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Abstract
Finding a best response policy is a central objective
in game theory and multi-agent learning, with
modern population-based training approaches
employing reinforcement learning algorithms as
best-response oracles to improve play against
candidate opponents (typically previously learnt
policies). We propose Best Response Expert
Iteration (BRExIt), which accelerates learning
in games by incorporating opponent models into
the state-of-the-art learning algorithm Expert
Iteration (ExIt). BRExIt aims to (1) improve
feature shaping in the apprentice, with a policy
head predicting opponent policies as an auxiliary
task, and (2) bias opponent moves in planning
towards the given or learnt opponent model, to
generate apprentice targets that better approximate
a best response. In an empirical ablation on
BRExIt’s algorithmic variants against a set of fixed
test agents, we provide statistical evidence that
BRExIt learns better performing policies than ExIt.
Code available at: https://github.com/Danielhp95/
on-opponent-modelling-in-expert-iteration-code.
Supplementary material available at https:
//arxiv.org/abs/2206.00113.

1 Introduction
Reinforcement learning has been successfully applied in in-
creasingly challenging settings, with multi-agent reinforce-
ment learning being one of the frontiers that pose open prob-
lems [Hernandez-Leal et al., 2017; Albrecht and Stone, 2018;
Nashed and Zilberstein, 2022]. Finding strong policies for
multi-agent interactions (games) requires techniques to selec-
tively explore the space of best response policies, and tech-
niques to learn such best response policies from gameplay.
We here contribute a method that speeds up the learning of
approximate best responses in games.

State-of-the-art training schemes such as population based
training with centralized control [Lanctot et al., 2017; Liu
et al., 2021] employ a combination of outer-loop training
schemes and inner-loop learning agents in a nested loop fash-
ion [Hernandez et al., 2019]. In the outer loop, a combination
of fixed policies is chosen via game theoretical analysis to act

as static opponents. Within the inner loop, a reinforcement
learning (RL) agent repeatedly plays against these static op-
ponents, in order to find an approximate best response policy
against them. In theory, any arbitrary RL algorithm could
be used as such a policy improvement operator/best re-
sponse oracle in the inner loop. The best response policy
found is then added to the training scheme’s population, and
the outer loop continues, constructing a population of increas-
ingly stronger policies over time. This technique has been
successfully applied in highly complex environments such as
Dota 2 [Berner et al., 2019] and Starcraft II [Vinyals et al.,
2019], with PPO [Schulman et al., 2017] and IMPALA [Es-
peholt et al., 2018] respectively used as policy improvement
operators.

The large number of training episodes required by modern
deep RL (DRL) algorithms as policy improvement operators
makes the inner loop of such training schemes a computa-
tional bottleneck. In this paper we accelerate approximating
best responses by introducing Best Response Expert Itera-
tion (BRExIt). We extend Expert Iteration (ExIt) [Anthony et
al., 2017], famously used in AlphaGo [Silver et al., 2016], by
introducing opponent models (OMs) in both (1) the appren-
tice (a deep neural network), with the aim of feature shaping
and learning a surrogate model, and (2) the expert (Monte
Carlo Tree Search), to bias its search towards approximate
best responses to the OMs, yielding better targets for the ap-
prentice. BRExIt thus better exploits OMs that are available
in centralized training approaches, or also in Bayesian set-
tings which assume a given set of opponents [Oliehoek and
Amato, 2014].

For the case of given OMs that are computationally too
demanding for search, but which can be used to generate
training games, we also test a variant of BRExIt that uses
learned surrogate OMs instead. In the game of Connect4, we
find BRExIt learns significantly stronger policies than ExIt
with the same computation time, alleviating the computa-
tional bottleneck in training towards a best response.

2 Related work
BRExIt stands at the confluence of two streams of literature:
improving the sample efficiency of the ExIt framework (Sec-
tion 2.1), and incorporating opponent models within deep re-
inforcement learning (Section 2.2).

https://github.com/Danielhp95/on-opponent-modelling-in-expert-iteration-code
https://github.com/Danielhp95/on-opponent-modelling-in-expert-iteration-code
https://arxiv.org/abs/2206.00113
https://arxiv.org/abs/2206.00113


2.1 Expert Iteration and improvements

Expert Iteration [Anthony et al., 2017] combines planning
and learning during training, with the goal of finding a pa-
rameterized policy πθ (where θ ∈ Rn) that maximizes a re-
ward signal. The trained policy can either be used within a
planning algorithm or act as a standalone module during de-
ployment without needing environment models.

ExIt’s two main components are (1) the expert, tradition-
ally an MCTS procedure [Browne et al., 2012], and (2) the
apprentice, a parameterized policy πθ, usually a neural net-
work. In short, the expert takes actions in an environment us-
ing MCTS, generating a dataset of good quality moves. The
apprentice updates its parameters θ to better predict both the
expert’s actions and future rewards. The expert in turn uses
the apprentice inside MCTS to bias its search. Updates to the
apprentice yield higher quality expert searches, yielding new
and better targets for the apprentice to learn. This iterative im-
provement constitutes the main ExIt training loop, depicted at
the top of Figure 1.

Significant effort has been aimed at improving ExIt, e.g.
exploring alternate value targets [Willemsen et al., 2021]
or incorporating prioritized experience replay [Schaul et al.,
2015], informed exploratory measures [Soemers et al., 2020]
or domain specific auxiliary tasks for the apprentice [Wu,
2019]. BRExIt improves upon ExIt by deeply integrating op-
ponent models within it.

2.2 Opponent modelling in DRL

Policy reconstruction methods predict agent policies from en-
vironment observations via OMs [Albrecht and Stone, 2018],
which has been shown to be beneficial in collaborative [Car-
roll et al., 2019], competitive [Nashed and Zilberstein, 2022]
and mixed settings [Hong et al., 2018]. Deep Reinforcement
Opponent Modelling (DRON) was one of the first works com-
bining DRL with opponent modelling [He et al., 2016]. The
authors used two networks, one that learns Q-values using
Deep Q-Network (DQN) [Mnih et al., 2013], and another that
learns an opponent’s policy by observing hand-crafted oppo-
nent features. Their key innovation is to combine the output
of both networks to compute aQ-function that is conditioned
on (a latent encoding of) the approximated opponent’s pol-
icy. This accounts for a given agent’sQ-value dependency on
the other agents’ policies. Deep Policy Inference Q-Network
(DPIQN) [Hong et al., 2018] brings two further innovations:
(1) merging both modules into a single neural network, and
(2) baking the aforementioned Q function conditioning into
the neural network architecture by reusing parameters from
the OM module in the Q function.

OMs within MCTS have been shown to improve
search [Timbers et al., 2022] when assuming access to ground
truth opponent models, or partially correct models [Goodman
and Lucas, 2020]. As auxiliary tasks for the apprentice, OMs
have been used in ExIt to predict the follow-up move an op-
ponent would play in sequential games [Wu, 2019]. BRExIt
both learns opponent models as an auxiliary task, and uses
them inside of MCTS.

3 Background

Section 3.1 introduces relevant RL and game theory con-
structs, followed by the approach to opponent modelling used
in BRExIt in Section 3.2 and the inner workings of ExIt in
Section 3.3.

3.1 Multiagent Reinforcement Learning

Let E represent a fully observable stochastic game with n
agents, state space S, shared action space A and shared pol-
icy space Π. Policies are stochastic mappings from states
to actions, with πi : S × A → [0, 1] denoting the ith
agent’s policy, and π = [π1, . . . , πn] the joint policy vec-
tor, which can be regarded as a distribution over the joint
action space. T : S × A × S → [0, 1] is the transition
model (the environment dynamics), determining how an envi-
ronment state s changes to a new state s′ given a joint action
a. Ri : S×A×S → R is agent i’s reward function. Git ∈ R
is the return from time t for agent i, the accumulated reward
obtained by agent i from time t until episode termination;
γ ∈ (0, 1] is the environment’s discount factor. When con-
sidering the viewpoint of a specific agent i, we decompose
a joint action vector a = (ai,a−i) and joint policy vector
π = (πi,π−i) into the individual action or policy for agent
i, and the other agents denoted by −i.

The state-value function V πi : S → R denotes agent i’s
expected cumulative reward from state s onwards assuming
all agents act as prescribed by π.

V πi (s) =
∑
a∈A

π(a|s)∑
s′∈S

T (s′|s, ai,a−i)[Ri(s, ai,a−i, s
′) + γV πi (s′)]

Agent i’s optimal policy depends on the other policies:

π∗i (·|s) = arg max
πi

V
(πi,π−i)
i (s) (1)

Assuming π−i to be stationary, agent i’s optimal policy
π∗i is also called a best response π∗i ∈ BR(π−i), where
BR(π−i) denotes the set of all best responses against π−i.
Our goal is to train a system to (1) predict and encode what is
knowable about the opponents’ policies π−i and (2) compute
a best response to that.

3.2 Opponent modelling in DRL

We follow the opponent modelling approach popularized by
DPIQN [Hong et al., 2018], which uses a neural network
to both learn opponent models and an optimal Q-function.
The latter is learnt by minimising the loss function LQ of
DQN [Mnih et al., 2013]. Opponent modelling is an auxil-
iary task, trained by minimising the cross-entropy between
one-hot encoded observed action for each agent j, aj , and
their corresponding predicted opponent policies at state s,
π̂j(·|s), defined as the policy inference loss LPI in Equa-
tion 2. These two losses are combined into LDPIQN with an



adaptive weight to improve learning stability.

LPI = − 1

N

N∑
j=0

aj log(π̂j(·|s)) (2a)

LDPIQN =
1√
LPI
LQ + LPI (2b)

BRExIt makes use of both the policy inference loss for its
OMs and the adaptive learning weight to regularize its critic
loss. However, instead of learning a Q-function as a critic,
BRExIt learns a state-value function V , as suggested by pre-
vious work [Hernandez-Leal et al., 2019].

3.3 Expert Iteration
We use an open-loop MCTS implementation [Silver et al.,
2018] as the expert; tree nodes represent environment states
s, and edges (s, a) represent taking action a at state s. Each
edge stores a set of statistics:

{N(s, a), Q(s, a), P (s, a), i, An} (3)

N(s, a) is the number of visits to edge (s, a). Q(s, a) is the
mean action-value for (s, a), aggregated from all simulations
that have traversed (s, a). P (s, a) is the prior probability of
following edge (s, a). ExIt uses the apprentice policy to com-
pute priors, P (s, a) = πθ(a|s). One of our contributions is
adding opponent-awareness to the computation of these pri-
ors. Finally, index i denotes the player to act in the node and
An indicates the available actions.

For every state s encountered by an ExIt agent during a
training episode, the expert takes an action a computed by
running MCTS from state s and selecting the action of the
root node’s most visited edge (s, a). During search, the tree is
traversed using the same selection strategy as AlphaZero [Sil-
ver et al., 2018]. Edges (s, a) are traversed following the
most promising action according to the PUCT formula:

arg max
a

Q(s, a) + CPUCT
P (s, a)

√∑
a′ N(s, a′)

1 +N(s, a)
, (4)

where CPUCT is a tunable constant. The apprentice πθ
is a distillation of previous MCTS searches, and provides
P (s, a), thus biasing MCTS towards actions that were previ-
ously computed to be promising. Upon reaching a leaf node
with state s′, we backpropagate a value given by a learnt state
value function Vφ(s′) with parameters φ ∈ Rn trained to
regress against observed returns.

After completing search from a root node representing
state s, the policy πMCTS(·|s) can be extracted from the
statistics stored on the root node’s edges. This policy is stored
as a training target for the apprentice’s policy head to imitate:

πMCTS(a|s) =
N(s, a)∑
a′ N(s, a′)

(5)

As shown in the top right corner of Figure 1 ExIt builds a
dataset containing a datapoint for each timestep t:

{st, πMCTS(·|st), Git} (6)

The top left corner of Figure 1 shows an actor-critic archi-
tecture, used as the apprentice, with a policy head πθ, and a

value head Vφ. A cross-entropy loss is used to train the ac-
tor towards imitating the expert’s moves, and a mean-square
error loss is used to update the critic’s state value function
towards observed returns Git.

4 BRExIt: Opponent modelling in ExIt
We present Best Response Expert Iteration (BRExIt), an ex-
tension on ExIt that uses opponent modelling for two pur-
poses. First, to enhance the apprentice’s architecture with
opponent modelling heads, acting as feature shaping mech-
anisms – see Subsection 4.1. Second, to allow the MCTS
expert to approximate a best response against a set of oppo-
nents: πMCTS ∈ BR(π−i) – see Subsection 4.3. We visu-
ally compare BRExIt and ExIt in Figure 1.

4.1 Learning opponent models in sequential games
Previous approaches to learn opponent models used observed
actions as learning targets, coming from a game theoretical
tradition where individual actions can be observed but not
the policy that generated them [Brown, 1951]. However, the
centralized population-based training schemes which moti-
vate our research already require access during training to
all policies in the environment, both for the training agent
and the opponents’ policies. We further exploit this assump-
tion by separately testing two options for the learning tar-
gets in the policy inference loss from Equation 2: the one-
hot encoded observed opponent actions, or the full distribu-
tions over actions computed by the opponents during play.
As a clarifying example, imagine a uniform random policy
for the game of Rock-Paper-Scissors where it plays rock for
a given round. It’s on-hot encoded action will be [Rock :
1, Paper : 0, Scirros : 0] and the corresponding full distri-
bution encoding would place equal weight over all actions:
[Rock : 1

3 , Paper : 1
3 , Scirros : 1

3 ].
Prior work has typically focused on fully observable simul-

taneous games, where a shared environment state is used by
all agents to compute an action at every timestep. Thus, if
agent i wanted to learn models of its opponents’ policies,
storing (a) each of i’s observed shared states and (b) oppo-
nent actions, was sufficient to learn opponent models. We ex-
tend this to sequential games, where agents take turns acting
based on individual states, in the following way. BRExIt aug-
ments the dataset collected by ExIt, specified in Equation 6,
by adding (1) the state which each opponent agent j 6= i ob-
served and (2) either only the observed opponent actions or
the full ground truth action distributions given by the oppo-
nent policies in their corresponding turn. The data collec-
tion process for sequential environments is described in Al-
gorithm 1. Formally, for the BRExIt agent acting at timestep
t and its no opponents acting at timesteps t + 1 to t + no,
BRExIt adds to its dataset either the observed action of every
agent j, or their policy πj evaluated at the state of their turn.

{st, πMCTS(·|st), {st+j , πj(·|st+j)}no
j=1, G

i
t} (7)

4.2 Apprentice Representation
BRExIt’s three headed apprentice architecture extends ExIt’s
actor-critic representation with opponent models as per
DPIQN’s design [Hernandez-Leal et al., 2019], depicted on



Figure 1: Illustration of ExIt (top half) and BRExIt (bottom half) for a 2-player game. BRExIt bases the decision on how to compute edge
priors based on whose turn a node corresponds to. For opponent nodes, during training, these action priors can come from the true opponent’s
policy or from the apprentice’s opponent model heads π̂. BRExIt adds an opponent modelling loss by also gathering the states observed by
the opponent st+1 and either the output of their policy π1(·|st+1), or a corresponding one-hot encoded action.

the bottom left of Figure 1 for a single opponent. This archi-
tecture reuses parameters from the OM as a feature shaping
mechanism for both the actor and the critic. It takes as input
an environment state st ∈ S for a timestep t, which can corre-
spond to the observed state of any agent. It features 3 outputs:
(1) the apprentice’s actor policy πθ(st) (2) the state-value
critic V πθ,π̂Ψ

φ (st) (3) the opponent models π̂ψj (st) ∈ π̂Ψ,
where Ψ contains the parameters for all opponent models and
ψj ⊂ Ψ the parameters for opponent model head j.

On certain sequential games the distribution of states en-
countered by each agent might differ, and so the actor-critic
head and each of the OM heads could each be trained on dif-
ferent state distributions. In practice this means that the out-
put of one of these heads might only be usable if the input
state st for a timestep t comes from the distribution it was
trained on; however, the OM can in any case help via feature
shaping. This does not apply to simultaneous games where
all agents observe the same state.

4.3 Opponent modelling inside MCTS
BRExIt follows Equation 8 to compute the action priors
P (s, a) from Equation 4 for a node with player index j, no-
tably using opponent models in nodes within the search tree
that correspond to opponents’ turns. This process is exem-
plified in the lower middle half of Figure 1. Such opponent
models can be either the ground truth opponent policies (the
real opponent policiesπ−i) by exploiting centralized training
scheme assumptions, or otherwise the apprentice’s learnt op-
ponent models π̂ψ . This is a key difference from ExIt, which
always uses the apprentice’s πθ to compute P (s, a).

P (s, a) =


πθ (a|s) j == BRExIt player index

πj−i(a|s) For ground truth models

π̂ψj (a|s) For learnt opponent models

(8)

By using either the ground truth or learnt opponent models,
we initially bias the search towards a best response against
the actual policies in the environment. However, note that
initial P (s, a) values will be overridden by the aggregated
simulation returns Q(s, a), as with infinite compute MCTS



converges to best response against a perfectly rational player,
whose actions may deviate from the underlying opponent’s
policy. Thus, BRExIt’s search maintains the asymptotic be-
haviour of MCTS while simultaneously priming the construc-
tion of the tree towards areas which are likely to be explored
by the policies in the environment.

In contrast to BRExIt, ExIt biases its expert search towards
a best response against the apprentice’s own policy, by using
the apprentice πθ to compute P (s, a) at every node in the tree.
MCTS here assumes that all agents follow the same policy as
the apprentice, whereas in reality agents might follow any ar-
bitrary policy. Not trying to exploit the opponents it is trained
against, ExIt generates more conservative searches. Recent
studies show that this conservativeness can be detrimental in
terms of finding diverse sets of policies throughout training
for population-based training schemes [Balduzzi et al., 2019;
Liu et al., 2021]. Instead, they advocate for a more direct
computation of best responses against known opponents as
a means to discover a wider area of the policy space. This
allows the higher level training scheme to better decide on
which opponents to use as targets to guide future exploration.
We argue that BRExIt has this property built-in, by actively
biasing its search towards a best response against ground truth
opponent policies. Future work could investigate this claim.

We could have designed BRExIt to be even more exploita-
tive towards opponent models, by masking actions sampled
from these models as part of the environment dynamics.
While this would yield actions very specifically targeted to
respond to the modelled policies, it makes such best reponses
very brittle, and can be problematic especially for imperfect
OMs. In contrast, we propose using opponent models as pri-
ors in BRExIt, such that planning can still improve upon the
opponent policies; this results in more robust learning targets.

Algorithms 1, 2 and 3 depict BRExIt’s data collection,
model update logic and overarching training loop respectively
for a sequential environment. Coloured lines represent our
contributions w.r.t ExIt.

5 Experiments & Discussion
We are trying to answer the following two questions: Pri-
marily, is BRExIt more performant than ExIt at distilling a
competitive policy against fixed opponents into its appren-
tice? Secondarily, are full distribution targets for learning op-
ponent models preferable over one-hot action encodings?

The environment: We conducted our experiments in the
fully observable, sequential two-player game of Connect4,
which is computational amenable and possesses a high de-
gree of skill transitivity [Czarnecki et al., 2020]. We decided
on using a single environment in order to obtain statistically
significant results through a larger number of runs over gran-
ular algorithmic ablations. We acknowledge the limitations
of using a single test domain.

Test opponents: We generated two test agents
πweak, πstrong by freezing copies of a PPO [Schulman
et al., 2017] agent trained under δ = 0-Uniform self-
play [Hernandez et al., 2019] after 200k and 600k episodes.
Motivated by population-based training schemes, we also
used an additional opponent policy πmixed, which randomly

Algorithm 1: BRExIt data collection

Input: (apprentice πθ, opp. models π̂ψ−i, critic Vφ)
Input: Opponent policies: π−i
Input: Environment: E = (P, ρ0)

1 Initialize dataset: D = [ ];
2 Initialize time t← 0;
3 Sample initial state s0 ∼ ρ0;
4 while st is not terminal do
5 Search: at, tree = MCTS(st, πθ,π−i, Vψ);
6 Act in the game st+1, rt ∼ P(st, at);
7 Get from tree: πMCTS(st, a) = Nroot(st,a)∑

a′ Nroot(st,a′)
;

8 for j = 1, . . . , |π−i| do
9 Sample opp. action: at+j ∼ πj−i(st+j);

10 Act in the game st+j , ∼ P(st+j , at+j)
11 end
12 D ∪ {st, πmcts(st), {st+j ,πj−i(st+j)}

|πo|
j=1 , ri};

13 t← t+ |π−i|;
14 end
15 return D;

Algorithm 2: BRExIt model update

Input: Three head network: NN = (πθ, π̂
ψ
−i, Vφ)

Input: Dataset: D
1 for t = 0, 1, 2, . . . do
2 Sample n datapoints from D:
3 (st, rt, πMCTS(st, ·), ri,

{st+j ,πj−i(·|st+1)}|π̂
ψ
−i|

j=1 )1,...,n;
4 MSE value loss: Lv = (v − Vφ(st))

2 ;
5 CE policy loss Lπ = πMCTS(st) log (πθ(st));
6 CE policy inference loss:

LPI = 1
|π−i|

∑|π−i|
j=1 πj−i(st+j) log (π̂

ψj
−i (st+j));

7 Policy inference weight: λ = 1√
LPI

;
8 Weighted final loss Ltotal = λ(Lv + Lπ) + LPI ;
9 Backpropagate∇Ltotal through θ,ψ,φ ;

10 end

Algorithm 3: BRExIt training loop

Input: Three head network: NN = (πθ, π̂
ψ
−i, Vφ)

Input: Opponent policies: π−i
1 for training iteration = 0, 1, 2, . . . do
2 Algo. 1: D = DatasetCollection(NN,π−i);
3 Algo. 2: NN = UpdateApprentice(NN,D);
4 end
5 return NN



selects one of the test agents every episode.
Trained agents: We independently trained 7 types of

agents for 48 wall-clock hours each, performing an additive
construction from ExIt to BRExIt. ExIt is the original algo-
rithm, ExIt-OMFS denotes ExIt using OMs only for feature
shaping. BRExIt-OMS additionally uses learnt OMs during
search and BRExIt uses the ground truth OMs during search.
For the agents using OMs, we trained both a version using full
action distributions as action targets and another with one-hot
encoded action targets. Each algorithm was independently
trained 10 times against the 3 test opponents, yielding a total
of 280 training runs. Following statistical practices [Agarwal
et al., 2021] we use Inter Quartile Metrics (IQM) for all re-
sults, discarding the worst and best performing 25% runs to
obtain performance metrics less susceptible to outliers.

5.1 On BRExIt’s performance vs. ExIt
To answer our first question, Figure 2 shows the evolution
of the winrate of each of the ablation’s apprentice policies
throughout training. A datapoint was computed every policy
update (i.e every 800 episodes) by evaluating the winrate of
the apprentice policy against the opponent over 100 episodes.
(Note that the difference in number of episodes between all
ablations depends on the average episode length over the 48h
of training time, which can vary as a function of both play-
ers involved.) Figure 3 analyzes these results and shows the
probability of improvement (PoI) that one ablation has over
another, defined as the probability that algorithm X would
yield an apprentice policy which has a higher winrate against
its training opponent that algorithm Y [Agarwal et al., 2021].
All agents are using full distribution OM targets here.

Figure 2 shows that BRExIt style agents consistently
achieve a higher winrate than ExIt agents. BRExIt regularly
outperforms BRExIt-OMS (77% PoI), successfully exploit-
ing the centralized assumption of having opponent policies
available during search for extra performance. If opponent
policies can only be sampled for training games but not dur-
ing search, using learnt OMs during search is still benefi-
cial, as we see that BRExIt-OMS consistently outperforms
ExIt (90 % PoI). Surprisingly, ExIt-OMFS performs worse
than ExIt by a significant margin (the latter has a 80% PoI
against the former), providing empirical evidence that OMs
with static opponents can be detrimental for ExIt if OMs are
not exploited within MCTS. This goes against previous re-
sults [Wu, 2019], which explored OMs within ExIt merely as
a feature shaping mechanism and claimed modest improve-
ments when predicting the opponent’s follow-up move. Dif-
ferences may be attributed to the fact that we model the op-
ponent policy on the current state, instead of the next state.

In summary, with BRExIt (using ground truth OMs) and
BRExIt-OMS (using learnt OMs) featuring a > 97% and
> 91% PoI respectively against vanilla ExIt, our empirical
results warrant the use of our novel algorithmic variants in-
stead of ExIt whenever opponent policies are available for
training.

5.2 On full distribution VS one-hot targets
To answer our second question, we conducted Kolmogorov-
Smirnov tests comparing full action distribution targets to

(a) VS Weak agent

(b) VS Strong

(c) VS Mixed

Figure 2: The evolution of winrates for each ablation during train-
ing vs fixed opponents for 48h wall-clock time. Lines represent the
mean value the of final apprentice’s winrate over all runs. Higher is
better; shaded areas show 95% bootstrap confidence intervals.



Figure 3: Each row shows the probability (vertical marker) that the
algorithm X (left) trains its apprentice’s policy to reach a higher
winrate than algorithm Y (right) after the allotted 48h. Colored bars
indicate 95% bootstrap confidence intervals. Note that every training
run for both BRExIt and BRExIt-OMS yielded higher performing
policies than any run from ExIt-OMFS, and thus their comparisons
have a 100% probability of improvement over ExIt-OMFS.

one-hot encoded action targets for OMs. The samples we
compared were the sets of winrates at the end of training, one
datapoint per training run. Table 1 shows the results: There
is no statistical difference between agents trained with algo-
rithms using one-hot encoded OM targets when compared
to using full action distributions. We obtain p � 0.05 for
each algorithmic combination, so we cannot reject the null
hypotheses that both data samples come from the same dis-
tribution; the only exception being ExIt-OMFS, which shows
a statistically significant decrease in performance when using
one-hot encoded targets.

These results run contrary to the intuition that richer tar-
gets for opponent models will in turn improve the quality of
the apprentice’s policy. However, we observed that full dis-
tributional targets do yield OMs with better prediction capa-
bilities, as indicated by lower loss of the OM during training.
This hints at the possibility that OM’s usefulness increases
only up to a certain degree of accuracy, echoing recent find-
ings [Goodman and Lucas, 2020]. Hence, while BRExIt does
require access to ground truth policies during search, search
in BRExIt-OMS achieves similar performance with opponent
models trained on action observations, which is promising for
transferring BRExIt-OMS into practical applications.

6 Conclusion
We investigated the use of opponent modelling within the
ExIt framework, introducing the BRExIt algorithm. BRExIt
augments ExIt by introducing opponent models both within
the expert planning phase, biasing its search towards a best
response against the opponent, and within the apprentice’s
model, to use opponent modelling as an auxiliary task. In
Connect4, we demonstrate BRExIt’s improved performance
compared to ExIt when training policies against fixed agents.

There are multiple avenues for future work. At the level of
population based training schemes (such as self-play), future

Table 1: Testing potential improvements of full distribution targets
to one-hot encoded action targets. p-values are from two-sample
Kolmogorov-Smirnov tests.

Base Algorithm Opponent p-value Distr. targets
signif. better?

BRExIt Weak 0.930 No
BRExIt-OMS Weak 0.931 No
ExIt-OMFS Weak 0.930 No
BRExIt Strong 0.930 No
BRExIt-OMS Strong 0.999 No
ExIt-OMFS Strong 0.930 No
BRExIt Mixed 0.142 No
BRExIt-OMS Mixed 0.930 No
ExIt-OMFS Mixed 0.025 Yes

work can focus on measuring whether the quality of popula-
tions generated by different training schemes using BRExIt
surpasses that of populations where ExIt is used as a policy
improvement operator. In addition, search methods can strug-
gle with complex games due to their high branching factor
– simultaneous move games for example have combinatorial
action spaces – which could be alleviated by using BRExIt’s
opponent models to narrow down the search space.
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