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Time-Resolved Reconstruction of Motion, Force,
and Stiffness using Spectro-Dynamic MRI
Max H. C. van Riel, Tristan van Leeuwen, Cornelis A. T. van den Berg, Alessandro Sbrizzi

Abstract—Measuring the dynamics and mechanical proper-
ties of muscles and joints is important to understand the
(patho)physiology of muscles. However, acquiring dynamic time-
resolved MRI data is challenging. We have previously developed
Spectro-Dynamic MRI which allows the characterization of
dynamical systems at a high spatial and temporal resolution
directly from k-space data. This work presents an extended
Spectro-Dynamic MRI framework that reconstructs 1) time-
resolved MR images, 2) time-resolved motion fields, 3) dynamical
parameters, and 4) an activation force, at a temporal resolution
of 11 ms. An iterative algorithm solves a minimization problem
containing four terms: a motion model relating the motion to the
fully-sampled k-space data, a dynamical model describing the
expected type of dynamics, a data consistency term describing
the undersampling pattern, and finally a regularization term for
the activation force. We acquired MRI data using a dynamic
motion phantom programmed to move like an actively driven
linear elastic system, from which all dynamic variables could be
accurately reconstructed, regardless of the sampling pattern. The
proposed method performed better than a two-step approach,
where time-resolved images were first reconstructed from the
undersampled data without any information about the motion,
followed by a motion estimation step.

Index Terms—Dynamical systems, magnetic resonance imag-
ing, real-time imaging, spectro-dynamic MRI, time-resolved
imaging

I. INTRODUCTION

DYNAMIC measurements of joints and muscles are im-
portant to study the (patho)physiology of the muscu-

loskeletal system [1]–[5]. Previous studies have shown that
dynamic scans result in different kinematics compared to
static scans [6]. Mechanical properties of biological tissues
can give additional quantitative information, but these values
are often obtained ex vivo or (quasi-)statically [7], [8]. MRI
is a promising imaging modality for measuring these dynamic
properties in vivo, as it provides excellent soft-tissue contrast.
However, acquiring dynamic MRI data at a high spatial and
temporal resolution remains a challenge.
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Several techniques exist for dynamic musculoskeletal imag-
ing using MRI. Some methods use gating to bin the data
into different motion states [9], [10]. In contrast, real-time
MRI does not require periodic motion or synchronization
of the acquisition to the motion [11], [12]. Sparsity along
the temporal dimension can be exploited to reconstruct dy-
namic musculoskeletal images from undersampled data [13]–
[15]. Real-time methods are preferred for musculoskeletal
applications, since accurately repeating the same motion is
difficult to achieve, and sometimes not feasible for patients
who experience pain. Therefore, the development of time-
resolved 3D MRI techniques with a high temporal resolution
is an active area of research [16].

All methods described so far extract dynamic information
from a time series of images. However, to achieve a sufficient
temporal resolution, high undersampling factors are required.
Any undersampling artifacts remaining in the images will have
a detrimental effect on the estimated dynamics. It has been
shown that dynamic information can be extracted directly from
k-space data, even in the case of very high undersampling
factors, without an intermediate image reconstruction step
[17].

In our previous work [18], we have proposed the Spectro-
Dynamic MRI framework in an effort to characterize dy-
namical systems at a high temporal resolution. This novel
acquisition paradigm uses a spectral motion model, which
relates the raw MRI measurements in the spectral domain (k-
space) to the displacement field. Thus, it can reconstruct the
motion directly from k-space data, without requiring images at
a high temporal resolution as an intermediate step. In addition,
it uses a dynamical model which adds prior knowledge about
the structure of the motion. This dynamical model also allows
for the estimation of dynamical parameters from extremely
undersampled data. We demonstrated Spectro-Dynamic MRI
using two coupled spherical pendula, from which the motion,
the length of the pendula, and the spring stiffness could be
estimated accurately.

In this work, we address some of the limitations of the
Spectro-Dynamic MRI reconstruction as presented in [18].
Firstly, the reconstruction method required rigid motion fields,
or at most motion fields that are spatially varying along the
readout direction, due to the high undersampling factor. This
prevented the reconstruction of more general motion fields.
Secondly, the measurement noise was not explicitly taken into
account in the reconstruction. This could lead to biases in the
estimated motion.

Here, we propose an extended iterative reconstruction
framework for Spectro-Dynamic MRI to overcome these limi-
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TABLE I
TABLE OF VARIABLES.

Symbol Description

bold Vector quantity
ˆ Spectral quantity

r,k Spatial/Spectral coordinate
ΩM ,ΩS Moving/Stationary compartment

d Number of dimensions
P Number of basis functions
N Number of k-space samples per time instance
M Number of measured samples per time instance
T Number of time instances

m, m̂ Time-resolved image/k-space data
v,u Velocity/Displacement field
F Fourier transform operator
d Undersampled k-space data
ϕ Basis function of the displacement field
m Time-resolved k-space
q Motion field coefficients
κ Elastic stiffness
c Damping coefficient
f Activation force
G Motion model
F Dynamical model
H Data consistency model
R Regularization

λF , λH , λR Regularization parameters
α Readout rotation angle

tations. Besides the motion field and dynamical parameters, the
full time-resolved k-space is added as an additional variable
in the reconstruction. By jointly reconstructing the missing
k-space data and the motion fields in a single optimization
problem, a very high undersampling factor per time instance
could be achieved. In addition, we have added an external
activation force, which allows for the dynamical model to dis-
play the output of an arbitrary forcing function. This activation
represents an external load acting on a muscle, or neuronal
activation of a muscle. Using a dynamic motion phantom,
we show that we can reconstruct 1) time-resolved images, 2)
time-resolved motion fields, 3) dynamical parameters, and 4)
the activation force, at a temporal resolution of 11 ms and a
spatial resolution of 5.0 mm × 5.0 mm. These results bring
us closer to our goal of real-time in vivo dynamical system
characterization.

II. THEORY

The extended Spectro-Dynamic MRI reconstruction frame-
work contains four components (Fig. 1): a motion model
(G), a dynamical model (F ), a data consistency term (H),
and a regularization term (R). These four components are
combined as penalty terms in a minimization problem. We use
penalty terms instead of hard equality constraints to capture
model inaccuracies and noise in all four components [19].
Each component is discussed in more detail in the following
subsections. The minimization problem is solved with an
iterative reconstruction algorithm, which will be described in
Section II-E. Some symbols used throughout this work are
listed in Table I.

Data 
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Motion 

Model (G)

Dynamical

Model (F)

Regularization 
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Fig. 1. Overview of the different elements used in the iterative reconstruction
algorithm. The four different model components are indicated in the middle
column. The measured undersampled data (d) and the chosen basis functions
(ϕ) are the inputs of the reconstruction, and remain constant during the
reconstruction. The optimization variables that are reconstructed are given
on the right. The connections indicate which inputs and variables are used in
each model. Note that every variable is shared between at least two models.

A. Motion Model

The motion model G provides the relation between the MRI
data and the motion field. Its derivation starts by assuming that
all signal is conserved during motion [18]. This assumption
holds if the magnetization is in steady state, the receive and
excitation fields are homogeneous, and the readouts are short.

Let Ωr ⊆ Rd be a spatial domain in d dimensions, and
let Ωt ⊆ R be a time interval. Then Ωrt = Ωr × Ωt is
the combined spatio-temporal domain. In this work, only 2D
experiments are shown, but all methods are valid in 3D as
well. The extension to 3D will be the topic of future research.

Let m(r, t) : Ωrt → C be a temporal series of complex-
valued images, and let v(r, t) : Ωrt → Rd be the d-
dimensional velocity field. The conservation of magnetization
results in the following partial differential equation (PDE),
known as the continuity equation:

∂m

∂t
+∇ · (mv) = 0. (1)

Note that combined with the incompressibility constraint
(∇·v = 0), the motion model becomes identical to the optical
flow model [20] as used in image registration.

MRI measurements are acquired in the spectral or spatial
frequency domain, called k-space. Therefore, it is convenient
to transform the continuity equation (1) to the spectral domain.
Let F be the d-dimensional spatial Fourier transform operator.
It transforms m into its k-space representation m̂(k, t) :
Ωkt → C, such that m̂ = Fm and m = F−1m̂. Here, Ωk ⊆
Rd is the spectral domain in k-space, and Ωkt = Ωk × Ωt.
Similarly, the spectral velocity field v̂(k, t) : Ωkt → Cd is
obtained by applying F to each component of v, such that
v̂j = Fvj for j = 1, · · · , d. Note that an undersampled and
noisy version of m̂ is measured during an MRI scan.

Using the properties of the Fourier transform, (1) can be
converted to the spectral domain:
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∂m̂

∂t
+ 2πi

d∑
j=1

kj(m̂ ∗ v̂j) = 0. (2)

Here, i =
√
−1 is the imaginary unit, kj is the spectral

coordinate in dimension j, and the symbol ∗ is a convolution
over the d spectral dimensions.

The equation above is written in terms of the velocity field,
while the dynamical model (Section II-B) is described in terms
of the displacement field. Let u(r, t) : Ωrt → Rd be the d-
dimensional displacement vector field. We will parameterize
the displacement field using P basis functions ϕp(r) : Ωr →
Rd and corresponding generalized coordinates qp(t) : Ωt → R
for p = 1, · · · , P :

u(r, t) =

P∑
p=1

ϕp(r)qp(t). (3)

By using the basis functions ϕp, prior information about the
motion field can be introduced, thereby reducing the number of
unknown variables. For example, if the motion field is smooth,
splines can be used as basis functions. Alternatively, the basis
functions can be piecewise constant if the domain Ωr can be
separated into different compartments. The latter approach will
be used in this work (Section III-D and Fig. 5).

The velocity field and the displacement field are related
through the material derivative (v = Du

Dt = ∂u
∂t + v · ∇u). In

this work we will limit ourselves to piecewise constant basis
functions. Therefore, ∇uj = 0 for all j, and thus v = ∂u

∂t .
Combining (2) and (3) gives:

∂m̂

∂t
+ 2πi

d∑
j=1

P∑
p=1

kj(m̂ ∗ ϕ̂p,j)
dqp
dt

= 0, (4)

where ϕ̂p,j = Fϕp,j .
During an MRI scan, the continuous time-resolved k-space

m̂ is sampled at a discrete number of sample points. The
k-space domain Ωk is discretized to N points, and Ωt is
discretized to T time instances. When all discrete points of
m̂ are put into one vector, we get m ∈ CNT . Similarly, we
can discretize the generalized coordinates over time to get
q ∈ RPT . Note that m cannot be measured directly at a high
spatio-temporal resolution. Instead, a highly undersampled and
noisy version of m is acquired (see Section II-C).

After discretization, the motion model term G is the squared
L2-norm of the residual of (4), which is a function of m and
q:

G(m,q) =
1

2

∥∥Dtm+ 2πi

d∑
j=1

KjC(m, DtΦjq)
∥∥2
2
. (5)

Here, Dt is the first-order temporal finite difference opera-
tor, Kj is a diagonal matrix that performs multiplication with
the k-space coefficients kj , C is a bilinear map that performs
the spatial convolution, and Φj is a block diagonal matrix
whose columns contain the spectral basis functions ϕ̂p,j .

Note that the term inside the norm in (5) is bilinear in m
and q, making G(m,q) a biconvex function.

B. Dynamical Model

If the measured data were fully sampled and free of noise,
the coefficients of the motion field could be retrieved directly
from the measured data. However, a fully-sampled k-space at
a high spatial and temporal resolution is not feasible.

To overcome this issue, the dynamical model is added to
constrain the solution of the motion field. This model provides
additional information about the expected type of motion. In
general, the dynamical model is a PDE constructed from the
balance of momentum (Newton’s second law) combined with
a material’s constitutive relation, like Hooke’s law for linear
elasticity. This constitutive model contains the dynamical
parameters, which can either be provided a priori or can be
estimated from the data to provide additional information.
Examples of dynamical parameters are stiffness and viscosity.

For now, we will limit ourselves to dynamical models
that are only time-dependent, and can thus be written as an
ordinary differential equation (ODE). All spatial dependencies
are captured by the basis functions ϕp. In this work, we use
a linear elastic model with an external activation for each
generalized coordinate qp:

d2qp
dt2

+ c
dqp
dt

+ κqp = fp ∀p, (6)

with c ∈ R+ the damping coefficient in Ns/m, κ ∈ R+ the
elastic stiffness in N/m, and fp(t) : Ωt → R the activation
force in N for the p-th degree of freedom.

In our experiments, we set c to a particular value, which is
fixed during the reconstruction. Also note the absence of the
mass in the first term of (6). Since the equation can be scaled
by an arbitrary constant, we regard all quantities as mass-
normalized. Thus, κ remains as the only unknown dynamical
parameter.

Despite its simplicity, this model can be used to describe
muscle dynamics in certain tasks [21], or it can act as a
linear approximation to more complex dynamical systems.
In this case, fp can be interpreted as the internal muscular
activation caused by a neuronal input, or as an external
loading, depending on the application.

The dynamical model term F takes the residual of (6)
and takes its squared L2-norm summed over the degrees of
freedom. After discretization, this can be written as a function
of q, κ, and f :

F (q, κ, f) =
1

2

∥∥(Dtt + cDt + κI)q− f
∥∥2
2
. (7)

Dt and Dtt are the first- and second-order temporal finite
difference operators, I is the PT ×PT identity operator, and
f ∈ RPT is the discretized activation force.

The term inside the norm of (7) is linear in q and f for a
fixed value of κ, and it is linear in κ and f for a fixed value
of q. This makes F (q, κ, f), like G(m,q) in (5), a biconvex
function.

C. Data Consistency

Sampling k-space during an MRI scan is not instantaneous.
If all N samples are to be acquired at each time instance, the
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time step ∆t between two time instances becomes too large
to capture motion at a sub-second timescale. Therefore, the
measured k-space data d ∈ CMT will be an undersampled
version of m, with M measured samples per time instance,
and M much smaller than the number of samples in the fully-
sampled data (M ≪ N ). In practice, M can be the number
of samples during a single repetition time (TR), or multiple
readouts can be grouped together if the repetition time is small
enough. The sampling pattern used during the experiment is
given by E ∈ {0, 1}MT×NT , such that Em = d in the
absence of noise.

In our previous work [18], we used the measurements
d directly in the motion model. However, this created two
problems. First of all, the motion model contains a convo-
lution between the k-space data and the velocity field. This
convolution can only be evaluated when the k-space is fully
sampled at each time instance. In practice, the k-space of each
time instance will be heavily undersampled if a high temporal
resolution is required. The data points that are not sampled
leave gaps in k-space, while these data points are required to
calculate the convolution. In [18], this issue was circumvented
by only considering motion fields that vary spatially in the
readout direction and are constant in all other directions,
resulting in a 1D convolution in the fully-sampled readout
direction. However, for more general motion fields or more
complex acquisition trajectories, this approach is no longer
possible.

Furthermore, d will invariably contain measurement noise.
By plugging d directly into the motion model, this noise gets
scaled by the different terms in (5). For example, the high
spatial frequency noise is amplified through the operator Kj .
This will result in a biased reconstruction of the motion field.

The first limitation is addressed by including the full time-
resolved k-space, including the data points that were not
sampled, as an additional variable in the reconstruction. This
increases the number of unknown variables, but gives the
reconstruction more flexibility. By using a specific interleaved
sampling pattern, the information coming from the sampled
data at a certain time instance is shared through the temporal
derivatives in the motion model to the time instances where
those data points are not sampled. That way, the gaps in the
time-resolved k-space can be filled in, allowing the convolu-
tion to be evaluated for more general motion patterns.

Instead of using a hard data consistency constraint in the
form of Em − d = 0, we will use a relaxation term in the
reconstruction that minimizes the error of this equation:

H(m) =
1

2
∥Em− d∥22. (8)

This relaxation term allows the reconstructed data m to
deviate slightly from the measured data d. We expect that
this deviation can capture the measurement noise and other
measurement imperfections, thereby reducing the bias in the
motion field caused by these differences.

D. Regularization

By treating q, κ and f as unknown variables, we have
created an ill-posed reconstruction problem. Any error in

Fig. 2. Simulated inputs for the continuous (left) and discontinuous (right)
experiments. On the top row, the activation forces are shown for both
cases. The middle and bottom rows show the displacements and velocities
respectively, as obtained by numerically solving (6). Only the two small tubes
moved along a single direction, while the water compartment and the large
cylinder remained stationary.

the dynamical model given by (6) can be compensated by
changing its right-hand side, resulting in unfeasible solutions
for f .

Therefore, we added a fourth term R to the reconstruction.
This term acted as a regularization of the activation force and
depends on the prior knowledge that is available about the
shape of the activation force. For example, if fp is continuous,
a smoothness regularization can be used. Alternatively, if fp
is known to be piecewise constant, a regularization function
based on the temporal Total Variation (TV) is more suitable.
Both regularization terms can be discretized using the second-
and first-order finite difference operators Dtt and Dt respec-
tively, resulting in:

RS(f) =
1

2
∥Dttf∥22, (9)

RTV(f) = ∥Dtf∥1. (10)

E. Iterative Reconstruction

Combining all four components, the extended Spectro-
Dynamic MRI framework aims to solve the following opti-
mization problem:

min
m,q,κ,f

G(m,q)+λFF (q, κ, f)+λHH(m)+λRR(f). (11)

The parameters λF , λH , and λR determine the trade-off
between the residuals of the different models.

The minimization in (11) must be solved for four different
parameters: m, q, κ, and f , for a total of NT + 2PT + 1
unknowns. It is a multiconvex optimization problem, for
which several optimization algorithms exist. In this work, we
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Fig. 3. (a) The Quasar MRI4D Motion Phantom. A large water compartment
surrounds a stationary gel-filled tube and a cylinder that is actuated by an
MR-compatible piezoelectric motor. Inside the moving cylinder, two smaller
gel-filled tubes were placed. (b) Stationary MR images of the phantom setup,
acquired with the same scan parameters as those used during the dynamic
experiments. The red and blue arrows indicate the readout and phase encode
directions respectively for the three different readout orientations (α = 0°, 45°,
and 90°). These directions correspond to the x- and y-directions respectively
in the reconstructed motion. (c) A stationary MR image, where the two yellow
lines indicate the division between the moving compartment (ΩM ) and the
stationary compartment (ΩS ).

solve (11) with an iterative scheme called Block Coordinate
Descent (BCD) [22] because it is easy to implement and
interpret the results. In every step of BCD, one subset of the
unknown variables is fixed, while problem is solved for the
remaining variables using convex optimization. This is done
most efficiently by fixing a minimal number of variables [23].
In the case of (11), these minimal fixed sets are {m, κ} and
{u}. The resulting iterative optimization is given by Algorithm
1.

Algorithm 1 Spectro-Dynamic MRI Reconstruction.
1: m0,q0, κ0, f0 ← 0
2: for k = 1 to K do
3: mk ← argmin

m
G(m,qk−1) + λHH(m)

4:

qk, f̄k ← argmin
q,f

[
G(mk,q) + λFF (q, κk−1, f)

+ λRR(f)
]

5: κk, fk ← argmin
κ,f

λFF (qk, κ, f) + λRR(f)

6: end for

Fig. 4. Sampling pattern as used during the dynamic experiments. The readout
direction is kx, while ky is the phase encode direction. Only eight of the 64
phase encode lines are visualized. Each time instance contains two readout
lines, for an effective temporal resolution of two times the repetition time
(TR). By distributing the readout lines evenly over the k-space, information
about different spatial frequencies is acquired during each time instance.

Note that line 4 in Algorithm 1 is a convex optimization with
m and κ fixed, while lines 3 and 5 together form a convex
optimization with q fixed. This last minimization problem over
m, κ and f is separable into two independent minimization
problems: one over m (line 3), and one over κ and f (line
5). The ordering of the subproblems is chosen such that the
influence of the initial values is minimal. The activation force f
is optimized twice in each iteration, therefore f̄k is a nuisance
variable only used to improve the solution of u.

When the smooth regularization function (9) is used, all
three subproblems (lines 3-5 in Algorithm 1) can be solved
using linear least squares solvers. In the case of the Total
Variation regularizer (10), lines 4 and 5 are still convex, but
no longer smooth. In this case, these are solved using the
Alternating Direction Method of Multipliers (ADMM) [24,
pp. 43–44].

III. METHODS

A. Activation Functions

We used two different kinds of activations to observe
different kinds of dynamics in our system. First, a smooth
continuous activation function was constructed by adding two
sinusoidal functions with frequencies of 0.15 Hz and 0.33 Hz
(see Fig. 2, top left). For this activation, the reconstruction was
regularized by RS. The next experiment used a discontinuous
activation, where the activation switched between an ’off’ and
an ’on’ state (Fig. 2, top right). For this experiment, RTV was
used as a regularization function.

The differential equation of motion (6) was solved using
κ = 30 N/m and the initial condition q(0) = 0, where f(t) is
given by one of the activations in Fig. 2. We used a damping
coefficient of c = 0 Ns/m for the continuous activation, and
c = 1 Ns/m for the discontinuous activation. This value was
fixed during the reconstruction.
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Fig. 5. The four basis functions used during the reconstruction for α = 0°.
Two basis functions are defined in the moving compartment (ΩM , top
row), the other two in the stationary compartment (ΩS , bottom row). For
each compartment, one basis function points in the vertical direction (x,
left column), the other in the horizontal direction (y, right column). The
coefficients of all four basis functions are estimated during the reconstruction,
but only those in the moving compartment should be nonzero.

B. Phantom Setup

We used the Quasar MRI4D Motion Phantom (Modus Med-
ical Devices Inc., London, ON, Canada) to acquire dynamic
experimental data. This phantom (Fig. 3(a)) contains an MR-
compatible piezoelectric motor, which drives a cylindrical
moving compartment inside a stationary compartment filled
with water. Inside the moving cylinder, two gel-filled tubes
(TO5, Eurospin II test system, Scotland) were placed. A
second, static cylinder filled with gel was inserted next to the
moving cylinder. The motion fields were piecewise constant,
which means that the motion was locally rigid. As such, they
can be described by four degrees of freedom (two for the
moving compartment and two for the stationary compartment).
The simulated motion profile (Fig. 2, middle row) was used
as position setpoint in the phantom’s motion control software.

C. Data Acquisition

The motion phantom was placed in a 1.5T MRI scanner
(Ingenia, Philips Healthcare, Best, The Netherlands). Both
stationary and dynamic data were acquired with a spoiled
gradient echo sequence (TR = 5.5 ms, TE = 2.2 ms, Flip angle
= 9°). The field of view was a 320 mm × 320 mm coronal
slice with a thickness of 5 mm. The phantom was leveled
to prevent through-slice motion. To achieve a homogeneous
receive sensitivity, the body coil was used for data acquisition.
Data sampling was performed on a 64 × 64 matrix using an
interleaved pattern (Fig. 4). Thus, the acquired information at

each time instance was distributed over k-space. The sampling
pattern was repeated 40 times, for a total of 2560 readouts,
and a total acquisition time of 14 seconds.

To show that the extended Spectro-Dynamic MRI frame-
work can estimate motion along an arbitrary direction, the
experiment was repeated three times for both activations. Each
time, the readout direction (kx) was rotated respectively by 0°,
45°, and 90° with respect to the direction of motion (Fig. 3(b)).

D. Reconstruction

Four degrees of freedom (P = 4) were used during re-
construction, for two compartments (the moving compartment
ΩM and the stationary compartment ΩS , Fig. 3(c)) and two
directions (x and y) per compartment. Thus, four piecewise
constant basis functions were defined to parameterize the
displacement vector field according to (3), corresponding with
four generalized coordinates (Fig. 5):

ϕ1(r) =

{
(1, 0)T ∀r ∈ ΩM

(0, 0)T ∀r ∈ ΩS

ϕ2(r) =

{
(0, 1)T ∀r ∈ ΩM

(0, 0)T ∀r ∈ ΩS

ϕ3(r) =

{
(0, 0)T ∀r ∈ ΩM

(1, 0)T ∀r ∈ ΩS

ϕ4(r) =

{
(0, 0)T ∀r ∈ ΩM

(0, 1)T ∀r ∈ ΩS

(12)

Since the moving compartment moves along a straight line,
the reconstructed displacements of only one degree of freedom
should be nonzero for α = 0° and 90°. For α = 45°, the
displacements of two degrees of freedom should be nonzero
and identical.

Multiple successive readouts were grouped together during
reconstruction. This was done to increase the amount of
available data per time instance while guaranteeing a high
temporal resolution. Including more lines in a single time
instance reduces the undersampling of k-space, at the cost of
a lower temporal resolution. We grouped together every two
successive readouts (Fig. 4). This resulted in an effective tem-
poral resolution of ∆t = 2·TR = 11 ms and an undersampling
factor of 32 for each time instance. This temporal resolution
enables future applications in real-time dynamic cardiac or
speech imaging, which require similar frame rates [12].

The reconstruction, as described by Algorithm 1, was imple-
mented in Matlab (The MathWorks Inc., Natick, MA, USA).
The large-scale and sparse subproblem in line 3 of Algorithm
1 was solved using the iterative linear least-squares solver
lsqr. The other two subproblems were solved using Mat-
lab’s mldivide (\) or an ADMM implementation, depend-
ing on R(f). The regularization parameters (λF = 5.0 · 106,
λH = 1.0 · 103, and λR = 1.0 · 103 / 2.0 · 104 for RS / RTV)
were determined empirically and fixed for all reconstructions.
These values resulted in comparable contributions of all four
model terms to the objective function. After 15 iterations, the
updates to the estimated values were negligible (less than 1%),
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Fig. 6. Images reconstructed using (a) the two-step reconstruction, (b) the result of the Spectro-Dynamic MRI reconstruction, and (c) stationary data. The
readout direction was parallel to the direction of motion (α = 0°). The bottom row shows one line in the image (indicated by the dashed yellow line) over
time. Note the removal of the motion blurring in the Spectro-Dynamic MRI reconstruction. A video showing all frames of the time-resolved Spectro-Dynamic
MRI reconstruction is available online as Supplementary Video S1.

and the algorithm was terminated. Each reconstruction took
approximately 2 hours on a workstation with a 2.90 GHz Intel
Xeon W-2102 CPU and 32GB RAM.

The estimated fully-sampled k-space m was transformed
into the image domain with a Fast Fourier Transform (FFT)
followed by a geometry correction step to correct for gradient
nonlinearities. The velocity was calculated using central finite
differences from the estimated displacements. Together, the
activation force and the velocity are important for understand-
ing muscle physiology [5]. For the estimated displacements,
velocities, and activation forces, the root-mean-square error
(RMSE) compared to the ground truth values (Fig. 2) was
calculated as a measure for the reconstruction accuracy.

E. Two-step Reconstruction

We compared the proposed Spectro-Dynamic MRI recon-
struction to a two-step approach. In the first step, the time-
resolved k-space m was reconstructed by only using a tem-
poral smoothness regularization and no information about the
motion fields:

min
m

H(m) + λ∥DtF
Hm∥1, (13)

with FH the inverse Fourier transform operator and λ = 0.05.
The minimization in (13) was solved using the nonlinear con-
jugate gradient algorithm [25]. Next, the remaining variables
q, κ, and f were estimated by iterating over lines 4 and 5 of
Algorithm 1 while keeping m fixed. This approach is referred
to as the ”two-step” reconstruction.

IV. RESULTS

In the dynamic image series estimated in the two-step
reconstruction, residual motion blurring was visible (Fig. 6(a)).
The images calculated from the reconstructed spatio-temporal
k-space data m did not show this blurring (Fig. 6(b)). For
validation purposes, we also reconstructed an image from
fully-sampled k-space data of a stationary phantom (Fig. 6(c)).
Note that Fig. 6(b) and (c) are very similar, although the
phantom moved while acquiring data for the Spectro-Dynamic
MRI reconstruction (Fig. 6(b)). The reconstructed image series
had a temporal resolution of 11 ms (Supplementary Video S1).
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TABLE II
RECONSTRUCTION ERRORS AND ESTIMATED DYNAMICAL PARAMETER.

Experiment Two-step Spectro-Dynamic

Activation α RMSE u RMSE v RMSE f κ* RMSE u RMSE v RMSE f κ*
(°) (mm) (mm/s) (N) (N/m) (mm) (mm/s) (N) (N/m)

Continuous 0 1.38 3.55 27·10-3 53.8 0.24 1.00 9.5·10-3 31.8
Continuous 45 1.48 3.62 14·10-3 58.4 0.11 0.87 7.0·10-3 30.1
Continuous 90 1.54 3.72 20·10-3 67.0 0.20 0.96 8.6·10-3 30.4

Discontinuous 0 1.36 4.95 38·10-3 28.4 0.23 1.42 17·10-3 28.0
Discontinuous 45 1.45 5.11 54·10-3 18.3 0.11 0.85 15·10-3 26.8
Discontinuous 90 1.38 5.07 47·10-3 22.3 0.19 1.36 16·10-3 27.4

* Ground truth value: 30.0 N/m

The estimated displacements, velocities, and activation
forces were close to their respective ground truth values (Fig. 7
and Table II). Additionally, the estimated dynamical parameter
(κ) was very close to its ground truth value of 30 N/m (Table
II).

When rotating the readout direction with respect to the
direction of motion, the reconstruction accuracy remained
high (Table II and Figs. S1 and S2 in the Supplementary
Material). In addition, when changing the activation force to
a discontinuous ’on/off’ function (Fig. 2, right column), the
reconstructed motion remained accurate (Table II and Fig.
S3 in the Supplementary Material), although the accuracy
of the estimated activation force and dynamical parameter
was lower than for the reconstructions with the continuous
activation. Again, the accuracy remained similar when the
readout direction was rotated (Table II and Figs. S4 and S5 in
the Supplementary Material).

V. DISCUSSION

In this work, we presented an extended reconstruction
framework for Spectro-Dynamic MRI that estimates time-
resolved images, time-resolved motion fields, dynamical pa-
rameters, and the activation force. We formulated an optimiza-
tion problem in terms of four components: a motion model
that relates the displacements to the fully-sampled k-space
data, a dynamical model that describes the expected type of
motion, a data consistency term that describes the sampling
and measurement process, and a regularization term on the
activation force. We solved this optimization problem by using
an iterative reconstruction algorithm with convex subprob-
lems. Phantom experiments with different kinds of activations
showed that the dynamics can be reconstructed accurately at
a temporal resolution of 11 ms. The reconstruction did not
assume any periodicity in the motion, and the accuracy was
independent of the orientation of the motion with respect to
sampling pattern.

The strength of our method is the joint reconstruction of the
missing k-space data and the motion fields. We have shown
the increased accuracy of our proposed reconstruction method
compared to a two-step approach, where time-resolved images
are reconstructed in the first step, after which the motion
is estimated from this data. Since no motion information is
available during the first step, a temporal smoothness regu-
larization is used to resolve the high undersampling, which

results in motion blurring in the images. Estimating the motion
from this blurred data results in a large underestimation of
the displacements. In contrast, the iterative Spectro-Dynamic
MRI reconstruction leverages the motion information during
the estimation of the time-resolved data and vice versa. Thus,
the measured information can be shared more efficiently across
time, and accurate reconstructions with high acceleration fac-
tors per time instance (32 in this work) can be achieved.

The ordering of the subproblems in Algorithm 1 is im-
portant. In the first iteration, the optimization for m (with
q0 = 0) results in a smooth temporal interpolation of the
missing k-space data. This rough estimate for m is subse-
quently used to generate a first estimate of the motion fields
and activation force. Finally, the dynamical parameters are
estimated, while the activation force is refined. Thus, the result
after one iteration already resembles the eventual solution.
Subsequent iterations refine the solution, bringing it closer
to the ground truth values. Choosing a different ordering can
result in convergence problems, especially in the first iteration,
and increases the sensitivity of the solution to the chosen initial
values.

The activation force f is optimized twice during each
iteration of Algorithm 1. Omitting the estimation of f in
either line 4 or 5 results in a much slower convergence of
q or κ, respectively. Even though the temporary variable f̄k is
not used explicitly, it gives more freedom during the convex
optimization of line 4, resulting in a better estimate for q.

The damping coefficient c was fixed during the optimization,
since estimating both c and f would lead to complexities
in the reconstruction. For more complex and more realistic
in vivo applications, some mechanical parameters could be
fixed to literature values. Alternatively, the time-dependent
activation function could be measured using e.g. ECG or
EMG, depending on the application.

Due to the limitations of the motion phantom we used, only
one of the four degrees of freedom of the motion was actually
nonzero. Since the motion estimation remained accurate when
the readout direction was rotated, we expect that motion in any
of the four degrees of freedom can be reconstructed accurately.

By using the data consistency term H as a penalty term
instead of an equality constraint, the noise in the measurements
can be captured by the residual of this term. The idea is that
this relaxation strategy reduces the noise in m which is used
in the motion model G. This in turn results in a reduced bias
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Fig. 7. Estimated (a) displacements, (b) velocities, and (c) activation forces in both directions resulting from the two-step reconstruction (top) and Spectro-
Dynamic reconstruction (bottom) for the experiment with a continuous activation function and α = 0°. The velocities were calculated from the displacements
using finite differences. The motion of both the moving and the stationary compartment was estimated, but only the moving compartment moved along one
direction (x). The small insets show zoomed versions of the graphs around the point where the motion starts.

of the estimated displacement field. This bias was visible for
example in the estimated displacements in the phase encode
direction in our previous work [18], which were less accurate
than the displacements in the readout direction. In our current
results, no such difference was present between the different
directions. The addition of the data consistency term in the
reconstruction also removed the need for the low-pass filter
which was previously applied to the k-space data.

The motion model leverages the reconstructed displacement
field to fill the missing k-space data. Other techniques also
aim to reconstruct images from undersampled k-space data.
Parallel imaging [26], [27] uses information about the coil
sensitivities to estimate the missing data, thereby removing the
undersampling artifacts. Compressed sensing [25] combines
an incoherent undersampling pattern with a sparse regulariza-

tion to reconstruct an image. In addition, multiple methods
have been developed to accelerate dynamic MRI data using
temporal correlations in the data, without using the motion
fields explicitly [28]. These techniques could complement the
motion model in Spectro-Dynamic MRI, although this is not
done in this work.

Our method requires several extensions before it can be
used for in vivo applications. Firstly, through-slice motion
violates the assumption of signal conservation used in the
derivation of the motion model. Since pure in-plane in vivo
motion is rare, we will next investigate a 3D implementation
for Spectro-Dynamic MRI. Acquiring 3D data at a high
temporal resolution will require undersampling in both phase
encode directions, resulting in an even higher undersampling
factor than in the current 2D implementation. We expect that
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carefully choosing the sampling pattern will be important to
keep a good trade-off between spatial and temporal resolution.
More than two readouts may have to be included in a single
time instance. Again, techniques such as parallel imaging or
compressed sensing may be used to deal with the increased
undersampling in 3D. Random undersampling patterns or non-
Cartesian trajectories might also increase the robustness of the
reconstructions, especially when using compressed sensing re-
construction approaches. Prior information about the estimated
images could also be added to the reconstruction in the form
of a smoothness or total variation regularizer.

Secondly, a partial differential equation (PDE) has to replace
the ODE used as dynamical model in this work. This PDE
allows for the reconstruction of deformable motion fields. For
example, the Navier-Cauchy equation can be used to model
the behavior of isotropic linear elastic materials. In this case,
the non-rigid motion fields become a function of space as well
as time. The mechanical parameters might also become spa-
tially dependent when different tissue types or inhomogeneous
tissues are considered. We will investigate deformable motion
estimation and the use of PDEs as dynamical model in the
Spectro-Dynamic MRI framework in the future.

A non-rigid motion field also calls for different basis
functions ϕ(r). B-splines [29] could be used, since motion
fields are smooth almost everywhere. Furthermore, a low-rank
description of the motion field has been shown to be very
effective [17]. Choosing adequate basis functions to describe
the motion field will be an important step in extending Spectro-
Dynamic MRI towards 3D in vivo applications.

Finally, determining constitutive models to describe the
dynamic behavior of tissues in vivo is not trivial, and many
different (nonlinear) models can be found in the literature [30].
Alternatively, data-driven discovery of dynamical systems can
be used to learn constitutive relations from the dynamical data
itself [31], [32]. Discovering dynamical models using Spectro-
Dynamic MRI is currently being investigated by the authors
[33].

VI. CONCLUSION

The extended Spectro-Dynamic MRI reconstruction frame-
work presented in this work allows for time-resolved dy-
namic MRI reconstructions at a high temporal resolution.
In addition, it gives insights into the underlying dynamics
of the motion through the dynamical model. The extended
framework enables the reconstruction of more general motion
fields, regardless of the sampling pattern adopted during the
MRI scan.
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Fig. S1. Estimated (a) displacements, (b) velocities, and (c) activation forces in both directions resulting from the two-step reconstruction (top) and Spectro-
Dynamic reconstruction (bottom) for the experiment with a continuous activation function and α = 45°. The velocities were calculated from the displacements
using finite differences. The motion of both the moving and the stationary compartment was estimated, but only the moving compartment moved along one
direction. Since α = 45°, this motion was separated over the x- and y-directions.
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Fig. S2. Estimated (a) displacements, (b) velocities, and (c) activation forces in both directions resulting from the two-step reconstruction (top) and Spectro-
Dynamic reconstruction (bottom) for the experiment with a continuous activation function and α = 90°. The velocities were calculated from the displacements
using finite differences. The motion of both the moving and the stationary compartment was estimated, but only the moving compartment moved along one
direction (y).
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Fig. S3. Estimated (a) displacements, (b) velocities, and (c) activation forces in both directions resulting from the two-step reconstruction (top) and Spectro-
Dynamic reconstruction (bottom) for the experiment with a discontinuous activation function and α = 0°. The velocities were calculated from the displacements
using finite differences. The motion of both the moving and the stationary compartment was estimated, but only the moving compartment moved along one
direction (x).



15

Fig. S4. Estimated (a) displacements, (b) velocities, and (c) activation forces in both directions resulting from the two-step reconstruction (top) and
Spectro-Dynamic reconstruction (bottom) for the experiment with a discontinuous activation function and α = 45°. The velocities were calculated from
the displacements using finite differences. The motion of both the moving and the stationary compartment was estimated, but only the moving compartment
moved along one direction. Since α = 45°, this motion was separated over the x- and y-directions.
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Fig. S5. Estimated (a) displacements, (b) velocities, and (c) activation forces in both directions resulting from the two-step reconstruction (top) and
Spectro-Dynamic reconstruction (bottom) for the experiment with a discontinuous activation function and α = 90°. The velocities were calculated from
the displacements using finite differences. The motion of both the moving and the stationary compartment was estimated, but only the moving compartment
moved along one direction (y).
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Video S1. Video showing the time-resolved image data. Each frame is obtained by performing a Fast Fourier Transform (FFT) on one time instance of
the estimated time-resolved k-space data m, followed by a geometry correction to account for gradient nonlinearities. The video can be viewed online, this
document only shows a single frame.
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