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Abstract
Boosting is a general method to convert a weak learner (which generates hypotheses that are just
slightly better than random) into a strong learner (which generates hypotheses that are much
better than random). Recently, Arunachalam and Maity [5] gave the first quantum improvement
for boosting, by combining Freund and Schapire’s AdaBoost algorithm with a quantum algorithm
for approximate counting. Their booster is faster than classical boosting as a function of the
VC-dimension of the weak learner’s hypothesis class, but worse as a function of the quality of the
weak learner. In this paper we give a substantially faster and simpler quantum boosting algorithm,
based on Servedio’s SmoothBoost algorithm [22].
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1 Introduction

1.1 Boosting
There has been tremendous growth in machine learning research and applications, both
in practice (applying all sorts of methods on all sorts of data and seeing what works well)
and in theory (computational learning theory). However, not very many ideas generated in
theoretical machine learning have had a large impact on machine learning practice. One
of the exceptions is boosting, which is a simple, general, and widely applicable method to
improve the generalization error of a given learning method, i.e., to convert a weak learner
into a strong learner.

The set-up here is binary classification: we are trying to predict binary labels y from
points x ∈ X . A typical case would be X = {0, 1}n. We are given m labeled examples
(x1, y1), . . . , (xm, ym) ∈ X ×{−1, 1} where the xis are independent and identically distributed
(i.i.d.) according to some unknown distribution D, and the binary labels are determined by
some unknown target function f : X → {−1, 1} that we are trying to learn, i.e., yi = f(xi). A
weak learnerW is an algorithm that can be fed a number of examples according to a specified

1 Work done while a student at the IILC of the University of Amsterdam.
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distribution D (not to be confused with the unknown data-generating distribution D) over
the m examples of the given sample, and that is then promised to generate a hypothesis
h : X → {−1, 1} that is slightly better than random w.r.t. that D:

Pr
x∼D

[h(x) ̸= f(x)] ≤ 1/2− γ.

Here γ ∈ (0, 1/2) is a small but positive number that gives the quality of the weak learner.
We denote the “cost” (in time complexity or whatever measure the user likes) of one run ofW
by W , and use this number also as an upper bound on the number of examples (distributed
according to D) that the weak learner uses.

A hypothesis with a generalization error that is just slightly better than random is not
very useful by itself. The goal of boosting is to convert the weak learner into a strong learner,
which is one that produces hypotheses not only with small empirical error (i.e., w.r.t. the
uniform distribution over the m examples), but even with small generalization error w.r.t. the
unknown target function f : X → {−1, 1} and the unknown distribution D that generated
the examples:

Pr
x∼D

[h(x) ̸= f(x)] ≤ ε.

Here the desired upper bound ε on the final generalization error is a parameter of the strong
learner. Unsurprisingly, achieving smaller ε requires a larger number of examples and larger
runtime. For simplicity, in this introduction we focus on the case ε = 1/3 (in the body of the
paper we cover the general case). Similarly, the smaller the initial advantage γ is, the more
work we will have to do find a hypothesis with small generalization error.2

The idea of boosting is to find a hypothesis with low empirical error by combining
different runs of the weak learner on different distributions. Once we have a hypothesis with
small empirical error on a sufficiently large set of examples, VC-theory implies that such a
hypothesis will probably also have a small generalization error.

How can we find a hypothesis with small empirical error? Because empirical error is
measured w.r.t. the uniform distribution over {x1, . . . , xm}, that will be our first distribu-
tion D1. We run the weak learner on D1, and receive a hypothesis h1 that is slightly better
than random w.r.t. the uniform distribution. The next iteration then biases the distribution
away from the examples that are already well-classified, by increasing the probability of
misclassified examples, yielding a new distribution D2. We then run the weak learner again,
to generate a hypothesis h2 that is slightly better than random w.r.t. this new distribution,
and hence hopefully better than h1 on the examples that were misclassified by h1. Then we
bias the distribution further towards the still-misclassified examples, and so on. The intuition
here is that the distributions Dt “zoom in” on the hardest examples, the ones that are
most difficult to classify correctly. After some T iterations, the T different weak hypotheses
are combined into one hypothesis h, typically by defining the latter as the sign of a linear
combination

∑T
t=1 αtht of the T weak hypotheses h1, . . . , hT . Surprisingly, already after a

relatively small number of iterations, the resulting hypothesis will have small empirical error!
Thus boosting converts the ability to generate weak hypotheses w.r.t. chosen distributions
over the examples, into the ability to generate strong hypotheses, which have small error w.r.t.
both the uniform distribution over the examples, and w.r.t the unknown target function f

and distribution D that generated our m examples.

2 For simplicity we will assume this γ is known to the strong learner we are trying to design, but this is
not necessary: if it doesn’t know γ, the strong learner can try exponentially decreasing guesses for γ
until it finds a hypothesis with small empirical error.
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A number of classical boosting algorithms exist that instantiate this meta-algorithm in
different ways. The most famous of these is probably Freund and Schapire’s AdaBoost [13,
14, 19] (short for “adaptive boosting”), which biases the new distribution Dt+1 based on
the error εt that ht made. It drives the empirical error all the way down to 0 (note that
as soon as this error is < 1/m it must actually be 0). AdaBoost uses T = O(log(m)/γ2)
iterations. Each iteration takes time Õ(m) to compute the error εt of ht and to update the
distribution over the m examples3 and runs the weak learner W once, at cost W . This gives
overall complexity

Õ

(
W + m

γ2

)
.

How large should m be in order to make the inference from low empirical error to low
generalization error? This depends on the hypothesis space Hweak of the weak learner, in
particular on its VC-dimension d (defined in Section 2.1). The hypothesis space Hstrong of
the boosting algorithm consists of all signs of linear combinations of up to T elements of
Hweak. One can show that the VC-dimension of Hstrong is D = Õ(dT ). VC-theory implies
that (for constant ε) m ≈ D ≈ dT ≈ d/γ2 examples suffice to end up with generalization error
≤ ε (with high probability over the choice of the sample). Accordingly, when re-expressed as
a function of d rather than m, the complexity of AdaBoost is

Õ

(
W

γ2 + d

γ4

)
. (1)

1.2 Quantum boosting
In the last few years there has been a surge in interest in possible ways in which quantum
computers might help improve machine learning (see [9] for a survey of several algorithmic
approaches and [6] for quantum learning theory).

Recently, Arunachalam and Maity [5] gave the first speed-up for boosting on a quantum
computer. Here the given sample is still the same classical sequence of m labeled examples
(x1, y1), . . . , (xm, ym) ∈ X×{−1, 1}, but these are now stored in a quantum-accessible classical
memory, which means a quantum learner can query multiple examples in superposition.

The key insight of [5] is that the error εt of the base classifier in the t-th iteration of
AdaBoost can be approximated faster (in time o(m)) using a quantum counting algorithm;
this approximation is subtle because it involves both multiplicative and additive error, in
different regimes for εt. Their method works not only for boosting classical weak learners,
but also for boosting quantum weak learners. These are fed quantum examples w.r.t. the
distribution D:

m∑
i=1

√
D(xi)|xi, yi⟩. (2)

If the quantum weak learner W expects to receive W such examples, the quantum booster
will have to prepare W copies of this state to feed into W.4

3 The notation Õ(f) means O(f · polylog(f)).
4 The classical boosting literature [19] distinguishes “boosting by resampling” and “boosting by reweight-

ing”. Like Arunachalam and Maity [5], we follow “boosting by resampling” and explicitly prepare the W
quantum or classical examples (w.r.t. Dt) that the weak learner needs, rather than just modifying Dt.

ESA 2023
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The quantum version of AdaBoost of [5] uses the same number of iterations as classical
AdaBoost, but improves the complexity of each iteration (at least as a function of m or d).
Their main complexity upper bound is:

Õ

(
W 1.5

√
d

γ11

)
. (3)

Comparing with the complexity of classical AdaBoost Eq. (1), this gives a speed-up over
classical boosting in terms of the dependence on the VC-dimension d of the weak learner’s
hypothesis class, but at the expense of a significant deterioration in terms of the dependence
on the quality of the weak learner γ and a milder deterioration in terms of the weak learner’s
cost W .

1.3 Our results
In this paper we give a simpler and faster quantum boosting algorithm. Instead of AdaBoost,
our starting point will be Servedio’s SmoothBoost algorithm [22], which we explain in
Section 3. Servedio’s motivation for smooth boosting was to deal with malicious noise (at
a rate that depends on γ) in the sample better than AdaBoost. However, SmoothBoost is
also very suitable for “quantization” thanks to the following advantages that it has over
AdaBoost:

SmoothBoost doesn’t need to calculate or approximate the error εt of ht on the m

examples, which means we don’t need to apply approximate quantum counting for this.
The distributions Dt that it generates are “smooth” (whence its name), in the sense that
no example has probability much bigger than the uniform probability 1/m. Generating
quantum examples as in Eq. (2) is cheaper when none of the probabilities is big.
The weights αt in the final linear combination

∑
t αtht are all equal to 1 in SmoothBoost.

In contrast, AdaBoost uses αt = 1
2 ln((1− εt)/εt), hence the quantum algorithm’s ap-

proximation errors in εt lead to approximation errors in αt that need to be kept under
control.

In addition to exploiting these “classical” advantages in order to obtain a simpler and faster
quantum booster, we also give an improved procedure to generate quantum examples over
the m examples from S. This procedure assumes access to a non-normalized version of Dt

and doesn’t have to worry about the normalizing factor. As explained in Section 4.1, in a
way quantum mechanics will take care of the proper normalization for us.5

We obtain the following upper bound on the complexity of our Quantum SmoothBoost:6

Õ

(
W

γ4 +
√

d

γ5

)
. (4)

5 We also generate the quantum examples exactly, while [5] only generate them approximately and hence
has to deal with the way the errors in this process affect the other parts of their boosting procedure.
Our example-generating procedure could also be used to improve the bounds of quantum AdaBoost [5],
though the result won’t be as efficient as our quantum SmoothBoost. Note that if we want to use
Quantum SmoothBoost with a classical weak learner W, we can just measure the W quantum examples
in the computational basis to obtain the W classical examples distributed according to Dt that such a
W needs as input. This still gives a speed-up in terms of the desired generalization error ε compared to
classically generating those W examples.

6 This bound is when we aim at constant generalization error ε = 1/3. We also make explicit the
complexity for much smaller ε (see Theorem 14).
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This improves over the complexity of the booster of [5] (as given in Eq. (3)) in terms of the
parameters W and (especially) γ. The γ-dependence is still worse than classical AdaBoost
(as given in Eq. (1)), but not by large powers anymore. It is an interesting open question
whether this γ-dependence can be improved further.

1.4 Related work

Our main sources of inspiration for this paper were the quantum AdaBoost of Arunachalam
and Maity [5] and classical SmoothBoost of Servedio [22], and we have tried in this paper to
combine the best elements of both.

Here we mention a number of related quantum papers. Wang et al. [24] (which preceded [5])
give a quantum speed-up for a specific subtask of AdaBoost, namely to compute the coefficients
αt = 1

2 ln((1− εt)/εt) that combine given base classifiers h1, . . . , hT into a good hypothesis
h = sign(

∑
t αtht). These weights αt are approximated more efficiently than is possible

classically using a version of approximate quantum counting. This, however, assumes the base
classifiers have already been generated and sidesteps the most important aspect of AdaBoost,
which is to generate the ht’s adaptively by running the weak learner on a distribution Dt that
depends on h1, . . . , ht−1. The even earlier paper by Schuld and Petruccione [21] considers
quantum ensembles of classifiers (rather than the linear combinations used in boosting) and
runs AdaBoost as a subroutine, but does not give a quantum boosting algorithm.

AdaBoost may be viewed as an instance of the multiplicative weights update method, see
for instance the presentation in [4, Section 3.6]. There have been several quantum speed-ups
for multiplicative weights methods in other contexts, particularly the quantum SDP-solvers
of Brandão et al. [11, 3, 10, 2], and the very recent quantum version of the Hedge algorithm
of Rebentrost et al. [18]. However, none of those speed-ups for versions of multiplicative
weights seems directly applicable to our boosting setting.

2 Preliminaries

2.1 PAC learning

In this section we give a brief introduction to the PAC learning framework, which provides
theoretical guarantees on learnability. The textbook by Shalev-Shwartz and Ben-David [23]
provides an excellent and detailed introduction to the topic of classical PAC learning.

To formally introduce the PAC learning framework, let D denote a probability distribution
over the set of points X . We want to learn an unknown target function f : X → Y. We
will assume here that the set of labels Y is just {−1, 1}, so we are dealing with binary
classification. A typical situation to keep in mind is the important special case of learning
Boolean functions, where X = {0, 1}n, or X = ∪n≥1{0, 1}n.

Learning begins by choosing a learning algorithm (a “learner”) with an associated
hypothesis class H of functions h : X → {−1, 1}. This hypothesis class could be any set of
functions, but good examples to keep in mind are cases where X = {0, 1}n and H consists of
objects with bounded computational power, for instance all Boolean circuits of at most a
certain size, all neural networks with a specific depth and number of nodes, or all decision
trees of at most a certain depth. We will assume that each h ∈ H has a succinct description
and that we can efficiently evaluate a given h on a given x ∈ X . For simplicity we assume
such an evaluation has unit cost.

ESA 2023
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The learner is given access to a sample S = ((x1, y1), . . . , (xm, ym)), which is the training
data. The points xi are i.i.d. generated according to an unknown distribution D on X , and
the labels yi = f(xi) are determined by the target function f that we are trying to learn.
The learner’s goal is to find an h ∈ H that fits well with the given training data, in the
hope that this h will generalize well to points that were not part of the data, in the sense
of mostly giving the same labels as the target function. The PAC learning framework is a
distribution-free setting, so we would like to design a learner that works well for every D, in
the sense of outputting a hypothesis with low generalization error.

▶ Definition 1. The generalization error of h : X → Y w.r.t. target function f : X → Y
under distribution D is

err(h, f,D) = Pr
x∼D

[h(x) ̸= f(x)].

Generalization error is often referred to as the true error; it is the quantity the learner is
really trying to minimize over the class H of available hypotheses.

As the distribution D is anyway unknown, the generalization error of a hypothesis h

cannot be calculated and the learner uses the empirical error of a hypothesis h (the fraction
of the sample that h mislabels) to measure its performance, as a proxy for the generalization
error.

▶ Definition 2. The empirical error of h : X → Y w.r.t. sample S = ((x1, y1), . . . , (xm, ym))
is

ˆerr(h, S) = Pr
i∈R[m]

[h(xi) ̸= yi],

where i ∈R [m] means that i is taken uniformly at random from [m] = {1, . . . , m}.

▶ Definition 3. An (ε, δ)-PAC learner for a concept class C with hypothesis class H and
sample complexity m, is an algorithm A such that the following holds for all target functions
f ∈ C and all distributions D on X :
A takes as input m examples (x1, f(x1)), . . . , (xm, f(xm)) where the xi are i.i.d. according
to D.
A outputs an h ∈ H which is “Probably Approximately Correct” in the sense that

Pr[err(h, f,D) ≤ ε] ≥ 1− δ,

where the probability is taken over the sample and over the learner’s internal randomness.

The end goal is to find a learner with small sample complexity m, small error probability δ,
and (most important of all) small generalization error ε. Often we will start, however, with
a “weak” learner, one whose generalization error is only slightly better than random. Since
we restricted to binary labels (Y = {−1, 1}), generalization error ε = 1/2 is no better than
random guessing. A weak learner is a learner that does slightly better than that:

▶ Definition 4 (Weak learning). A γ-weak learner W for concept class C with hypothesis
class Hweak is a (1/2− γ, 0)-PAC learner. Hypotheses returned by a weak learner are called
base classifiers.

Following Servedio [22], we assume the weak learner W has error probability δ = 0, so it
always outputs a hypothesis with generalization error ≤ 1/2− γ. If instead we start with a
W that has non-zero error probability, say 1/3, then we can reduce this error probability
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to small δ > 0 as follows. Run W a total number of r = ⌈log3(1/δ)⌉ times, each time with
fresh independent examples. Then, except with probability ≤ (1/3)r ≤ δ, at least one of the
returned hypotheses h1, . . . , hr ∈ Hweak will have generalization error ≤ 1/2− γ. However,
finding (with success probability ≥ 1− δ) among these r hypotheses one with such low error
has a cost. Deciding (with success probability ≥ 2/3) for a given hypothesis h whether it
has error ≤ 1/2− γ under a given distribution can be done by sampling O(1/γ2) examples
according to that distribution and estimating the fraction of examples where h predicts the
label correctly. Searching over the r hypotheses to find a good one adds a factor of O(r)
to the classical cost, and reducing the overall error probability from 1/3 to δ adds another
factor of O(log(1/δ)).7

Suppose we ideally want to run an errorless weak learner T times, namely once in each of
T iterations. But instead we start with a weak learner with error probability 1/3. Reducing
1/3 to δ ≪ 1/T allows us to take a union bound over all T iterations, and conclude that with
high probability each of the T iterations produces a base classifier with generalization error
≤ 1/2− γ (w.r.t. the distribution Dt of that iteration). Because here we assumed our weak
learner has no error probability from the start, we do not have to factor in the additional
cost for this error reduction, but it anyway doesn’t significantly affect the complexities of
classical or quantum boosting (Eqs. (1) and (4) respectively).

2.2 How many examples suffice to ensure small generalization error?
The number of examples that are necessary and sufficient for learning is governed by the
VC-dimension of the relevant hypothesis class and by the desired generalization error, as
follows. A set S ⊆ X of d points is said to be shattered by H if for each of the 2d labelings
ℓ : S → {0, 1}, there exists an h ∈ H that agrees with ℓ on the points in S. The VC-dimension
of a hypothesis class H is the size of a largest S that is shattered by H. Intuitively, if the
VC-dimension of H is small, then it should be relatively simple to find a good hypothesis in
it, i.e., one that minimizes empirical error.

The following theorem implies that for sufficiently large m, every h ∈ H has a generaliza-
tion error that is only slightly worse than its empirical error. Such a result means it suffices
to look for a hypothesis with small empirical error.

▶ Theorem 5 (Theorem 2.5 in [19]). Let H be a hypothesis class of finite VC-dimension d.
Assume that a sample S of size m is chosen for some target function f , i.i.d. according to
some distribution D. Then for every η > 0 it holds that

Pr[∃h ∈ H : err(h, f,D) > ˆerr(h, S) + η] ≤ 8
(em

d

)d

exp
{
−mη2

32

}
.

If we set η = ε/2 and

m = O

(
d log(d/(δε)) + log(1/δ)

ε2

)
,

with a sufficiently large constant in the O(·), then (except with probability δ), each h ∈ H
has a generalization error that is at most ε/2 bigger than its empirical error. Accordingly,
if a learner now outputs any hypothesis h ∈ H whose empirical error is ≤ ε/2, then its
generalization error will be ≤ ε, as desired.

7 In the quantum case the O(1/γ2) can be replaced by O(1/γ) using quantum approximate counting
(Theorem 7 below), and the O(r) can be replaced by O(

√
r) using Grover’s algorithm [15].

ESA 2023
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2.3 Quantum PAC learning and helpful quantum subroutines

In order to introduce the quantum boosting algorithm in Section 4, we explain the query
model that the quantum algorithm works with. We say that an algorithm has query access
to a string z ∈ ZN

a over alphabet Za = {0, . . . , a− 1} if it can apply a unitary Oz such that

Oz : |i, b⟩ 7→ |i, b⊕ zi⟩,

where i ∈ {0, 1}⌈log N⌉, b ∈ Za, and ⊕ denotes addition modulo a. Naturally, a quantum
algorithm can apply Oz on a superposition of distinct inputs i.

In the classical setting we assumed a learner is given a sample S = ((x1, y1), . . . , (xm, ym))
of m labeled examples. Here points xi ∈ X are independently drawn from an unknown
distribution D, and labeled yi = f(xi) according to an unknown target function f . Such a
classical sample will still be the starting point of our quantum boosting algorithm; we assume
the learner has query access to the sample (viewed as a string z ∈ (X ×{−1, 1})m). One may
think of the sample as being stored in a quantum-accessible classical memory, sometimes
called QRAM, which may be queried throughout the algorithm (incl. by the weak learner).
However, our setting also encompassed the case of synthetic data, where we would have an
efficient procedure which, on input i, computes the example (xi, yi).

Even though the initially given sample is classical, like Arunachalam and Maity [5] we
will set up our quantum booster so that it can work to improve a classical weak learner
but also to improve a quantum weak learner. The latter is given quantum examples w.r.t.
distribution D:

∑
x∈X

√
D(x)|x, f(x)⟩.

One can think of a quantum example as the coherent version of a random example (x, f(x))
where x ∼ D. A quantum learner is given access to several copies of the quantum example
and performs a POVM measurement, where each outcome is associated with a hypothesis h

in its hypothesis class. It won’t matter for the purposes of this paper, but [7] proved that
in the general PAC and agnostic learning settings, the required number of classical and
quantum examples are the same up to contant factor.

In the case of boosting, the weak learner will be fed quantum examples w.r.t. a distribu-
tion D that only has support on the m given examples. Since our initially given sample is
classical, our boosting algorithm will itself have to prepare the quantum examples that it
wants to feed into the weak learner in each iteration, and we have to (and will) account for
the cost of this.

We also assume that we can evaluate a given h (in the weak learner’s hypothesis
class Hweak) in superposition, meaning we can apply a unitary that maps |h⟩|x⟩|b⟩ 7→
|h⟩|x⟩|h(x) · b⟩; here the basis states of the first space are the names of the h ∈ Hweak, the
basis states of the second space are the elements of X , and the basis states of the third space
are the labels in Y = {−1, 1}.

The definitions of PAC learning and weak learning straightforwardly generalize to the
quantum setting. We refer to the survey [6] for more on this model. The following basic
quantum subroutines can be derived from Brassard et al. [12] (or from [1] if one wants to
avoid use of the quantum Fourier transform):
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▶ Theorem 6 (Amplitude amplification). Suppose we have an m-qubit unitary U such that

U |0m⟩ =
√

a|ϕ0⟩|0⟩+
√

1− a|ϕ1⟩|1⟩,

and we know a lower bound a′ on a. Then there exists a quantum algorithm V using O(1/
√

a′)
applications of U and U†, and Õ(1/

√
a′) other gates, such that

V |0m⟩ =
√

b|ϕ0⟩|0⟩+
√

1− b|ϕ1⟩|1⟩,

where b ∈ [1/2, 1].

▶ Theorem 7 (Approximate counting). Suppose we have query access to a string z ∈ [0, 1]N ,
with sum s =

∑N
i=1 zi ≥ 1. There exists a quantum algorithm that uses O( 1

ε

√
N log(1/δ))

queries and Õ( 1
ε

√
N log(1/δ)) other operations, and that outputs (except with probability ≤ δ)

an s̃ such that (1− ε)s ≤ s̃ ≤ (1 + ε)s.

3 SmoothBoost

We first consider the classical SmoothBoost algorithm of Servedio [22]. It generates only
smooth distributions, in the sense that none of the examples get too much weight. In the
next section we will introduce a quantum version of SmoothBoost.

We give the pseudocode of SmoothBoost in Algorithm 1. There are a few cosmetic changes
compared to the pseudocode of [22] that will make it easier for us to quantize it later. The
algorithm takes four inputs. First, a γ-weak learnerW with associated hypothesis class Hweak

and cost and sample complexity W . Second, a sample S = ((x1, y1), (x2, y2), . . . , (xm, ym)) ∈
(X × {−1, 1})m, for some sample size m that we will choose later. Lastly, a parameter
κ ∈ (0, 1) which controls the empirical error of SmoothBoost and a parameter θ ∈ [0, 1

2 )
which controls the desired margin of the output hypothesis h. The goal of SmoothBoost is
to output a hypothesis h : X → {−1, 1} with small empirical error (and as we shall see later,
for sufficiently large m, this h will also have large generalization error). The final h is going
to be the sign of a sum of elements of Hweak, so the strong learner’s hypothesis class is larger
than that of the weak learner.

The central objects in this algorithm are the vectors M1, M2, . . . , MT ∈ [0, 1]m, which
are unnormalized distributions over the m examples. The distribution Dt is the normalized
version of M t. SmoothBoost starts by initializing weights to N0

i = 0 and M1
i = 1, for all

i ∈ [m], so D1 is uniform. In each iteration, Step 6 checks whether the sum of M t
i is below

κm, and if so it terminates. Otherwise it runs the weak learner on W i.i.d. examples sampled
(from S) according to Dt, producing a base classifier ht : X → {−1, 1}. Step 9 updates N t−1

to N t and M t to M t+1. For each i ∈ [m], N t
i is the cumulative amount by which hypotheses

h1, . . . , ht beat the desired margin θ. If xi got correctly classified by ht, then it will get
higher weight N t

i , which results in smaller weight M t+1
i and smaller probability Dt+1

i in the
next round of boosting. This mechanism forces the next run of the weak learner W to “zoom
in” (i.e., assign higher probabilities) to systematically misclassified instances. The procedure
terminates if the sum of all weights

∑
i∈[m] M t

i gets sufficiently small, as controlled by the
parameter κ.

We now state three results from Servedio [22] that show, respectively, that the intermediate
distributions are smooth, that SmoothBoost terminates after a small number of iterations,
and that it returns a hypothesis with low empirical error.

▷ Claim 8 (Lemma 1 of [22]). For each 1 ≤ t ≤ T , it holds that maxi∈m |Dt
i | ≤ 1

κm .

Proof. This follows from the condition of Step 6: before termination we have
∑m

i=1 M t
i ≥ κm

and M t
i ∈ [0, 1], hence Dt

i = M t
i /
∑

i∈[m] M t
i ≤ 1/κm for all i ∈ [m]. ◁
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Algorithm 1 SmoothBoost.

Input: A γ-weak learner W with complexity W .
A sample S = ((x1, y1), . . . , (xm, ym)) ∈ (X × {−1, 1})m.
Parameters κ ∈ (0, 1), θ ∈ [0, 1

2 ).
Output: Hypothesis h : X → {−1, 1}.

1: function SmoothBoost(W, S, κ, θ)
2: For all i ∈ [m] initialize: N0

i ← 0, M1
i ← 1.

3: t← 1
4: while true do
5: Compute s =

∑m
i=1 M t

i .
6: If s < κm then T ← t− 1, return h← sign(

∑T
t=1 ht), and terminate.

7: Prepare W i.i.d. examples w.r.t. distribution Dt = M t/
∑

i M t
i (see Footnote 8).

8: Feed those W examples into the weak learner W to obtain base classifier ht.
9: For all i ∈ [m] set

N t
i ← N t−1

i + ht(xi)yi − θ

and

M t+1
i ←

1 for N t
i < 0

(1− γ)
Nt

i
2 for N t

i ≥ 0

10: t← t + 1.

▷ Claim 9 (Theorem 3 of [22]). If θ = γ
2+γ and for all t it holds that Pri∼Dt [ht(xi) ̸= yi] ≤

1
2 − γ, then SmoothBoost terminates with T < 2

κγ2√
1−γ

iterations.

Proof. [22, Lemmas 4 and 5] imply 2m
γ

√
1−γ

> γ
∑T

t=1
∑m

i=1 M t
i (this is the hard part of

Servedio’s correctness proof of SmoothBoost). We have
∑m

i=1 M t
i ≥ κm for all t until

termination. Hence 2m
γ

√
1−γ

> γTκm, which implies the claim. ◁

▷ Claim 10 (Theorem 2 of [22]). After t iterations of SmoothBoost, the hypothesis h =
sign(

∑t
t=1 ht) has empirical error ˆerr(h) ≤

∑m
i=1 M t+1

i /m.

Proof. Note that NT
i =

∑T
t=1(ht(xi)yi−θ). Hence if i is such that

∑T
t=1 ht(xi)yi < θT , then

NT
i < 0 and MT +1

i = 1. The final hypothesis h errs on the ith example iff
∑T

t=1 ht(xi)yi < 0.
We upper bound the number of i ∈ [m] for which this happens:∣∣∣∣∣

{
i |

T∑
t=1

ht(xi)yi < 0
}∣∣∣∣∣ ≤

∣∣∣∣∣
{

i |
T∑

t=1
ht(xi)yi < θT

}∣∣∣∣∣ =
∑

i:
∑T

t=1
ht(xi)yi<θT

MT +1
i

≤
m∑

i=1
MT +1

i . ◁

Since SmoothBoost terminates if
∑m

i=1 MT +1
i < κm, Claim 10 implies that the empirical

error of the final hypothesis is < κ.
Combining the previous two claims, we see that the empirical error decreases like

O(1/(Tγ2)). This contrasts with AdaBoost, where the empirical error goes down expo-
nentially fast in T and hence can be driven down to < 1/m (and hence to 0) quite cheaply.
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SmoothBoost does not drive the empirical error down all the way to 0, because that would
require setting κ < 1/m which implies a very large number of iterations, T = O(m/γ2).
However, small but non-zero empirical error is good enough for our purposes, because (with
sufficiently large sample size m) that already implies small generalization error.

We will choose κ to be ε/2, which sets the above upper bound on the empirical error of
the final hypothesis h to half of the allowed generalization error. By the discussion following
Theorem 5, if the sample size m is large enough, the final hypothesis will have generalization
error ≤ ε, as desired. The required m depends on the VC-dimension of the hypothesis class
Hstrong of SmoothBoost, which consists of signs of sums of T elements of the hypothesis class
Hweak of the weak learner. The VC-dimensions of these two classes are related as follows:

▷ Claim 11 (Shalev-Shwartz & Ben-David, p. 109 [23]). Let Hweak be a hypothesis class of VC-
dimension d and Hstrong = {sign(

∑T
i=1 hi) | h1, . . . , hT ∈ Hweak}. Then the VC-dimension

of Hstrong is D = O(Td log(Td)).

By Theorem 5 and the fact that T = O( 1
εγ2 ) it thus suffices to take

m = O

(
D log(D/(δε)) + log(1/δ)

ε2

)
= O

(
d log(d/(δεγ))2

ε3γ2 + log(1/δ)
ε2

)
(5)

examples in order to be able to infer (with success probability ≥ 1− δ) generalization error
≤ ε from empirical error ≤ ε/2.

Finally, let us determine the complexity of SmoothBoost, in terms of the overall number
of elementary operations and queries to the sample and to the ht. There are T = O( 1

εγ2 )
iterations. Each iteration involves one application of the weak learner W, and Õ(m) other
operations. The weak learner needs to be fed W examples sampled according to distribution
Dt. Using rejection sampling, we can generate W such examples at cost O(W/κ) = O(W/ε).8

▶ Theorem 12. Let W be a γ-weak learner of complexity W for concept class C, with
hypothesis class Hweak of VC-dimension d. Then given m examples according to Eq. (5),
SmoothBoost is an (ε, δ)-PAC learner for C, with hypothesis class Hstrong. It runs the weak
learner O( 1

εγ2 ) times and uses

Õ(T (W/ε + m)) = Õ

(
W

ε2γ2 + m

εγ2

)
= Õ

(
W

ε2γ2 + d

ε4γ4

)
other operations (elementary computational steps, queries to the sample, and evaluations of
base classifiers).

4 Quantum Smooth Boosting

In this section we introduce our quantum version of SmoothBoost. The algorithm is given
query access to a quantum (or classical) weak learner W with sample complexity W , and
to a sample S of size m. The quantum weak learner needs to be fed quantum examples
according to the distribution Dt obtained by normalizing the weight-vector M t. We will
start with that.

8 Specifically, Step 7 of SmoothBoost can be implemented as follows. Sample i ∈ [m] uniformly. With
probability M t

i output (xi, yi), and otherwise repeat. Since the probability to output (xi, yi) is
proportional to M t

i , the example (if we indeed output an example) is sampled according to the desired
probability distribution Dt. Note that the probability that we output an example in one try is
1
m

∑
i
M t

i ≥ κ, because of the condition of Step 6. Hence the expected number of repetitions before we
output an example is ≤ 1/κ.
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4.1 Preparing quantum examples
Here we show how we can efficiently prepare quantum examples w.r.t. the distribution Dt

induced by the non-normalized M t, thanks to its smoothness. This may be viewed as a
quantum analogue of the classical rejection sampling sketched in Footnote 8.

▶ Theorem 13. Suppose we have query access to the m numbers M1, . . . , Mm ∈ [0, 1]. Let
s =

∑m
i=1 Mi be their (unknown) sum, which has a known lower bound of κm. Define a

probability distribution D on [m] by Di = Mi/s. Then using an expected number of O(1/
√

κ)
queries and Õ(1/

√
κ) other gates, we can prepare the state

m∑
i=1

√
Di|i⟩.

Proof. Start by preparing the uniform state

1√
m

m∑
i=1
|i⟩|0⟩.

Using two queries (the second to uncompute the value Mi), and a few other gates to implement
a conditional rotation by angle arcsin

(√
Mi

)
, prepare

1√
m

m∑
i=1
|i⟩(
√

Mi|0⟩+
√

1−Mi|1⟩).

The squared norm of the part of the state ending in |0⟩ is s/m ≥ κ. Now use O(1/
√

κ)
rounds of amplitude amplification (Theorem 6) to increase that squared norm to ≥ 1/2. This
costs O(1/

√
κ) queries and Õ(1/

√
κ) other gates.

If we measure the last qubit of the resulting state, then we obtain outcome 0 with
probability ≥ 1/2 and the state collapses to the state that we want to prepare (with an extra
|0⟩-qubit that we can remove). Note that we know when we succeed to produce the desired
state. Since the probability of success is ≥ 1/2, the expected number of repetitions before
success is ≤ 2. ◀

Once we have produced a copy of the state
m∑

i=1

√
Di|i⟩,

we can easily convert this into a quantum example
m∑

i=1

√
Di|xi, yi⟩

by querying the sample S.

4.2 Quantizing SmoothBoost
The pseudocode of Quantum Smooth Boosting is given in Algorithm 2. The algorithm
receives as input a weak quantum learner W with sample complexity W , and query access
to a sample S of m examples. Additionally, it receives two parameters κ, θ.

The algorithm looks a bit different from classical SmoothBoost because it doesn’t update
the m-dimensional vectors N t

i and M t
i explicitly anymore; the O(m) that this costs is more

than we are willing to spend in the quantum case. Instead, we will store the earlier base
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classifiers h1, . . . , ht. Queries to these classifiers together with queries to the sample S allow
us to calculate each entry N t

i and M t
i on demand in time Õ(t), via the formulas of Step 9 of

SmoothBoost.
The algorithm begins by initializing N0, M1 and by setting t = 1. Like in the classical

case, we iterate until the sum of the weights
∑

i∈[m] M t
i becomes small enough. In contrast to

the classical case, we do not have the time to sum these m numbers exactly, so we will instead
estimate the sum with small approximation error using quantum counting (Theorem 7).

Algorithm 2 Quantum SmoothBoost.

Input: A γ-weak quantum learner W with complexity W .
A sample S = ((x1, y1), . . . , (xm, ym)) ∈ (X × {−1, 1})m.
Parameters κ ∈ (0, 1), θ ∈ [0, 1

2 ).
Output: Hypothesis h : X → {−1, 1}.

1: function QuantumSmoothBoost(W, S, κ, θ)
2: t← 1
3: while true do
4: Compute an estimate s̃ of s =

∑m
i=1 M t

i with multiplicative error 1.1 (using
Theorem 7), where the M t

i are as defined in Step 9 of SmoothBoost (and only
computed on demand).

5: If s̃ < κm then T ← t− 1, return h← sign(
∑T

t=1 ht), and terminate.
6: Prepare W copies of example |Dt⟩ w.r.t. distribution Dt

i = Mt
i∑

i∈[m]
Mt

i

(using

Theorem 13).
7: Feed those W examples into the weak learner W to obtain base classifier ht.
8: t← t + 1.

Quantum Smoothboost runs O(TW ) quantum subroutines that each have some error
probability. By setting this error probability to be ≪ 1/TW , the union bound implies
that the probability that at least one of them will fail, is very small. The extra cost-factor
log(TW ) that this error-reduction incurs will be absorbed by our Õ(·) notation.

If we condition on the very-high-probability event that the various quantum subroutines
involved all succeed, then the weights N t and M t are just equal to the weights as they would
be in classical SmoothBoost with the same number of iterations. Because our approximation
s̃ of s for the stopping criterion has small multiplicative error, the smoothness of the
intermediate distributions Dt before termination can be marginally worse than in classical
SmoothBoost (Claim 8): For each 1 ≤ t ≤ T , it holds that maxi∈m |Dt

i | ≤ 1.1
κm .

Quantum SmoothBoost terminates if s̃ < κm. Because s̃ might underestimate the true s

by at most a factor 1.1, upon termination we have s < 1.1κm and hence Claim 10 implies
empirical error ˆerr(h) < 1.1κ. We set κ = ε/2.2 in order to ensure ˆerr(h) ≤ ε/2. Like before,
we choose the sample size m given by Eq. (5) to ensure generalization error ≤ ε.

The total number of iterations is still O( 1
εγ2 ).9 It remains to determine the complexity of

one iteration. The most costly steps in one iteration are Steps 4 and 6. As a subroutine these
will use the fact that we can compute M t

i and N t
i using O(t) = O(T ) calls to the earlier base

classifiers and the sample S.

9 There is one small change in the proof of Claim 9: since we condition on all runs of quantum counting
in Step 4 giving an estimate of

∑
i
M t

i up to multiplicative error 1.1, we now have
∑m

i=1 M t
i ≥ κm/1.1

for all t until termination.
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Step 4. The approximation of s =
∑m

i=1 M t
i up to multiplicative error 1.1 using Theorem 7

costs Õ(T
√

m) (for simplicity assume ε≫ 1/m to ensure the condition s ≥ 1 in Theorem 7
holds.)
Step 6. Preparing one copy of |Dt⟩ costs Õ(T/

√
ε) by Section 4.1 (using our setting of

κ = ε/2.2), so overall this step costs Õ(WT/
√

ε).
Adding these costs shows that one iteration costs Õ(T (W/

√
ε+
√

m)). Plugging in T = O( 1
εγ2 ),

and the same sample size m = Õ(d/ε3γ2) as for classical SmoothBoost (from Eq. (5)), gives
our main result:

▶ Theorem 14. Let W be a γ-weak quantum learner of complexity W for concept class C,
with hypothesis class Hweak of VC-dimension d. Then given m examples according to Eq. (5),
QuantumSmoothBoost is an (ε, δ)-PAC learner for C, with hypothesis class Hstrong. It runs
the weak learner O( 1

εγ2 ) times and uses

Õ(T 2(W/
√

ε +
√

m)) = Õ

(
W

ε2.5γ4 +
√

m

ε2γ4

)
= Õ

(
W

ε2.5γ4 +
√

d

ε3.5γ5

)

other operations (elementary computational steps, queries to the sample, and evaluations of
base classifiers).

For direct comparison with the quantum boosting result of Arunachalam and Maity [5],
we instantiate this by setting ε = δ = 1/3, in which case the complexity of Quantum
SmoothBoost is

Õ

(
W

γ4 +
√

d

γ5

)
.

This polynomially improves over the time complexity Õ

(
W 1.5

√
d

γ11

)
of the quantum version

of AdaBoost of [5], in the W -dependence but especially in the γ-dependence.

5 Future work

This work leaves open many questions for future work:
The γ-dependence of Quantum Smoothboost is still slightly worse than in classical boosting
(1/γ5 vs 1/γ4). Is there a way to improve this further, or can we prove a lower bound on
the γ-dependence for every quantum boosting algorithm that has

√
d-dependence on the

VC-dimension of the weak learner’s hypothesis class?
Our quantum version of SmoothBoost improves the cost per iteration but not the number
of iterations, which remains T = O(1/εγ2). Can we reduce the number of iterations by
quantizing SmoothBoost differently, or by quantizing some other boosting approach?
There are classical boosting-type algorithms with fewer iterations than SmoothBoost, for
instance [8], but it’s not clear there how to significantly reduce the cost per iteration on
a quantum computer.
Boosting has many applications in theory and practice. Can we find applications where
quantum Smoothboost is particularly suitable – some problem where the weak learner
has relatively large advantage γ and large VC-dimension d, so that the square-root
improvement in d dominates the worse dependence on 1/γ?
Can we do boosting for agnostic learning, where the label y of an example (x, y) is not
determined by x but (x, y) is jointly generated by some distribution D on X × Y?
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What about learning with various kinds of noise in the sample: random classification
noise, or Massart noise, or Tsybakov noise, or malicious noise? Servedio [22] designed
SmoothBoost motivated by its ability to deal with malicious noise on the labels of the
sample: if 1/100 of the m given examples have their label flipped, then a distribution
that puts probability ≤ c/m on each i only puts total probability ≤ c/100 on the
erroneous examples. Servedio used this to give a learning algorithm for linear threshold
functions that is robust against small, γ-dependent amounts of malicious noise (see [17]
and references therein for follow-up work). This result straightforwardly carries over to
the quantum case using our Quantum SmoothBoost (we omit the details), but we don’t
know much more about quantum learning with malicious noise.
What about learning functions that have a larger range than just {−1, 1}?
Our booster relies on a VC-dimension-based analysis of boosting. However, there are
non-VC-based analyses of boosting [20], which to some extent can explain why boosting
avoids overfitting even when the VC-dimension of the booster’s hypothesis class gets large
(i.e., when T gets large). We might use this to give an alternative analysis of quantum
boosters.
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