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Abstract
The vertex cover problem is a fundamental and widely studied combinatorial optimization problem.
It is known that its standard linear programming relaxation is integral for bipartite graphs and
half-integral for general graphs. As a consequence, the natural rounding algorithm based on this
relaxation computes an optimal solution for bipartite graphs and a 2-approximation for general
graphs. This raises the question of whether one can interpolate the rounding curve of the standard
linear programming relaxation in a beyond the worst-case manner, depending on how close the graph
is to being bipartite. In this paper, we consider a round-and-bipartize algorithm that exploits the
knowledge of an induced bipartite subgraph to attain improved approximation ratios. Equivalently,
we suppose that we work with a pair (G, S), consisting of a graph with an odd cycle transversal.

If S is a stable set, we prove a tight approximation ratio of 1 + 1/ρ, where 2ρ − 1 denotes the
odd girth (i.e., length of the shortest odd cycle) of the contracted graph G̃ := G/S and satisfies
ρ ∈ [2, ∞], with ρ = ∞ corresponding to the bipartite case. If S is an arbitrary set, we prove a tight
approximation ratio of (1 + 1/ρ) (1 − α) + 2α, where α ∈ [0, 1] is a natural parameter measuring the
quality of the set S. The technique used to prove tight improved approximation ratios relies on a
structural analysis of the contracted graph G̃, in combination with an understanding of the weight
space where the fully half-integral solution is optimal. Tightness is shown by constructing classes of
weight functions matching the obtained upper bounds. As a byproduct of the structural analysis,
we also obtain improved tight bounds on the integrality gap and the fractional chromatic number
of 3-colorable graphs. We also discuss algorithmic applications in order to find good odd cycle
transversals, connecting to the MinUncut and Colouring problems. Finally, we show that our
analysis is optimal in the following sense: the worst case bounds for ρ and α, which are ρ = 2 and
α = 1 − 4/n, recover the integrality gap of 2 − 2/n of the standard linear programming relaxation,
where n is the number of vertices of the graph.
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1 Introduction

In the vertex cover problem we are given a weighted graph G = (V, E, w), where w : V 7→ R+
is a non-negative weight function on the vertices, and the goal is to find the minimal weight
subset of vertices U ⊂ V that covers every edge of the graph, i.e.,

min{w(U) | U ⊂ V, |U ∩ {i, j}| ≥ 1 ∀(i, j) ∈ E}.
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We denote by OPT an optimal subset of vertices for this problem, and by w(OPT ) the total
weight of that solution. The vertex cover problem is known to be NP-complete [27] and
APX-complete [38]. Moreover, it was shown to be NP-hard to approximate within a factor
of 7/6 in [23], a factor later improved to 1.36 in [16]. It is in fact NP-hard to approximate
within a factor of 2 − ε for any fixed ε > 0 if the unique games conjecture is true [28].

A natural linear programming relaxation, as well as its dual, is given by:

min
∑
v∈V

wvxv

xu + xv ≥ 1 ∀(u, v) ∈ E

xv ≥ 0 ∀v ∈ V

max
∑
e∈E

ye

y(δ(v)) ≤ wv ∀v ∈ V

ye ≥ 0 ∀e ∈ E

For a given graph G, we denote the primal linear program by P (G) and the dual by D(G).
The integrality gap of the standard linear relaxation P (G) on a graph of n vertices is upper
bounded by 2 − 2/n, a bound which is attained on the complete graph. In fact, a more
fine-grained analysis shows that it is equal to 2 − 2/χf (G), where χf (G) is the fractional
chromatic number of the graph [45]. An integrality gap of 2 − ε is proved for a large class of
linear programs in [4]. It is also known that any linear program which approximates vertex
cover within a factor of 2 − ε requires super-polynomially many inequalities [10].

An important property of P (G) is the fact that any extreme point solution x∗ is half-
integral, i.e., x∗

v ∈ {0, 1
2 , 1} for any vertex v ∈ V [35]. This gives rise to a straightforward

rounding algorithm by solving P (G) and outputting all vertices whose LP variable is at least
a half, i.e., U := {v ∈ V | x∗

v ≥ 1
2 }. It is easy to see that this a 2-approximation, because

w(U) ≤ 2w(OPT ), see [24]. Moreover, it is known that P (G) is integral for any bipartite
graph [30]. As a consequence, the rounding algorithm returns an optimal solution if the
graph is bipartite. This raises the question of whether we can interpolate the rounding curve
of the standard linear program, depending on how close the graph is to being bipartite.

Set-up and algorithm
We consider the following setup. We are given a weighted non-bipartite graph G = (V, E, w)
and an optimal solution x∗ ∈ {0, 1

2 , 1} to P (G). We denote by Vα := {v ∈ V | x∗
v = α} the

vertices taking value α and by Gα = G[Vα] the subgraph of G induced by the vertices Vα for
any α ∈ {0, 1

2 , 1}. By a standard preprocessing step, we may assume that we only work on
the graph G1/2, since any c-approximate solution on this reduced graph can be lifted to a
c-approximate solution on the original graph by adding the nodes V1 to the solution [35]. In
addition, we suppose that we have knowledge of an odd cycle transversal S of G1/2, meaning
that G1/2 \ S is a bipartite graph. Equivalently, S intersects every odd cycle of G1/2. The
question of finding a good such odd cycle transversal is also tackled later in the paper.

We consider the following simple round and bipartize algorithm, detailed in Algorithm 1.
It first solves P (G), takes the vertices assigned value one by the linear program to the solution
and removes all the integral nodes from the graph to arrive at G1/2. The algorithm then
takes all the vertices in the set S to the solution, removes them from the graph and solves
another (now integral) linear program to get the optimal solution on the bipartite remainder.
These vertices are then also added to the solution.

The question studied is the following. What is the worst-case approximation ratio of
the algorithm and which weight functions are attaining it? Our motivation to study this
question comes from the structural difference between the polyhedron of P (G) for bipartite
and non-bipartite graphs. In particular, we are interested in identifying parameters of the
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Algorithm 1 Round and bipartize.
Input: Weighted graph G = (V, E, w), odd cycle transversal S ⊂ V1/2
Output: Vertex cover U ⊂ V

1: Solve the linear program P (G) to get V0 , V1/2 and V1
2: Solve the integral linear program P (G1/2 \ S) to get W ⊂ V1/2
3: return V1 ∪ S ∪ W

problem that enable us to derive more fine-grained bounds determining the approximation
ratio of the algorithm, and allow to interpolate the rounding curve of the standard linear
program from 1 to 2, depending on how far the graph is from being bipartite. As it turns
out, the odd girth, i.e., the length of the shortest odd cycle, is a key parameter determining
tight bounds on the approximation ratio. It is also a natural parameter, since a graph is
bipartite if and only if it does contain an odd cycle. The larger the odd girth, the closer the
graph is to being bipartite. It is also shown in [21] that graphs with a large odd girth admit
a small cardinality odd cycle transversal.

Contributions and high-level view

We first do a pre-processing step and show that we may without loss of generality focus
on weighted graphs G = (V, E, w) where the weights come from a certain weight space QW .
Each edge has a dual weight ye ≥ 0 with a total sum of y(E) = 1, and the weight on each
node is then determined by wv = y(δ(v)). This follows from the Nemhauser-Trotter theorem,
complementary slackness and an appropriate normalization.

We then do the analysis under the assumption that S is a stable set, highlighting the
main ideas of the analysis and the proof techniques. We show that the approximation ratio
is upper bounded by 1 + 1/ρ, where 2ρ − 1 denotes the odd girth of the graph G̃ := G/S,
where all the vertices in S are contracted into a single node. Note that the parameter range
is ρ ∈ [2, ∞], with ρ = ∞ naturally corresponding to the case where G̃ is bipartite. The
proof technique involves a key concept, that we call pairwise edge-separate feasible vertex
covers. Constructing k such covers allows to bound the approximation ratio by 1 + 1/k. The
construction of ρ such covers to get the result follows from a structural understanding of
the contracted graph G̃. As a byproduct, this structural understanding also allows to get
improved bounds on the integrality gap and the fractional chromatic number of 3-colorable
graphs. In particular, it even manages to compute an exact formula, depending on the odd
girth, for the integrality gap and the fractional chromatic number of the contracted graph G̃.

We then construct a class of weight functions W ⊂ QW where this upper bound holds
with equality, thus showing that this proof technique obtains tight bounds and might have
additional applications. This result can then be lifted to the case where S is a general set,
by introducing an additional parameter α counting the total dual sum of the weights on the
edges inside S, i.e. α = y(E[S]). This then leads to an approximation ratio interpolating the
rounding curve of the standard linear program with a tight bound of (1 + 1/ρ)(1 − α) + 2α

for any values of ρ ∈ [2, ∞] and α ∈ [0, 1].
We then discuss algorithmic applications to find good such sets S, connecting to the

MinUnCut and Colouring problems. Finally, we show that our analysis is optimal in the
following sense: the worst case bounds for ρ and α, which are ρ = 2 and α = 1 − 4/n, recover
the integrality gap of 2 − 2/n of the standard linear programming relaxation for a graph on
n vertices.

APPROX/RANDOM 2023



20:4 Round and Bipartize for Vertex Cover Approximation

Implications and related work

Our analysis falls into the framework of beyond the worst-case analysis [41]. In particular,
note that an odd cycle transversal always exists: we may simply take S = V1/2, which
recovers the standard 2-approximation algorithm for vertex cover. Depending on how S is
chosen, our algorithm can however admit significantly better approximation ratios.

Our algorithm also connects to learning-augmented algorithms, which have access to
some prediction in their input (e.g., obtained for instance through machine learning). This
prediction is assumed to come without any worst-case guarantees, and the goal is then to
take advantage of it by making the algorithm perform better when this prediction is good,
while still keeping robust worst-case guarantees when it is off [7, 33, 39, 31, 2, 3]. In our
case, assuming a prediction on the set S, robustness is guaranteed since we are never worse
than a 2-approximation. In fact, even if the predicted set is not an odd cycle transversal,
one may simply greedily add vertices to it until it becomes one, while still guaranteeing
a 2-approximation. Otherwise, our results provide a precise understanding of how the
approximation ratio improves depending on the predicted set S. In addition, once such a set
S is found, the parameters α and ρ can easily be computed to see the improved guarantee
on the approximation ratio. One may thus re-run the machine learning algorithm if the
parameters give a bound very close to the worst-case of 2.

The odd cycle transversal number oct(G) is defined as the minimum number of vertices
needed to be removed in order to make the graph bipartite. The minimum odd cycle
transversal problem has been studied in terms of fixed-parameter tractability [40, 29]. In
particular, it is the first problem where the iterated compression technique has been applied
[40], now a classical tool in the design of fixed-parameter tractable algorithms. The best
known approximation algorithm for it has a ratio of O(

√
log(n)) [1]. Another relevant concept

is the odd cycle packing number ocp(G), defined as the maximum number of vertex-disjoint
odd cycles of G and satisfying ocp(G) ≤ oct(G). The related maximum stable set problem
has been studied in terms of ocp(G) in [11, 5, 15, 19].

A key property implying the integrality of a polyhedron is the total unimodularity (TU)
of the constraint matrix describing the underlying problem, meaning that all the square
subdeterminants of the matrix are required to lie in {−1, 0, 1} (see for instance [43, 44]). In
general we believe it is an interesting question to study whether one may exploit the knowledge
of a TU substructure in an integer program to obtain improved approximation guarantees
through rounding algorithms. In our case, the knowledge of an odd cycle transveral S is
equivalent to the knowledge of an induced bipartite subgraph G′ = G \ S, for which P (G′) is
TU. We hope the techniques introduced for the pair (G, S) can help tackle other problems.

One technique which might also benefit from our analysis is iterative rounding, which
requires solving a linear program at each iteration [32]. Having a better analysis for the case
where the linear program becomes integral could potentially be used to reduce the number
of iterations and allow for better guarantees, since iterative rounding can terminate at this
step without losing solution quality.

Several different algorithms achieving approximation ratios of 2 − o(1) have been found
for the weighted and unweighted versions of the vertex cover problem: [26, 22, 9, 34, 8, 25].
Another large body of work is interested in exact fixed parameter tractable algorithms for
the decision version: [12, 6, 13, 14, 17, 36, 37, 46, 18].
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2 Preliminaries

We define R+ to be the non-negative real numbers and [k] := {1, . . . , k} to be the natural
numbers up to k ∈ N. For a vector x ∈ Rn, we denote the sum of the coordinates on a
subset by x(A) :=

∑
i∈A xi. A key property of P (G) was introduced by Nemhauser and

Trotter in [35]. It essentially allows to reduce an optimal solution x∗ ∈ {0, 1
2 , 1}V to a fully

half-integral solution by looking at the subgraph induced by the half-integral vertices. As
before, we denote by Vα := {v ∈ V | x∗

v = α} the vertices taking value α and by Gα = G[Vα]
the subgraph induced by the vertices Vα.

▶ Theorem 1 (Nemhauser, Trotter [35]). Let x∗ ∈ {0, 1
2 , 1}V be an optimal extreme point

solution to P (G). Then, w(OPT (G1/2)) = w(OPT (G)) − w(V1).

▶ Corollary 2. Let x∗ ∈ {0, 1
2 , 1}V be an optimal solution to P (G). If S ⊂ V1/2 is a feasible

vertex cover on G1/2 with approximation ratio at most ϕ, i.e., w(S) ≤ ϕ w(OPT (G1/2)), then
w(S) + w(V1) ≤ ϕ w(OPT (G)).

The previous corollary thus implies that we may restrict our attention to the graph G1/2,
since any ϕ-approximate solution on this reduced instance can be lifted to a ϕ-approximate
solution on the original graph by adding V1 to the solution. Note that on the weighted graph
G1/2, the solution ( 1

2 , . . . , 1
2 ) is optimal.

For a given set S ⊂ V , we define G′ := G \ S = (V ′, E′) to be the graph obtained by
removing the set S and all the incident edges to it. Hence, E = E′ ∪ δ(S) ∪ E[S] where
δ(S) = {(u, v) ∈ E | u ∈ S, v /∈ S} and E[S] := {(u, v) ∈ E | u ∈ S, v ∈ S}. We also denote
by G̃ := G/S = (Ṽ , Ẽ) the graph obtained by contracting all the vertices in S into a single
new node vS ∈ Ṽ . We allow for multiple edges, but no self-loops. The only edges present in
E but not in Ẽ are thus the ones with both endpoints in S, i.e., E[S].

3 Weight Space

By Corollary 2, we may assume that every weighted graph G we work with has the property
that the fully half-integral solution x = ( 1

2 , . . . , 1
2 ) is an optimal solution to the linear program

P (G). In this section, we characterize the weight functions satisfying this assumption. The
following lemma is a simple application of complementary slackness and the proof is omitted.

▶ Lemma 3. Let G = (V, E) be a graph and let w : V → R+ be a weight function. The
feasible solution ( 1

2 , . . . , 1
2 ) to the linear program P (G) is optimal if and only if there exists

y ∈ RE
+ satisfying y(δ(v)) = wv for every v ∈ V .

Such instances have been called edge-induced in [15, 19], in the sense that the dual values
on the edges are free parameters, and the weights on the nodes are determined once the dual
values are fixed. Such instances also satisfy:

w(V ) =
∑
v∈V

wv =
∑
v∈V

y(δ(v)) =
∑
v∈V

∑
e∈E

ye 1{e∈δ(v)} =
∑
e∈E

ye

∑
v∈V

1{e∈δ(v)} = 2 y(E).

Observe that the approximation ratio of a feasible solution U ⊂ V is defined as
w(U)/w(OPT (G)) and is invariant under scaling of the weights. We thus make a normaliza-
tion ensuring that the optimal LP solution has objective value one, i.e., w(V )/2 = y(E) = 1,
to get the following weight space polytope:

QW :=
{

w ∈ RV
+ | ∃y ∈ [0, 1]E such that y(E) = 1 and wv = y(δ(v)) ∀v ∈ V

}
.

APPROX/RANDOM 2023
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We end this section by showing that this normalization of the weight space allows us to get a
convenient lower bound on w(OPT (G)).

▶ Lemma 4. Let G = (V, E) be a graph. For any w ∈ QW , w(OPT (G)) ≥ 1.

Proof. Since w ∈ QW , we know that the fully half-integral solution is an optimal linear
programming solution, showing 1 = w(V )/2 ≤ w(OPT (G)), by feasibility of OPT (G). ◀

4 Round and Bipartize

4.1 Algorithm
This section is devoted to the analysis of the approximation ratio of the algorithm and is
the main contribution of the paper. We assume that we are given as input a pair (G, S)
consisting of a weighted graph and an odd cycle transversal S ⊂ V . By Corollary 2, we may
assume that the weight function satisfies w ∈ QW . By the previous section, there are dual
edge weights ye ≥ 0 such that wv = y(δ(v)) for every v ∈ V and which satisfy

∑
e∈E ye = 1.

The algorithm is now very simple. First, take the vertices in S ⊂ V to the cover and
remove them from the graph. Then solve the integral linear program P (G \ S) and take the
vertices having LP value one to the cover. The approximation ratio, given a weight function
w, is thus defined as

R(w) := w(S) + w(OPT (G \ S))
w(OPT (G)) . (1)

For simplicity of notation, we omit the dependence on w of OPT (G) and OPT (G \ S). As
a reminder, the bipartite graph G \ S is denoted by G′ = (V ′, E′). The vertex contracted
graph G/S is denoted by G̃ = (Ṽ , Ẽ) and the contracted node is denoted by vS .

4.2 Stable Set to Bipartite
We assume in this section that S is a stable set. We will then generalize the results obtained
here in a natural way to the most general setting of an arbitrary set S. We now state our
main theorem of this section.

▶ Theorem 5. Let (G, S) be the input to the rounding algorithm, with S being a stable set.
For any w ∈ QW , the approximation ratio satisfies R(w) ≤ 1 + 1/ρ, where 2ρ − 1 is the odd
girth of the contracted graph G̃ and satisfies ρ ∈ [2, ∞]. Moreover, this bound is tight and is
attained for a class of weight functions W ⊂ QW .

▶ Remark 6. We define the odd girth of a bipartite graph as being ∞.

▶ Definition 7. Let (G, S) be a pair consisting of a graph with an odd cycle transversal S.
For a feasible vertex cover U ⊂ V \ S of the bipartite graph G′ = G \ S, we define

EU :=
{

(u, v) ∈ E
∣∣ u ∈ U, v ∈ U or u ∈ U, v ∈ S

}
.

In words, these are the edges with either both endpoints in the cover U , or with one endpoint
in U and one in S.

▶ Definition 8. Let (G, S) be a pair consisting of a graph with an odd cycle transversal S.
Feasible vertex covers U1, . . . , Uk of the bipartite graph G′ = G \ S are defined to be pairwise
edge-separate if the edge sets {EU1 , . . . , EUk

} are pairwise disjoint.
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▶ Remark 9. We will often say that covers are pairwise edge-separate for the pair (G, S). It is
however worth emphasizing that these covers are defined on the bipartite graph G′ = G \ S.

This definition turns out to be the key concept for us in order to prove improved bounds
on the approximation ratio of the algorithm, as shown by the next lemma.

▶ Lemma 10. Let (G, S) be the input to the rounding algorithm, with S being a stable set.
If there exists k pairwise edge-separate feasible vertex covers of the bipartite graph G′ = G \ S,
then, for every w ∈ QW , the approximation ratio of the algorithm satisfies R(w) ≤ 1 + 1/k.

Proof. Let w ∈ QW and let y ∈ RE
+ be the corresponding dual solution satisfying wv = y(δ(v))

and y(E) = 1. We denote by {U1, . . . , Uk} the pairwise edge-separate covers of G′ = (V ′, E′).
We can now write down the weights of S and every feasible cover Ui with the help of the
dual variables:

w(S) =
∑
v∈S

wv =
∑
v∈S

y(δ(v)) = y(δ(S))

w(Ui) =
∑
v∈Ui

wv =
∑
v∈Ui

y(δ(v)) = y(E′) + y(EUi
) ∀i ∈ [k]

The first equality holds because S is a stable set and thus only has edges crossing the set.
The second equality holds because every Ui counts the dual value ye of every e ∈ E′ at least
once, by feasibility of the cover, and thus giving a contribution of y(E′). The edges in EUi

then give an additional contribution of y(EUi).
By Lemma 4, the approximation ratio satisfies:

R(w) = w(S) + w(OPT (G \ S))
w(OPT (G)) ≤ w(S) + w(OPT (G′)) ≤ w(S) + min

i∈[k]
w(Ui)

= y(δ(S)) + y(E′) + min
i∈[k]

y(EUi
) = 1 + min

i∈[k]
y(EUi

) ≤ 1 + 1
k

.

The last equality follows from the fact that E = E′ ∪ δ(S) and y(E) = 1. The last inequality
follows from the fact that the edge sets {EUi

}i∈[k] are pairwise disjoint and have a dual sum
of at most one, since the total sum of the edges of the graph is y(E) = 1. This minimum can
thus be upper bounded by 1/k. ◀

In order to prove the upper bound in Theorem 5, we thus need to construct ρ pairwise
edge-separate covers of G′ = G \ S. The key for being able to do that is to analyze the
structure of the contracted graph G̃ = G/S, where S is contracted into a single node vS .

▶ Lemma 11. Let (G, S) be a graph with an odd cycle transversal S. If the contracted graph
G̃ contains an odd cycle, then there exists ρ edge-separate feasible covers for the pair (G̃, vS),
where 2ρ − 1 is the odd girth of G̃.

Proof. We now dive deeper into the structure of the bipartite graph G \ S = G̃ \ vS . By
assumption, this graph admits a bipartition A ∪ B of the vertices. Let us assume that it
has k connected components A1 ∪ B1, . . . , Ak ∪ Bk, all of which are bipartite as well, where
A =

⋃
i Ai and B =

⋃
i Bi. We now fix an arbitrary such component Aj ∪ Bj .

If vS has an incident edge to both Aj and Bj , then this component contains (if including
vS) an odd cycle of G̃. This holds since any path between a node in Aj and a node in Bj

has odd length.
If vS has incident edges with only one side, we assume without loss of generality that
this side is Aj . One could simply switch both sides in the other case while still keeping a
valid bipartition of the graph G̃ \ vS .

APPROX/RANDOM 2023
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L0 L1 ... L2ρ−3

Figure 1 The layers of a bipartite graph G̃ \vS = (A∪B, E′) with ρ = 4. The blue square vertices
correspond to N(vS), where the two left ones are L0 = NA(vS) and the two right ones are NB(vS).

If vS does not have incident edges with either of the two sides, then Aj ∪Bj is a connected
component of G̃. We call such components dummy components and denote by Ad ∪ Bd

the bipartite graph formed by taking the union of all the dummy components.

We denote NA(vS) = N(vS) ∩ A and NB(vS) = N(vS) ∩ B. We now split the graph into
layers, where each layer corresponds to the nodes at the same shortest path distance from
NA(vS). More precisely, we define

Li :=
{

v ∈ A ∪ B | d(NA(vS), v) = i
}

for i ∈ {0, . . . , q} (2)

where d(NA(vS), v) represents the unweighted shortest path distance between v and a vertex
in NA(vS). The parameter q is defined to be the maximal finite distance from NA(vS) in the
graph G̃. An important observation is the fact that these layers are alternatingly included in
one side of the bipartition, see Figure 1 for an illustration of the construction.

If the graph G̃ is not connected, note that d(NA(vS), v) = ∞ for the vertices v lying
in dummy components. In order to add the dummy components to the layers and keep
alternation between the two sides of the bipartition, we define the last two layers to either
be {Lq+1 := Ad, Lq+2 := Bd} or {Lq+1 := Bd, Lq+2 := Ad}, depending on which side of
the bipartition the last connected layer Lq lies. We now have that Li ⊂ A if i is even, and
Li ⊂ B if i is odd. In fact,

A =
⌊l/2⌋⋃
i=0

L2i and B =
⌈l/2⌉⋃
i=1

L2i−1,

where the parameter l ∈ N represents the index of the last layer: if G̃ is connected, then
l = q, otherwise l = q + 2. Notice also that L0 = NA(vS). However, NB(vS) may now have
several different vertices in different layers, see Figure 1.

Let C ⊂ V be an arbitrary odd cycle of G̃. Notice that this cycle contains vS , a vertex
from NA(vS) and a vertex from NB(vS), since G̃ \ vS is bipartite and therefore does not
contain an odd cycle. Any odd cycle C in G̃ thus corresponds to an odd path between a
vertex in NA(vS) = L0 and a vertex in NB(vS). By the assumption that the shortest odd
cycle length of G̃ is 2ρ − 1, the first layer having a non-empty intersection with NB(vS) is
L2ρ−3. A shortest odd cycle of length 2ρ − 1 therefore corresponds to an odd path of length
2ρ − 3 between L0 and a vertex in L2ρ−3 ∩ NB(vS), see Figure 1 for an illustration. We now
define edges connecting two consecutive layers Li and Li+1 as follows:

E[Li, Li+1] := {(u, v) ∈ E′ | u ∈ Li, v ∈ Li+1} ∀i ∈ {0, . . . , l − 1}.

We also denote by

δA(vS) = {(vS , u) ∈ Ẽ | u ∈ A}, δB(vS) = {(vS , u) ∈ Ẽ | u ∈ B}

the incident edges to vS respectively connecting to A and B.
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EU4 = δA(vS)EU3 = δB(vS)

EU1 = E[L1,L2] EU2 = E[L3,L4]

Figure 2 The ρ feasible covers of G′ constructed in the proof of Lemma 11.

We are now ready to construct our desired ρ pairwise edge-separate covers of G̃ \ vS , that
we denote by U1, . . . , Uρ and illustrated in Figure 2. Firstly, notice that taking one side of
the bipartition is a feasible vertex cover. We thus define Uρ = A and Uρ−1 = B. Observe
that we then have EUρ

= δA(vS) and EUρ−1 = δB(vS). We now construct ρ − 2 additional
covers with the help of the layers. If ρ ̸= 2, fix a j ∈ [ρ − 2], and start the cover Uj by taking
the two consecutive layers L2j−1 and L2j . Complete this cover by taking remaining layers
alternatingly (hence always skipping one) until covering every edge of the graph. Notice that
this cover has an empty intersection with N(vS). We then have that

EUρ = δA(vS), EUρ−1 = δB(vS), EUj = E[L2j−1, L2j ] ∀j ∈ [ρ − 2],

which are all pairwise disjoint edge sets, finishing the proof. ◀

We now have all the tools to prove the upper bound of Theorem 5.

Proof. Asume first that ρ < ∞, meaning that G̃ contains an odd cycle. By Lemma 11,
there exists ρ pairwise edge-separate covers for the pair (G̃, vS). These covers are then still
edge-separate for the pair (G, S), since the bipartite graph is the same in both cases, i.e.
G′ = G̃ \ vS = G \ S. This finishes the proof by Lemma 10.

If ρ = ∞, then G̃ is bipartite, with a bipartition Ã ∪ B̃. Assume without loss of generality
that vS ∈ Ã. Note that Ẽ = E′ ∪ δ(vS) and thus 1 = y(Ẽ) = y(E′) + y(δ(vS)). Any feasible
cover of G′ = G \ S needs to count the dual value of every edge in E′ at least once. Taking
the cover Ã \ vS counts every edge in E′ exactly once, showing that w(OPT (G \ S)) = y(E′).
Hence, R(w) ≤ w(S) + w(OPT (G \ S)) = y(δ(vS)) + y(E′) = 1. ◀

We now show that this bound is tight and is attained for a class of weight functions
w ∈ W for any such graph G and stable set S. For the case where ρ = ∞, it is clear that
the approximation ratio always satisfies R(w) ≥ 1, showing that the bound in Theorem 5 is
tight for any w ∈ QW . We thus assume that ρ < ∞. Let C be all the shortest odd cycles (of
length 2ρ − 1) of the graph G̃, each of which is containing vS . For every such cycle C ∈ C, we
define the following dual function on the edges yC : Ẽ → R+: set both dual edges incident
to vS to 1/ρ and then alternatingly set the dual edges to 0 and 1/ρ along the odd cycle. For
any edge outside of C, set its dual value to 0. Such a solution clearly satisfies yC(Ẽ) = 1.
We now take the convex hull of all these functions:

Y :=
{

y : Ẽ → R+ | y =
∑
C∈C

λCyC ,
∑
C∈C

λC = 1, λC ≥ 0 ∀C ∈ C
}

.

APPROX/RANDOM 2023
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1
ρ

1
ρ

1
ρ

λ1
ρ

λ2
ρ

1
ρ

1
ρ

Figure 3 An example of a weight function w ∈ W obtained by a convex combination of two basic
weight functions of shortest odd cycles.

Because of the one-to-one correspondence between the edge sets Ẽ and E, due to the fact
that S is a stable set, we can naturally define a weight function on the original vertex set
once we fix a y ∈ Y by setting wv := y(δ(v)) for every v ∈ V . We define the space of all such
weight functions as W := {w : V → R+ | wv = y(δ(v)) ∀v ∈ V, y ∈ Y}.

▶ Theorem 12. For any weight function w ∈ W, the approximation ratio satisfies R(w) =
1 + 1/ρ, where 2ρ − 1 is the odd girth of G̃ and satisfies ρ ∈ [2, ∞).

Proof. Let C be the set of all the shortest odd cycles (of length 2ρ − 1) of the graph G̃ and
let w ∈ W with the corresponding y =

∑
C∈C λCyC . Notice that, for any subset of vertices

U ⊂ V ′ of the bipartite graph G′, we can count its weight as

w(U) =
∑
v∈U

wv =
∑
v∈U

y(δ(v)) =
∑
v∈U

∑
C∈C

λCyC(δ(v))

=
∑
v∈U

∑
C∈C

λC

ρ
1{v∈C} = 1

ρ

∑
C∈C

λC
∑
v∈U

1{v∈C} = 1
ρ

∑
C∈C

λC |U ∩ C|. (3)

The end of the proof now heavily uses the decomposition of G̃ into layers described in (2).
Notice that every odd cycle C ∈ C intersects each layer Li for i ∈ {0, . . . , 2ρ − 3} exactly
once. Therefore, by (3), w(Li) = 1/ρ for every i ∈ {0, . . . , 2ρ − 3}. We now claim that

w(OPT (G)) = 1, w(OPT (G′)) = ρ − 1
ρ

and w(S) = 2
ρ

.

The fact that w(OPT (G)) ≥ 1 follows from Lemma 4. For the reverse inequality, notice that
it is possible to take a feasible cover by taking exactly ρ layers in addition to the zero weight
vertices, for instance L0 ∪ L2 ∪ L3 ∪ L5 · · · ∪ L2ρ−3, showing w(OPT (G)) ≤ 1.

Observe now that w(OPT (G′)) = w(OPT (G \ S)) = w(OPT (G̃ \ vS)). After removal of
vS , every cycle C ∈ C becomes a path of length 2ρ − 3 (and thus consisting of 2ρ − 2 vertices),
with one vertex in each layer Li for i ∈ {0, . . . , 2ρ−3}. By feasibility, OPT (G′) has to contain
at least ρ − 1 vertices for every such path. Using (3), we infer w(OPT (G′)) ≥ (ρ − 1)/ρ. For
the reverse inequality, taking ρ − 1 layers alternatively, such as L0 ∪ L2 ∪ L4 · · · ∪ L2ρ−4, as
well as the zero weight vertices, builds a feasible cover of weight exactly (ρ − 1)/ρ.

Finally, notice that w(S) = w(vS) = 2/ρ because every C ∈ C contains vS . By combining
the three equalities, we get the desired result R(w) = 1 + 1/ρ. ◀

Integrality gap and fractional chromatic number
Observe that the graphs we work with in this section have chromatic number χ(G) = 3. We
focus now on the integrality gap and show again that the odd girth plays a key role. A
result that we use here is given by Singh in [45], which relates the integrality gap with the
fractional chromatic number of a graph: IG(G) = 2 − 2/χf (G).
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1

G/S is bipartite

0

1 + 1/ρ

2

1

G/S is not bipartite

Figure 4 The plot of the approximation ratio R(w) with respect to the parameter α ∈ [0, 1].

▶ Theorem 13. Let G be a 3-colorable graph with color classes V = V1 ∪ V2 ∪ V3.

χf (G) ≤ 2 + min
i∈{1,2,3}

1
ρi − 1 , IG(G) ≤ 1 + min

i∈{1,2,3}

1
2ρi − 1

where 2ρi − 1 is the odd girth of the contracted graph G/Vi for each i ∈ {1, 2, 3}. Moreover,
equality holds if one color class only contains one vertex.

In particular, we manage to compute exact formulas of

χf (G̃) = 2 + 1
ρ − 1 , IG(G̃) = 1 + 1

2ρ − 1

for the contracted graph G̃. These statements generalize a result shown for the (odd) cycle
graph in [4, 42]. The proofs are left to the appendix due to space constraints and heavily use
the structural decomposition of the contracted graph G̃ into the layers (2), implying that it
may have further applications.

4.3 Arbitrary Set to Bipartite
We now consider the setting where S is now an arbitrary set. Our guarantee on the
approximation ratio will now also depend on the total sum of the dual variables on the edges
inside of the set S. We denote this sum by α := y(E[S]) ∈ [0, 1].

▶ Theorem 14. For any w ∈ QW , the approximation ratio satisfies

R(w) ≤
(

1 + 1
ρ

)
(1 − α) + 2α with α ∈ [0, 1] and ρ ∈ [2, ∞]

where 2ρ − 1 denotes the odd girth of the contracted graph G̃. Moreover, these bounds are
tight and are attained for any α ∈ [0, 1] and any ρ ∈ [2, ∞].

Proof. We only prove here the upper bound with ρ < ∞ and leave the remaining statements
to the appendix. The proof essentially follows the same arguments as the one of Lemma 10
with the α parameter incorporated, and we thus only highlight the main differences. We
decompose the weight of the set S with respect to the dual variables. The edges in E[S] are
counted twice, whereas the edges in δ(S) are counted once:

w(S) = 2α + y(δ(S)). (4)

APPROX/RANDOM 2023
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Consider the contracted graph G̃ = G/S = (Ṽ , Ẽ) and denote by vS the contracted node.
The edge set of this graph is now Ẽ = δ(S) ∪ E′ , since the edges in E[S] have been collapsed.
By Lemma 11, we can construct ρ edge-separate covers U1, . . . , Uρ ⊂ Ṽ \ vS for the pair
(G̃, vS). These covers are still edge-separate for the pair (G, S), implying

w(OPT (G \ S)) ≤ min
i∈[ρ]

w(Ui) = y(E′) + min
i∈[ρ]

y(EUi
) ≤ y(E′) + 1 − α

ρ
. (5)

The first inequality holds since every Ui is a feasible cover of G \ S. The second equality
holds by counting the weight of a cover Ui in terms of the dual edges. The last inequality
holds because the edge sets {EUi

}i∈[ρ] are pairwise disjoint, and their total dual sum is at
most 1 − α. Combining Lemma 4, (4) and (5),

R(w) ≤ 2α + y(δ(S)) + y(E′) + 1 − α

ρ
= 1 + α + 1 − α

ρ
=

(
1 + 1

ρ

)
(1 − α) + 2α. ◀

5 Algorithmic applications

We focus in this section on efficient ways to find odd cycle transversals with a low value for
the α parameter. In fact, once such a set S is found, there can also be freedom in the choice
of the dual solution in order to optimize the α parameter. This motivates the following
definition.

▶ Definition 15. Let (G, S, y, w) be a graph with an odd cycle transversal S ⊂ V , weights
w ∈ QW and a dual solution y ∈ RE

+. A tuple (G′, S′, y′, w′) is approximation preserving if

w(S) + w(OPT (G \ S)) ≤ w′(S′) + w′(OPT (G′ \ S′)).

Moreover, we say that α ∈ [0, 1] is valid for the pair (G, S) if there exists an approximation
preserving (G′, S′, y′, w′) such that α = y′(E[S′]).

Finding a valid α ∈ [0, 1] would directly allow us to use it in the bound of Theorem 14, where
the ρ parameter would correspond to the one of the approximation preserving graph. We
present here an application if a coloring of a graph can be found efficiently.

▶ Theorem 16. Let G = (V, E) be a graph with weights w ∈ QW that can be k-colored in
polynomial time for k ≥ 4. There exists an efficiently findable set S ⊂ V bipartizing the
graph and a valid α such that α ≤ 1 − 4/k, leading to an approximation ratio of

R(w) ≤ 2 − 4
k

(
1 − 1

ρ

)

Proof. Let us denote by V1, . . . , Vk the k independent sets defining the color classes of the
graph G. We assume without loss of generality that they are ordered by weight w(V1) ≤
w(V2) · · · ≤ w(Vk). Since w(V ) = 2, the two color classes with the largest weights satisfy
w(Vk−1) + w(Vk) ≥ 4/k. We define the bipartizing set to be the remaining color classes:
S := V1 ∪ · · · ∪ Vk−2. We denote by y ∈ RE

+ the dual solution satisfying complementary
slackness and y(E) = 1.

We now define an approximation preserving (G′, S′, y′, w′) in the following way. Let
G′ = Kk be the complete graph on k vertices, denoted by {v1, . . . , vk}. The weights are
defined to be

w′(vi) := w(Vi) and y′(vi, vj) := y(E[Vi, Vj ])
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for every i, j ∈ [k]. These clearly satisfy the complementary slackness condition y′(δ(vi)) =
w′(vi) for every i ∈ [k]. The bipartizing set is defined to be S′ := {v1, . . . , vk−2}. This tuple
is approximation preserving since w(S) = w′(S′) and w(OPT (G \ S)) ≤ w′(OPT (G′ \ S′)).
In order to prove the theorem, we still need to tweak the dual solution y′ to ensure α :=
y′(E[S′]) ≤ 1 − 4/k. Observe that w′(vk−1) + w′(vk) ≥ 4/k.

(i) If y′(vk−1, vk) = 0, then the result follows since in that case y′(δ(S′)) ≥ 4/k and thus
y′(E[S′]) ≤ 1 − 4/k.

(ii) If y′(E[S′]) = 0, then the result trivially follows as well.

Suppose thus that y′(E[S′]) > 0 and y′(vk−1, vk) > 0. Pick an arbitrary edge
(vi, vj) ∈ E[S′] satisfying y′(vi, vj) > 0 and consider the 4-cycle (vi, vj , vk−1, vk). Notice that
alternatively increasing and decreasing the dual values on the edges of this cycle by a small
amount ϵ > 0 gives another feasible dual solution satisfying the complementary slackness
condition. More formally, we set ϵ := min{y′(vi, vj), y′(vk−1, vk)}, decrease y′(vi, vj) and
y′(vk−1, vk) by ϵ, while increasing y′(vj , vk−1) and y′(vk, vi) by the same amount. Observe
that this leads to either (vi, vj) or (vk−1, vk) dropping to dual value zero. We can repeat
this procedure until either y′(E[S′]) = 0 or y′(vk−1, vk) = 0, finishing the proof of the
theorem. ◀

We now claim that this result is optimal in the following sense. Consider an n-vertex
graph. It is known that the integrality gap of the standard linear programming relaxation for
vertex cover is upper bounded by 2 − 2/n, a bound which is attained on the complete graph.
This implies that any approximation algorithm lower bounding w(OPT ) by comparing it to
the optimal LP solution, as we do in Lemma 4, cannot do better than 2 − 2/n in the worst
case. Setting ρ = 2 in Theorem 16, which corresponds to the worst case since ρ ∈ [2, ∞],
recovers this bound and a result of Hochbaum in [25].

We now make another connection with the MinUncut problem, which is defined on
a graph G = (V, E) with weights ye for every edge e ∈ E. The goal of the problem is to
find a cut of the graph which minimizes the total weight of uncut edges. This problem is
NP-hard and admits a O(

√
log(n)) approximation [1]. We call a MinUncut instance light

if its optimal solution is bounded above by y(E)/Ω(log(n)).

▶ Theorem 17. For any light MinUncut instance, combining the O(
√

log(n)) approximation
in [1] with Algorithm 1 outputs a vertex cover with approximation ratio at most R(w) ≤
1 + 1/ρ + o(1), where 2ρ − 1 is the odd girth of the contracted graph G̃ and satisfies ρ ∈ [2, ∞].

Proof. The key observation is that any feasible solution to the MinUncut problem of value
α gives an odd cycle transversal S satisfying y(E[S]) = α. Indeed, let (C, V \ C) be a feasible
solution, where the total weight of uncut edges is α. Observe that removing all the uncut
edges makes C and V \ C become stable sets, implying that the remaining graph is bipartite.
We then define S ⊂ V to be all the nodes incident to the uncut edges. Since removing all
the nodes in S also removes all the uncut edges, the remaining graph is bipartite. Moreover,
y(E[S]) = α.

By the lightness assumption and the weight space normalization, the optimal solution
α∗ satisfies α∗ ≤ y(E)/Ω(log(n)) = 1/Ω(log(n)). Running the O(

√
log(n)) approximation

algorithm then outputs a solution with value α ≤ O(
√

log(n)) α∗ ≤ 1/Ω(
√

log(n)) = o(1).
This therefore leads to an approximation guarantee of

R(w) =
(

1 + 1
ρ

)
(1 − α) + 2α = 1 + 1

ρ
+ α

(
1 − 1

ρ

)
≤ 1 + 1

ρ
+ o(1). ◀
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A Integrality Gap and Fractional Chromatic Number

We focus in this section on proving tight bounds for the integrality gap of 3-colorable graphs.
A key result that we use in this section is given by Singh in [45], which relates the integrality
gap with the fractional chromatic number of a graph. The latter is denoted as χf (G) and
is defined as the optimal solution of the following primal-dual linear programming pair.
We denote by I ⊂ 2V the set of all independent sets of the graph G. Solving these linear
programs is however NP-hard because of the possible exponential number of independent
sets.

min
∑
I∈I

yI∑
I∈I,v∈I

yI ≥ 1 ∀v ∈ V

yI ≥ 0 ∀I ∈ I

max
∑
v∈V

zv∑
v∈I

zv ≤ 1 ∀I ∈ I

zv ≥ 0 ∀v ∈ V

Note that χf (G) = 2 if and only if G is bipartite.

▶ Theorem 18 (Singh, [45]). Let G = (V, E) be a graph. The integrality gap of the vertex
cover linear programming relaxation P (G) is:

IG(G) = 2 − 2
χf (G) ,

where χf (G) is the fractional chromatic number of the graph G.

We first focus on graphs with the existence of a single vertex whose removal produces a
bipartite graph. The following theorem generalizes the result given for the cycle graph in
[4, 42] and turns out to be the same formula as for series-parallel graphs [20].

▶ Theorem 19. Let G = (V, E) be a non-bipartite graph and vp ∈ V such that G \ vp =
(A ∪ B, E′) is bipartite. Then,

χf (G) = 2 + 1
ρ − 1 ,

where 2ρ − 1 is the odd girth of G.

Proof of Theorem 19. We prove this theorem by constructing feasible primal and dual
solutions of objective value 2 + 1/(ρ − 1). By strong duality, these two solutions are then
optimal for their respective linear programs, hence proving the theorem.

We first construct the dual solution. Let C be the set of all the shortest odd cycles of G.
For any such cycle C ∈ C, define the dual solution zC ∈ RV by

zC
v =

{
1/(ρ − 1) if v ∈ C

0 if v ∈ V \ C
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L0 L1 ... L2ρ−3

vp

Figure 5 An optimal dual solution constructed in the proof of Theorem 19. Each node on a
shortest odd cycle is assigned a fractional value of 1/(ρ − 1).

This solution is feasible since any independent set in an odd cycle of length 2ρ − 1 has size
at most ρ − 1. Indeed, fix an independent set I ∈ I, then:∑

v∈I

zC
v =

∑
v∈I∩C

1
ρ − 1 = |I ∩ C|

ρ − 1 ≤ 1.

Moreover, the objective value of this solution is:∑
v∈V

zC
v =

∑
v∈C

1
ρ − 1 = 2ρ − 1

ρ − 1 = 2 + 1
ρ − 1 .

Let us now construct the primal solution. We will do so by constructing 2ρ−1 independent
sets Ik ∈ I and assigning to each of them a fractional value of y(Ik) = 1/(ρ − 1). All the
other independent sets are assigned value zero. We split the bipartite graph G \ vp into the
layers

Li := {v ∈ A ∪ B | d(NA(vp), v) = i} for i ∈ {0, . . . , l}.

as explained in (2). As a reminder, any shortest odd cycle corresponds to a path between
L0 = NA(vp) and L2ρ−3 ∩ NB(vp). The original vertex set V is thus decomposed into
{vp} ∪ L0 ∪ · · · ∪ Ll, where each layer is an independent set and only has edges going out to
vp or its two neighbouring layers.

Let us first focus on the subgraph consisting of the vertices in {vp} ∪
⋃2ρ−3

i=0 Li, where
any shortest odd cycle has exactly one vertex per layer (per abuse of notation, we say
that {vp} is also a layer in this situation). For convenience of indexing, we rename these
layers as L̃1, . . . , L̃2ρ−1 where L̃1 = vp and L̃i = Li−2 for i > 1. We now create 2ρ − 1
independent sets on this subgraph in the following way. The first independent set is defined
as U1 = L̃1 ∪ L̃4 ∪ L̃6 · · · ∪ L̃2ρ−2, where we take the first layer L̃1, skip two before taking
the next one and then continue by taking the remaining layers alternatingly (hence always
skipping one), see Figure 6. Note that the layer following L̃2ρ−1 is assumed to be L̃1. This
procedure generates in fact a distinct independent set by starting at L̃k for any k ∈ [2ρ − 1]
and we denote the corresponding independent set by Uk. Notice that each layer is contained
in exactly ρ − 1 of the constructed independent sets {Uk | k ∈ [2ρ − 1]}.

We now focus on the subgraph consisting of the vertices in
⋃

i>2ρ−3 Li. We can construct
two different independent sets there by taking either the odd or even indexed layers, i.e.

R1 :=
⋃

i odd, i>2ρ−3
Li and R2 :=

⋃
i even, i>2ρ−3

Li.
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Figure 6 The 2ρ − 1 independent sets Ik constructed in the optimal primal solution. The blue
nodes correspond to {Uk | k ∈ [2ρ − 1]}, whereas the orange nodes correspond to {R1, R2}.

We now define our final 2ρ − 1 independent sets on the full graph as:

Ik :=
{

Uk ∪ R1 if vp /∈ Uk

Uk ∪ R2 if vp ∈ Uk

∀k ∈ [2ρ − 1].

These are in fact independent sets: in the first case, the first layer in R1 is L2ρ−1 whereas the
last layer in Uk has index at most 2ρ − 3, meaning that there are no two neighbouring layers.
In the second case, since vp ∈ Uk, we have that L2ρ−3 /∈ Uk, by construction of Uk. The last
layer in Uk thus has index at most 2ρ − 4, whereas the first layer in R2 is L2ρ−2, meaning
again that there are no two neighbouring layers. In addition, there is no edge between vp

and R2, because the only even indexed layer having edges sent to vp is L0 = NA(vp).
We now define our primal solution as

y(Ik) = 1
ρ − 1 ∀k ∈ [2ρ − 1],

and y(I) = 0 for every other independent set I ∈ I. We now show this is a feasible solution,
i.e. that every vertex v ∈ V belongs to at least ρ − 1 independent sets in {Ik | k ∈ [2ρ − 1]}.
For v ∈ {vp} ∪

⋃2ρ−3
i=0 Li, such a vertex lies by construction in exactly ρ − 1 independent sets

{Uk | k ∈ [2ρ − 1]}, and thus also of {Ik | k ∈ [2ρ − 1]}. For v ∈
⋃

i>2ρ−3 Li, if v belongs to
an even indexed layer, then it is contained in ρ − 1 of the desired independent sets. If it
belongs to an odd indexed layer, then it is contained in ρ of them. Therefore,

∑
I∈I,v∈I

yI =
2ρ−1∑
k=1

y(Ik) 1{v∈Ik} = 1
ρ − 1

2ρ−1∑
k=1

1{v∈Ik} ≥ 1.

The objective value of this primal solution is clearly 2 + 1/(ρ − 1). We have constructed
feasible primal and dual solutions with the same objective value. By strong duality, this
finishes the proof of the theorem. ◀
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We now consider the case where G = (V, E) is a graph with chromatic number χ(G) = 3.

▶ Theorem 20. Let G = (V, E) be a 3-colorable graph with color classes V = V1 ∪ V2 ∪ V3.
Then,

χf (G) ≤ 2 + min
i∈{1,2,3}

1
ρi − 1

where 2ρi − 1 is the odd girth of the contracted graph G/Vi for each i ∈ {1, 2, 3}. Moreover,
equality holds if one color class only contains one vertex.

Proof. We prove this theorem by constructing three feasible solutions of value 2 + 1/(ρi − 1)
for each i ∈ {1, 2, 3} to the primal linear program of the fractional chromatic number on the
graph G.

Fix an i ∈ {1, 2, 3} and consider the graph G̃ := G/Vi = (Ṽ , Ẽ) with odd girth 2ρi − 1.
We denote the contracted node by ṽ ∈ Ṽ . Since this graph is bipartite if we were to remove
ṽ, we know that its fractional chromatic number is equal to 2 + 1/(ρi − 1) by Theorem 19.
Let {Ĩk, k ∈ [2ρi − 1]} be the independent sets in the support of the optimal primal solution
of the graph G̃ constructed in the proof of this theorem. For each of these independent sets,
we extend them to the original graph in the following way:

Ik =
{

Ĩk if ṽ /∈ Ĩk

(Ĩk \ ṽ) ∪ Vi if ṽ ∈ Ĩk.

In words, if ṽ happens to belong to Ĩk, we replace it by Vi to get a valid independent set
in the original graph. Assigning fractional value y(Ik) = 1/(ρi − 1) for every k ∈ [2ρi − 1]
yields a feasible primal solution with objective value 2 + 1/(ρi − 1). Since we can do this for
every i ∈ {1, 2, 3}, and the optimal minimum value of the primal linear program is at most
the objective value of any of these feasible solutions, the proof is finished.

Moreover, this upper bound is in fact tight, since it holds with equality when one of the
color classes only contains one vertex by Theorem 19. ◀

B Arbitrary Set to Bipartite: Omitted Proofs

▶ Theorem 21. Let G = (V, E) be a graph and S ⊂ V such that G \ S = (A ∪ B, E′) is
bipartite. For any w ∈ QW , the approximation ratio satisfies

R(w) ≤ 1 + α with α ∈ [0, 1]

if the contracted graph G/S is bipartite.

Proof. The only change with respect to the previous proof is the bound on w(OPT (G \S)) in
(5). We denote the contracted graph by G̃ = G/S and by vS the contracted vertex. Suppose
G̃ admits the bipartition (Ã ∪ B̃, Ẽ) and assume without loss of generality that vS ∈ Ã. Note
that Ẽ = E′ ∪ δ(vS).

Any feasible cover of G \ S needs to count the dual value of every edge in E′ at least once.
Taking the cover Ã\vS counts every edge in E′ exactly once, showing that w(OPT (G \S)) =
y(E′). Hence, using y(E) = α + y(δ(S)) + y(E′) = 1, we get

R(w) ≤ 2α + y(δ(S)) + y(E′) = 1 + α. ◀
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▶ Theorem 22. Let α ∈ [0, 1] and let ρ ≥ 2. There exists a non-bipartite graph G = (V, E),
with weights (y, w) ∈ QY,W , and a set S ⊂ V with y(E[S]) = α, where G/S has odd girth
2ρ − 1 and which satisfies

R(w) =
(

1 + 1
ρ

)
(1 − α) + 2α.

Proof. An example of such a graph can be constructed as follows. We first construct G/S:
take an odd cycle of length 2ρ − 1 with a distinguished node vS and assign dual value
(1 − α)/ρ to both edges incident to it. Alternatively assign dual values 0 and (1 − α)/ρ along
the odd cycle for the remaining edges. In order to construct G, replace vS by a triangle S

with dual edges set to α, 0 and 0, where the two previous incident edges to vS are adjacent
to the endpoints of the edge with value α. Note that we replace it with a triangle instead of
a single edge in order to avoid G becoming bipartite. Similarly to the proof of Theorem 12,
one can check that

w(S) = 2α + 2 (1 − α)
ρ

; w(OPT (G \ S)) = (1 − α)(ρ − 1)
ρ

; w(OPT (G)) = 1.

Therefore,

R(w) = 2α + 2 (1 − α)
ρ

+ (1 − α)(ρ − 1)
ρ

=
(

1 + 1
ρ

)
(1 − α) + 2α. ◀

▶ Theorem 23. Let α ∈ [0, 1]. There exists a non-bipartite graph G = (V, E), with weights
(y, w) ∈ QY,W , and a set S ⊂ V with y(E[S]) = α, where G/S is bipartite and which satisfies

R(w) = 1 + α.

Proof. Let G be an arbitrary odd cycle. Consider an arbitrary edge (u, v) ∈ E and assign
it dual value α. The set S is defined to be S = {u, v}. Assign dual value zero to the edge
(u, w) ∈ E, where w is the second neighbour of u in the cycle. For the remaining edges,
arbitrarily assign dual values, while ensuring that they sum up to 1 − α. The fact that one
edge is equal to zero is necessary in order to get the exact formula w(OPT (G)) = 1, a feasible
cover showing w(OPT (G)) ≤ 1 being the following: take both endpoints of the edge (u, w)
and take remaining vertices alternatively (hence always skipping one) along the odd cycle.
All the edges are counted once, except for (u, w), which is counted twice but has value zero.
Moreover, w(S) = 2α + y(δ(S)) and w(OPT (G \ S)) = y(E′), where E′ is the edge set of the
bipartite graph G \ S. Therefore,

R(w) = 2α + y(δ(S)) + y(E′) = 1 + α. ◀
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