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A degenerate symbol over an alphabet � is a non-empty subset of �, and a sequence 
of such symbols is a degenerate string. We investigate the exact computation of maximal 
degenerate palindromes with gaps and mismatches. We present an algorithm which, given 
a degenerate string of length n and natural number parameters g and m, efficiently detects 
exact maximal palindromes with a gap size ≤ g, and ≤ m permitted mismatches. We show 
that it can be done in O (k|�|(k + log |�|) + (k + g + m)n) time and O ((g + m)n) space, 
where k represents an upper bound on the number of degenerate symbols contained 
in the string. Furthermore, we also show that the problem of factorisation a string 
into maximal degenerate palindromes with gaps and mismatches can also be done in 
O (k|�|(k + log |�|) + (k + g + m)n) time and O ((g + m)n) space. An inverted repeat is 
a specific type of palindrome which refers to a nucleotide sequence followed by its reverse 
complement. Our results can also be used to find maximal inverted repeated sequences 
with gaps and mismatches, where changing the structure of palindromes to inverted 
repeats does not affect the overall running time. Finally we demonstrate our algorithm 
on several strains of SARS-CoV-2, and quantify the number of inverted repeats found with 
≤ 0, 1, 2 mismatches and ≤ 0, 10, 100 gap size.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The current pandemic of COVID-19 has led to over 765 million confirmed cases and over 6.9 million fatalities globally. 
COVID-19 is a respiratory disease caused by a novel virus strain called SARS-CoV-2. SARS-CoV-2 is an enveloped, positive-
sense, single-stranded RNA betacoronavirus of the Coronaviridae family. SARS-CoV-2 has a genome size of approximately 
30 Kb, which is one of the longest RNA virus genomes known, setting several difficulties for bioinformatics research.

The occurrence of palindromes naturally arise in coronaviruses, appearing either as a standard palindrome or as an 
Inverted Repeat. An Inverted Repeat (IR) refers to a nucleotide sequence that is followed by its reverse complement, which 
naturally occurs across all organisms, and contributes towards important biological functions. If the IR contains a nucleotide 
sequence occurring between the first half and reverse complement of the IR, this sequence is defined as a gap or spacer. 

✩ This article belongs to Section C: Theory of natural computing, Edited by Lila Kari.
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The gap can have any length, including zero, in which case, the complete IR sequence is defined as a palindromic sequence. 
In this instance, the sequence of nucleotides read from 5’ to 3’ in the forward direction will be identical as the sequence 
from 5’ to 3’ on the complementary strand.

IRs can form hairpin stem-loops or cruciform structures, which are specific instances of secondary structures that occur 
within double-stranded nucleic acid. Such structures are associated with genomic instability, inhibiting DNA replication, and 
genomic activities that result in mutations [1–3]. In such structures, the nucleotides from one half of the IR base-pair with 
the complementary nucleotide in the corresponding position of the other half, forming the “stem”, and the gap between 
each half of the inverted repeat corresponds to the “loop”.

Other studies also suggest that inverted repeats play a role in viral packaging, replication and defence mecha-
nisms [4–9]. Palindromes of length-4 are underrepresented across coronaviruses, where SARS additionally lacks length-6 
palindromes [10]. This behaviour can be attributed to a common occurrence in bacterial and phage genomes to prevent 
restriction enzymes from splitting DNA molecules in palindromic regions [7,11–13].

1.1. Algorithms for computing palindromes and gapped palindromes

Palindrome detection is a well-studied problem in computer science, language theory and algorithm design in particular, 
which has yielded a range of variants from different practical scenarios. In 1975, Manacher discovered an on-line algorithm 
that finds all palindromes occurring at the start of a string of length n in O(n) time [14]. Apostolico et al. later observed that 
Manacher’s initial palindrome algorithm can in fact locate all maximal palindromic substrings (palindromes) in the string in 
O(n) time [15]. Gusfield presented another O(n)-time algorithm which finds all maximal palindromes, and discussed the 
relation between biological sequences and gapped (separated) palindromes (i.e. strings of the form xvxR ) [16]; a string x is 
followed by a string v (that is the gap) followed by the inverted repeat of the complement of x, xR . Gupta et al. presented 
an O(n)-time algorithm to compute specific classes—based on length constraints of such palindromes [17]. Algorithms 
for finding gapped palindromes were also considered in [18,19]. More recent variations are the palindromic factorisation 
problem, which determines the minimal number of palindromes a string can be decomposed into [20–26], as well as 
palindrome detection within weighted [27] strings.

1.2. Degenerate strings

A degenerate symbol over an alphabet � is a non-empty subset of �. A degenerate string over an alphabet � is a 
sequence degenerate symbols. Degenerate strings have been significantly researched (see [28–32]). More recent variants 
investigate elastic degenerate strings, whereby any subset does not contain, in general, only letters; a set may also contain 
strings of arbitrary length [33–36]. Such sequences have useful applications within biology and have been used extensively 
to model DNA sequences with uncertainties [37] as an alternative to graphs [38].

1.3. Our contributions

In this paper, we describe algorithms which, given a degenerate string of length n containing k degenerate symbols, 
detect maximal degenerate palindromes containing a gap with maximum size g and up to m errors and show that they can 
all be computed in O(k|�|(k + log |�|) +(k + g +m)n) time and O((g +m)n) space. We also show how our algorithms can be 
adapted to locate inverted repeats in degenerate strings with a gap of up to g symbols and m mismatches in the same time 
and space complexity. Furthermore, we also show that we can decompose a degenerate string into adjacent factors, where all 
of the factors are maximal palindromes and a minimal number of palindromes is used, in O(k|�|(k + log |�|) + (k + g +m)n)

time and O((g +m)n) space. Finally, we conclude with a discussion about how our results may be used to improve methods 
for secondary structure predictions.

2. Preliminaries

Let S = S[1]S[2] . . S[n] be a string of length |S| = n over an alphabet �. We consider the case of an integer alphabet; 
in this case each letter can be replaced by its rank so that the resulting string consists of integers in the range {1, . . . , n}. 
For two positions i and j in S , where 1 ≤ i ≤ j ≤ n, we denote the factor S[i]S[i + 1] . . . S[ j] of S by S[i . . j]. We denote 
the reverse string of S by S R , i.e. S R = S[n]S[n − 1] . . . S[1]. The empty string (denoted by ε) is the unique string over � of 
length 0. A string S is said to be a palindrome if and only if S = S R . If S[i . . j] is a palindrome, the number i+ j

2 is called the 
centre of S[i . . j]. Let S[i . . j], where 1 ≤ i ≤ j ≤ n, be a palindromic factor in S . It is said to be a maximal palindrome, if 
there is no longer palindrome in S with centre i+ j

2 . Note that a maximal palindrome can be a factor of another palindrome. 
For definitions of maximal palindromic decomposition, see [22].

Note that any single letter is a palindrome and, hence, every string can always be decomposed into palindromes. 
However, not every string can be decomposed into maximal palindromes; e.g. consider S = abaca, which has maximal 
palindromes aba and aca [22].

Let f be an involution on the alphabet �, i.e., a function such that f 2 = id, where id is the identity function which 
returns its argument value unchanged. We extend f into a morphism on strings over �. We say that a string x is a 
generalized palindrome if x = f (xR). Two known notions fit this definition:
2
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Fig. 1. Degenerate string of length n = 6 over {A,C,G,T} with 3 degenerate symbols.

• If f = id, then a generalized palindrome is a standard palindrome.
• If � = {A, C, G, T} and f (A) = T, f (C) = G, f (G) = C, f (T) = A, then a generalized palindrome corresponds to an in-

verted repeat or so-called complemented palindrome [16].

Example 1. The string AGTACTTCATGA is a standard palindrome and the string TAGTCGACTA is an inverted repeat.

We also consider (generalized) palindromes with errors. The Hamming distance between two equal-length strings X and 
Y is defined as the number of corresponding locations in X and Y with different characters, denoted δH (X, Y ) = |{i : X[i] �=
Y [i], i = 0, 1, . . . , |X | − 1}|. If |X | �= |Y |, we set δH (X, Y ) = ∞. If two strings X and Y are at Hamming distance m or less, we 
call this an m-match, written as X ≈m Y .

We say that x is a generalized δ-palindrome under the Hamming distance if the minimum Hamming distance from x
to any generalized palindrome is at most δ. A generalized palindrome S[i . . . j] is called maximal if there is no longer 
generalized palindrome with the same centre. Similarly, a generalized δ-palindrome S[i . . j] under the Hamming distance is 
called maximal if there is no longer generalized δ-palindrome under the same distance measure with the same centre.

Example 2. All maximal 0-palindromes/1-palindromes in GTATCG (for f = id) under the Hamming distance are as follows:

centre 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0 G ε T ε TAT ε T ε C ε G

1 under Hamming G GT GTA TA GTATC AT ATC TC TCG CG G

2.1. Degenerate strings

We use IUPAC-encoded strings as an example for degenerate strings (see Table 1). A degenerate symbol x̃ over an alphabet 
� is a non-empty subset of �, i.e. x̃ ⊆ � and x̃ �= ∅. |x̃| denotes the size of the set and we have 1 ≤ |x̃| ≤ |�|. A finite 
sequence X̃ = x̃0 x̃1 . . . x̃n−1 is said to be a degenerate string (also known as an indeterminate string) if x̃i is a degenerate 
symbol for each 0 ≤ i ≤ n − 1. A degenerate string is built over the potential 2|�| − 1 non-empty subsets of characters 
belonging to �. The length of a degenerate string X̃ is the number of degenerate symbols n.

For example, X̃ = [A, C][A][G][C, G][A][A, C, G] is a degenerate string of length 6 over the alphabet � = {A, C, G} (or 
{A, C, G, T} with no occurrences of T). If |x̃i | = 1, that is x̃ represents a single character of �, we say that x̃i is a solid 
symbol and i is a solid position. Otherwise x̃i and i are said to be a non-solid symbol and non-solid position respectively. For 
convenience we often write x̃i = σ (σ ∈ �), instead of x̃i = [σ ], in the case of solid symbols. Consequently, the previous 
example X̃ may be written as X̃ = [A, C]AG[C, G]A[A, C, G]. A degenerate string containing only solid symbols is a solid string
and behaves the same as a classical string of characters, and for such strings we may omit the ∼ notation. In addition, a 
solid symbol [σ ] and its corresponding character σ ∈ � may be treated as interchangeable for our purposes.

The concatenation of degenerate strings X̃ and Ỹ is X̃ Ỹ . A degenerate string Ṽ is a substring of a degenerate string X̃ if 
X̃ = Ũ Ṽ W̃ for some degenerate strings Ũ and W̃ . By X̃[i . . j] we represent a substring x̃i x̃i+1 . . . x̃ j of X̃ .

For degenerate strings, the notion of character equality is extended to symbol equality between two degenerate symbols. 
A degenerate symbol x̃ over an alphabet � is a nonempty subset of �, i.e. x̃ ⊆ � and x̃ �= ∅. |x̃| denotes the size of the 
set and we have 1 ≤ |x̃| ≤ |�|. Two degenerate symbols x̃ and ỹ are said to match (denoted x̃ ≈ ỹ) if x̃ ∩ ỹ �= ∅. Extending 
this notion to degenerate strings, we say that two degenerate strings X̃ and Ỹ match (denoted X̃ ≈ Ỹ ) if | X̃| = |Ỹ | and all 
corresponding symbols in X̃ and Ỹ match. Note that the relation ≈ is not transitive. A degenerate string X̃ is said to occur
at position i in another degenerate string Ỹ if X̃ ≈ Ỹ [i . . i + | X̃| − 1].

We demonstrate an example of degenerate string notation in Fig. 1, where a vector of characters is used to indicate the 
possible values of a non-solid symbol.

2.2. Palindromes

A palindromic factor of a degenerate string X̃ is some solid string P ≈ X̃[i . . j] such that P is equal to its reversal (P = P R ). 
Equivalently we can define an even length palindromic factor P as a factor that can be expressed in the form W W R for 
some string W , and an odd length palindromic factor P as a factor that can be expressed in the form W cW R for some 
string W and a single character c. The centre of a palindromic factor P ≈ X̃[i . . j] is defined as i+ j

2 , and its radius is defined 
as |P | .
2
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Fig. 2. Maximal palindrome for centre 11.

Table 1
(a) IUPAC encodings as subsets of {A, C, G, T}, and (b) corresponding matching table for complementary bases.

IUPAC code Equivalent subset
R {A,G}
Y {C,T}
S {C,G}
W {A,T}
K {G,T}
M {A,C}
B {C,G,T}
D {A,G,T}
H {A,C,T}
V {A,C,G}
N {A,C,G,T}

(a)

A C G T R Y S W K M B D H V N
A 1 1 1 1 1 1 1 1
C 1 1 1 1 1 1 1 1
G 1 1 1 1 1 1 1 1
T 1 1 1 1 1 1 1 1
R 1 1 1 1 1 1 1 1 1 1 1 1
Y 1 1 1 1 1 1 1 1 1 1 1 1
S 1 1 1 1 1 1 1 1 1 1 1 1
W 1 1 1 1 1 1 1 1 1 1 1 1
K 1 1 1 1 1 1 1 1 1 1 1 1
M 1 1 1 1 1 1 1 1 1 1 1 1
B 1 1 1 1 1 1 1 1 1 1 1 1 1 1
D 1 1 1 1 1 1 1 1 1 1 1 1 1 1
H 1 1 1 1 1 1 1 1 1 1 1 1 1 1
V 1 1 1 1 1 1 1 1 1 1 1 1 1 1
N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(b)

A maximal palindromic factor of a degenerate string X̃ is the longest palindromic factor at a given centre, which can be 
extended no further. In other words P ≈ X̃[i . . j] is maximal for its centre i+ j

2 if X̃[i − 1] �≈ X̃[ j + 1] or if either i − 1 or 
j + 1 are invalid indexes of X̃ .

For example in Fig. 2 we show a palindromic factor at centre 11 corresponding to X̃[9 . . 13]. In fact this is a maximal 
palindromic factor, as it can not be extended further within X̃ while still containing a palindrome, i.e. X̃[8] = C �≈ G= X̃[14].

We denote by MP( X̃) the set of all maximal palindromes of X̃ , i.e. the set containing all pairs (i, j) such that X̃[i . . j]
is a maximal palindrome in X̃ . By considering the number of valid centres, it is clear that the number of unique maximal 
palindromic factors must be no more than 2n − 1, i.e. |MP( X̃)| ≤ 2n − 1.

2.3. Longest common extensions

The longest common extension (LCE) between two suffixes of a string X starting at positions i and j, is defined as the 
length of the longest prefix common to both suffixes. We state this formally in Definition 1.

Definition 1. For a given string X , we define the longest common extension between position i and j as the function:

LCE(X, i, j) = max({l : X[i . . i + l − 1] = X[ j . . j + l − 1]} ∪ {0}).

We may generalise Definition 1 to that of an LCE with m mismatches. In this case, the LCE is similarly defined, but 
considers two prefixes to constitute a common prefix if they match within m or less errors in terms of their Hamming 
distance.

Definition 2. For a given string X , we define the longest common extension with m mismatches between position i and j as 
the function:

LCEm(X, i, j) = max({l : X[i . . i + l − 1] ≈m X[ j . . j + l − 1]} ∪ {0}).

A further variant of LCE makes use of matching tables. We define a matching table M over a given alphabet �, as any 
commutative binary function mapping pairs of characters of � to the set {true, false}, i.e.

M : � × � → {true,false}.
For a given alphabet �, if a matching table is not explicitly defined, we may assume by default that M(s1, s2) maps to 

the logical result of s1 = s2 for all s1, s2 ∈ �. In the case of inverted repeats, a match is assigned true for complementary 
bases (see Table 1).

We may define the LCE with respect to a matching table M, as in Definition 3. In this case, the LCE considers the 
prefixes starting at i and j to match if their corresponding characters match with respect to the matching table, i.e. two 
characters s1 and s2 match if M(s1, s2) = true.
4
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Fig. 3. Suffix tree for the string X = caacaacc$.

Fig. 4. Longest common extensions of a string for m = 0 and m = 1.

Definition 3. For a given string X over the alphabet � and a matching table M over �, we define the longest common 
extension with respect to M between position i and j as the function:

LCE(X, i, j,M) = max({l : M(X[i + l′ − 1], X[ j + l′ − 1]) = true

∀l′ ∈ [1, l]} ∪ {0}).

2.4. Kangaroo method

The algorithm described in this paper makes substantial use of the kangaroo method, a well established method used to 
perform multiple LCEm queries on a given string X [39,40]. This is done by initially preprocessing the string X to build a 
suffix tree data structure in O(n) time and space [41].

The suffix tree provides a compact representation of the set of suffixes of the string X , in which each leaf node of the 
tree uniquely corresponds to one of the n suffixes of X , which may be reconstructed by following the unique path from the 
root to the leaf and concatenating the edge labels as they are encountered. To ensure every suffix corresponds uniquely to 
a leaf node, the string X may be appended with a unique $ character. Full technical details of the suffix tree data structure 
can be found in [41]. (See Fig. 3.)

The suffix tree of X allows us to perform LCE queries in O(1) time. For a query LCE(X, i, j), we first identify two distinct 
leaf nodes corresponding to the suffixes i and j; then, the lowest common ancestor node in the tree for these two leaf nodes 
has a string depth equal to LCE(X, i, j). The calculation of the lowest common ancestor and its depth may be performed in 
O(1) time after O(n) preprocessing time [42], hence the LCE query can be computed in O(1) time.

The kangaroo method extends this methodology, allowing the calculation of LCEm queries. Precisely, we have Lemma 1.

Lemma 1. Given the suffix tree of X, LCEm(X, i, j) can be computed in O(m) time.

Proof. LCEm(X, i, j) can be defined recursively as follows:
We denote lr = LCEr(X, i, j) for any r ≥ 0. Then, we have l0 = LCE(X, i, j). Also, we have lr = lr−1 + 1 + LCE(X, i + lr−1 +

1, j + lr−1 + 1). (See Fig. 4.)
By the above recursive formula, LCEm(X, i, j) can be computed by performing LCE queries m times. Since each LCE query 

requires O(1) time, the lemma follows. �

5
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3. Algorithms

3.1. Preprocessing

We first preprocess the string X̃ , to obtain a string we call the solid equivalent of X̃ , denoted X$ . To obtain X$ we 
transform X̃ into a solid string by replacing each of its k non-solid symbols with a unique character $d , where 0 ≤ d < k. 
These new characters $0, ..., $k−1 are defined to not match each other and not match any characters of the original alphabet 
� of X̃ . The location in X$ of a given $d is denoted by loc($d).

X$[i] =
{

X̃[i] if X̃[i] is solid

$d if X̃[i] is non-solid and d non-solid symbols occur left of X̃[i]
We define the location loc($d) of the non-solid symbol $d in the string X$ to be the (unique) integer t ≤ n, such that

loc($d) = t ⇐⇒ X$[t] = $d.

Let �$# = � ∪ {$0, . . . , $k−1} ∪ {#1, #2} denote the alphabet � extended by $0, . . . , $k−1 in addition to two new distinct 
characters #1 and #2, and extend the lexicographical ordering on � such that #1 < #2 < $1 < · · · < $k−1 < σ0 < · · · < σ|�|−1, 
where σi refers to the ith character in the lexicographical ordering of the alphabet � (0-indexed). Next we create a new 
string S = X$ #1 X R

$ #2 over the alphabet �$# and preprocess S to construct its suffix tree, so that we may perform LCE 
queries on S in O(1) time.

In the process of constructing X$ and S , we also build a matching table M over the alphabet �$# . We define the 
matching table M : �$# × �$# → {true, false} by taking:

M(s1, s2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

s1 = s2 for s1, s2 ∈ �

X̃[loc(s1)] ≈ X̃[loc(s2)] for s1, s2 ∈ {$0, ...,$k−1}
X̃[loc(s1)] ≈ s2 for s1 ∈ {$0, ...,$k−1}, s2 ∈ �

X̃[loc(s2)] ≈ s1 for s1 ∈ �, s2 ∈ {$0, ...,$k−1}
s1 = s2 for s1 ∈ {#1,#2} ∨ s2 ∈ {#1,#2}

for all s1, s2 ∈ �$# . Note that it trivially follows from the commutativity of operations in the definition, that M(s1, s2) =
M(s2, s1) for any pair of characters s1, s2 ∈ �$# .

3.2. Determining maximal palindromes

We now have X$ , S , M and the ability to perform LCE operations on S in constant time. This gives us the necessary 
information to systematically find the maximal palindrome at each centre of X̃ . This is done via repeated LCE queries on S . 
If we choose our LCE queries strategically, we may determine the radius of maximal palindromes of X̃ at each centre.

Lemma 2. Let X̃ be a degenerate string of length n with matching table M, and let c ∈ {0, 12 , 1, 32 , . . . , n − 1}. Then P = X̃[i . . j] is a
maximal palindrome of X̃ if and only if i = �c� − e and j = �c� + e, where

e = LCE(S, �c�,2n − �c�,M)

and S = X$ #1 X R
$ #2 .

Proof. The right-to-left direction follows immediately from the definition of the LCE and the structure of S . For the left-
to-right direction, let P = X̃[i . . j] be a maximal palindrome of X̃ . We split the problem into two separate cases for even 
length and odd length palindromes.

– For an even length palindrome, the centre c = c′ + 1
2 for some c′ ∈ {0, . . . , n − 2}. We calculate e, the length of the 

longest pair of matching factors within X starting from index �c� reading to the right and from index �c� reading to 
the left. Since S = X$ #1 X R

$ #2 is of length 2n + 2, we express this as e = LCE(S, c + 1
2 , 2n − c + 1

2 , M). The maximal 
palindrome at centre c then corresponds to P = X̃[c + 1

2 − e . . c − 1
2 + e] if e > 0 or P = ε if e = 0.

– For an odd length palindrome, the centre c ∈ {0, . . . , n − 1}. We calculate e, the length of the longest pair of matching 
factors within X starting from index �c�(= c) reading to the right and from index �c�(= c) reading to the left. Since 
S = X$ #1 X R

$ #2 is of length 2n + 2, we express this as e = LCE(S, c, 2n − c, M). The maximal palindrome at centre c

then corresponds to P = X̃[c − e . . c + e].
6
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Fig. 5. Inverted repeats in a sequence for a given centre with 1 permitted mismatch. The centre is marked in red. The size of the gap is given by G . 
Mismatching symbols are marked with the symbol ×. The inverted repeat is indicated by the shaded cells. (For interpretation of the colours in the 
figure(s), the reader is referred to the web version of this article.)

We may combine both the results for even and odd length palindromes into the statement of the lemma, through use of 
ceiling and floor notation. �

Thus we have a systematic way to determine the set of 2n − 1 maximal palindromes MP( X̃) for any degenerate string X̃
of length n.

Theorem 1. Given a degenerate string X̃ of length n over the alphabet � and a natural number k representing an upper bound on the 
number of non-solid symbols in X̃ , all maximal palindromes of X̃ may be found in O

(
k|�|(k + log |�|) +kn

)
time and O

(
k(k +|�|) +

n
)

space.

Proof. We analyse the various steps of the algorithm as described in this section earlier. To obtain the solid equivalent X$
of X̃ , we construct the string S = X$ #1 X R

$ #2 and construct the suffix tree of S , each require O(n) time and space.
It is reasonable to assume that non-solid symbols store their characters in lexicographical order. Under this assumption, 

determining a match between any two non-solid symbols is an O(|�|) operation, and between a non-solid and solid symbol 
is an O(log(|�|)) operation. It therefore follows that the preprocessing time to generate the portion of the matching table 
M comparing two symbols where at least one of which is a non-solid symbol is O

(
k|�|(k + log |�|)). Since the portion 

of the matching table comparing characters s1, s2 ∈ � is already known, no further preprocessing is required. Indeed, the 
required additional storage space to implicitly store the matching table M is thus O

(
k(k + |�|)), since we require O(k2)

space for storing all match results for pairs of non-solid symbols and O(k|�|) to store all match results for pairs of symbols 
consisting of a solid and a non-solid symbol.

Determining maximal palindromes requires us to consider each of the 2n − 1 possible centres of X̃ . For each of these 
centres, we perform a single LCE(X, i, j, M) query. This is done by calculating LCEk′ (X, i, j) for k′ ∈ [0, k], by observing the 
following:

LCE(X, i, j,M) = max({lk′ : M(i + lk′−1 + 1, j + lk′−1 + 1) = true,k′ ∈ [1,k]} ∪ {l0})
where lk′ = LCEk′ (X, i, j). Thus a single LCE(X, i, j, M) query requires O(k) time by Lemma 1. Therefore we may determine 
the list of maximal palindromes MP( X̃) in O(kn) time and O(n) space, after initial preprocessing. �
3.3. Determining maximal palindromes with gaps and mismatches

We now extend this result to find degenerate palindromes with gaps and errors. For a given centre, the possible palin-
dromes repeats are determined by first identifying symbols which are equidistant from the centre and are considered to 
mismatch using the kangaroo method.

The procedure next considers a minimal initial gap which is subsequently increased in order to reduce the number of 
mismatches inside the inverted repeat being considered, and thus permits a longer extension (see Fig. 5).

This demonstrates the principle of finding several unique palindromes with the same centre by extending the gap to 
effectively swallow an additional mismatch, such that the inverted repeat may be extended to the position directly adjacent 
to the next mismatch. This extending procedure is performed repeatedly to obtain all inverted repeats for a given centre, 
while taking into account the parameters specifying the maximum gap and the size range for the inverted repeat itself. The 
algorithm maintains efficiency by calculating only the necessary mismatch locations needed for a given set of parameters, 
and no more.

Theorem 2. Given a degenerate string X̃ of length n, a gap size g, an upper bound on the number of mismatches permitted m over the 
alphabet � and a natural number k representing an upper bound on the number of non-solid symbols in X̃ , all maximal palindromes 
of X may be found in O(k|�|(k + log |�|) + (k + g + m)n) time and O(k(k + |�|) + (g + m)n) space.
7
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Proof. The preprocessing of the string X̃ is exactly same as described in Theorem 1, and requires O(k|�|(k + log |�|) time 
and O

(
k(k + |�|)) space. After preprocessing, we consider the maximal palindromes for each of the 2n − 1 possible centres

of X̃ .
For each centre, we first identify all inverted repeats with a gap of size 0 and ≤ m mismatches. We perform an 

LC Em(X, i, j, M) query, which is done by calculating LC Ek′(X, im, jm) for k′ ∈ [0, k] m times, where im = im−1 + lk + 2 and 
j = jm−1 + lk + 2 and i1 = i, j1 = j. Since the string is bounded by k degenerate symbols in X , a single LC Em(X, i, j, M)

query will require O(m + k) time by Lemma 1.
Next, we define inverted repeats, denoted by IR with gap sizes g > 0 and m mismatches recursively. Let gr = gr−1 + 2lk′

for any r ≥ 0 denote the gap size of an IR centred at some c, and let g0 = 0. For gr , we first calculate l′g = LC Ek′(X, i +
gr/2−1, j + gr/2−1) and then check if gr ≤ g . If it holds, an additional LC Ek′ (X, i, j) query is performed, where each i and j
of the next LC Ek′ (X, i, j) are two positions directly after the end of the last LC Ek′(X, i, j) query for gr−1. Additionally, we 
remove the substring corresponding to l′g and report the resulting maximal gapped inverted repeat.

Thus after preprocessing, we can determine all maximal palindromes with g gaps and m mismatches in O(k + g + m)n
time and O(g + m)n space. �
3.4. Palindromic factorisation

It should also be briefly mentioned that the algorithms described here can also be applied to determine a palindromic 
factorisation of a given degenerate string. Palindromic factorisation is the process of splitting a string into adjacent factors 
such that all factors are palindromes and the minimal number of factors possible is used. We may add the further require-
ment that all palindromes in the factorisation are maximal palindromes, however, as highlighted earlier, this may not always 
be possible. This is a theoretical result with no known direct application to biological sequences, but is a byproduct of the 
main algorithm. Note that it is possible to have multiple valid factorisations of a string X̃ which contain the same number of 
palindromic factors. Alternatively, there may be no valid maximal palindromic factorisation of X̃ , which differs to ordinary 
palindromic factorisation. This is a result of the fact that a single character is guaranteed to be an ordinary palindrome, but 
not necessarily a maximal palindrome.

Degenerate Maximal Palindromic Factorisation

Input: Degenerate string X̃ of length n and a natural number k representing an upper bound on the number of non-
solid symbols in X̃ .
Output: Array of indexes T0, T1, . . . , Tm describing a maximal palindromic factorisation f1, f2, . . . , fm where f i =
X̃[Ti−1 . . Ti − 1] is a maximal palindrome for all i ∈ {1, . . . , m} and the number of factors m is minimised.

Lemma 3. Given a string X̃ of length n containing k degenerate symbols, the factorisation of X̃ , where each factor is a maximal 
palindrome with a gap of up to g symbols and up to m mismatches, can be done in O

(
k|�|(k + log |�|) + (k + g + m)n

)
time and 

O
(
k(k + |�|) + (g + m)n

)
space.

Proof. From the result of Theorem 2, we have established that identifying all of the maximal palindromes with up to g gaps 
and m mismatches are done in O

(
k|�|(k + log |�|) + (k + g +m)n

)
time and O

(
k(k + |�|) + (g +m)n

)
space. Following this, 

we now construct a graph, where indices of the string X̃ correspond to vertices and maximal palindromes correspond to 
edges. Specifically, we build a graph G with vertices V and edges E , where V = {0, . . . , n} and E = {(i, j +1) : (i, j) ∈ MP( X̃)}. 
The construction of the graph G requires O(g + m)n time and O(g + m)n space. Performing a single breadth first search 
on G is a standard O(g + m)n time operation since the number of edges |E| and number of vertices |V | are bounded 
by O(g + m)n. Thus by considering the total complexity of these individual steps, the final complexity of the algorithm 
follows. �

The corresponding pseudocode to our algorithms are described in Algorithms 1-3. The entry point of the pseudocode is 
the function getFactorisation. This accepts an array X̃ of length n where every element in the array is a string representing 
the possible characters of a degenerate symbol. A string of length 1 is thus a solid symbol. The input parameter k specifies 
an upper bound on the number of non-solid symbols in X̃ . The list of maximal palindromes for each centre is returned. We 
make use of some functions for which the pseudocode is not given. We detail those functions here:

LCE(X, i, j) Longest common extension function. Given a solid string X returns the length of the longest common prefix 
between the ith and jth suffix of X . Open-source implementations are available using suffix trees or suffix arrays. 
Details are given in the Preliminary section.

GETMATCHTABLE( X̃,n,k) Given a degenerate string X̃ of length n over the alphabet � and an upper bound on non-solid 
symbols k, returns the matching table M over the alphabet �$# as described in the Preprocessing subsection. The 
specific implementation of this function and the returned matching table data structure is dependent on the data 
8
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structures used to implement degenerate strings. Given any two symbols s1 and s2 from the set �$# , M(s1, s2)

gives a true or false value indicating whether or not s1 matches s2.
GETSHORTESTPATH(G, source, target) Given a directed graph G of vertices and edges, returns an array of integers containing 

the sequence of vertex labels encountered on the shortest path from the source vertex to the target vertex. If no 
possible path exists it returns null. If multiple shortest paths exist, the chosen path will depend on the specifics 
of the implementation. For example the array [0, 2, 7, 10] is returned if the shortest path from source vertex 0 to 
target vertex 10 is via vertices 2 and 7. The shortest path can be found by performing a breadth first search on G
starting at source and choosing the path that first encounters the target during the search.

Algorithm 1 Degenerate Maximal Palindromes.

1: function getMaximalPalindromes( X̃, n, k)
2: X$ = empty string
3: j = 0
4: for i = 0 to n − 1 do � build string with non-solid symbols substituted with λ values
5: char = X̃[i]
6: if length(char) == 1 then
7: X$ = X$ + char � operator + on strings is concatenation
8: else
9: X$ = X$ + $ j

10: j = j + 1
11: end if
12: end for
13: M = getMatchTable( X̃,n,k)

14: S = X$ + #1 + reverse(X$) + #2 � string used to find palindromes
15: return even_palindromes = getPalindromes(S, n, k, 0, M)

16: return odd_palindromes = getPalindromes(S, n, k, 1, M)

17:
18: G = directed graph with vertices 0 to n
19:
20: for p ∈ even_palindromes ∪ odd_palindromes do � build graph of all palindromes
21: if p is not null then
22: add edge (p.left, p.right + 1) to G
23: end if
24: end for
25:
26: return getShortestPath(G, 0, n)

27: end function

Algorithm 2 Degenerate Maximal Palindromes.
1: function getPalindromes(S, n, k, isOdd, M) � isOdd is 0 or 1
2: palindromes = array of length (n − 1 + isOdd) of coordinates (0, 0)

3: for i = 1 to (n − 1 + isOdd) do
4: j = 2n − i + 1 + isOdd
5: e = realLCE(S, 2n + 2, k, i, j, M) � determine maximal extension from centre
6: left = i − e − isOdd
7: right = i + e − 1
8: if le f t ≤ right then � store maximal palindrome if found
9: palindromes[i − 1] = (left, right)

10: else
11: palindromes[i − 1] = null
12: end if
13: end for
14: return palindromes � return list of maximal palindromes found
15: end function

4. Experimental results

The following complete genomes of SARS-CoV-2 were downloaded from ViPR [43] as representative strains for high-
lighted Lineages of Concern: MW64206.1, MW598408.1, MZ184193.1, MZ315637.1, MZ436591.1, MZ358404.1, MZ505747.1 
and MW642248.1. Each genome was analyzed for IRs with halves of length 4-1000 nucleotides (nt); 0, ≤ 1, and ≤ 2 mis-
matches; and varying gap sizes up to 100 nt. We experimentally quantify the number of IRs in each genome; the complete 
tables of IR frequencies are listed in Appendix A, where the results have been organised by IR-half length and exact num-
ber of mismatches. Fig. 6 shows the average distribution of IRs with half length � across each lineage for varying input 
parameters of ≤ m mismatches and ≤ g gaps permitted.
9
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Algorithm 3 Degenerate Maximal Palindromes.
1: function realLCE(S, n, k, i, j, M)
2: real_lce = 0
3: mismatch_count = 0
4: while mismatch_count < k + 1 do
5: real_lce = real_lce + LCE(S, i + real_lce, j + real_lce)
6: if i + real_lce ≥ n or j + real_lce ≥ n then
7: break
8: end if
9: s1 = S[i + real_lce]

10: s2 = S[ j + real_lce]
11: if M(s1, s2) then
12: real_lce = real_lce + 1
13: else
14: break
15: end if
16: mismatch_count = mismatch_count + 1
17: end while
18: return real_lce
19: end function

Fig. 6. Percentage of IRs with half length � with ≤ m permitted mismatches and ≤ g permitted gap size.

Across every set of parameters, we see that the majority (over 50%) of the IRs have half lengths of 4, 5 and 6, whereas 
longer IRs become considerably less common as the length increases. It appears that increasing the gap does not largely 
change the distribution of inverted repeats, however increasing the number of mismatches results in an increased percentage 
of IRs with a half length of ≥ 5. Note that not all IRs are guaranteed to increase when the number of errors increase since 
they are maximal (i.e. cannot be extended to the left or right unless further mismatches have been utilised). The leftmost 
and rightmost symbol in any reported IR must necessarily match. One interesting observation was that when the maximum 
number of mismatches permitted increased to 2 (for gap sizes ≤ 0, ≤ 10 and ≤ 100), there appears to be a single occurrence 
of an IR with half length 18, however no occurrences of IRs with half length 16 or 17. This pattern was observed across 
each of the strains tested.

The complete table of standard deviations of � length IRs across each strain for varying input parameters of ≤ m mis-
matches and ≤ g gap size is listed in Appendix B.

For a given inverted repeat with half length �, the standard deviation was observed to generally increase with respect 
to the permitted gap size and/or number of mismatches increasing. For a fixed gap size and fixed maximum number of 
mismatches, the standard deviation was observed to generally decrease the longer the IR is, which is most likely attributed 
to the frequency of inverted repeats with half length � decreasing as � increases. Inverted Repeats with half length 12 were 
an exception to this (occurring in configurations m1 g10, m1 g100, m2 g0, m2 g10 and m2 g100). In such cases, the standard 
deviation across all strains was consistently lower compared to the standard deviation for IRs with half length 13.
10
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Table 2
Mean and standard deviation of the total number of IRs located with up to m
mismatches and g maximum gap length.

Number of Mismatches Maximum Gap length μ (σ )

0 0 134.38 (1.30)
0 10 1451.75 (2.96)
0 100 12001.13 (40.61)
1 0 891.38 (1.30)
1 10 9003.88 (7.95)
1 100 78210.13 (66.86)
2 0 2336.50 (2.45)
2 10 22907.13 (17.00)
2 100 195934.75 (189.63)

Fig. 7. Length of longest IR halves detected across all eight strains with m mismatches and g gaps.

Table 2 shows the mean (μ) and standard deviation (σ ) across the total number of IRs located per variant. Here we can 
see that increasing the gap and/or number of mismatches always results in an increased number of IR detected. In each 
case, the deviation between strains is extremely small – always less than 1%.

4.1. Longest inverted repeats

Long inverted repeats are often associated with influencing genome stability within various organisms. Fig. 7 shows the 
trend of the longest inverted repeats for gap size g and maximum number of mismatches m. These values were the same 
across each variant, though there was some variance with the frequency of IRs found with these lengths.

The longest palindrome (i.e. inverted repeat with gap size zero) was the 20 nt sequence ACACTGGTAATTACCAGTGT. 
The effect of increasing the gap size shows to increase the overall length of the IR-half, and has the largest effect when the 
maximum number of mismatches was 1. When the permitted gap size was increased up to 100, the longest IR-half with no 
mismatches was the 11 nt sequence AGGTAAAACAT...ATGTTTTACCT.

Increasing the number of permitted mismatches also resulted in an increase of the overall length of the longest IR-half, 
particularly when this changed from 1 to 2 mismatches. When the number of allowed mismatches was increased to 2 
(whilst retaining a gap size of zero), it can be observed that the length of the longest IR was the 36 nt (i.e. half length 
18) sequence TAGTGAGTACACTGGTAATTACCAGTGTGGTCACTA. Notably, when both the permitted gap length and number 
of mismatches were maximised to ≤ 100 and ≤ 2 respectively, the same 36 nt sequence remained the longest maximal IR 
identified.

5. Discussion and conclusion

Inverted repeats, nucleotide sequences followed by their reverse complement, serve diverse purposes and can vary in 
length. In our study, we have presented efficient algorithms to identify inverted repeats with permitted gaps and mis-
11
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matches, and have demonstrated our algorithm by quantifying inverted repeats on a set of SARS-CoV-2 genomes. From 
our experimental results, we identified an IR with half length 18 across all strains when the number of mismatches was 
increased to 2, however there was a lack of half length IRs of length 16 and 17. Furthermore, we also observed that the stan-
dard deviation of IRs with half length 12 was lower than expected. Performing an analysis of the secondary structure of the 
genome may reveal further significance of the patterns and how they contribute to the genomic signature of SARS-CoV-2.

As future work, it may be of interest to investigate applications of our algorithm to computationally improve existing 
methods for the prediction of secondary structures from genomic strings. Current methods that directly parse a sequence 
typically involve exploring the conformational space available to the RNA and categorising the computed structures, however 
the number of possible secondary structure combinations scales exponentially, which is not ideal when analysing larger 
genomes [44]. We anticipate that identifying common genomic string patterns including inverted repeats will prune down 
the search space considerably, thus improving the overall space and time.
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Appendix A. Frequency of inverted repeats

In this appendix, we present the frequency of maximal Inverted Repeats (IRs) with half length � occurring in 
MW642026.1, MW598408.1, MZ184193.1, NZ315637.1, MZ436591.1, MZ358404.1, MZ505747.1, MW642248.1 containing a gap 
with maximum size g and up to m permitted mismatches. The order of the arrays in the queue correspond to the number 
of IRs found with their length from 0 to 20. Each position within the array correlates to the number of IRs found with the 
same number of mismatches starting from 0. (See Tables A.3–A.10.)

Table A.3
MW642026.1

g m Frequency of Palindromes

0 0 [0], [0], [0], [0], [94], [23], [11], [1], [2], [0], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]

0 1 [0, 0], [0, 0], [0, 0], [0, 0], [68, 488], [19, 190], [10, 72], [1, 25], [2, 8], [0, 3], [1, 3], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 
0], [0, 0]

0 2 [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [51, 358, 649], [14, 145, 520], [9, 54, 297], [1, 17, 117], [1, 6, 56], [0, 2, 18], [0, 1, 8], [0, 0, 4], [0, 0, 3], 
[0, 0, 1], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0]

10 0 [0], [0], [0], [0], [1016], [264], [101], [38], [22], [4], [4], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0]

10 1 [0, 0], [0, 0], [0, 0], [0, 0], [632, 4866], [164, 2036], [55, 747], [19, 263], [15, 119], [3, 41], [2, 27], [1, 3], [0, 3], [0, 2], [0, 0], [0, 0], [0, 0], [0, 
0], [0, 0], [0, 0], [0, 0]

10 2 [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [416, 3069, 6717], [103, 1304, 5323], [39, 463, 2911], [10, 148, 1311], [7, 74, 543], [3, 26, 221], [0, 11, 
118], [1, 2, 43], [0, 2, 28], [0, 2, 12], [0, 0, 2], [0, 0, 2], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0]

100 0 [0], [0], [0], [0], [8599], [2438], [695], [205], [69], [24], [7], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0]

100 1 [0, 0], [0, 0], [0, 0], [0, 0], [4732, 43781], [1338, 17843], [378, 6516], [106, 2261], [39, 809], [15, 240], [4, 116], [1, 29], [0, 4], [0, 4], [0, 0], 
[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]

100 2 [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [2623, 24296, 59813], [737, 9703, 47901], [227, 3625, 25635], [60, 1225, 11781], [18, 425, 4822], [9, 
137, 1779], [1, 57, 735], [1, 17, 264], [0, 2, 104], [0, 4, 37], [0, 0, 9], [0, 0, 5], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0]

Table A.4
MW598408.1

g m Frequency of Palindromes

0 0 [0], [0], [0], [0], [96], [23], [10], [1], [2], [0], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]

0 1 [0, 0], [0, 0], [0, 0], [0, 0], [68, 486], [19, 193], [9, 74], [1, 26], [2, 8], [0, 3], [1, 3], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], 
[0, 0]

0 2 [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [51, 356, 648], [14, 148, 522], [8, 57, 297], [1, 17, 114], [1, 6, 55], [0, 2, 19], [0, 1, 10], [0, 0, 4], [0, 0, 3], 
[0, 0, 1], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0]

10 0 [0], [0], [0], [0], [1018], [267], [99], [38], [22], [4], [4], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0]

10 1 [0, 0], [0, 0], [0, 0], [0, 0], [628, 4872], [166, 2036], [55, 750], [19, 264], [15, 119], [3, 40], [2, 28], [1, 3], [0, 3], [0, 2], [0, 0], [0, 0], [0, 0], [0, 
0], [0, 0], [0, 0], [0, 0]

10 2 [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [413, 3062, 6717], [106, 1306, 5333], [38, 465, 2922], [10, 145, 1307], [7, 73, 539], [3, 25, 227], [0, 12, 
122], [1, 2, 43], [0, 2, 28], [0, 2, 11], [0, 0, 2], [0, 0, 2], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0]

100 0 [0], [0], [0], [0], [8589], [2441], [695], [202], [74], [24], [7], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0]
12
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Table A.4 (continued)

g m Frequency of Palindromes

100 1 [0, 0], [0, 0], [0, 0], [0, 0], [4730, 43841], [1339, 17831], [380, 6502], [105, 2278], [42, 801], [15, 235], [4, 120], [1, 29], [0, 4], [0, 4], [0, 0], 
[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]

100 2 [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [2631, 24302, 59825], [734, 9701, 47923], [226, 3614, 25701], [60, 1236, 11750], [19, 420, 4823], [9, 
131, 1798], [1, 61, 733], [1, 18, 264], [0, 2, 104], [0, 4, 37], [0, 0, 8], [0, 0, 5], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0]

Table A.5
MW642248.1

g m Frequency of Palindromes

0 0 [0], [0], [0], [0], [96], [23], [11], [1], [2], [0], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]

0 1 [0, 0], [0, 0], [0, 0], [0, 0], [69, 489], [19, 191], [10, 72], [1, 24], [2, 8], [0, 3], [1, 3], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 
0], [0, 0]

0 2 [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [52, 360, 646], [14, 146, 523], [9, 54, 297], [1, 15, 118], [1, 6, 53], [0, 2, 19], [0, 1, 9], [0, 0, 4], [0, 0, 3], 
[0, 0, 1], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0]

10 0 [0], [0], [0], [0], [1021], [262], [102], [38], [22], [4], [4], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0]

10 1 [0, 0], [0, 0], [0, 0], [0, 0], [634, 4890], [163, 2031], [57, 743], [19, 259], [15, 119], [3, 40], [2, 27], [1, 4], [0, 3], [0, 2], [0, 0], [0, 0], [0, 0], [0, 
0], [0, 0], [0, 0], [0, 0]

10 2 [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [415, 3074, 6702], [104, 1301, 5342], [39, 458, 2922], [10, 143, 1317], [7, 75, 538], [3, 25, 225], [0, 11, 
119], [1, 3, 41], [0, 2, 28], [0, 2, 11], [0, 0, 2], [0, 0, 2], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0]

100 0 [0], [0], [0], [0], [8618], [2438], [692], [205], [73], [22], [7], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0]

100 1 [0, 0], [0, 0], [0, 0], [0, 0], [4751, 43866], [1347, 17811], [377, 6496], [107, 2272], [41, 793], [14, 237], [4, 121], [1, 31], [0, 4], [0, 3], [0, 0], 
[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]

100 2 [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [2634, 24287, 59749], [739, 9696, 47911], [226, 3610, 25693], [61, 1232, 11772], [19, 415, 4821], [8, 
131, 1808], [1, 63, 729], [1, 19, 266], [0, 2, 103], [0, 3, 38], [0, 0, 8], [0, 0, 4], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0]

Table A.6
MZ184193.1

g m Frequency of Palindromes

0 0 [0], [0], [0], [0], [97], [23], [11], [1], [2], [0], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]

0 1 [0, 0], [0, 0], [0, 0], [0, 0], [69, 482], [19, 191], [10, 75], [1, 26], [2, 8], [0, 3], [1, 3], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 
0], [0, 0]

0 2 [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [52, 354, 651], [14, 147, 522], [9, 57, 294], [1, 17, 115], [1, 6, 54], [0, 2, 19], [0, 1, 9], [0, 0, 4], [0, 0, 3], 
[0, 0, 1], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0]

10 0 [0], [0], [0], [0], [1020], [264], [102], [38], [22], [4], [4], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0]

10 1 [0, 0], [0, 0], [0, 0], [0, 0], [630, 4868], [166, 2039], [58, 747], [19, 263], [15, 118], [3, 39], [2, 27], [1, 3], [0, 3], [0, 2], [0, 0], [0, 0], [0, 0], [0, 
0], [0, 0], [0, 0], [0, 0]

10 2 [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [414, 3062, 6722], [104, 1306, 5311], [40, 458, 2927], [10, 147, 1314], [7, 74, 541], [3, 24, 225], [0, 11, 
126], [1, 2, 42], [0, 2, 28], [0, 2, 10], [0, 0, 2], [0, 0, 2], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0]

100 0 [0], [0], [0], [0], [8582], [2443], [689], [207], [72], [24], [7], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0]

100 1 [0, 0], [0, 0], [0, 0], [0, 0], [4718, 43856], [1344, 17855], [376, 6505], [107, 2271], [41, 805], [15, 242], [4, 118], [1, 28], [0, 4], [0, 4], [0, 0], 
[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]

100 2 [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [2614, 24293, 59838], [738, 9713, 47879], [225, 3610, 25730], [58, 1228, 11766], [19, 418, 4816], [9, 
138, 1796], [1, 60, 743], [1, 17, 273], [0, 2, 104], [0, 4, 35], [0, 0, 8], [0, 0, 5], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0]

Table A.7
MZ315637.1

g m Frequency of Palindromes

0 0 [0], [0], [0], [0], [97], [23], [11], [1], [2], [0], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]

0 1 [0, 0], [0, 0], [0, 0], [0, 0], [70, 482], [19, 193], [10, 73], [1, 24], [2, 8], [0, 4], [1, 3], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 
0], [0, 0]

0 2 [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [53, 353, 650], [14, 149, 524], [9, 55, 297], [1, 15, 116], [1, 6, 54], [0, 3, 19], [0, 1, 9], [0, 0, 4], [0, 0, 3], 
[0, 0, 1], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0]

10 0 [0], [0], [0], [0], [1016], [264], [103], [38], [22], [4], [4], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0]
(continued on next page)
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Table A.7 (continued)

g m Frequency of Palindromes

10 1 [0, 0], [0, 0], [0, 0], [0, 0], [629, 4858], [166, 2040], [59, 746], [19, 262], [15, 118], [3, 39], [2, 27], [1, 3], [0, 3], [0, 2], [0, 0], [0, 0], [0, 0], [0, 
0], [0, 0], [0, 0], [0, 0]

10 2 [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [412, 3052, 6710], [106, 1305, 5295], [40, 459, 2925], [10, 143, 1311], [7, 74, 541], [3, 24, 229], [0, 11, 
125], [1, 2, 41], [0, 2, 28], [0, 2, 10], [0, 0, 2], [0, 0, 2], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0]

100 0 [0], [0], [0], [0], [8526], [2433], [694], [209], [71], [23], [7], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0]

100 1 [0, 0], [0, 0], [0, 0], [0, 0], [4673, 43779], [1342, 17799], [380, 6490], [107, 2257], [41, 806], [14, 243], [4, 117], [1, 27], [0, 4], [0, 5], [0, 0], 
[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]

100 2 [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [2632, 24251, 59677], [736, 9681, 47762], [226, 3598, 25699], [57, 1215, 11653], [19, 418, 4797], [8, 
139, 1793], [1, 59, 744], [1, 17, 273], [0, 2, 104], [0, 5, 34], [0, 0, 8], [0, 0, 5], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0]

Table A.8
MZ436591.1

g m Frequency of Palindromes

0 0 [0], [0], [0], [0], [97], [23], [11], [1], [2], [0], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]

0 1 [0, 0], [0, 0], [0, 0], [0, 0], [69, 482], [19, 193], [10, 75], [1, 25], [2, 8], [0, 3], [1, 3], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 
0], [0, 0]

0 2 [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [52, 354, 649], [14, 149, 522], [9, 57, 293], [1, 16, 115], [1, 6, 54], [0, 2, 19], [0, 1, 9], [0, 0, 4], [0, 0, 3], 
[0, 0, 1], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0]

10 0 [[0], [0], [0], [0], [1016], [263], [102], [38], [22], [4], [4], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0]]

10 1 [0, 0], [0, 0], [0, 0], [0, 0], [629, 4867], [164, 2034], [58, 748], [19, 263], [15, 119], [3, 40], [2, 26], [1, 3], [0, 3], [0, 2], [0, 0], [0, 0], [0, 0], [0, 
0], [0, 0], [0, 0], [0, 0]

10 2 [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [414, 3059, 6717], [104, 1302, 5313], [40, 460, 2925], [10, 144, 1310], [7, 75, 540], [3, 25, 227], [0, 10, 
124], [1, 2, 42], [0, 2, 28], [0, 2, 10], [0, 0, 2], [0, 0, 2], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0]

100 0 [0], [0], [0], [0], [8511], [2443], [689], [207], [72], [25], [7], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0]

100 1 [0, 0], [0, 0], [0, 0], [0, 0], [4659, 43880], [1342, 17805], [373, 6489], [107, 2270], [41, 806], [16, 244], [4, 119], [1, 29], [0, 4], [0, 4], [0, 0], 
[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]

100 2 [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [2621, 24316, 59721], [737, 9683, 47831], [224, 3609, 25737], [57, 1222, 11664], [19, 417, 4777], [10, 
137, 1794], [1, 60, 747], [1, 18, 274], [0, 2, 105], [0, 4, 35], [0, 0, 8], [0, 0, 5], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0]

Table A.9
MZ358404.1.

g m Frequency of Palindromes

0 0 [0], [0], [0], [0], [97], [23], [11], [1], [2], [0], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]

0 1 [0, 0], [0, 0], [0, 0], [0, 0], [70, 482], [19, 193], [10, 75], [1, 25], [2, 8], [0, 4], [1, 3], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 
0], [0, 0]

0 2 [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [53, 354, 649], [14, 148, 523], [9, 57, 296], [1, 16, 115], [1, 6, 54], [0, 3, 19], [0, 1, 9], [0, 0, 4], [0, 0, 3], 
[0, 0, 1], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0]

10 0 [0], [0], [0], [0], [1015], [267], [103], [38], [22], [4], [4], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0]

10 1 [0, 0], [0, 0], [0, 0], [0, 0], [628, 4877], [168, 2040], [58, 743], [19, 265], [15, 117], [4, 40], [2, 27], [1, 3], [0, 3], [0, 1], [0, 0], [0, 0], [0, 0], [0, 
0], [0, 0], [0, 0], [0, 0]

10 2 [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [412, 3060, 6708], [105, 1306, 5307], [40, 457, 2936], [10, 145, 1307], [7, 73, 538], [3, 25, 231], [0, 11, 
126], [1, 2, 42], [0, 2, 28], [0, 1, 11], [0, 0, 2], [0, 0, 2], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0]

100 0 [0], [0], [0], [0], [8519], [2440], [694], [210], [71], [24], [7], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0]

100 1 [0, 0], [0, 0], [0, 0], [0, 0], [4664, 43842], [1343, 17820], [381, 6489], [107, 2271], [41, 801], [16, 245], [4, 116], [1, 27], [0, 4], [0, 4], [0, 0], 
[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]

100 2 [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [2628, 24295, 59754], [734, 9679, 47826], [228, 3595, 25729], [57, 1227, 11642], [19, 415, 4804], [9, 
141, 1798], [1, 58, 740], [1, 17, 273], [0, 2, 104], [0, 4, 35], [0, 0, 8], [0, 0, 5], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0]

Table A.10
MZ505747.1.

g m Frequency of Palindromes

0 0 [0], [0], [0], [0], [97], [24], [11], [1], [2], [0], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]

0 1 [0, 0], [0, 0], [0, 0], [0, 0], [70, 481], [20, 193], [10, 74], [1, 25], [2, 8], [0, 4], [1, 3], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 
0], [0, 0]
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Table A.10 (continued)

g m Frequency of Palindromes

0 2 [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [53, 353, 651], [15, 148, 525], [9, 56, 295], [1, 16, 115], [1, 6, 54], [0, 3, 19], [0, 1, 9], [0, 0, 4], [0, 0, 3], 
[0, 0, 1], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0]

10 0 [0], [0], [0], [0], [1006], [268], [103], [38], [22], [4], [4], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0]

10 1 [0, 0], [0, 0], [0, 0], [0, 0], [624, 4877], [168, 2045], [58, 742], [19, 264], [15, 119], [4, 41], [2, 27], [1, 3], [0, 3], [0, 1], [0, 0], [0, 0], [0, 0], [0, 
0], [0, 0], [0, 0], [0, 0]

10 2 [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [411, 3059, 6710], [106, 1309, 5314], [40, 455, 2930], [10, 144, 1309], [7, 75, 538], [3, 26, 232], [0, 11, 
124], [1, 2, 42], [0, 2, 28], [0, 1, 11], [0, 0, 2], [0, 0, 2], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0]

100 0 [0], [0], [0], [0], [8521], [2440], [698], [211], [70], [24], [7], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0]

100 1 [0, 0], [0, 0], [0, 0], [0, 0], [4663, 43830], [1340, 17815], [383, 6501], [108, 2273], [41, 804], [16, 246], [4, 115], [1, 28], [0, 4], [0, 4], [0, 0], 
[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]

100 2 [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [2623, 24277, 59747], [733, 9675, 47838], [228, 3594, 25710], [57, 1229, 11648], [19, 416, 4809], [9, 
142, 1800], [1, 57, 750], [1, 18, 271], [0, 2, 103], [0, 4, 35], [0, 0, 8], [0, 0, 5], [0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 0], [0, 0, 0]

Appendix B. Standard deviation

In this appendix we present the Standard Deviation (3 d.p.) of maximal IRs with half length � across MW642026.1, 
MW598408.1, MZ184193.1, NZ315637.1, MZ436591.1, MZ358404.1, MZ505747.1, MW642248.1 for a maximum number of 
mismatches, m ≤ 0, 1, 2 and maximum gap size, g ≤ 0, ≤ 10, ≤ 100. Cells containing dashes (-) indicate no IRs with half 
length � were identified.

� m0 g0 m0 g10 m0 g100 m1 g0 m1 g10 m1 g100 m2 g0 m2 g10 m2 g100

4 1.061 4.569 42.997 2.642 10.589 52.789 1.488 9.620 64.464
5 0.354 2.167 3.251 1.389 6.018 18.843 2.766 13.933 65.713
6 0.354 1.356 3.105 1.302 2.507 10.128 1.069 5.731 26.452
7 0 0 2.976 0.756 1.808 6.728 1.165 3.739 65.006
8 0 0 1.604 0.518 0.756 4.536 0.886 1.959 17.096
9 0 0 0.886 0.268 1.035 4.438 0.707 3.603 8.035

10 0 0 0 0 0.535 2.121 0.535 3.024 6.347
11 - 0 0 - 0.354 1.309 0 0.641 4.138
12 - - - - 0 0 0 0 0.641
13 - - - - 0.463 0.535 0 0.756 1.035
14 - - - - - - - 0 0.354
15 - - - - - - 0 0 0.354
16 - - - - - - - - -
17 - - - - - - - - -
18 - - - - - - 0 0 0
19 - - - - - - - - -
20 - - - - - - - - -
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