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Abstract

We study a Markov decision problem in which the state space is the set of finite marked
point configurations in the plane, the actions represent thinnings, the reward is propor-
tional to the mark sum which is discounted over time, and the transitions are governed
by a birth-death-growth process. We show that thinning points with large marks is opti-
mal when births follow a Poisson process and marks grow logistically. Explicit values for
the thinning threshold and the discounted total expected reward over finite and infinite
horizons are also provided. When the points are required to respect a hard core distance,
upper and lower bounds on the discounted total expected reward are derived.

2020 Mathematics Subject Classification: 60G55, 90C40.

1 Introduction

The classic Markov decision process [3, 8, 22] on a finite state space X and action set A is
defined as follows. Write A(x) for the subset of A which contains all actions that may be
taken in state x ∈ X . Then, a policy φ is a procedure for the selection of an action at each
decision epoch i ∈ N0. Such a policy could be random or deterministic, and in principle take
into account the entire history of the process. Often though, one may restrict attention to the
class of deterministic Markov policies. Such a policy φ = (φi)

∞
i=0 is a sequence of mappings

φi : X → A that, at time i, assign an action a = φi(x) ∈ A(x) to the current state x. In
doing so, a direct reward r(x, a) is earned and a probability mass function p(·|x, a) on X
governs the next state of the process. Being Markovian, only the current state and action are
important; the past history is irrelevant. A policy (φi)i is said to be stationary if its members
φi do not depend on the time i.

Let (Xi, Yi) denote the stochastic process of states Xi and actions Yi. Write E
φ
x for its

expectation when the initial state X0 = x and the transitions are driven by policy φ. Then
an optimal policy maximises the discounted total expected reward

(1) vφα(x) = E
φ
x

[

∞
∑

i=0

αir(Xi, Yi)

]

,

0 ≤ α < 1. The reward function is usually assumed to be bounded, in which case (1)
is well-defined. When the state and action spaces are both finite, it is well known [22,
Theorem 5.5.3b] that it suffices to consider only Markov policies and, by [22, Theorem 6.2.10],
one may restrict oneself even further to the class of Markov policies that are deterministic and
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stationary. The maximal discounted total expected reward can be found by policy iteration
[22, Theorem 6.4.2] or value iteration, also known as successive approximation or dynamic
programming.

When the cardinality of the state or action space is infinite, policy iteration is not guar-
anteed to converge in a finite number of steps. The dynamic programming approach on the
other hand is amenable to generalisation to more general state and action spaces. Results
in this direction include [4, 7, 10, 27]. The tutorial by Feinberg [6] provides an exhaustive
overview with particular emphasis on inventory control problems.

In this paper, we concentrate on the case where the state space X consists of finite simple
marked point patterns in two-dimensional Euclidean space. Markov decision theory using
spatial point process models has found many applications in mobile network optimisation.
However, the role of the point process is auxiliary in that it is used to model the spatial
distribution of users, base stations and so on, from which coverage probabilities and other
performance characteristics of the network can be calculated [1, 13, 16, 11]. Spatial point
process models are also convenient in multi-target tracking [14] and their void probabilities
or divergence measures can form the basis for observer trajectory optimisation [2].

Our focus of interest here is to assume that the actions operate directly on the point
process. More precisely, we assume that, at decision epoch i, an action φi(x) maps x into a
subset of x. In other words, the action set A(x) is the finite power set of x. When the decision
to retain a point or not is based on the mark or the inter-point distances, it can be interpreted
as a (mark-)dependent thinning [17, 18]. The set-up described above is appropriate for
harvesting problems in forestry [19]. Here, the classical strategy is to use discretised stand
based growth tables and dynamic programming [26]. Point pattern based policies have been
rarer due to ‘a lack of models and to difficulties in selecting trees to be removed’ [20] and
tend to be simulation based [9, 21, 23, 24]. One example is German thinning, which enhances
natural selection by picking trees whose diameter at breast height is at most d and fells a
fraction of them. More formally, if each Xi consists of tree locations marked by diameter
at breast height, German thinning fells a fraction of the set {(x,m) ∈ Xi : m ≤ d} and
the Markov transition kernel governs the growth of the remaining trees (for example using
the logistic growth curve or extensions such as the Richards curve [25]) as well as natural
births and deaths (e.g. a hardcore model [12], the asymmetric soft core models of [15] or the
dynamic models of [23]). French thinning is similar, except that a fraction of trees with large
rather than small sizes is removed to stimulate forest rejuvenation. In either case, picking a
policy amounts to choosing the level d. Simulations suggest that French thinning might be
the better strategy [9].

The paper’s plan is as follows. In Section 2, we study a decision process in which the
actions consist of deleting a subset of the current points and the reward is proportional to
the marks. The stochastic process that governs the dynamics is a birth-and-death process
with independent deaths and a Poisson process of births; the marks grow logistically. We
calculate the discounted total expected reward function over finite and infinite horizons and
show that French thinning is an optimal policy. An explicit expression for the mark threshold
d is derived too. In Section 3, we move on to allow interaction between the points and replace
the Poisson birth process by one in which no point is allowed to come too close to another
point. In this setting, we provide upper and lower bounds on the discounted total expected
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reward function over finite and infinite horizons. The tightness of the bounds is investigated
by means of some simulated examples. We conclude by mentioning some topics for further
research.

2 Marked Poisson process model with logistic growth

2.1 Definition of the model

To define a Markov decision process [22, Section 2.3.2], let the state space X consists of finite
simple marked point patterns on a compact set W ⊂ R

2 with marks in L = [0,K] for some
K > 0. When X is equipped with the Borel σ-algebra of the weak topology, by the discussion
below [5, Prop 9.1.IV], X is Polish. When at time i ∈ N0 the process is in state x, a thinning
action is carried out, resulting in a new state a that consists of all retained points a ⊂ x.
Thus, the action space A(x) is finite and contains all subsets of x. Define a stationary reward
function ri(x,a) = r(x,a) by

(2) r(x,a) = R
∑

(x,m)∈x\a

m, x ∈ X ,a ⊂ x.

Thus, the reward is proportional to the sum of the marks of all removed points. When R > 0,
r(·, ·) ≥ 0. Since the mark content in an R

+-marked point process is a random variable [5,
Proposition 6.4.V], r is well-defined.

Upon taking action a in state x, the dynamics that lead to the next state are modelled
as a birth-death-growth process. Specifically, the marks of the retained points (x,m) ∈ a

grow according to the well-known logistic model that was proposed around 1840 by Verhulst
and Quetelet [25]. In this model, when the mark at time 0 is m0 > 0, the mark at time
n ∈ N ∪ {0} is

(3) g(n)(m0) =
K

1 +
(

K
m0

− 1
)

e−λn
.

By convention, g(n)(0) = 0. The parameter λ > 0 governs the rate of growth and K ≥ m0 ≥ 0
is an upper bound on the size. In combination with independent births and deaths, the next
state is defined by the following dynamics:

• delete x \ a;

• independently of other points, let each (xi,mi) ∈ a die with probability pd ∈ (0, 1)
(natural deaths) and otherwise grow to (xi, g

(1)(mi)) as in (3);

• add a Poisson process on W with intensity β > 0 and mark its points independently
according to a probability measure ν on [0,K].

Write (Xi, Yi)
∞
i=0 for the sequence of successive states Xi and actions Yi. A randomised

policy φ = (φi)
∞
i=0 is a sequence of conditional probability kernels φi(·|X0, Y0, . . . , Xi−1, Yi−1,

Xi) on A to generate Yi based on the history of the process such that φi(A(xi)|x0,a0, . . . ,xi) =
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1. If the policy is Markov and deterministic, Yi is simply a function of Xi, and one may write
Yi = φi(Xi). Then, for 0 ≤ α < 1, the infinite horizon α-discounted total expected reward
function (1) under policy φ = (φi)

∞
i=0 with initial state X0 = x is

(4) vφα(x) = E
φ





∞
∑

i=0

αi



R
∑

(x,m)∈Xi\Yi

m



 | X0 = x



 .

The following Lemma shows that the model is well-defined for the birth-death-grow dy-
namics defined above.

Lemma 1 The infinite horizon α-discounted total expected reward function vφα(x), x ∈ X ,
defined in (4) is finite for all 0 ≤ α < 1, all R > 0 and all policies φ.

Proof: Pick x ∈ X and write n(x) < ∞ for its cardinality. Since the growth function (3) is
bounded by K,

E





∑

(x,m)∈X0\Y0

m | X0 = x



 ≤ Kn(x).

For i > 0, Xi is the union of survivors from x, from subsequent generations starting with
X1 \X0 up to Xi−1 \Xi−2 and points born in the last decision epoch. Therefore, recalling
the birth and death dynamics,

E





∑

(x,m)∈Xi\Yi

m|X0 = x



 ≤ Kn(x)(1− pd)
i +Kβ|W |

i−1
∑

k=0

(1− pd)
k

where |W | denotes the area of W . Hence

vφα(x) ≤ RKn(x)

∞
∑

i=0

αi(1− pd)
i +RKβ|W |

∞
∑

i=1

αi

i−1
∑

k=0

(1 − pd)
k.

For all pd ∈ (0, 1), the first series in the right hand side converges to 1/(1−α(1− pd)). Since

∞
∑

i=1

αi

i−1
∑

k=0

(1− pd)
k =

∞
∑

i=1

αi 1− (1− pd)
i

pd
≤

1

pd

∞
∑

i=1

αi < ∞

for all pd ∈ (0, 1), vφα(x) is finite. �

The reward function r itself is not bounded, so the (N) regime of [4, Chapter 9] applies.

2.2 Optimal policy and reward

The optimal α-discounted total expected reward v∗α(x) is defined as the supremum of the

vφα(x) over all policies, including randomised ones. In this section, we will show that French
thinning is optimal and give an explicit expression for the corresponding reward.
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By [4, Proposition 9.1], the supremum in the definition of v∗α(x) may be taken over the
class of Markov policies, and, by [4, Proposition 9.8], satisfies the equation

(5) v∗α(x) = max
a⊂x







R
∑

(x,m)∈x\a

+αE [v∗α(X) | x,a]







where X is distributed according to the one step birth-death-growth dynamics from state
x under action a. Observe that the optimality equations (5), x ∈ X , are not sufficient
conditions for v∗α. Nevertheless, v

∗
α(x) can be calculated as the limit of an iterative procedure

[4, Proposition 9.14] known as the dynamic programming algorithm. Set v0(x) = 0 for all
x ∈ X and set n = 1. Define, for every x ∈ X ,

vn(x) = max
a⊂x







R
∑

(x,m)∈x\a

m+ αE [vn−1(X) | x,a]







.

Then set n = n + 1 and repeat. This algorithm converges to v∗α(x) as n → ∞ by [4,
Proposition 9.14] but – in general – is of little help in constructing an optimal policy, let
alone a stationary one. Given a stationary policy φ, a necessary and sufficient condition for
it to be optimal is [4, Prop. 9.13]

(6) vφα(x) = max
a⊂x







R
∑

(x,m)∈x\a

+αE
[

vφα(X)|x,a
]







.

For our model, the dynamic programming algorithm does suggest an optimal deterministic
and stationary Markov policy.

Theorem 1 Consider the Markov decision process with state space X , action spaces A(x) =
{y ∈ X : y ⊂ x}, x ∈ X , reward function (2) with R > 0, and birth-death-growth dynamics
based on independent deaths with probability pd ∈ (0, 1), a Poisson birth process with intensity
β > 0 marked independently according to probability measure ν on [0,K] for K > 0 and
logistic growth function (3). Then, for 0 ≤ α < 1,

v∗α(x) = Rβ|W |
∞
∑

k=1

αk

∫ K

0
s(m) dν(m) +R

∑

(x,m)∈x

s(m),

where |W | is the area of W and

s(m) = sup
n∈N0

{

Kαn(1− pd)
n

1 +
(

K
m

− 1
)

e−λn

}

, m ∈ [0,K].

Furthermore, the optimal α-discounted total expected reward corresponds to a French thinning
that removes all points with a mark that is at least

d∗α = sup
n∈N0

{

K

1− e−nλ

(

αn(1− pd)
n − e−nλ

)

}

.
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For α = 1, the total expected reward v∗1(x) is infinite.

Proof: After initialising v0(x) = 0 for all x ∈ X , clearly the optimal expected reward at time
0 is v1(x) = R

∑

(x,m)∈x m, which is attained for action a = ∅, or, in other words, by removing
all points with mark greater than or equal to d1 = 0. The proof proceeds by induction. Set,
for n ∈ N,

(7) dn = max

{

0,K
α(1− pd)− e−λ

1− e−λ
, . . . , K

αn−1(1− pd)
n−1 − e−(n−1)λ

1− e−(n−1)λ

}

and suppose that the optimal α-discounted expected reward over n steps is attained by French
thinning at level dn and given by

(8) vn(x) = Rβ|W |
n−1
∑

k=1

αk

∫ K

0
sn−k(m) dν(m) +R

∑

(x,m)∈x

sn(m)

where, for 1 ≤ k ≤ n,

sk(m) = max
{

m,α (1− pd) g
(1)(m), . . . , αk−1 (1− pd)

k−1 g(k−1)(m)
}

.

Now, for n+ 1, the optimal finite horizon α-discounted expected reward is

vn+1(x) = max
a⊂x







R
∑

(x,m)∈x\a

m+ αE [vn(X) | x,a]







.

By the induction assumption, the discounted expectation αE [vn(X) | x,a] is the sum of

αRβ|W |
n−1
∑

k=1

αk

∫ K

0
sn−k(m) dν(m) = Rβ|W |

n
∑

k=2

αk

∫ K

0
sn+1−k(m) dν(m)

and contributions from the points in a that survive a decision epoch as well as from points
born in the interval between time n and n+ 1. These contributions are, respectively,

αR
∑

(x,m)∈a

(1− pd) sn(g(m))

and, using the Campbell–Mecke formula [5, Section 6.1],

αRβ|W |

∫ K

0
sn(m) dν(m).

The optimal policy assigns a point (x,m) ∈ x to x\a if and only if m ≥ α(1−pd)sn(g
(1)(m)).

By the induction assumption and (3), this is the case if and only if

(9) m ≥ αk(1− pd)
kg(k)(m) ⇔ m ≥ K

αk(1− pd)
k − e−kλ

1− e−kλ
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for all integers 1 ≤ k ≤ n. Consequently, dn+1 has the required form. For this allocation rule,
the reward is max

{

m,α (1− pd) sn(g
(1)(m))

}

= sn+1(m) and the induction step is complete.
Next, let n go to infinity and fix m ∈ [0,K]. Then s(m) is finite for all pd ∈ (0, 1) and

0 ≤ α < 1. Additionally, limn→∞ sn(m) = s(m). Thus, for any x ∈ X ,

R
∑

(x,m)∈x

sn(m) → R
∑

(x,m)∈x

s(m)

as n → ∞. Furthermore,

n−1
∑

k=1

αk

∫ K

0
sn−k(m) dν(m) →

∞
∑

k=1

αk

∫ K

0
s(m) dν(m), n → ∞,

because of dominated convergence applied to the doubly indexed sequence ak,n defined by
1 {k ≤ n− 1}αk

∫

sn−k dν. In conclusion, for each x ∈ X , limn→∞ vn(x) = v∗α(x), the optimal
α-discounted total expected reward [4, Proposition 9.14], and v∗α(x) has the claimed form.

To complete the proof, we need to show that v∗(x) is attained by the stationary deter-
ministic policy that retains all points with mark smaller than d∗α. Denote its infinite horizon
α-discounted total expected reward by

vd
∗

α (x) = E



R

∞
∑

i=0

αi
∑

(x,m)∈Xi

m1{m ≥ d∗α} | X0 = x





and focus on the contributions of each generation of points. A point (x,m) ∈ x, the initial
generation, yields a reward Rαn(1 − pd)

ng(n)(m) precisely when g(n−1)(m) is less than d∗α
but g(n)(m) ≥ d∗α. Since, as in (9), g(n)(m) ≥ d∗α if and only if

g(n)(m) ≥ αk(1− pd)
kg(n+k)(m)

for all k ∈ N0, we conclude that every point of x contributes Rs(m). The points that are
born in the first decision epoch (generation 1) yield the same total expected reward, but
this is discounted by α due to the later birth date. Similarly, the total expected reward of
points belonging to the second generation is discounted by α2, and so on. Tallying up, the
α-discounted total expected reward of generations k = 1, 2, . . . is

Rβ|W |
∞
∑

k=1

αk

∫ K

0
s(m) dν(m)

on application of the Campbell–Mecke formula. Finally add the contribution from the initial
generation to conclude that the threshold d∗α defines an optimal policy. Condition (6) is
readily verified. �

As a by-product, the proof of Theorem 1 derives the optimal α-discounted total expected
reward (8) for finite time horizons too, and French thinning with threshold (7) is an optimal
policy. The suprema in s(m) and d∗α are attained, which can be seen by considering the limit
for n → ∞.
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3 Hard core models with logistic growth

3.1 Bounds for the optimal discounted total expected reward

In this section, we refine the Poisson model of the previous section to the case where births
are governed by a hard core process. Thus, the state space XK consists of all finite simple
marked point patterns on a compact set W in the plane that contain no pair {x1, x2} such
that ||x1 − x2|| ≤ K with marks in L = [0,K]. For the motivating example from forestry in
which the marks correspond to the diameter at breast height, the condition ensures that all
trees can grow to their maximal size.

As in Section 2.1, when at time i ∈ N0 the process is in state x, a thinning action is
carried out, resulting in a new state a that consists of all retained points. The reward is
defined in (2).

The dynamics are modified in such a way that the hard core is respected. Specifically,
suppose that action a is taken in state x ∈ XK . The next state is then governed by the
following birth-death-growth process:

• delete x \ a;

• independently of other points, let each (xi,mi) ∈ a die with probability pd ∈ (0, 1) and
otherwise grow to (xi, g(mi)) for some bounded, continuous function g : [0,K] → [0,K]
satisfying m ≤ g(m) for m ∈ [0,K];

• add a hard core process on W with hard core distance K and intensity β > 0; mark
its points independently according to a probability measure ν on [0,K] and remove all
points that fall within distance K to a point in a.

In this framework, the reward function is bounded since the hard core condition implies
an upper bound on the number of points that can be alive at any time. We are therefore in
the (D) regime of [4, Chapter 9].

For x ∈ XK , define v∗α(x) as the supremum of (4) over all policies φ. By [4, Proposition 9.1]
it suffices to consider Markov policies only, and v∗α(x) is the limit of the dynamic program-
ming algorithm [4, Proposition 9.14]. The optimality condition (6) applies. Moreover, since
the action sets are finite, Corollary 9.17.1 in [4] guarantees the existence of an optimal de-
terministic stationary policy. An explicit expression seems hard to obtain. However, the
following bounds are available.

Theorem 2 Consider the Markov decision process with state space XK , action spaces A(x) =
{y ∈ XK : y ⊂ x}, x ∈ XK , reward function (2) with R > 0, and birth-death-growth
dynamics based on independent deaths with probability pd ∈ (0, 1), a hard core birth process
with intensity β > 0 marked independently according to probability measure ν on [0,K] for
K > 0 and growth function g. Write g(n)(m) for the n-fold composition of g.

For α ∈ [0, 1), initialise v0(x) = 0 for all x ∈ XK . Define, for n ∈ N and x ∈ XK ,

vn(x) = max
a⊂x







R
∑

(x,m)∈x\a

m+ αE [vn−1(X) | x,a]







.
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Then ṽn(x) ≤ vn(x) ≤ v̂n(x) where

ṽn(x) = R
∑

(x,m)∈x

s̃n(x,m) +Rβ

n−1
∑

k=1

αk

∫

W

∫ K

0
s̃n−k(w, l) dν(l)dw

v̂n(x) = R
∑

(x,m)∈x

ŝn(m) +Rβ|W |
n−1
∑

k=1

αk

∫ K

0
ŝn−k(l) dν(l)

with s̃0 = ŝ0 = 0 and, for n ∈ N,

ŝn(m) = max
{

m,α(1 − pd)g
(1)(m), . . . , αn−1(1− pd)

n−1g(n−1)(m)
}

and, writing b(x,K) for the closed ball centred at x with radius K,

s̃n(x,m) = max{m,α(1 − pd)g
(1)(m)− αKβ|b(x,K) ∩W |, . . . ,

αn−1(1− pd)
n−1g(n−1)(m)− αKβ|b(x,K) ∩W |

n−2
∑

i=0

αi(1− pd)
i}.

When the growth function is logistic,

s̃n(x,m) = max
i=0,...,n−1

{

Kαi(1− pd)
i

1 +
(

K
m

− 1
)

e−λi
− αKβ|W ∩ b(x,K)|

1 − αi(1− pd)
i

1− α(1− pd)

}

;

ŝn(m) = max
i=0,...,n−1

{

Kαi(1− pd)
i

1 +
(

K
m

− 1
)

e−λi

}

.

Proof: The proof proceeds by induction. For n = 0, evidently v0 ≤ ṽ0. Assume that
ṽk(x) ≤ vk(x) ≤ v̂k(x) for all k ≤ n and all x ∈ XK and that ṽk, v̂k have the required form.
Since

(10) vn+1(x) = max
a⊂x







R
∑

(x,m)∈x\a

m+ αE [vn(X) | x,a]







and vn(X) ≥ ṽn(X), let us consider the expectation of ṽn(X) under the hard core birth-death-
growth dynamics when action a is taken in state x. By the definition of ṽn and distinguishing
between surviving and new-born points,

E [ṽn(X) | x,a] = RE





∑

(x,m)∈X

s̃n(x,m) | x,a



+Rβ

n−1
∑

k=1

αk

∫

W

∫ K

0
s̃n−k(w, l) dν(l)dw

= R
∑

(x,m)∈a

(1− pd) s̃n(x, g
(1)(m)) +Rβ

n−1
∑

k=1

αk

∫

W

∫ K

0
s̃n−k(w, l) dν(l)dw

+Rβ

∫

W

∫ K

0
s̃n(w, l)1{w 6∈ UK(a)} dν(l)dw

9



where the symbol UK(a) signifies the union of closed balls with radius K around the points
in a. The calculation of the last term above relies on the Campbell–Mecke formula [5,
Section 6.1]. Now, the integral in the last line above can be written as

Rβ

∫

W

∫ K

0
s̃n(w, l) dν(l)dw −Rβ

∫

W

∫ K

0
s̃n(w, l)1{w ∈ UK(a} dν(l)dw

and is bounded from below by

(11) Rβ

∫

W

∫ K

0
s̃n(w, l) dν(l)dw −RKβ

∑

(x,m)∈a

∫

W

∫ K

0
1{w ∈ b(x,K)} dν(l)

where the induction assumption is invoked for the inequality s̃n ≤ K. Next, return to (10).
The bound on E [ṽn(X) | x,a] implies

vn+1(x) ≥ max
a⊂x







R
∑

(x,m)∈x\a

m+ αE [ṽn(X) | x,a]







≥ max
a⊆x

{R
∑

(x,m)∈x\a

m+

αR
∑

(x,m)∈a

[

(1− pd)s̃n(x, g
(1)(m))−Kβ|b(x,K) ∩W |

]

+Rβ
n
∑

k=1

αk

∫

W

∫ K

0
s̃n+1−k(w, l)dν(l)dw.

The policy that assigns (x,m) to x \ a if and only if

m ≥ α
[

(1− pd) s̃n(x, g
(1)(m))−Kβ|b(x,K) ∩W |

]

optimises the right hand side and, with

s̃n+1(x,m) = max
{

m,α (1− pd) s̃n(x, g
(1)(m))− αKβ|b(x,K) ∩W |

}

,

one sees that

vn+1(x) ≥ ṽn+1(x) = R
∑

(x,m)∈x

s̃n+1(x,m) +Rβ

n
∑

k=1

αk

∫

W

∫ K

0
s̃n+1−k(w, l) dν(l)dw,

an observation that completes the induction argument and therefore the proof of the lower
bound.

For the upper bound vn ≤ v̂n, as in the proof of Theorem 1, an induction proof applies
based on ŝn but with (11) replaced by the upper bound

Rβ

∫

W

∫ K

0
ŝn(w, l) dν(l)dw.

�

Over an infinite time horizon, the optimal α-discounted total expected reward is bounded
by the same functional forms, which coincide if α = 0.
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Corollary 1 The functions ŝn and s̃n defined in Theorem 2 take values in [0,K] and increase
monotonically to

ŝ(m) = sup
n∈N0

{

αn(1− pd)
ng(n)(m)

}

, m ∈ [0,K],

and, for x ∈ W and m ∈ [0,K],

s̃(x,m) = sup
n∈N0

{

αn(1− pd)
ng(n)(m)− αK|b(x,K) ∩W |

n−1
∑

i=0

αi(1− pd)
i

}

.

3.2 Simulation study

To assess the tightness of the bounds in Theorem 2, we calculated v̂n(x) and ṽn(x) in two
regimes, a dense one and a sparse one. For the inital pattern x, a sample from a Strauss
process [12] on W = [0, 5]2 with interaction parameter set to zero was chosen. The activity
parameter was set to give the required intensity: β = 1.0 in the sparse regime and β = 4.3
in the dense regime. For the mark dynamics, we used a logistic growth function with λ = 2
and maximal size K = 0.1; the initial marks were sampled from a Beta distribution with
shape parameters λ1 = 2 and λ2 = 20. The death rate was set to pd = 0.05. Finally, we used
discount factor α = 0.9 and reward parameter R = 1.

The results are plotted in Figure 1. The left panels show the pattern x. In the right
panels, the solid lines are the graphs of v̂n(x) as a function of n, the dotted lines show ṽn(x)
plotted against n. Integrals were estimated by the Monte Carlo method with 1, 000 samples.
In the sparse regime, the approximation is quite good, for the denser regime, the gap between
the two graphs is quite wide except for very small n. In both cases, the dynamic programming
algorithm converges rapidly.

4 Conclusion

In this paper we considered optimal policies for Markov decision problems inspired by forest
harvesting. We proved that French thinning is optimal when births follow a Poisson process
and marks grow logistically. When the points are required to respect a hard core distance, we
derived upper and lower bounds on the discounted total expected reward for general birth-
death-growth dynamics. Although we focused on a homogeneous birth process, the results
carry over to the case where the birth process is governed by some spatially varying intensity
function.

In future it would be of interest to study configuration dependent asymmetric birth and
growth models [14, 15, 24]. Indeed, in a forestry setting, the growth of well-established, large
trees may hardly be hampered by the emergence of saplings close by, while it would be harder
for young and small trees to flourish near large ones. Moreover, the natural environment,
such as the availability of nutrients, might play a role. Finally, refinements of the action
space that allow for different thresholds in different mark strata could be investigated.
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Figure 1: Left panels: samples x from a Strauss hard core process with intensity β = 1.0
(top) and β = 4.3 (bottom) on [0, 5]2. Right panels: graphs of v̂n(x) (solid lines) and ṽn(x)
(dotted lines) against n for the birth-death-growth dynamics of Section 3.2.
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