
ALP: Adaptive Lossless floating-Point Compression
Azim Afroozeh

CWI
Amsterdam, The Netherlands

Leonardo Kuffó
CWI

Amsterdam, The Netherlands

Peter Boncz
CWI

Amsterdam, The Netherlands

ABSTRACT
IEEE 754 doubles do not exactly represent most real values, intro-
ducing rounding errors in computations and [de]serialization to
text. These rounding errors inhibit the use of existing lightweight
compression schemes such as Delta and Frame Of Reference (FOR),
but recently new schemes were proposed: Gorilla, Chimp128, Pseu-
doDecimals (PDE), Elf and Patas. However, their compression ratios
are not better than those of general-purpose compressors such as
Zstd; while [de]compression is much slower than Delta and FOR.

We propose and evaluate ALP, that significantly improves these
previous schemes in both speed and compression ratio (Figure 1).
We created ALP after carefully studying the datasets used to eval-
uate the previous schemes. To obtain speed, ALP is designed to
fit vectorized execution. This turned out to be key for also improv-
ing the compression ratio, as we found in-vector commonalities
to create compression opportunities. ALP is an adaptive scheme
that uses a strongly enhanced version of PseudoDecimals [31] to
losslessly encode doubles as integers if they originated as decimals,
and otherwise uses vectorized compression of the doubles’ front
bits. Its high speeds stem from our implementation in scalar code
that auto-vectorizes, using building blocks provided by our Fast-
Lanes library [6], and an efficient two-stage compression algorithm
that first samples row-groups and then vectors.

KEYWORDS
lossless compression, floating point compression, lightweight com-
pression, vectorized execution, columnar storage, big data formats

ACM Reference Format:
Azim Afroozeh, Leonardo Kuffó, and Peter Boncz. 2024. ALP: Adaptive
Lossless floating-Point Compression. In Proceedings of The 2024 International
Conference on Management of Data (SIGMOD ’24). ACM, New York, NY,
USA, 14 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Data analytics pipelines manipulate floating-point numbers (64-bit
doubles) more frequently than classical enterprise database work-
loads, which typically rely on fixed-point decimals (systems often
store these as 64-bit integers). Floating-point data is also a natural
fit in scientific and sensor data; and can have a temporal component,
yielding time series.

Analytical data systems and big data formats have adopted
columnar compressed storage [4, 12, 37, 41, 50, 51], where the
compression in storage is either provided by general-purpose or

SIGMOD ’24, June 09–15, 2024, Santiago, Chile
© 2024 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings
of The 2024 International Conference on Management of Data (SIGMOD ’24), https:
//doi.org/XXXXXXX.XXXXXXX.

10−3 10−2 10−1

Compression S eed
as Tu les er CPU Cycle (Log Scale)

10−2

10−1

100

101

D
ec
om

 r
es
si
on
 S
 e
ed

as
 T
u

le
s
 e
r
CP
U
 C
yc
le
 (L

og
 S
ca
le
)

1.7x

2.2x

1.8x

2.0x
1.5x

2.8x

3.1x

Compression Ratio:
3.0x

ALP
PDE
ELF
Zstd

Patas
Chim 128
Chim
Gorilla

Figure 1: Compression performance for all schemes (on Intel
Ice Lake). Each dot is one dataset. ALP is 1-2 orders of magni-
tude faster in [de]compression than all competing schemes,
while providing an excellent compression ratio. The only one
to achieve a compression ratio similar to ALP is Zstd, but it is
slow and block-based (one cannot skip through compressed
data). Elf is inferior to Zstd on all performance metrics. The
evaluation framework is presented in Section 4.

lightweight compression. Lightweight methods, also called "en-
codings", exploit knowledge of the type and domain of a column.
Examples are Frame Of Reference (FOR), Delta-, Dictionary-, and
Run Length Encoding (RLE) [20, 44, 46]. The first two are used on
high-cardinality columns and encode values as the addition of a
small integer with some fixed base value (FOR) or the previous
value (Delta). These encodings also bit-pack the small integers into
just the necessary bits. However, with IEEE 754 doubles [1], addi-
tions introduce rounding errors, making Delta and FOR unusable
for raw floating-point data. General-purpose methods used in big
data formats are gzip, Zstd, Snappy and LZ4 [13, 14, 26]. LZ4 and
snappy trade more compression ratio for speed, gzip the other way
round, with Zstd in the middle. The drawback of general-purpose
methods is that they tend to be slower than lightweight encodings
in [de]compression; also, they force decompression of large blocks
for reading anything, preventing a scan from pushing down filters
that could skip compressed data.

Recently though, a flurry of new floating-point encodings were
proposed: Gorilla [38], Chimp and Chimp128 [29], PseudoDecimals
(PDE) [31], Patas [24] and Elf [28]. A common idea in these is to
use the XOR operator with a previous value in a stream of data; as
combining two floating-point values at the bit-pattern level using
XOR provides somewhat similar functionality to additions, without
the problem of rounding errors. Chimp does an XORwith the imme-
diate previous value, whereas Chimp128 XORs with one value that
may be 128 places earlier in the stream – at the cost of storing a 7-bit
offset to that value. After the XOR, most bits are 0, and the Chimp
variants only store the bit sequence that is non-zero. Patas, intro-
duced in DuckDB compression [24], is a version of Chimp128 that
stores non-zero byte-sequences rather than bit-sequences. Whereas

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SIGMOD ’24, June 09–15, 2024, Santiago, Chile Afroozeh and Kuffó and Boncz

Patas trades compression ratio for faster decompression, Elf [28]
does the opposite: it uses a mathematical formula to zero more
XOR bits and improve the compression ratio, at the cost of lower
[de]compression speed. PDE is very different as it does not rely
on XOR: it observes that many values that get stored as floating-
point were originally a decimal value and it endeavours to find that
original decimal value, and compress that.

While these floating-point encodings avoid the need to always
decompress largish blocks, as required by general-purpose com-
pression, and thereby allow for predicate push-down in big data
formats [8], their [de]compression speed (as well as compression
ratio) is not much higher than that of general-purpose schemes [28];
in other words, these encodings are not quite lightweight.

We introduce ALP, a lightweight floating-point encoding that
is vectorized [7]: it encodes and decodes arrays of 1024 values. It is
implemented in dependency-free scalar code that C++ compilers
can auto-vectorize, such that ALP benefits from the high SIMD
performance of modern CPUs [27, 39]. In addition, ALP achieves
much higher compression ratios than the other encodings, thanks
to the fact that vectorized compression does not work value-at-a-
time but can take advantage of commonalities among all values
in one vector. Its vectorized design also allows ALP to be adaptive
without introducing space overhead: information to base adaptive
decisions on is stored once per vector rather than per value, and thus
amortized. While per-value adaptivity (e.g., Chimp[128] has four
decoding modes) needs control instructions (if-then-else) for every
value, and can run into CPU branch mispredictions, ALP’s per-
vector adaptivity only needs control-instructions once per vector,
but vector [de]compression itself has very few data- or control
dependencies, leading to higher speeds.
Our main contributions are:

• a study of the datasets that were used to motivate and eval-
uate the previous floating-point encodings, leading to the
new insights (e.g., many floating-point values actually were
originally generated as a decimal).

• the design of ALP, an adaptive scheme that either encodes a
vector of values as compressed decimals, or compresses only
the front-part of the doubles, that holds the sign, exponent,
and highest bits of the fraction part of the double.

• an efficient two-level sampling scheme (happening respec-
tively per row-group, and per vector) to efficiently find the
best method during compression.

• an open-source implementation of ALP in C++ that uses
vectorized lightweight compression that can cascade (e.g,
use Dictionary-compression, but then also compress the
dictionary and the code columns, with Delta, RLE, FOR –
such as provided by [6, 15, 31]).

• an evaluation versus the other encodings on the datasets that
were used when these were proposed, showing that ALP is
faster and compresses better (as summarized in Figure 1).

2 DATASETS ANALYSIS
Compression methods achieve their best performance when they
are capable of exploiting properties of the data. However, the same
methods could fail to achieve any compression if the data lacks
these exploitable properties. In this section we analyze a number
of floating-point datasets, aiming to uncover properties relevant

to compression performance. Furthermore, we are interested in
analyzing these datasets from the point of view of vectorized query
processing, since big data format readers and scan subsystems of
database systems by now standardize on this methodology [25, 41]:
they deliver vector-sized chunks of data, and use decompression
kernels that decompress one vector (e.g., 1024 values) at-a-time.

We start by explaining in detail the IEEE 754 doubles representa-
tion in subsection 2.1. Then, we introduce the analyzed datasets in
subsections 2.2 and 2.3. Next, in subsection 2.4 we analyze the data
similarities at the vector level. In subsection 2.5 we revisit decimal-
based encoding approaches and perform further analysis of these
methods from a vectorized point of view. Finally, in subsection 2.6
we elaborate on the compression opportunities we found.

2.1 IEEE 754 Doubles Representation
IEEE 754 [1] represents 64-bit doubles in 3 segments of bits (Fig-
ure 2): 1 bit for sign (0 for positive, 1 for negative), 11 bits for an ex-
ponent 𝑒 (represents an unsigned integer from 0 to 2047) and 52 bits
for the fraction (represents a summation of inverse powers of two;
also known as mantissa or significand) – which together represent
a real number defined as: (−1)𝑠𝑖𝑔𝑛 × 2𝑒−1023 ×

(
1 +∑52

𝑖=1 𝑏52−𝑖2
−𝑖
)
.

This definition allows for up to 17 significant decimal places of
precision. However, it introduces errors in arithmetic (e.g. addi-
tion, multiplication) and limitations on the integer part of numbers
which we will discuss later on in this section. The same standard
also defines 32-bit floats (8 bits for exponent and 23 for mantissa).

Figure 2: IEEE 754 doubles bitwise representation.

2.2 Datasets
Table 1 presents an overview of the 30 datasets that we analyzed in
detail in order to design ALP: 18 of these datasets were previously
analyzed and evaluated to develop Elf [28] and Chimp [29], the other
12 were used to evaluate PDE [31]. We consider these 30 datasets
to be relevant because they capture a variety of distributions, and
because they played a role in the analysis, design and evaluation of
competing floating-point encodings. Identifying new properties, we
gained important clues guiding the design of ALP. Finally, by using
these datasets we are able to perform a fair comparison between
these methods and our new ALP compression.

2.3 Dataset Semantics
The first 13 datasets presented in Table 1 contain time series data.
On these datasets, each double value 𝑣𝑖+1 is recorded further in
time than value 𝑣𝑖 . The next 17 datasets are more representative of
doubles stored in classical database workloads; 12 of these non-time
series datasets are part of the Public BI Benchmark [2] a collection
of the biggest Tableau Public workbooks [49]. Note that all datasets
are user-contributed data (non-synthetic).

The datasets have significant variety in their semantics. As pre-
sented in Table 1, 14 datasets contain doubles that represent mone-
tary values (i.e., Exchange rates, public funds, product prices, stocks

ALP: Adaptive Lossless floating-Point Compression SIGMOD ’24, June 09–15, 2024, Santiago, Chile

Table 1: Floating-Point Datasets
Name ↓ Semantics Source N° of Values

Ti
m
e
se
rie

s

Air-Pressure[33] Barometric Pressure (kPa) NEON 137,721,453
Basel-temp1 Temperature (C°) meteoblue 123,480
Basel-wind1 Wind Speed (Km/h) meteoblue 123,480
Bird-migration2 Coordinates (lat, lon) InfluxDB 17,964
Bitcoin-price2 Exchange Rate (BTC-USD) InfluxDB 2,686
City-Temp3 Temperature (F°) Udayton 2,905,887
Dew-Point-Temp[36] Temperature (C°) NEON 5,413,914
IR-bio-temp[35] Temperature (C°) NEON 380,817,839
PM10-dust[34] Dust content in air (mg/m3) NEON 221,568
Stocks-DE4 Monetary (Stocks) INFORE 43,565,658
Stocks-UK4 Monetary (Stocks) INFORE 59,305,326
Stocks-USA4 Monetary (Stocks) INFORE 282,076,179
Wind-dir[32] Angle Degree (0°-360°) NEON 198,898,762

N
on

Ti
m
e
se
rie

s

Arade/45 Energy PBI Bench. 9,888,775
Blockchain-tr6 Monetary (BTC) Blockchain 231,031
CMS/15 Monetary Avg. (USD) PBI Bench. 18,575,752
CMS/255 Monetary Std. Dev. (USD) PBI Bench. 18,575,752
CMS/95 Discrete Count PBI Bench. 18,575,752
Food-prices7 Monetary (USD) WFP 2,050,638
Gov/105 Monetary (USD) PBI Bench. 141,123,827
Gov/265 Monetary (USD) PBI Bench. 141,123,827
Gov/305 Monetary (USD) PBI Bench. 141,123,827
Gov/315 Monetary (USD) PBI Bench. 141,123,827
Gov/405 Monetary (USD) PBI Bench. 141,123,827
Medicare/15 Monetary Avg. (USD) PBI Bench. 9,287,876
Medicare/95 Discrete Count PBI Bench. 9,287,876
NYC/295 Coordinates (lon) PBI Bench. 17,446,346
POI-lat8 Coordinates (lat, in radians) Kaggle 424,205
POI-lon8 Coordinates (lon, in radians) Kaggle 424,205
SD-bench9 Storage Capacity (GB) Kaggle 8,927

and crypto-currencies). 4 of them represent coordinates (i.e., lat-
itude and longitude), 2 contain discrete counts stored as doubles
and 1 contains computer storage capacities. Finally, the other 10
datasets contain a variety of scientific measures (i.e., temperature,
pressure, concentration, speed, degrees and energy). Some datasets
share a common prefix in their name followed by a number. This
number represents the index of the analyzed column in a dataset.

2.4 Data Similarity
The underlying temporal property of time series data has been
shown to result in similar values stored close-by [29, 38]. We can
analyze similarity of doubles from two different points of view: (i)
their bitwise representation (IEEE 754 [1]) and (ii) their human-
readable representation.

Bitwise similarity. From a bitwise point of view, two double
floating-point values are considered similar if their sign, exponent
and fraction parts are similar. Table 2:C9 and C10 show the double
exponent average and deviation per vector. We define a vector as
1024 consecutive values [7]. In most of the datasets, the exponent
deviation is small, particularly in time series data. These small devi-
ations are reflected by the number of leading 0-bits resulting from
XORing the doubles with their previous value. When similar dou-
bles are XORed, the result typically has a high number of leading-

1https://www.meteoblue.com/en/weather/archive/export/basel_switzerland
2https://github.com/influxdata/influxdb2-sample-data
3https://www.kaggle.com/sudalairajkumar/daily-temperature-of-major-cities
4https://zenodo.org/record/3886895
5https://github.com/cwida/public_bi_benchmark
6https://gz.blockchair.com/bitcoin/transactions/
7https://data.humdata.org/dataset/wfp-food-prices
8https://www.kaggle.com/datasets/ehallmar/points-of-interest-poi-database
9https://www.kaggle.com/datasets/alanjo/ssd-and-hdd-benchmarks

and trailing-zero bits [10, 38, 45]. However, in Table 2:C14 and C15,
we see that the average number of leading and trailing zeros bits af-
ter XORing is comparable between time series and non-time series
data. Hence, this similarity of values stored close-by is also present
on non-time series data; which is also reflected by the fact that
Chimp and Chimp128 do really well on this data [29]. Regardless
of semantics, leading and trailing zero bits go down with lower per-
centages of duplicates (Table 2:C6 non-unique values) and higher
decimal precision (Table 2:C2). For instance, in both datasets in
which decimal precision reaches 20 digits (i.e., POI-lat and POI-lon),
the leading and trailing 0-bit average of XORed values is the lowest.

Human-readable similarity. From a human perspective, two
doubles are similar if their orders of magnitude (exponent) and their
visible decimal precision are similar. On our time series datasets, the
standard deviation of the magnitudes (Table 2:C8) is relatively small
(e.g., Stocks-USA, Dew-Point-Temp, Air-Pressure). In contrast, on
non-time series data, this measure is elevated for some datasets
(e.g., Food-Prices, Gov/40, CMS/9), though never extremely high
when compared to the average magnitude (Table 2:C7).

Decimal precision varies between datasets (Table 2:C2 and C3).
For instance, datasets that contain geographic coordinates such as
POI-lat and POI-lon can vary between 0 and 20 decimals of precision.
On the other hand, datasets such as Medicare/9, SD-bench and City-
Temp contain values with just 1 decimal of precision. Despite these
differences inside a dataset, the deviation of this property is usually
small from a vector perspective (Table 2:C5). In fact, for 25 out of 30
datasets, the decimal precision deviation inside vectors is smaller
than 1. That means that most of the values inside a vector share
the same decimal precision.

Decimal-based encoding approaches such as PDE exploit these
human-readable similarities of doubles by trying to represent them
as integers [31]. The more similar the decimal precision and the
orders of magnitude of doubles inside a block of values, the better
compression ratio can be achieved.

2.5 Representing Doubles as Integers
Representing double-precision floating-point values as integers
is non-trivial. Take for instance the number 𝒏 = 8.0605. At first
glance, to encode 𝒏 as an integer we could be tempted to move
the decimal point 𝒆 spaces to the right until there are no decimals
left (i.e., 4 spaces). The latter can be achieved with the following
procedure: 𝑃𝑒𝑛𝑐 = 𝑟𝑜𝑢𝑛𝑑 (𝑛 × 10𝑒). Since one of the multiplication
operands of 𝑃𝑒𝑛𝑐 is a double, we need to round the result to obtain an
integer. Then, we could conclude that we have reduced our double-
precision floating-point number into a 32-bit integer 𝒅 = 80605
(i.e., the result of 𝑃𝑒𝑛𝑐) and another 32-bit integer representing
the number of spaces 𝒆 we moved the decimal point (i.e., a factor
of 10). Hence, from the encoded integer 𝒅 result of 𝑃𝑒𝑛𝑐 , and the
number of spaces 𝒆 we moved the decimal point, we should be
able to recover the original double by performing the following
procedure: 𝑃𝑑𝑒𝑐 = 𝑑 × 10−𝑠 .

Executing this in a programming language will visually yield
on screen the original number 8.0605. However, the exact bitwise
representation of the original double has been lost in the process.
The correctness of the procedures fails to hold due to our number
8.0605 not being a real double [19]. The real representation of

https://www.meteoblue.com/en/weather/archive/export/basel_switzerland
https://github.com/influxdata/influxdb2-sample-data
https://www.kaggle.com/sudalairajkumar/daily-temperature-of-major-cities
https://zenodo.org/record/3886895
https://github.com/cwida/public_bi_benchmark
https://gz.blockchair.com/bitcoin/transactions/
https://data.humdata.org/dataset/wfp-food-prices
https://www.kaggle.com/datasets/ehallmar/points-of-interest-poi-database
https://www.kaggle.com/datasets/alanjo/ssd-and-hdd-benchmarks

SIGMOD ’24, June 09–15, 2024, Santiago, Chile Afroozeh and Kuffó and Boncz

Table 2: Detailed metrics computed on the Datasets

Name ↓
Decimal Precision

Max | Min |
Avg. | Std. Dev.

Values per Vector
Non-Unique % | Avg. | Std. Dev.

IEEE 754 Exponent
per Vector

Avg. | Std. Dev.

Success of 𝑃𝑒𝑛𝑐 and 𝑃𝑒𝑛𝑐
using one exponent 𝑒 per:
Value | Dataset | Vector

Previous Value
XOR 0’s Bits
Front | Trail.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
Air-Pressure 5 0 4.9 0.3 74.7% 93.4 0.1 1021.5 0.0 63.2% 14 (99.4%) 99.4% 44.5 32.9
Basel-temp 11 5 6.3 0.4 26.2% 11.4 4.6 1025.5 1.0 64.3% 14 (99.7%) 99.7% 14.0 2.6
Basel-wind 8 0 6.1 1.2 61.8% 7.1 4.1 1024.7 12.8 65.8% 14 (98.6%) 98.6% 14.2 3.1
Bird-migration 5 1 4.5 0.8 55.9% 26.6 6.0 1026.4 0.6 61.7% 14 (93.8%) 96.4% 26.4 7.8
Bitcoin-price 4 1 3.9 0.4 0.0% 19187.5 790.6 1037.0 0.0 84.2% 14 (99.9%) 99.9% 20.6 1.0
City-Temp 1 0 0.9 0.3 60.3% 56.0 21.3 1028.3 1.6 67.3% 14 (97.4%) 97.4% 15.8 11.0
Dew-Point-Temp 3 0 2.8 0.3 19.3% 14.4 1.4 1026.0 1.1 80.2% 14 (99.3%) 99.3% 16.8 1.5
IR-bio-temp 2 0 1.9 0.3 49.1% 12.7 4.2 1025.6 4.8 83.5% 14 (99.3%) 99.3% 22.0 7.8
PM10-dust 3 0 2.8 0.2 93.7% 1.5 0.8 1016.1 1.2 88.8% 14 (99.9%) 99.9% 40.5 38.3
Stocks-DE 3 0 2.4 0.5 89.2% 63.8 9.1 1027.8 0.3 84.2% 14 (98.9%) 99.1% 24.9 5.8
Stocks-UK 2 0 1.2 0.6 88.1% 1593.7 317.1 1032.2 0.4 84.5% 14 (99.9%) 100.0% 23.7 19.4
Stocks-USA 2 0 1.9 0.4 91.5% 146.1 11.7 1029.1 0.1 87.5% 14 (98.6%) 99.2% 32.6 16.8
Wind-dir 2 0 1.9 0.3 3.9% 192.4 81.1 1029.8 1.2 90.0% 14 (99.5%) 99.5% 13.8 2.6
TS AVG. 3.9 0.5 3.2 0.5 54.9% 1646.7 96.3 1026.9 1.9 77.3% 94,8% 99.0% 23.8 11.6
Arade/4 4 0 3.5 0.6 0.2% 738.4 389.8 1031.6 0.9 80.1% 14 (99.5%) 99.5% 13.1 1.1
Blockchain-tr 4 0 3.8 0.6 0.6% 638646.4 1.3𝐸7 1031.8 12.5 76.3% 14 (92.1%) 92.3% 9.8 1.7
CMS/1 10 0 4.0 2.8 54.7% 97.0 110.0 1028.0 1.3 83.2% 14 (98.5%) 98.6% 32.9 24.8
CMS/25 10 0 9.1 1.9 5.7% 12.6 19.2 984.1 179.1 68.0% 14 (98.7%) 98.7% 9.5 1.5
CMS/9 1 0 0.0 0.0 71.5% 235.7 908.5 1028.3 1.6 100.0% 14 (99.9%) 100.0% 11.8 47.3
Food-prices 4 0 1.1 1.1 52.5% 6415.8 14656.8 1030.4 1.8 92.4% 14 (99.2%) 99.2% 27.1 33.5
Gov/10 2 0 1.0 0.8 26.1% 240153.6 1.6𝐸7 873.5 298.8 90.5% 14 (89.9%) 95.9% 13.8 18.8
Gov/26 2 0 0.0 0.0 99.5% 442.3 8036.8 4.6 11.9 100.0% 14 (99.9%) 100.0% 63.7 63.8
Gov/30 2 0 0.1 0.3 89.7% 10998.7 102748.6 115.6 170.6 98.6% 14 (98.5%) 99.4% 56.6 57.1
Gov/31 2 0 0.1 0.1 96.0% 893.2 6288.2 69.9 57.4 99.1% 14 (99.8%) 99.9% 60.6 60.9
Gov/40 2 0 0.0 0.0 99.1% 791.4 6650.9 12.1 18.7 99.9% 14 (99.8%) 99.9% 63.4 63.5
Medicare/1 10 0 4.0 2.9 41.3% 97.0 146.2 1028.0 1.6 83.2% 14 (98.5%) 98.6% 25.2 16.6
Medicare/9 1 0 0.0 0.0 70.6% 235.7 1006.2 1028.3 1.7 100.0% 14 (99.9%) 100.0% 11.3 47.1
NYC/29 13 0 12.9 0.3 51.0% -73.9 0.0 1029.0 0.0 93.7% 14 (99.9%) 100.0% 38.9 23.2
POI-lat 20 0 15.9 0.4 1.4% 0.6 0.4 1021.7 1.4 73.4% 16 (74.1%) 76.4% 10.6 1.0
POI-lon 20 0 15.7 0.5 0.8% -0.1 1.2 1022.0 4.0 64.6% 16 (61.5%) 70.5% 5.1 1.0
SD-bench 1 0 0.9 0.2 92.4% 446.0 521.5 1030.3 1.2 65.8% 14 (99.9%) 100.0% 17.4 15.8
NON-TS AVG. 6.4 0.0 4.2 0.7 50.2% 52948.9 1745162.6 786.4 45.0 86.4% 95.1% 95.8% 27.7 28.2
ALL AVG. 5.3 0.2 3.8 0.6 52.2% 30717.9 988967.2 890.6 26.3 82.5% 95.0% 97.2% 26.0 21.0

the number 8.0605 as a double based on the IEEE 754 definition
is: 8.06049999999999933209 . To achieve lossless compression, this
has to be the exact result of our procedure 𝑃𝑑𝑒𝑐 . However, in our ex-
ample 𝑃𝑑𝑒𝑐 yields 8.0605000000000011084 . This is a consequence
of the error introduced in the multiplication by the inverse factor of
10 in 𝑃𝑑𝑒𝑐 . The latter turns out to be a double that does not have an
exact decimal representation either. Hence, 10−4 is not 0.0001 but
more something like 0.000100000000000000002082. This error is in-
troduced in the multiplication, and reflected in the end result of the
procedure 𝑃𝑑𝑒𝑐 . The 𝑃𝑒𝑛𝑐 procedure does not suffer this problem
since 10𝑒 has an exact double representation for 𝒆 ≤ 21.

Table 2:C11 depicts the percentage of doubles in each dataset
that can be losslessly represented by an integer 𝒅 and an exponent
𝒆 using the 𝑃𝑒𝑛𝑐 and 𝑃𝑑𝑒𝑐 procedures. But, always using the visible
precision of the doubles as the exponent 𝒆 (e.g., for 0.0001, the
visible precision is 4; for 1.4297546, the visible precision is 7). This
results in only 82.5% of the values successfully encoded and decoded
on average for all the datasets. However, in some datasets, the
success probability gets as low as 61.7%. We found the success
of the procedures 𝑃𝑒𝑛𝑐 and 𝑃𝑑𝑒𝑐 to encode and decode the exact
original doubles to depend on two factors: (i) the real precision of
the exponent 𝒆 and (ii) the visible precision of the double 𝒏.

High exponents work for all values. Table 2:C12 shows the
exponent 𝒆 which leads to the highest success-rate of 𝑃𝑒𝑛𝑐 and

𝑃𝑑𝑒𝑐 on each dataset. It is evident that higher exponents 𝒆 such as
14 and 16 are predominant, with an average of 95% successfully
encoded values in all of the datasets; and up to a rate of 99.9% in
datasets such as SD-bench, Stocks-UK, Medicare/9, Gov/31 and
PM10-dust. The effectiveness of higher exponents stems from the
fact that the more we increase the exponent 𝒆 the closer we can get
to obtaining the real double with the procedures. This is due to
higher exponents 𝒆 resulting in a more precise inverse factor of
10 on 𝑃𝑑𝑒𝑐 . For instance, 10−14 represented as a double is equal
to 1.00000000000000007771𝐸−15. As a consequence, the result of
𝑃𝑑𝑒𝑐 is more accurate. Furthermore, higher exponents are powerful
because they are able to cover a wider range of decimal preci-
sion. Moreover, as shown in Table 2:C13, when optimizing to use
a different exponent 𝒆 per vector, we reach an average of 97.2%
of successfully encoded values in all the datasets. Based on these
results, we question whether a different exponent 𝒆 for each value
is needed – which is what PDE does.

However, by using higher exponents 𝒆 the integers resulting from
the procedure 𝑃𝑒𝑛𝑐 become big (i.e., 64-bits). These high exponents
that lead to big integers are not used by PDE since they lead to
a worse compression ratio than leaving the data uncompressed
(because storing a 64-bit integer plus an exponent takes more space
than a 64-bit double). Note that the doubles in datasets such as
NYC/29, POI-lat and POI-lon are only representable as big integers.

ALP: Adaptive Lossless floating-Point Compression SIGMOD ’24, June 09–15, 2024, Santiago, Chile

The 52-bit limit for integers. Exponent 𝒆 = 14 is the most suc-
cessful in most of the datasets to represent doubles as integers using
𝑃𝑒𝑛𝑐 and 𝑃𝑑𝑒𝑐 . This is due to the difference between the exact value
and the real value of 10−14 being too small to have an effect in
𝑃𝑑𝑒𝑐 result. However, there are two datasets in which even higher
exponents 𝒆 are needed (i.e., POI-lat, POI-lon) because the visible
precision of the double values inside those datasets on average ex-
ceeds 14 (Table 2:C4). As we explain subsequently, when the order
of magnitude of a double 𝒏 plus its visible decimal precision reaches
16, 𝑃𝑒𝑛𝑐 is prone to fail due to a limitation of the IEEE 754 doubles.

The multiplication inside 𝑃𝑒𝑛𝑐 yields a double due to having a
double operand. Hence, before rounding, our resulting integer 𝒅 is
a double. However, there is a known limitation to the accuracy of
the integer part of a double. Only the integers ranging from −253
to 253 can be exactly represented in the integer part of a double
number. Going beyond this threshold is problematic. Between 253
and 254, only even integer numbers can be represented as doubles.
Similarly, between 254 and 255 only multiples of 4 can exist. Fur-
thermore, doubles stop having a decimal part after 253. Hence, if a
double multiplication yields a double higher than 253, results will be
automatically rounded to the nearest existing double number. The
latter happens in 𝑃𝑒𝑛𝑐 when the order of magnitude of the double
plus the visible decimal precision reaches 16. Hence, representing
a number as an integer could be impossible in these cases using
𝑃𝑒𝑛𝑐 and 𝑃𝑑𝑒𝑐 . This is why POI-lat and POI-lon achieve a relatively
low successful encoding rate of 76.4% and 70.5% respectively. Also,
this is why we stated earlier that 10𝑒 only has an exact double
representation for 𝒆 ≤ 21.

2.6 Unexploited Opportunities
All recently proposed competing floating-point encoding already
exploit some of the properties discussed in the previous subsections.
However, there is room for substantial improvement both in terms
of compression ratio and [de]compression speed.

Vectorizing Decimal Encoding. In subsection 2.5 we demon-
strated that it is possible to achieve near 100% success rate of our
procedures 𝑃𝑒𝑛𝑐 and 𝑃𝑑𝑒𝑐 by using only one exponent 𝒆 for ev-
ery vector. The current state-of-the-art Decimal-based approach
PDE [31] embeds the exponent 𝒆 in every value. Hence, by exploit-
ing this opportunity, compression ratio could be improved.

Cutting trailing 0s with an extra multiplication. In subsection
2.5 we demonstrated that high exponents 𝒆 achieve the highest
success rate on our procedures 𝑃𝑒𝑛𝑐 and 𝑃𝑑𝑒𝑐 to store doubles as
integers. However, we also mentioned that using exponents such as
14 results in 64-bit integers being encoded. Despite this, we believe
that using a unique exponent 𝒆 per vector opens the opportunity to
encode big integers without instantly falling behind in compression
ratio against uncompressed values.

High exponents 𝒆 in combination with low-precision decimals
datasets (e.g., SD-bench, City-Temp, Stocks-UK) result in 64-bit
integers that contain tails of repeated trailing 0-digits (e.g., 𝒏 ≈ 37.3
and 𝒆 = 14, yields 𝑃𝑒𝑛𝑐 = 3730000000000000; 𝒏 ≈ 100.8333 and
𝒆 = 14, yields 𝑃𝑒𝑛𝑐 = 10083330000000000). These tails of repeated
0-digits will have the same length in datasets with low magnitude

variance and low decimal precision variance (e.g., SD-bench, City-
Temp, PM10-Dust). Cutting these tails with an extra multiplication
with an inverse factor of 10, namely 𝒇 , results in a smaller integer
that can be used to recover the 64-bit integer with the inverse
operation (i.e., a multiplication with a factor 𝒇 of 10). Hence, we
can redefine 𝑃𝑒𝑛𝑐 and 𝑃𝑑𝑒𝑐 as follows:

𝐴𝐿𝑃𝑒𝑛𝑐 = 𝑟𝑜𝑢𝑛𝑑 (𝑛 × 10𝑒 × 10−𝑓) (1)

𝐴𝐿𝑃𝑑𝑒𝑐 = 𝑑 × 10𝑓 × 10−𝑒 (2)
Based on the analysis done in subsection 2.5 one might fear that

this new multiplication with another inverse factor of 10 in 𝐴𝐿𝑃𝑒𝑛𝑐
could result in new rounding errors. However, the error introduced
by these inverse factors of 10 turns out to pose no problems. To
illustrate, with 𝒏 ≈ 8.0605, 𝒆 = 14 and 𝒇 = 10, 𝐴𝐿𝑃𝑒𝑛𝑐 and 𝐴𝐿𝑃𝑑𝑒𝑐
will execute as follows:

𝐴𝐿𝑃𝑒𝑛𝑐 = 𝑟𝑜𝑢𝑛𝑑 (8.06049999999999933209 × 1014 × 10−10)
𝐴𝐿𝑃𝑒𝑛𝑐 = 𝑟𝑜𝑢𝑛𝑑 (806049999999999.875 × 10−10)

𝐴𝐿𝑃𝑒𝑛𝑐 = 𝑟𝑜𝑢𝑛𝑑 (80604.999999999985448)
𝐴𝐿𝑃𝑒𝑛𝑐 = 𝑑 = 80605

𝐴𝐿𝑃𝑑𝑒𝑐 = 80605 × 1010 × 10−14

𝐴𝐿𝑃𝑑𝑒𝑐 = 𝑛 = 8.06049999999999933209

In the third step of 𝐴𝐿𝑃𝑒𝑛𝑐 , the error introduced by 10−10 is
negligible for the resulting integer 𝒅. Using this reducing factor 𝒇
in the procedures is a way of taking advantage of the high coverage
and success rates or large exponents, without having to encode big
integers 𝒅. Note that this example is the same 𝒏 we used at the
beginning of subsection 2.5, which could not be encoded by simply
using 𝒆 = 4.

Limited Search Space. Until now, we have ignored the process of
finding the exponent 𝒆 for our decimal-based encoding procedures
𝐴𝐿𝑃𝑒𝑛𝑐 and 𝐴𝐿𝑃𝑑𝑒𝑐 . The current state-of-art on decimal-based en-
coding (i.e., PDE) performs a brute-force search for each value in
a dataset in order to find the exponent 𝒆. For our 𝐴𝐿𝑃 procedures,
an additional nested brute-force search needs to be performed in
order to find the best combination of exponent 𝒆 and factor 𝒇 .
We define the best combination as the one in which 𝐴𝐿𝑃𝑒𝑛𝑐 yields
the smallest integer 𝒅 with which 𝐴𝐿𝑃𝑑𝑒𝑐 succeeds in recovering
the original double 𝒏. This translates into a search space of 253
possible exponent 𝒆 and factor 𝒇 combinations (given that 𝒇 ≤ 𝒆
and 0 ≥ 𝒆 ≤ 21). However, we have already discussed that most
values inside a vector can be encoded by using one single exponent.
Furthermore, we have also mentioned that vectors exhibit a low
variance in their decimal precision and in their magnitudes. Hence,
our intuition was that the search space for the combination of ex-
ponent 𝒆 and factor 𝒇 can be greatly reduced and that it should
be done on a per-vector basis. In order to confirm this, we com-
puted the best combination for each vector in each dataset. For this
experiment, the search was performed on all the possible search
space of 253 combinations for every vector. Figure 3 shows that for
most datasets a search space of 5 combinations is enough to obtain
the best combination among all vectors in the dataset. For some
datasets such as Basel-wind, Bird-migration, City-Temp, Wind-dir
and IR-bio-temp, the entire search space is just one combination.

SIGMOD ’24, June 09–15, 2024, Santiago, Chile Afroozeh and Kuffó and Boncz

0 50 100

Air-Pressure
Basel-temp
Basel-wind

Bird-migration
Bitcoin-price

City-Temp
Dew-Point-Temp

IR-bio-temp
PM10-dust
Stocks-DE
Stocks-UK
Stocks-USA
Wind-dir
Arade/4

Blockchain-tr

D
at
as

et

0 50 100

CMS/1
CMS/25
CMS/9
Food-prices
Gov/10
Gov/26
Gov/30
Gov/31
Gov/40
Medicare/1
Medicare/9
NYC/29
POI-lat
POI-lon
SD-bench

1st 2nd 3rd 4th 5th Other Combinations

Percentage of Vectors Covered

Figure 3: Analysis of the best combinations of exponent 𝒆
and factor 𝒇 for each vector of 1024 values. For most datasets,
the best combination for any vector is found among a set
of just 5 different combinations. For some datasets, a single
combination is always the best one.

Front-Bits Similarity.When themagnitude plus decimal precision
exceeds 16, it is often impossible to encode a double as an integer
with our procedure 𝐴𝐿𝑃𝑒𝑛𝑐 . On such data, decimal-based encoding
would have to deal with integers bit-packed to more than 52 bits
(and similarly, Chimp variants would have to deal with trailing bit-
strings of more than 52 bits). A basic observation is that such data
is not very compressible in the first place (64-bit data takes at least
52 bits); but nevertheless, compression may still be worthwhile.

We believe that the approach of a decimal-based encoding is
not appropriate for such compression-unfriendly data; and thus
when encountering such data, our approach could adaptively switch
to a different encoding strategy, that exploits regularities in the
front-bits in a vectorized manner. In Table 2:C10, even on these
datasets (i.e., POI-lat, POI-lon) we see that the exponent of the bit-
wise representation of a double exhibits a low variance. Data with
low variance can be compressed with lightweight integer encod-
ings, such as RLE and Dictionary – all building blocks provided by
our FastLanes compression library [6]. Furthermore, based on the
analysis of leading 0-bits from XOR-ing with the previous value
(Table 2:C14), on some of these datasets we should not limit this
idea to just the exponent, because the highest bits of the mantissa
often are regular (if the data stems from a particular value range).

3 ALP
ALP is an adaptive lossless encoding designed to compress double-
precision floating-point data. ALP takes advantage of the opportu-
nities discussed in subsection 2.6. Compression and decompression
are built upon the 𝐴𝐿𝑃𝑒𝑛𝑐 and 𝐴𝐿𝑃𝑑𝑒𝑐 procedures described in sec-
tion 2.6. Furthermore, ALP is able to adapt its encoding/decoding
scheme if it encounters high precision doubles by taking advantage
of the similarity in the front-bits uncovered in section 2.6. in both
compression and decompression. In the following subsections, we
describe the key design aspects of ALP and how it implements
adaptivity.

Algorithm 1: ALP Compression.
1 double i_F10 = {1.0, 0.1, 0.01, 0.001, ...};
2 double F10 = {1.0, 10.0, 100.0, 1000.0, ...};
3
4 // Adaptive search of exponent e and factor f in a vector
5 int e, f = ALP::ADAPTIVE_SAMPLING(input_vec, BEST_COMBINATIONS);
6
7 encoded_vec, exc_vec, exc_pos_vec = ALP::ENCODE([]() {
8 for (i = 0; i < VECTOR_SIZE; ++i){ // Encode the vector
9 double n = input_vec[i];
10 int64 d = fast_double_round(n * F10[e] * i_F10[f]); // 𝐴𝐿𝑃𝑒𝑛𝑐
11 encoded_vec[i] = d;
12 decoded_vec[i] = d * F10[f] * i_F10[e]; // 𝐴𝐿𝑃𝑑𝑒𝑐
13 }
14 int exc_count = 0;
15 for (i = 0; i < VECTOR_SIZE; ++i) { // Find Exceptions
16 bool neq = (decoded_vec[i] != input_vec[i]);
17 exc_pos_vec[exc_count] = i;
18 exc_count += neq; // predicated comparison
19 }
20 int64 first_encoded = FIND_FIRST_ENCODED(exc_pos_vec);
21 for (i = 0; i < exc_count; ++i){ // Fetch Exceptions
22 encoded_vec[exc_pos_vec[i]] = first_encoded;
23 exc_vec[exc_pos_vec[i]] = input_vec[i];
24 }
25 });
26 FFOR(encoded_vec);

3.1 Compression
ALP compression is built upon the 𝐴𝐿𝑃𝑒𝑛𝑐 procedure (Formula 1).
ALP tries to encode all doubles 𝒏 inside a vector 𝒗 with the same
exponent 𝒆 and factor 𝒇 . Inside the encoding, ALP must verify that
the procedures 𝐴𝐿𝑃𝑒𝑛𝑐 and 𝐴𝐿𝑃𝑑𝑒𝑐 yield the original double 𝑛. If
the original double 𝒏 cannot be recovered, we treat the double as an
exception. Algorithm 1 shows the pseudo-code for ALP encoding.

Vectorized Compression.ALP introduces the use of one exponent
𝒆 and factor 𝒇 for all doubles inside the same vector. Note that PDE
needs to store one exponent per value – taking more space. Based
on our empirical investigation, in order for this approach to be
successful we need to be able to use high exponents 𝒆. Hence, ALP
does not limit the encoded integers to int32 representations, but
int64. Furthermore, ALP incorporates the new idea of the factor 𝒇
for reducing the trailing 0-digits, explored in subsection 2.6. After
multiplying with the factor, the resulting integer is small again and
is then bit-packed compactly, using the same number of bits for all
values inside the same vector. The exponent, factor and bit-width
parameters do not use much space, as these parameters are stored
only once per vector (1024 doubles). The fact that all three parame-
ters are the same per-vector also means that the [de]compression
work is regular and thus has no control-instructions inside the
loops, making them suitable for auto-vectorization.

Fast Rounding. The round operation is not supported in SIMD
instruction sets. However, ALP replaces the round function with
a procedure (i.e. fast_double_round) that takes advantage of the
limitation of doubles to store exact integers of up to 52 bits, dis-
cussed earlier. An algorithmic trick resulting from this limitation
is that one can round a double by adding and subtracting the fol-
lowing number: 𝑠𝑤𝑒𝑒𝑡𝑛 = 251 + 252. In other words, we take the
doubles to the range in which they are not allowed to have a dec-
imal part (between 252 and 253) and are "automatically" rounded.
For instance, to round a double 𝑛, fast_double_round will go as
follows: 𝑛𝑟𝑜𝑢𝑛𝑑𝑒𝑑 = 𝑐𝑎𝑠𝑡 < 𝑖𝑛𝑡64 > (𝑛 + 𝑠𝑤𝑒𝑒𝑡𝑛 − 𝑠𝑤𝑒𝑒𝑡𝑛). This
procedure is SIMD-friendly since it only consists of one addition
and one subtraction; operations supported by SIMD. This rounding
trick is also implemented in the Lua programming language. The
use of fast_double_round can be seen in Algorithm 1: Line 10.

ALP: Adaptive Lossless floating-Point Compression SIGMOD ’24, June 09–15, 2024, Santiago, Chile

Handling Exceptions. Values which fail to be encoded as deci-
mals become exceptions. Exceptions are stored uncompressed in a
separate segment (i.e., exc_vec in Algorithm 1). However, since our
approach is vectorized, we cannot simply skip the exceptions in the
resulting vector of encoded values (i.e., encoded_vec in Algorithm
1). Hence, when exceptions occur we store an auxiliary value in the
encoded_vec (i.e., first_encoded in Algorithm 1 Line 20). This
auxiliary value is the first successfully encoded 𝒅 which is obtained
by the FIND_FIRST_ENCODED function in Algorithm 1: Line 20. Such
value will not affect negatively the bit-width of the encoded vector.
Note that by searching for this value after the encoding process we
avoid an additional control statement in each iteration of the main
encoding loop. Further, we also need to store in another storage
segment the position in which each exception occurred within a
vector (i.e., exc_pos_vec in Algorithm 1). For 𝒗 = 1024, each ex-
ception has an overhead of 80 bits: 64 bits for the uncompressed
value and 16 bits to store the exception position. Lines 15 to 25 in
Algorithm 1 show the exception handling process which is cleverly
built to avoid control structures (i.e., if-then-else).

Fused Frame-Of-Reference (FFOR). By itself, ALP encoding does
not compress the data. Rather, it enables the use of lightweight inte-
ger compression to further encode its output. Based on our study of
data similarity in subsection 2.4, we decided to encode the yielded
integers using a Fused variant of the Frame-Of-Reference encod-
ing available in the FastLanes library called FFOR. FastLanes [6]
proposes a new data layout to accelerate the encoding and decod-
ing of lightweight [de]compression methods with scalar code that
auto-vectorizes. FFOR fuses the implementation of bit-[un]packing
with the FOR encoding and decoding process into a single kernel
that performs both processes. The FOR encoding subtracts the mini-
mum value of the integers in a vector; this will pick up on localized
doubles (inside a tight range) and reduce bits needed in the subse-
quent bit-packing. Fusing saves a SIMD store and load instruction
in between the subtraction and the bit-packing loop (improving the
performance).

However, there is somemore headroom as amodern compression
library (e.g., [6, 31]) could try multiple different integers encodings
and also cascade these. For instance, if the data is repetitive, one
could use Dictionary coding, and compress the Dictionary with
FFOR; or use RLE and then separately encode Run Lengths and Run
Values. If the data is (somewhat) ordered, one could apply Delta
encoding rather than FFOR to the Dictionary or the Run Values.

3.2 Adaptive Sampling
Our compression method does not perform a brute-force search for
the exponent 𝒆 and factor 𝒇 to use in a vector. Instead, to find the
best 𝒆 and 𝒇 for a vector, we designed a novel two-level sampling
mechanism, inspired by the findings in subsection 2.6. Specifically,
from Figure 3, we conclude that there is a limited set of best combi-
nations of exponent 𝒆 and factor 𝒇 for the vectors in a dataset.

Our sampling mechanism goes as follows: on the first sampling
level, ALP samples𝒎 equidistant values from 𝒏 equidistant vectors
of a row-group. We define a row-group as a set of𝒘 consecutive
vectors of size 𝒗. The total number of values obtained from this
first sampling is equal to 𝒎 × 𝒏. For each vector 𝒏𝒊 we find the best
combination of exponent 𝒆 and factor 𝒇 . This search is performed

Algorithm 2: ALP Decompression.
1 int e, f = ALP::READ_VECTOR_HEADER(input_vec);
2 int64_vec = UNFFOR(input_vec);
3 decoded_vec = ALP::DECODE([](int64_vec) {
4 for (i = 0; i < VECTOR_SIZE; ++i){
5 decoded_vec[i] = int64_vec[i] * F10[f] * i_F10[e] }}); //𝐴𝐿𝑃𝑑𝑒𝑐
6 ALP::PATCH(decoded_vec, exc_vec, exc_pos_vec);

on the entire search space (i.e., 253 possible combinations). The
best combination is the one which minimizes the sum of the ex-
ception size and the size of the bit-packed integers resulting from
the encoded 𝒎 values. This process yields 𝒏 combinations (one for
each vector). From these 𝒏 combinations we only keep the 𝒌 ones
which appeared the most. If two combinations appeared the same
amount of times, we prioritize combinations with higher exponents
and higher factors. It could be possible that fewer combinations
than 𝒌 are yielded. If the same best combination is found in every
vector, there would only be 1 combination. Hence, we define during
runtime a 𝒌′ which is smaller than or equal to 𝒌 that represents
the number of yielded combinations. Once we have found the 𝒌′
best combinations, we proceed to the second level of sampling.

The second level of sampling (Line 5 of Algorithm 1) samples 𝒔
equidistant values from a vector. Then, it tries to find the combina-
tion of exponent 𝒆 and factor 𝒇 which performs the best on the 𝒔
sampled values. However, this time, the search is performed only
among the 𝒌′ best combinations found from the first sampling level.
To further optimize the search, we implemented a greedy strategy
of early exit. If the performance of two consecutive combinations,
namely 𝑘′

𝑖+1 and 𝑘
′
𝑖+2, is worse or equal to the performance of the

combination 𝑘′
𝑖
, we stop the search and 𝑘′

𝑖
combination is selected

to encode the entire vector. If 𝒌′ is equal to 1, this second sampling
level is omitted for all the vectors inside the row-group.

The first level of sampling is the most computationally demand-
ing process of our compression scheme due to the large search
space. However, it occurs only once per row-group. Hence, the time
spent is amortized into𝒘 × 𝒗 encoded values. The second sampling
level happens once for each vector and it will only occur if 𝑘′

𝑖
> 1.

Hence, if the sampling parameters (i.e.,𝑚,𝑛,𝑤, 𝑘 and 𝑠) are tuned
optimally, the second sampling level will be skipped in datasets
such as City-Temp or SD-bench, in which there exists only one best
combination for all the vectors in the dataset (Figure 3).

3.3 Decompression
ALP decompression builds upon the 𝐴𝐿𝑃𝑑𝑒𝑐 procedure (Formula 2)
to recover the original doubles from a vector of integers 𝑑 yielded
by the encoding process. In order to do so, ALP first reads from the
vector header the unique exponent 𝑒 and factor 𝑓 used to encode
the vector. Then, ALP needs to reverse the FFOR integer encoding
to recover each value. Values encoded as exceptions are directly
read from the exception segment alongside their position on the
original vector in order to correctly reconstruct it (i.e., patching).
The pseudo-code for ALP decoding is presented in Algorithm 2.

3.4 ALP𝑟𝑑 : Compression for Real Doubles
During the first level of sampling ALP will detect whether the
doubles in a row-group are not compressible. In that case, ALP
encoding would result in a high number of exceptions and integers
bigger than 248. Therefore, for such data, ALP changes its strategy
to a different encoding approach based on the analysis performed

SIGMOD ’24, June 09–15, 2024, Santiago, Chile Afroozeh and Kuffó and Boncz

Algorithm 3: 𝐴𝐿𝑃𝑟𝑑 Compression and Decompression.
1 // ENCODING //
2 p, DICT = ALP::RD::ADAPTIVE_SAMPLING(input_rowgroup);
3 left_vec, right_vec = ALP::RD::ENCODE([]() {
4 for (i = 0; i < VECTOR_SIZE; ++i){
5 double n = input_vec[i];
6 left_vec[i], right_vec[i] = ALP::RD::CUT(p);}
7 });
8 BITPACK(right_vec);
9 SKEWDICT_BITPACK(left_vec, DICT);
10
11 // DECODING //
12 p, DICT = ALP::RD::READ_ROWGROUP_HEADER();
13 left_vec = BITUNPACK_DECODEDICT(encoded_left_vec, DICT);
14 right_vec = BITUNPACK(encoded_right_vec);
15 decoded_vec = ALP::RD::DECODE([]() {
16 for (i = 0; i < VECTOR_SIZE; ++i){
17 int16 left, int64 right = left_vec[i], right_vec[i];
18 decoded_vec[i] = ALP::RD::GLUE(left, right, p);}
19 });

in subsection 2.6 which hinted to us that even on these doubles,
their front-bits tend to exhibit low variance. We named this ap-
proach 𝐴𝐿𝑃𝑟𝑑 , which stands for ALP for Real Doubles. ALP takes
this decision at the row-group level rather than the vector level,
since we found no dataset in which the decimal precision deviates
on more than 3 decimals; hence taking this decision at a vector level
would neither be efficient nor effective. We believe that the data in
28 of the 30 datasets analyzed originate as decimals and are thus
not "real" doubles; however, we think that this is representative of
the majority of data people store in data systems as doubles. The
encoding and decoding of 𝐴𝐿𝑃𝑟𝑑 are presented in Algorithm 3.

Encoding. The first level of sampling finds at a row-group level
which is the smallest position 𝑝 ≥ 48 where the highest 64-𝑝 front-
bits still have low variance. Afterwards, it uses this number 𝑝 as the
position to cut the bits of every double of that row-group in two
parts (Line 6 of Algorithm 3). The right part is compressed using
𝑝-bits bit-packing (BP). The position p is stored once per row-group
(i.e., 8 bits of overhead per row-group, which can be safely ignored).
At first glance, this method does not achieve any compression,
however, the integers yielded from the left part are easily further
compressible with integer lightweight encoding methods. For the
version of ALP presented here, we compress them using a fixed
method: skewed DICTIONARY+BP compression. A skewed dictio-
nary is a DICTIONARY encoding which tolerates exceptions. Here,
exceptions are values not in the dictionary, and these are stored as
16-bits values in an exception array, together with an array con-
taining 16-bits exception positions. After sampling, we consider
dictionaries of sizes 2𝑏 with 𝑏 ≤ 3 (i.e., just 1, 2, 4, or 8 values),
and fill these with the most frequent values in the sample and then
choose the smallest dictionary size 𝑏 < 3 such that the exception
percentage does not exceed 10% (or else use 𝑏=3). We bit-pack the
dictionary codes in 𝑏 bits; and store the dictionary as 16-bits values.
Both BP and DICTIONARY encodings implementations are available
in our FastLanes library[3].

Decoding. The 𝑏 bits dictionary-codes are bit-unpacked using a
fast vectorized bit-unpacking primitive (that does this for the entire
vector of 1024 values in one go) and (64-𝑝) bits right parts of the
doubles as well. Dictionary decompression requires one memory
load from the dictionary for every code; which is relatively expen-
sive. In SIMD it can be implemented with a gather instruction,
but this is not supported on all CPU architectures nor does this
instruction tend to be fast; hence we do not use such an approach
(explicitly). Because we use small dictionaries of size ≤ 23 = 8 and

Table 3: Hardware Platforms Used
Architecture Scalar ISA Best SIMD ISA CPU Model Frequency
Intel Ice Lake x86_64 AVX512 8375C 3.5 GHz
AMD Zen3 x86_64 AVX2 (256-bits) EPYC 7R13 3.6 GHz
Apple M1 ARM64 NEON (128-bits) Apple M1 3.2 GHz
AWS Graviton2 ARM64 NEON (128-bits) Neoverse-N1 2.5 GHz
AWS Graviton3 ARM64 NEON (128-bits) modified 2.6 GHz

SVE (variable) Neoverse-V1

the front-bits are maximally 16-bits wide; we note that we could
implement decoding by preloading the dictionary (maximally 8x16-
bits values) in a 128-bits SIMD register and then use a shuffle
instruction. However, the results presented in this paper are based
on purely scalar dictionary decompression code, leaving space for
improvement. Finally, we glue both parts together by left-shifting
𝑝 bits the dictionary-decoded front-bits, after applying exception
patching [5, 27] and adding in the decompressed right part (using
vectorized SHIFT and OR, fused together in a GLUE primitive seen
in Line 18 of Algorithm 3). Notice again that all operations are
performed in a tight loop over arrays (vectorized query process-
ing [51]) and the work is regular in nature such that C++ compilers
get to very efficient code. Only the exception patching has some
data dependencies and random memory access, but it is performed
on a minority of the data only – limiting its performance effects.

4 EVALUATION
We experimentally evaluate ALP with respect to its compression ra-
tio and [de]compression speed using all analyzed datasets in Table 1
against six competing approaches for lossless floating-point com-
pression: Gorilla [38], Chimp / Chimp128 [29], Patas [24], Elf [28]
and PDE [31]. Furthermore, we also compare against one general-
purpose compression approach: Zstd [14]. To further test the robust-
ness of ALP we tested its speed on different hardware architectures
which are described in Table 3 and using Auto-vectorized, Scalar
and SIMDized code. In subsection 4.3 we present end-to-end query
speed benchmarks of ALP on Tectorwise [23] to test its performance
in a real system. Finally, in subsection 4.4 we present a version of
ALP for 32-bits floats and evaluate it on machine learning data.

Sampling Parameters. Based on Figure 3, we defined the max-
imum number of combinations 𝒌 as 5. The number of vectors 𝒘
inside a row-group is fixed to 100 to emulate the usual modern
OLAP engines row-group sizes (e.g., DuckDB [41]). The size of ev-
ery vector 𝒗 is fixed to 1024 to comfortably fit in the CPU cache [7].
On the first sampling level, the number of vectors sampled per
row-group𝒎 is set to 8, and the number of values sampled per vec-
tor 𝒏 is set to 32. Finally, on the second sampling level, the number
of values sampled per vector 𝒔, is set to 32. 𝒎, 𝒏 and 𝒔 were tuned
during evaluation and showed to yield a good trade-off between
compression ratio and speed.

Algorithms Implementations. ALP is implemented in C++ and
is available in our GitHub repository10. ALP uses the FastLanes
library [3] to perform the lightweight encoding and decoding on
its output (i.e., FFOR, DICTIONARY, BP). Gorilla, Chimp, Chimp128
and Patas were implemented in C++. Gorilla was implemented
by ourselves, and the other implementations were stripped from
10https://github.com/cwida/ALP

https://github.com/cwida/ALP

ALP: Adaptive Lossless floating-Point Compression SIGMOD ’24, June 09–15, 2024, Santiago, Chile

the DuckDB codebase [40] and adjusted to work as standalone
algorithms. Note that Gorilla is part of a closed-source Facebook
system. On the other hand, PDE and Elf11 benchmarks were carried
out using code from the original authors. Finally, we used Face-
book’s implementation of Zstd in C [14], configured at the default
compression level (3).

4.1 Compression Ratio
Table 4 shows the compression ratios of all approaches measured
in bits per value (uncompressed, each value is a 64-bit double). In
this experiment the algorithms compressed all vectors in a dataset.
The best-performing floating-point approach is marked in green.

ALP evidently stands out from the other floating-point encoding
schemes in compression ratio. ALP shows an average improve-
ment of ≈31% compared to PDE. When compared to Gorilla, Patas,
Chimp, and Chimp128, ALP is respectively ≈49%, ≈39%, ≈43% and
≈24% better. In time series datasets ALP achieves a ≈33% and ≈46%
improvement over Chimp128 and PseudoDecimals. Similarly, on
non-time series data, ALP performs better than both by a ≈19%
and ≈21% on average. Elf is ALP’s most fierce competitor in terms
of compression ratio – excluding Zstd. On the other hand, Zstd
is the only compression algorithm that slightly takes the upper
hand in compression ratio with 20.6 bits per value on average. Even
so, ALP is slightly better than Zstd on time series data. One has
to take into account that Zstd has a much lower [de]compression
speed and, being block-based, has the disadvantage that one cannot
optimally skip through compressed data. For instance, in Zstd’s
256KB block-based compression, a system has to decompress 32
8KB vectors, even if 31 of those 32 vectors are not needed.

WhenALP shines.ALP outperforms Chimp128 and Elf on datasets
with fixed or low decimal precision or with a low percentage
of repeated values (e.g., Blockchain-tr, Arade-4, Dew-Point-Temp,
Bitcoin-price). In other words, ALP gets its best gains when the
doubles were generated from decimals. ALP performs better than
Chimp128 in 27 out of 30 datasets, and better than PDE in the same
amount. In fact, ALP is at most 2 bits worse than PseudoDecimals
on CMS/9 and Medicare/9. Both these datasets contain mostly in-
tegers encoded as doubles (Table 1). PDE benefits from such data
since 0 bits are stored after applying BP to the exponents output due
to the exponents always being equal to 0. Nevertheless, on these
types of datasets Decimal-based encoding approaches are much
better than XORing approaches. When ALP encounters real doubles,
𝐴𝐿𝑃𝑟𝑑 comes into the equation. There are two datasets for which
ALP failed to achieve any compression and 𝐴𝐿𝑃𝑟𝑑 encoding was
used: POI-lat and POI-lon (marked with *). These datasets are char-
acterized by almost 0% of repeated values and a maximum decimal
precision of 20 (Table 2:C2). In both datasets, these compression
ratios achieved by 𝐴𝐿𝑃𝑟𝑑 represent an improvement over all the
other floating-point compression approaches.

When ALP struggles. ALP struggles to keep up with both Elf and
Chimp128 on datasets in which the XORing process benefits from a
high percentage of repeated values and the decimal-based encoding
process is hindered by a high variability in value precision. Those

11https://github.com/Spatio-Temporal-Lab/elf

Table 4: Compression ratio measured in Bits per Value. The
smaller this metric, the more compression is achieved (un-
compressed data is 64 bits per value). ALP achieves the best
performance in average (excluding zstd). *: ALP𝑟𝑑 was used.

Dataset Gor. Ch. Ch.
128 Patas PDE Elf ALP LWC+

ALP Zstd

Air-Pressure 24.7 23.0 19.3 27.9 30.2 10.5 16.5 11.9𝑑𝑖𝑐𝑡 8.7
Basel-Temp 61.6 54.1 31.2 36.5 39.3 32.9 29.8 13.8𝑑𝑖𝑐𝑡 18.3
Basel-Wind 63.2 54.7 38.4 48.9 35.1 34.5 29.8 10.3𝑑𝑖𝑐𝑡 14.6
Bird-Mig 48.7 41.9 26.3 35.9 35.2 19.9 20.1 19.8𝑑𝑖𝑐𝑡 21.0
Btc-Price 51.5 48.2 45.1 57.1 44.1 31.9 26.4 26.4 49.9
City-Temp 59.7 46.2 23.0 24.2 31.5 15.1 10.7 10.0𝑑𝑖𝑐𝑡 16.2
Dew-Temp 56.2 51.8 32.6 39.0 29.5 17.7 13.5 13.5 20.9
Bio-Temp 51.9 46.3 18.9 22.9 23.4 13.0 10.7 10.7 14.5
PM10-dust 27.7 24.4 13.7 19.9 12.9 7.1 8.2 8.2 6.9
Stocks-DE 46.9 42.9 13.6 20.8 25.1 12.3 11.0 11.0 9.4
Stocks-UK 35.6 31.3 16.8 21.5 26.1 11.0 12.7 12.7 10.7
Stocks-USA 37.7 35.0 12.2 19.2 26.1 8.8 7.9 7.9 7.8
Wind-dir 59.4 53.9 27.8 28.2 31.5 22.1 15.9 15.9 24.7
TS AVG. 48.1 42.6 24.5 30.9 30.0 18.2 16.4 13.2 17.2
Arade/4 58.1 55.6 49.0 59.1 33.7 30.8 24.9 24.9 33.8
Blockchain 65.5 58.3 53.2 62.6 39.1 39.2 36.2 36.2 38.3
CMS/1 37.8 34.8 28.2 36.8 40.7 25.4 35.7 33.1𝑑𝑖𝑐𝑡 24.5
CMS/25 65.4 59.5 57.2 70.1 63.9 48.6 41.1 27.1𝑟𝑙𝑒 56.5
CMS/9 17.1 18.7 25.7 26.0 9.7 15.8 11.7 11.3𝑑𝑖𝑐𝑡 14.7
Food-prices 40.8 28.0 24.7 28.3 25.4 16.8 23.7 23.7 16.6
Gov/10 58.1 45.7 34.2 35.9 35.6 30.1 31.0 31.0 27.4
Gov/26 2.4 2.3 9.3 16.2 0.9 4.2 0.4 0.2𝑟𝑙𝑒 0.2
Gov/30 10.3 8.9 12.9 19.3 8.2 8.0 7.5 6.2𝑟𝑙𝑒 4.2
Gov/31 5.7 5.0 10.4 17.1 2.8 5.4 3.1 2.5𝑟𝑙𝑒 1.5
Gov/40 2.7 2.6 9.4 16.4 1.2 4.3 0.8 0.5𝑟𝑙𝑒 0.4
Medicare/1 45.9 42.7 32.3 39.9 42.8 29.9 39.4 35.7𝑑𝑖𝑐𝑡 28.7
Medicare/9 17.9 19.1 26.0 26.3 10.2 16.0 12.3 11.3𝑑𝑖𝑐𝑡 14.9
NYC/29 30.8 29.6 28.7 38.8 69.3 32.6 40.4 24.7𝑑𝑖𝑐𝑡 20.5
POI-lat 66.0 57.7 57.5 71.7 69.3 62.5 55.5* 55.5* 48.1
POI-lon 66.1 63.4 63.1 75.9 69.2 68.7 56.4* 56.4* 53.1
SD-bench 51.1 45.7 19.2 23.0 30.6 18.4 16.2 12.0𝑑𝑖𝑐𝑡 11.8
NON-TS 37.7 34.0 31.8 39.0 32.5 26.9 25.7 23.1 23.3
ALL AVG. 42.2 37.7 28.7 35.5 31.4 23.1 21.7 18.8 20.6

datasets are: CMS/1, Medicare/1 and NYC/29. Despite ALP encod-
ing also taking advantage of similar data, the profit of Chimp128
/ Elf when it can find an exactly equal value is much higher than
the profit that ALP can get. Nevertheless, on data with many dupli-
cates, we question whether floating-point encodings were the best
decision in the first place. For instance, due to the high percentage
of repeated values we could plug-in a DICTIONARY encoding before
applying a floating-point encoding (or RLE, if the repeats are con-
secutive). We in fact tried using DICTIONARY and then compressing
the dictionary with ALP, allowing it to achieve 33.1, 35.7 and 24.7
bits per value for CMS/1, Medicare/1 and NYC/29 respectively. The
compression ratios that ALP is able to achieve by cascading com-
pression using another lightweight encoding (i.e., DICTIONARY or
RLE) are shown in the penultimate column of Table 4. By doing so,
ALP even beats Zstd in compression ratios while still retaining its
advantages (higher speed, compatibility with predicate-pushdown).

4.2 [De]compression Speed
We measured speed as the amount of tuples (i.e., values) that an
algorithm is capable of [de]compressing in one CPU clock cycle.
In order to do so we took a vector within each of our datasets (i.e.,
1024 values) and executed the [de]compression algorithms. The
measure tuples per cycle is then calculated as 1024 divided by the
number of computing cycles the process took. We chose one vector

https://github.com/Spatio-Temporal-Lab/elf

SIGMOD ’24, June 09–15, 2024, Santiago, Chile Afroozeh and Kuffó and Boncz

Table 5: Average compression and decompression speed as
tuples processed per computing cycle of all datasets on the
Ice Lake architecture.

Tuples per CPU Cycle (Higher is better)
Algorithm Compression ALP is

faster by: Decompression ALP is
faster by:

ALP 0.487 - 2.609 -
Chimp 0.042 12x 0.039 66x
Chimp128 0.040 12x 0.040 65x
Elf 0.010 47x 0.012 215x
Gorilla 0.052 9x 0.047 55x
PDE 0.002 251x 0.387 7x
Patas 0.060 8x 0.157 17x
Zstd 0.035 14x 0.101 26x

as the size of the experiment since every float compressor we com-
pare against is optimized to work over a small block of values at a
time; except Zstd. As such, we increased the size of the experiment
for Zstd to one rowgroup (i.e. roughly 1 MB of data). In order to
correctly characterize CPU cost, we repeated this process 300K
times and averaged the result, to ensure all data is L1 resident. In
this experiment, we prefer the metric tuples per cycle over elapsed
time since it is a more effective comparison method across plat-
forms. Furthermore, this metric makes Zstd speed measurements
comparable regardless of the input data size. This experiment was
performed on Ice Lake.

Figure 1 shows the result of this experiment. ALP clearly outper-
forms every other algorithm in both compression and decompres-
sion speed in every dataset; even being able to achieve sub-cycle
performance in decompression. This speed measurement also in-
cludes the FFOR encoding and decoding in ALP. Table 5 shows the
average amount of tuples per cycle processed in compression and
decompression for every algorithm along all datasets. ALP is faster
than all other approaches in both compression and decompression.

ALP is ≈7x faster than PDE; which is the second-best at decom-
pression speed. However, PDE is also the slowest at compression
(251x slower than ALP) due to the brute force and –per value–
search for a viable exponent 𝑒 to encode the doubles as integers.
Furthermore, ALP is ≈8x faster than Patas, which is the second-best
at compression speed. This was expected since Patas is a single-case
byte-aligned variant of Chimp optimized for decoding speed. On
the other hand, Elf speed under-performed against the other algo-
rithms, with ALP being ≈47x times faster in encoding and ≈215x
faster in decoding. This was also expected since Elf is a variant of
Gorilla tailored to trade speed for more compression ratios. Hence,
the fact that ALP achieved higher compression ratios than Elf is
remarkable. ALP is x55 faster than Gorilla at decompression since
the latter has complex if-then-else (i.e. branch mispredictions) and
data dependencies that not only cause wait cycles, but also prevent
SIMD. Zstd resides in a middle position in that it achieves better
compression speed than PDE and Elf, and decompression speed
only slower than Patas and PDE.

ALP on Different Architectures. In order to investigate the
performance robustness of ALP, we evaluated it on all currently
mainstream CPU architectures, as described in Table 3. CPU turbo-
scaling features were disabled when available to allow for reliable
tuples-per-cycle measurements. In our presentation here we just
show results for decompression speed (due to space reasons) as

Graviton2 Graviton3 Ice Lake M1 Zen3
Architectures

0.5

1.0

1.5

2.0

D
ec
om

pr
es
si
on
 S
pe
ed

Tu
pl
es
 p
er
 C
PU

 C
yc
le Auto-Vectorized

Scalar
SIMDized

Figure 4: Decompression speed measured in tuples per cycle
on different architectures. Each dot represents the decom-
pression performance on a dataset in a different architecture.

this is the most performance-critical aspect for analytical database
workloads. Furthermore, on each architecture we tested three differ-
ent implementations of our decoding procedure: SIMDized, Auto-
vectorized and Scalar. The SIMDized implementation uses explicit
SIMD intrinsics. The Auto-vectorized implementation is the Scalar
implementation automatically vectorized by the C++ compiler. Fi-
nally, the purely Scalar implementation is obtained when we explic-
itly disabled the auto-vectorization of the C++ compiler by using
the following flags: -O3 -fno-slp-vectorize -fno-vectorize.
Figure 4 shows the results of this experiment. We can see how Auto-
vectorized and SIMDized on Ice Lake yield the best performance
results. This is due to this platform having the widest SIMD regis-
ter of all the platforms at 512-bits. We can also see that Gravitons
have weak SIMD performance (compared to Scalar). Furthermore,
in every platform Auto-vectorization matches or surpasses Scalar
code. However, Zen3 auto-vectorized performance is hurt by the
scalar code using the built-in rounding function due to the lack of
a SIMD instruction to perform the cast from double to int64 in our
fast rounding procedure.

Kernel Fusion.We performed speed comparisons of our decom-
pression between FFOR+ALP as a fused kernel and as two separate
kernels. The plot at the top of Figure 5 shows the result of this
experiment. Fusing increases the decompression speed by a me-
dian ≈40% (but for some datasets 6x). However, the vectors from
our datasets used for this experiment do not cover all the possible
bit-widths that FFOR could use. The latter is a known factor that
may affect the performance of vectorized execution [15]. Hence, for
robustness purposes, we performed an additional comparison on
synthetic integer vectors generated with a specific vector bit-width
from 0 to 52. Bit-widths from 52 to 64 are omitted from this analysis
since on these bit-widths 𝐴𝐿𝑃𝑟𝑑 is used. The bottom plot of Figure
5 shows the result of this experiment.

Sampling Overhead in Compression ALP implements a two-
level sampling mechanism to find the correct encoding method
and parameters, described in section 3.2. The first level samples
row-groups and the second level is done for every vector. We
analyze the performance cost of the second sampling level, since it
is on the performance-critical path of ALP compression.

When the first level sampling yields only one potential com-
bination (e.g., Bird-Migration, Bitcoin-Price), there is 0 sampling
overhead at a vector level for the entire row-group since ALP al-
ready knows which combination of exponent and factor to use for
all the vectors. This occurs on ≈54% of the vectors in our datasets.

ALP: Adaptive Lossless floating-Point Compression SIGMOD ’24, June 09–15, 2024, Santiago, Chile

9
10

Fused
Non-Fused

Datasets
0

1

2

9
10

Fused
Non-Fused

0 4 8 12 16 20 24 28 32 36 40 44 48 52
Bitwidth of Vector

0

1

2

D
ec
om

pr
es
si
on
 S
pe
ed

Tu
pl
es
 p
er
 C
PU

 C
yc
le

Figure 5: Speed comparison of ALP decoding with and with-
out fusing ALP and FFOR into one single kernel (Ice Lake).
Tests performed on our analyzed datasets (top) and on gen-
erated data with specific vector bit-width (bottom). ALP ben-
efits from fusing consistently with a ≈40% decompression
speed increase (and sometimes much more).

However, when ALP has to perform the second-level sampling,
there is a non-negligible overhead at compression. From our ex-
periments, this overhead represents on average ≈6% of the total
compression time. The latter is a trade-off for fast decompression;
which in the context of analytical databases is a more often-used
operation than compression. This overhead is bounded by 𝑘 factor
and exponent combinations, which was set to 5 in our evaluation.
22.9% and 20.0% of the vectors tried 2 and 3 combinations respec-
tively in search of the best one. Only 2.9% and 0.3% of the vectors
tried 4 and 5 combinations respectively on the vector sample.

Finally, we have also found that the best combination yielded
from a brute-force search on the entire search space only improved
compression ratio by less than 1% on average. Thus, demonstrating
the efficiency and portability of our fixed sampling parameters.

ALP𝑟𝑑 speed. Doing a side-by-side comparison ALP𝑟𝑑 is on aver-
age ≈3x slower in compression and ≈4x slower in decompression
than the main ALP encoding. In fact, the two datasets in which
ALP𝑟𝑑 was used can be seen at the bottom of ALP green dots in Fig-
ure 1. Although ALP𝑟𝑑 is still remarkably performant compared to
the competitors, we deem this speed reduction necessary to achieve
compression on these types of doubles, which present problems
for every floating-point compression scheme. We believe there is
room for improvement since 𝐴𝐿𝑃𝑟𝑑 encoding and decoding are
not fused into one single kernel due to current implementation
limitations. However, given that [de]compression in almost any
encoding gets faster at high compression ratios, this result is not
surprising: ALP𝑟𝑑 is used when only low compression ratios can
be achieved (maximum ≈1.2x).

4.3 End-to-End Query Performance
We benchmarked end-to-end query speed of ALP and the other
floating-point compressors, when integrated in the research system
Tectorwise [23]. The difference with our micro-benchmarks is that
a complete dataset is decompressed by Tectorwise’s scan operator

Table 6: End-to-end performance on City-Temp in the Tector-
wise system, measured in Tuples per CPU cycle per core. ALP
is even faster than uncompressed, and extends its lead w.r.t.
the micro-benchmarks. The competitors are so CPU bound
that they scale well in SCAN (=speed stays equal), while ALP
and uncompressed drop speed when running multi-core, due
to scarce RAMbandwidth. Butwhen doing querywork (SUM),
speed is lower, and scaling is not an issue for ALP.
Algorithm

Tuples per CPU Cycle (Higher is Better)
QUERY | THREADS

SCAN|1 SCAN|8 SCAN|16 SUM|1 SUM|8 SUM|16 COMP
ALP 1.337 1.074 0.882 0.233 0.230 0.234 0.147
Uncompressed 0.565 [x2 slower ↓] 0.408 0.350 0.197 [x1.2 ↓] 0.186 0.175 N/A
PDE 0.070 [x19 ↓] 0.071 0.071 0.058 [x4 ↓] 0.057 0.057 0.001 [x138 ↓]
Patas 0.067 [x20 ↓] 0.063 0.065 0.055 [x4 ↓] 0.055 0.055 0.039 [x4 ↓]
Gorilla 0.030 [x44 ↓] 0.030 0.030 0.028 [x8 ↓] 0.027 0.027 0.023 [x7 ↓]
Chimp 0.021 [x64 ↓] 0.021 0.021 0.019 [x12 ↓] 0.019 0.019 0.015 [x10 ↓]
Chimp128 0.028 [x47 ↓] 0.028 0.028 0.026 [x9 ↓] 0.026 0.026 0.019 [x8 ↓]
Zstd 0.044 [x31 ↓] 0.042 0.039 0.038 [x6 ↓] 0.037 0.035 0.014 [x11 ↓]

(SCAN), rather than only a small part. Also, in the SUM experiment,
the scan operator feeds data vector-at-a-time into an aggregation
operator; using the vectorized query execution of Tectorwise. We
scaled all datasets up to 1 billion doubles by concatenation (8GB un-
compressed). We also test compression performance, which writes
the compressed data. This also writes extra meta-data for the com-
pressed blocks, at the least byte-offsets where they start, but for
PDE and ALP also offsets where their exceptions start, as well as
any other compression parameters (like bit-width for bit-packing).

For presentation purposes, we picked five datasets with diverse
characteristics, such as magnitude, decimal precision, XORed 0’s
bits, and compressability. These datasets are: Gov/26, City-Temp,
Food-Prices, Blockchain-tr and NYC/29. We benchmarked 3 queries:
COMPRESSION (COMP), SCAN and SUM (Aggregation). For SUM and
SCAN we also benchmarked the scaling of every algorithm when
using multiple cores (up to 16). This experiment was again carried
out on Intel Ice Lake in a machine with 16 cores (32 SMT) and 256GB
of RAM with a bandwidth of 18.75 Gibps. The reported results are
the average of 32 executions of one query. Elf was not included in
this analysis due to the lack of an implementation in C++.

SUM and SCAN. Table 6 shows that in the single-threaded SCAN |

1 experiment, the achieved 1.33 Tuples per CPU cycle is in line with
the microbenchmarks shown in Figure 5 – though there is about a
25% drop in performance in the end-to-end situation compared to
these. We attribute this to: (i) the extra effort in reading block meta-
data (not present in the micro-benchmarks), (ii) the interpretation
cost of choosing and calling a decompression function based on the
meta-data (always the same and thus free of CPU branch mispre-
dictions in the micro-benchmarks) and (iii) the variable amount of
exceptions present in the entire dataset.

Given these extra activities in end-to-end, and just a 25% drop,
we deem our micro-benchmarks as representative of core decom-
pression work achieved in end-to-end situations. What is further
striking is that SCAN and SUM on ALP is faster than on uncom-
pressed data, and the fact that ALP extends its performance lead
over the competitors in the end-to-end benchmarks, compared to
the micro-benchmarks. Note, however, that the micro-benchmark
results were aggregated for all datasets (Table 5) so one should not
directly compare with these tables.

Regarding multi-threading, the performance metrics in Table 5
and Figure 6 are per-core, hence equal performance would be perfect

SIGMOD ’24, June 09–15, 2024, Santiago, Chile Afroozeh and Kuffó and Boncz

ALP Unc. PDE Patas Gor. Ch. Ch.128 Zstd

0

10

20

Gov/26 (0.4 bits/value on ALP)

SCAN 1 thread
SCAN 8 threads
SCAN 16 threads
SUM

ALP Unc. PDE Patas Gor. Ch. Ch.128 Zstd

0

20

40

City-Temp (10.7 bits/value)

ALP Unc. PDE Patas Gor. Ch. Ch.128 Zstd

0

10

20

30

40

Food-prices (23.7 bits/value)

ALP Unc. PDE Patas Gor. Ch. Ch.128 Zstd

0

20

40

60

Blockchain-tr (36.2 bits/value)

ALP Unc. PDE Patas Gor. Ch. Ch.128 Zstd

0

20

40

NYC/29 (40.4 bits/value)

CP
U
 C

yc
le

s
pe

r
Tu

pl
e

[L
ow

er
=
Be

tt
er

]

Figure 6: End-to-end SUM query execution speed for 5 datasets in Tectorwise (Ice Lake) measured in CPU cycles per Tuple. ALP
is faster than all other schemes (even faster than uncompressed), while achieving perfect scaling (=speed stays the same) when
using multi-core. Results show that SCAN is virtually free if data is compressed with ALP. PDE can’t compress NYC/29.

Table 7: Compression ratios (bits/value) that 𝐴𝐿𝑃𝑟𝑑32 and its
competitors achieved on machine learning models’ weights
(32-bits floats). 𝐴𝐿𝑃𝑟𝑑32 achieved the best compression ratio.
Name Model Type N° of

Params. Gor. Ch. Ch.
128 Patas ALP𝑟𝑑 Zstd

Dino-Vitb16 [11] Vision Transformer 86,389,248 34.1 33.4 33.4 45.8 28.3 29.7
GPT2 [42] Text Generation 124,439,808 34.1 33.5 33.5 45.6 27.7 29.7
Grammarly-lg [43] Text2Text 783,092,736 34.1 33.4 33.4 45.5 27.7 29.6
W2V Tweets Word2Vec 3,000 34.1 33.3 33.3 45.5 28.8 29.8

AVG. 34.1 33.4 33.4 45.6 28.1 29.7

scaling. As all cores of the CPU get loaded, per-core ALP SCAN
performance slightly drops – which also happens for uncompressed.
This is caused by the query becoming RAM-bandwidth bound.
However, in the SUM experiment, there is additional summing
work (although not much) and therefore the query runs slower. As
a result, ALP is able to scale perfectly while uncompressed is not.

Note that in Figure 6 the performance metric is reversed: lower
is better. We present the summing work in the SUM query (=SUM-
SCAN, because SUM also scans) as the lower part of the stacked
bar: it is roughly 3 cycles per tuple. Figure 6 confirms our results
across the board: ALP is much faster end-to-end than the other
compressors, even faster than uncompressed, and scales well.

COMP. ALP again is the fastest when compressing (Table 6): it is
x4 and x7 times faster than the second and third-best algorithms
in the City-Temp dataset (i.e. Patas, Gorilla) while still maintain-
ing distance from Zstd (x11 slower) and PDE (x138 slower). COMP
end-to-end performance is lower than in our micro-benchmarks.
We attribute this to: (i) the extra effort in storing meta-data, (ii) the
variable amount of exceptions (which are rather costly at compres-
sion time) and (iii) the first sampling phase which was not present
in the micro-benchmarks.

4.4 Single Precision and Machine Learning Data
We have also ported 𝐴𝐿𝑃 to 32-bits. Those of our double datasets
with decimal precision ≤10, can be properly represented as 32-bit
floating-point numbers (all except POI’s, Basel’s, Medicare/1, and
NYC/29); and 32-bit ALP works on them. This leads to the same
compressed representation as in 64-bits (Table 4); but given that
the uncompressed width is 32-bits, the compression ratio is halved
(and becomes ≈1.77).

A currently relevant different kind of 32-bit floats are found
in trained machine learning models (i.e., the weights). However,
these were created out of many multiplications and additions, and
hence tend to have high precision. Still, there will be commonali-
ties in their sign and exponent parts (IEEE 754) that 𝐴𝐿𝑃𝑟𝑑 could
take advantage of. Therefore, we also ported 𝐴𝐿𝑃𝑟𝑑 to 32-bits and

benchmarked it on four different ML models, against those com-
peting schemes that have a version for 32-bit floats (i.e. Gorilla,
Chimp, Chimp128, Gorilla) as well as Zstd. The results of this ex-
periment are in Table 7; with 𝐴𝐿𝑃𝑟𝑑 for 32-bit floats achieving the
best compression ratios out of all the other algorithms (28.1 bit-
s/value; ≈12% of reduction). In fact, it is the only floating-point
encoding to achieve compression. Alternatively, model weights are
usually quantised (i.e. lossy reduction of precision) when deployed
for inference[47]. However, if this is not desired or possible; 𝐴𝐿𝑃𝑟𝑑
thus can provide some useful lossless compression for ML.

5 RELATEDWORK
The techniques developed for floating-point compression can be
categorized mainly into three groups: (i) Predictive schemes, (ii)
XOR schemes and (iii) Integer encoding schemes.

Predictive Schemes were one of the first novel approaches de-
signed to compress floating-point data [4, 16, 30]; even in the con-
text of geometry data [18, 22]. In these approaches, a function is used
to generate a predicted value based on patterns found within the
data prior to the value to encode. The idea behind this approach is
that the predicted value and the value to encode are similar enough
such that an operation (usually ADD) between their exponent and
mantissas represented as integers yield a compressible chain of bits.
Ratanaworabhan et al. [45] demonstrated that such an operation
could be a bitwise XOR. Based on that, Burtscher and Ratanaworab-
han developed FPC [10], which achieved better compression ratios
and speed compared to previous approaches.

XOR Schemes. Pelkomen et al. [38] re-evaluated the predictor
function to obtain a similar value to the value to encode. Their
key idea was that in certain contexts such as time series, using
the immediate previous value works as well as using a predictor.
This assumption motivated the development of Gorilla. Gorilla
compresses floats by doing a bitwise XOR with the immediate
previous value. Next, it encodes the resulting chain of bits as 0 in
case of a perfect XOR (i.e. equal values), otherwise, it encodes the
resulting number of leading zeros and significant bits. Gorilla is
faster on [de]compression than prediction schemes since encoding
and decoding are achieved using a simple XOR with the immediate
previous value instead of tuning and running a prediction function.

Gorilla Variants. Chimp [29] refined Gorilla by exploiting proper-
ties of the bit-chains yielded by the XORing process in time series
data. Chimp distinguishes four different encoding modes based
on the number of leading and trailing zeros of the XOR result to
optimize compression ratios. It was jointly developed with a variant

ALP: Adaptive Lossless floating-Point Compression SIGMOD ’24, June 09–15, 2024, Santiago, Chile

called Chimp128 in which the algorithm looks into the previous 128
values in order to find themost suitable value to XOR at the expense
of 7 additional bits to store the position of this value. This idea of
looking among previous values for the XOR was first introduced by
Bruno et al. [9]. Chimp128 proved to be substantially better than
FPC, Gorilla and other general-purpose compression schemes (e.g.
Snappy, LZ4) in terms of compression ratio and speed [29].

In order to improve Chimp decompression speed, DuckDB Labs
developed Patas [24]. The goal was to get a variant of Chimp128
faster at [de]compression, which it achieves by its design with
a single encoding mode (fewer branch-mispredictions) and byte-
aligned bit-manipulation (less CPU work). Patas encodes for every
value a block of 2 bytes containing the 7 bits previous value index,
the number of significant bytes and the number of trailing zeros.
Patas trades compression ratio for a ≈75% speed improvement at
decompression time compared to Chimp128. In the context of ana-
lytical databases decompression speed is important for obtaining
fast query results. On the other hand, a recently proposed XOR
scheme called Elf [28] trades [de]compression speed for compres-
sion ratio by erasing bits from the mantissa at encoding time to
make the XOR result more compressible. Afterwards, it losslessly
reconstructs the double at decoding. As seen by our results, Elf
gains ≈19% in compression ratio over Chimp128 at the expense of
≈4x slower compression and decompression. In contrast to Patas
and Elf, ALP improves Chimp128 in all aspects.

While Chimp128 seemed to be clearly superior to Gorilla, our
results show that it can actually perform better than Chimp128 (and
even Elf) in datasets with consecutive runs of zeros (e.g. Gov/26,
Gov/40). On this type of data Gorilla (and also Chimp) do not need
the extra 7-bits to make a reference to one of the past 128 values
since the most optimal value to XOR is always the previous one.

Integer Encoding Schemes. Doubles can also be compressed by
taking advantage of their visible decimal representation [48]. Pseu-
doDecimals [31] (PDE) formally introduces a lossless approach to
perform this encoding process. PDE tries to encode a double with a
division between an integer and an inverse factor of 10 under the
assumption that the double was generated from a DECIMAL. This is
why we refer to this type of encoding as Decimal-based encoding.
ALP presents a strongly enhanced version of this approach intro-
ducing the idea of using large exponents and mitigating the effects
of those with an additional multiplication that gets rid of trailing
zeros. ALP is designed for vectorized execution, and introduces an
adaptive mechanism for high-precision decimals (i.e. 𝐴𝐿𝑃𝑟𝑑). ALP
prefers multiplication over division since division is an expensive
operation in most ISAs [17]. PDE and ALP have the advantage that
their output is further compressible using other lightweight encod-
ing schemes such as DICTIONARY, RLE, FOR or DELTA [6, 15, 31].

6 DISCUSSION
A striking feat of our study of datasets used for database compres-
sion of doubles is that out of the 30 datasets our community uses for
evaluating double compression, only the two POI datasets would
not better be represented as fixed-point decimals. In fact, most POI
data comes from GPS, which has an accuracy of a few meters, and
the Earth’s diameter is ≈12.750.000 meters (i.e., 8 digits, which cor-
responds to 28 bits). Indeed, when the POI-lat and POI-lon values

are converted back from radians by multiplying with 𝜋/180 we
observe this precision in the data – but we think it would go too far
to define a specific ALP mode that deals with 𝑝𝑖-multiplied data.

One may question why none of the datasets requires true double
precision, nor is any all over the place in terms of magnitude –
doubles allow numbers as close to zero as 10−308 and as large as
10308. One interpretation could be that double is a catch-all type for
two use cases: storing measures for which a-priori little is known
about their domain (min/max), or where themagnitude is truly wide
and/or variable. In the former use case, the actual data will tend
to have min/max locality, leading to low variance in the high bits
(equal or close exponent and highest mantissa bits). As the actual
precision of actual values is limited by the measurement method,
one either sees “pseudo-decimals” where the lower digits (in 10-
base) are zero, or in the worst case, randomly filled in. The latter use
case, high magnitude variance, seems to be rare, though weights
and activations in machine learning could be the best example of
this (not regarding large numbers, but numbers close to zero, i.e.,
highly variable negative exponents). Such data demonstrated to
be hard to compress, for any scheme; and reducing their size is so
crucial that it triggered the appearance of TensorFloat (Google) and
Bfloat16 (Nvidia). These new thin floats, developed with Machine
Learning hardware in mind, mostly cut down on mantissa and
somewhat on exponent.

The use of doubles in scientific calculations is common; though
researchers have criticized the rounding errors produced [19], and
proposed alternatives like unum and posit[21]. There are strong
arguments for compressing doubles stored in big data formats and
database files: data gets smaller, reducing storage cost across the
memory hierarchy, reducing also I/O time, network transfer time
and usage. We think that with the increased convergence of data
science and scientific computations there will be growing demand
for doubles in databases, and their compressed storage.

7 CONCLUSIONS
We have presented and evaluated ALP: a strongly enhanced version
of Decimal-based encoding with an adaptive fallback to front-bit
compression if doubles have truly large precision. ALP beats the
competition in all relevant dimensions. Its compression ratio is
better than all recently proposed floating-point encodings, while
being much faster in [de]compression speed. Its compression ratio
is only equalled by heavy-weight general-purpose compression;
but these methods have slow [de]compression speeds and are block-
based: forcing database scans to fully compress a large block of
data. In contrast, one can skip through ALP-compressed data at the
vector-level; allowing for efficient predicate push-down. We think
ALP will be a valuable encoding in cascading lightweight comp-
ression formats [6, 31], and recall that in our evaluation it already
beat zstd (18.8 vs. 20.6) when cascading on Dictionary and RLE.

We would like to stress that the key idea behind ALP is to de-
sign for vectorized execution; it led us to analyze and uncover un-
exploited opportunities from a vector perspective in a variety of
datasets. Vectorized execution reduces computational cost (reduc-
ing loop-, function call-, and load/store-overhead), brings out the
best in compilers (vectorized code triggers loop-centered optimiza-
tions including auto-vectorization), but also amortizes storage (pa-
rameters such as exponent are stored once per-vector instead of

SIGMOD ’24, June 09–15, 2024, Santiago, Chile Afroozeh and Kuffó and Boncz

per-value), allows for per-vector adaptivity without reducing per-
formance due to branch-mispredictions (as happens in per-value
adaptivity in e.g., the Chimp variants), and can take advantage of
in-vector data commonalities. As for future work, we think that
the implementation of ALP on massively parallel hardware such as
GPUs and TPUs could be fruitful.

REFERENCES
[1] 2019. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision

of IEEE 754-2008) (2019), 1–84. https://doi.org/10.1109/IEEESTD.2019.8766229
[2] 2019. Public BI Benchmark. https://github.com/cwida/public_bi_benchmark.

Accessed on: 2023-04-13.
[3] 2023. FastLanes. https://github.com/cwida/FastLanes Accesed on: 2023-04-13.
[4] Daniel Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating compres-

sion and execution in column-oriented database systems. In Proceedings of the
2006 ACM SIGMOD international conference on Management of data. 671–682.

[5] Azim Afroozeh and P Boncz. 2020. Towards a New File Format for Big Data:
SIMD-Friendly Composable Compression.

[6] Azim Afroozeh and Peter Boncz. 2023. The FastLanes Compression Layout:
Decoding > 100 Billion Integers per Second with Scalar Code. Proc. VLDB
Endow. 16, 9 (jul 2023), 2132–2144. https://doi.org/10.14778/3598581.3598587

[7] Peter A Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution.. In Cidr, Vol. 5. 225–237.

[8] Boudewijn Braams. 2018. Predicate Pushdown in Parquet and Apache Spark.
MSc thesis (2018).

[9] Andrea Bruno, Franco Maria Nardini, Giulio Ermanno Pibiri, Roberto Trani, and
Rossano Venturini. 2021. TSXor: A Simple Time Series Compression Algorithm.
In String Processing and Information Retrieval: 28th International Symposium,
SPIRE 2021, Lille, France, October 4–6, 2021, Proceedings 28. Springer, 217–223.

[10] Martin Burtscher and Paruj Ratanaworabhan. 2008. FPC: A high-speed compres-
sor for double-precision floating-point data. IEEE transactions on computers 58, 1
(2008), 18–31.

[11] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr
Bojanowski, and Armand Joulin. 2021. Emerging Properties in Self-Supervised
Vision Transformers. CoRR abs/2104.14294 (2021). arXiv:2104.14294 https:
//arxiv.org/abs/2104.14294

[12] Biswapesh Chattopadhyay, Priyam Dutta, Weiran Liu, Ott Tinn, Andrew Mc-
cormick, Aniket Mokashi, Paul Harvey, Hector Gonzalez, David Lomax, Sagar
Mittal, et al. 2019. Procella: Unifying serving and analytical data at YouTube.
(2019).

[13] Yann Collet. 2014. LZ4 - Extremely fast compression. https://github.com/lz4/lz4
Accesed on: 2023-04-13.

[14] Yann Collet. 2015. Zstandard - Fast real-time compression algorithm. https:
//github.com/facebook/zstd Accesed on: 2023-04-13.

[15] Patrick Damme, Dirk Habich, Juliana Hildebrandt, and Wolfgang Lehner. 2017.
Lightweight Data Compression Algorithms: An Experimental Survey (Experi-
ments and Analyses).. In EDBT. 72–83.

[16] Vadim Engelson, Peter Fritzson, and Dag Fritzson. 2000. Lossless compression of
high-volume numerical data from simulations.

[17] Agner Fog et al. 2011. Instruction tables: Lists of instruction latencies, throughputs
and micro-operation breakdowns for Intel, AMD and VIA CPUs. Copenhagen
University College of Engineering 93 (2011), 110. https://www.agner.org/optimize/
instruction_tables.pdf

[18] Nathaniel Fout and Kwan-Liu Ma. 2012. An adaptive prediction-based approach
to lossless compression of floating-point volume data. IEEE Transactions on
Visualization and Computer Graphics 18, 12 (2012), 2295–2304.

[19] David Goldberg. 1991. What every computer scientist should know about floating-
point arithmetic. ACM computing surveys (CSUR) 23, 1 (1991), 5–48.

[20] Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 1998. Compressing
relations and indexes. In Proceedings 14th International Conference on Data Engi-
neering. IEEE, 370–379.

[21] John L Gustafson and Isaac T Yonemoto. 2017. Beating floating point at its own
game: Posit arithmetic. Supercomputing frontiers and innovations 4, 2 (2017),
71–86.

[22] Martin Isenburg, Peter Lindstrom, and Jack Snoeyink. 2005. Lossless compression
of predicted floating-point geometry. Computer-Aided Design 37, 8 (2005), 869–
877.

[23] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo, and
Peter Boncz. 2018. Everything you always wanted to know about compiled and
vectorized queries but were afraid to ask. Proceedings of the VLDB Endowment
11, 13 (2018), 2209–2222.

[24] DuckDB Labs. 2022. Patas Compression: Variation on Chimp. https://github.
com/duckdb/duckdb/pull/5044. Accessed on: 2023-04-13.

[25] Harald Lang, Tobias Mühlbauer, Florian Funke, Peter A Boncz, Thomas Neumann,
and Alfons Kemper. 2016. Data blocks: Hybrid OLTP and OLAP on compressed

storage using both vectorization and compilation. In Proceedings of the 2016
International Conference on Management of Data. 311–326.

[26] Seungyeon Lee, Jusuk Lee, Yongmin Kim, Kicheol Park, Jiman Hong, and Jun-
young Heo. 2020. Efficient scheme for compressing and transferring data in
hadoop clusters. In Proceedings of the 35th Annual ACM Symposium on Applied
Computing. 1256–1263.

[27] Daniel Lemire and Leonid Boytsov. 2015. Decoding billions of integers per second
through vectorization. Software: Practice and Experience 45, 1 (2015), 1–29.

[28] Ruiyuan Li, Zheng Li, Yi Wu, Chao Chen, and Yu Zheng. 2023. Elf: Erasing-based
Lossless Floating-Point Compression. Proceedings of the VLDB Endowment 16, 7
(2023).

[29] Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis. 2022. Chimp:
efficient lossless floating point compression for time series databases. Proceedings
of the VLDB Endowment 15, 11 (2022), 3058–3070.

[30] Peter Lindstrom and Martin Isenburg. 2006. Fast and efficient compression of
floating-point data. IEEE transactions on visualization and computer graphics 12,
5 (2006), 1245–1250.

[31] Adnan Alhomssi Viktor Leis Maximilian Kuschewski, David Sauerwein. 2023.
BtrBlocks: Efficient Columnar Compression for Data Lakes. Proceedings of the
2023 ACM SIGMOD international conference on Management of data. https://
www.cs.cit.tum.de/fileadmin/w00cfj/dis/papers/btrblocks.pdf In press. Accessed
on: 2023-04-13.

[32] National Ecological Observatory Network (NEON). 2021. 2D wind speed and
direction (DP1.00001.001). https://doi.org/10.48443/S9YA-ZC81

[33] National Ecological Observatory Network (NEON). 2021. Barometric pressure
(DP1.00004.001). https://doi.org/10.48443/RXR7-PP32

[34] National Ecological Observatory Network (NEON). 2021. Dust and particulate
size distribution (DP1.00017.001). https://doi.org/10.48443/4E6X-V373

[35] National Ecological Observatory Network (NEON). 2021. IR biological tempera-
ture (DP1.00005.001). https://doi.org/10.48443/JNWY-B177

[36] National Ecological Observatory Network (NEON). 2021. Relative humidity
above water on-buoy (DP1.20271.001). https://doi.org/10.48443/Z99V-0502

[37] Pedro Pedreira, Orri Erling, Masha Basmanova, Kevin Wilfong, Laith Sakka,
Krishna Pai, Wei He, and Biswapesh Chattopadhyay. 2022. Velox: meta’s unified
execution engine. Proceedings of the VLDB Endowment 15, 12 (2022), 3372–3384.

[38] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin
Meza, and Kaushik Veeraraghavan. 2015. Gorilla: A fast, scalable, in-memory
time series database. Proceedings of the VLDB Endowment 8, 12 (2015), 1816–1827.

[39] Johannes Pietrzyk, Annett Ungethüm, Dirk Habich, and Wolfgang Lehner. 2018.
Beyond Straightforward Vectorization of Lightweight Data Compression Algo-
rithms for Larger Vector Sizes.. In Grundlagen von Datenbanken. 71–76.

[40] Mark Raasveldt and Hannes Muehleisen. 2019. DuckDB. https://github.com/
duckdb/duckdb Accesed on: 2023-04-13.

[41] Mark Raasveldt and Hannes Mühleisen. 2019. Duckdb: an embeddable analytical
database. In Proceedings of the 2019 International Conference on Management of
Data. 1981–1984.

[42] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. (2019).

[43] Vipul Raheja, Dhruv Kumar, Ryan Koo, and Dongyeop Kang. 2023. CoEdIT: Text
Editing by Task-Specific Instruction Tuning. (2023). arXiv:2305.09857 [cs.CL]

[44] Vijayshankar Raman and Garret Swart. 2006. How to wring a table dry: Entropy
compression of relations and querying of compressed relations. In Proceedings of
the 32nd international conference on Very large data bases. Citeseer, 858–869.

[45] Paruj Ratanaworabhan, Jian Ke, andMartin Burtscher. 2006. Fast lossless compres-
sion of scientific floating-point data. In Data Compression Conference (DCC’06).
IEEE, 133–142.

[46] Mark A Roth and Scott J Van Horn. 1993. Database compression. ACM Sigmod
Record 22, 3 (1993), 31–39.

[47] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Daniel Y
Fu, Zhiqiang Xie, Beidi Chen, Clark Barrett, Joseph E Gonzalez, et al. 2023. High-
throughput generative inference of large language models with a single gpu.
arXiv preprint arXiv:2303.06865 (2023).

[48] Aliaksandr Valialkin. 2019. VictoriaMetrics: achieving better compression than
Gorilla for time series data. https://faun.pub/victoriametrics-achieving-better-
compression-for-time-series-data-than-gorilla-317bc1f95932. Accesed on: 2023-
04-13.

[49] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper, Viktor
Leis, Tobias Mühlbauer, Thomas Neumann, and Manuel Then. 2018. Get real:
How benchmarks fail to represent the real world. In Proceedings of the Workshop
on Testing Database Systems. 1–6.

[50] Deepak Vohra. 2016. Apache Parquet. 325–335. https://doi.org/10.1007/978-1-
4842-2199-0_8

[51] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. 2006. Super-
scalar RAM-CPU cache compression. In 22nd International Conference on Data
Engineering (ICDE’06). IEEE, 59–59.

https://doi.org/10.1109/IEEESTD.2019.8766229
https://github.com/cwida/public_bi_benchmark
https://github.com/cwida/FastLanes
https://doi.org/10.14778/3598581.3598587
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2104.14294
https://github.com/lz4/lz4
https://github.com/facebook/zstd
https://github.com/facebook/zstd
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf
https://github.com/duckdb/duckdb/pull/5044
https://github.com/duckdb/duckdb/pull/5044
https://www.cs.cit.tum.de/fileadmin/w00cfj/dis/papers/btrblocks.pdf
https://www.cs.cit.tum.de/fileadmin/w00cfj/dis/papers/btrblocks.pdf
https://doi.org/10.48443/S9YA-ZC81
https://doi.org/10.48443/RXR7-PP32
https://doi.org/10.48443/4E6X-V373
https://doi.org/10.48443/JNWY-B177
https://doi.org/10.48443/Z99V-0502
https://github.com/duckdb/duckdb
https://github.com/duckdb/duckdb
https://arxiv.org/abs/2305.09857
https://faun.pub/victoriametrics-achieving-better-compression-for-time-series-data-than-gorilla-317bc1f95932
https://faun.pub/victoriametrics-achieving-better-compression-for-time-series-data-than-gorilla-317bc1f95932
https://doi.org/10.1007/978-1-4842-2199-0_8
https://doi.org/10.1007/978-1-4842-2199-0_8

	Abstract
	1 Introduction
	2 Datasets Analysis
	2.1 IEEE 754 Doubles Representation
	2.2 Datasets
	2.3 Dataset Semantics
	2.4 Data Similarity
	2.5 Representing Doubles as Integers
	2.6 Unexploited Opportunities

	3 ALP
	3.1 Compression
	3.2 Adaptive Sampling
	3.3 Decompression
	3.4 ALPrd: Compression for Real Doubles

	4 Evaluation
	4.1 Compression Ratio
	4.2 [De]compression Speed
	4.3 End-to-End Query Performance
	4.4 Single Precision and Machine Learning Data

	5 Related Work
	6 Discussion
	7 Conclusions
	References

