfy the
inequality (5.17). So, this gives the upper bound α − k ≤ 4 + 4/(k − 1) on
the number of isolated nodes that can be added while preserving the ϑ-rank
1 property.

Here, we provide some classes of graphs H for which it is indeed possible
to add this maximum number of isolated nodes and preserve the ϑ-rank 1
property. Hence, for these graphs, we characterize the exact number of isolated
nodes that can be added while preserving the ϑ-rank 1 property.

We begin with a preliminary lemma, which we will use for our main result
below.

Lemma 5.54. Assume α ≥ k ≥ 2 satisfy the inequality (5.17), and let M :=
αIα−k − Jα−k. Then (

M α
2 − α

2k − 1
α
2 − α

2k − 1 α− 1

)
� 0.

Proof. The above matrix corresponds to the matrix in Equation (5.20)
with b = −1, which gives a = α− 1 and c = −1, so that M = Mb = M−1. As
a ≥ c, using Lemma 5.53, we get the desired result. �

Theorem 5.55. Given integers α ≥ k ≥ 2, let H = (V,E) be a graph with
α(H) = k and let G = H ⊕ Kα−k. Assume that ϑ-rank(H \ i⊥) = 0 for all
i ∈ V and ϑ-rank(H) = 1. In addition, assume that α, k satisfy the inequality
(5.17). Then, we have ϑ-rank(G) = 1.

Proof. We construct a K(1)-certificate for the matrix MG. That is,
we construct matrices P (i) (for i ∈ W ∪ V ) that satisfy the properties of
Lemma 5.1. Recall Remark 5.2, where we observed that it will suffice to show
that the matrices P (i) belong to the cone K(0). For this, consider the following
construction (inspired from [GL07]), where we set M := αIα−k − Jα−k.
• For i ∈ V , we set

P (i) =

⎛⎜⎜⎝
M α

2 − α
2k − 1 − α

2k − 1
α
2 − α

2k − 1 α− 1 α
2 − 1− α2

2k

− α
2k − 1 α

2 − 1− α2

2k

{
α2

k − 1 if i � j
−1 else

⎞⎟⎟⎠ ,
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where the blocks are indexed by W , i⊥ and V \ i⊥, respectively. Here, the
notation i � j means that the nodes i and j are equal or adjacent in G.
• For i ∈ W , we set

P (i) =

(
M −1

−1 α−k
k J

)
,

where the blocks are indexed by W and V , respectively.
First, we show that the matrix P (i) is positive semidefinite for all i ∈ W .

Indeed, deleting repeated rows and columns and taking the Schur complement
(see Lemma 1.10) with respect to the lower right corner, we get that P (i) � 0
if and only if 0 � M − k

α−kJα−k = αIα−k − α
α−kJα−k, which is indeed true.

Next, we show that P (i) ∈ K(0) for all i ∈ V . For this, let i ∈ V and

observe that we can decompose P (i) as P (i) = Q(i) + α2

k(k−1)R(i), where

Q(i) =

⎛⎜⎝ M α
2 − α

2k − 1 − α
2k − 1

α
2 − α

2k − 1 α− 1 α
2 − 1− α2

2k

− α
2k − 1 α

2 − 1− α2

2k
α2

k(k−1) − 1

⎞⎟⎠ , and

R(i) =

⎛⎜⎜⎝
0 0 0
0 0 0

0 0

{
k − 2 if i � j
−1 else

⎞⎟⎟⎠ ,

whose blocks are indexed by W , i⊥ and V \ i⊥, respectively. We prove that

Q(i) � 0 and R(i) ∈ K(0).
First, we show that Q(i) is positive semidefinite. By Lemma 5.54, we

know that the submatrix Q(i)[W ∪ i⊥] is positive semidefinite. We will now
show that any column Cv of Q(i) indexed by a node v ∈ V \ i⊥ (in the third
block) can be expressed as a linear combination of the columns Cu indexed by
u ∈ W ∪ {i} (in the first two blocks), which directly implies that Q(i) � 0.
Namely, one can show Cv = 1

1−k (
∑

j∈W Cj + Ci) =: C by direct inspection of
the entries:
- for the entries indexed by u ∈ I we have:

Cu =
1

1− k

(
α− 1− (α− k − 1) +

α

2
− α

2k
− 1
)
= −1− α

2k
= (Cv)u,

- for the entries indexed by u ∈ i⊥ we have:

Cu =
1

1− k

(
(α− k)

(α
2
− α

2k
− 1
)
+ α− 1

)
= −1 +

α

2
− α2

2k
,

- for the entries indexed by u ∈ V \ i⊥ we have:

Cu =
1

1− k

(
(α− k)

(
− α

2k
− 1
)
+

α

2
− 1− α2

2k

)
=

α2

k(k − 1)
− 1.
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Now, we show that R(i) ∈ K(0). For this, note that α(H \ i⊥) ≤ k − 1,
which implies the entry-wise inequality(

0 0
0 MH\i⊥

)
≤ R(i).

By hypothesis MH\i⊥ ∈ K(0). Since adding zero row/columns preserve mem-

bership in K(0), we get that R(i) ∈ K(0).
To conclude the proof we now need to check that the linear constraints

(ii)-(iv) of Lemma 5.1 are satisfied by the matrices P (i). This is direct case
checking, but we give the details for clarity.

Identity (ii): P (v)vv = α− 1 = (MG)vv for all v ∈ V ∪ I.
Identity (iii): We check that P (u)vv + 2P (v)uv = (MG)vv + 2(MG)uv

for all u �= v ∈ I ∪ V :
• for i, j ∈ I, we have P (i)jj + 2P (j)ij = α− 1− 2 = α− 3,
• for i ∈ I, v ∈ V , we have

– P (i)vv + 2P (v)iv = α−k
k + α− α

k − 2 = α− 3,
– P (v)ii + 2P (i)iv = α− 1− 2 = α− 3,

• for u, v ∈ V , we have
– if {u, v} ∈ E then P (u)vv + 2P (v)uv = 3α− 3,

– if {u, v} /∈ E then P (u)vv + 2P (v)uv = α2

k − 1 + 2(α2 − 1−
α2

2k ) = α− 3.
Inequality (iv): We check

P (u)vw + P (v)uw + P (w)uv ≤ (MG)uv + (MG)vw + (MG)vw

for distinct u, v, w ∈ I ∪ V :
• for i, j, k ∈ I we have P (i)jk + P (j)ik + P (k)ij = −3,
• for i, j ∈ I, v ∈ V we have P (i)jv + P (j)iv + P (v)ij = −3,
• for i ∈ I, u, v ∈ V we have

– if {u, v} /∈ E then

P (i)uv + P (u)iv + P (v)iu =
α− k

k
− 2(

α

2k
+ 1) = −3,

– if {u, v} ∈ E then

P (i)uv + P (u)iv + P (v)iu =
α− k

k
+ 2(

α

2
− α

2k
− 1) = α− 3,

• for u, v, w ∈ V we have
– if {u, v}, {v, w}, {u,w} ∈ E then

P (u)vw + P (v)uw + P (w)uv = 3(α− 1),

– if {u, v}, {u,w} ∈ E, {v, w} /∈ E then

P (u)vw +P (v)uw +P (w)uv = α− 1+ 2(
α

2
− 1− α2

2k
) = 2α− 3− α2

2k
≤ 2α− 3,
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– if {u, v} ∈ E, {u,w}, {v, w} /∈ E then

P (u)vw + P (v)uw + P (w)uv = 2(
α

2
− 1− α2

2k
) +

α2

k
− 1 = α− 3,

– if {u, v}, {u,w}, {v, w} /∈ E then

P (u)vw + P (v)uw + P (w)uv = −3.

This completes the proof. �

We now give some examples of graphs for which the conditions of Theo-
rems 5.48 and 5.55 hold, so that we are able to compute the exact number of
isolated nodes that can be added with the resulting graph still having ϑ-rank
equal to 1.

Corollary 5.56. For any integer n ≥ 2 the following holds:

(i): ϑ-rank(C2n+1 ⊕Km) = 1 if and only if m ≤ 4 + 4
n−1 .

(ii): ϑ-rank(C2n+1 ⊕Km) = 1 if and only if m ≤ 8.

Proof. Consider the graph H = C2n+1 or H = C2n+1. As pointed out in
Example 5.21, H satisfies the property: ϑ-rank(H \ i⊥) = 0 for all i ∈ V , and
thus the assumption of Theorem 5.55 holds. For H = C2n+1, the inequality
(5.17) reads m ≤ 4+ 4

n−1 and, for H = C2n+1, it reads m ≤ 8. So the ‘if part’

in both (i), (ii) follows as a direct application of Theorem 5.55.
The ‘only if’ part in both (i), (ii) follows as a direct application of Theo-

rem 5.48, since the graph C2n+1 is critical while the subgraph of critical edges
of C2n+1 is a connected graph. �
Corollary 5.57. Assume H is a graph with χ(H) > α(H) = 2. Then,
ϑ-rank(H ⊕Km) = 1 if and only if m ≤ 8.

Proof. The ‘if’ part follows directly from Theorem 5.55. Now we prove
that ϑ-rank(H ⊕Km) ≥ 2 for m ≥ 9. Since H is not perfect it contains the
graph H0 = C5 or H0 = C2n+1 (n ≥ 2) as an induced subgraph. Hence,
H0 ⊕Km is an induced subgraph of H ⊕Km with the same stability number.
Then, by Lemma 5.8, ϑ-rank(H ⊕ Km) ≥ ϑ-rank(H0 ⊕ Km) ≥ 2, where the
last inequality follows from Corollary 5.56. �
Corollary 5.58. Consider a graph H and a connected component H0 of H.
Assume α(H0) ≥ 2 and the subgraph (H0)c of critical edges of H0 is connected.
Then, the following holds:

(i): If α(H) ≥ α(H0) + 9, then ϑ-rank(H) ≥ 2.
(ii): If α(H) ≤ α(H0)+8, then ϑ-rank(H⊕Ks) ≥ 2 for s ≥ 9−α(H)+

α(H0).

Proof. By Corollary 5.27, we know ϑ-rank(H0) ≥ 1. Pick a stable set
W ⊆ V (H \ H0) such that α(H0 ⊕ W ) = α(H), i.e., |W | = α(H) − α(H0).
Then, H0 ⊕W is an induced subgraph of H with the same stability number
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as H. Then, by Lemma 5.8, ϑ-rank(H0 ⊕ W ⊕ Ks) ≤ ϑ-rank(H ⊕ Ks) for
any s ≥ 0. By applying Corollary 5.57 to the graph H0, we obtain that
ϑ-rank(H0 ⊕W ⊕Ks) ≥ 2 if s + |W | ≥ 9. From these facts, (i) and (ii) now
follow easily. �

5.5. Bounds ν(r) and some extreme graph classes

We finish this chapter by analyzing the bounds ν(r)(G) introduced by Peña

Vera and Zuluaga [PVZ07] as the analog of the bounds ϑ(r), but using the

cones Q(r)
n instead of the cones K(r)

n . Thus, for a graph G = (V = [n], E), the

bounds ν(r)(G) are defined as

ν(r)(G) := min
{
t : t(AG + I)− J ∈ Q(r)

n

}
. (5.22)

Clearly, we have α(G) ≤ ϑ(r)(G) ≤ ν(r)(G) ≤ ζ(r)(G) as C(r)
n ⊆ Q(r)

n ⊆ K(r)
n .

Thus, ν(r)(G) converges asymptotically to α(G) as r → ∞. It was shown

that Conjecture 3.7 holds for graphs with α(G) ≤ 8, i.e., MG ∈ K(α(G)−1)
n for

graphs with α(G) ≤ 8. It was observed in [GL07] (see also [PVZ07]) that the

proof of this result extends to the bounds ν(r), that is, ν(α(G)−1)(G) = α(G)

for graphs with α(G) ≤ 8, i.e., MG ∈ Q(α(G)−1)
n for graphs with α(G) ≤ 8. We

define the ν-rank as the analog of the ϑ-rank for the bounds ν(r)(G).

Definition 5.59. Let G be a graph. We define the ν-rank of G as

ν-rank(G) = min{r ∈ N : ν(r)(G) = α(G)}.

We set ν-rank(G) = ∞ if such r does not exist.

It is not known whether ν-rank(G) is finite or not for every graph G.
It was pointed out in [DV15] that few graphs are known to have large ν-rank(G).
In this section, we construct graphs with large ν-rank. Namely, for each
integer k we construct a graph Lk with k + 3

(
k
2

)
nodes, α(Lk) = k, and

ν-rank(Lk) ≥ k − 1 (see Corollary 5.67), thus constructing a class of graphs
with unbounded ν-rank. Our approach relies on considering the notion of
Q(r)-certificate, which is a generalization of the notions of K(0)-certificates

and K(1)-certificates (recall that Q(0)
n = K(0)

n and Q(1)
n = K(1)

n ), and exploiting
the structure of the zeros of the form xTMGx to obtain information about the
corresponding Q(r)-certificates for MG. As an application, we give a class of
graphs for which ν-rank(G) ≥ α(G) − 1, thus showing that, if the result of

Conjecture 3.7 holds for the parameters ν(r)(G), then it is tight.

5.5.1. Certifying membership in the cones Q(r)
n . We recall the def-

inition of the cones Q(r)
n in relation (1.25): A symmetric matrix M ∈ Sn
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belongs to Q(r)
n if ( n∑

i=1

xi

)r
xTMx =

∑
β∈Nn,

|β|=r,r+2

σβx
β

for some σβ ∈ Σr+2−|β|. Observe that we can assume that, in the decompo-

sition, the monomials xβ with |β| = r + 2 are square-free. Otherwise, it can
be moved to a term of the form σβx

β with |β| = r. The sums of squares σβ
corresponding to the monomials xβ with |β| = r have degree 2, and thus take
the form xTP (β)x for some n× n positive semidefinite matrix P (β).

In summary, M ∈ Q(r)
n if, for any β ∈ Nn with |β| = r, there exist positive

semidefinite matrices P (β), and, for any A ⊆ [n] with |A| = r + 2, there exist
nonnegative scalars cA such that( n∑

i=1

xi

)r
xTMx =

∑
β∈Nn,
|β|=r

xβxTP (β)x+
∑
A⊆[n]

|A|=r+2

cAx
A (5.23)

We say that P (β) (for β ∈ Nn, with |β| = r + 2) forms a Q(r)-certificate for
M if there exist some scalars cA ≥ 0 for A ⊆ [n] with |A| = r + 2 for which
equation (5.23) holds. We now show a result about the structure of the kernel

of the matrices in a Q(r)-certificate.

Lemma 5.60. Let P (β) (for β ∈ Nn with |β| = r+2) be a Q(r)-certificate for
M and let x ∈ Rn

+ such that xTMx = 0. Let cA (for A ⊆ [n] with |A| = r+2)
be nonnegative scalars such that relation (5.23) holds. Then, for β ∈ Nn such
that Supp(β) ⊆ Supp(x), we have x ∈ ker(P (β)).

Proof. By evaluating equation (5.23) at x, the left hand side equals zero,
and all terms on the right hand side are nonnegative. Hence, every term on
the right hand side should vanish. In particular, if Supp(β) ⊆ Supp(x), then
xβ > 0. This implies that xTP (β)x = 0. Hence, P (β)x = 0 as P (β) � 0. �

5.5.2. Graph matrices and ν-rank. In this section, we specialize the
result of Lemma 5.60 to the case of graph matrices MG. We first show the
following preliminary result.

Lemma 5.61. Let G = ([n], E) be a graph and let r ≥ 0. Assume ν-rank(G) ≤
r, i.e., MG ∈ Q(r)

n . Let P (β) (for β ∈ N with |β| = r+ 2) be a Q(r)-certificate
for MG. Let C1, C2, . . . Cn be the columns of the matrix P (β) for a fixed
β ∈ Nn. Assume S := Supp(β) is stable and α(G \ S⊥) = α(G) − |S|. Then,
for any critical edge {i, j} of G \ S⊥, we have Ci = Cj.

Proof. Since {i, j} is critical in G\S⊥, then there exists I ⊆ V such that
I ∪{i} and I ∪{j} are stable of size α(G \S⊥) = α(G)− |S| in G \S⊥. Then,
S ∪ I ∪ {i} and S ∪ I ∪ {j} are stable of size α(G) in G. Let x = χS∪I∪{i} and
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y = χS∪I∪{j} be the indicator vectors of S ∪ I ∪ {i} and S ∪ I ∪ {j}. Then,
xTMGx = 0 and yTMGy = 0, in view of relation (5.8) and Theorem 5.7. Then,

by Lemma 5.60, x, y ∈ ker(P (β)), so that x − y = χ{i} − χ{j} ∈ ker(P (β)).
This implies Ci = Cj . �

Now, we state the main result of this section. For this, we recall that the
graph Gc = (V,Ec) of critical edges of G = (V,E) is obtained by deleting the
non-critical edges of G while keeping the same vertex set.

Theorem 5.62. Let G = ([n], E) be a graph and let S be a stable set of G
such that α(G \ S⊥) = α(G) − |S|. Assume that for any subset S′ ⊆ S with
|S′| = |S| − 2 we have that the graph (G \ S′⊥)c is connected. Then, we have
ν-rank(G) ≥ |S| − 1.

Proof. We show that MG /∈ Q|S|−2
n by contradiction. We set |S| − 2 = r.

AssumeMG ∈ Q(r)
n , and let P (β) (for β ∈ Nn with |β| = r) be aQ(r)-certificate

for MG. Then, there exist scalars cA ≥ 0 (for A ⊆ [n], with |A| = r + 2) such
that the following equation holds:( n∑

i=1

xi

)r
xTMGx =

∑
β∈Nn,
|β|=r

xβxTP (β)x+
∑
S⊆[n]

|A|=r+2

cAx
A. (5.24)

We will reach a contradiction by comparing the coefficient of xS(=
∏

i∈S xi)
in Equation (5.24) at both sides. On the left hand side, the coefficient is
−(r + 2)(r + 1) < 0. On the right hand side, the coefficient of xS is∑

S′⊆V
S′∪{i,j}=S

2P (S′)ij + cS .

We will show that all terms in the first summation are nonnegative. Let
S′ ⊆ S, with S′ ∪ {i, j} = S. Observe that α(G \ S′⊥) = α(G)− |S′|, because
α(G \ S⊥) = α(G) − |S| and S′ ⊆ S. By Lemma 5.61, if {v1, v2} is a critical
edge of G \ S′⊥, then the columns of P (S′) indexed by v1 and v2 are equal.
Using that (G\S′⊥)c is connected, we obtain that all columns of P (S′) indexed
by vertices of G \ S⊥ are identical. In particular, the columns indexed by i
and j are equal. This implies that P (S′)ij = P (S′)ii, which is nonnegative as
P (S′) � 0. Using that cS ≥ 0, we reach a contradiction as the coefficient of xS

on the right hand side is positive while on the left hand side it is negative. �

5.5.3. Graph classes with large ν-rank. In this section, we show exam-
ples of graphs with large ν-rank. We first recall the two graph classes (Gk)k∈N
and (Hk)k∈N introduced in [PVZ07] and [DV15]. It was conjectured (with
another language) that ν-rank(Lk) → ∞ and ϑ-rank(Gk) → ∞ as k → ∞ .
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Figure 5.9. Graphs H8 and H11.

Graphs Hk. Peña, Vera and Zuluaga [PVZ07] proposed the graphs H8, H11,
H14 and H17 shown in Figures 5.9 and 5.10. We have that α(H8) = 3,
α(H11) = 4, α(H14) = 5 and α(H17) = 6.

Figure 5.10. Graphs H14 and H17.

It was shown numerically (see [PVZ07] and [DV15]) that ν-rank(G) >
α(G)− 2 for G = H8, H11 and H14, and it was conjectured the same result for
H17. We give an analytical proof of a slightly weaker version of the property
just mentioned, as a direct application of Theorem 5.62.

Corollary 5.63. For i = 8, 11, 14, 17, we have ν-rank(Hi) > α(Hi)− 3.

Proof. We apply Theorem 5.62. For each graphHk with k = 8, 11, 14, 17,
we take S as the set of vertices highlighted (big vertices) in each graph. For
each case k = 8, 11, 14, 17, we have that Hk \ S⊥ is the complete graph K2,
thus α(H \ S⊥) = 1 = α(Hk) − |S|. To check the next condition, we first
observe that the graph H8 is critical. Now, note that in all cases, for any
S′ ⊆ S with |S′| = |S| − 2, the graph G \ S′⊥ is isomorphic to H8, and thus
(G \ S′⊥)c is connected. This concludes the proof. �

Graphs Gk. Dobre and Vera [DV15] defined the following class of graphs
Gk for k ≥ 1.

Definition 5.64. Let Kk+1,k+1 be the complete bipartite graph with bipartition
(U, V ) with U = {u0, u1, . . . , uk} and V = {v0, v1, . . . , vk}. The graph Gk is
obtained by adding a node wi in-between the edge {ui, vi} for all i = 1, 2, . . . , k;
that, is deleting the edge {ui, vi} and adding the edges {ui, wi} and {vi, wi}.
We show G2 and Gk in Figure 5.11.
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u0

u1

u2

v0

v1

v2

w1

w2

u0

u2

v0

v2

uk vk

u1 v1
w1

w2

wk

Figure 5.11. Graphs G2 and Gk

It was observed in [DV15] that α(Gk) = k + 1, and it was conjectured
that ν-rank(Gk) > k− 1. We show that ν-rank(Gk) > k− 2 as an application
of Theorem 5.62.

Corollary 5.65. Let Gk be the graph defined above. Then, we have
ν-rank(Gk) > k − 2, i.e., ν(k−2)(Gk) > α(Gk).

Proof. We set S = {w1, w2, . . . , wk}, then α(G\S⊥) = 1. For any subset
S′ ⊆ S with |S′| = k−2, the graphG\S′⊥ is isomorphic toG2. We observe that
the edges {u0, v0}, {u1, w1}, {w1, v1}, {u2, w2}, {w2, v2}, {u0, v2} and {v2, u0}
are critical in G2, therefore (G2)c is connected. Hence, by Theorem 5.62, we
obtain that ν-rank(Gk) ≥ k − 1. �

New class of graphs Lk. We define the following class of graphs Lk. We
start with a set of vertices Sk = {s1, . . . , sk}. For any pair of distinct nodes
si, sj of S we construct three extra nodes aij , bij , cij and we construct the edges
{si, aij}, {aij , bij}, {bij , sj}, {sj , cij}, {cij , si} so that the nodes si, aij , bij , sj ,
cij form a 5-cycle. Finally, we construct a bipartite graph K3,3 between the

nodes {aij , bij , cij} and {alm, blm, clm} if {i, j} �= {l,m}. So, Lk has k + 3
(
k
2

)
nodes.

Lemma 5.66. Let Lk be as above, then α(Lk) = k.

Proof. Note that Sk is stable of size k in Lk. We now show that there
is no stable set of size k + 1 in Lk. Let A ⊆ V be a stable set in Lk. By
construction, A could contain elements of type aij bij and cij from just one
pair (i, j). Assume that (1, 2) is such pair, so that {aij , bij , cij} ∩ A = ∅ if
(i, j) �= (1, 2). Hence, A is stable in the graph obtained by deleting all nodes
aij , bij and cij for (i, j) �= (1, 2), which is isomorphic to the graph C5 ⊕Kk−2.

Hence, |A| ≤ α(C5 ⊕Kk−2) = k. �
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s1
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s3

a12b12

c12

b23
a23

c23

a13
b13

c13

Figure 5.12. Graph L3

Corollary 5.67. For any k ≥ 2, we have ν-rank(Lk) > α(Lk) − 2, i.e.,

ν(α(Lk)−2)(Lk) > α(Lk).

Proof. We check that the set Sk satisfies the conditions of Theorem 5.62.
The graph G\S⊥

k is the empty graph, so we have 0 = α(Lk\S⊥
k ) = α(Lk)−|Sk|.

Now, for any subset S′ ⊆ Sk with |S′| = k−2, the graph Lk \S′⊥ is isomorphic
to C5, which is critical and connected. Then, by Theorem 5.62, we have
ν-rank(Lk) ≥ |Sk| − 1 = α(Lk)− 1. �

Discussion and open problems about the parameter ν(r)(G). It re-

mains open whether all graph matrices MG belong to some cone Q(r)
n . In

other words, whether the hierarchy ν(r)(G) has finite convergence to α(G).
The result of Corollary 5.67 shows that, if the analog of Conjecture 3.7 holds
for the parameter ν(r)(G) (i.e., ν-rank(G) ≤ α(G)−1), then the result is tight.
Recall that this result holds for any graph G with α(G) ≤ 8 (see [GL07]).
Therefore, for k = 2, . . . 8, we have ν-rank(Lk) = α(Lk) − 1 = k − 1, i.e.,

MLk
∈ Q(k−1) \ Q(k−2). It remains open whether this holds for all k ∈ N.
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CHAPTER 6

Test states and membership in quadratic modules

This chapter is based on my joint work [SV23] with Markus Schweighofer.

In this chapter, we prove two main results already announced in Chapters 2
and 3, namely, Theorems 2.2 and 3.8. Recall that these two results claim,
respectively, that

COP5 =
⋃
r≥0

K(r)
5 , (6.1)

and that the hierarchy ϑ(r)(G) has always finite convergence, that is, we have

MG ∈
⋃
r≥0

K(r)
n for every graph G = ([n], E). (6.2)

Recall that, in Theorem 2.3 in Chapter 2, we show that to prove Theorem 2.2
(i.e., that relation (6.1) holds) it suffices to show that every positive diagonal

scaling of the Horn matrix belongs to some cone K(r)
5 . We show this result.

Theorem 6.1. Let D = Diag(d1, . . . , d5) with di > 0 for i ∈ [5]. Then,

DHD ∈
⋃
r≥0

K(r)
n .

Also, in Proposition 5.19 in Chapter 5, we showed that the hierarchy
ϑ(r)(G) has finite convergence to α(G) (i.e., ϑ-rank(G) < ∞ for all G) if

and only if the finite convergence of the hierarchy ϑ(r)(G) is preserved after
adding isolated nodes (i.e., ϑ-rank(G) < ∞ implies ϑ-rank(G⊕ i0) < ∞). We
show that this last claim holds, and thus we obtain the finite convergence of
the hierarchy ϑ(r)(G) for every graph G.

Theorem 6.2. Let G = (V = [n], E) be a graph such that ϑ-rank(G) < ∞.
Then, ϑ-rank(G⊕ i0) < ∞.

Now, we briefly summarize the strategy of the proof of Theorems 6.1 and
6.2, for which we will use a similar idea in both cases.

113
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114 6. TEST STATES AND MEMBERSHIP IN QUADRATIC MODULES

Reformulations of the Theorems. First, using relation (2.1) in Chapter 2
(see also [dKP02]), we have that, for all n ≥ 1,⋃

r≥0

K(r)
n =

⋃
r≥0

LAS
(r)
Sn−1 . (6.3)

Recall that

M ∈
⋃
r≥0

LAS
(r)
Sn−1 ⇐⇒ (x◦2)TMx◦2 ∈ Σ+ I

( n∑
i=1

x2i − 1
)
.

Then, we can reformulate Theorems 6.1 and 6.2 as follows.

Theorem 6.3. Let D = Diag(d1, . . . , d5) with di > 0 for i ∈ [5]. Then,

(x◦2)TDHDx◦2 ∈ Σ+ I
( 5∑

i=1

x2i − 1
)
. (6.4)

Theorem 6.4. Let G = (V = [n], E) be a graph such that ϑ-rank(G) < ∞
(i.e., (

∑n
i=1 x

2
i )

rfG ∈ Σ for some r ∈ N). Then, we have

fG⊕i0 ∈ Σ+ I
(
x2i0 +

n∑
i=1

x2i − 1
)
. (6.5)

Recall that fG = (x◦)TMGx
◦2. So, in both cases, we need to show the

membership of a (quartic) form in some quadratic module.

Membership in quadratic modules. Given a polynomial f and sets of
polynomials g = {g1, . . . , gm} and h = {h1, . . . , hl}, a fundamental question
in real algebraic geometry is to decide whether f ∈ M(g) + I(h). Recall that
the sets M(g) and I(h) are defined as

M(g) :=
{ m∑

i=0

σigi : σi ∈ Σ for i = 0, 1, . . . ,m, and g0 := 1
}
,

and

I(h) :=
{ l∑

i=1

pihi : pi ∈ R[x] for i ∈ [l]
}
.

Observe that for showing that relations (6.4) and (6.5) hold we shall prove that
the polynomials (x◦2)TDHDx◦2 and fG⊕i0 belong to a particular quadratic
module M(g) + I(h). Clearly, if f ∈ M(g) + I(h), then f ≥ 0 on the
semialgebraic set

K =
{
x ∈ Rn : gi(x) ≥ 0 for i ∈ [m], hj(x) = 0 for j ∈ [l]

}
.

Then, a necessary condition for a polynomial f for belonging to M(g) + I(h)
is to be nonnegative on K. On the positive side, if f > 0 on K and the
polynomial sets g and h satisfy the Archimedean condition (1.15), then f
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6.1. PRELIMINARIES 115

belongs to M(g) + I(h) by Putinar’s theorem (see Theorem 1.9). Also, if
f ≥ 0 on K, f has finitely many zeros on K, and they satisfy some technical
conditions, then f ∈ M(g) + I(h) by Nie’s theorem (see Theorem 1.13).
The point, however, is that the polynomials (x◦2)TDHDx◦2 and fG⊕i0 have
infinitely many minimizers on their corresponding semialgebraic sets. Hence,
the last two results cannot be applied.

In this chapter, we develop a tool for testing membership in quadratic mod-
ules (Theorem 6.22). This result, which itself is based on a result shown in
[BSS12], permits to certify that a polynomial belongs to a quadratic module
even when the polynomial has infinitely many zeros on its associated semial-
gebraic set. As a main application, we prove Theorems 6.3 and 6.4.

6.1. Preliminaries

Membership in cones and pure states. Let V be a vector space over
R, and let C ⊆ V be a convex cone, i.e., 0 ∈ C, C +C ⊆ C and R+C ⊆ C. In
this section, we recap a useful tool for showing that a vector v ∈ V belongs to
the cone C. The definition and results of this preliminary section are based
on [BSS12] and [Schw22]. A very good and detailed exposition is given in
[Schw22, Chapter 7]. We will use this machinery repeatedly. We introduce
the following notions.

Definition 6.5. Let C be a convex cone in the R-vector space V and u ∈ V .
Then, u is called a unit of C (in V ) if, for every x ∈ V , there is some N ∈ N

such that Nu+ x ∈ C.

Definition 6.6. Let V be a vector space on R, C ⊆ V a convex cone, and
u ∈ V . A state of (V,C, u) is a linear function ϕ : V → R satisfying ϕ(C) ⊆
R+ and ϕ(u) = 1. The (convex) set of all states of (V,C, u) is denoted by
S(V,C, u). We say that ϕ ∈ S(V,C, u) is a pure state if it is an extreme point
of S(V,C, u).

Clearly, if x ∈ C, the ϕ(x) ≥ 0 for all pure states of S(V,C, u). The follow-
ing result shows that the reverse implication holds under a “strict positivity”
assumption.

Theorem 6.7 ([EHS80], see also Corollary 7.3.20 in [Schw22]). Suppose u
is a unit for the cone C in the vector space V over R and let x ∈ V . If
ϕ(x) > 0 for all pure states ϕ of S(V,C, u), then there exists ε > 0 such that
x− εu ∈ C. In particular, x ∈ C.

Preorders and dichotomy theorem. In this section, we recall a result
from [BSS12] (see also [Schw22]) in which the pure states of a very special
setting are characterized. This result will be used in Section 6.2 for giving a
criterion for testing membership in quadratic modules.

Definition 6.8. Let A be a commutative ring. The subset T ⊆ A is called
a preorder of A if A2 := {a2 : a ∈ A} ⊆ T , T + T ⊆ T and TT ⊆ T .
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116 6. TEST STATES AND MEMBERSHIP IN QUADRATIC MODULES

Given a preorder T of A, we say that M ⊆ A is a T -module of A if 0 ∈ M ,
M +M ⊆ M , and TM ⊆ M .

Observe that, in the situation of the above definition, we can think of
an ideal I of A as a vector space and of M as a cone in I. So, we can
consider the state space S(I,M, u) for a unit u for M in I. The following
result characterizes the pure states in this situation.

Theorem 6.9 (Dichotomy theorem [BSS12]). Let A be a commutative ring
with R ⊂ A. Suppose that I is an ideal of A, T is a preorder of A, M ⊆ I is
a T -module of A, u is a unit for M in I, and ϕ is a pure state of (I,M, u).
Then, exactly one of the following two assertions holds.

(i) ϕ is the restriction of a scaled ring homomorphism: There exists a
ring homomorphism Φ : A → R such that Φ(u) �= 0 and ϕ = 1

Φ(u)Φ|I .
(ii) There exists a ring homomorphism Φ : A → R with Φ|I = 0 such that

ϕ(ab) = Φ(a)ϕ(b) for all a ∈ A, b ∈ I.

6.2. Test states and membership in quadratic modules

In this section we will develop a tool that permits to test membership in
quadratic modules of R[x]. We first define the notion of quadratic modules.

Definition 6.10. Let M ⊆ R[x]. We say that M is a quadratic module of
R[x] if 1 ∈ M , M +M ⊆ M , and ΣM ⊆ M . In other words, M is a quadratic
module if M is a Σ-module of R[x] and 1 ∈ M .

Example 6.11. Given a set of polynomials g, the quadratic module generated
by g is defined as

M(g) =
{
σ +

n∑
i=1

giσi : σ, σi ∈ Σ, gi ∈ g
}
.

Observe that, for a finite set g, M(g) was already defined in relation (1.10)
in Chapter 1.

Example 6.12. Let M be a quadratic module, and let I be an ideal in R[x].
Then, M + I is a quadratic module.

Definition 6.13. We say that the quadratic module M is Archimedean if for
every p ∈ R[x] there exists N ∈ N such that N + p ∈ M and N − p ∈ M .

The following result is useful for identifying Archimedean quadratic mod-
ules (and shows the equivalence with the definition from relation (1.15) we
give in Chapter 1).

Proposition 6.14 (see, for example [Schw22]). Let M be a quadratic module.
Then, the following assertions are equivalent:

(i) M is Archimedean.
(ii) There exists N ∈ N such that N −

∑n
i=1 x

2
i ∈ M .
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6.2. TEST STATES AND MEMBERSHIP IN QUADRATIC MODULES 117

Example 6.15. Let n ≥ 1 be an integer. Then the set

Σ+ I
( n∑

i=1

x2i − 1
)

is an Archimedean quadratic module.

Definition 6.16. Let g ⊆ R[x] be a set of polynomials. We introduce the
nonnegativity set

S(g) := {x ∈ Rn : g(x) ≥ 0 for all g ∈ g}
of g. Moreover, for a given polynomial f ∈ R[x], we denote by

Z(f) := {a ∈ Rn | f(a) = 0}
its (real) zero set.

Remark 6.17. We make the following observations:

(a) Let g be a finite subset of R[x]. Then, S(g) is a basic closed semial-
gebraic set, i.e., the set of solutions of a finite system of polynomial
inequalities (usually denoted by K).

(b) If M is the quadratic module generated by a subset g of R[x], then
we have S(M) = S(g).

(c) If M is a finitely generated quadratic module, then S(M) is again a
basic closed semialgebraic set. This follows from (a) and (b).

Now we define the notion of test state that will be useful for stating the
main result of this section.

Definition 6.18. Let V be a vector space, C ⊆ V a convex set, u ∈ V , and
g ⊆ V . We say that u is g-stably contained in C if, for all g ∈ g, there exists
a real ε > 0 such that u+ εg ∈ C and u− εg ∈ C.

Note that in the situation of the above definition, if g �= ∅, then every
element g-stably contained in C is of course contained in C. We will select V
to be an ideal I of R[x], and C to be a quadratic module M intersected with
the ideal I. In this setting, the following result holds.

Proposition 6.19. Let g ⊆ R[x] be a nonempty set, let I = I(g) be the ideal
generated by g, let M be an Archimedean quadratic module of R[x], and let
u ∈ R[x] be a polynomial such that uM ⊆ M . If u is g-stably contained in M ,
then u is I-stably contained in M . In particular, if u ∈ I, then u is a unit of
the cone I ∩M in the vector space I.

Proof. The proof of this result is essentially from [Schw22], where this
result is stated in a more general context. We show the proof for completeness.

Consider the set

Bu = {p ∈ R[x] : there exists ε > 0 such that u± εp ∈ M}.
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118 6. TEST STATES AND MEMBERSHIP IN QUADRATIC MODULES

We show that Bu is an ideal of R[x]. Clearly, p ∈ Bu if and only if −p ∈ Bu.
Now, if u± ε1p ∈ M and u± ε2q ∈ M then ( 1

ε1
+ 1

ε2
)u± (p− q) ∈ M . Hence,

u± 1
1
ε1

+ 1
ε2

(p− q) ∈ M.

This shows that p− q ∈ Bu if p, q ∈ Bu.
We finally show that if p ∈ Bu, then pq ∈ Bu for all q ∈ R[x]. For this, we

observe that the following identity holds

q =
1

4
((q + 1)2 − (q − 1)2).

Then, it suffices to show that pq2 ∈ Bu for all q ∈ R[x]. SinceM is Archimedean
and p ∈ Bu, there exists N > 0 such that N − q2 ∈ M and Nu±p ∈ M . Since
uM ⊆ M , we have Nu−uq2 ∈ M . Since ΣM ⊆ M , we have Nuq2±pq2 ∈ M .
Hence,

N2u± pq2 = (N2u−Nuq2) + (Nuq2 ± pq2) ∈ M +M ⊆ M,

as desired. �
Now we introduce the notion of test state.

Definition 6.20. Let I be an ideal and M be a quadratic module of R[x]. Let
u ∈ I and a ∈ Rn. We call ϕ : I → R a test state on I for M at a with respect
to u if

(i) ϕ is linear,
(ii) ϕ(M ∩ I) ⊆ R≥0,
(iii) ϕ(u) = 1 and ϕ(pq) = p(a)ϕ(q) for all p ∈ R[x] and q ∈ I.

Remark 6.21. Let ϕ be a state as in Definition 6.20. If uM ⊆ M , then
we have that a ∈ Z(g) for every g ∈ M ∩ (−M). Indeed, ug ∈ M ∩ I, and
−ug ∈ M ∩ I, so that ϕ(gu) = 0. Hence, ϕ(u)g(a) = g(a) = 0.

Theorem 6.22. Let g ⊆ R[x] be a nonempty set of polynomials and let M be
an Archimedean quadratic module of R[x]. Let I = I(g) be the ideal generated
by g. Let f ∈ I and u ∈ M ∩ I. Assume the following assertions hold:

(i) f ≥ 0 on S(M).
(ii) Z(f) ∩ S(M) ⊆ Z(u) ∩ S(M).
(iii) uM ⊆ M .
(iv) u is g-stably contained in M .
(v) ϕ(f) > 0 for all test states on I for M at a point a ∈ Z(f) ∩ S(M).

Then, there is ε > 0 such that f − εu ∈ M . In particular, f ∈ M .

Proof. We will apply Theorem 6.7 in the following setting: The vector
space is the ideal I. The cone is M ∩ I. In view of Proposition 6.19, using
assumptions (iii) and (iv), we have that u is a unit of I ∩ M in I. So, we
consider the following state space:

S := S(I, I ∩M,u) = {ϕ | ϕ : I → R linear, ϕ(I ∩M) ⊂ R≥0, ϕ(u) = 1} ⊆ RI .
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6.2. TEST STATES AND MEMBERSHIP IN QUADRATIC MODULES 119

Let ϕ be a pure state of (I, I ∩ M,u). We will show that ϕ(f) > 0. Then,
by Theorem 6.7 we can conclude that, for some ε > 0, we have f − εu ∈
I ∩ M ⊆ M , as desired. To show ϕ(f) > 0, we apply Theorem 6.9 in the
following setting: A there is R[x] here, I there is also I here, T there is Σ+uΣ
here, M there is M ∩ I here, and u there is also u here. We show that the
assumptions of Theorem 6.9 hold. Clearly, Σ + uΣ is a preorder, and using
the fact that uM ⊆ M , we obtain that M ∩ I is a (Σ + uΣ)-module. Hence,
the assumptions of Theorem 6.9 hold. Then, exactly one of the following two
alternatives holds:

(1) ϕ is the restriction of a scaled ring homomorphism: There exists a ring
homomorphism Φ : R[x] → R such that Φ(u) �= 0 and ϕ = 1

Φ(u)Φ|I .
(2) There exists a ring homomorphism Φ : R[x] → R with Φ|I = 0 such

that

ϕ(pq) = Φ(p)ϕ(q) for all p ∈ R[x], q ∈ I.

It is easy to observe that every ring homomorphism Φ : R[x] → R is given by
a point evaluation, i.e., there exists a ∈ Rn, such that Φ(p) = p(a) for some
all p ∈ R[x]. Therefore, ϕ is determined by a vector a ∈ Rn. We can rewrite
the two alternatives depending on whether u(a) is zero or not, as follows:

(1) If u(a) �= 0: for every p ∈ I, we have ϕ(p) = p(a)
u(a) .

(2) If u(a) = 0: for every p ∈ R[x] and every q ∈ I, we have ϕ(pq) =
p(a)ϕ(q).

We first show that in both cases a belongs to S(M). Indeed, let p ∈ M .
We have pu ∈ I ∩M , since uM ⊆ M . Then, (in both cases) we have ϕ(pu) =
p(a) ≥ 0.

Assume now that we are the case (2). Since u, f ∈ I, we can compute
ϕ(fu) in two ways. First, we have ϕ(fu) = ϕ(f)u(a) = 0. Also, ϕ(fu) =
f(a)ϕ(u) = f(a). Hence, f(a) = 0, so a ∈ Z(f), so that a ∈ Z(f) ∩ S(M).
Hence, ϕ is precisely a test state on I for M at a point in Z(f) ∩ S(M), so
that ϕ(f) > 0 by assumption.

Finally, assume that we are in case (1), i.e., u(a) �= 0. Then we have
u(a) > 0, because u ∈ M and a ∈ S(M). By assumption f ≥ 0 on S(M), so
we have f(a) ≥ 0. Also, by assumption, we have Z(f)∩S(M) ⊆ Z(u)∩S(M).

This shows that, whenever u(a) �= 0, we have ϕ(f) = f(a)
u(a) > 0. Then, in case

(1) we also have ϕ(f) > 0, concluding the proof. �

Remark 6.23. Observe that Theorem 6.22 implies Putinar’s Positivstellen-
satz (Theorem 1.9). Suppose M is an Archimedean quadratic module and as-
sume that f > 0 on S(M). We set I = R[x] the ideal generated by the constant
polynomial u = 1. So that g = {1}. Clearly, Z(f)∩S(M) = ∅ = Z(1)∩S(M),
uM = M , and the polynomial u = 1 is g-stably contained in M . Finally, the
test state condition follows trivially because Z(f)∩S(M) is empty so there are
no such test states.
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6.3. Positive diagonal scalings of the Horn matrix

This section is devoted to the proof of Theorem 6.3. For this, we will
apply Theorem 6.22 in a special setting. We start with a preliminary result
that will be used in the proof of Theorem 6.3. This result is a reformulation
of Theorem 5.6, in which we characterized the diagonal scalings of the Horn

matrix that belong to the cone K(1)
5 .

Lemma 6.24. Let d1, d2, . . . , d5 > 0, then

(

5∑
i=1

dix
2
i )(x

◦2)THx◦2 ∈ Σ, if and only if

di−1 + di+1 ≥ di for i ∈ [5] (indices taken modulo 5).

(6.6)

Proof. This follows directly from Theorem 5.6 after rescaling the vari-
ables. �

We will just use the “if” part of Lemma 6.24 that also follows from the
following explicit decomposition (which can be found by using the explicit

K(1)-certificate for the diagonal scalings of the Horn matrix found in Theo-
rem 5.6):

(

5∑
i=1

dix
2
i )(x

◦2)THx◦2 = d1x
2
1(x

2
1 + x22 + x25 − x23 − x24)

2

+ d2x
2
2(x

2
1 + x22 + x23 − x24 − x25)

2

+ d3x
2
3(x

2
2 + x23 + x24 − x25 − x21)

2

+ d4x
2
4(x

2
3 + x24 + x25 − x21 − x22)

2

+ d5x
2
5(x

2
1 + x24 + x25 − x22 − x23)

2

+ 4x21x
2
2x

2
5(d5 − d1 + d2) + 4x21x

2
2x

2
3(d3 + d1 − d2)

+ 4x22x
2
3x

2
4(d4 + d2 − d3) + 4x23x

2
4x

2
5(d5 + d3 − d4)

+ 4x24x
2
5x

2
1(d1 + d4 − d5).

In particular, if (d1, d2, . . . , d5) ≈ (1, 1, . . . , 1), then (
∑5

i=1 dix
2
i )(x

◦2)THx◦2 is
a sum of squares.

Now we proceed with the proof of Theorem 6.3.

Proof of Theorem 6.3. We observe that relation (6.4) in Theorem 6.3
holds for any d1, . . . , d5 > 0 if and only if for any d1, . . . , d5 > 0 we have

(x◦2)THx◦2 ∈ Σ+ I
( 5∑

i=1

dix
2
i − 1

)
. (6.7)
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We set h := (x◦2)THx◦2. We will show that relation (6.7) holds by applying
Theorem 6.22 in the following setting:

• M = Σ+ I
(∑5

i=1 dix
2
i − 1

)
• I = I(h), so it is generated by the set g = {h}.
• u = (

∑5
i=1 x

2
i )h

• f = h

In what follows we will show that this setting satisfies the assumptions of
Theorem 6.22, thus enabling us to conclude that h ∈ M , as desired. First,
we show that M is Archimedean. We have 1 −

∑5
i=1 dix

2
i ∈ M . If we set

d = min{di : i ∈ [5]}, then we have 1−
∑5

i=1 dxi ∈ M , so that 1
d−
∑5

i=1 x
2
i ∈ M .

Thus, for any N > 1
d , we have N −

∑5
i=1 x

2
i ∈ M . Since H is copositive we

have that h is globally nonnegative. In particular, h ≥ 0 on S(M). Clearly,
we have Z(h) ∩ S(M) ⊆ Z(u) ∩ S(M), and uM ⊆ M holds as u ∈ Σ (since

H ∈ K(1)
5 ).

We now show that (
∑5

i=1 x
2
i )h is g-stably contained in M . By relation

(6.6), the polynomial σ := (
∑5

i=1 x
2
i ± ε

∑5
i=1 dix

2
i )h is a sum of squares for

some ε > 0 small enough. Then,

σ = (

5∑
i=1

x2i )h± ε(

5∑
i=1

dix
2
i )h,

σ = (

5∑
i=1

x2i )h± ε(

5∑
i=1

dix
2
i − 1 + 1)h,

which implies (

5∑
i=1

x2i )h± εh = σ ∓ ε(

5∑
i=1

dix
2
i − 1)h ∈ M,

showing that (
∑5

i=1 x
2
i )h is g-stably contained in M . It remains to show that

for all test states ϕ on I for M at a point a ∈ Z(h)∩ S(M) with respect to u,
we have ϕ(h) > 0. Let ϕ be such state. Then, we have

ϕ
(
(

5∑
i=1

x2i )h
)
= 1 = (

5∑
i=1

a2i )ϕ(h).

This shows that ϕ(h) > 0 as a �= 0. Then, by Theorem 6.22, we have that
h = (x◦2)THx◦2 ∈ M .

6.4. The hierarchy ϑ(r)(G) has finite convergence

In this section, we show Theorem 6.4 that, as mentioned earlier, implies
the finite convergence of the hierarchy ϑ(r)(G) for every graph G.
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Proof of Theorem 6.4. Recall that, by assumption, ϑ-rank(G) < ∞.
Then, there exists r ∈ N such that (

∑n
i=1 x

2
i )

rfG ∈ Σ. We fix α := α(G), so
that α(G ⊕ i0) = α + 1. Observe that the following identity holds (this also
follows from relation (5.13), see also [GL07]):

fG⊕i0 = g2 +
α+ 1

α
fG, where g :=

√
αx2i0 −

1√
α
(x21 + . . .+ x2n). (6.8)

Indeed, we compare coefficients

x4i0 : α = α

x4i for (i �= i0) : α =
1

α
+

α+ 1

α
· (α− 1)

x2ix
2
j for {i, j} ∈ E : 2α =

2

α
+

α+ 1

α
· 2(α− 1)

x2ix
2
j for {i, j} /∈ E, i, j �= i0 : −2 =

2

α
− 2 · α+ 1

α

x2i0x
2
i for i �= i0 : −2 = −2 ·

√
α√
α

We apply Theorem 6.22 in the following setting:

• M := Σ + I
(
x2i0 +

∑n
i=1 x

2
i − 1

)
,

• I := I({g2, fG}),

• u := g2︸︷︷︸
=:u1

+
α+ 1

α

(
n∑

i=1

x2i

)2r

fG︸ ︷︷ ︸
=:u2

,

• f = fG⊕i0 .

Then, M is Archimedean, f ∈ I, and u ∈ M ∩ I. Clearly, fG⊕i0 ≥ 0 on
S(M), because fG⊕i0 is globally nonnegative (as MG⊕i0 is copositive). Now,
by looking at relation (6.8), if fG⊕i(x) = 0, then g2(x) = 0 and fG(x) = 0.
This implies

Z(fG⊕i0) ⊆ Z(u),

and thus,

Z(fG⊕i0) ∩ S(M) ⊆ Z(u) ∩ S(M).

The inclusion uM ⊆ M holds as u ∈ Σ (by construction). Now, we show that
u is g-stably contained in M . First, it is clear that u± g2 is a sum of squares,
so it belongs to M . It remains to prove that there exists ε > 0 such that
u ± εfG ∈ M , which is equivalent to show that there exists N > 0 such that
Nu± fG ∈ M . For this, we will show the following two statements.

(1) There exist N1, N2 ∈ N such that N1u1 +N2u2 + fG ∈ M ,
(2) There exist N1, N2 ∈ N such that N1u1 +N2u2 − fG ∈ M ,

If this holds, then using that u1, u2 ∈ Σ ⊆ M , we obtain that there exists
N ∈ N such that Nu± fG ∈ M , as desired.
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For proving (1) and (2), observe that if we have p1 ≡ p2 (mod x2i0+
∑n

i=1 x
2
i−1),

then p1 ∈ M if and only if p2 ∈ M . We have the following:

1− x2i0 ≡
n∑

i=1

x2i (mod x2i0 +

n∑
i=1

x2i − 1), (6.9)

g ≡ 1√
α
((α+ 1)x2i0 − 1) (mod x2i0 +

n∑
i=1

x2i − 1). (6.10)

Proof of (1): Consider the univariate polynomial p := c′(1 − x2i0)
r − 1 in

R[xi0 ], where c′ := (1 − 1
α+1)

−r. Observe that xi0 = ± 1√
α+1

are roots of p.

Thus, (α+ 1)x2i0 − 1 divides p in R[xi0 ], so we can write

p = ((α+ 1)x2i0 − 1)q

for some q ∈ R[xi0 ]. Since M is Archimedean, using Definition 6.13, there
exists C ∈ N such that

C + q2fG ∈ M.

Since ((α+ 1)x2i0 − 1)2 ∈ Σ and ΣM ⊆ M , we have

C((α+ 1)x2i0 − 1)2 + p2fG = (C + q2fG)((α+ 1)x2i0 − 1)2 ∈ M.

Then, by using the definition of p, we obtain

C((α+ 1)x2i0 − 1)2 + c′2(1− x2i0)
2rfG − 2c′(1− x2i0)

rfG + fG ∈ M.

Using (6.10) and (6.9) we obtain

αCg2 + c′2(
n∑

i=1

x2i )
2rfG − 2c′(

n∑
i=1

x2i )
rfG + fG ∈ M.

By assumption, we have that (
∑n

i=1 x
2
i )

rfG ∈ Σ ⊆ M and thus

αCg2 + c′2(
n∑

i=1

x2i )
2rfG + fG ∈ M,

which shows (1).

Proof of (2): Consider the univariate polynomial p := c′(1 − x2i0)
2r − 1 in

R[xi0 ], where c′ := (1 − 1
α+1)

−2r. Observe that xi0 = ± 1√
α+1

are roots of p.

Thus, (α+ 1)x2i0 − 1 divides p in R[xi0 ], so we can write

p = ((α+ 1)x2i0 − 1)q

for some q ∈ R[xi0 ]. Since M is Archimedean, there exists C ∈ N such that

C − q2fG ∈ M.

Since ((α+ 1)x2i0 − 1)2 ∈ Σ ⊆ M and ΣM ⊆ M we have

C((α+ 1)x2i0 − 1)2 − p2fG = ((α+ 1)x2i0 − 1)2(C − q2fG) ∈ M.
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That is,

C((α+ 1)x2i0 − 1)2 − c′2(1− x2i0)
4rfG + 2c′(1− x2i0)

2rfG − fG ∈ M.

Using (6.10) and (6.9), we obtain

αCg2 − c′2(
n∑

i=1

x2i )
4rfG + 2c′(

n∑
i=1

x2i )
2rfG − fG ∈ M.

By assumption, we have (
∑n

i=1 x
2
i )

rfG ∈ Σ. This implies (
∑n

i=1 x
2
i )

4rfG ∈ Σ.
Hence, we have

αCg2 + 2c′(
n∑

i=1

x2i )
2rfG − fG ∈ M,

which shows (2).

Finally, we check the test state property. Let ϕ be a test state on I for M
at a point a ∈ Z(fG⊕i0)∩S(M) with respect to u. Since (

∑n
i=1 x

2
i )

rfG ∈ M∩I,
we have that

0 ≤ ϕ
(( n∑

i=1

x2i

)r
fG

)
=
( n∑

i=1

a2i

)r
ϕ(fG),

where a2i0 +
∑n

i=1 a
2
i = 1 (recall Remark 6.21) and fG⊕i0(a) = 0. It is easy

to observe that fG⊕i0(±1, 0, . . . , 0) > 0, so that a �= (±1, . . . , 0). This implies
that

∑n
i=1 a

2
i > 0, and thus ϕ(fG) ≥ 0. Since g2 ∈ I ∩ M , we have that

ϕ(g2) ≥ 0. Also, we have

1 = ϕ(u) = ϕ(g2) +
α+ 1

α
ϕ
(( n∑

i=1

x2i

)2r
fG

)
= ϕ(g2) +

α+ 1

α

( n∑
i=1

a2i

)2r
ϕ(fG).

Therefore, ϕ(g2) and ϕ(fG) are nonnegative but they cannot be both zero.
Using relation (6.8), we obtain

ϕ(fG⊕i0) = ϕ(g2) +
α+ 1

α
ϕ(fG) > 0,

as desired.
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CHAPTER 7

Bicliques and biindependent sets

This chapter is based on my work [LPV23] with Monique Laurent and
Sven Polak.

Given a bipartite graph G = (V1∪V2, E), a bipartite biindependent pair in
G is a pair (A,B) of subsets A ⊆ V1 and B ⊆ V2 such that no pair of nodes
{i, j} ∈ A × B is an edge of G. The adjective “bipartite” is used to indicate
that we restrict to the pairs (A,B) that respect the bipartite structure of G,
i.e., with A ⊆ V1 and B ⊆ V2; we will however sometimes omit it for the sake
of brevity. The maximum sum |A|+ |B| taken over all bipartite biindependent
pairs (A,B) is the well-studied parameter α(G). We consider the following two
other parameters, asking for the maximum product |A| · |B| and the maximum

ratio |A|·|B|
|A|+|B| ,

g(G) := max{|A| · |B| : (A,B) is a bipartite biindependent pair in G}, (7.1)

h(G) := max
{

|A|·|B|
|A|+|B| : (A,B) is a bipartite biindependent pair in G

}
. (7.2)

If G is a complete bipartite graph, then any bipartite biindependent pair
has A = ∅ or B = ∅ (and thus g(G) = h(G) = 0); such a pair is called
trivial. Otherwise, in the definition of g(G) and h(G), one may restrict the
optimization to nontrivial pairs (A,B), i.e., with A,B �= ∅. A pair (A,B) is
called balanced if |A| = |B|. Then a related parameter of interest is αbal(G),
the maximum number of vertices in a balanced biindependent pair, given by

αbal(G) := max{|A|+ |B| : (A,B) is a balanced biindependent pair in G}.

One can also define the parameters gbal(G) and hbal(G) as the analogs of g(G)
and h(G), where one restricts the optimization to balanced pairs in (7.1) and
(7.2), respectively.

7.1. Introduction

In this section we first present a first introductory result that relates the
parameters defined above. Then, we explain some applications of the param-
eters. Next, we present a roadmap through the main results of the chapter,
that deal with complexity questions, and with designing semidefinite bounds
and closed-form eigenvalue-based bounds, topics to which we come back in
detail in Sections 7.2, 7.3, 7.4, and 7.6. In Section 7.5 we will present several

125
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126 7. BICLIQUES AND BIINDEPENDENT SETS

illustrating examples.

We have the following easy relations among the above parameters.

Lemma 7.1. Let G be a bipartite graph. Then, we have

1
4αbal(G) =

1

2

√
gbal(G) = hbal(G) ≤ h(G) ≤ 1

2

√
g(G) ≤ 1

4α(G), (7.3)

h(G) =
1

4
α(G) ⇐⇒ 1

2

√
g(G) =

1

4
α(G) ⇐⇒ α(G) = αbal(G), (7.4)

Proof. The equalities 1
4αbal(G) = 1

2

√
gbal(G) = hbal(G) follow from the

definitions. We now show the inequalities in (7.3). First, if (A,B) is optimal for

αbal(G), then |A| = |B| and thus we have h(G) ≥ |A|·|B|
|A|+|B| = |A|/2 = αbal(G)/4.

Second, if (A,B) is optimal for h(G), then 1
2

√
g(G) ≥ 1

2

√
|A| · |B| ≥ |A|·|B|

|A|+|B| =

h(G), where the last inequality holds as (
√
|A|−

√
|B|)2 ≥ 0. Third, if (A,B)

is optimal for g(G), then 1
4α(G) ≥ 1

4(|A| + |B|) ≥ 1
2

√
|A| · |B| = 1

2

√
g(G),

where again the last inequality holds as (
√
|A| −

√
|B|)2 ≥ 0. This concludes

the proof of (7.3). Moreover, equality 1
4α(G) = 1

2

√
g(G) implies |A| = |B|, and

thus (A,B) is a balanced optimal solution for α(G), so that α(G) = αbal(G).

In addition, if h(G) = 1
4α(G), then 1

4α(G) = 1
2

√
g(G) by (7.3), which, as we

just observed, implies α(G) = αbal(G). The other implications follow directly
from (7.3). �

Now, we explain how the above parameters also permit to model problems
about bicliques (in arbitrary graphs) and we mention some applications.

Biindependent pairs and bicliques in arbitrary graphs. Bipartite
biindependent pairs in bipartite graphs also permit to model general biinde-
pendent pairs and bicliques in arbitrary graphs. Consider an arbitrary graph
G = (V,E) (not necessarily bipartite). A biindependent pair in G is a pair
(A,B) of disjoint subsets of V such that no pair of nodes {i, j} ∈ A × B
is an edge of G (but edges are allowed within A or B). One then defines
analogously the parameters gbi(G) and hbi(G), respectively, as the maximum

product |A| · |B| and the maximum ratio |A|·|B|
|A|+|B| , taken over all biindependent

pairs in G. The analog of relation (7.3) holds:

hbi(G) ≤ 1

2

√
gbi(G) ≤ 1

4
|V |.

Note that hbi(G) ≥ 1
4α(G) if α(G) is even and hbi(G) ≥ 1

4

(
α(G) − 1

α(G)

)
if

α(G) is odd (which can be seen by partitioning a maximum stable set into
two almost equally sized parts). The parameters hbi(G) and gbi(G) can in
fact be reformulated in terms of the parameters g(·) and h(·) for an associated
bipartite graph B0(G), the extended bipartite double of G, defined as follows.
First we define the bipartite double B(G), whose node set is V ∪ V ′, where
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7.1. INTRODUCTION 127

V ′ = {i′ : i ∈ V } is a disjoint copy of V , and whose edges are the pairs
{i, j′} and {j, i′} for {i, j} ∈ E. Then, the extended bipartite double B0(G) is
obtained by adding all pairs {i, i′} (i ∈ V ) as edges to B(G). Now, observe
that a pair (A,B) is biindependent in G precisely when the pair (A ⊆ V,B′ :=
{i′ : i ∈ B} ⊆ V ′) is bipartite biindependent in B0(G). Therefore we have

gbi(G) = g(B0(G)) and hbi(G) = h(B0(G)) for any graph G. (7.5)

One can also model bicliques in an arbitrary graph G = (V,E). A biclique
in G is a pair (A,B) of disjoint subsets of V such that A×B ⊆ E or, equiva-
lently, (A,B) is a biindependent pair in the complementary graph G = (V,E)
of G. In analogy, let gbc(G) and hbc(G) denote the maximum product |A| · |B|
and ratio |A|·|B|

|A|+|B| , taken over all bicliques (A,B) in G, so that for any graph G

we have

gbc(G) = gbi(G) = g(B0(G)) and hbc(G) = hbi(G) = h(B0(G)). (7.6)

In the case when G = (V1 ∪ V2, E) is a bipartite graph, nontrivial bicliques
in G correspond to nontrivial bipartite biindependent pairs in the bipartite

graph G
b
:= (V1 ∪ V2, (V1 × V2) \E), known as the bipartite complement of G.

So we also have

gbc(G) = g(G
b
) and hbc(G) = h(G

b
) for any graph G. (7.7)

So relations (7.6) and (7.7) offer different formulations for the parame-
ters gbc(·) and hbc(·), we will investigate in Section 7.4.3 how the associated
semidefinite bounds relate.

Complexity results. As is well-known, there are polynomial-time algo-
rithms for computing the stability number α(G) of a bipartite graph G. For
example, by computing ϑ(G) (which is equal to α(G), as G is perfect) with
precision 1

4 . On the other hand, Peeters [Pe03] shows that, given an integer k,
deciding whether a bipartite graph G has a biclique (A,B) with |A| · |B| ≥ k
is an NP-complete problem. Hence, computing the parameter g(G) is an NP-
hard problem (by switching between bicliques and biindependent pairs).

We will show that also h(G) is hard to compute. For this, we show that
the problem (denoted α-BAL-BIP in Section 7.2) of deciding whether a bi-
partite graph G has a balanced maximum independent set, i.e., whether it
holds that α(G) = αbal(G), is NP-complete (see Theorem 7.4). Combining
with Lemma 7.1, it follows that deciding whether h(G) ≥ 1

4α(G) is an NP-
complete problem.

It is known that, given an integer k, deciding whether a bipartite graph
G contains a bipartite biindependent pair (A,B) with |A| = |B| = k is an
NP-complete problem [Gar79, John87] (switching between biindependent
pairs and bicliques). Hence our hardness result for problem α-BAL-BIP shows
hardness of this problem already for the case k = 1

2α(G).
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Our proof technique will in fact permit to show NP-hardness for a broader
set of problems, namely for deciding whether any of the following equalities
holds: g(G) = gbal(G), h(G) = hbal(G), h(G) = 1

2

√
g(G), or 1

2

√
g(G) =

1
4α(G) (thus whether the inequalities in (7.3) hold at equality). See Theo-
rem 7.11 and Corollary 7.12.

Some applications for the parameters g(·) and h(·). As explained
above, the parameter g(·) also allows to model maximum edge cardinality
bicliques in bipartite (or general) graphs. This problem has many real life
applications, such as reducing assembly times in product manufacturing lines
and in the area of formal concept analysis, as explained in [DKST01] (see also
[DKT97, ST98]). The related parameter asking for the maximum number
of vertices in a balanced biclique has also many applications; e.g., in VLSI
design (e.g., [AYRP07, RL88, Tah06]), in the analysis of biological data
(as instance of bicluster, e.g., [YWWY05]) and of interactions of proteins
(e.g., [MRU87]).

The parameter g(·) is also relevant for bounding the nonnegative rank of a

matrix. Given a matrix M ∈ R
|V1|×|V2|
+ , its nonnegative rank rank+(M) is the

smallest integer r ∈ N such that M =
∑r

�=1 a�b
T
� for some nonnegative vectors

a� ∈ R
|V1|
+ and b� ∈ R

|V2|
+ ; computing rank+(·) is an NP-hard problem [Vav09].

A classical combinatorial lower bound for rank+(M) is the rectangle covering
bound rc(M), defined as the smallest number of rectangles A × B ⊆ V1 × V2

whose union is equal to the support SM := {(i, j) ∈ V1 × V2 : Mij �= 0} of
M . (See, e.g., [FKPT13]). The rectangle covering bound was used, e.g., in
[FMPTW12] to show an exponential lower bound on the extension complex-
ity of combinatorial polytopes such as the traveling salesman and correlation
polytopes. Also the parameter rc(M) is not easy to compute. To approximate
it, one can consider the bipartite graph BM , with vertex set V1 ∪ V2 and edge
set EM := (V1 × V2) \ SM . Then one can show that rc(M) · g(BM ) ≥ |SM |.
Hence, an upper bound on g(BM ) gives directly a lower bound on rc(M) and
thus a lower bound on the nonnegative rank rank+(M).

The parameter h(·) was introduced by Vallentin [Val20], who observed
its relevance to maximum product-free subsets in groups in work of Gow-
ers [Gow08]. Let Γ be a finite group. A set A ⊆ Γ is called product-free if
ab �∈ A for every pair of elementes a, b ∈ A, and one is interested in finding the
largest cardinality of a product-free set in Γ (see [Gow08, Ked09] for back-
ground on this problem). We now briefly indicate how to bound this parameter
using the parameter h(·); for the interested reader we present this connection
in more detail in my work with Laurent and Polak [LPV23, Appendix A].

Assume A ⊆ Γ is product-free. Let GΓ,A = (V1 ∪ V2, E) be the associated
bipartite Cayley graph, where V1 and V2 are disjoint copies of Γ and there is
an edge between v1 ∈ V1 and v2 ∈ V2 if their product v1v2 belongs to A. The
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crucial observation now is that since A is product-free, the pair (A1, A2) is
(balanced) bipartite biindependent in GΓ,A, where A1 ⊆ V1, A2 ⊆ V2 are the

corresponding disjoint copies of A. This implies |A|
2 ≤ h(GΓ,A). Hence, upper

bounds on h(GΓ,A) give upper bounds on product-free sets in Γ. Vallentin

[Val20] introduced the eigenvalue-based upper bound h(G) ≤ |V |
2r λ2(AG) for

any r-regular bipartite graph G. Applying it to the |A|-regular bipartite graph
GΓ,A, he could recover a result by Gowers [Gow08], which states that a

product-free subset A in Γ has cardinality |A| ≤ |Γ|/k1/3, where k is the
minimum dimension of a nontrivial representation of Γ. We will show the

sharper eigenvalue-based bound h(G) ≤ ĥ(G) = |V |
4

λ2(AG)
r+λ(AG) (see Proposition

7.22). This gives a slight sharpening of Gowers’ bound, replacing |Γ|
k1/3

by
|Γ|

1+k1/3
(see Theorem A.2 in [LPV23]).

In fact, for this application, one is only interested in balanced biindependent
pairs in the graph GΓ,A and we have 2|A| ≤ αbal(GA) if A is product-free in
Γ. This motivates investigating whether sharper semidefinite and eigenvalue-
based bounds can be found for the balanced parameters. We come back briefly
to this question later in the introduction and it will be investigated in detail
in Section 7.6.

Semidefinite approximations. The parameters g(G) and h(G) can be
formulated as polynomial optimization problems, which leads to hierarchies of
semidefinite programming (SDP) upper bounds gr(G) and hr(G) (for r ≥ 1),
able to find the original parameters at order r = α(G). We investigate in
particular the SDP bounds obtained at the first order r = 1. As we will see
they take the form

g1(G) = max
X∈SV

{
〈C,X〉 :

(
1 diag(X)T

diag(X) X

)
� 0, Xij = 0 if {i, j} ∈ E

}
,

(7.8)

h1(G) = max
X∈SV

{〈C,X〉 : X � 0, Tr(X) = 1, Xij = 0 if {i, j} ∈ E}. (7.9)

Here, C = 1
2

(
0 J
J 0

)
∈ R|V1|+|V2|, where J denotes the all-ones matrix of ap-

propriate size. The parameters g1(G) and h1(G) can be seen as quadratic
variations of the parameter ϑ(G) (which, if G is bipartite (and thus perfect),
is equal to α(G)). Indeed, If we replace 〈C,X〉 by 〈J,X〉 in program (7.9) we
obtain the formulation (3.1) for ϑ(G) introduced in Chapter 3. If we replace
the objective 〈C,X〉 by Tr(X) in program (7.8) , then we obtain another well-
known formulation for ϑ(G), see formulation (7.20). We will show the following
relations between the parameters h(G), g(G), h1(G), g1(G), and α(G).

Proposition 7.2. For any bipartite graph G we have

h(G) ≤ 1
2

√
g(G) ≤ h1(G) ≤ 1

2

√
g1(G) ≤ 1

4α(G).
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It is interesting to note that h1(G) may improve the bound 1
2

√
g1(G) for

1
2

√
g(G). Indeed, the inequality h1(G) ≤ 1

2

√
g1(G) can be strict, e.g., when

G is Kn,n minus a perfect matching with n ≥ 5, as we see in Section 7.5. The
key ingredient to show this is getting eigenvalue-based reformulations for the
parameters when G enjoys symmetry properties, as we discuss next.

Eigenvalue bounds. When G is a bipartite r-regular graph we can give
closed-form bounds in terms of the second largest eigenvalue of the adjacency
matrix AG of G. These bounds are obtained by restricting in the definitions
(7.8) and (7.9) of g1(G) and h1(G) the optimization to matrices with some
symmetry.

Proposition 7.3. Assume G is a bipartite r-regular graph, set n := |V1| =
|V2|, and let λ2 be the second largest eigenvalue of the adjacency matrix AG of
G. Then we have

g1(G) ≤ ĝ(G) :=

{
n2λ2

2
(λ2+r)2

if r ≤ 3λ2,
n2λ2

8(r−λ2)
otherwise,

and h1(G) ≤ ĥ(G) :=
nλ2

2(λ2 + r)
.

Moreover, we have equality g1(G) = ĝ(G) if G is vertex- and edge-transitive,

and equality h1(G) = ĥ(G) if G is edge-transitive.

Observe that the bound h(G) ≤ ĥ(G) sharpens the bound h(G) ≤ n
r λ2

by Vallentin [Val20]. Moreover, one can check that ĥ(G) ≤ 1
2

√
ĝ(G), which

mirrors the inequalities h(G) ≤ 1
2

√
g(G) and h1(G) ≤ 1

2

√
g1(G) (in Proposi-

tion 7.2). We will see in Section 7.5 several classes of graphs for which strict

inequality ĥ(G) < 1
2

√
ĝ(G) holds and, in Section 7.4, we will compare the

parameter ĥ(·) with other eigenvalue bounds by Hoffman and by Haemers
[Haem97, Haem01].

Bounds for the balanced parameters. As we have seen earlier, the
parameter αbal(G), asking for the maximum cardinality of a balanced inde-
pendent set in G, arises naturally when considering the parameters h(·) and
g(·). An additional motivation comes from its relevance to product-free sets
in groups and other applications as in [AYRP07, MRU87, RL88, Tah06,
YWWY05]. The question thus arises of finding semidefinite and eigenvalue-
based bounds for αbal(G) (and the related parameters hbal(G) and gbal(G))

that improve on the bounds h1(G) and ĥ(G) designed for the general (not
necessarily balanced) parameters. We investigate this question in detail in
Section 7.6. We define semidefinite bounds lasbal,1(G) and ϑbal(G) for αbal(G),
gbal,1(G) for gbal(G), and hbal,1(G) for hbal(G), and we show they satisfy
1
4 lasbal,1(G) ≤ 1

2

√
gbal,1(G) ≤ hbal,1(G) = 1

4ϑbal(G) (see Proposition 7.33).
Interestingly, the “balanced versions” of the theta number may lead to differ-
ent parameters, i.e., lasbal,1(G) < ϑbal(G) may hold (see Example 7.34). On
the other hand, we show that the closed-form values obtained by restricting
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the optimization to symmetric solutions in each of these semidefinite bounds

in fact recover (up to the correct transformation) the eigenvalue bound ĥ(G)
(see Proposition 7.37).

7.2. Complexity results

In this section we prove several complexity results. Recall that a clique
in G is a set of pairwise adjacent vertices and ω(G) denotes the maximum
cardinality of a clique in G, so that ω(G) = α(G). We consider the following
problems.

Problem 1 (α-BAL-BIP). Given a bipartite graph G, decide whether
α(G) = αbal(G), i.e., whether G has a balanced maximum independent set.

Problem 2 (HALF-SIZE-CLIQUE-EDGE). Given a graph G = (V,E)

with |V | even and |E| = 1
4 |V |(|V | − 2), decide whether ω(G) ≥ |V |

2 .

Problem 3 (HALF-SIZE-CLIQUE). Given a graph G = (V,E) with |V |
even, decide whether ω(G) ≥ |V |

2 .

Problem 4 (CLIQUE). Given a graph G and an integer k ∈ N, decide
whether ω(G) ≥ k.

It is well-known that CLIQUE is an NP-complete problem [Kar72] as well
as problem HALF-SIZE-CLIQUE; we refer, e.g., to [ADLRY94] for an easy
reduction of CLIQUE to HALF-SIZE-CLIQUE. In what follows we will show
the following reductions

HALF-SIZE-CLIQUE ≤P HALF-SIZE-CLIQUE-EDGE ≤P α-BAL-BIP.
(7.10)

Here we say that L1 ≤P L2 if we have a polynomial-time algorithm permitting
to encode an instance of L1 as an instance of L2. We will show the first
reduction in Theorem 7.7 and the second one in Theorem 7.11 below. Then,
using the reductions in (7.10), we obtain the following complexity results.

Theorem 7.4. Problem 1 (α-BAL-BIP) is an NP-complete problem.

Corollary 7.5. Computing the parameter h(G) for G bipartite is NP-hard.

Proof. Recall that computing α(G) in bipartite graphs can be done in
polynomial time. Hence, if there is a polynomial time algorithm for computing

h(G), then one can decide in polynomial time whether h(G) = α(G)
4 , which is

equivalent to Problem 1, in view of Lemma 7.1. �
The proof technique used to show the reduction from problem HALF-SIZE-
CLIQUE-EDGE to problem α-BAL-BIP will in fact allow to show a broader
set of results. Namely it permits to show hardness of testing whether any
of the following equalities holds: g(G) = gbal(G), h(G) = hbal(G), or h(G) =
1
2

√
g(G). In other words, it is NP-hard to check whether any of the inequalities



618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas
Processed on: 3-10-2023Processed on: 3-10-2023Processed on: 3-10-2023Processed on: 3-10-2023 PDF page: 138PDF page: 138PDF page: 138PDF page: 138

132 7. BICLIQUES AND BIINDEPENDENT SETS

in relation (7.3) holds at equality. See Corollary 7.12 below for these and other
hardness results.

In the rest of the section we will prove the two reductions from relation
(7.10) and related hardness results for the other (balanced) parameters. For
this we use as a first ingredient the following graph constructions.

Definition 7.6. Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs
with disjoint vertex sets and let k ≥ 1 be an integer.

(i) The disjoint union of G and H, denoted by G⊕H, is the graph with
vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H).

(ii) The join of G and H, denoted by G �� H, is the graph with vertex set
V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ (V (G)× V (H)).

(iii) The k-th expansion of G, denoted by G(k), is the graph constructed as
follows: its vertex set is

⋃
v∈V (G)Xv, where Xv are disjoint sets, each

of size k, and we have a clique on each Xv and a complete bipartite
graph between Xu and Xv whenever {u, v} ∈ E(G).

Clearly we have the following relations:

|V (G⊕H)| = |V (G)|+ |V (H)|, |E(G⊕H)| = |E(G)|+ |E(H)|, (7.11)

ω(G⊕H) = max{ω(G), ω(H)}, (7.12)

|V (G �� H)| = |V (G)|+ |V (H)|, (7.13)

|E(G �� H)| = |E(G)|+ |E(H)|+ |V (G)| · |V (H)|, (7.14)

ω(G �� H) = ω(G) + ω(H), (7.15)

|V (G(k))| = k|V (G)|, |E(G(k))| =
(
k
2

)
|V (G)|+ k2|E(G)|, (7.16)

ω(G(k)) = kω(G). (7.17)

Figure 7.1. Graph F , ω(F ) = 3, 6 nodes, 10 edges.

Theorem 7.7. HALF-SIZE-CLIQUE ≤P HALF-SIZE-CLIQUE-EDGE.

Proof. Let G be an instance of HALF-SIZE-CLIQUE, set |V (G)| = 2n,
|E(G)| = m. Let t be the smallest integer such that

(
t
2

)
≥ 9n2 + n + m.

Consider the graph F from Fig. 7.1 and define the graph

H := ((G �� F (n)) �� Kt)⊕H0,

whereH0 is a graph with t nodes and
(
t
2

)
−(9n2+n+m) edges. So the role ofH0

is to add enough edges in order to ensure that |E(H)| = |V (H)|(|V (H)|−2)/4.
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Observe that H can be constructed in polynomial time. Using (7.11)-(7.17),
we obtain

|V (H)| = 8n+ 2t,

|E(H)| = (m+ 6
(
n
2

)
+ 10n2 + 12n2) +

(
t
2

)
+ 8nt+ (

(
t
2

)
− 9n2 − n−m)

= (4n+ t)(4n+ t− 1) = 1
4(8n+ 2t)(8n+ 2t− 2),

ω(H) = ω(G) + 3n+ t.

Hence,H is an instance of HALF-SIZE-CLIQUE-EDGE and ω(H) ≥ |V (H)|/2
if and only if ω(G) ≥ |V (G)|/2. Therefore, if there is a polynomial time al-
gorithm for solving HALF-SIZE-CLIQUE-EDGE, then we can solve HALF-
SIZE-CLIQUE in polynomial time. �

As a next step we show the reduction of HALF-SIZE-CLIQUE-EDGE to
α-BAL-BIP. Our proof is inspired from an argument in [CK03], where the
authors consider minimum vertex covers in a bipartite graph restricted to have
at least k1 vertices in one side of the bipartition and at least k2 vertices in
the other side. In [CK03, Theorem 3.1] it is shown that deciding existence of
such vertex covers is NP-complete by giving a reduction from CLIQUE. We
adapt this reduction by suitably selecting the values of k1 and k2, considering
independent sets (complements of vertex covers) instead of vertex covers, and
modifying the graph construction used in [CK03].

The following graph construction will play a central role for the reduction
of HALF-SIZE-CLIQUE-EDGE to α-BAL-BIP (and other related problems).

Definition 7.8. Given a graph G = (V,E) with n := |V | and m := |E|,
consider the bipartite graph HG = (V1 ∪ V2, EH) constructed as follows.

(i) For each vertex v ∈ V we construct two vertices v1 ∈ V1 and v2 ∈ V2

and add the edge {v1, v2} to EH .
(ii) For each edge e ∈ E we construct two vertex sets Le ⊆ V1 and Re ⊆ V2

with |Le| = |Re| = n+ 1 and add all edges in Le ×Re to EH .
(iii) If v ∈ V is incident to e ∈ E, then we let v1 be adjacent in HG to all

vertices of Re.

Hence, setting LV := {v1 : v ∈ V }, RV := {v2 : v ∈ V }, LE :=
⋃

e∈E Le, and
RE :=

⋃
e∈E Re, we have V1 = LV ∪ LE and V2 = RV ∪RE, there is a perfect

matching between LV and RV , there is a complete bipartite graph between Le

and Re for each e ∈ E, and there is a complete bipartite graph between v1 ∈ V1

and Re for each edge e ∈ E containing v ∈ V .

The next lemma shows that the maximal independent sets in the bipartite
graph HG have a very special structure, which will be useful for the proof of
Theorem 7.11 below.

Lemma 7.9. Let G = (V,E) be a graph, n := |V |, m := |E|, and let HG be the
associated bipartite graph as in Definition 7.8. Assume I ⊆ V (HG) = V1 ∪ V2
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is a maximal independent set of HG. Then I takes the following form

I ∩ V1 = {v1 : v ∈ A} ∪
⋃
e∈E1

Le, I ∩ V2 = {v2 : v ∈ B} ∪
⋃
e∈E2

Re, (7.18)

where A ⊆ V , B = V \A, E1 is the set of edges e ∈ E that are incident to some
node v ∈ A, and E2 = E \ E1 (thus the set of edges e ∈ E contained in B).
Moreover, I is a maximum independent set of HG and α(HG) = n+m(n+1).
Conversely, any set I as in (7.18) is a (maximum) independent set of HG.

Proof. Assume I ⊆ V1 ∪ V2 is a maximal independent set of HG. Set
A := {v ∈ V : v1 ∈ I}, B := {v ∈ V : v2 ∈ I}, and E2 := E \ E1, where E1

is the set of edges e ∈ E that are incident to some node v ∈ A; we show that
(7.18) holds. First, we have A∩B = ∅ (for, if v ∈ A∩B, then the edge {v1, v2}
ofHG would be contained in I, contradicting that I is independent). Moreover,
A∪B = V (for, if v ∈ V \ (A∪B), then the set I ∪{v2} would be independent
in HG, contradicting the maximality of I). So we have I ∩ LV = {v1 : v ∈ A}
and I ∩ RV = {v2 : v ∈ B}. We now claim that I ∩ LE =

⋃
e∈E1

Le and
I ∩ RE =

⋃
e∈E1

Re. First note that, if I ∩ Re �= ∅, then e is not incident to
any node of A and thus e ∈ E2. Moreover, by maximality of I, we have Re ⊆ I
for any e ∈ E2. So we indeed have I ∩RE =

⋃
e∈E2

Re and in turn this implies
I ∩LE =

⋃
e∈E1

Le. Therefore we have |I| = n+m(n+1), which implies that
α(HG) = n +m(n + 1) and that I is maximum independent. This concludes
the proof (since the last (reverse) claim is straigthforward to check). �

Corollary 7.10. Let G = (V,E) be a graph and let HG be the bipartite graph
as in Definition 7.8. The following assertions are equivalent.

(i) αbal(HG) = α(HG).
(ii) gbal(HG) = g(HG).
(iii) hbal(HG) = h(HG).

Proof. The implications (i) =⇒ (ii) and (i) =⇒ (iii) follow from relation
(7.3). Conversely, assume (ii) holds and let (A,B) be a balanced optimal
solution for g(HG). Then A ∪ B is maximal independent in HG and thus, by
Lemma 7.9, it is maximum, so that α(HG) = |A ∪B| = αbal(HG) as (A,B) is
balanced. The same argument shows the implication (iii) =⇒ (i). �

Now we show the main result of the section, which combined with Theo-
rem 7.7, implies Theorem 7.4.

Theorem 7.11. Let G = (V,E) be a graph satisfying |E| = 1
4 |V |(|V |− 2) and

let HG be the associated bipartite graph as in Definition 7.8. The following
assertions are equivalent.

(i) G has a clique of size |V |/2, i.e., ω(G) ≥ |V |/2.
(ii) α(HG) = αbal(HG).

Therefore, HALF-SIZE-CLIQUE-EDGE ≤P α-BAL-BIP.
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Proof. We first show (i) =⇒ (ii). Assume C is a clique of G with |C| =
|V |/2. Let E2 be the set of edges of G that are contained in C, so that E1 :=
E \E2 is the set of edges of G that are incident to some node in V \C. By the

assumption on G we have
(|V |/2

2

)
= |E|

2 and thus |E2| =
(|V |/2

2

)
= |E|

2 = |E1|.
Consider the subset I ⊆ V1 ∪ V2 of V (HG), which is defined by

I ∩ V1 = {v1 : v /∈ C} ∪
⋃
e∈E1

Le, I ∩ V2 = {v2 : v ∈ C} ∪
⋃
e∈E2

Re.

By Lemma 7.9, I is a maximum independent set inHG and α(HG) = n+m(n+
1). Moreover, we have |I∩V1| = |I∩V2|, which shows that αbal(HG) = α(HG).

Now we show (ii) =⇒ (i). By the assumption (ii), HG has a balanced
maximum independent set I. By Lemma 7.9, I takes the form as in (7.18). As
I is balanced we have |I∩V1| = |I∩V2| and thus ||A|−|B|| = (n+1)||E2|−|E1||.
If |E1| �= |E2| then the left hand side is at most n while the right hand side
is at least n + 1. Therefore we have |E1| = |E2| = |E|/2 and |A| = |B| =
|V |/2. Moreover, |E2| ≤

(|B|
2

)
=
(|V |/2

2

)
since E2 consists of the edges that are

contained in B. This gives |E| = 2|E2| ≤ 2
(|V |/2

2

)
= |V |(|V | − 2)/4. We now

use the assumption |E| = |V |(|V | − 2)/4 on the number of edges of G, which
implies that equality holds throughout and thus that B is a clique in G of size
|B| = |V |/2, showing (i). �

Corollary 7.12. Given a bipartite graph G it is NP-hard to decide whether
any of the following equalities holds.

(i) g(G) = gbal(G).
(ii) h(G) = hbal(G).
(iii) h(G) = 1

4α(G).

(iv) 1
2

√
g(G) = 1

4α(G).

(v) h(G) = 1
2

√
g(G).

Proof. We show that it is NP-hard to check any of the equalities (i)-(v)
for the class of bipartite graphs that are of the form HG (as in Definition
7.8) for some graph G with |E| = 1

4 |V |(|V | − 2). The key fact is that, for
bipartite graphs of the form HG, any of the assertions (i)-(v) is equivalent
to α(HG) = αbal(HG); this was shown in Corollary 7.10 for (i)-(ii) and in
relation (7.4) for (iii)-(iv), and one can easily verify that (v) implies (i). Then
the corollary follows using Theorems 7.7 and 7.11 together with hardness of
HALF-SIZE-CLIQUE. �

Remark 7.13. The hardness results in Corollary 7.12 hold in fact for a
broader class of bipartite graph parameters. For this consider a bivariate func-
tion f : R2

+ → R that satisfies the condition

f(a, b) ≤ a+ b

4
, and f(a, b) =

a+ b

4
⇐⇒ a = b, for all a, b ∈ N (7.19)
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and define the corresponding graph parameter for a bipartite graph G.

f(G) := max{f(|A|, |B|) : (A,B) is bipartite biindependent in G}

Using relation (7.19) one can check the inequalities αbal(G)
4 ≤ f(G) ≤ α(G)

4

and the equivalence f(G) = α(G)
4 ⇐⇒ α(G) = αbal(G). Using Theorem 7.11,

it follows that computing f(·) is NP-hard (already for the bipartite graphs of
the form HG for some graph G with |V |(|V | − 2)/4 edges).

Examples of functions satisfying (7.19) include f(a, b) = ab
a+b (giving the

parameter h(G)) and f(a, b) = 1
2

√
ab (giving 1

2

√
g(G)), or any f(·) nested

between h(·) and 1
2

√
g(·). As another example, consider

f(a, b) :=
(1
2

√
ab
)p(a+ b

4

)1−p

with 0 ≤ p ≤ 1, which gives a graph parameter f(·) nested between 1
2

√
g(·)

and α(·)
4 .

7.3. Semidefinite approximations for the parameters g(G) and h(G)

In this section, we introduce semidefinite approximations for the parame-
ters g(·) and h(·) from (7.1) and (7.2), which are both NP-hard to compute
as we saw in the previous sections. Our approach relies on formulating the
parameters g(·) and h(·) as 0-1 polynomial optimization problems and consid-
ering the corresponding Lasserre sum-of-squares hierarchies. This technique
is the analog to the one described in Section 3.2.1 in Chapter 3 for approxi-
mating α(G) in arbitrary graphs. We recall this formulation. Given a graph
G, its stability number α(G) can be formulated as follows:

α(G) = max
{ n∑

i=1

xi : xixj = 0 for {i, j} ∈ E, x2i − xi = 0 for i ∈ V
}
,

and its corresponding Lasserre sum-of-squares hierarchy, already introduced
in (3.7), reads

lasr(G) = max
{
λ : λ−

n∑
i=1

xi ∈ Σ2r + I2r,G

}
.

As mentioned in Chapter 1, the parameter lasr(G) can be expressed via a
semidefinite program and we have α(G) ≤ lasr+1(G) ≤ lasr(G), with equality
α(G) = lasr(G) if r ≥ α(G) [Lau03] (see Theorem 3.2). This last claim
follows from the following fact shown in relation (3.8) (see also [Las01a] and
[Lau03]). At order r = 1 we obtain the bound las1(G) which, after applying
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SDP duality, can be checked to take the form

las1(G) = max
{
〈I,X〉 : X ∈ Sn,

(
1 diag(X)T

diag(X) X

)
� 0,

Xij = 0 for {i, j} ∈ E
}
,

(7.20)

which is a well-known formulation for ϑ(G), so that las1(G) = ϑ(G) (as already
mentioned in Chapter 3).

Assume now G = (V = V1 ∪V2, E) is a bipartite graph. Define the matrix

C :=
1

2

(
0 J|V1|,|V2|

J|V2|,|V1| 0

)
∈ S |V |, (7.21)

so that xTCx =
(∑

i∈V1
xi
)(∑

j∈V2
xj
)
. Observe that one can encode a biin-

dependent pair (A,B) with A ⊆ V1 and B ⊆ V2 by its characteristic vector
x = χA∪B. Then we can express the parameters g(G) and h(G) as

g(G) = max
{
xTCx : x2i = xi (i ∈ V ), xixj = 0 ({i, j} ∈ E)

}
, (7.22)

h(G) = max
{xTCx

xTx
: x2i = xi (i ∈ V ), xixj = 0 ({i, j} ∈ E)

}
. (7.23)

The Lasserre bounds of order r for g(G) and h(G) read, respectively,

gr(G) := min{λ : λ− xTCx ∈ Σ2r + IG,2r}, (7.24)

hr(G) := min{λ : xT(λI − C)x ∈ Σ2r + IG,2r}, (7.25)

and the next result follows as a direct application of relation (3.8).

Lemma 7.14. Let G be a bipartite graph. For any integer r ≥ 1, we have
g(G) ≤ gr(G) and h(G) ≤ hr(G), with equality if r ≥ α(G).

7.3.1. Semidefinite formulations for the Lasserre bounds h1(G)
and g1(G). In this section we give explicit semidefinite formulations for the
Lasserre bounds (7.24) and (7.25) of order r = 1 for g(G) and h(G). In
particular, we indicate how to obtain the formulations given earlier in (7.8)

and (7.9). Recall that SG consists of the matrices in S |V | that are supported
by G. We begin with a claim expressing polynomials in the truncated ideal
IG,2 that we will repeatedly use.

Lemma 7.15. Given a graph G = (V,E) and a matrix M ∈ S1+|V | (indexed
by {0} ∪ V ), we have [x]T1M [x]1 ∈ IG,2 if and only if M takes the form

M =

(
0 −uT/2

−u/2 Diag(u) + Z

)
for some u ∈ R|V |, Z ∈ SG. (7.26)

Proof. By definition, [x]T1M [x]1 ∈ IG,2 if

[x]T1M [x]1 =
∑
i∈V

ui(x
2
i − xi) +

∑
{i,j}∈E

uijxixj
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for some ui, uij ∈ R. The result follows by equating coefficients at both sides
of this polynomial identity. �

We now give semidefinite formulations for the parameters h1(G) and g1(G).

Lemma 7.16. Let G = (V = V1 ∪ V2, E) be a bipartite graph. Then the
Lasserre bound of order r = 1 for h(G) can be reformulated as

h1(G) = min
λ∈R,Z∈SV

{λ : λI + Z − C � 0, Z ∈ SG}, (7.27)

= max
X∈SV

{〈C,X〉 : X � 0, Tr(X) = 1, Xij = 0 for {i, j} ∈ E}. (7.28)

Proof. By definition, h1(G) is the smallest scalar λ for which we have
xT(λI−C)x ∈ Σ2+IG,2, i.e., the smallest λ for which [x]T1Q[x]1−xT(λI−C)x
belongs to IG,2 for some matrix Q � 0 (indexed by {0} ∪ V ). Using Lemma
7.15 we obtain that Q00 = 0 and thus Q0i = 0 for all i ∈ V (as Q � 0).
From this follows that the principal submatrix indexed by V takes the form
Q[V ] = Z + λI − C for some Z ∈ SG and we arrive at the formulation (7.27)
for h1(G). By taking the semidefinite dual we obtain the formulation (7.28).
Observe that strong duality holds because program (7.28) is feasible with
X = 1

nI and program (7.27) is clearly strictly feasible for some λ � 0. �

Lemma 7.17. Let G be a bipartite graph. Then we have

g1(G) = min
λ∈R,u∈RV ,Z∈SV

{
λ :

(
λ uT/2
u/2 Diag(u)− C + Z

)
� 0, Z ∈ SG

}
,

(7.29)

= max
X∈SV

{
〈C,X〉 :

(
1 diag(X)T

diag(X) X

)
� 0, Xij = 0 for {i, j} ∈ E

}
.

(7.30)

Proof. By definition g1(G) is the smallest scalar λ for which we have
λ − xTCx ∈ Σ2 + IG,2. In other words this is the smallest λ for which there

exists Q � 0 such that [x]T1
(
Q −

(
λ 0
0 −C

))
[x]1 ∈ IG,2. Using Lemma 7.15,

we obtain the formulation of g1(G) as in (7.29). Then the formulation (7.30)
follows by taking the dual of the semidefinite program (7.29). Observe that
strong duality holds as program (7.30) is feasible and program (7.29) is strictly
feasible for Z = 0 and suitable λ and u. �

Remark 7.18. In order to highlight some similarities and differences between
the parameters las1(G), g1(G) and h1(G), we indicate how to derive the for-
mulation (7.20) of las1(G). Let us start with the definition of las1(G) as the
smallest λ for which λ −

∑
i∈V xi ∈ Σ2 + IG,2. Since

∑
i∈V xi − xTIx ∈ IG,2

we can alternatively search for the smallest λ for which

[x]T1
(
Q−
(
λ 0
0 −I

))
[x]1 ∈ IG,2.
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Using Lemma 7.15, we obtain

las1(G) = min
λ∈R,u∈RV ,Z∈SV

{
λ :

(
λ uT/2
u/2 Diag(u)− I + Z

)
� 0, Z ∈ SG

}
.

(7.31)

Taking the dual semidefinite program of (7.31), we obtain the formulation
(7.20).

Note the similarity between programs (7.29) and (7.31), which are the same
up to exchanging the matrices C and I. Note also that it is possible to simplify
program (7.31) and to bring it in the form

las1(G) = min
λ∈R,Z∈SV

{
λ :

(
λ eT

e I + Z

)
� 0, Z ∈ SG

}
, (7.32)

which is another well-known formulation of ϑ(G). To see this, call Q the
matrix in program (7.31). As Qii = ui−1 ≥ 0 we have ui ≥ 1 for all i ∈ V . By

scaling the ith column/row of Q by 2/ui and adding 1− 4
u2
i
(ui−1) = (ui−2)2

u2
i

≥ 0

to entry Qii, we obtain a new matrix Q′ � 0 satisfying Q′
0i = Q′

ii = 1 for all
i ∈ V , thus feasible for (7.32). This shows the equivalence of (7.31) and (7.32).

Note, however, that the above rescaling trick could not be applied to pro-
gram (7.29); indeed if Q denotes the matrix appearing in (7.29), then one must
have Qij = −1/2 for all positions (i, j) ∈ V1 × V2 corresponding to non-edges
of G.

7.3.2. Comparison of the Lasserre bounds h1(G) and g1(G). In this
section, we show the following inequalities for any bipartite graph G:

h(G) ≤ 1
2

√
g(G) ≤ h1(G) ≤ 1

2

√
g1(G) ≤ 1

4α(G),

that were claimed in Proposition 7.2. One may have the strict inequalities
h1(G) < 1

2

√
g1(G) < 1

4α(G), e.g., when G is the complete bipartite graphKn,n

minus a perfect matching and n ≥ 5 (see Section 7.5.2). Recall that we al-

ready know h(G) ≤ 1
2

√
g(G) from Lemma 7.1. Hence, in order to show

Proposition 7.2, it suffices to show that the inequalities 1
2

√
g(G) ≤ h1(G),

h1(G) ≤ 1
2

√
g1(G), h1(G) ≤ 1

4α(G), and g1(G) ≤ α(G)h1(G) hold.

Proof of 1
2

√
g(G) ≤ h1(G). Let (A,B) be an optimal solution for g(G)

with |A| =: a, |B| =: b and let (λ, Z) be a feasible solution for the formulation

(7.27) of h1(G); we show that λ ≥ 1
2

√
ab. By assumption, we have that the

matrix M := λI + Z − C is positive semidefinite and thus also its principal
submatrix M [A ∪B] is positive semidefinite. Observe that M [A ∪B] has the
block-form

M [A ∪B] =

(
λIa −1

2Ja,b
−1

2Jb,a λIb

)
,

because Zij = 0 for i ∈ A, j ∈ B as A ∪ B is independent. By taking a Schur

complement we obtain that M [A∪B] � 0 if and only if λIa− b
4λJa,a � 0. This



618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas
Processed on: 3-10-2023Processed on: 3-10-2023Processed on: 3-10-2023Processed on: 3-10-2023 PDF page: 146PDF page: 146PDF page: 146PDF page: 146

140 7. BICLIQUES AND BIINDEPENDENT SETS

implies λ ≥ 1
2

√
ab = 1

2

√
g(G) and thus h1(G) ≥ 1

2

√
g(G). �

Proof of h1(G) ≤ 1
2

√
g1(G). Let X be an optimal solution for the formu-

lation (7.28) of h1(G). Then X � 0 and thus X = (yTi yj)i,j∈V for some vectors

yi ∈ R|V | (i ∈ V ). We may assume without loss of generality that yi �= 0 for
i ∈ V (since, if yi = 0, then we just replace X by its principal submatrix in-
dexed by V \{i}). Define the vectors y′ :=

∑
i∈V1

yi and y′′ :=
∑

i∈V2
yi, so that

h1(G) = 〈C,X〉 = (y′)Ty′′. To shorten notation we set h := h1(G) = (y′)Ty′′.
We may assume h > 0, else there is nothing to prove. For ε = ±1, define the

vector dε := y′+εy′′
‖y′+εy′′‖ . Here the convention is that we consider the vector dε

only if y′+ εy′′ �= 0. Note that at least one of d1 and d−1 is well-defined (since
otherwise one would have y′ = y′′ = 0, implying h1(G) = 0, a contradiction).

Then let Xε denote the Gram matrix of the vectors dTε yi
‖yi‖2 yi for i ∈ V ; we claim

that Xε is feasible for the formulation (7.30) of g1(G). To see it, consider the

matrix Yε defined as the Gram matrix of the vectors dε and dTε yi
‖yi‖2 yi for i ∈ V ,

so that Xε is its principal submatrix indexed by V , and note that Yε � 0,
(Yε)00 = 1, (Yε)0i = (Yε)ii for i ∈ V , and (Yε)ij = 0 if {i, j} ∈ E. Hence, if
one can show that 〈C,Xε〉 ≥ 4〈C,X〉2 for some ε ∈ {±1}, then this implies
g1(G) ≥ 〈C,Xε〉 ≥ 4〈C,X〉2 = 4h1(G)2 and the proof is complete. The rest of
the proof is devoted to showing that 〈C,Xε〉 ≥ 4〈C,X〉2 for some ε ∈ {±1},
and is a bit technical.

In a first step, we show that the vectors yi (i ∈ V ) satisfy the following
relations

yTi y
′′ = 2h ‖yi‖2 (i ∈ V1), (7.33)

yTj y
′ = 2h ‖yj‖2 (j ∈ V2). (7.34)

For this consider an optimal solution S := hI + Z − C of the program (7.27)
defining h1(G), where Z ∈ SG. As X and S are primal and dual optimal
solutions we must have XS = 0, i.e., 0 = hX +XZ −XC. We now compute
the diagonal entries. Note that (XZ)ii = 0 for all i ∈ V (since, for each k ∈ V ,
we have Xik = 0 or Zki = 0). Hence, for i ∈ V1, we have h‖yi‖2 = hXii =
(XC)ii =

1
2

∑
j∈V2

Xij = 1
2y

T
i y

′′, and, for j ∈ V2, we have h‖yj‖2 = hXjj =

(XC)jj =
1
2

∑
i∈V1

Xij =
1
2y

T
j y

′. So (7.33) and (7.34) hold.
We now proceed to compute

〈C,Xε〉 =
∑

(i,j)∈V1×V2

dTε yi · dTε yj
‖yi‖2‖yj‖2

· yTi yj . (7.35)
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First, we compute (part of) the inner term for i ∈ V1 and j ∈ V2:

dTε yi · dTε yj
‖yi‖2‖yj‖2

=
1

‖y′ + εy′′‖2
(y′ + εy′′)Tyi · (y′ + εy′′)Tyj

‖yi‖2‖yj‖2
(7.36)

=
1

‖y′ + εy′′‖2
(
2h

(y′)Tyi
‖yi‖2

+ 2h
(y′′)Tyj
‖yj‖2

+ ε
(y′)Tyi · (y′′)Tyj

‖yi‖2‖yj‖2
+ 4h2ε

)
,

(7.37)

where we have used relations (7.33), (7.34) and that ε2 = 1 to carry out the
simplifications. Next observe that∑
(i,j)∈V1×V2

(y′)Tyi
‖yi‖2

yTi yj =
∑
i∈V1

(y′)Tyi
‖yi‖2

(∑
j∈V2

yTi yj

)
(7.38)

=
∑
i∈V1

(y′)Tyi
‖yi‖2

yTi y
′′ = 2h

∑
i∈V1

(y′)Tyi = 2h‖y′‖2, (7.39)

where we have used again relation (7.33). In the same way we have∑
(i,j)∈V1×V2

(y′′)Tyj
‖yj‖2

yTi yj = 2h‖y′′‖2. (7.40)

Combining (7.35), (7.37), (7.38) and (7.40), we obtain

〈C,Xε〉 =
1

‖y′ + εy′′‖2
(
4h2(‖y′‖2 + ‖y′′‖2 + ε(y′)Ty′′)

+ ε
∑

(i,j)∈V1×V2

(y′)Tyi · (y′′)Tyj · yTi yj
‖yi‖2‖yj‖2

)
=

1

‖y′ + εy′′‖2
(
4h2‖y′ + εy′′‖2 − 4h2ε(y′)Ty′′

+ ε
∑

(i,j)∈V1×V2

(y′)Tyi · (y′′)Tyj · yTi yj
‖yi‖2‖yj‖2

)
= 4h2 +

ε

‖y′ + εy′′‖2
( ∑

(i,j)∈V1×V2

(y′)Tyi · (y′′)Tyj · yTi yj
‖yi‖2‖yj‖2

− 4h3

︸ ︷︷ ︸
=:ϕ

)

= 4h2 +
ε · ϕ

‖y′ + εy′′‖2 .

We can now conclude the proof. Assume first y′± y′′ �= 0, so that both d1 and
d−1 are well-defined. If ϕ ≥ 0 then 〈C,X1〉 ≥ 4h2. Otherwise, if ϕ < 0, then
〈C,X−1〉 ≥ 4h2. So we have shown the desired result: 〈C,Xε〉 ≥ 4h2 for some
ε ∈ {±1}. Consider now the case when y′ = εy′′ for some ε ∈ {±1}. Then,
using relations (7.33) and (7.34), we obtain that ϕ = 0. Hence, if y′ = y′′
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(resp., y′ = −y′′), then we have 〈C,X1〉 ≥ 4h2 (resp., 〈C,X−1〉 ≥ 4h2), which
concludes the proof. �

Remark 7.19. Note that the proof for the inequality h1(G) ≤ 1
2

√
g1(G) re-

sembles - but is technically more involved than - the classical proof for the
inequality las1(G) ≥ ϑ(G), where las1(G) is given by (7.20) and ϑ(G) by
(3.1) and G is an arbitrary graph. (The reverse inequality ϑ(G) ≥ las1(G)
is straightforward.) We sketch the proof for las1(G) ≥ ϑ(G) in order to high-

light the resemblance with the proof above for 1
2

√
g1(G) ≥ h1(G). So assume

X is optimal for (3.1) (defined as the Gram matrix of vectors yi for i ∈ V ) and

construct the matrix X1 (as the Gram matrix of the vectors
dT1yi
‖yi‖2 yi for i ∈ V ,

where d1 := (
∑

i∈V yi)/‖
∑

i∈V yi‖). Then, ϑ(G) = 〈J,X〉 = ‖
∑

i∈V yi‖2,
1 = 〈I,X〉 =

∑
i∈V ‖yi‖2, and yTi yj = 0 if {i, j} ∈ E. This implies X1 is

feasible for (7.20), and thus las1(G) ≥ 〈X1, I〉. It suffices now to check that

〈X1, I〉 =
∑

i∈V
(dT1yi)

2

‖yi‖2 ≥ ‖
∑

i∈V yi‖2 = ϑ(G). But this follows easily using

Cauchy-Schwartz inequality, namely

‖
∑
i∈V

yi‖2 = (dT1
∑
i∈V

yi)
2 =
(∑
i∈V

dT1 yi
‖yi‖

‖yi‖
)2 ≤ (∑

i∈V

(dT1 yi)
2

‖yi‖2
)
(
∑
i∈V

‖yi‖2)

=
∑
i∈V

(dT1 yi)
2

‖yi‖2
.

Proof of h1(G) ≤ 1
4α(G). Let X be optimal for the formulation (7.28) of

h1(G). Then X is feasible for (3.1) and thus ϑ(G) ≥ 〈J,X〉. Since J − 4C � 0
this implies 〈J,X〉 ≥ 4〈C,X〉 = 4h1(G). Combining both inequalities we get
4h1(G) ≤ ϑ(G) = α(G). �

Proof of g1(G) ≤ α(G)h1(G). Let X be an optimal solution for the
formulation (7.30) of g1(G). Then, X

Tr(X) is feasible for h1(G) and thus we

have g1(G) = 〈C,X〉 ≤ h1(G) · Tr(X). On the other hand, X is feasible for
(7.20), which gives ϑ(G) ≥ Tr(X). Combining these two facts we obtain that
g1(G) ≤ h1(G) · ϑ(G) = h1(G) · α(G). �

Remark 7.20. So we have the following chain of inequalities for any bipartite
graph G,

1

4
αbal(G) ≤ h(G) ≤ 1

2

√
g(G) ≤ h1(G) ≤ 1

4
α(G)

(Proposition 7.2 and Lemma 7.1). Hence, equality α(G) = αbal(G) implies
h1(G) = h(G). Observe that the reverse implication holds when restricting
to the bipartite graphs of the form HG (constructed from some graph G as

in Definition 7.8). Indeed, h1(HG) = h(HG) implies 1
2

√
g(HG) = h(HG),

which in turn implies g(HG) = gbal(HG) (Corollary 7.12 and its proof) and
thus α(HG) = αbal(HG) (Corollary 7.10). This shows that deciding whether



618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas618795-L-sub01-bw-Vargas
Processed on: 3-10-2023Processed on: 3-10-2023Processed on: 3-10-2023Processed on: 3-10-2023 PDF page: 149PDF page: 149PDF page: 149PDF page: 149

7.4. EIGENVALUE BOUNDS FOR THE PARAMETERS G(G) AND H(G) 143

the parameter h(·) coincides with its semidefinite relaxation h1(·) is an NP-
hard problem (already when restricting to the bipartite graphs of the form HG,
recall Theorem 7.11). This can be seen as an analog of the hardness of deciding
whether the basic semidefinite relaxation of the maximum cut problem is exact,
as shown in [DP93].

7.4. Eigenvalue bounds for the parameters g(G) and h(G)

Let G = (V,E) be a bipartite graph, with adjacency matrix AG. We have
introduced in Lemmas 7.16 and 7.17 the parameters g1(G) and h1(G) that,
respectively, upper bound the parameters g(G) and h(G). For convenience,
we repeat their formulations

g1(G) = min
λ∈R,Z∈SV ,u∈RV

{
λ : λ(Diag(u)− C + Z)− 1

4uu
T � 0, λ ≥ 0, Z ∈ SG

}
,

h1(G) = min
λ∈R,Z∈SV

{λ : λI + Z − C � 0, Z ∈ SG}

(where the formulation for g1(G) follows from (7.29) after taking the Schur
complement with respect to the upper left corner λ). In order to obtain closed-
form parameters, one restricts the optimization in each of the above programs
to matrices Z = tAG (for some t ∈ R) and, for the parameter g1(G), to vectors

u = μe (for some μ ∈ R). Let ĝ(G) and ĥ(G) denote the parameters obtained

in this way, so that g1(G) ≤ ĝ(G) and h1(G) ≤ ĥ(G). When the graph G is
regular, the all-ones vector is an eigenvector of the matrices involved in the

programs defining ĝ(G) and ĥ(G), and, as we will show below, this allows to

show the closed-form expressions claimed in Proposition 7.3 for ĝ(G) and ĥ(G)
in terms of the second largest eigenvalue λ2 of AG and n := |V1| = |V2|.

We will use the following basic result about the eigenvalues of AG. We re-
fer, e.g., to the book by Brouwer and Haemers [BH17] for general background
about eigenvalues of graphs.

Lemma 7.21. Assume G = (V1 ∪ V2, E) is a bipartite r-regular graph with
|V1| = |V2| =: n ≥ 2. Then its adjacency matrix is of the form

AG =

(
0 MG

MT
G 0

)
, where MG ∈ R|V1|×|V2|, (7.41)

the eigenvalues of AG are ±
√
λi(MGMT

G) for i ∈ [n], λ1(AG) = r, λ2n(AG) =

−r, and λ2(AG) ≥ 0, with equality λ2(AG) = 0 if and only if G is complete
bipartite. In the case when G = B(H) is the bipartite double of an r-regular
graph H, we have MG = AH , the eigenvalues of AB(H) are ±λi(AH) for
i ∈ [n] and thus λ2(AB(H)) = max{λ2(AH),−λn(AH)}. When G = B0(H) is
the extended bipartite double of H, we have MG = AH + I and λ2(AB0(H)) =
max{λ2(AH) + 1,−λn(AH)− 1}.
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7.4.1. An eigenvalue-based upper bound ĥ(G) for h(G). We give a
closed-form eigenvalue-based upper bound for the parameter h(G) in the case
when the bipartite graph G is r-regular. Let n := |V1| = |V2| and let λ2 denote
the second largest eigenvalue of AG (i.e., the second largest singular value of
MG, by Lemma 7.21). Vallentin [Val20] shows that h(G) ≤ n

r λ2, our next
result gives a sharpening of this bound.

Proposition 7.22. Assume G is a bipartite r-regular graph, set |V1| = |V2| =:
n, and let λ2 be the second largest eigenvalue of its adjacency matrix AG. Then
we have

h1(G) ≤ ĥ(G) =
n

2

λ2

r + λ2
≤ n

r
λ2. (7.42)

Moreover, equality h1(G) = n
2

λ2
r+λ2

holds when G is edge-transitive.

Proof. We may assume G is not complete bipartite (else λ2 = 0 and

h(G) = h1(G) = ĥ(G) = 0). The inequality n
2

λ2
r+λ2

≤ n
2λ2 is clear; we now

show h1(G) ≤ n
2

λ2
r+λ2

. For this we use the formulation of h1(G) from (7.27),
where we restrict the optimization to matrices Z of the form Z = tAG for some
scalar t ∈ R; we will show that the resulting optimal value is equal to n

2
λ2

r+λ2
.

Note that when G is edge-transitive this restriction can be made without loss
of generality. Thus we aim to compute the optimum value of the program

ĥ(G) := min
λ,t∈R

{λ : λI + tAG − C � 0}, (7.43)

which upper bounds h1(G) and is equal to it when G is edge-transitive. By
taking a Schur complement, the matrix

λI + tAG − C =

(
λI tMG − 1

2J
tMT

G − 1
2J λI

)
is positive semidefinite if and only if λ > 0 and the matrix

λ2I − (tMG − 1
2J)(tM

T
G − 1

2J) = λ2I − (t2MGM
T
G − t

2MGJ − t
2JM

T
G + 1

4J
2)

= λ2I − t2MGM
T
G + rt

2 J + rt
2 J − n

4J

= λ2I − t2MGM
T
G + (rt− n

4 )J =: Q

is positive semidefinite. Since G is not complete bipartite we have λ > 0.
We now analyze when Q is positive semidefinite. The all-ones vector e is an
eigenvector of MGM

T
G and J , and thus also of Q. Any eigenvector w ⊥ e

of MGM
T
G for λi(MGM

T
G) (2 ≤ i ≤ n) is an eigenvector of Q. Then the

eigenvalues of Q at these eigenvectors are as follows:

at e: λ2 − t2r2 + n(tr − n
4 ),

at w ⊥ e: λ2 − t2λi(MGM
T
G) for i = 2, . . . , n.
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Hence, Q � 0 if and only if λ2−t2r2+n(tr− n
4 ) ≥ 0 and λ2−t2λi(MGM

T
G) ≥ 0

for any i ≥ 2, which is equivalent to λ2 − t2λ2
2 ≥ 0 (recall Lemma 7.21).

Therefore, we must select t such that

max{t2λ2
2, t

2r2 − ntr + n2

4 } is smallest possible.

This maximum value is minimized at a root of the quadratic function φ(t) :=

(t2r2 − trn + n2

4 ) − t2λ2
2 = t2(r2 − λ2

2) − trn + n2

4 . Its discriminant is r2n2 −
n2(r2 − λ2

2) = n2λ2
2 and φ(t) has two roots rn+εnλ2

2(r2−λ2
2)

= n
2(r−ελ2)

for ε = ±1.

So max{t2λ2
2, t

2r2 − ntr + n2

4 } is minimized at the smallest root t := n
2(r+λ2)

.

Therefore we have ĥ(G) = tλ2 =
nλ2

2(r+λ2)
, which proves (7.42). �

7.4.2. An eigenvalue-based upper bound ĝ(G) for g(G). In the same
way one can give an eigenvalue-based upper bound ĝ(G) for the parameter
g(G) when G is bipartite r-regular. It is obtained by solving analytically the
following optimization problem

ĝ(G) := min
λ,μ,t∈R

{
λ : λ(μI − C + tAG)− μ2

4 J � 0, λ ≥ 0
}
.

Proposition 7.23. Assume G is a bipartite r-regular graph, set n := |V1| =
|V2|, and let λ2 be the second largest eigenvalue of the adjacency matrix AG of
G. Then we have

g1(G) ≤ ĝ(G) =

{
n2λ2

2
(λ2+r)2

if r ≤ 3λ2,
n2λ2

8(r−λ2)
otherwise.

Moreover, equality g1(G) = ĝ(G) holds if G is vertex- and edge-transitive.

The details of the proof are analogous to those for the parameter ĥ(G)
considered in the previous section, but technically more involved. So we omit
the proof. For the reader interested, the proof can be found in my work with
Laurent and Polak [LPV23, Appendix C].

Remark 7.24. Here are examples of regular bipartite graphs satisfying r ≤
3λ2, or the reverse inequality 3λ2 ≤ r: If G is a perfect matching on 2n
vertices, then λ2 = r = 1 and thus r < 3λ2 (see Section 7.5.1); on the other
hand, if G is the complete bipartite graph Kn,n minus a perfect matching, then
r = n− 1 and λ2 = 1 and thus r ≥ 3λ2 if n ≥ 4 (see Section 7.5.2).

Recall the inequalities h(G) ≤ 1
2

√
g(G) (from Lemma 7.1) and h1(G) ≤

1
2

√
g1(G) (from Proposition 7.2). One can check that also the eigenvalue

bounds satisfy the analogous relation

ĥ(G) ≤ 1

2

√
ĝ(G)

with equality if and only if r ≤ 3λ2. Hence, in the regime 3λ2 < r, the

parameter ĥ(G) provides a strictly better bound than 1
2

√
ĝ(G) for both h(G)

and 1
2

√
g(G).
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So we have

h1(G) ≤ min{ĥ(G),
1

2

√
g1(G)} ≤ max{ĥ(G),

1

2

√
g1(G)} ≤ 1

2

√
ĝ(G).

We now observe that the two parameters ĥ(G) and 1
2

√
g1(G) are incomparable.

Indeed, as observed above, strict inequality ĥ(G) < 1
2

√
g1(G) may hold (e.g.,

for Kn,n minus a perfect matching). On the other hand, there are regular

bipartite graphs satisfying 1
2

√
g1(G) < ĥ(G) (such G is not edge-transitive).

As an example, let G be the disjoint union of C4 and C6, thus 2-regular with

λ2 = 2. Then, we verified that 1
2

√
g1(G) = 1

2

√
6 < 5

4 = ĥ(G).

7.4.3. Links to some other eigenvalue bounds. In this section, we
investigate links between the new bounds introduced in previous sections and
some known eigenvalue bounds in the literature. First, we point out a natural
link between ĥ(·) and Hoffman’s ratio bound (7.44) for the stability number of
a graph. After that, we present links to some spectral parameters ϕ(G), ϕ′(G)
and ϕH(G) by Haemers [Haem97, Haem01], which he used to bound the
parameter gbc(G), the maximum number of edges in a biclique of an arbitrary
graph G; see (7.46), (7.49) and (7.52) below for the exact definitions. As
the equality gbc(G) = gbi(G) = g(B0(G)) holds, also the parameter h1(B0(G))
provides an upper bound for gbc(G). We will review the parameters of Haemers

and investigate their relationships with the parameters h1(·) and ĥ(·).

Linking the parameter ĥ(B(G)) to Hoffman’s bound for α(G). Let
G = (V = [n], E) be an arbitrary graph and let λn(AG) be the smallest
eigenvalue of its adjacency matrix. If G is r-regular, then the following bound
holds for its stability number:

α(G) ≤ n
−λn(AG)

r − λn(AG)
. (7.44)

This bound was proved by Hoffman (unpublished) and is known as Hoffman’s
ratio bound (see Haemers [Haem21] for a short proof and a historical ac-
count). There is a tight link between Hoffman’s ratio bound for G and the

parameter ĥ(·) for its bipartite double B(G). Indeed, if A ⊆ V is an indepen-
dent set in G, then the pair (A,A) is a balanced biindependent pair in B(G).

So |A| ≤ α(G) and 2|A| ≤ αbal(B(G)) ≤ 4 · ĥ(B(G)), giving

α(G) ≤ 1

2
αbal(B(G)) ≤ 2 · ĥ(B(G)) = n

λ2(AB(G))

r + λ2(AB(G))
. (7.45)

By Lemma 7.21, we have λ2(AB(G)) = max{λ2(AG),−λn(AG)}, and thus

n
−λn(AG)

r − λn(AG)
≤ 2 · ĥ(B(G)) = n

λ2(AB(G))

r + λ2(AB(G))
.
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Lovász [Lov79] showed that also ϑ(G) is upper bounded by Hoffman’s ratio
bound. The parameters ϑ(G) and h1(B(G)) satisfy the analogous relationship:

ϑ(G) ≤ 2 · h1(B(G)).

Indeed, if X is an optimal solution to program (3.1), then X ′ := 1
2

(
X X
X X

)
is

feasible for (7.28) with objective value 〈C,X ′〉 = 1
2〈J,X〉 = 1

2ϑ(G), giving the
desired inequality.

Linking the parameter h1(B0(G)) to Haemers’ bound ϕ(G). As we saw
earlier, for any bipartite graph G, the parameter h1(G) provides an upper

bound for the parameter g(G), via 1
2

√
g(G) ≤ h1(G). This also directly gives

a bound for the parameter gbi(G) = g(B0(G)) when G is an arbitrary graph,

namely 1
2

√
gbi(G) ≤ h1(B0(G)).

For an arbitrary graph G = (V,E), Haemers [Haem01] introduced the
spectral parameter

ϕ(G) := min
M∈S|V |

{λabs(M) : Mij = 1 for all {i, j} ∈ E}, (7.46)

where λabs(M) denotes the maximum absolute value of an eigenvalue of M ,
and he shows that ϕ(G) provides an upper bound for the parameter gbc(G) =
gbi(G) via the inequality √

gbc(G) ≤ ϕ(G). (7.47)

So we have two bounds for gbc(G), namely 1
2

√
gbc(G) ≤ 1

2ϕ(G) and
1
2

√
gbc(G) ≤ h1(B0(G)). We now show that these two upper bounds in fact

coincide.

Lemma 7.25. For any graph G, we have h1(B0(G)) = 1
2ϕ(G).

Proof. Let G = (V,E) and G = (V,E). First observe the parameter
ϕ(G) can be reformulated as

ϕ(G) = min
{
λmax(Y ) : Y =

(
0 M
M 0

)
, M ∈ S |V |, Mij = 1 for {i, j} ∈ E

}
;

(7.48)
this follows from the fact that the eigenvalues of any Y in (7.48) are ±λi(M)
for i ∈ [|V |]. Let V ∪ V ′ be the vertex set of the extended bipartite double
B0(G), where V ′ is a disjoint copy of V , and let C be the matrix from (7.21),
which is now indexed by V ∪ V ′. We use the formulation (7.27) of h1(B0(G)),
defined as the smallest scalar λ for which λI−C+Z � 0 for some Z ∈ SB0(G)

or, equivalently, as the minimum value of λmax(C − Z) for Z ∈ SB0(G). Since
the condition Z ∈ SB0(G) corresponds to Y := 2(C − Z) being feasible for

(7.48), we can conclude that 2h1(B0(G)) = ϕ(G). �
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Linking h1(B0(G)) to Haemers’ spectral bounds ϕ′(G) and ϕH(G). In
the previous section we mentioned the spectral bound ϕ(G) from (7.46) of
Haemers [Haem01] for the parameter gbc(G) and observed its link to the pa-
rameter h1(·), recall (7.47) and Lemma 7.25. In some earlier work [Haem97],
Haemers introduced the following spectral parameter for an arbitrary graph
G = (V = [n], E),

ϕ′(G) := min
M∈S|V |

{
n

λ(M)

1 + λ(M)
: Me = e, Mij = 0 for {i, j} ∈ E

}
, (7.49)

where λ(M) denotes the second largest absolute value of an eigenvalue of M .
Haemers [Haem01] showed that ϕ(G) ≤ ϕ′(G) for all G and that there are
graphs G for which the inequality is strict.

Let LG denote the Laplacian matrix of G that is defined as LG = DG−AG,
where DG ∈ Sn is the diagonal matrix whose i-th entry is the degree of vertex
i ∈ V in G. In what follows we let 0 = μ1 ≤ μ2 ≤ . . . ≤ μn denote the
eigenvalues of the Laplacian matrix LG. In [Haem97, Theorem 2.4] Haemers
shows the inequality

ϕ′(G) ≤ ϕH(G) :=
n

2

(
1− μ2

μn

)
(7.50)

for any graph G (on n nodes), and he shows that equality holds in (7.50) if G
is vertex- and edge-transitive. So we have the following inequalities

(h1(B0(G)) =) 1
2ϕ(G) ≤ 1

2ϕ
′(G) ≤ 1

2
ϕH(G) =

n

4

(
1− μ2

μn

)
, (7.51)

where the right most inequality is an equality ifG is vertex- and edge-transitive.

We next sharpen this latter result and show that h1(B0(G)) = n
4

(
1 − μ2

μn

)
if

G is vertex- and edge-transitive.

Proposition 7.26. Let G = (V,E) be a graph, set n := |V |, and let 0 = μ1 ≤
μ2 ≤ . . . ≤ μn denote the eigenvalues of the Laplacian matrix of G. Then we
have

h1(B0(G)) =
1

2
ϕ(G) ≤ 1

2
ϕH(G) =

n

4

(
1− μ2

μn

)
,

with equality if G is vertex- and edge-transitive.

Proof. Consider the parameter h̃(G) obtained from the definition of
h1(B0(G)) in (7.27), where we restrict the optimization to matrices Z of the

form Z =
(

0 tLG + μI
tLG + μI 0

)
for scalars t, μ ∈ R. Hence, h1(B0(G)) ≤ h̃(G).

First, we show that ifG is vertex- and edge-transitive (hence regular), then this

restriction can be made without loss of generality and thus h1(B0(G)) = h̃(G).
For this, for any permutation σ of V consider the associated permutation σ̃

of V ∪V ′ (the vertex set of B0(G), where V ′ is a disjoint copy of V ) defined by
σ̃(i) = σ(i) and σ̃(i′) := σ(i)′ for i ∈ V ; clearly, σ̃ is an automorphism of B0(G)
if σ is an automorphism of G. Consider in addition the automorphism π of
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B0(G) obtained by flipping V and V ′: π(i) = i′ and π(i′) = i for i ∈ V . Then,
under the action of the group of automorphisms of B0(G) generated by π and
σ̃ (for σ automorphism of G), the edge set of B0(G) is partitioned into two
orbits, the orbit ΩV := {{i, i′} : i ∈ V } and the orbit ΩE := {{i, j′}, {i′, j} :
{i, j} ∈ E}. Now, if (λ, Z) is feasible for h1(B0(G)), then the same holds for
its symmetrization obtained by averaging over the group of automorphisms
of B0(G) just described. This gives a new feasible solution (λ, Z), where the
entries of Z take two possible nonzero values, depending whether the entry
corresponds to an edge in ΩV or in ΩE , and thus Z has indeed the desired
form claimed above.

We now aim to compute the optimum value of the program

h̃(G) = min
λ,t,μ∈R

{
λ :

(
λI tLG + μI − 1

2J
tLG + μI − 1

2J λI

)
� 0
}

and to show it is equal to n
4

(
1 − μ2

μn

)
. By taking a Schur complement (and

assuming λ > 0) the matrix in the above semidefinite program is positive
semidefinite if and only if the matrix

λ2I − (tLG + μI − 1
2J)(tLG + μI − 1

2J)

= (λ2 − μ2)I − t2L2
G − 2tμLG + (μ− n

4 )J =: Q

is positive semidefinite. Let e denote the all-ones vector, which is an eigenvec-
tor of LG for its smallest eigenvalue μ1 = 0, and let wi ⊥ e be an eigenvector
of LG for its eigenvalue μi with i ≥ 2. Then the eigenvalues of Q at these
eigenvectors are as follows:

at e: λ2 − μ2 + n(μ− n
4 ) = λ2 − (μ− n

2 )
2,

at wi ⊥ e: λ2 − (tμi + μ)2, for i = 2, . . . , n.

Hence Q � 0 if and only if all these eigenvalues are nonnegative and thus we
must select t, μ such that

max
{
(μ− n

2 )
2, (tμ2 + μ)2, (tμn + μ)2

}
is smallest possible.

So we must find the smallest value of λ for which there exist t, μ satisfying the
system

λ ≥ |tμ2 + μ|, λ ≥ |tμn + μ|, λ ≥ |μ− n
2 |.

First, note that taking μ := n
4 + nμ2

4μn
, t := −n

2μn
and λ := n

4 (1 −
μ2

μn
) is feasible

for the above system (since tμ2 +μ = λ, tμn +μ = μ− n
2 = −λ), which shows

h̃(G) ≤ n
4 (1−

μ2

μn
). We now show the reverse inequality. Assume λ, t, μ satisfy

the above system. The conditions λ ≥ −tμn − μ and λ ≥ tμ2 + μ together
give λ ≥ 1

2(μ2−μn)t, and the conditions λ ≥ tμ2+μ and λ ≥ −μ+ n
2 give λ ≥

μ2

2 t+n
4 . Therefore, h̃(G) is at least the smallest value of λ for which there exists

t such that λ ≥ max{1
2(μ2 −μn)t,

μ2

2 t+ n
4 }. Now observe that this maximum
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is minimized at the intersection point, where t = − n
2μn

(since μ2−μn ≤ 0 and

μ2 ≥ 0). This gives the desired relation h̃(G) ≥ 1
2(μ2−μn)

(
n

−2μn

)
= n

4 (1−
μ2

μn
),

which concludes the proof. �

An interesting feature of the closed-form bound 1
2ϕH(G) = n

4

(
1− μ2

μn

)
in

Proposition 7.26 is that it is valid without any regularity assumption on the
graph G.

Assume now G is r-regular, still arbitrary (not necessarily bipartite) on
n nodes. Then its adjacency matrix AG satisfies AG = rI − LG and thus its
eigenvalues are λi = r−μi for i ∈ [n], with λ1 = r ≥ λ2 ≥ . . . ≥ λn. Therefore,
for any r-regular graph G, we have

h1(B0(G)) ≤ 1

2
ϕH(G) =

n

4

(
1− μ2

μn

)
=

n

4

λ2 − λn

r − λn
. (7.52)

As shown in Proposition 7.26, equality h1(B0(G)) = 1
2ϕH(G) holds if G is

vertex- and edge-transitive. Since the extended bipartite double graph B0(G)
is (r + 1)-regular, one can also upper bound h1(B0(G)) by the parameter

ĥ(B0(G)) (as defined in Proposition 7.3). By Lemma 7.21, the second largest
eigenvalue of the adjacency matrix of B0(G) equals max{λ2+1,−λn−1}, and
thus

h1(B0(G)) ≤ ĥ(B0(G)) =
n

2

max{λ2 + 1,−λn − 1}
max{λ2 + 1,−λn − 1}+ r + 1

. (7.53)

Next we compare the upper bounds in (7.52) and (7.53).

Proposition 7.27. Let G be an r-regular graph. Then, 1
2ϕH(G) ≤ ĥ(B0(G)),

with equality if and only if λ2 = r or λ2 + λn + 2 = 0.

Proof. Set μ := max{λ2+1,−λn−1} and note that 1
2ϕH(G) ≤ ĥ(B0(G))

is equivalent to ψ := μ(λ2+λn− 2r)+ (r+1)(λ2−λn) ≤ 0. If λ2+λn+2 ≥ 0
then μ = λ2 + 1 and we have ψ = (λ2 − r)(λ2 + λn + 2) ≤ 0. Otherwise,
λ2 + λn +2 ≤ 0, μ = −λn − 1 and we have ψ = (r− λ2)(λ2 + λn +2) ≤ 0. �

So, Haemers’ bound ϕH(G) improves on the bound ĥ(B0(G)) for any reg-
ular graph G. On the other hand, also the reverse situation may occur, where

the parameter ĥ improves on Haemers’ bound ϕH . For this consider a bipar-

tite graph G = (V1 ∪ V2, E). As observed in (7.7), we have gbc(G) = g(G
b
),

where G
b
= (V1 ∪ V2, (V1 × V2) \ E) is the bipartite complement of G. Hence

we have the inequalities

1

2

√
gbc(G) =

1

2

√
g(G

b
) ≤ h1(G

b
) ≤ ĥ(G

b
),

1

2

√
gbc(G) =

1

2

√
g(B0(G)) ≤ h1(B0(G)) ≤ 1

2
ϕH(G),

(7.54)
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where we assume that G is regular when considering the parameters ĥ(G
b
) and

ϕH(G). Next we show that h1(B0(G)) = h1(G
b
) and that ĥ(G

b
) ≤ 1

2ϕH(G).

Proposition 7.28. Let G be a bipartite graph. Then we have h1(B0(G)) =

h1(G
b
). Moreover, if G is r-regular, n := |V1| = |V2| and λ2 denotes the second

largest eigenvalue of AG, then we have

ĥ(G
b
) =

n

2

λ2

λ2 + n− r
≤ 1

2
ϕH(G) =

n

2

λ2 + r

2n− r + λ2
, (7.55)

with strict inequality precisely when λ2 < r < n, i.e., when G is connected and
G �= Kn,n.

Proof. First, we prove h1(B0(G)) = h1(G
b
). For this, we use the formu-

lation (7.28) for the parameter h1(·). Recall the definition (7.21) of the matrix

C ∈ S |V | for the bipartition V = V1∪V2, and let C̃ ∈ S |V |+|V ′| denote the analo-
gous matrix corresponding now to the bipartition V ∪V ′, where V = V1∪V2 and

V ′ = V ′
1∪V ′

2 is a disjoint copy of V . The matrices C̃ and AB0(G) have the form

C̃ = 1
2

(
0 J J 0
J 0 0 J
J 0 0 J
0 J J 0

)
and AB0(G) =

⎛⎝ 0 A(G
b
) I 0

A(G
b
) 0 0 I

I 0 0 A(G
b
)

0 I A(G
b
) 0

⎞⎠ with respect

to the partition V1∪V ′
2∪V ′

1∪V2 (taken in that order), setting A(G
b
) := A

G
b for

easier notation. If X ∈ S |V | is optimal for h1(G
b
), then Y := 1

2

(
X 0
0 X

)
is fea-

sible for h1(B0(G)) with 〈C̃, Y 〉 = 〈C,X〉, which shows h1(B0(G)) ≥ h1(G
b
).

Conversely, assume Y ∈ S |V |+|V ′| is optimal for h1(B0(G)). Let X (resp.,
X ′) denote the principal submatrix of Y indexed by V1 ∪ V ′

2 (resp., V ′
1 ∪ V2).

Then X/Tr(X) and X ′/Tr(X ′) are both feasible for h1(G
b
), which implies

h1(G
b
) · Tr(X) ≥ 〈C,X〉 and h1(G

b
) · Tr(X ′) ≥ 〈C,X ′〉. Summing up and

using Tr(X) + Tr(X ′) = Tr(Y ) = 1, we get h1(G
b
) ≥ 〈C,X〉 + 〈C,X ′〉 =

〈C̃, Y 〉 = h1(B0(G)).
Assume now G is bipartite r-regular, λ2 = λ2(AG) and n := |V1| = |V2|;

we show (7.55). First we compute the parameter ĥ(G
b
). For this note that G

b

is (n − r)-regular. Moreover, if MG denotes the incidence matrix of G, then

the incidence matrix of G
b
is J −MG, whose second largest singular value is

equal to the second largest singular value of MG and thus to λ2. Hence, using

relation (7.42), we obtain ĥ(G
b
) = n

2
λ2

n−r+λ2
, as desired. Next we compute the

parameter ϕH(G). For this note that G is (2n − 1 − r)-regular, the second
largest eigenvalue of AG is −1− λmin(AG) = r− 1 and its smallest eigenvalue

is −1 − λ2(AG) = −1 − λ2. In view of (7.52) we get ϕH(G) = n r+λ2
2n−r+λ2

, as

desired. One can then easily check that the inequality in (7.55) is equivalent
to (r − λ2)(n − r) ≥ 0, which holds since λ2 ≤ r ≤ n. Hence the inequality
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1

2

√
gbc(G) ≤

with equality if G is vertex-
and edge-transitive

Prop. 7.26︷ ︸︸ ︷
h1(B0(G)) ≤ 1

2ϕH(G) ≤ ĥ(B0(G))︸ ︷︷ ︸
with equality if and only if
λn = r − n or λ2 + λn = 0

Prop. 7.27

Figure 7.2. Bounds on gbc(G) for G r-regular

1

2

√
gbc(G) ≤ h1(B0(G)) = h1(G

b
)︸ ︷︷ ︸

Prop. 7.28

≤

with equality if and only if
λ2 = r or r = n

Prop 7.28︷ ︸︸ ︷
ĥ(G

b
) ≤ 1

2ϕH(G) ≤ ĥ(B0(G))︸ ︷︷ ︸
with equality if and only if
λn = r − n or λ2 + λn = 0

Prop. 7.27

Figure 7.3. Bounds on gbc(G) for G bipartite r-regular

in (7.55) is strict precisely when λ2 < r < n, i.e., when G is connected and
G �= Kn,n. �

We summarize the various bounds obtained above for the parameter gbc(G)
when G is an arbitrary r-regular graph (Figure 7.2) and when G is bipartite
r-regular (Figure 7.3). As before, let λ1 = r ≥ λ2 ≥ . . . ≥ λn denote the
eigenvalues of AG. Then, G is (n−1− r)-regular, with λ2(AG) = −1−λn and
λn(AG) = −1− λ2.

7.5. Examples

We now illustrate the behaviour of the various parameters discussed above
on some classes of regular graphs. Recall the definition of the matrix MG in
Lemma 7.21.

7.5.1. The perfect matching. For n ≥ 2, let G be a perfect matching
on 2n vertices. Then, MG = I, r = 1, λ2 = 1, and G is vertex- and edge-
transitive. Using Proposition 7.3 we obtain

h1(G) = ĥ(G) =
n

2

λ2

r + λ2
=

n

4
and g1(G) = ĝ(G) =

n2

4
.

We have g(G) = �n/2�"n/2# and h(G) = 1
n�n/2�"n/2# (obtained by maximiz-

ing ab and ab
a+b with a, b ≥ 0 integers and a+b ≤ n). Hence, h1(G) = 1

2

√
g1(G)

and h1(G), g1(G) give tight bounds for h(G), g(G) (with equality for n even
and up to rounding for n odd).
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7.5.2. The complete bipartite graph Kn,n minus a perfect match-
ing. For n ≥ 2, let G be the complete bipartite graph Kn,n with a deleted
perfect matching (also known as the crown graph on 2n vertices). Then G is
vertex- and edge-transitive, (n − 1)-regular, MG = Jn − In, and λ2 = 1. We
have h(G) = 1

2 and g(G) = 1. Using Proposition 7.3 we obtain

h1(G) = ĥ(G) =
n

2

λ2

r + λ2
=

1

2
, and g1(G) = ĝ(G) =

{
n2

8(n−2) n ≥ 4,

1 n ≤ 4.

Hence the bound h1(G) is tight for both h(G) and 1
2

√
g(G), while the ratio

g1(G)/g(G) grows linearly in n. Note that h1(G) < 1
2

√
g1(G) for n ≥ 5,

which gives an example with strict separation between the parameters h1 and
1
2

√
g1 (and thus ĥ and 1

2

√
ĝ). In view of (7.54), the parameter gbc(G) is upper

bounded by 4ĥ(G
b
)2 and by ϕH(G)2. Note that 4ĥ(G

b
)2 = 4(n4 )

2 = n2

4 , which

improves on Haemers’ bound ϕH(G)2 = ( n2

n+2)
2 for n ≥ 3. This thus gives a

class of graphs for which strict inequality holds in (7.55).

7.5.3. The cycle graph Cn. Let G be the cycle Cn on n ≥ 3 ver-
tices, which is vertex- and edge-transitive, and 2-regular. The eigenvalues
of the adjacency matrix ACn are 2 cos(2πj/n) where j = 0, . . . , n − 1 (see,
e.g., [BH17]), so λ2(ACn) = 2 cos(2π/n), and λn(ACn) = −2 if n is even,
λn(ACn) = −2 cos(π/n) if n is odd.

First, we compute the parameters for the extended bipartite double graph
B0(Cn). Using Proposition 7.26 and relations (7.52), (7.53), we get

h1(B0(Cn)) =
1

2
ϕH(Cn) =

{
n
4 cos(π/n)

2 if n even,
n
4 (2 cos(π/n)− 1) if n odd,

(7.56)

ĥ(B0(Cn)) =
n

4

2 cos(2π/n) + 1

cos(2π/n) + 2
. (7.57)

Hence, we have h1(B0(Cn)) = ĥ(B0(Cn))(= 0) for n = 3 (in which case

B0(C3) = K3,3), and strict inequality h1(B0(Cn)) < ĥ(B0(Cn)) for n ≥ 4 (as
expected from Proposition 7.27). Note also that B0(Cn) is not edge-transitive
if n ≥ 4. One can also show that

h(B0(Cn)) =

{
1
4(n− 2) if n even,
(n−1)(n−3)

4(n−2) if n odd,

g(B0(Cn)) =

{
1
4(n− 2)2 if n even,
1
4(n− 1)(n− 3) if n odd.

So h(B0(Cn)) ≤ 1
2

√
g(B0(Cn)), with equality for n even. Moreover, the ratio

ĥ(B0(Cn))/h(B0(Cn)) tends to 1 as n → ∞, so the bound ĥ(B0(Cn)) (and thus

h1(B0(Cn)) too) is asymptotically tight for h(B0(Cn)) and
1
2

√
g(B0(Cn)).
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For n even the graph G = Cn is bipartite. Then we have

h(Cn) ≤ h1(Cn) = ĥ(Cn) =
n

4

λ2

λ2 + r
=

n

4

cos(2π/n)

cos(2π/n) + 1
≤ α(Cn)

4
=

n

8
.

So h1(Cn) = Θ(n/8) = Θ(α(Cn)/4). Moreover, one can construct a bipartite
biindependent pair (A,B) showing h(Cn) = Θ(n/8) (see also [CLZXL21]).
Namely, for n ≡ 0 (mod 4), set A = {1, 3, . . . , n2−1}, B = {n

2+2, n2+4, . . . , n−
2} with |A| = n

4 , |B| = n
4 −1, and, for n ≡ 2 (mod 4), set A = {1, 3, . . . , n2 −2},

B = {n
2 + 1, n2 + 3, . . . , n− 2} with |A| = |B| = n−2

4 .

7.5.4. The hypercube graph Qr. The hypercube graph Qr is the bi-
partite graph with vertex set V = {0, 1}r, where two vertices are adjacent
when their Hamming distance is 1. So the bipartition is V = V1 ∪ V2, where
V1 (resp., V2) consists of all x ∈ V with an even (resp., odd) Hamming weight
|x|. The graph Qr is vertex- and edge-transitive, and r-regular. The eigen-
values of AQr are r − 2k for k = 0, . . . , r, where the eigenvalue r − 2k has
multiplicity

(
r
k

)
. So λ2(AQr) = r − 2. Thus the parameter h1(Qr) is given by

h1(Qr) = ĥ(Qr) = 2r−3 r − 2

r − 1
.

One can show that limr→∞ h1(Qr)/h(Qr) = 1. For this, we will show that

h(Qr) ≥ a(r−1)
4 , where the sequence (a(r))r≥0 is defined recursively by

a(2r) := 22r −
(
2r

r

)
, a(2r + 1) := 2 · a(2r) if r ≥ 1, and a(0) = 0. (7.58)

Using the fact that
(
2r
r

)
∼ 22r√

πr
one can check that a(r − 1) ∼ 2r−1 and

h(Qr) ≥ 2r−3(1 − c/
√
r) (for some constant c > 0) and thus h1(Qr)/h(Qr)

tends to 1 as r → ∞. Note that the bound h(Qr) ≤ α(Qr)/4 = 2r−1/4 =
2r−3 from Lemma 7.1 is slightly weaker than h(Qr) ≤ h1(Qr), but already
strong enough to exhibit h(Qr) ∼ 2r−3 (when combined with the lower bound

h(Qr) ≥ a(r−1)
4 ).

We now show that

h(Qr) ≥
a(r − 1)

4
.

For this, it is useful to observe that the graph Qr is isomorphic to B0(Qr−1),
the extended bipartite double of Qr−1 (the bipartition of Qr provides the
bipartition of B0(Qr−1) by simply deleting the last coordinate in all vertices
of Qr). Thus we have

h(Qr) = h(B0(Qr−1)) = hbi(Qr−1),

where the last equality follows from (7.5). Hence, instead of searching for bi-
partite biindependent pairs in Qr, we may as well search for (general) biinde-
pendent pairs in Qr−1, which is a simpler task. We show that hbi(Qr) ≥ 1

4a(r)
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for all r ≥ 1. First consider the case of Q2r. Define the sets

L := {x ∈ {0, 1}2r : |x| ≤ r − 1}, U := {x ∈ {0, 1}2r : |x| ≥ r + 1}.
Then, (L,U) is a (balanced) biindependent pair in Q2r, with |L| = |U | =
1
2

(
22r −

(
2r
r

))
= 1

2a(2r), which implies hbi(Qr) ≥ 1
4a(2r). Consider now the

case of Q2r+1. Define L′ := L×{0, 1} and U ′ := U×{0, 1} ⊆ {0, 1}2r+1. Then
the pair (L′, U ′) is (balanced) biindependent in Q2r+1, with |L′| = |U ′| =
a(2r) = 1

2a(2r + 1), which implies hbi(Q2r+1) ≥ 1
4a(2r + 1).

The above construction can be used to show that αbal(Qr) ≥ a(r − 1) for
all r ≥ 1. For this, given A ⊆ {0, 1}r, define the following subsets of {0, 1}r+1

obtained by adding a parity bit,

Aeven := {(x, |x| mod 2) : x ∈ A} ⊆ {0, 1}r+1,

Aodd := {(x, |x|+ 1 mod 2) : x ∈ A} ⊆ {0, 1}r+1.

Applying this to the above sets L,U ⊆ {0, 1}2r, we obtain Leven, Uodd ⊆
{0, 1}2r+1 such that (Leven, Uodd) is balanced bipartite biindependent in Q2r+1

with |Leven| = |Uodd| = |L| = a(2r)/2, which implies αbal(Q2r+1) ≥ a(2r).
Similarly, using the sets L′, U ′ ⊆ {0, 1}2r+1, we obtain L′

even, U
′
odd ⊆ {0, 1}2r+2

that provide a balanced bipartite biindependent pair in Q2r+2 with

|L′
even| = |U ′

odd| = |L′| = a(2r + 1)/2,

which implies αbal(Q2r+2) ≥ a(2r + 1).

Conjecture 7.29. We conjecture that equality αbal(Qr) = a(r − 1) holds for
all r ≥ 1.

We have verified numerically that Conjecture 7.29 indeed holds for any
r ≤ 13. For r ≤ 8 this can be verified using an integer programming solver
(like Gurobi [Gur]). For larger values r ≤ 13 we show this in an indirect man-
ner. We consider the semidefinite upper bound on αbal(Qr) that is obtained
from the Lasserre relaxation of order 2. After applying a symmetry reduction
(as done in [GMS12, LPS17]), we solve the resulting semidefinite program
numerically and obtain an upper bound that coincides with a(r−1) for r ≤ 13.
In addition, αbal(Qr)/a(r − 1) → 1 as r → ∞ since αbal(Qr) ≤ α(Qr) = 2r−1

and a(r − 1) ∼ 2r−1.
Observe that αbal(Qr+1) ≥ 2 · αbal(Qr). For this, for x ∈ {0, 1}r let

x′ ∈ {0, 1}r be obtained by switching the last bit of x, so that the weights of
x, x′ have distinct parities and, for a set A ⊆ {0, 1}r and b ∈ {0, 1}, define
Ab := {(x, b) : x ∈ A} ⊆ {0, 1}r+1. The claim now follows from the fact
that if (A,B) is a balanced bipartite biindependent pair in Qr, then the pair
(B1 ∪ B′0, A1 ∪ A′0) is balanced bipartite biindependent in Qr+1 with size
2|A∪B|. Hence, the above conjecture implies equality αbal(Qr+1) = 2·αbal(Qr)
for r odd.

Interestingly, the sequence a(r) in (7.58) corresponds to the sequence
A307768 in OEIS [OESIS], which counts the number of heads-or-tails games
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of length r during which at some point there are as many heads as tails. It
is also related to several other well-known combinatorial counting problems;
see, e.g., [EK99] or [Fel57, Chapter III] for an overview. It would be interest-
ing to understand the exact relationship of this sequence with the parameter
αbal(Qr).

7.6. Lasserre bounds for the balanced parameters

In this section we turn our attention to the “balanced” parameters αbal(G),
gbal(G) and hbal(G) that are obtained by restricting the optimization to bal-
anced bipartite biindependent pairs in the definition of α(G), g(G) and h(G).

Recall from (7.3) that 1
4αbal(G) = 1

2

√
gbal(G) = hbal(G). Since these are

NP-hard parameters one is interested in finding efficient bounds for them,
strengthening those for the original parameters g(G) and h(G).

Let G = (V = V1 ∪ V2, E) be a bipartite graph. Following the approach in
Section 1.5, each of the parameters αbal(G), gbal(G) and hbal(G) has a natural
polynomial optimization formulation, which offers the starting point to define
several hierarchies of semidefinite relaxations. For this define the vector

f := χV1 − χV2 .

Let IG,bal denote the ideal in R[x] that is generated by the ideal IG (itself
generated by x2i − xi for i ∈ V and xixj for {i, j} ∈ E) and the polynomial

fTx. For an integer t let IG,bal,t denote its truncation at degree t, where
all summands are restricted to have degree at most t. Then, the formula-
tion for αbal(G) follows by replacing the ideal IG by the ideal IG,bal in (3.4).
Similarly, gbal(G) (resp., hbal(G)) is obtained by adding the “balancing” con-
straint fTx = 0 to the program (7.22) defining g(G) (resp., to the program
(7.23) defining h(G)). Now, each of these polynomial optimization formula-
tions can be used to define a Lasserre-type hierarchy. In this way one obtains
the hierarchies lasbal,r(G), gbal,r(G), and hbal,r(G) for r ∈ N that converge
to αbal(G), gbal(G), and hbal(G), respectively, after r ≥ α(G) steps. They
are obtained, respectively, from the programs (3.7) (defining lasr(G)), (7.24)
(defining gr(G)), and (7.25) (defining hr(G)) by replacing the truncated ideal
IG,2r by its balanced analog IG,bal,2r; that is,

lasbal,r(G) = min
{
λ : λ− xTx ∈ Σ2r + IG,bal,2r

}
,

gbal,r(G) = min
{
λ : λ− xTCx ∈ Σ2r + IG,bal,2r

}
,

hbal,r = min
{
λ : xT(λI − C)x ∈ Σ2r + IG,bal,2r

}
.

We will now focus on the Lasserre bounds of order r = 1. We will give ex-
plicit semidefinite formulations and show relationships between the various
parameters. The parameter lasbal,1(G) is the analog of las1(G) = ϑ(G) ob-
tained by adding a balancing constraint to program (7.20). However, adding
a balancing constraint to the formulation of ϑ(G) in (3.1) leads to another
parameter ϑbal(G) that is in general weaker than lasbal,1(G). The parameters
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gbal,1(G) and hbal,1(G) are obtained by adding a balancing constraint to the
respective programs defining g1(G) and h1(G). Moreover, they can be shown
to be nested between lasbal,1(G) and ϑbal(G), see Proposition 7.33 below. For
bipartite regular graphs we will investigate some natural symmetric variations
of these parameters, with the hope of obtaining a new closed-form parameter

strengthening ĥ(G). However, as we will show, it turns out that in all cases

one recovers the parameter ĥ(G), see Propositions 7.36 and 7.37. So the re-
fined formulations taking into account the balancing constraints do not yet
lead to stronger eigenvalue bounds for the parameter αbal(·).

7.6.1. The Lasserre bounds of order r = 1 for the balanced pa-
rameters. We begin with semidefinite reformulations for the parameter
lasbal,1(G).

Lemma 7.30. For any bipartite graph G = (V,E) we have

lasbal,1(G) = max
X∈S|V |

{
〈I,X〉 :

(
1 diag(X)T

diag(X) X

)
� 0, Xij = 0 if {i, j} ∈ E,

〈ffT, X〉 = 0
}
,

(7.59)

= min
Z∈S|V |,u∈R|V |,s∈R

{
λ :

(
λ −uT/2

−u/2 Diag(u)− I + Z + sffT

)
� 0, Z ∈ SG

}
.

(7.60)

Proof. As in Section 7.3.1 the proof uses Lemma 7.15. By definition,
lasbal,1(G) is the smallest scalar λ for which λ − xTIx ∈ Σ2 + IG,bal,2, i.e.,

λ − xTIx − (a0 + aTx)fTx ∈ Σ2 + IG,2 for some a0 ∈ R, a ∈ Rn. Thus,

lasbal,1(G) is the smallest λ such that [x]T1
(
Q−
(

λ a0f
T/2

a0f/2 −I + afT+faT

2

))
[x]1 ∈ IG,2

for some a0 ∈ R, a ∈ Rn. Applying Lemma 7.15 we arrive at the program

lasbal,1(G) = min
Z∈S|V |,
u,a∈R

|V |,
a0∈R

{
λ :
(

λ 1
2 (−u+ a0f)

T

1
2 (−u+ a0f) Diag(u)− I + Z + afT+faT

2

)
� 0, Z ∈ SG

}
.

Now, we take the dual of this semidefinite program. We also apply some
simplifications, such as observing that Xf = 0 is equivalent to 〈ffT, X〉 = 0

when X � 0, which in turn implies fTdiag(X) = 0 when
(

1 diag(X)T

diag(X) X

)
is

positive semidefinite. In this way we arrive at the program (7.59). Taking the
dual of (7.59) gives the (simplified) program (7.60). Note that strong duality
holds since program (7.60) is strictly feasible (e.g., take s = 0, Z = 0, u = μe

with μ > 1, and λ > n
4

μ2

μ−1). �

Hence, program (7.59) is the analog of program (7.20) defining las1(G) =
ϑ(G) to which we add the balancing condition 〈ffT, X〉 = 0. Next we con-
sider the analog of program (3.1) to which we add the balancing conditions
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〈ffT, X〉 = 0 and fTdiag(X) = 0, giving the parameter

ϑbal(G) := max
X∈S|V |

{
〈J,X〉 :X � 0, Tr(X) = 1, Xij = 0 if {i, j} ∈ E,

〈ffT, X〉 = 0, 〈Diag(f), X〉 = 0
}
,

(7.61)

= min
Z∈S|V |,λ,s,v∈R

{
λ : λI − J + Z + vDiag(f) + sffT � 0, Z ∈ SG

}
, (7.62)

where the second formulation (7.62) follows by taking the dual of (7.61) (and
observing that (7.62) is strictly feasible). We will see in Proposition 7.33 below
that ϑbal(G) provides a weaker bound for αbal(G) than lasbal,1(G).

We now consider the parameter gbal,1(G). By definition, gbal,1(G) is the

smallest scalar λ for which λ − xTCx ∈ Σ2 + IG,bal,2. Comparing with the
definition of lasbal,1(G), we see that it suffices to exchange the matrices C and
I to get the semidefinite formulations of gbal,1(G) in the next lemma (recall
also Remark 7.18).

Lemma 7.31. For any bipartite graph G = (V,E) we have

gbal,1(G) = max
X∈S|V |

{
〈C,X〉 :

(
1 diag(X)T

diag(X) X

)
� 0,

Xij = 0 if {i, j} ∈ E, 〈ffT, X〉 = 0
}
,

(7.63)

= min
λ,s∈R,u∈R|V |,Z∈S|V |

{
λ :

(
λ −uT/2

−u/2 Diag(u)− C + Z + sffT

)
� 0, Z ∈ SG

}
.

(7.64)

Finally we give semidefinite formulations for the parameter hbal,1(G).

Lemma 7.32. Let G = (V,E) be a bipartite graph. Then we have

hbal,1(G) = max
X∈S|V |

{〈C,X〉 : X � 0, Tr(X) = 1, Xij = 0 if {i, j} ∈ E,

〈ffT, X〉 = 0, 〈Diag(f), X〉 = 0},
(7.65)

hbal,1(G) = min
λ,v,s∈R,Z∈S|V |

{λ : λI − C + Z + vDiag(f) + sffT � 0, Z ∈ SG}.

(7.66)

Proof. The argument is similar to the one used to show Lemma 7.30.
Namely, one starts with the definition of hbal,1(G) as the smallest λ for which

xT(λI − C)x ∈ Σ2 + IG,bal,2. Using Lemma 7.15 one arrives at a semidefinite
program whose dual can be shown (after some simplifications) to take the
form (7.65). Then one takes the dual of program (7.65), which has the form
(7.66). �

We now compare the parameters lasbal,1(G), ϑbal(G), gbal,1(G) and hbal,1(G).
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Proposition 7.33. For any bipartite graph G, we have the inequalities

1

4
lasbal,1(G) ≤ 1

2

√
gbal,1(G) ≤ hbal,1(G) =

1

4
ϑbal(G).

Moreover, we have 1
2

√
gbal,1(G) = 1

4ϑbal(G) ⇐⇒ lasbal,1(G) = ϑbal(G).

Proof. The equality ϑbal(G) = 4hbal,1(G) follows from the fact that the
programs (7.61) (defining ϑbal(G)) and (7.65) (defining hbal,1(G)) differ only
in their objective functions that are, respectively, 〈J,X〉 and 〈C,X〉, combined
with the identity J − 4C = ffT.

The inequality lasbal,1(G) ≤ ϑbal(G) follows using the formulations (7.59)
and (7.61) and a classic argument (repeated for convenience). If X is optimal
for (7.59) with x := diag(X), then X − xxT � 0, fTx = 0, Tr(X) = eTx,
so X/Tr(X) = X/eTx is feasible for (7.61) and thus we have ϑbal(G) ≥
1

eTx
〈J,X〉 ≥ 1

eTx
〈J, xxT〉 = eTx = lasbal,1(G).

For the inequality lasbal,1(G)2 ≤ 4 · gbal,1(G), pick an optimal solution X

for (7.59) with x := diag(X), so that X−xxT � 0, and use again the fact that
4C = J − ffT. Then we have 4 · gbal,1(G) ≥ 〈4C,X〉 = 〈J,X〉 ≥ 〈J, xxT〉 =
(eTx)2 = 〈I,X〉2 = lasbal,1(G)2.

We now show the inequality 4 · gbal,1(G) ≤ ϑbal(G)2. For this let X be
optimal for program (7.63) defining gbal,1(G). Then X is feasible for (7.59)
and thus lasbal,1(G) ≥ Tr(X). In addition, X/Tr(X) is feasible for (7.61) and

thus ϑbal(G) ≥ 1
Tr(X)〈J,X〉. Using 4C = J − ffT, we obtain 4 · gbal,1(G) =

〈4C,X〉 = 〈J,X〉 = Tr(X) · 〈J,X/Tr(X)〉 ≤ lasbal,1(G) · ϑbal(G) ≤ ϑbal(G)2.
Finally, this argument also shows that equality 4 · gbal,1(G) = ϑbal(G)2 implies
lasbal,1(G) = ϑbal(G), which concludes the proof. �

Quite surprisingly, while we had the inequality h1(G) ≤ 1
2

√
g1(G) (recall

Proposition 7.2), we now have the reverse inequality 1
2

√
gbal,1(G) ≤ hbal,1(G)

for the balanced analogs. We next give an example where this inequality is
strict.

Example 7.34. Let G be the bipartite graph from Figure 7.4. One can check
that hbal,1(G) = 2/3, gbal,1(G) = 4/3 and lasbal,1(G) = 9/4, which shows that

the strict inequalities 1
4 lasbal,1(G) < 1

2

√
gbal,1(G) < hbal,1(G) hold. To see

this, consider the matrices

X1 =
1
12

(
1 1 0 2
1 5 2 4
0 2 1 1
2 4 1 5

)
, X2 =

1
9

(
3 1 0 4
1 7 4 4
0 4 3 1
4 4 1 7

)
, X3 =

1
32

(
12 3 0 15
3 24 15 12
0 15 12 3
15 12 3 24

)
.

Then, X1 is feasible for (7.65) with 〈C,X1〉 = 2/3, X2 is feasible for (7.63)
with 〈C,X2〉 = 4/3, and X3 is feasible for (7.59) with 〈I,X3〉 = 9/4. One can
check optimality of these solutions for the respective programs (for this, use the
constraint 〈ffT, X〉 = 0 to reduce the semidefinite program to an equivalent
semidefinite program involving smaller matrices, and then construct a solution
of the dual program with the same objective value).
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1

2

3

4

Figure 7.4. Graph G with α(G) = 3, αbal(G) = 2, h(G) =
2/3, and g(G) = 2

7.6.2. Symmetric versions of the parameters lasbal,1(G), ϑbal(G)
and gbal,1(G). Here, we address the question whether it is possible to ob-
tain closed-form eigenvalue-based upper bounds for αbal(G) that improve on

the spectral parameter ĥ(G) from (7.42). For this, a natural approach is to
restrict the optimization in the programs (7.60), (7.62), (7.64) to matrices
Z = tAG for some t ∈ R and, for (7.60) and (7.64), to vectors u = μe for some
μ ∈ R. Moreover, we add a term vDiag(f) to the matrix involved in (7.60) and
(7.64), which amounts to adding the redundant constraint 〈Diag(f), X〉 = 0
to the programs (7.59) and (7.63). The motivation for this is to get possibly
sharper bounds. In addition, the bounds obtained in this way are easier to
compare (see Proposition 7.35). However, as we will show in Proposition 7.36,
these additional constraints will turn out to be redundant for bipartite regular
graphs.

So we consider the parameters

l̂asbal(G) := min
λ,μ,t,s,v∈R

{λ :

(
λ −μeT/2

−μe/2 (μ− 1)I + tAG + sffT + vDiag(f)

)
� 0},

(7.67)

= max
X∈SV ,x∈RV

{
〈I,X〉 :

(
1 xT

x X

)
� 0,Tr(X) = eTx, 〈AG, X〉 = 0,

(7.68)

〈ffT, X〉 = 0, 〈Diag(f), X〉 = 0
}
,
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ϑ̂bal(G) : = min
λ,t,v,s∈R

{λ : λI − J + tAG + vDiag(f) + sffT � 0}, (7.69)

= max{〈J,X〉 : X � 0, Tr(X) = 1, 〈AG, X〉 = 0, (7.70)

〈ffT, X〉 = 0, 〈Diag(f), X〉 = 0},

ĝbal(G) := min
λ,μ,t,s,v∈R

{
λ :

(
λ −μeT/2

−μe/2 μI − C + tAG + sffT + vDiag(f)

)
� 0
}
,

(7.71)

= max
X∈SV ,x∈RV

{
〈C,X〉 :

(
1 xT

x X

)
� 0,Tr(X) = eTx, 〈X,AG〉 = 0,

(7.72)

〈ffT, X〉 = 0, 〈Diag(f), X〉 = 0
}
.

(Since each of the programs (7.67), (7.69), (7.71) is strictly feasible, strong du-
ality holds as claimed above.) We begin with comparing the above parameters
and show the analog of Proposition 7.33.

Proposition 7.35. For any bipartite graph G, we have

1

4
l̂asbal(G) ≤ 1

2

√
ĝbal(G) ≤ 1

4
ϑ̂bal(G).

Proof. We use the formulations (7.68), (7.70), (7.72) for the parameters

l̂asbal(G), ϑ̂bal(G), ĝbal(G), respectively. Then, the inequalities follow in the
same way as in the proof of Proposition 7.33. �

Next we compute the parameter ϑ̂bal(G) and show its relation to ĥ(G).

Proposition 7.36. Assume G = (V1 ∪ V2, E) is bipartite r-regular,
set n := |V1| = |V2| and let λ2 denote the second largest eigenvalue of AG.

Then we have ϑ̂bal(G) = 2nλ2
r+λ2

= 4 · ĥ(G).

We omit the proof in this thesis, which is a bit technical. A full proof of
this result can be found in my work [LPV23, Appendix D] with Laurent

and Polak . As the proof shows, the program (7.69) defining ϑ̂bal(G) admits
an optimal solution with v = 0. Hence, when G is bipartite regular, the
constraint 〈Diag(f), X〉 = 0 is redundant in program (7.69) and one can set
v = 0 in program (7.69), and the same observation applies to the programs

defining ĝbal(G) and l̂asbal(G).

We can now compute the parameters l̂asbal(G) and ĝbal(G) and show their

relation to ĥ(G).
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Proposition 7.37. For any regular bipartite graph G we have

1

4
l̂asbal(G) =

1

2

√
ĝbal(G) =

1

4
ϑ̂bal(G) = ĥ(G).

Proof. Assume G is bipartite regular and set n := |V1| = |V2|. If G is
complete bipartite, then αbal(G) = 0 and, using (7.70) and Proposition 7.35,

one can check that ϑ̂bal(G) = 0, so the result holds. We now assume that G
is not complete bipartite. In view of Propositions 7.35 and 7.36 it suffices to

show l̂asbal(G) ≥ ϑ̂bal(G). Assume that (λ, μ, t, s, v) is feasible for the program

(7.67) defining l̂asbal(G), we construct a feasible solution for the program (7.69)

defining ϑ̂bal(G) with the same objective value λ. Call Q ∈ S1+|V1|+|V2| the
matrix appearing in program (7.67). By taking a Schur complement with
respect to its upper left corner entry λ, we obtain

λ((μ− 1)I + tAG + sffT + vDiag(f))− μ2

4 J � 0.

We now claim that μ > 1. For this observe that the submatrices of Q indexed
by V1 and V2 read (μ − 1)In + sJn ± vIn. Since they are both positive semi-
definite this implies (μ− 1)In + sJn � 0 and thus μ ≥ 1. Assume that μ = 1.
Then the conditions sJn±vIn � 0 imply v = 0. Let i ∈ V1 and j ∈ V2 that are
not adjacent (they exist since G �= Kn,n). Then the principal submatrix of Q

indexed by {0, i, j} takes the form

(
λ −1/2 −1/2

−1/2 s −s
−1/2 −s s

)
and it must be positive

semidefinite, so we reach a contradiction. Hence we have μ > 1. Thus we can
scale the above matrix and obtain

λI +
λt

μ− 1
AG +

λs

μ− 1
ffT +

λv

μ− 1
Diag(f)− μ2

4(μ− 1)
J � 0.

Note that μ2

4(μ−1) − 1 = (μ−2)2

4(μ−1) ≥ 0 and add ( μ2

4(μ−1) − 1)J � 0 to the above

matrix. So we obtain

λI +
λt

μ− 1
AG +

λs

μ− 1
ffT +

λv

μ− 1
Diag(f)− J � 0,

which gives a feasible solution to the formulation (7.69) of ϑ̂bal(G) and thus

shows ϑ̂bal(G) ≤ λ = l̂asbal(G). �
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CHAPTER 8

Concluding remarks

In this thesis, we studied sum-of-squares representations for polynomials
arising from copositive matrices and independent (and biindependent) sets in
graphs. In this chapter, we briefly summarize the main results of the thesis
and highlight open questions and possible directions for future research.

Copositive matrices and the cones K(r)
n

One of the main results of this thesis is a characterization of the matrix
sizes n for which the cones K(r)

n cover the full copositive cone COPn. Namely,
we have the equality ⋃

r≥0

K(r)
n = COPn for n ≤ 5

(see Theorem 2.2), and we have that the inclusion⋃
r≥0

K(r)
n ⊆ COPn

is strict for n ≥ 6. Another interesting case of study is when restricting to
copositive matrices with an all-ones diagonal. It was shown in [DDGH13]
that every 5 × 5 copositive matrix with an all-ones diagonal belongs to the

cone K(1)
n . In Chapter 2, we found examples of copositive matrices with an

all-ones diagonal of size n× n (for any n ≥ 7) that do not belong to any cone

K(r)
n . The case n = 6 remains open.

Question 8.1. Does every 6 × 6 copositive matrix with an all-ones diagonal

belong to
⋃

r≥0K
(r)
6 ?

Recently, Hildebrand and Afonin [HA22] gave an example of a 6 × 6
copositive matrix with an all-ones diagonal that does not belong to the cone

K(1)
6 , showing that the result for matrix size n = 5 does not extend to n = 6.

It is even open whether there exists a fixed r ∈ N for which K(r)
6 contains all

those matrices.

Question 8.2. Does there exist an integer r ∈ N such that every 6× 6 copos-

itive matrix with an all-ones diagonal belongs to K(r)
6 ?

163
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Graph matrices MG, cones K(r)
n ,LAS

(r)
Δn

and Q(r)
n

Another main result of this thesis is showing that, for every graph G,

the graph matrix MG belongs to
⋃

r≥0K
(r)
n , see Theorem 3.8. This result

is equivalent to the finite convergence of the hierarchy ϑ(r)(G) to α(G). In
other words, the parameter ϑ-rank(G) is always finite. However, we did not
obtain any bound on the degree r of the convergence. We recall the conjecture
proposed by de Klerk and Pasechnik [dKP02] (Conjecture 3.7), which remains
open:

Conjecture 8.3 ([dKP02]). For any graph G, we have ϑ(α(G)−1)(G) = α(G),

i.e., MG ∈ K(α(G)−1)
n .

Observe that, unless P=NP, there is no constant r ∈ N such that
ϑ-rank(G) ≤ r for all graphs G, otherwise α(G) could be found by computing

(with accuracy 1
4) the bound ϑ(r)(G), which can be done in polynomial time

as r is constant. However, we do not know specific graphs with large ϑ-rank.
Specifically, the following problem is open.

Problem 8.4. Given an integer k, find a graph G such that ϑ-rank(G) ≥ k.

We also characterize the graphs G for which the graph matrix MG be-

longs to
⋃

r≥0 LAS
(r)
Δn

. Namely, they are the graphs obtained by adding twin
nodes to acritical graphs. In other words, this is the characterization of graphs

for which the simplex-based Lasserre hierarchy p
(r)
G (recall relation (4.1)) con-

verges to 1/α(G) in finitely many steps. We observe that the degree of con-
vergence should be unbounded for acritical graphs. This follows from the fact
that computing α(G) is hard already for acritical graphs (see Theorem 4.28).
Similar to the case of the ϑ-rank, we do not have an explicit class of acritical

graphs for which the hierarchy p
(r)
G takes an unbounded number of steps for

converging to 1/α(G).

We finish this section with a discussion about the cones Q(r)
n . It was

shown in [GL07] that Conjecture 8.3 holds for graphs with α(G) ≤ 8, that

is, MG ∈ K(α(G)−1)
n . It was observed that the proof of this result extends to

the cones Q(r)
n , thus MG ∈ Q(α(G)−1)

n for graphs with α(G) ≤ 8. The ques-

tion whether the cones Q(r)
n satisfy a result as in Conjecture 8.3 (i.e., whether

MG ∈ Q(α(G)−1)
n or ν-rank(G) ≤ α(G)− 1 for all graphs G) remains open. It

was shown in Chapter 5 that if this result holds, then it should be tight, as
the graphs Lk satisfy that ν-rank(LK) ≥ α(Lk)− 1.

The difference between the cones K(r)
n and Q(r)

n has been studied. It was
shown by Peña, Vera and Zuluaga [PVZ07] that there are matrices that
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belong to K(2)
n and do not belong to Q(2)

n . However, to the best of our knowl-
edge, no explicit copositive matrices are known lying in the set difference⋃

r≥0K
(r)
n \
⋃

r≥0Q
(r)
n .

It is not clear whether the hierarchy ν(r)(G) has finite convergence to α(G).
This is equivalent to the question of whether every graph matrix belongs to⋃

r≥0Q
(r)
n .

Question 8.5. Does the hierarchy ν(r)(G) has finite convergence to α(G), i.e,

MG ∈
⋃

r≥0Q
(r)
n for every graph G?

Constructing nonnegative polynomials that are not sums of squares

We show that certain polynomials do not admit a sum-of-squares repre-
sentation. Namely, in Theorem 2.7 in Chapter 2, we show examples of ho-
mogeneous polynomials arising from copositive matrices that do not admit a
Reznick-type certificate as in (1.8). Also, in Theorem 4.17 in Chapter 4 (see
also the proof of Theorem 2.18), we show that certain polynomials p that are
nonnegative on the simplex Δn do not belong to the corresponding quadratic
moduleM(x)+IΔn . For showing this, we exploit the structure of the infinitely
many zeros (in Δn) of these polynomials.

The comparison between sums of squares and nonnegative polynomials has
been studied recently in the context of convex forms. Indeed, it was shown by
Blekherman [Bl12] that there exist convex forms that cannot be written as
a sum of squares. Later in 2020, Saunderson [Sau20] found the first explicit
example of a convex form that is not a sum of squares. This example is a
form of degree 4 in 272 variables. The question about the minimum number
of variables for which such an example exists is open. El Bachir [ElK20]
showed that every convex form of degree 4 in 4 variables can be written as a
sum of squares. The next case of study are forms of degree 4 in 5 variables.
Observe that even forms of degree 4 in 5 variables are precisely polynomials

of the form (x◦2)TMx◦2, where M ∈ COP5. Since COPn �= K(0)
n for n ≥ 5,

it would be an interesting starting point to look at the copositive matrices
for which the associated polynomial (x◦2)TMx◦2 is not a sum of squares, i.e.,

M ∈ COPn \ K(0
n .

Complexity questions about polynomial optimization

In Chapter 4, two complexity results about polynomial optimization were
shown. Namely, it is NP-hard to decide whether a quadratic form has finitely
many minimizers, and it is NP-hard to decide whether the Lasserre hierarchy
of a standard quadratic program has finite convergence. For showing these
results, we use variations of the Motzkin-Straus formulation and we exploit
the structure of their minimizers in connection with the critical edges of the
graph. The Motzkin-Straus formulation has been used in different settings
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for showing complexity results related to optimization problems as shown by
Ahmadi and Zhang [AZ2020a, AZ2020b]. It would be interesting to ex-
plore more complexity questions using the Motzkin-Straus formulation and its
perturbations.

Parameters in bipartite graphs

In Chapter 7, we consider semidefinite bounds for several parameters in
bipartite graphs. In particular, we consider the bound h1(G) that satisfies the
following relations:

h(G) ≤ 1

2

√
g(G) ≤ h1(G).

We recall the definition of h1(G):

h1(G) = max
X∈SV

{〈C,X〉 : X � 0, Tr(X) = 1, Xij = 0 if {i, j} ∈ E}.

A natural strengthening of h1(G) is obtained by adding one row/column
to the matrix variable:

h′1(G) := max
{
〈C,X〉 :

(
1 xT

x X

)
� 0, Tr(X) = 1, x = diag(X),

Xij = 0 for {i, j} ∈ E
}
.

It can be shown (see [LPV23]) that

h(G) ≤ h′1(G) ≤ h1(G).

In my work [LPV23] with Monique Laurent and Sven Polak, we consider the

parameter ĥ′(G) obtained from h′1(G), as the analog of ĥ(G) (obtained from
h1(G)), for regular bipartite graphs with the objective of deriving a better
closed-form eigenvalue bound for h(G). However, we show that these two

bounds, in fact, coincide: ĥ′(G) = ĥ(G).

In addition, for the parameter αbal(G) we also consider semidefinite bounds
lasbal,1(G), ϑbal(G) and gbal,1(G) and their respective symmetric versions

l̂asbal(G), ϑ̂bal(G) and ĝbal(G). We show that these parameters (up to trans-

formation) coincide with ĥ(G):

1

4
l̂asbal(G) =

1

2

√
ĝbal(G) =

1

4
ϑ̂bal(G) = ĥ(G).

One idea for trying to get a stronger closed-form bound for αbal(G) could
be to consider a possibly weaker symmetrization of the parameter lasbal,1(G),
where we now allow a vector u taking distinct values for nodes in V1 and in V2

instead of restricting to u = μe for some μ ∈ R (as it was done in formulation
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of l̂asbal(G) in (7.67)). So, we consider the following variation l̃asbal(G) of the

parameter l̂asbal(G), defined by

min
λ,μ1,μ2,t,s,v∈R

{
λ :

(
λ −uT/2

−u/2 Diag(u)− I + tAG + sffT + vDiag(f)

)
� 0,

u = μ1χ
V1 + μ2χ

V2

}
.

By its definition, the parameter l̃asbal(G) lower bounds l̂asbal(G), for which
the optimization is restricted to the case μ1 = μ2. It turns out that the two
parameters are in fact equal, as we show in [LPV23].

We finish by recalling a conjecture about the balanced parameters for the
hypercube graph Qr. Recall that the sequence a(r) is defined as

a(2r) = 22r −
(
2r

r

)
, a(2r + 1) = 2 · a(2r) if r ≥ 1, and a(0) = 0.

We have the following conjecture.

Conjecture 8.6. The equality αbal(Qr) = a(r − 1) holds for all r ≥ 1.

We show that αbal(Qr) ≥ a(r − 1) for any r ≥ 0. Computational ex-
periments suggest that this inequality is tight. The sequence a(r) counts the
number of heads-or-tails games of length r during which at some point there
are as many heads as tails. This sequence is also related to several other
well-known combinatorial counting problems; see, e.g., [EK99] or [Fel57] for
an overview. It would be interesting to understand the relationship of this
sequence with the parameter αbal(Qr).
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aspects of the regularity lemma. Journal of Algorithms, 16:80–109, 1994.

[AYRP07] A.A. Al-Yamani, S. Ramsundar, D.K. Pradhan. A defect tolerance scheme
for nanotechnology circuits. IEEE Transactions on Circuits and Systems I:
Regular papers, 54(11):2402–2409, 2007.

[ACP97] M. Anitescu, J.F. Cremer and F.A. Potra. On the existence of solu-
tions to complementarity formulations of contact problems with friction.
Complementarity and Variational Problems (Baltimore, MD, 1995), SIAM,
Philadelphia, PA : 12-21, 1997.

[AP02] M. Anitescu and F.A. Potra. A time-stepping method for stiff multibody
dynamics with contact and friction. International Journal for Numerical
Methods in Engineering, 55: 753-784, 2002.

[App02] G. Appa. On the uniqueness of solutions to linear programs. The Journal of
the Operational Research Society, 53(10):1127–1132, 2002.
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List of symbols

Graph theory

G = (V,E) Graph with vertex set V and edge set E.
α(G) The stability number of G.
χ(G) Chromatic number of G.
χ(G) The clique covering number of G.
NG(i) Neighbors of i in G.
NS(i) Neighbors of i in S.
NG(S) Neighbors of the elements of S in G.
i⊥ Extended neighbourhood of i: NG(i) ∪ {i}.
S⊥ Extended neighbourhood of S: NG(S) ∪ S.
G⊕H Disjoint union of the graphs G and H.
G⊕ i Graph obtained by adding the isolated node i to G.

Polynomials

R[x] Multivariate polynomials
R[x]r Polynomials of degree at most r
[x]r Monomials of degree at most r

Matrices

Sn Set of n× n symmetric matrices.
Sn
+ Cone of n× n positive semidefinite matrices.

COPn Cone of n× n copositive matrices.
SG Set of symmetric matrices supported on the graph G.
In n× n identity matrix.
Jn n× n all-ones matrix.
D+ Cone of nonnegative diagonal matrices.
D++ Set of positive diagonal matrices.

special sets

Δn The standard simplex {x ∈ Rn :
∑n

i=1 xi = 1, x ≥ 0}.
Sn−1 The unit sphere {x ∈ Rn :

∑n
i=1 x

2
i = 1}.
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178 LIST OF SYMBOLS

Special polynomials and matrices

MG Matrix α(G)(AG + I)− J (called the graph matrix of G).
H Horn matrix.
pM Quadratic polynomial xTMx.

p
(r)
M Simplex-based Lasserre hierarchy for pM .

pG When G is a graph, corresponds to the polynomial pAG+I .

p
(r)
G Simplex-based Lasserre hierarchy for p

(r)
AG+I .

fG Quartic polynomial (x◦2)TMGx
◦2.

Polynomial optimization and sums of squares

g,h Sets of polynomials {g1, . . . , gm} and {h1, . . . , hl}.
K Semialgebraic set.
f Objective polynomial, to be minimized on K.
f∗ Optimal value of the polynomial optimization problem.
Σ Sums of squares of polynomials.
Σr Σ ∩ R[x]r.
M(g) Quadratic module generated by the set g.
M(g)r Quadratic module generated by the set g, truncated at degree r.
M(x) Quadratic module generated by the set {x1, . . . , xn}.
T (g) Preordering generated by the set g.
T (g)r Preordering generated by the set g, truncated at degree r.
I(h) Ideal generated by the polynomial set h.
I(h)r Ideal generated by the polynomial set h, truncated at degree r.
IΔn Ideal generated by

∑n
i=1 xi − 1.

ISn−1 Ideal generated by
∑n

i=1 x
2
i − 1

IG,r Ideal generated by the graph G, truncated at level r.

f (r) Lasserre sum-of-squares hierarchy at order r.
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