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A solution to the multidimensional
additive homological equation

A. F. Ber, M. J. Borst, S. J. Borst, and F. A. Sukochev

Abstract. We prove that, for a finite-dimensional real normed space V ,
every bounded mean zero function f ∈ L∞([0, 1];V ) can be written in the
form f = g ◦ T − g for some g ∈ L∞([0, 1];V ) and some ergodic invertible
measure preserving transformation T of [0, 1]. Our method moreover allows
us to choose g, for any given ε > 0, to be such that ∥g∥∞ ⩽ (SV + ε)∥f∥∞,
where SV is the Steinitz constant corresponding to V .

Keywords: additive homological equation, coboundary problem, Kwa-
pień’s theorem, Steinitz constant, measure preserving transformation.

§ 1. Introduction

Given a bounded mean zero function f on [0, 1], the question is whether there
exist a measure preserving transformation T and a bounded function g such that

f = g ◦ T − g, (1.1)

with equality holding almost everywhere. We call (1.1) the homological equation,
and while it has been extensively studied in the scalar-valued setting, little is known
about this equation for vector-valued functions. Below, we will study the homolog-
ical equation for vector-valued functions.

We always assume that the interval [0, 1] is equipped with the standard Lebesgue
measure λ. Equation (1.1), also known as the coboundary equation, was studied by
Anosov for a fixed operator T in [1], where it was demonstrated that such an equa-
tion, with f continuous or even analytic on the torus, may have a measurable, but
not integrable, solution. This study dates back to a comment made by Kolmogorov
in [2] that there is no such a “good” solution. We note by [1], Theorem 1, if f is
integrable and if its homological equation has a measurable solution g for some T ,
then f is mean zero. For a closely related variant of this problem, Bourgain [3]
showed that, for a compact abelian group G with finitely many components, any
mean zero function f ∈ Lp(G), where p ∈ (1,∞), can be decomposed as

f =

J∑
j=1

(fj − τ(aj)fj),

This project has received funding from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme (grant agreement QIP–805241).

AMS 2020 Mathematics Subject Classification. 28D05.

c○ 2023 Russian Academy of Sciences, Steklov Mathematical Institute of RAS

https://doi.org/10.4213/im9319e


202 A. F. Ber, M. J. Borst, S. J. Borst, and F. A. Sukochev

for fj ∈ Lp(G), aj ∈ G, and the standard translation operator τ . Moreover, Bour-
gain proved that this result is sharp, and estimated the range of the index J .

Browder [4], Theorem 2, also studied when the homological equation has a solu-
tion g ∈ L∞[0, 1], for a given function f ∈ L∞[0, 1] and a given transformation T .
He showed that a necessary and sufficient for solvability of this equation is that the
norms ∥

∑k
j=0 f ◦ T j∥∞ should be uniformly bounded for all k ⩾ 1.

In [5], it was shown that, for every real-valued mean-zero f ∈ L∞[0, 1], there is
an ergodic transformation T such that (1.1) admits a solution g ∈ L∞[0, 1]. In [6],
this result was strengthened to show that, for 1 ⩽ p ⩽ ∞, for any real-valued mean
zero f ∈ Lp[0, 1], there exists a solution g ∈ Lp−1[0, 1] for some ergodic T .

Theorem 0.1 in [7] shows that, for real-valued mean zero f ∈ L∞[0, 1], we can
choose g such that ∥g∥∞ ⩽ (1 + ε)∥f∥∞. This result (with a weaker estimate) was
announced earlier in [8], however, the proof there goes through only for f ∈ C[0, 1].
Theorem 0.1 in [7] provides an upper bound for ∥g∥∞, which is important for
certain applications in the theory of symmetric functionals (see, for example, [9])
and singular traces (see, for example, [10]). Unlike [5], Theorem 1.1 says nothing
about the ergodicity of T .

Theorem 1.1 (see [7], Theorem 0.1). Let f ∈ L∞[0, 1] be a real-valued mean zero
function. Then, for any ε > 0, there exist a mod0 automorphism T of [0, 1] and
a function g ∈ L∞[0, 1], ∥g∥∞ ⩽ (1 + ε)∥f∥∞ , such that f = g ◦ T − g .

Here and throughout, a mod0 automorphism is defined as follows.

Definition 1.1. Given two measure spaces (Ω,A, µ) and (Ω′,A′, µ′). A mapping
T : Ω → Ω′ is called a mod0 isomorphism if T : Ω \ N → Ω′ \ N ′ is a bijection
for nullsets N ∈ A, N ′ ∈ A′ such that both T and T−1 are measurable, and
µ′(T (A)) = µ(A), for all A ∈ A, with A ⊆ Ω \ N . When the two measure spaces
are equal, this T is called a mod0 automorphism.

A natural question here is whether Theorem 1.1 carries over to complex-valued
mean zero functions? This question may be equivalently restated for mean zero
functions taking values in R2, and, even further, for mean zero Rd-valued functions
for an arbitrary positive integer d. Another question is whether the transforma-
tion T may be chosen to be ergodic. In this paper, we answer these questions
affirmatively, and prove the following result.

Theorem 1.2. Let f ∈ L∞([0, 1];V ) be a V -valued mean zero function on a finite-
dimensional real normed space V . Then, for any ε > 0, there exist an ergodic mod0
automorphism T of [0, 1] and a function g ∈ L∞([0, 1];V ) such that

∥g∥∞ ⩽ (SV + ε)∥f∥∞

(here SV is the Steinitz constant corresponding to V ) and

f = g ◦ T − g.

This theorem holds for all measure spaces which are mod0 isomorphic to the
interval [0, 1] with respect to the Lebesgue measure. We note that if we would fix
some basis for V and apply Theorem 1.1 to the component functions of f , this
would only yield that fi = gi ◦ Ti − gi for i = 1, . . . ,dim(V ). In this case, we could
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have Ti ̸= Tj for i ̸= j, and so Theorem 1.2 does not follow from Theorem 1.1 and
hence extends it. We also show that the resulting transformation is ergodic.

However, it was not at all clear how to prove Theorem 1.2, as the machinery
of [7] and [5] cannot be extended to the case of complex-valued functions (or to
more general Rd-valued functions). The proof of [5] for real-valued functions is split
into a proof for step-functions and a proof for those with infinitely many values.
However, this trick does not apply to Rd-valued functions. The method of [7] also
involves splitting into step-functions and the functions for which the pre-image of
any point (except one point) is a nullset. Even though this method cannot be
carried over, to the full extent, it turns out that there exists some smaller class of
functions for which the result may be extended, albeit with some difficulty. Using
this argument, we were able to prove our Theorem 1.2 in full.

The constant SV mentioned in the theorem is the Steinitz constant correspond-
ing to the space V , which arises from Steinitz’s rearrangement lemma (see, for
example, [11], Lemma 2.1.3). This constant is defined as the smallest number such
that, for all finite collections of vectors v1, . . . , vn in V with sum

∑n
i=1 vi = 0, there

exists a permutation π such that ∥
∑k

j=1 vπ(i)∥ ⩽ SV maxi ∥vi∥ for all k = 1, . . . , n
(see [11]). To show that the Steinitz constant and the rearrangement lemma are
closely related to the additive homological equation, we will give an equivalent defi-
nition. Let Ωn be a finite set of n elements equipped with a counting measure. Then
SV can also be equivalently defined as the smallest number such that, for n ⩾ 1, and
for all mean zero f ∈ L∞(Ωn, V ), there exist an (ergodic) automorphism T of Ωn

and a set of positive measure X ⊆ Ωn such that ∥
∑k

j=0 f ◦T k∥L∞(X;V ) ⩽ SV ∥f∥∞
for all k = 1, 2, . . . . As a consequence of Theorem 1.2 we have the following result,
which is a natural continuous analogue of Steinitz’s rearrangement lemma.

Theorem 1.3. Let V be a finite-dimensional real normed space, let ε > 0, and let
f ∈ L∞([0, 1];V ) be a V -valued mean zero function. Then there exist an ergodic
mod0 automorphism T of [0, 1] and a set X ⊂ [0, 1] of positive measure such that∥∥∑k

j=0 f ◦ T j
∥∥
L∞(X;V )

⩽ (SV + ε)∥f∥∞ for all k = 1, 2, . . . .

Note that this result extends Theorem 2 in [4] to the class of f ∈ L∞([0, 1];V )
as well. This means that, for any f ∈ L∞([0, 1];V ) and any measure preserving T ,
there is a solution g ∈ L∞([0, 1];V ) if and only if the norms

∥∥∑k
j=0 f ◦ T j

∥∥
∞ are

uniformly bounded for k ⩾ 1.
An immediate corollary of our main result is the following extension of Kwapień’s

Theorem 1.1 to the case of complex-valued mean zero functions.

Corollary 1.1. Let f ∈ L∞[0, 1] be a complex-valued mean zero function. Then,
for any ε > 0, there exist an ergodic mod0 automorphism T and a function g ∈
L∞[0, 1] such that ∥g∥∞ ⩽ (

√
5/2 + ε)∥f∥∞ and f = g ◦ T − g .

Let us briefly discuss our method of the proof of Theorem 1.2, and outline the
structure of the paper. The proof of the main theorem involves three key steps.

In § 2, we will present the basic facts, definitions, and notation used in the
paper. We will recall the definition of the Steinitz constant SV , and its fundamental
properties, and introduce affinely homogeneous and affinely partially homogeneous
functions.
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After this, we will present the first key step of the proof of Theorem 1.2. The
following lemma is fundamental to Kwapień’s proof [8]. We will need an extension
of this result.

Lemma 1.1. If (ai,j)n×m is a matrix with real entries satisfying |ai,j |⩽C , i =
1, . . . , n, j = 1, . . . ,m, and

∑m
j=1 ai,j = 0 for i = 1, . . . , n, then there exist permu-

tations σ1, . . . , σn of the integers {1, . . . ,m} such that∣∣∣∣ k∑
i=1

ai,σi(j)

∣∣∣∣ ⩽ 2C, k = 1, . . . , n, j = 1, . . . ,m.

We generalize this result in Theorem 3.3 to the case where the real entries ai,j
are replaced by vectors from V . Our extension of Kwapieńn’s lemma is the main
result in § 3. This result is then used in § 6 to solve the homological equation for
continuous functions on Cantor sets (see Theorem 6.1).

In § 4, we show that the functions we consider can be decomposed into affinely
partially homogeneous functions. In § 5, we prove several “shrinking lemmas”, which
refine Lusin’s theorem (Theorem 2.1), and which are required in the proof of our
main result for affinely homogeneous functions.

In § 6, we prove that the main result holds for continuous mean-zero func-
tions over the Cantor set (Theorem 6.1). In § 7, using the result for continuous
functions on the Cantor set, we solve the homological equation for the subclass
of L∞([0, 1];V ) consisting of affinely homogeneous functions. For these functions,
using the machinery developed in § 5, we construct subsets of positive measure
which are homeomorphic to the Cantor set, and such that the restriction of f to
such subsets is mean zero and continuous. We can then apply the result for con-
tinuous functions to solve the equation for this class of functions. Note that the
transformation constructed here is not ergodic.

Finally, in § 8, we complete the proof of Theorems 1.2 and 1.3. However, in order
to prove these main results, we need different tools since the method for affinely
homogeneous functions cannot be used in general, and also since we want T to
be ergodic. Our proof for general functions does however use the results that we
developed for affinely homogeneous functions. Indeed, in Lemma 8.3 we use results
from § 4 and § 7 to construct a partition of the domain, and a transformation
satisfying certain properties. In the final part of the proof of the theorem, we
apply this lemma inductively to obtain transformations T (1), T (2), . . . . Using these
transformations, we construct an ergodic transformation T and a function g that
solve the equation.

1.1. Novelty and necessity of affinely homogeneous function techniques.
It is worth pointing out that, although the constructions for affinely homogeneous
functions and continuity on Cantor sets bear some analogy to [7], the proof for
general functions is totally different. Indeed, the proof of [7], Theorem 0.1, is based
on splitting the case of a general f into (roughly speaking) two cases, where f is
simple and where the pre-image of each point (except one) is a nullset. A quick
analysis shows that such a splitting is impossible for Rd-valued functions. This
observation called for a new approach, which is most visible in the proof of our
Theorem 1.2 in § 8, and in Lemma 8.3.



A solution to the multidimensional additive homological equation 205

Let us briefly discuss why these earlier techniques are not applicable to the
general result. According to [7] and [5], a solution of the equation for real-valued
functions involves difficulties associated with step-functions. In [5], this is bypassed
by restricting to the case where f takes infinitely many values, and using a different
method for step-functions. In [7], the domain is split into the parts on which f is
mean zero and either behaves in a “non-constant” manner or is a step-function with
two steps. The homological equation is solved separately on these domains. In
our present setting of Rd-valued functions, the issue with step-functions gets more
complicated, as some difficulties arise with affine subspaces. We solve the equation
by extending methods from [7] and using a new technique.

To show the difficulty of dealing with general functions, we fix α ∈ (0, 1), and
consider the mean zero function f ∈ L∞([0, 1];R2) given by

f = (f1, f2), f1 = (1− α)χ[0,α] − αχ(α,1], f2(t) = t− 1

2
.

A solution g, T solving the equation f = g ◦ T − g would directly provide us
with a solution for the first coordinate function f1. But since the function f takes
infinitely many values, we cannot apply any extension of the method of [5], as it
cannot be applied to step-function f1. An extension of the method of [7] also fails,
as the Cantor set construction cannot be carried out for f with irrational α. This
motivates our new approach, which is implemented in § 8 and involves our con-
struction for affinely homogeneous functions. There is a link between our approach
in § 8 and the method in [5], though these methods are different.

1.2. Failure of Theorems 1.2 and 1.3 for infinite-dimensional vector
spaces. Let us give an example showing that the results of Theorems 1.2 и 1.3
fail to hold in the case dim(V ) = ∞.

In the space Rd, d > 1, equipped with Euclidean norm, consider the vertices of
the regular (d− 1)-dimensional simplex centred at zero:

xk = (ak,i), k = 1, . . . , d, ak,i = δki −
1

d
.

We have

∥xk∥2 =
d− 1

d2
+

(d− 1)2

d2
=

d− 1

d
< 1,

d∑
k=1

xk = 0.

We assume that d is even and y is the sum of d/2 such vertices (with possible repe-
tition!). Let us estimate the norm ∥y∥ from below. At least d/2 of the components
of y are equal to d/2 · (−1/d) = −1/2. Hence, ∥y∥2 ⩾ d/2 · 1/4 = d/8, that is,
∥y∥ ⩾

√
d/8. For every n ⩾ 1, we define dn = 2n and choose rn > 0 satisfying

∞∑
n=1

r2n ⩽ 1, 2(n−3)/2rn → ∞.

Next, for every n > 1, let xn
1 , . . . , x

n
dn

∈ Rdn be defined as above but multiplied
by a constant factor depending on n only, so that we have ∥xn

k∥ = rn. Finally, we
define the space V =

⊕∞
n=1 Rdn as a Hilbertian sum. We now set

fn : [0, 1] → Rdn : fn

([
i− 1

dn
,
i

dn

))
= xn

i , i = 1, . . . , dn, fn(1) = xn
dn
.
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We have
fn ∈ L∞([0, 1],Rdn), ∥fn∥∞ ⩽ rn,

∫
fn dλ = 0.

Setting f =
⊕∞

n=1 fn, we obtain

f ∈ L∞([0, 1], V ), ∥f∥∞ ⩽ 1,

∫
f dλ = 0.

Assume that T is a mod0 automorphism of [0, 1] such that

sup
k

∥∥∥∥ k∑
i=0

f ◦ T i

∥∥∥∥
∞

= C < ∞.

Then

sup
k

∥∥∥∥ k∑
i=0

fn ◦ T i

∥∥∥∥
∞

⩽ C ∀n.

We shall show that this is not the case, thereby obtaining a contradiction with the
assumption on existence of such a T . For almost every t ∈ [0, 1], the element

dn/2−1∑
i=0

fn ◦ T i(t)

coincides with the sum of dn/2 elements from the set {xn
1 , . . . , x

n
dn
}, as fn ◦T i(t) ∈

{xn
1 , . . . , x

n
dn
} for almost every t ∈ [0, 1]. So its norm cannot be smaller than√

dn
8

rn = 2(n−3)/2rn.

Therefore, C ⩾ 2(n−3)/2rn → ∞, yielding the required contradiction. Hence,
supk

∥∥∑k
i=0 f ◦ T i

∥∥
∞ = ∞. Therefore, there is no function g ∈ L∞([0, 1], V ) satis-

fying f = g ◦ T − g. Indeed, otherwise we would have

sup
k

∥∥∥∥ k∑
i=0

f ◦ T i

∥∥∥∥
∞

= sup
k

∥g ◦ T k+1 − g∥∞ ⩽ 2∥g∥∞.

§ 2. Preliminaries

2.1. Three fundamental theorems. The following version of Lusin’s theorem
is given in [12], Theorem 2.2.10.

Theorem 2.1. Let D ⊆ [0, 1] be Borel-measurable and let f : D → R be Borel-
measurable. If ε > 0, then there exists a compact subset K ⊆ D such that
λ(D \K) < ε and the restriction of f to K is continuous.

The following fundamental fact can be obtained by combining Theorems 9.3.4
and 9.5.1 from [12].

Theorem 2.2. Let A,B ⊆ [0, 1] be some subsets of equal positive measure. Then
there exists a mod0 isomorphism T : A → B .
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We shall also require the following Lyapunov’s theorem (see [13], Theorem 2.c.9).

Theorem 2.3. Let {µi}di=1 be a set of finite (not necessarily positive) non-atomic
measures on the measurable space (Ω,Σ). Then the set

{(µ1(X), . . . , µd(X)) : X ∈ Σ}

is convex and compact in Rd .

2.2. The space L∞(D;V ). Throughout, (V, ∥ · ∥) will denote a finite-dimensio-
nal normed vector space over R. Let D be a Lebesgue measurable subset of [0, 1]
equipped with Lebesgue measure λ, and let f : D → V be a measurable mapping.
A vector r ∈ V is said to be an essential value of the function f if λ(f−1(U)) > 0
for any neighbourhood U of the vector r. The symbol σ(f) stands for the set
of all essential values of f (the usage of this symbol is justified by the fact that,
for a function f ∈ L∞[0, 1], the set of all its essential values coincides with the
spectrum of the element f in the C∗-algebra L∞[0, 1]).

By L∞(D;V ) we denote the linear space of all measurable mappings f : D → V
with bounded σ(f). As usual, we will identify any two mappings if they are equal
almost everywhere (that is, the space L∞(D;V ) consists of classes of measurable
mappings equal almost everywhere).

We say that a function f ∈ L∞(D;V ) is simple if f =
∑∞

i=1 riχXi
, where ri ∈ V ,

i = 1, 2, . . . , and {Xi}∞i=1 is a partition of D into measurable subsets.
We define a norm on L∞(D;V ) by setting, for f ∈ L∞(D;V ),

∥f∥∞ = sup{∥r∥ : r ∈ σ(f)}.

For every f ∈ L∞(D;V ), the integral
∫
f dλ ∈ V is defined in a standard way.

If
∫
f dλ = 0, then the function f is said to be mean zero.

We shall frequently use the notation

–
∫
X

f dλ =

∫
X
f dλ

λ(X)
,

that is, –
∫
X
f dλ is the mean value of f on the set X.

We will sometimes use the Euclidean norm; the Euclidean inner products will
be denoted by we use ( · , · ).

2.3. Affinely homogeneous functions. For an arbitrary set X ⊂ V , the symbol
Aff(X) denotes the affine hull in V generated by X, that is

Aff(X) =

{ k∑
i=1

aixi : xi ∈ X, ai ∈ R,
k∑

i=1

ai = 1

}
.

Recall that any affine subspace in V can be viewed as a set {x+ V0}, where x is
some point in V and V0 is a linear subspace in V . The dimension of such an affine
subspace is defined as that of the subspace V0. In particular, every point in V is
an affine subspace of dimension 0.

We will say that a function f ∈ L∞(D;V ) is affinely homogeneous if, for every
proper affine subspace W ⊊ Aff(σ(f)), we have λ(f−1(W )) = 0.
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Note that a real-valued function is affinely homogeneous if and only if it either
is constant, or satisfies λ(f−1({y})) = 0 for all y ∈ R.

It is easy to see that any affinely homogeneous simple function is constant.
Indeed, if a simple function has two distinct essential values, say a and b, then
λ(f−1(a)) > 0 and λ(f−1(b)) > 0. Since {a} ⊊ Aff(σ(f)) and {b} ⊊ Aff(σ(f)) are
proper affine subspaces of Aff(σ(f)), we arrive at a contradiction.

More generally, for any affinely homogeneous function f , we have Aff(σ(f |A)) =
Aff(σ(f)) for every subset A ⊆ D of positive measure.

A function f ∈ L∞(D;V ) is said to be affinely partially homogeneous if D can be
split into at most d+1 measurable subsets, where d = dim(V ) such that (the reduc-
tion of) f is affinely homogeneous on each of this subsets. For example, the function
f = (1− a)χ[0,a) − aχ[a,1] ∈ L∞([0, 1];R) is affinely partially homogeneous for any
a ∈ (0, 1).

2.4. The Steinitz constant. For any real finite-dimensional normed space V ,
there exists a smallest number SV (called the Steinitz constant) such that, for
every r1, . . . , rn ∈ V ,

∑n
i=1 ri = 0,∥∥∥∥ k∑

i=1

rπ(i)

∥∥∥∥ ⩽ SV max{∥ri∥ : i = 1, . . . , n}, k = 1, . . . , n,

for some permutation π of the set {1, . . . , n} (see [14]). This constant depends
generally both on the dimension of V and on the norm of the space.

According to [15], SV ⩽ dim(V ) (for a detailed proof, see [11], Lemma 2.1.3).
Trivially, we have SR = 1. In [16], Remark 3, it is stated that “Applying the same
method as in the proof of Lemma 2, one can show that the Steinitz constant of
an n-dimensional space is not greater than n − 1 + 1/n”. If we equip Rd with
the Euclidean norm, then SRd ⩾ (

√
d+ 3 )/2 (see [15]) and s SR2 = SC =

√
5/2

(see [16], Theorem 2, [17]). For other estimates of SRd for the Euclidean norm,
see [18], Remark 8, Added in proof.

Let us explain the appearance of the Steinitz constant by proving that the main
result holds for mean zero functions f ∈ L∞(Ωn;V ), where a finite measure space
Ωn= {1, . . . , n} is equipped with a counting measure. Indeed, as

∑n
i=1 f(i) = 0, by

definition of the Steinitz constant there exists a permutation π of {1, . . . , n} such
that ∥∥∥∥ m∑

i=1

f(π(i))

∥∥∥∥ ⩽ SV ∥f∥∞, m = 1, . . . , n.

We can then define a cyclic permutation σ of Ωn by σ(π(j)) = π(j + 1) for j =

1, . . . , n − 1 and σ(π(n)) = π(1). We set g(π(k)) =
∑k−1

i=1 f(π(i)) for k = 2, . . . , n
and g(π(1)) = 0. Now g◦σ−g = f and ∥g∥∞ ⩽ SV ∥f∥∞, proving the result. It can
be seen that this argument can also be applied to simple functions f ∈ L∞([0, 1];V )
of the form

f =

n∑
k=1

rkχIk , Ik =

[
k − 1

n
,
k

n

)
, rk ∈ V, k = 1, . . . , d,

n∑
k=1

rk = 0,

as they can be identified with mean zero functions f̃ from L∞(Ωn;V ) given by
f̃(k) = rk. It remains to define T = T (Ik) = Iσ(k), and consider the simple
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function g given by g|Iπ(k)
=
∑k−1

i=1 rπ(i) for k = 2, . . . , n and g|Iπ(1)
= 0. This gives

us g ◦ σ − g = f and ∥g∥∞ ⩽ SV ∥f∥∞.

§ 3. A multidimensional version of Kwapień’s lemma

The main result of this section is Theorem 3.3. Its proof is based on the following
known results. Below, Conv(X) is the convex hull of a set X ⊂ V .

Theorem 3.1 (see [19], Theorem 3). Let V be a d-dimensional real normed space
with unit ball Bd , let Ci ⊂ Bd , and let 0 ∈ Conv(Ci), i = 1, 2, . . . . Then there exist
elements ci ∈ Ci , i = 1, 2, . . . such that∥∥∥∥ p∑

i=1

ci

∥∥∥∥ ⩽ 2d, p = 1, 2, . . . .

Theorem 3.2 (see [15], Theorem 1, [11], Lemma 2.1.3). Let V be a d-dimensional
real normed space, ∥xi∥ ⩽ 1, i = 1, . . . , n, and x1 + · · ·+ xn = x. Then there exists
an permutation π such that, for all natural indices k ⩽ n,∥∥∥∥ k∑

i=1

xπ(i) −
k − d

n
x

∥∥∥∥ ⩽ d.

Now we are ready to prove the following lemma.

Lemma 3.1. Let V be a d-dimensional real normed space, let {ai,j}n,mi,j=1 be vectors
from V with ∥ai,j∥ ⩽ 1, i = 1, . . . , n, j = 1, . . . ,m,

m∑
j=1

ai,j = 0, i = 1, . . . , n,

and let p ⩽ m be a natural number. Then the set {1, . . . ,m} contains subsets
I1, . . . , In such that

|I1| = · · · = |In| = p

and ∥∥∥∥ k∑
i=1

∑
j∈Ii

ai,j

∥∥∥∥ ⩽ 4d2, k = 1, . . . , n.

Proof. For every fixed i = 1, . . . , n, we have
∑m

j=1 aij = 0 by the assumption.
By Theorem 3.2, replacing the collection of vectors x1, . . . , xn by the collection
ai,1, . . . , ai,m, we infer the existence of a permutation π of the set {1, . . . ,m} such
that

∥∥∑k
j=1 ai,π(j)

∥∥ ⩽ d, k = 1, . . . ,m. Relabelling the vectors aij , j = 1, . . . ,m,
we may assume without loss of generality that, for every i = 1, . . . , n,∥∥∥∥ l∑

j=1

ai,j

∥∥∥∥ ⩽ d, l = 1, . . . ,m.

Let m1 be the least common multiple of the numbers m and p, and let m2 =
m1/p. Consider the mapping α from {1, . . . ,m1} onto {1, . . . ,m} which maps
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a number j to the remainder of the division on m provided that j is not a scalar
multiple of m, and to m, otherwise.

We now replace the matrix {aij}n,mi,j=1 by {a′i,j}
n,m1

i,j=1, where a′i,j = ai,α(j). In
other words, any column of the matrix {ai,j}mj=1 is repeated m1/m times.

Note that the matrix {a′i,j}
n,m1

i,j=1 also satisfies the same assumptions as the orig-
inal matrix {ai,j}n,mi,j=1.

We now set bi,j =
∑jp

r=(j−1)p+1 a
′
i,r, j = 1, . . . ,m2, i = 1, . . . , n. Let us show

that, for all i, j,
∥bi,j∥ ⩽ 2d.

If α((j − 1)p+ 1), α((j − 1)p+ 2), . . . , α(jp) increases, we have

∥bi,j∥ =

∥∥∥∥α(jp)∑
r=1

air −
α((j−1)p)∑

r=1

air

∥∥∥∥ ⩽ 2d.

Otherwise,
m ∈ {α((j − 1)p+ 1), α((j − 1)p+ 2), . . . , α(jp)},

that is, {α((j − 1)p + 1), α((j − 1)p + 2), . . . , α(jp)} consists of two disjoint sets,
{m− k + 1,m− k + 2, . . . ,m} and {1, 2, . . . , p− k}.

Hence

∥bi,j∥ =

∥∥∥∥ m∑
r=m−k+1

ai,r +

p−k∑
r=1

ai,r

∥∥∥∥ =

∥∥∥∥−m−k∑
r=1

ai,r +

p−k∑
r=1

ai,r

∥∥∥∥ ⩽ 2d.

We also have
∑m2

j=1 bi,j =
∑m1

r=1 a
′
i,r = (m1/m)

∑m
j=1 ai,j = 0, i ∈ {1, . . . , n},

and so 0 ∈ Conv{bi,j : j ∈ {1, . . . ,m2}} for all i ∈ {1, . . . , n}.
By Theorem 3.1, there exist indices ji such that, for all k = 1, . . . , n,∥∥∥∥ k∑

i=1

bi,ji

∥∥∥∥ ⩽ 4d2.

Since bi,ji =
∑jip

r=(ji−1)p+1 a
′
i,r =

∑jip
r=(ji−1)p+1 ai,α(r) =

∑
j∈Ii

ai,j , where Ii =

α({(ji− 1)p+1, (ji− 1)p+2, . . . , jip}), the above estimate yields the assertion and
completes the proof.

We will now use Lemma 3.1 to obtain a similar result for non-mean-zero vectors.

Lemma 3.2. Let V be a d-dimensional real normed space, let (vi,j)1⩽i⩽n, 1⩽j⩽m

be vectors in V , ∥vi,j∥ ⩽ 1, let p ∈ {1, . . . ,m}, and let xk =
∑k

i=1

∑m
j=1 vi,j/m.

Then, for each i = 1, . . . , n, there is an index set Ii ⊆ {1, . . . ,m} such that

|Ik| = p ∀ k ∈ {1, . . . , n},
∥∥∥∥ k∑
i=1

∑
j∈Ii

vi,j − pxk

∥∥∥∥ ⩽ 8d2 ∀ k ∈ {1, . . . , n}.

Proof. We define (v′i,j)1⩽i⩽n,1⩽j⩽m by

v′i,j =
1

2
vi,j −

1

2m

m∑
k=1

vi,k.
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Note that
∑m

j=1 v
′
i,j = 0 for all i ∈ {1, . . . , n}, and so

∥v′i,j∥ ⩽
1

2
∥vi,j∥+

1

2m

m∑
k=1

∥vi,k∥ ⩽
1

2
+

m

2m
= 1.

Using Lemma 3.1, we can find sets Ii, i = 1, . . . , n, such that

|Ik| = p ∀ k ∈ {1, . . . , n},
∥∥∥∥ k∑
i=1

∑
j∈Ii

v′i,j

∥∥∥∥ ⩽ 4d2 ∀ k ∈ {1, . . . , n}.

Hence∥∥∥∥ k∑
i=1

∑
j∈Ii

vi,j − pxk

∥∥∥∥ =

∥∥∥∥ k∑
i=1

∑
j∈Ii

vi,j −
k∑

i=1

|Ik|
m

m∑
j=1

vi,j

∥∥∥∥
=

∥∥∥∥ k∑
i=1

∑
j∈Ii

(
vi,j −

1

m

m∑
t=1

vi,t

)∥∥∥∥ = 2

∥∥∥∥ k∑
i=1

∑
j∈Ii

v′i,j

∥∥∥∥ ⩽ 2 · 4d2 = 8d2

for all k ∈ {1, . . . , n}. Lemma 3.2 is proved.

Now we can generalize Lemma 1.1 for vectors from V .

Theorem 3.3. Let V be a d-dimensional real normed space, let (vi,j)1⩽i⩽n, 1⩽j⩽m

be vectors in V , ∥vi,j∥ ⩽ 1, and let xk = (1/m)
∑k

i=1

∑m
j=1 vi,j for all k ∈

{1, . . . , n}. Then there exist permutations (πi)1⩽i⩽n of the set {1, . . . ,m} such
that

∥∥∑k
i=1 vi,πi(j) − xk

∥∥ ⩽ 8d2/ log 1.5 for all k and all j .

Proof. Let us show that the required permutations can be constructed by partition-
ing the input vectors into two sets of almost equal size via Lemma 3.2, after which
we recursively construct suitable permutations for both parts of the partition. We
then combine these two permutations into one permutation, and show that this
permutation satisfies the required properties.

For m = 1 the required result is trivial, because in this case
∑k

i=1 vi,1 − xk = 0
for all k.

Let m = 2. Then(
vi,1 −

vi,1 + vi,2
2

)
+

(
vi,2 −

vi,1 + vi,2
2

)
= 0

for all i = 1, . . . , n. By Theorem 3.1, there exist ji ∈ {1, 2} such that∥∥∥∥ k∑
i=1

(
vi,ji −

vi,1 + vi,2
2

)∥∥∥∥ ⩽ 4d.

Setting πi(1) = ji, πi(2) = 3 − ji, we have
∥∥∑k

i=1 vi,πi(1) − xk

∥∥ ⩽ 4d for all k and
vi,πi(2)−(vi,1 + vi,2)/2 = −(vi,πi(1)−(vi,1+vi,2)/2). Hence

∥∥∑k
i=1 vi,πi(2)−xk

∥∥ ⩽ 4d
for all k. We have ∫ log1.5(2)−1

0

(
2

3

)x

dx =
1

4(log 3− log 2)
>

1

2
,
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and hence

4d < 8d2
∫ log1.5(2)−1

0

(
2

3

)x

dx,

which gives that ∥∥∥∥ k∑
i=1

vi,πi(j) − xk

∥∥∥∥ ⩽ 8d2
∫ log1.5(2)−1

0

(
2

3

)x

dx.

Next, we will prove by induction on m that, for a given set of input vectors
(vi,j)1⩽i⩽n, 1⩽j⩽m with ∥vi,j∥ ⩽ 1, there exist permutations (πi)1⩽i⩽n of {1, . . . ,m}
such that ∥∥∥∥ k∑

i=1

vi,πi(j) − xk

∥∥∥∥ ⩽ 8d2
∫ log1.5(m)−1

0

(
2

3

)x

dx.

The conclusion of Theorem 3.3 would then follow by replacing the above integral
by the integral from 0 to ∞, which is equal to 1/ log 1.5.

For m = 2, the required inequality was established above. For m > 2, assume
that the required result holds up to m − 1 inclusively. By Lemma 3.2, there
exist subsets (Ii)1⩽i⩽n of {1, . . . ,m} such that |Ii| = p := ⌈m/2⌉ and, for δk :=∑k

i=1

∑
j∈Ii

vi,j ,
∥δk − pxk∥ ⩽ 8d2 ∀ k ∈ {1, . . . , n}. (3.1)

Let δ′k :=
∑k

i=1

∑
j∈{1,...,m}\Ii vi,j . We claim that δk + δ′k = mxk. Indeed, we have

δk + δ′k =

k∑
i=1

∑
j∈Ii

vi,j +

k∑
i=1

∑
j∈{1,...,m}\Ii

vi,j =

k∑
i=1

m∑
j=1

vi,j = mxk,

and so

∥δ′k − (m− p)xk∥ = ∥mxk − δk − (m− p)xk∥ = ∥δk − pxk∥ ⩽ 8d2. (3.2)

For each i ∈ {1, . . . , n}, let π′
i be a permutation of {1, . . . ,m} that maps the set

{1, . . . , p} to Ii. Let (v
(1)
i,j )1⩽i⩽n, 1⩽j⩽p be defined by v

(1)
i,j = vi,π′

i(j)
. By the induc-

tion hypothesis, we can find permutations π
(1)
i of {1, . . . , p} such that, for all

k ∈ {1, . . . , n} and all j ∈ {1, . . . , p},∥∥∥∥ k∑
i=1

v
(1)

i,π
(1)
i (j)

− 1

p
δk

∥∥∥∥ ⩽ 8d2
∫ log1.5(p)−1

0

(
2

3

)x

dx.

Similarly, we define (v
(2)
i,j )1⩽i⩽n,1⩽j⩽m−p, by v

(2)
i,j = vi,π′

i(j+p). Using the induction
hypothesis, we can find permutations π

(2)
i of {1, . . . ,m − p} such that, for all k ∈

{1, . . . , n} and all j ∈ {1, . . . ,m− p},∥∥∥∥ k∑
i=1

v
(2)

i,π
(2)
i (j)

− 1

m− p
δ′k

∥∥∥∥ ⩽ 8d2
∫ log1.5(m−p)−1

0

(
2

3

)x

dx.
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We set

πi(j) =

{
π′
i(π

(1)
i (j)), j ⩽ p,

π′
i(π

(2)
i (j − p) + p), j > p,

and define

pj =

{
p, j ⩽ p,

m− p, j > p,
∆i(j) =


1

pj
δi, j ⩽ p,

1

pj
δ′i, j > p.

In two cases j ⩽ p and j > p, applying (3.1) and (3.2), respectively, we obtain
∥∆i(j)− xi∥ ⩽ 8d2/pj for all i ∈ {1, . . . , n} and all j ∈ {1, . . . ,m}.

For j ∈ {1, . . . , p}, for all k ∈ {1, . . . , n}, we have∥∥∥∥ k∑
i=1

vi,πi(j) −∆k(j)

∥∥∥∥ =

∥∥∥∥ k∑
i=1

v
(1)

i,π
(1)
i (j)

− 1

p
δk

∥∥∥∥
⩽ 8d2

∫ log1.5(p)−1

0

(
2

3

)x

dx = 8d2
∫ log1.5(pj)−1

0

(
2

3

)x

dx.

Similarly, for j ∈ {p+ 1, . . . ,m}, we have∥∥∥∥ k∑
i=1

vi,πi(j) −∆k(j)

∥∥∥∥ =

∥∥∥∥ k∑
i=1

v
(2)

i,π
(2)
i (j−p)

− 1

p
δ′k

∥∥∥∥
⩽ 8d2

∫ log1.5(m−p)−1

0

(
2

3

)x

dx = 8d2
∫ log1.5(pj)−1

0

(
2

3

)x

dx.

Combining these two inequalities, we have, for all k ∈ {1, . . . , n} and all j ∈
{1, . . . ,m},∥∥∥∥ k∑

i=1

vi,πi(j) − xk

∥∥∥∥ ⩽

∥∥∥∥ k∑
i=1

vi,πi(j) −∆k(j)

∥∥∥∥+ ∥∆k(j)− xk∥

⩽ 8d2
∫ log1.5(pj)−1

0

(
2

3

)x

dx+ 8d2
1

pj

= 8d2
∫ log1.5(pj)−1

0

(
2

3

)x

dx+ 8d2
(
2

3

)log1.5 pj

⩽ 8d2
∫ log1.5(pj)

0

(
2

3

)x

dx ⩽ 8d2
∫ log1.5(m)−1

0

(
2

3

)x

dx.

Note that the last inequality follows from the fact that m/pj ⩾ 3/2, and hence
log1.5(m)− log1.5(pj) = log1.5(m/pj) ⩾ 1. Theorem 3.3 is proved.

§ 4. Decomposition for bounded functions
into affinely partially homogeneous functions

We will need several well-known Carathéodory’s results. The first lemma below
can be found in [20], Theorem 8.11.
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Lemma 4.1. Let B ⊂ Rd , d < ∞. Then any element ξ ∈ Conv(B) can be decom-
posed as the convex combination of at most d+ 1 elements from B .

For the following two results we refer to [21], Corollary IV.1.13, and [21], Corol-
lary IV.3.11, respectively.

Theorem 4.1. The convex hull of the closure of a bounded subset in Rd , d < ∞,
coincides with the closure of the convex hull of this subset.

Theorem 4.2. The closed convex hull of a set A ⊆ Rd equals the intersection of
all closed half-spaces containing it.

We begin with the following general (and probably well-known) result.

Proposition 4.1. Let {ξi}i∈I ⊂ Rd , d < ∞, {αi}i∈I ⊂ R+ \ {0}, card(I) ⩽ ℵ0 ,
0 < ∥ξi∥ ⩽ 1 (here ∥ · ∥ is the Euclidean norm),

∑
i αi ⩽ 1,

∑
i αiξi = 0. Then there

exist indices i1, . . . , im ∈ I , 1 ⩽ m ⩽ d+1, and scalars 0 < βk ⩽ αik , k = 1, . . . ,m,
such that

∑m
k=1 βkξik = 0.

Proof. Without loss of generality, we may assume that

dim(Span{ξi : i ∈ I}) = d,
∑
i

αi = 1.

Let B = {ξi}i∈I , C = Conv(B). By Theorem 4.1, C = Conv(B). Therefore,
0 ∈ C = Conv(B).

For any set X ⊂ Rd, its support function hX is defined by

hX(η) = sup{(η, ξ) : ξ ∈ X}.

Let Sd−1 = {η ∈ Rd : ∥η∥ = 1}, that is Sd−1 is the sphere in Rd centred at zero
with radius 1.

Since for η ∈ Sd−1 the closed half-space Hη := {ξ : (η, ξ) ⩽ hX(η)} contains X,
and since every closed half-space H that contains X is contained in Hη for some
η ∈ Sd−1, it follows from Theorem 4.2 that

Conv(X) =
⋂

η∈Sd−1

{ξ : (η, ξ) ⩽ hX(η)}.

We show that C contains a ball of radius r0 > 0 centred at the origin. Indeed,
the function hC is continuous on the unit sphere Sd−1. Since Sd−1 is compact,
there exists a point η0 ∈ Sd−1, at which hC reaches the minimum. Assume
that hC(η0) ⩽ 0. Hence (η0, ξ) ⩽ 0 for any ξ ∈ B. The equality

∑
i αiξi = 0

implies that
∑

i αi(η, ξi) = 0, and, thus, (η0, ξ) = 0 for any ξ ∈ B. This con-
tradicts the fact that dim(Span(B)) = d. Therefore, r0 := hC(η0) > 0. Since
C =

⋂
η∈Sd−1{ξ : (η, ξ) ⩽ hC(η)}, it follows that C contains a ball with a radius r0

centred at 0.
Since B is compact, there exists n ∈ N such that Bn := {ξi}ni=1 is a r0/3-net

in B.
Let η ∈ Sd−1. There exists a vector ξ ∈ B such that

(η, ξ) = hB(η) = hC(η) ⩾ r0.
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Let now ξ′ ∈ Bn be such that ∥ξ − ξ′∥ < r0/3. We have

|(η, ξ′)− (η, ξ)| ⩽ ∥ξ − ξ′∥ <
r0
3
, (η, ξ) ⩾ r0.

Hence |(η, ξ′)| = (η, ξ′), and, therefore,

(η, ξ′) ⩾ (η, ξ)− |(η, ξ′)− (η, ξ)| > r0 −
r0
3

>
r0
2
.

Thus, hBn
(η) ⩾ r0/2. Therefore, Conv(Bn) contains the ball of radius r0/2

centred at 0. In particular, the point 0 is a convex combination of the vectors
{ξi}ni=1.

By Lemma 4.1, there exist ξi1 , . . . , ξim ∈Bn, m ⩽ d+1 such that 0 =
∑m

k=1 β
′
kξik ,

β′
k ∈ R+,

∑m
k=1 β

′
k = 1. Finally, setting

βk = β′
kγ, γ := min{αik : k = 1, . . . ,m},

we complete the proof of Proposition 4.1.

In the following lemma, we partition the domain of a function f so that, on each
partition subset P , the function f |P is affinely homogeneous.

Lemma 4.2. Let f ∈ L∞(D;Rd). Then there exists at most countable partition
{Pi}i∈I of D consisting of measurable subsets of non-zero measure so that every
f |Pi

is affinely homogeneous.

Proof. Consider the collection A of all families {Di}i∈I of disjoint measurable sub-
sets of D of positive measure for which f |Di

is affinely homogeneous. We order
this collection by inclusion. Then, by Zorn’s lemma we can find a maximal element
{Pi}i∈I ∈ A. We claim that this is the required partition. Let X = D \

⋃
i∈I Pi.

Suppose that λ(X) > 0. Since the set {0, 1, . . . , d} is finite, there exists a minimal k
for which there exists an affine linear subspace W ⊆ Aff(σ(f |X)), dim(W ) = k and
λ(f−1(W ) ∩ X) > 0. Setting P0 = f−1(W ) ∩ X, we obtain that f |P0 is affinely
homogeneous. However, this contradicts the maximality of {Pi}i∈I . We conclude
that λ(X) = 0, hence {Pi}i∈I is a partition of D. Lemma 4.2 is proved.

Theorem 4.3. Let f ∈ L∞([0, 1];Rd),
∫
f dλ = 0. Then there exists at most

countable partition of [0, 1] into measurable subsets X1, X2, . . . such that
(i)
∫
Xn

f dλ = 0, n = 1, 2, . . . ;
(ii) for any n = 1, 2, . . . , the function f |Xn is affinely partially homogeneous.

Proof. Let {Xi}i∈I be a maximal collection of disjoint subsets of [0, 1] of positive
measure satisfying (i) and (ii). Such collection exists by application of Zorn’s
lemma. Let D = [0, 1] \

⋃
i∈I Xi. We show that λ(D) = 0. Namely, suppose that

λ(D) > 0. Let {Di}i∈I be the partition of D established in Lemma 4.2. We have

0 =
∑
i∈I

λ(Di) –
∫
Di

f dλ.

Now, by Proposition 4.1, for some 1 ⩽ m ⩽ d + 1, we can find i1, . . . , im ∈ I and
0 < λj ⩽ λ(Dij ) such that

0 =

m∑
j=1

λj –
∫
Dij

f dλ.
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We set λ′
j = λj/λ(Dij ) so that 0 =

∑m
j=1 λ

′
j

∫
Dij

f dλ. Now, we can define

non-atomic measures {µi}di=1 as µi(E) =
∫
E
fi dλ for every Lebesgue measur-

able set E ⊂ [0, 1] and apply Theorem 2.3. As a result, we obtain measurable
subsets D′

ij
⊂ Dij of non-zero measure with

∫
D′

ij

f dλ = λ′
j

∫
Dij

f dλ. Now we set

X =
⋃m

j=1 D
′
ij

, so that
∫
X
f dλ = 0. Next, by the properties of Dij and since

m ⩽ d + 1, f |X is affinely partially homogeneous. However, then the collection
{Xi}i∈I ∪{X} would contradict the maximality of {Xi}i∈I . We thus conclude that
λ(D) = 0, and hence {Xi}i∈I is a partitions of [0, 1]. Theorem 4.3 is proved.

§ 5. Shrinking lemmas

5.1. Obtaining positive constants. The following lemma will be required in
the proof of Lemma 5.2. This lemma will be established for general mean zero
integrable functions.

In the following lemma, ∥ · ∥ is the Euclidean norm on Rk, and ( · , · ) is the inner
product. The norm ∥ · ∥1 on L1(D;Rk) is defined via the Euclidean norm ∥ · ∥ on Rk.
For v ∈ Rd and f ∈ L1(D;Rd), by (v, f) we denote the function t 7→ (v, f(t)), that
is, the composition of f with the inner product. We also write |f | for the function
t 7→ ∥f(t)∥.
Lemma 5.1. Let D ⊆ [0, 1] be a set of positive measure, and let f ∈ L1(D;Rd)
be such that

∫
D
f dλ = 0. Then there exist α, βmin , βmax , τ > 0 such that

λ({(v, f)/(∥v∥ |f |) > α} ∩ {βmin < |f | < βmax}) > τ for any non-zero v ∈
Span(σ(f)).

Proof. We argue by induction on the dimension d. The result for d = 0 is trivial,
because in this case there are no non-zero vectors. For a fixed d ⩾ 1, assume that
we have already proved the required result for 0 ⩽ j ⩽ d− 1. Let f ∈ L1([0, 1];Rd)
be mean zero. Suppose first that Span(σ(f)) ̸= Rd. By choosing an orthonormal
basis for Span(σ(f)) we can consider f as a mean zero function in L1(D;Rk), where

k = dimSpan(σ(f)).

By the induction hypothesis, we have α, βmin, βmax, τ > 0 such that, for every
nonzero v ∈ Span(σ(f)), the required result holds. Hence this result also holds with
the same constants if we again consider f as a function in L1([0, 1];Rd), proving the
required result in this case.

We can now assume that Span(σ(f)) = Rd. Under this assumption, (v, f) ̸= 0
for any non-zero v ∈ Rd.

Let us now find the numbers α, βmin, βmax, τ .
Setting D0 := D \ {f = 0}, we have λ(D0) > 0 and

∫
D0

f dλ = 0. For non-zero
v ∈ Rd,

(v, f |D0
) ̸= 0.

Let Sd−1 denote the (d − 1)-dimensional unit sphere. For v ∈ Sd−1, let the
bounded function hv : D0 → R be defined by hv = (v, f)/|f |. By the Cauchy–
Schwartz inequality, for v, w ∈ Sd−1, we have,

|h+
v − h+

w | =
1

|f |
|(v, f)+ − (w, f)+| ⩽ 1

|f |
|(v − w, f)| ⩽ ∥v − w∥.
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Hence the map v 7→ ∥h+
v ∥L∞(D0) is continuous. We set

α =
1

2
min

v∈Sd−1
∥h+

v ∥L∞(D0).

This number is possible by compactness of Sd−1. We claim that

∥h+
v ∥L∞(D0) > 0

for every v ∈ Sd−1. Indeed, suppose for a moment that this is not the case. Then
(v, f |D0) ⩽ 0 almost everywhere. Now, since

∫
D0

f dλ = 0, we have∫
D0

(v, f) dλ =

(
v,

∫
D0

f dλ

)
= 0.

This implies that (v, f |D0
) = 0 almost everywhere, contradicting the above inequal-

ity (v, f |D0) ̸= 0. Hence ∥h+
v ∥L∞(D0) > 0, implying that α > 0.

Now, for v ∈ Sd−1, we define

τv = λ({hv > α}), τ =
1

2
inf

v∈Sd−1
τv.

Note that τv > 0 for all v ∈ Sd−1, since ∥h+
v ∥L∞(D0) > α. We claim that τ > 0.

Suppose that (vn) is a sequence in Sd−1 such that τvn → 0. By compactness
of Sd−1, we can assume that vn converges to some v ∈ Sd−1. Choose ε > 0. Since
{hv > α+ 1/j} increases to {hv > α} as j → ∞, and since D0 has finite measure,
we can choose a sufficiently small δ > 0 such that

λ({hv > α} \ {hv > α+ δ}) < ε.

Now, since hvn → hv in L∞(D0), by the Cauchy–Schwarz inequality we can find N
such that, for n ⩾ N ,

∥hv − hvn∥∞ < δ.

Now, for n ⩾ N , we have

τv − τvn ⩽ λ
(
{hv > α} \ ({hvn > α})

)
⩽ λ({hv > α} \ {hv > α+ δ})

+ λ({hv > α+ δ} \ {hvn > α}) < ε+ 0 = ε.

As τvn → 0, we have τv ⩽ ε. Since ε is arbitrary, this means that τv = 0, a contra-
diction. Hence, no such sequence (vn) exist. Therefore, τ > 0.

We now choose a small βmin > 0 and a large βmax > 0 such that

λ(D0 \ {βmin < |f | < βmax}) <
1

2
τ.

This is possible because λ(D0 ∩ {f = 0}) = 0 and D0 has finite measure.
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Now, for non-zero v ∈ Rd = Span(σ(f)), we have

λ

({
(v, f)

∥v∥ |f |
> α

}
∩ {βmin < |f | < βmax}

)
= λ({hv/∥v∥ > α} ∩ {βmin < |f | < βmax})
⩾ λ({hv/∥v∥ > α})− λ(D0 \ {βmin < |f | < βmax})

⩾ τv/∥v∥ −
1

2
τ ⩾ 2τ − 1

2
τ > τ,

verifying the claim. Lemma 5.1 is proved

5.2. Changing the mean zero condition for subsets. We will now deal with
a domain D ⊆ [0, 1] of positive measure, and a mean zero function f ∈ L1(D;V ).
The following lemma allows us to obtain a slightly smaller compact subset E ⊆ D
for which f |E is continuous and mean zero. This result will be needed in the proof
of Lemma 5.4.

Lemma 5.2. Let V be a finite-dimensional normed real space, let D ⊆ [0, 1] be of
positive measure, and let f ∈ L1(D;V ) be mean zero. Then, for ε > 0, there is δ > 0
such that, for every measurable subset D′ ⊆ D with λ(D \D′) < δ , and every vector
u ∈ Span(σ(f)) with ∥u∥ ⩽ δ , there is a compact subset E ⊆ D′ ∩ (infD, supD),
λ(D \ E) < ε, such that

∫
E
(f + u) dλ = 0, and that f |E is continuous.

Proof. As the norms on any given finite-dimensional vector space are equivalent,
we can assume without loss of generality that V is Rd with the Euclidean norm.

Let D, f and ε be as stated. Applying Lemma 5.1 to D and f , we find positive
constants α, βmin, βmax and τ from this lemma. In particular, βmin ∈ (0, βmax)
and α ∈ (0, 1), hence we can define γ :=

√
1− α2βmin/(4βmax) ∈ (0, 1) and ρ :=

α/(2βmax(1− γ)) > 0.
We introduce a continuous non-decreasing function Isup : [0, λ(D)] → [0, ∥f∥1] by

Isup(s) = sup
U⊆D,λ(U)=s

∫
U

|f | dλ.

We also set

δ′ :=
1

2
min

{
τ

4(1 + ρ)
,
τβmax

2
,
τ

2ρ
,

ε

2(1 + ρ)
, βmax,

αβmin

8

}
> 0, (5.1)

δ :=
1

2
min{δ′, I−1

sup(δ
′)} > 0. (5.2)

Now, we choose a measurable subset D′ ⊆ D such that λ(D \D′) < δ and find
u ∈ Span(σ(f)) such that ∥u∥ ⩽ δ. For i = 1, . . . , d, let fi be the coordinate
functions of fi with respect to the standard basis. By Theorem 2.1, there exist
compact subsets Ki ⊆ D′ ∩ (infD, supD) such that λ(D′ \Ki)<δ/d and fi|Ki

is
continuous, i = 1, . . . , d. Now if K :=

⋂d
i=1 Ki then f |K is continuous and bounded,

as K is compact. Hence

λ(D \K) = λ(D \D′) + λ(D′ \K) ⩽ δ + d
δ

d
= 2δ.



A solution to the multidimensional additive homological equation 219

We now set E0 := K and define

v0 :=

∫
E0

(f + u) dλ.

Since f is mean zero on D, we have

∥v0∥⩽
∥∥∥∥∫

E0

u dλ

∥∥∥∥+∥∥∥∥∫
D\E0

f dλ

∥∥∥∥⩽λ(E0)∥u∥+Isup(λ(D\E0))⩽ δ+Isup(2δ)⩽ 2δ′.

We will now inductively define compact sets (Ej)j⩾1 and mutually disjoint sets
(Aj)j⩾1 in D, and define the vectors vj :=

∫
Ej

(f + u) dλ such that, for j ⩾ 1, the
following holds:

1) Ej = Ej−1 \Aj ;
2) Aj ⊆ Ej−1 ∩ {βmin < |f | < βmax} ∩ {(vj−1, f)/(∥vj−1∥ |f |) > α};
3) λ(Aj) = α∥vj−1∥/(2βmax);
4) ∥vj∥ ⩽ γj∥v0∥;
5) λ(E0 \ Ej) ⩽ ρ∥v0∥.
Assume that the required El and vl are constructed for l < j and Al is con-

structed for 0 < l < j. Let us construct Ej , Aj , and vj . Assume first that
vj−1 = 0. We define Aj := ∅ and Ej := Ej−1 so that vj = vj−1 = 0 and
λ(E0 \ Ej) = λ(E0 \ Ej−1) ⩽ ρ∥v0∥. In this case, all the conditions are satisfied,
and we are done. So, can assume that vj−1 ̸= 0. Since vj−1 ∈ Span(σ(f)) is
non-zero, we have

λ

(
Ej−1 ∩ {βmin < |f | < βmax} ∩

{
(vj−1, f)

∥vj−1∥ |f |
> α

})
> λ

(
{βmin < |f | < βmax} ∩

{
(vj−1, f)

∥vj−1∥ |f |
> α

})
− λ(D \ Ej−1)

⩾ τ − λ(D \ E0)− λ(E0 \ Ej−1) ⩾ τ − 2δ − ρ∥v0∥ ⩾ τ − (2 + 2ρ)δ′ ⩾
1

2
τ.

Now for r ∈ [0, 1], we set

Br = (0, r) ∩ Ej−1 ∩ {βmin < |f | < βmax} ∩
{

(vj−1, f)

∥vj−1∥ |f |
> α

}
.

Since f |K is continuous, Ej−1 ∩ {βmin < |f | < βmax} is open in Ej−1. On this
set, f does not vanish. In particular, (vj−1, f)/(∥vj−1∥ |f |) is continuous on this set.
Thus, the set

Ej−1 ∩ {βmin < |f | < βmax} ∩
{

(vj−1, f)

∥vj−1∥ |f |
> α

}
is open in Ej−1 ∩ {βmin < |f | < βmax}, and therefore, it is also open in Ej−1. So,
the sets Br are open in Ej−1 for every r ∈ [0, 1].

By the induction step, since α, γ ∈ (0, 1), and using the bound on ∥v0∥ and the
definition of δ′, we have

α∥vj−1∥
2βmax

⩽
αγj−1∥v0∥

2βmax
⩽

∥v0∥
2βmax

⩽
2δ′

2βmax
<

1

2
τ.
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Now, since λ(B0) = 0 and λ(B1) ⩾ τ/2, we can find r0 ∈ [0, 1) such that

λ(Br0) =
α∥vj−1∥
2βmax

.

We set Aj := Br0 and Ej := Ej−1 \ Aj , so that Ej is compact and so that condi-
tions (1), (2) and (3) are met.

Next, we define vj :=
∫
Ej

(f + u) dλ = vj−1 −
∫
Aj

(f + u) dλ, and write w :=∫
Aj

(f + u) dλ. We have

∥w∥ ⩽
∫
Aj

(|f |+ δ) dλ ⩽ λ(Aj)(βmax + δ) ⩽ 2βmaxλ(Aj) = α∥vj−1∥. (5.3)

By definition of Aj (step 2) of the induction),∫
Aj

(vj−1, f) dλ > α∥vj−1∥
∫
Aj

|f | dλ, (5.4)∫
Aj

|f | dλ > βminλ(Aj). (5.5)

We have

∥vj∥2 = ∥vj−1 − w∥2 = ∥vj−1∥2 + ∥w∥2 − 2(vj−1, w)

= ∥vj−1∥2 + ∥w∥2 − 2

∫
Aj

(vj−1, f) dλ− 2

∫
Aj

(vj−1, u) dλ

(5.4)
⩽ ∥vj−1∥2 + ∥w∥2 − 2α∥vj−1∥

∫
Aj

|f | dλ+ 2δ∥vj−1∥λ(Aj)

= ∥vj−1∥2 + ∥w∥2 − 2α∥vj−1∥
∫
Aj

(|f |+ δ) dλ+ 4δ∥vj−1∥λ(Aj)

⩽ ∥vj−1∥2 + (∥w∥ − 2α∥vj−1∥)
∫
Aj

(|f |+ δ) dλ+ 4δ∥vj−1∥λ(Aj)

(5.3)
⩽ ∥vj−1∥2 − α∥vj−1∥

∫
Aj

(|f |+ δ) dλ+ 4δ∥vj−1∥λ(Aj)

⩽ ∥vj−1∥2 − α∥vj−1∥
∫
Aj

|f | dλ+ 4δ∥vj−1∥λ(Aj)

(5.5)
⩽ ∥vj−1∥2 − α∥vj−1∥βminλ(Aj) + 4δ∥vj−1∥λ(Aj)

= ∥vj−1∥2
(
1− (αβmin − 4δ)

λ(Aj)

∥vj−1∥

)
(5.1),(5.2)

⩽ ∥vj−1∥2
(
1− αβmin

2

λ(Aj)

∥vj−1∥

)
= ∥vj−1∥2

(
1− αβmin

2

α

2βmax

)
= γ2∥vj−1∥2.

Hence, we obtain ∥vj∥ ⩽ γ∥vj−1∥ ⩽ γj∥v0∥, which verifies (4).
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At last, we have

λ(E0 \ Ej) =

j∑
n=1

λ(An) =
α

2βmax

j∑
n=1

∥vn−1∥ ⩽
α

2βmax

j∑
n=1

γn−1∥v0∥

⩽
α∥v0∥
2βmax

∞∑
n=0

γn =
α∥v0∥

2βmax(1− γ)
= ρ∥v0∥

and so the inductive construction is complete. Setting E =
⋂∞

j=0 Ej , we obtain
a compact subset of D′ ∩ (infD, supD) such that

∫
E
(f + u) dλ = limj→∞ vj = 0.

Furthermore,

λ(D \ E) = λ(D \ E0) + sup
j⩾1

λ(E0 \ Ej) ⩽ 2δ + ρ∥v0∥ ⩽ (2 + 2ρ)δ′ < ε.

Moreover, E ⊆ K implies that f |E is continuous. Lemma 5.2 is proved

5.3. Arbitrary shrinking and rational splitting. In the following lemma, for
a set K and a mean zero function f ∈ L∞(K;V ), we find a compact subset E ⊆ K
of prescribed measure such that

∫
E
f dλ = 0.

Lemma 5.3 (arbitrary shrinking). Let K ⊆ [0, 1] be a compact set of positive mea-
sure, and let f ∈ L∞(K;V ) be mean zero. Then, for r ∈ (0, λ(K)), there is
a compact set E ⊆ K ∩ (infK, supK) such that λ(K \ E) = r and

∫
E
f dλ = 0.

Proof. Consider the collection A of all compact subsets E of K ∩ (infK, supK)
such that

∫
E
f dλ = 0 and λ(K \ E) ⩽ r. Note that this collection is non-

empty by Lemma 5.2. Let A be equipped with the order inverse to the inclu-
sion order. The elements of A whose symmetric difference is a nullset will be
identified. Now, for a chain {Ei}i∈I in A (note that I will either be finite or
countable), the set E′ :=

⋂
i∈I Ei is a compact subset of K ∩ (infK, supK),

λ(K \ E′) = supi∈I λ(K \ Ei) ⩽ r, and
∫
E′ f dλ = 0. Hence E′ ∈ A is an upper

bound for the chain. Therefore, by Zorn’s lemma, there exists a maximal element
E in A. Suppose that λ(K \ E) < r. Then, setting ε = r − λ(K \ E) > 0 and
applying Lemma 5.2, we obtain a compact subset Ẽ ⊆ E, λ(E \ Ẽ) < ε and such
that

∫
Ẽ
f dλ = 0. We thus have λ(K \ Ẽ) < λ(K \ E) + ε = r. However, this

contradicts the maximality of E. Hence λ(K \ E) = r, proving Lemma 5.3.

In the following lemma we construct a subset which, in addition to satisfying
the properties required in Lemma 5.3, also asserts that certain ratios are dyadic
rationals.

Lemma 5.4 (rational splitting). Let V be a finite-dimensional real vector space,
let N ∈ N, let K = K1 ∪ · · · ∪KN ⊆ [0, 1] be of positive measure, where Ki ⊆ [0, 1]
are such that λ(Ki ∩ Kj) = 0 whenever i ̸= j , and let f ∈ L∞(K;V ) be mean
zero and such that, for i ⩾ 2, there exists a subset Bi ⊆ Ki of positive measure
such that λ(f |−1

Bi
(W )) = 0 for every proper affine subspace W ⊊ Aff(σ(f)). Then,

for any R ∈ (0, λ(K)), there exists a set E = E1 ∪ · · · ∪ EN such that Ei ⊆
Ki ∩ (infKi, supKi) is compact, λ(E) = R,

∫
E
f dλ = 0, and λ(Ei)/λ(E) ∈ Q2 for

all 1 ⩽ i ⩽ N . Here, Q2 is the set of all dyadic rationals.
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Proof. We argue by induction on N . For N = 1 we have K = K1 and we can simply
apply Lemma 5.3. Indeed, λ(E1)/λ(E) = 1 ∈ Q2, which proves the assertion for
N = 1. Thus, let N ⩾ 2 and assume that the assertion holds for N − 1. We show
that it also holds for N . Let K = K1 ∪ · · · ∪KN as stated. Let f ∈ L∞(K;V ) be
mean zero and such that, for all i ⩾ 2 the set Bi ⊆ Ki exists as stated. Furthermore,
let r > 0 be such that r < λ(K)−R and r < min{λ(Ki) : 1 ⩽ i ⩽ N}\{0}. We will
assume that λ(Ki) > 0 for every i = 1, . . . , N , since otherwise we can set Ei = ∅
and apply the induction hypothesis to K \ Ki, which then yields the result. For
convenience, we set K̃ := K1 ∪ · · · ∪KN−1. We denote v := –

∫
KN

f dλ, and define

h1 = f |K̃ − –
∫
K̃

f dλ = f |K̃ +
λ(KN )

λ(K̃)
v, h2 = f |KN

− –
∫
KN

f dλ = f |KN
− v,

so that h1 ∈ L∞(K̃;V ) and h2 ∈ L∞(KN ;V ) are mean zero. For every A ⊂ V ,
x ∈ V , we have Aff(A+ x) = Aff(A) + x. Therefore,

Aff(σ(h2)) = Aff

(
σ(f |KN

− –
∫
KN

f dλ)

)
= Aff(σ(f |KN

))− –
∫
KN

f dλ.

Thus, W := Aff(σ(h2))+ –
∫
KN

f dλ = Aff(σ(f |KN
)) ⊂ Aff(σ(f)), in particular, W is

an affine subspace of Aff(σ(f)).
Since f |BN

= h2|BN
+ –
∫
KN

f dλ, it follows that λ(f |−1
BN

(W )) = λ(BN ) > 0.
Therefore, by the assumption on BN we must have the equality W = Aff(σ(f))
(as W cannot be its proper subspace).

Now since f , h2 are mean zero, we also have Span(σ(f)) = Aff(σ(f)) and
Span(σ(h2)) = Aff(σ(h2)). Hence Span(σ(h2)) = Span(σ(f)).

Now, by Lemma 5.2 we can find δ > 0 such that, for u ∈ Span(σ(h2)), ∥u∥ ⩽ δ,
there is a compact set ẼN ⊆ KN such that λ(KN \ ẼN ) < (1/4)λ(KN )r and∫
E2

(h2 + u) dλ = 0.

We may assume that ((λ(K̃)/λ(KN ))(1 − δ′) + 1)−1 ∈ Q2 for some 0 < δ′ <
min{1, r/4, δ/(∥v∥ + 1)}. We set u = δ′v, so that u ∈ Span(σ(f)) = Span(σ(h2))

and ∥u∥ ⩽ δ. By the choice of δ, there exists a compact set ẼN ⊆ KN such that
λ(KN \ ẼN ) < (1/4)λ(KN )r and

∫
ẼN

(h2 + u) dλ = 0. Now, we set

r̃ := λ(K̃)− λ(K̃)

λ(KN )
λ(ẼN )(1− δ′) = λ(K̃)− λ(K̃)

λ(KN )

(
λ(KN )−λ(KN \ẼN )

)
(1− δ′)

= δ′λ(K̃) +
λ(K̃)

λ(KN )
λ(KN \ ẼN )(1− δ′).

So, 0 < r̃ ⩽ δ′ + (1/λ(KN ))λ(KN \ ẼN ) < r/4 + r/4 = r/2. In particular,
r̃ < λ(Ki) for i = 1, . . . , N − 1. We now apply the induction hypothesis to obtain
a set Ẽ = Ẽ1 ∪ · · · ∪ ẼN−1 ⊆ K̃, where Ẽi ⊆ Ki are compact, λ(K̃ \ Ẽ) = r̃,∫
Ẽ
h1 dλ = 0, and λ(Ẽi)/λ(Ẽ) ∈ Q2 for i = 1, . . . , N − 1.
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Next,∫
Ẽ∪ẼN

f dλ =

∫
Ẽ

h1 −
λ(KN )

λ(K̃)
v dλ+

∫
ẼN

(h2 + v) dλ

= −λ(KN )

λ(K̃)
λ(Ẽ)v + λ(ẼN )v +

∫
Ẽ

h1 dλ+

∫
ẼN

h2 dλ

= −λ(KN )

λ(K̃)
λ(Ẽ)v + λ(ẼN )v − λ(ẼN )u =

(
−λ(KN )

λ(K̃)
λ(Ẽ) + λ(ẼN )− λ(ẼN )δ′

)
v

=

(
−λ(KN )

λ(K̃)
(λ(K̃)− r̃) + λ(ẼN )(1− δ′)

)
v = 0,

λ(ẼN )

λ(Ẽ ∪ ẼN )
=

λ(ẼN )

λ(K̃)− r̃ + λ(ẼN )
=

λ(ẼN )

(λ(K̃)/λ(KN ))λ(ẼN )(1− δ′) + λ(ẼN )

=
1

(λ(K̃)/λ(KN ))(1− δ′) + 1
∈ Q2.

Now, for i = 1, . . . , N − 1, we have

λ(Ẽi)

λ(Ẽ ∪ ẼN )
=

λ(Ẽi)

λ(Ẽ)

λ(Ẽ)

λ(Ẽ ∪ ẼN )
∈ Q2.

Finally, we have λ(K \ (Ẽ ∪ ẼN )) = λ(K̃ \ Ẽ) + λ(KN \ ẼN ) ⩽ r̃ + r/4 < r.
We set E′ = Ẽ ∪ ẼN =

⋃N
i=1 Ẽi, so that λ(E′) > R. Indeed, the scalar r was

chosen to satisfy 0 < r < λ(K) − R, and hence λ(K) − λ(E′) = λ(K \ E′) ⩽ r <

λ(K)−R. It suffices to shrink the sets Ẽi for i = 1, . . . , N by a fixed ratio, so that
the measure of their union would be exactly R. Let us explain this construction.

Lemma 5.3 guarantees each set Ẽi contains a compact subset Ei such that

λ(Ei) =
λ(Ẽi)R

λ(E′)
, –

∫
Ei

f dλ = –
∫
Ẽi

f dλ

and for which inf Ẽi, sup Ẽi /∈ Ei. Putting E =
⋃N

i=1 Ei, we see that f |E is mean
zero, λ(E) = R and λ(Ei)/λ(E) = λ(Ẽi)/λ(E

′) ∈ Q2 for i = 1, . . . , N . This proves
the required result for N , completing the induction. Lemma 5.4 is proved.

§ 6. Solutions for the homological equation over the Cantor set

Let q ∈ N, r ∈ R, and let the set

C(q, r) = {1, . . . , q} × {1, 2}N,

be equipped with the Tikhonov topology and a product measure

µ = µ1 × µN
2

such that µ1({i}) = r/q, i = 1, . . . , q; µ2({j}) = 1/2, j = 1, 2.
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The set C(q, r) is a Cantor type set with µ(C(q, r)) = r. Let V be a finite-dimen-
sional vector space. Let C(C(q, r);V ) be the Banach space of continuous V -valued
functions on C(q, r).

Let p0 be the mapping from C(q, r) onto {1, . . . , q}, defined by p0(i; i1, i2, . . . ) = i,
and let C(q, r, i) = p−1

0 (i), i = 1, . . . , q. For brevity, we set

CV =
8dim(V )2

log 1.5
(SV + 1).

Recall that the diameter of a subset X of V is defined by

Diam(X) = sup
x,y∈X

∥x− y∥.

Theorem 6.1. Let V be a finite-dimensional real normed vector space, and let
0 ̸= f ∈ C(C(q, r);V ) be mean zero function. We set

a =
maxi{Diam(f(C(q, r, i)))}

∥f∥
.

Then there exist g ∈ C(C(q, r);V ), ∥g∥ ⩽ (SV + a(1 + CV ))∥f∥, and a measure
preserving continuous invertible transformation T of C(q, r) such that f = g◦T−g .

Moreover, the system of sets Γ = {C(q, r, i), i = 1, . . . , q}, can be labelled so that

Γ = {X1, . . . , Xq}, T (Xi) = Xi+1, i < q, T (Xq) = X1

and ∥g|X1
∥ ⩽ (1 + CV )a∥f∥.

Proof. For every n ∈ N, we denote by pn the mapping from C(q, r) onto {1, . . . , q}×
{1, 2}n defined by

pn(i; i1, . . . , in, in+1, . . . ) = (i; i1, . . . , in).

For n ⩾ 0, let
vn : {1, . . . , q} × {1, 2}n → {1, . . . , 2nq}

be the function arranging the elements in {1, . . . , q} × {1, 2}n in lexicographical
order. Next, for i ∈ {1, . . . , 2nq}, we denote

Ini = (p−1
n (v−1

n (i)).

The sets Ini , i ∈ {1, . . . , 2nq}, n ∈ N are clopen and form a base of the topology
in C(q, r). Clearly, we have

{I0i : i = 1, . . . , q} = {C(q, r, i) : i = 1, . . . , q}.

Let fn =
∑2nq

i=1 χIn
i

–
∫
In
i
f dµ. Then fn ∈ C(C(q, r);V ), ∥fn − f∥ → 0 as n → ∞.

Hence there exists a sequence (nk)k⩾1 of natural numbers such that, for n ⩾ nk,

∥fn − f∥ ⩽ 2−k−2C−1
V a∥f∥.
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Setting,

h0 = f0, h1 = fn1 − f0, ∥h1∥ ⩽ a∥f∥,
hk = fnk

− fnk−1
=⇒ ∥hk∥ ⩽ 2−kC−1

V a∥f∥, k > 1

we have

f =

∞∑
k=0

hk.

Let ai be the value of h0 taken on I0i for 1 ⩽ i ⩽ q. As
∫
fdµ = 0 we have∑q

i=1 ai = 0, so that there is a permutation π of {1, . . . , q} such that
∥∥∑m

i=1 aπ(i)
∥∥ ⩽

Sd∥h0∥ for 0 ⩽ m ⩽ q. Now, let T0 be the measure preserving continuous cyclic
transformation of C(q, r) sending I0π(i) to I0π(i+1) for 1 ⩽ i ⩽ q−1 and sending I0π(q)
to I0π(1). We now denote by g0 : C(q, r) → V the continuous function which assumes

on I0π(l) the value
∑l−1

i=1 aπ(i) for l = 2, . . . , q and which vanishes on the set I0π(1).
Hence ∥g0∥ ⩽ Sd∥f0∥ ⩽ Sd∥f∥, and, for l = 2, . . . , q and t ∈ I0π(l), we have

g0(T0(t))− g0(t) =

l∑
i=1

aπ(i) −
l−1∑
i=1

aπ(i) = aπ(l) = f0(t).

For l = 1 and t ∈ Iπ(1), we have

g0(T0(t))− g0(t) =

1∑
i=1

aπ(i) − 0 = aπ(1) = h0(t).

Proceeding as in [8], for each k ⩾ 0, we denote Jk = {Ink
i : 1 ⩽ i ⩽ 2nkq},

and construct a sequence {Tk}∞k=0 of continuous automorphisms Tk of C(q, r) and
functions {gk}∞k=1, gk ∈ C(C(q, r);V ) satisfying:

(i) Tk is a cyclic permutation of the sets of Jk;
(ii) Tk+1 extends Tk in the sense that if I ∈ Jk, I ′ ∈ Jk+1 and I ′ ⊆ I then

Tk+1(I
′) ⊆ Tk(I);

(iii) ∥gk∥ ⩽ CV ∥hk∥;
(iv) gk is constant on each I ∈ Jk;
(v) hk = gk ◦ Tk − gk on C(q, r).
Now, suppose that transformations T0, . . . , Tk and functions g0, . . . , gk with given

properties are constructed. For convenience, we set n = |Jk| and m = |Jk+1|/|Jk|.
Let I1, . . . , In be the sets from Jk, enumerated so that Tk(Ii) = Ii+1 for i < n and
Tk(In) = I1. This can be done since Tk is a cyclic permutation of the sets of Jk.
Furthermore, for i = 1, . . . , n, for j = 1, . . . ,m, let Ii,j | be all sets from Jk+1 that
lie in Ii. Let ai,j be the value of the function hk+1 on Ii,j . Since∫

Ii

hk+1 dλ =

m∑
j=1

∫
Ii,j

(fnk+1
− fnk

) dλ = 0 ∀ Ii ∈ Jk,

it follows that
∑m

j=1 ai,j = 0 for all i = 1, . . . , n. In addition, ∥ai,j∥ ⩽ ∥hk+1∥
for all i = 1, . . . , n, j = 1, . . . ,m. Therefore, by Theorem 3.3, there exist cyclic
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permutations π1, . . . , πn of {1, . . . ,m} such that∥∥∥∥ l∑
i=1

ai,πi(j)

∥∥∥∥ ⩽ M∥hk+1∥

for l = 1, . . . , n and j = 1, . . . ,m, where M = 8d2/ log 1.5. Consider the a measure
preserving homeomorphism Tk+1 : C(q, r) → C(q, r) defined by

Tk+1(Ii,πi(j)) = Ii+1,πi+1(j), i = 1, . . . , n− 1, j = 1, . . . ,m.

We set

bj =

n∑
i=1

ai,πi(j), j = 1, . . . ,m.

Since
∑m

j=1 bj =
∑n

i=1

∑m
j=1 ai,j = 0 and ∥bj∥ ⩽ M∥hk+1∥, there exists a cyclic

permutation π0 of 1, . . . ,m such that∥∥∥∥ l∑
j=1

bπ0(j)

∥∥∥∥ ⩽ MSV ∥hk+1∥ ∀ l = 1, . . . ,m.

We set
Tk+1(In,πn(π0(j))) = I1,π1(π0(j+1)) ∀ j = 1, . . . ,m− 1

and define
Tk+1(In,πn(π0(m))) = I1,π1(π0(1)).

Next, we have∥∥∥∥ l∑
r=0

hk+1(T
r
k+1(t))

∥∥∥∥ =

∥∥∥∥p−1∑
j=1

bπ0(j) +

z∑
i=1

ai,πi(π0(p))

∥∥∥∥ ⩽ CV ∥hk+1∥,

where l + 1 = (p − 1)n + z for some p ∈ {1, . . . ,m} and z ∈ {1, . . . , n}, for every
t ∈ I1,π1(π0(1)) and every l = 0, . . . , nm− 1.

Now, let us define the function gk+1 by
∑l−1

r=0 hk+1(T
r
k+1(t)) on T l

k+1(I1,π1(π0(1))),
where t∈ I1,π1(π0(1)) for l = 1, . . . , nm− 1 and by gk+1(I1,π1(π0(1))) = 0. We have

∥gk+1∥ ⩽ CV ∥hk+1∥.

Let t ∈ I1,π1(π0(1)). If 0 < l < nm− 1, then

gk+1(Tk+1(T
l
k+1(t)))− gk+1(T

l
k+1(t)) =

l∑
r=0

hk+1(T
r
k+1(t))−

l−1∑
r=0

hk+1(T
r
k+1(t))

= hk+1(T
l
k+1(t)),

and further,

gk+1(Tk+1(t))− gk+1(t) = hk+1(t)− 0 = hk+1(t),

gk+1(Tk+1(T
nm−1
k+1 (t)))− gk+1(T

nm−1
k+1 (t)) = 0−

nm−2∑
r=0

hk+1(T
r
k+1(t))

= hk+1(T
nm−1
k+1 (t)).
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Thus, for every t ∈ C(q, r),

gk+1(Tk+1(t))− gk+1(t) = hk+1(t).

This completes the construction of functions {gk}∞k=0 and transformations {Tk}∞k=0

with the required properties.
The above Tk+1 satisfies condition (ii). Hence the sequences Tk and gk satisfy

conditions (i)–(v). Observe that the inverse mappings T−1
k also obeys condition (ii).

From condition (iii) it follows that the series
∑∞

k=0 gk converges in C(C(q, r);V )
to some function g satisfying

∥g∥ ⩽ ∥g0∥+ ∥g1∥+
∞∑
k=2

∥gk∥ ⩽ SV ∥f∥+ CV a∥f∥+ a∥f∥ = (SV + (1 + CV )a)∥f∥.

Next, (ii) implies that, for all t ∈ C(q, r), the sequence Tk(t) converges. We next
define T (t) = limk→∞ Tk(t) ∈ C(q, r), T−1(t) = limk→∞ T−1

k (t).
If n ∈ N, I ∈ Jn, then Tn(I) = I ′ ∈ Jn. From (ii), we have Tm(I) = I ′ for m > n.

Since I ′ is closed, T (I) = I ′. Hence T permutes elements of Jn for every n. Since⋃
n Jn is a base of the topology in C(q, r) and generates the σ-algebra of measurable

sets, T is a continuous automorphism of C(q, r).
Now, for k ⩾ 0, we have

gk(T (x))− gk(x) = gk(Tk(x))− gk(x) = hk(x).

Hence

g(T (x))− g(x) =

∞∑
k=0

(gk(T (x))− gk(x)) =

∞∑
k=0

hk = f.

The last assertion of the theorem follows from the fact that T is T0 on J0 and
since g0 vanishes on I0π(1). Theorem 6.1 is proved.

Proposition 6.1. Let q ∈ N, r ∈ R, and {mn} be a sequence from N. On the set
E = {1, . . . , q} ×

∏∞
n=1{1, . . . , 2mn} equipped with the product topology consider the

product measure

ν = ν0×
∞∏

n=1

νn, ν0({i}) =
r

q
, νn({jn}) =

1

2mn
, 1 ⩽ i ⩽ q, 1 ⩽ jn ⩽ 2mn .

Then there exists a measure preserving homeomorphism φ : C(q, r) → E such that
φ(C(q, r, i)) = {i} ×

∏∞
n=1{1, . . . , 2mn}, i = 1, . . . , q .

Proof. Let φ0 be the identity mapping on {1, . . . , q}, and

φn : {1, 2}mn → {1, . . . , 2mn}

be a bijection such that

φn(i1, . . . , i2mn ) = 1 +

mn∑
k=1

2k−1(ik − 1), n ⩾ 1.
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The compact set C(q, r) can be represented as

C(q, r) = {1, . . . , q} ×
∞∏

n=1

{1, 2}mn .

Define the bijection φ : C(q, r) → E as the product φ =
∏∞

n=0 φn. Every φn is
measure preserving, and hence so is φ.

Let k ∈ N, x ∈ {1, . . . , q} ×
∏k

n=1{1, 2}mn , P (x) = x ×
∏∞

n=k+1{1, 2}mn . We
have φ(P (x)) =

(∏k
n=0 φn

)
(x)×

∏∞
n=k+1{1, . . . , 2mn}.

Recalling that the sets P (x) form the base of the topology in C(q, r), and the sets
φ(P (x)) form the base of the topology in E , we conclude that φ is homeomorphism.
This proves Proposition 6.1.

§ 7. Solutions to the homological equation.
The affinely homogeneous setting

In this section, we show that the equation f ∈ L∞(D;V ) is solvable for any
mean zero affinely homogeneous function f = g ◦ T − g. The transformation T we
construct here is not ergodic. We will circumvent this ergodicity issue in the next
section.

Note that if a function f is affinely homogeneous, then, for any v ∈ V and any
measurable subset D′ ⊆ D, f |D′ + v is affinely homogeneous as well. Moreover,
note that the conditions of Lemma 5.4 on the function f ∈ L∞(D;V ) are satisfied
if f is mean zero and affinely homogeneous.

Let D ⊂ [0, 1] be a measurable set, f ∈ L∞(D;V ) be a mean zero function, q ∈ N,
R ∈ (0, λ(D)), F : C(q,R) → D. The system (q,F , R) is said to be a Cantor tower
for f if F is a measure preserving continuous injection, the function f |F(C(q,R)) is
continuous, and

∫
F(C(q,R))

f dλ = 0.

Proposition 7.1. Let V be a finite-dimensional real normed space, let D⊂ [0, 1] be
a measurable set, let f ∈ L∞(D;V ) be a mean zero affinely homogeneous function,
and let R ∈ (0, λ(D)).

(i) For every q ∈ N, there exists a Cantor tower (q,F , R) for f ;
(ii) For every ε > 0, there exists a Cantor tower (q,F , R) for f such that

Diam(f(F(C(q,R, i)))) < ε, i = 1, . . . , q. (7.1)

Proof. Assertion (ii) differs from (i) because q in (ii) is not given in advance, and
should to be determined so as to satisfy (7.1).

Once the sought-for q in (ii) is found, the construction of the Cantor tower is
the same for both cases (i) and (ii).

By Lemma 5.2, we know that there exists a compact set K ′ ⊂ D, with λ(K ′) > R
such that f is continuous and mean zero on K ′.

For every ε > 0 there are points x0 = infK ′ < x1 < · · · < xn = supK ′ such
that Diam(f([xi−1, xi] ∩K ′)) < ε, i = 1, . . . , n. Let {K ′

1, . . . ,K
′
m} be a subfamily

of {[xi−1, xi] ∩K ′ : i = 1, . . . , n}, consisting of all sets of non-zero measure.
By Lemma 5.4, there exist compact sets K ′′

1 ⊂ K ′
1, . . . ,K

′′
m ⊂ K ′

m such that∫
K
f dλ = 0, λ(K) > R, where K = K ′′

1 ∪ · · · ∪ K ′′
m, and λ(K ′′

i )/λ(K) ∈ Q2,
i = 1, . . . ,m.
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Hence the compact set K admits a splitting {K1, . . . ,Kq} inscribed in the
splitting {K ′′

1 , . . . ,K
′′
m} so that λ(K1) = · · · = λ(Kq), where q is the common

denominator of the ratios {λ(K ′′
i )/λ(K) : i = 1, . . . ,m}, and supKi ⩽ infKi+1 for

i = 1, . . . ,m.
Thus, for case (ii), we have found the number q and have constructed the compact

sets K1, . . . ,Kq so that Diam(f(Ki)) < ε, i = 1, . . . , q.
In case (i), we set K = K ′, and, for q given in advance, we choose points

x0 = infK < x1 < · · · < xq = supK such that

λ([xi−1, xi] ∩K) =
λ(K)

q
, i = 1, . . . , q.

In this case, we set

Ki = [xi−1, xi] ∩K, i = 1, . . . , q.

Now, we only need to build a Cantor tower (q,F , R) such that F(C(q,R, i)) ⊂ Ki,
i = 1, . . . , q.

Let us fix a strictly decreasing sequence

R0 = λ(K) > R1 > · · · > Rn > · · · , lim
n

Rn = R.

We will build a sequence (mn) of positive integers and sets Ka, a ∈ En, where

En = {1, . . . , q} ×
n∏

i=1

{1, . . . , 2mn}, n ⩾ 0.

Below, throughout this proof, we write |En| = Card(En) for brevity.
For m ⩽ n, we define the projection pn,m : En → Em by

pn,m(i0; i1, . . . , im, . . . , in) = (i0; i1, . . . , im).

We also set

Cn =
⋃

a∈En

Ka, C =

∞⋂
n=0

Cn.

Clearly, C0 = K.
The sets Ka should satisfy the following conditions:
1) for a ∈ En, the set Ka is a compact subset of [0, 1]; for a1, a2 ∈ En, a1 ̸= a2,

we have either supKa1
⩽ infKa2

or supKa2
⩽ infKa1

;
2) if a ∈ En−1 and b ∈ En are such that pn,n−1(b) = a, then Kb ⊆ Ka and

Diam(Kb) ⩽ (1/2)Diam(Ka);
3) λ(Ka) = Mn := Rn/|En| for all a ∈ En;
4)
∫
Cn

f dλ = 0 for all n ⩾ 0;
5) the sets Ka ∩Cn+1 and Kb ∩Cn+1 are disjoint for a, b ∈ En whenever a ̸= b;
6) λ(Ka ∩ Cn) = Rn/|Ek| for any k < n, a ∈ Ek.
The construction of a sequence (mn) and compact sets Ka is by induction on n.
If n = 0, the set E0 = {1, . . . , q} and the compacts K1, . . . ,Kq are already

constructed.
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Let n ⩾ 0 and assume that the set {m1, . . . ,mn} (when n = 0 this set is empty)
and the compacts Ka, a ∈ Ek, k ⩽ n are found. We now define mn+1 and Ka for
all a ∈ En+1.

Given a fixed a ∈ En, we set

KL
a := Ka ∩

[
infKa,

infKa + supKa

2

]
, KR

a := Ka ∩
[
infKa + supKa

2
, supKa

]
.

Note that Diam(KL
a ) ⩽ (1/2)Diam(Ka) and Diam(KR

a ) ⩽ (1/2)Diam(Ka). We
also set

ha = f |Ka
− 1

λ(Ka)

∫
Ka

f dλ.

We have ha ∈ L∞(Ka;V ),
∫
Ka

ha dλ = 0. Let us now show that Lemma 5.4 applies
to the set Ka = KL

a ∪KR
a , the mean zero function ha, and the number s Rn+1/|En|.

First, note that 0 < Rn+1/|En| < Rn/|En| = λ(Ka) and λ(KL
a ∩KR

a ) = 0. Further,
ha is mean zero and, as f is affinely homogeneous, and hence ha is also affinely
homogeneous. This shows that we can indeed apply Lemma 5.4 to obtain a subset

K̃a = K̃L
a ∪ K̃R

a ⊂ Ka ∩ (infKa, supKa)

(we emphasize the importance of the preceding inclusion for the validity of condi-
tion 5) above!) with K̃L

a ⊂ KL
a and K̃R

a ⊂ KR
a both compact and of positive mea-

sure, so that λ(K̃a) = Rn+1/|En| and
∫
K̃a

ha dλ = 0 and so that λ(K̃L
a )/λ(K̃a) =

pa/2
qa for some integer pa ⩾ 0 and positive integer qa.

Now, we set
mn+1 = 1 +

∑
a∈En

qa, ka = 2mn+1−qapa.

We now select points

x0
a < x1

a < · · · < xka
a =

infKa + supKa

2
< · · · < x2mn+1

a

in Ka such that, for 1 ⩽ i ⩽ 2mn+1 the sets

Ki
a := K̃a ∩ [xi−1

a , xi
a]

all have equal measure

λ(Ki
a) =

λ(K̃a)

2mn+1
=

Rn+1

|En|2mn+1

and, in addition,

Ki
a ⊂ K̃L

a ∀ i ⩽ ka, Ki
a ⊂ K̃R

a ∀ ka < i ⩽ 2mn+1 .

Now if b = a× i ∈ En+1, 1 ⩽ i ⩽ 2mn+1 , we define Kb = Ki
a.

By construction, conditions 1)–3) are met for Kc, c ∈ En+1, and condition 5) is
satisfied for a, b ∈ En.
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Now, let us verify condition 4). Indeed, we have∫
Cn+1

f dλ =
∑
a∈En

∫
K̃a

f dλ =
∑
a∈En

λ(K̃a)

λ(Ka)

∫
Ka

f dλ dλ

=
∑
a∈En

Rn+1

|En|λ(Ka)

∫
Ka

f dλ dλ =
Rn+1

|En|Mn

∑
a∈En

∫
Ka

f dλ dλ

=
Rn+1

|En|Mn

∫
Cn

f dλ dλ = 0.

Now, let us verify condition 6). To this end, we note that the number of compact
sets Kx, x ∈ En+1, contained inside Ka, a ∈ En, is equal to |En+1|/|En|. Hence, for
k < n, a ∈ Ek, the number of Kx, x ∈ En, contained inside Ka is

|En|
|En−1|

|En−1|
|En−2|

· · · |Ek+1|
|Ek|

=
|En|
|Ek|

.

Therefore, we have

λ(Ka ∩ Cn) =
|En|
|Ek|

Rn

|En|
=

Rn

|Ek|
.

This completes the construction of the compact sets Ka.
We now claim that

λ(C) = R,

∫
C

f dλ = 0.

Indeed, we have Cn+1 ⊂ Cn, n ⩾ 0, λ(C) = limn λ(Cn) = limn Rn = R, and∥∥∫
C
f dλ

∥∥ ⩽
∥∥∫

Cn
f dλ

∥∥+λ(Cn \C)∥f∥∞ = λ(Cn \C)∥f∥∞ = (Rn −R)∥f∥∞ → 0
as n → ∞.

Further, by Proposition 6.1, we may identify C(q,R) with E∞ = {1, . . . , q} ×∏∞
i=1{1, . . . , 2mn} with the above measure ν.
For every n ⩾ 0, we define the mapping pn : E∞ → En by

pn(i0; i1, . . . , in, in+1, . . . ) = (i0; i1, . . . , in).

For every a ∈ E∞, we set F(a) =
⋂∞

n=0 Kpn(a). Combining the equality pn+1,n ◦
pn+1 = pn and condition 2), we infer that |F(a)| = Card(F(a)) = 1. Therefore,
the mapping F : E∞ → C is correctly defined.

Let a, b ∈ E∞, a ̸= b. Then, there exists n such that pn(a) ̸= pn(b). By 5), we
have F(a) ̸= F(b), that is, the mapping F is injective.

Let x ∈ C. It follows from the construction of C that, for every n, there exists
a unique an ∈ En such that x ∈ Kan

. Using conditions 1) and 2), we find that
pn,n−1(an) = an−1, n > 1. Hence, there exists a ∈ E∞ such that pn(a) = an. This
guarantees F(a) = x, and so the mapping F is surjective.

Let {a(n)} ⊂ E∞ converge to a ∈ E∞. This means that, for every n, there exists
an index kn such that pn(a(m)) = pn(a) when m > kn. That is, F(a(m)) ∈ Kpn(a).
By 2), we have |F(a(m))−F(a)| ⩽ 1/2n. Hence F is continuous.

Since E∞ is compact, the mapping F−1 is continuous.
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Using 6), we see that

λ(Ka ∩ C) =
R

|En|
∀n ⩾ 0, a ∈ En.

However, Ka ∩ C = F(p−1
n (a)), µ(p−1

n (a)) = R/|En|, that is

λ(F(p−1
n (a))) = µ(p−1

n (a)).

Taking into account that the sets p−1
n (a), n ⩾ 0, a ∈ En, generate the σ-algebra of

measurable subsets in E∞, we conclude that the mapping F is measure preserving.
This proves Proposition 7.1.

Proposition 7.2. Let V be a finite-dimensional real normed space, let D ⊆ [0, 1] be
of positive measure, and let f ∈ L∞(D;V ) be mean zero and affinely homogeneous
function. Then, for any ε > 0 and R ∈ (0, λ(D)), there exist a measurable set
C ⊂ D , λ(C) = R, g ∈ L∞(C;V ) and a mod0 automorphism T of C such that
∥g∥ ⩽ (SV + ε)∥f∥∞ and f = g ◦ T − g .

Proof. By Proposition 7.1 (ii), for f there exists a Cantor tower (q,F , R) such that

Diam(f(F(C(q,R, i)))) <
ε

(1 + CV )
, i = 1, . . . , q.

An application of Theorem 6.1 completes the proof.

Theorem 7.1. Let V be a finite-dimensional real normed space. Let D ⊆ [0, 1] be
a set of positive measure and let f ∈ L∞(D;V ) be mean zero and affinely homoge-
neous. Then, for any ε > 0, there exist g ∈ L∞(D;V ) and a mod0 automorphism T
of D such that ∥g∥ ⩽ (SV + ε)∥f∥∞ and f = g ◦ T − g .

Proof. By Zorn’s lemma, there exists a maximal family {Ki}i∈I of pairwise disjoint
compact subsets of D with positive measure such that there exist gi ∈ L∞(Ki;V ),
∥gi∥∞ ⩽ (SV + ε)∥f∥∞ and a mod0 automorphism Ti of Ki such that f |Ki

=
gi ◦ Ti − gi. Clearly, the set of indices I is at most countable.

It suffices to show that λ
(
D \

⋃
i∈I Ki

)
= 0. Indeed, in this case we can define

g and T so that g|Ki
= gi, T |Ki

= Ti for any i ∈ I.
Suppose that the set D0 := D \

⋃
i∈I Ki has non-zero measure. By Proposi-

tion 7.2, there exists a compact subset K0 in D0 such that f |K0
= g0 ◦ T0 − g0 for

some function g0 ∈ L∞(K0;V ), ∥g0∥∞ ⩽ (SV + ε)∥f∥∞, and there exists a mod0
automorpishm T0 of K0. But this contradicts the assumption concerning the max-
imality of the family {Ki}i∈I . Hence λ(D0) = 0. Theorem 7.1 is proved.

§ 8. Proof of main results for general mean zero functions

We begin this section with two lemmas, which are based on classical results.

Lemma 8.1. Given x ∈ Rn with 1, x1, . . . , xn rationally independent, let ε > 0.
Then, for any given non-zero vector v ∈ Rn , there are integers q ⩾ 1, p1, . . . , pn ∈ Z,
such that the vector w ∈ Rn with wl = pl/q−xl satisfies ∥w∥∞ < ε/q and (w, v) > 0.
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Proof. Let us denote αl = sign(vl)ε/2.
Since 1, x1, . . . , xn are rationally independent, by [22], Theorem 442, we can find

integers q ⩾ 1 and p1, . . . , pn ∈ Z such that

|qxl − pl + αl| <
ε

2
, l = 1, . . . , n.

Now, since |qxl − pl| < ε/2 + |αl| = ε, for the vector w ∈ Rn given by
wl = pl/q − xl we have ∥w∥∞ < ε/q. Moreover, |αl| = ε/2, and so sign(wl) =
sign(pl − xlq) = sign(αl) = sign(vl). Further, since xl is irrational for all l, we have
|wl| = |pl/q − xl| > 0. Now, v ̸= 0, and so (w, v) > 0. Lemma 8.1 is proved.

Lemma 8.2. Let {Tn} be a sequence of mod0 automorphisms of [0, 1] and let
Tn → T , T−1

n → S in measure. Then T and S are also mod0 automorphisms
of [0, 1], and S = T−1 almost everywhere.

Proof. The fact that T and S are measure preserving follows from [12], Proposi-
tion 9.9.10. The fact that the equality S = T−1 holds almost everywhere follows
from [12], Corollary 9.9.11. Lemma 8.2 is proved.

The following lemma plays a crucial role in the proof of our main result.

Lemma 8.3. Let V be a finite-dimensional real normed space, f ∈ L∞([0, 1];V ) be
mean zero, and ε > 0. There exist a sequence (qi)i⩾1 in N\{1}, N with qi ⩾ 2, a par-
tition {Ai,j : i ⩾ 1, 1 ⩽ j ⩽ qi} of [0, 1] into sets of positive measure, and a mod0
automorphism T on [0, 1] such that:

1) T (Ai,j) = Ai,j+1 ∀ i ⩾ 1, 1 ⩽ j < qi ;
2) ∥h∥∞ < ε;
3)
∥∥∑l−1

j=1 f ◦ T j−1
∥∥
L∞(Ai,1;V )

< SV ∥f∥∞ + ε, l = 1, . . . , qi ,
where A :=

⋃∞
i=1 Ai,1 → V and h : A → V by h|Ai,1 =

∑qi
j=1 f ◦ T j−1 , h is mean

zero, and ∥h∥∞ < ε.

Proof. By Theorem 4.3, we can find a subset D ⊆ [0, 1] of positive measure on
which f is mean zero, and find an integer n ⩾ 1, and a partition {D1, . . . , Dn} of D
such that f |Dl

is affinely homogeneous for l = 1, . . . , n.
Let ε > 0. We will set

ε′ =
1

2
min

{
1,

ε

3
, min

i
(λ(Di))

}
> 0.

Each function f(l) = f |Dl
− –
∫
Dl
f dλ is mean zero and affinely homogeneous on Dl,

l = 1, . . . , n.
By Proposition 7.1, (ii), for every l = 1, . . . , n, for the function f(l), there exists

a Cantor tower (q(l),F(l),
1
2λ(Dl)) satisfying

Kl := F(l)

(
C
(
q(l),

1

2
λ(Dl)

))
⊂ Dl,

Kl,m := F(l)

(
C
(
q(l),

1

2
λ(Dl),m

))
,

Diam(f(Kl,m)) <
ε′

(1 + CV )(∥f∥∞ + 1)
, m = 1, . . . , q(l)

(recall that CV = (8 dim(V )2/ log 1.5)(SV + 1)).
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We have λ(Kl) = (1/2)λ(Dl), –
∫
Kl

f dλ = –
∫
Dl
f dλ for any l. Setting K =⋃n

l=1 Kl, we find that∫
K

f dλ =

n∑
l=1

∫
Kl

f dλ =

n∑
l=1

λ(Kl)

λ(Dl)

∫
Dl

f dλ =
1

2

∫
D

f dλ = 0.

Hence {Kl,1, . . . ,Kl,q(l)} is a partition of Kl such that λ(Kl,m) = λ(Kl)/q(l) for
all l, m.

Let x ∈ Rn be the vector given by xl = λ(Kl)/(q(l)λ(K)) > 0. We can find
a maximal subset J ⊆ {1, . . . , n} such that {1} ∪ {xj : j ∈ J } are rationally
independent. Then blxl = al,0 +

∑
j∈J al,jxj for l = 1, . . . , n for some integers al,j

and non-zero integers bl. We set M = 2
∣∣∏n

l=1 bl
∣∣max{|al,j | : j ∈ J ∪ {0}, l =

1, . . . , n}. We also define q(0) = maxl q(l), ρ = minl λ(Kl) > 0, x0 = minl xl > 0,
and

N = nM2 max

{
q(0)

ρ
, 2nq(0),

2

x0
,
nq(0)∥f∥∞

ε′

}
.

If J is empty, we set q̃i = 1 for i ∈ N. Now suppose that J is non-empty. Let
RJ be the vector space of functions J → R equipped with the Euclidean norm,
and let S(J ) be the set of all unit vectors in RJ . For every v ∈ S(J ), using
Lemma 8.1 we can find integers q̃v ⩾ 1 and p̃v,j ∈ Z for j ∈ J such that, for
the vector w̃v ∈ RJ with (w̃v)j = p̃v,j/q̃v − xj , we have ∥w̃v∥∞ < 1/q̃vN , and so
(w̃v, v) > 0. Next, there is a sequence (ξi)i⩾1 in S(J ) such that {w̃ξi : i ∈ N} is
dense in {w̃v : v ∈ S(J )}. Now, by the density, for v ∈ S(J ), we can find i ⩾ 1
such that ∥w̃ξi − w̃v∥2 < (w̃v, v), and hence

(w̃ξi , v) = (w̃v, v) + (w̃ξi − w̃v, v) ⩾ (w̃v, v)− ∥w̃ξi − w̃v∥2 > 0.

For i ⩾ 1, we set q̃i := q̃ξi and p̃i,j := p̃ξi,j for j ∈ J and define w̃i := w̃ξi . Note
that

∥w̃i∥∞ = ∥w̃ξi∥∞ ⩽
1

q̃ξiN
=

1

q̃iN
.

By the above, for every non-zero v ∈ RJ , we can find i ⩾ 1 such that (w̃i, v) > 0.
Regardless on whether J is empty or non-empty, we now fix i ⩾ 1 and define

qi = Mq̃i ⩾ 2. For l = 1, . . . , n, we set

pi,l =
qi
blq̃i

(
al,0q̃i +

∑
j∈J

al,j p̃i,j

)
=

qi
bl

(
al,0 +

∑
j∈J

al,j
p̃i,j
q̃i

)
.

This number is integer, since qi/(blq̃i) = M/bl ∈ N. Let the vector wi ∈ Rn be
defined by

(wi)l :=
pi,l
qi

− xl =
∑
j∈J

al,j
bl

(
p̃i,j
q̃i

− xj

)
.

If J is empty, then we set wi = 0. If J is non-empty, we have

∥wi∥∞ ⩽
∑
j∈J

M ∥w̃i∥∞ ⩽
nM

q̃iN
=

1

qi

nM2

N
.
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For i ⩾ 1, we now choose ci > 0 so that
∑∞

i=1 ci = (1/3)λ(K). For 1 ⩽ l ⩽ n
and 1 ⩽ m ⩽ q(l), we then have

∞∑
i=1

ci
pi,l
qi

=

∞∑
i=1

ci

(
λ(Kl)

q(l)λ(K)
+ (wi)l

)
⩽

∞∑
i=1

ci
λ(K)

(
λ(Kl)

q(l)
+

ρ

q(0)

)

⩽ 2
λ(Kl)

q(l)

∞∑
i=1

ci
λ(K)

< λ(Kl,m).

Now, for i ⩾ 1, let {I(i)l,m : 1 ⩽ l ⩽ n, 1 ⩽ m ⩽ q(l)} be a partition of {1, . . . , qi}
such that I

(i)
l,m is of cardinality |I(i)l,m| = pi,l. We fix the bijections

α
(i)
l,m : I

(i)
l,m → {1, . . . , pi,l}, β

(i)
l,m : I

(i)
l,m × {1, 2}N → {1, . . . , pi,l} × {1, 2}N,

by setting
β
(i)
l,m(i0; i1, . . . ) = (α

(i)
l,m(i0); i1, . . . ).

Note that such a partition actually exists. Indeed, qi =
∑n

l=1 q(l)pi,l, because∣∣∣∣qi − n∑
l=1

q(l)pi,l

∣∣∣∣ ⩽ n∑
l=1

∣∣∣∣qiλ(Kl)

λ(K)
− q(l)pi,l

∣∣∣∣ ⩽ qi

n∑
l=1

q(l)

∣∣∣∣xl −
pi,l
qi

∣∣∣∣
⩽ qinq(0)∥wi∥∞ ⩽

n2M2κ

N
⩽

1

2

is integer. Also, pi,l is an integer such that pi,l ⩾ qixl−|qixl−pi,l| > xl−qi∥wi∥∞ ⩾
xl − x0/2 > 0. Hence pi,l ∈ N.

Let l 1 ⩽ l ⩽ n and 1 ⩽ m ⩽ q(l). By Proposition 7.1 (i), we can find a Cantor
tower (p1,l,F (1)

l,m, c1p1,l/q1) for the function f |Kl,m
− –
∫
Kl,m

f dλ. We have

E
(1)
l,m := F (1)

l,m

(
C
(
p1,l, c1

p1,l
q1

))
⊂ Kl,m, λ(E

(1)
l,m) = c1

p1,l
q1

,

–
∫
E

(1)
l,m

f dλ = –
∫
Kl,m

f dλ.

We have λ(Kl,m\E(1)
l,m) >

∑∞
i=2 cipi,l/qi > c2p2,l/q2 and hence, arguing as above,

we find a measure preserving homeomorphism

F (2)
l,m : C

(
p2,l, c2

p2,l
q2

)
→ E

(2)
l,m ⊆ Kl,m \ E(1)

l,m,

such that
–
∫
E

(2)
l,m

f dλ = –
∫
Kl,m\E(1)

l,m

f dλ = –
∫
Kl,m

f dλ.

Similarly, for every i ⩾ 2, we can find a measure preserving homeomorphism

F (i)
l,m : C

(
pi,l, ci

pi,l
qi

)
→ E

(i)
l,m ⊆ Kl,m \ (E(1)

l,m ∪ · · · ∪ E
(i−1)
l,m ),

such that –
∫
E

(i)
l,m

f dλ = –
∫
Kl,m

f dλ.
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Now, once the disjoint sets E
(i)
l,m for i⩾ 1, 1 ⩽ l ⩽ n and 1 ⩽ m ⩽ q(l) are

constructed, we can set E(i) =
⋃n

l=1

⋃q(l)
m=1 E

(i)
l,m for i ⩾ 1. For i ⩾ 1, these sets are

also pairwise disjoint and are of measure

λ(E(i)) =

n∑
l=1

q(l)∑
m=1

ci
pi,l
qi

=
ci
qi

n∑
l=1

q(l)pi,l = ci, i ⩾ 1.

So, for every i, by gluing the homeomorphisms F (i)
l,m, we obtain a measure preserving

homeomorphism Fi : C(qi, ci) → E(i) defined by Fi|I(i)
l,m×{1,2}N = F (i)

l,m ◦ β(i)
l,m.

For the sets Ãi,j : = Fi(C(qi, ci, j)), j = 1, . . . , qi, we have Ãi,j ⊆E
(i)
l,m ⊆Kl,m,

where l, m are such that j ∈ I
(i)
l,m. This means that, for j = 1, . . . , qi, we have

Diam(f(Ãi,j)) < (1 +CV )
−1(∥f∥∞ + 1)−1ε′ because this holds for Diam(f(Kl,m))

for all 1 ⩽ l ⩽ n and 1 ⩽ m ⩽ q(l). Next, since E(i) ⊆ K, the restriction f |E(i) is
continuous. We also have∫

E(i)

f dλ =

n∑
l=1

q(l)∑
m=1

∫
E

(i)
l,m

f dλ =

n∑
l=1

q(l)∑
m=1

λ(E
(i)
l,m)

λ(Kl,m)

∫
Kl,m

f dλ

= ci

n∑
l=1

pi,l
qi

q(l)

λ(Kl)

∫
Kl

f dλ = ci

n∑
l=1

(
pi,l
qi

− λ(Kl)

q(l)λ(K)

)
q(l)

λ(Kl)

∫
Kl

f dλ

= λ(E(i))

n∑
l=1

(wi)lq(l) –
∫
Kl

f dλ.

Therefore,
∫
E(i) f dλ = 0 whenever wi = 0. In general, we have∥∥∥∥ –
∫
E(i)

f dλ

∥∥∥∥ ⩽
n∑

l=1

∥∥∥∥(wi)lq(l) –
∫
Kl

f dλ

∥∥∥∥ ⩽ nq(0)∥wi∥∞∥f∥∞

⩽
1

qi

n2M2q(0)∥f∥∞
N

⩽
ε′

qi
.

Next, define the function f (i) : E(i) → V by

f (i) := f |E(i) − –
∫
E(i)

f dλ;

this function is mean zero and continuous. Moreover, for j ∈ {1, . . . , qi}, we have

Diam(f (i)
(
Ãi,j)

)
= Diam

(
f(Ãi,j)

)
<

ε′

(1 + CV )(∥f∥∞ + 1)
.

So, by Theorem 6.1, if f (i) ̸= 0, there exist a cyclic permutation {Ai,j}nj=1 of the
sets {Ãi,j}nj=1 and a mod0 automorphism T (i) of E(i) such that T (i)(Ai,j) = Ai,j+1,
for j = 1, . . . , qi−1 and T (i)(Ai,qi) = Ai,1, there exists a function g(i) ∈ L∞(E(i);V )
such that ∥g(i)∥∞ ⩽ SV ∥f (i)∥∞ + ε′, ∥g(i)|Ai,1

∥∞ ⩽ ε′, and f = g(i) ◦ T (i) − g(i).
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For f (i) = 0, this can also be done by simply putting g(i) = 0 and taking T (i) in
the given form.

Next, we define the a transformation T :
⋃

i⩾1 E
(i) →

⋃
i⩾1 E

(i) by T |Ai,j
:=

T (i)|Ai,j . We also define A =
⋃

i⩾1 Ai,1 and h : A→V , where h|Ai,1 =
∑qi

j=1 f ◦T j−1.
We then have

∥h|Ai,1
∥∞ ⩽

∥∥∥∥ qi∑
j=1

f (i) ◦ T j−1

∥∥∥∥
L∞(Ai,1;V )

+ qi

∥∥∥∥ –
∫
E(i)

f dλ

∥∥∥∥
⩽

∥∥∥∥ qi∑
j=1

f (i) ◦ (T (i))j−1

∥∥∥∥
L∞(Ai,1;V )

+ ε′ ⩽ ∥g(i) ◦ (T (i))qi − g(i)∥L∞(Ai,1;V ) + ε′

⩽ ∥g(i) ◦ (T (i))qi∥L∞(Ai,1;V ) + ∥g(i)∥L∞(Ai,1;V ) + ε′ ⩽ 2∥g(i)|Ai,1
∥∞ + ε′ ⩽ 3ε′,

and hence ∥h∥∞ < ε. Next, for l = 1, . . . , qi, we have∥∥∥∥ l−1∑
j=1

f ◦ T j−1

∥∥∥∥
L∞(Ai,1;V )

⩽

∥∥∥∥ l−1∑
j=1

f (i) ◦ T j−1

∥∥∥∥
L∞(Ai,1;V )

+ qi

∥∥∥∥ –
∫
E(i)

f dλ

∥∥∥∥
⩽ ∥g(i) ◦ T l − g(i)∥L∞(Ai,1;V ) + ε′ ⩽ ∥g(i) ◦ T l∥L∞(Ai,1;V ) + ∥g(i)∥L∞(Ai,1;V ) + ε′

⩽ ∥g(i)∥∞ + ∥g(i)|Ai,1
∥∞ + ε′ ⩽ (SV ∥f (i)∥∞ + ε′) + ε′ + ε′

⩽ SV ∥f∥∞ + 3ε′ < SV ∥f∥∞ + ε.

We will now show that there exists a subset A′ ⊆ A of positive measure such
that h|A′ is mean zero. If J is empty, then wi = 0 for i ⩾ 1, and so we have∫

A

h dλ =

∞∑
i=1

∫
Ai,1

h dλ =

∞∑
i=1

∫
E(i)

f dλ = 0.

Therefore, we can take A′ = A. Now assume that J is non-empty. Let u ∈ V and
define v ∈ RJ by

vj =

n∑
l=1

al,j
bl

q(l)

(
u, –
∫
Kl

f dλ

)
.

For i ⩾ 1, we have(
u, –
∫
Ai,1

h dλ

)
=

qi
λ(E(i))

(
u,

∫
E(i)

f dλ

)
= qi

(
u,

n∑
l=1

(wi)lq(l) –
∫
Kl

f dλ

)

= qi

n∑
l=1

(wi)lq(l)

(
u, –
∫
Kl

f dλ

)
= qi

n∑
l=1

(∑
j∈J

al,j
bl

(w̃i)j

)
q(l)

(
u, –
∫
Kl

f dλ

)

= qi
∑
j∈J

(w̃i)j

n∑
l=1

al,j
bl

q(l)

(
u, –
∫
Kl

f dλ

)
= qi(w̃i, v).

Now, for v = 0, this expression is zero for all i, that is, u is orthogonal to the sub-
space spanned by

{
–
∫
Ai,1

h dλ : i⩾ 1
}
. If v ̸= 0, then, by the above, there exists i ⩾ 1

such that (
u, –
∫
Ai,1

h dλ

)
= qi(w̃i, v) > 0.
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This means that 0 ∈ Conv
({

–
∫
Ai,1

h dλ : i ⩾ 1
})

. Indeed, suppose on the con-
trary that 0 /∈ Conv

({
–
∫
Ai,1

h dλ : i ⩾ 1
})

. By the Hahn–Banach theorem, there
exists u ∈ RJ such that

(
u,
∫
Ai,1

h dλ
)
< 0 for all i. But this contradicts the

fact that, for every non-zero v, there exists w̃i such that (w̃i, v) > 0. Hence
0 ∈ Conv

({
–
∫
Ai,1

h dλ : i ⩾ 1
})

, and therefore, by Theorem 2.3, there is a subset
A′ ⊆ A of positive measure on which h is mean zero.

We now set A′
i,j := T j−1(Ai,1 ∩ A′) for i ⩾ 1 and 1 ⩽ j ⩽ qi. We also set

A′
0 :=

⋃
i⩾1

⋃qi
j=1 A

′
i,j , and define T ′ : A′

0 → A′
0 as T ′|A′

i,j
= T |A′

i,j
for j < qi and

as T ′|A′
i,qi

= T |−qi+1
A′

i,qi

. Finally, we put h′ = h|A′
0
. Now the partition {A′

i,j : i ⩾ 1,

1 ⩽ j ⩽ qi} of A′
0, the function h′ on A′, and the transformation T ′ of A′

0 have all
the properties required in the lemma (save for the fact that A′

0 ̸= [0, 1]). However,
by Zorn’s lemma, we can iterate this argument to obtain a partition of the entire
interval [0, 1], thereby completing the proof. Lemma 8.3 is proved.

Remark 8.1. There is a relation between the partition {Ai,j : i ⩾ 1, 1 ⩽ j ⩽ qi}
constructed in Lemma 8.3 and the collection of disjoint sets {Ii,j : 1 ⩽ j ⩽ w,
1 ⩽ i ⩽ hj} constructed in Lemma 12.4 of [5]. The sets {Ii,j} (referred to as
W-TUB(ε,M, h,w)) are used together with a certain transformation τ that maps
Ii,j to Ii+1,j for i = 1, . . . , hj − 1. This difference is that {Ii,j} is finite, and
{Ai,j} is countably infinite. Also, to construct the collection {Ii,j}, the function f
has to take infinitely many values, while the partition {Ai,j} can always be con-
structed. Furthermore, the sets {Ii,j} do not partition the entire interval like the
sets {Ai,j}, though the function f is still mean zero on their union. Some bounds
that hold for the W-TUB are

∣∣∑k
i=0 f(τ

i(x))
∣∣ ⩽ M∥f∥∞ for x ∈ I1,j , k < hj and∣∣∑hj−1

i=0 f(τ i(x))
∣∣ < ε for x ∈ I1,j . These conditions are similar to those given in

Lemma 8.3.

Now, we are fully prepared to start the proof of our main result. We explain the
main idea of the proof. Intuitively, in order to solve the equation for the function f ,
we build another bounded mean zero function h̃(1) on a smaller domain. We then
solve the equation for the function h̃(1), and from this, we obtain a solution for the
function f itself. However, we solve the equation for the function h̃(1) by building
yet another bounded mean zero function h̃(2), on an even smaller domain, and
solving the equation for this function. It follows inductively that we first have
to build an entire sequence of bounded mean zero functions (h̃(k))k⩾0 on nested
domains A(0) ⊇ A(1) ⊇ · · · . Once this is done, we can in fact solve the equation
for all these functions simultaneously. In particular, we find a solution for the
function f . By adding coordinate functions to the function h̃(k) in every step of
the construction, we ensure that the final transformation is also ergodic.

Let now prove the following result, which implies both Theorems 1.2 and 1.3.

Theorem 8.1. Let V be a finite dimensional normed real vector space. Let f ∈
L∞([0, 1];V ) be a mean zero function and let ε > 0. Then there exist a function
g ∈ L∞([0, 1];V ) and an ergodic mod0 automorphism T of [0, 1] such that ∥g∥∞ ⩽
(SV + ε)∥f∥∞ and f = g ◦ T − g .

Furthermore, there exists a subset X of [0, 1] of positive measure such that∥∥∑k
j=0 f ◦ T j

∥∥
L∞(X;V )

⩽ (SV + ε)∥f∥∞ for all k ⩾ 0.
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Proof. Let (V, ∥ · ∥V ), f and ε be as in the theorem. We set d = dimV . Given
k ⩾ 0, we let Vk = V × Rk denote the (d+ k)-dimensional vector space with norm
∥(v, w)∥Vk

= ∥v∥V + ∥w∥1. Let {Dl}l⩾1 be the sequence of all sets of the form{ N⋃
i=1

(ai, bi) : N ∈ N, ai, bi ∈ Q, 0 ⩽ ai ⩽ bi ⩽ 1

}
.

We define the corresponding mean zero functions Z
(0)
l : A(0) → R by

Z
(0)
l = χDl

− λ(Dl).

We can assume that f ̸= 0, since otherwise the required result is trivial. First,
we set ε′ = ε∥f∥∞/(2(SV + 1)) > 0, and for k ⩾ 0, we define

ε′k =
ε′

2k+2(d+ k + 1)
> 0. (8.1)

We also put h̃(0) := f and A(0) := [0, 1]. Since h̃(0) is mean zero, by Lemma 8.3 there
exist a sequence (q(0)i )i⩾1 in N\{1} such that (q(0)i )i⩾2, a partition {A(0)

i,j : i ⩾ 1, 1 ⩽

j ⩽ q
(0)
i } of A(0), and a mod0 automorphism T (0) of A(0) such that T (0)(A

(0)
i,j ) =

A
(0)
i,j+1 for j = 1, . . . , q

(1)
i − 1 and T (0)(A

(0)

i,q
(0)
i

) = A
(0)
i,1 . Moreover, this can be

done in such a way that if we denote A(1) =
⋃

i⩾1 A
(0)
i,1 and define the function

h(1) : A(1) → V0 by h(1)|
A

(0)
i,1

=
∑q

(0)
i

j=1 h̃
(0) ◦ (T (0))j−1, then h(1) is mean zero and

∥h(1)∥∞ ⩽ ε′1. Furthermore, for i ⩾ 1 and 1 ⩽ l ⩽ qi, Lemma 8.3 gives the bound∥∥∑l−1
j=1 h̃

(0) ◦ (T (0))j−1
∥∥
L∞(A

(0)
i,1 ;V )

⩽ SV ∥h̃(0)∥∞ + ε′1.

For l ⩾ 1, define the function Z
(1)
l : A(1) → R by Z

(1)
l |

A
(0)
i,1

=
∑q

(0)
i

j=1 Z
(0)
l ◦(T (0))j−1.

Note that

∥Z(1)
l ∥1 =

∑
i⩾1

∫
A

(0)
i,1

|Z(1)
l | dλ ⩽

∑
i⩾1

q
(0)
i∑

j=1

∫
A

(0)
i,1

|Z(0)
l | ◦ (T (0))j−1 dλ

=
∑
i⩾1

q
(0)
i∑

j=1

∫
A

(0)
i,j

|Z(0)
l | dλ =

∫
A(0)

|Z(0)
l | dλ = ∥Z(0)

l ∥1,

which implies that Z
(1)
l ∈ L1(A

(1);R). Moreover, in the actual fact

∫
A(1)

Z
(1)
l dλ =

∑
i⩾1

∫
A

(0)
i,1

Z
(1)
l dλ =

∑
i⩾1

q
(0)
i∑

j=1

∫
A

(0)
i,1

Z
(0)
l ◦ (T (0))j−1 dλ

=
∑
i⩾1

q
(0)
i∑

j=1

∫
A

(0)
i,j

Z
(0)
l dλ =

∫
A(0)

Z
(0)
l dλ = 0,
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and hence Z
(1)
l is mean zero. As the bounded functions are dense in L1(A

(1);R),
we can find a Ẑ

(1)
1 ∈ L∞(A(1);R) such that ∥Z(1)

1 − Ẑ
(1)
1 ∥1 ⩽ ε′1/2. As Z(1)

1 is mean
zero, we have

∣∣∫
A(1) Ẑ

(1)
1 dλ

∣∣ ⩽ ∥Z(1)
1 − Ẑ

(1)
1 ∥1 ⩽ ε′1/2. We now define a mean zero

function Z̃
(1)
1 in L∞(A(1);R) by Z̃

(1)
1 = Ẑ

(1)
1 − –

∫
A(1)Ẑ

(1)
1 dλ. Hence

∥Z(1)
1 − Z̃

(1)
1 ∥1 ⩽ ∥Z(1)

1 − Ẑ
(1)
1 ∥1 +

∣∣∣∣∫
A(1)

Ẑ
(1)
1 dλ

∣∣∣∣ ⩽ ε′1
2

+
ε′1
2

= ε′1.

We now define h̃(1) ∈ L∞([0, 1];V1) by h̃(1) = (h(1), ε′1Z̃
(1)
1 /(∥Z̃(1)

1 ∥∞ + 1)). Hence

∥h̃(1)∥∞ = ∥h(1)∥∞ +
ε′1∥Z̃

(1)
1 ∥∞

∥Z̃(1)
1 ∥∞ + 1

⩽ 2ε′1.

As h̃(1) is mean zero, we can apply to this function the same construction as
for h̃(0).

Continuing this process by induction on k ⩾ 0, we can find:
• a sequence (q

(k)
i )i⩾1 in N with q

(k)
i ⩾ 2;

• a partition {A(k)
i,j : i ⩾ 1, 1 ⩽ j ⩽ q

(k)
i } of A(k) of sets of positive measure;

• a mod0 automorphism T (k) : A(k) → A(k) defined by T (k)(A
(k)
i,j ) = A

(k)
i,j+1 for

j < q
(k)
i and T (k)(A

(k)
i,qi

) = A
(k)
i,1 ;

• a set A(k+1) =
⋃

i⩾1 A
(k)
i,1 ;

• a mean zero function h(k+1) : A(k+1) → Vk given by

h(k+1)|
A

(k)
i,1

=

q
(k)
i∑

j=1

h̃(k) ◦ (T (k))j−1; (8.2)

• for l ⩾ 1, the mean zero functions Z
(k+1)
l ∈ L1(A

(k+1),R) given by

Z
(k+1)
l |

A
(k)
i,1

=

q
(k)
i∑

j=1

Z
(k)
l ◦ (T (k))j−1; (8.3)

• a mean zero function Z̃
(k+1)
k+1 ∈ L∞(A(k+1);R) such that

∥Z(k+1)
k+1 − Z̃

(k+1)
k+1 ∥1 ⩽ ε′k+1; (8.4)

• a mean zero function h̃(k+1) ∈ L∞(A(k+1);Vk+1) given by

h̃(k+1) =

(
h(k+1),

ε′kZ̃
(k+1)
k+1

∥Z̃(k+1)
k+1 ∥∞ + 1

)
. (8.5)

Note thats, for k ⩾ 0, the construction shows that

∥h(k+1)∥∞ ⩽ ε′k+1, ∥h̃(k+1)∥∞ ⩽ 2ε′k+1,
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and, for i ⩾ 1 and j = 1, . . . , q
(k)
i ,∥∥∥∥j−1∑

l=1

h̃(k) ◦ (T (k))l−1

∥∥∥∥
L∞(A

(k)
i,1 ;SVk

)

⩽ SVk
∥h̃(k)∥∞ + ε′k. (8.6)

We will define the transformation T , the function g, and the set X. For k ⩾ 0,
let the mapping P (k) : A(k) → A(k+1) be defined by

P (k)|
A

(k)
i,j

:= (T (k))1−j ; (8.7)

this mapping “projects” points from A(k) to points from A(k+1). Let us construct the
mod0 automorphisms Tk : [0, 1] → [0, 1] for k ⩾ 0 as follows. We set Tk|A(k)

i,j
:= T (k)

for i ⩾ 1 and 1 ⩽ j < q
(k)
i , define Tk|A(k)

i,q
(k)
i

:= P (k)|
A

(k)

i,q
(k)
i

for i ⩾ 1. We also set

Tk|[0,1]\A(k) = Id[0,1]\A(k) . For k0 ⩾ 0, consider the transformations Rk0 : A
(k0) →

A(k0) defined by
Rk0 := lim

N→∞
TN ◦ TN−1 ◦ · · · ◦ Tk0 |A(k0) , (8.8)

where the convergence is with respect to the measure topology. Indeed the limit
exists since A(k+1) ⊆ A(k) for k ⩾ 1, limk→∞ λ(A(k)) = 0, and Tk′ |[0,1]\A(k) =
Id[0,1]\A(k) for all k′ ⩾ k. Similarly, the limit of the inverses exists. Now, since Tk

for k ⩾ 0 are mod0 automorphisms, it follows from Lemma 8.2 that Rk0
is a mod0

automorphism. We now define the final transformation by T := R0.
Next, we define gk : A

(k) → Vk by

gk|A(k)
i,j

:=

(j−1∑
l=1

h̃(k) ◦ (T (k))l−1

)
◦ P (k). (8.9)

Note that he function gk vanishes t on A(k+1) =
⋃

i⩾1 A
(k)
i,1 . Given integers k1 ⩾ k2,

we define the coordinate projections pk1,k2
: Vk1

→ Vk2
by

pk1,k2
(v, w1, . . . , wk1

) := (v, w1, . . . , wk2
). (8.10)

We now define, for k0 ⩾ 0, the functions rk0
: A(k0) → Vk0

by

rk0
:=

∞∑
j=k0

pj,k0
◦ gj ◦ P (j−1) ◦ · · · ◦ P (k0). (8.11)

Let us show that these series converge. Indeed, for k ⩾ 0, we have SVk
⩽ dimVk =

d+ k [15], and hence, for k0 ⩾ 0, we have
∞∑

j=k0

∥pj,k0
◦ gj∥∞ ⩽

∞∑
k=0

∥pk,k0
◦ gk∥∞ ⩽

∞∑
k=0

∥gk∥∞

⩽ ∥g0∥∞ +
∑
k⩾1

max
i⩾1

1⩽j⩽q
(k)
i

∥gk|A(k)
i,j

∥∞
(8.6)
⩽ ∥g0∥∞ +

∑
k⩾1

(
SVk

∥h̃(k)∥∞ + ε′k
)

⩽ ∥g0∥∞ +
∑
k⩾1

(2SVk
+ 1)ε′k

(8.1)
⩽ ∥g0∥∞ +

∑
k⩾1

ε′

2k+1
⩽ ∥g0∥∞ + ε′ < ∞.
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This shows that series (8.11) converges absolutely. Hence rk0 ∈ L∞(A(k0);Vk0) is
well-defined.

We now set g := r0 and define X := A(1). Let us now prove the theorem.
1) Let us first estimate ∥g∥∞. By the above,

∥g∥∞ ⩽
∑
k⩾0

∥pk,0 ◦ gk∥∞ ⩽ ∥g0∥∞ + ε′ ⩽

(
max
i⩾1

1⩽j⩽q
(0)
i

∥g0|A(0)
i,j

)
+ ε′

(8.6)
⩽ (SV0

∥h̃(0)∥∞ + ε′0) + ε′ ⩽ SV ∥f∥∞ + 2ε′ ⩽ (SV + ε)∥f∥∞,

which gives us an estimate for ∥g∥∞.
2) Let us now show that h̃(k0) = rk0

◦Rk0
− rk0

for all k0 ⩾ 0. In particular, this
will imply that f = g ◦ T − g.

For x ∈ A(k0) and k ⩾ k0, we set

xk := P (k−1) ◦ · · · ◦ P (k0)(x) ∈ A(k). (8.12)

Let xk0 = x. Next, for k ⩾ k0, we define

B(k) :=
⋃
i⩾1

A
(k)

i,q
(k)
i

.

If xk ∈ B(k) for some k ⩾ k0, then Tk(xk) = xk+1. Therefore, in the case xk ∈ B(k)

for all k ⩾ k0, we have Rk0
(x) ∈

⋂
k⩾1 A

(k). Since Rk0
is measure preserving and

limk→∞ λ(A(k)) = 0, we find that, for almost all x ∈ A(k0), there exists N ⩾ k0
such that xN /∈ B(N). Let N(x) be the smallest integer (not smaller than k0)
with this property. We will assume that N(x) is finite for all x ∈ A(k0). For
k = k0, . . . , N(x)− 1, we have xk ∈ B(k), and so Tk(xk) = xk+1. Hence

xN(x) = TN(x)−1 ◦ · · · ◦ Tk0
(x). (8.13)

By (8.12) and from the definition of N(x), we have xN(x) ∈A(N(x)) \B(N(x)), and,
therefore, xN(x) ∈ A

(N(x))
i,j for some i ⩾ 1 and 1 ⩽ j ⩽ q

(N(x))
i − 1. Hence

TN(x)(xN(x)) = T (N(x))(xN(x)) ∈ A
(N(x))
i,j+1 (8.14)

and, therefore,

P (N(x)) ◦ TN(x)(xN(x)) = (T (N(x)))1−(j+1)(T (N(x))(xN(x)))

= (T (N(x)))1−j(xN(x)) = P (N(x))(xN(x)). (8.15)

Next, by (8.14) we have TN(x)(xN(x)) ∈ A(N(x)) \A(N(x)+1), and hence

Rk0(x)
(8.8)
= lim

M→∞
TM ◦ · · · ◦ Tk0(x)

(8.13)
= lim

M→∞
TM ◦ · · · ◦ TN(x)(xN(x))

= TN(x)(xN(x)) ∈ A(N(x)). (8.16)
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An appeal to (8.15) and (8.16) shows that

P (N(x)) ◦Rk0
(x) = P (N(x)) ◦ TN(x)(xN(x)) = P (N(x))(xN(x)). (8.17)

Note that by definition, for k ⩾ k0, P (k) is identical on A(k+1). Hence from (8.16)
we have Rk0

(x) ∈ A(N(x)) ⊆ · · · ⊆ A(k0), for k = k0, . . . , N(x)− 1, we have

P (k) ◦ · · · ◦ P (k0) ◦Rk0
(x) = Rk0

(x). (8.18)

Hence

P (N(x)) ◦ · · · ◦ P (k0) ◦Rk0
(x)

(8.18)
= P (N(x)) ◦Rk0

(x)
(8.17)
= P (N(x))(xN(x))

(8.12)
= P (N(x)) ◦ · · · ◦ P (k0)(x).

As a result, for M ⩾ N(x), we obtain

P (M) ◦ · · · ◦ P (k0) ◦Rk0
(x) = P (M) ◦ · · · ◦ P (k0)(x). (8.19)

Next, we have

(rk0 ◦Rk0 − rk0)(x)
(8.11)
=

∞∑
k=k0

pk,k0 ◦ gk ◦ P (k−1) ◦ · · · ◦ P (k0) ◦Rk0(x)

−
∞∑
k=1

pk,k0 ◦ gk ◦ P (k−1) ◦ · · · ◦ P (k0)(x)

(8.19)
=

N(x)∑
k=k0

pk,k0 ◦ gk ◦ P (k−1) ◦ · · · ◦ P (k0) ◦Rk0(x)

−
N(x)∑
k=k0

pk,k0
◦ gk ◦ P (k−1) ◦ · · · ◦ P (k0)(x)

(8.12),(8.18)
=

N(x)∑
k=k0

pk,k0
◦ gk ◦Rk0

(x)−
N(x)∑
k=k0

pk,k0
◦ gk(xk).

As a result,

(rk0 ◦Rk0 − rk0)(x) =

N(x)∑
k=k0

pk,k0 ◦ (gk ◦Rk0(x)− gk(xk)). (8.20)

Let us now consider the summands on the right to show that this expression
is h̃(k0)(x).



244 A. F. Ber, M. J. Borst, S. J. Borst, and F. A. Sukochev

By the definition of N(x), xN(x) ∈ A
(N(x))
i,j for some i ⩾ 1 and 1 ⩽ j ⩽ q

N(x)
i −1,

and by (8.14) we have TN(x)(xN(x)) ∈ A
(N(x))
i,j+1 . Hence, by definition of gN(x),

gN(x) ◦ TN(x)(xN(x))− gN(x)(xN(x))

(8.9)
=

( j∑
l=1

h̃(N(x)) ◦ (T (N(x)))l−1 ◦ P (N(x)) ◦ TN(x)(xN(x))

)

−
(j−1∑

l=1

h̃(N(x)) ◦ (T (N(x)))l−1 ◦ P (N(x))(xN(x))

)
(8.15)
=

( j∑
l=1

h̃(N(x)) ◦ (T (N(x)))l−1 ◦ P (N(x))(xN(x))

)

−
(j−1∑

l=1

h̃(N(x)) ◦ (T (N(x)))l−1 ◦ P (N(x))(xN(x))

)
= h̃(N(x)) ◦ (TN(x))j−1 ◦ P (N(x))(xN(x))

(8.7)
= h̃(N(x)) ◦ (TN(x))j−1 ◦ (TN(x))1−j(xN(x)) = h̃(N(x))(xN(x)).

This together with (8.16) gives

h̃(N(x))(xN(x)) = gN(x) ◦Rk0
(x)− gN(x)(xN(x)). (8.21)

Let now k0 ⩽ k ⩽ N(x) − 1 be fixed. By the definition of N(x), xk ∈ B(k),
and hence, for some i ⩾ 1, we have xk ∈ A

(k)

i,q
(k)
i

. We also have P (k)(xk) ∈ A
(k)

i,1 by

definition of

gk(xk)
(8.9)
=

q
(k)
i −1∑
j=1

h̃(k) ◦ (T (k))j−1 ◦ P (k)(xk)

=

(q
(k)
i∑

j=1

h̃(k) ◦ (T (k))j−1 ◦ P (k)(xk)

)
−
(
h̃(k) ◦ (T (k))q

(k)
i −1 ◦ P (k)(xk)

)
(8.2)
= h(k+1)(P (k)(xk))−

(
h̃(k) ◦ (T (k))q

(k)
i −1 ◦ P (k)(xk)

)
(8.7)
= h(k+1)(P (k)(xk))−

(
h̃(k) ◦ (T (k))q

(k)
i −1 ◦ (T (k))1−q

(k)
i (xk)

)
= h(k+1)(P (k)(xk))− h̃(k)(xk)

(8.5),(8.12)
= pk+1,k ◦ h̃(k+1)(xk+1)− h̃(k)(xk).

Note that, for k ⩾ k0, by definition of gk we have gk|A(k+1) = 0. Next, Rk0
(x) ∈

A(N(x)) ⊆ · · · ⊆ A(k0) by (8.16), and hence, there exists k = k0, . . . , N(x)− 1 such
that gk(Rk0(x)) = 0. Hence, for k = k0, . . . , N(x)− 1,

gk ◦Rk0
(x)− gk(xk) = −gk(xk) = h̃(k)(xk)− pk+1,k ◦ h̃(k+1)(xk+1). (8.22)
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Finally, we obtain

(rk0 ◦Rk0 − rk0)(x)
(8.20)
=

N(x)∑
k=k0

pk,k0 ◦ [gk ◦Rk0(x)− gk(xk)]

(8.21)
=

(N(x)−1∑
k=k0

pk,k0
◦ [gk ◦Rk0

(x)− gk(xk)]

)
+ pN(x),k0

◦ h̃N(x)(xN(x))

(8.22)
=

(N(x)−1∑
k=k0

pk,k0
◦
[
h̃(k)(xk)− pk+1,k ◦ h̃(k+1)(xk+1)

])
+ pN(x),k0

◦ h̃N(x)(xN(x))

(8.10)
=

(N(x)−1∑
k=k0

pk,k0(h̃
(k)(xk))− pk+1,k0(h̃

(k+1)(xk+1))

)
+ pN(x),k0

(h̃N(x)(xN(x)))

= pk0,k0(h̃
(k0)(xk0))

(8.10)
= h̃(k0)(xk0)

(8.12)
= h̃(k0)(x).

This shows that h̃(k0) = rk0
◦ Rk0

− rk0
for k0 ⩾ 0. Since f = h̃(0), g = r0 and

T = R0 this gives, in particular, that f = g ◦ T − g.
3) Let us prove that T is ergodic. We fix k ⩾ 0 and i ⩾ 1. We first show that

R
q
(k)
i

k |
A

(k)
i,1

= Rk+1|A(k)
i,1

. (8.23)

Let x ∈ A
(k)
i,j for some j = 1, . . . , q

(k)
i − 1. Then, by definition

Tk(x) = T (k)(x) ∈ A
(k)
i,j+1. (8.24)

In particular, Tk(x) /∈ A(k+1) ⊇ A(k+2) ⊇ · · · . For M ⩾ k + 1, TM is identical on
A(M−1) \A(M), and so, for M ⩾ k, we have

TM ◦ · · · ◦ Tk(x) = Tk(x). (8.25)

Hence

Rk(x)
(8.8)
= lim

M→∞
TM ◦ · · · ◦ Tk(x)

(8.25)
= Tk(x)

(8.24)
= T (k)(x) ∈ A

(k)
i,j+1.

Now if y ∈ A
(k)
i,1 , then it follows inductively that, for j = 1, . . . , q

(k)
i ,

Rj−1
k (y) = (T (k))j−1(y) ∈ A

(k)
i,j . (8.26)

We put z := R
q
(k)
i −1

k (y). Since z ∈ A
(k)

i,q
(k)
i

, we have, by definition of Tk and P (k),

Tk(z) = P (k)(z) = (T (k))1−q
(k)
i (z)

(8.26)
= y ∈ A

(k)
i,1 ⊆ A(k+1). (8.27)

As a result,

R
q
(k)
i

k (y) = Rk(z)
(8.8)
= lim

M→∞
TM ◦ · · · ◦ Tk(z)

=
(

lim
M→∞

TM ◦ · · · ◦ Tk+1

)∣∣∣
A(k+1)

◦ Tk(z)
(8.8)
= Rk+1 ◦ Tk(z)

(8.27)
= Rk+1(y).
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Therefore,

R
q
(k)
i

k |Ai,1 = Rk+1|Ai,1 . (8.28)

Note also that, for j = 1, . . . , q
(k)
i , it follows from (8.26) that

Rj−1
k |

A
(k)
i,1

= (T (k))j−1|
A

(k)
i,1

, Rj−1
k (A

(k)
i,1 ) = A

(k)
i,j . (8.29)

Let k ⩾ 0 and let F ⊆ A(k) be an Rk-invariant set of positive measure. Since

Rk+1(F ∩A(k+1)) =
⋃
i⩾1

Rk+1(F ∩A
(k)
i,1 )

(8.28)
=

⋃
i⩾1

R
q
(k)
i

k (F ∩A
(k)
i,1 ) ⊆ F,

and since Rk+1(A
(k+1)) ⊆ A(k+1), by definition of the map Rk+1, it follows that

Rk+1(F ∩A(k+1)) ⊆ F ∩A(k+1), which means that F ∩A(k+1) is Rk+1-invariant.
Now, we fix a T -invariant set D ⊆ [0, 1] of positive measure. Let us show

that λ(D) = 1. By what has been established, it follows by induction on k ⩾ 0 that
D ∩ A(k) is Rk-invariant. Now we fix k ⩾ 1. Since D ∩ A(k−1) is Rk−1-invariant,
we have, for i ⩾ 1 and j = 1, . . . , q

(k−1)
i ,

Rj−1
k−1(D ∩A

(k−1)
i,1 ) = Rj−1

k−1(D ∩A(k−1)) ∩Rj−1
k−1(A

(k−1)
i,1 )

(8.29)
= (D ∩A(k−1)) ∩A

(k−1)
i,j = D ∩A

(k−1)
i,j . (8.30)

Now, for l ⩾ 1, we have∫
D∩A(k)

Z
(k)
l dλ =

∞∑
i=1

∫
D∩A

(k−1)
i,1

Z
(k)
l dλ

(8.3)
=

∞∑
i=1

∫
D∩A

(k−1)
i,1

q
(k−1)
i∑
j=1

Z
(k−1)
l ◦ (T (k−1))j−1 dλ

(8.29)
=

∞∑
i=1

q
(k−1)
i∑
j=1

∫
D∩A

(k−1)
i,1

Z
(k−1)
l ◦Rj−1

k−1 dλ

(8.30)
=

∞∑
i=1

q
(k−1)
i∑
j=1

∫
D∩A

(k−1)
i,j

Z
(k−1)
l dλ =

∫
D∩A(k−1)

Z
(k−1)
l dλ.

Hence, for k ⩾ 0 and l ⩾ 1, we have∫
D∩A(k)

Z
(k)
l dλ =

∫
D∩A(0)

Z
(0)
l dλ = λ(D ∩Dl)− λ(D)λ(Dl).

On step 2) of the proof, for k ⩾ 0, we have shown that h̃(k) = rk ◦ Rk − rk.
Now by (8.5), for k ⩾ 1, the function Z̃

(k)
k can be written as an Rk-coboundary,

since (ε′k/∥Z̃
(k)
k ∥∞+1)Z̃

(k)
k = Yk ◦Rk−Yk, where Yk is the last coordinate function
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of rk. Hence, since D∩A(k) is Rk-invariant, we have
∫
D∩A(k) Z̃

(k)
k dλ = 0. Since

∥Z(k)
k − Z̃

(k)
k ∥1 ⩽ ε′k (see (8.4)), this implies that, for k ⩾ 1,

|λ(D ∩Dk)− λ(D)λ(Dk)| ⩽ ε′k.

We claim that λ(D) = λ(D)2. Let ρ > 0. By regularity of the Lebesgue measure,
there exists an open set U such that D ⊆ U and λ(U \ D) < ρ. Now U can be
written as a countable union of disjoint open intervals, that is,

U =

∞⋃
i=1

(ai, bi),

where ai, bi ∈ Q. Hence, there is an integer number l ⩾ 1 such that Dl ⊆ U and
λ(U \Dl) ⩽ ρ. We can moreover choose l large enough so that ε′l ⩽ ρ. From the
bounds on λ(U \ D) and λ(U \ Dl), we find, for the symmetric difference D∆Dl,
that λ(D∆Dl) ⩽ 2ρ. Hence |λ(D)− λ(D ∩Dl)| ⩽ 2ρ, |λ(Dl)− λ(D)| ⩽ 2ρ, and so,

|λ(D)− λ(D)2| ⩽ |λ(D)− λ(D ∩Dl)|+ |λ(D ∩Dl)− λ(D)λ(Dl)|
+ |λ(D)λ(Dl)− λ(D)2| ⩽ 2ρ+ ε′l + 2ρλ(D) ⩽ 5ρ.

As ρ > 0 was arbitrary, we have λ(D) = λ(D)2. This gives us λ(D) = 1, proving
the ergodicity of T .

4) Let now prove the required result for the set X. As X = A(1), it is clear
that X has positive measure. Now, to obtain the required bound, we note that
the function g0 is such that g0|A(0)

i,1
= 0 for i ⩾ 1. Since X = A(1) =

⋃
i⩾1 A

(0)
i,1 ,

this means that g0|X = 0. Proceeding as in the proof of the inequality ∥g∥∞ ⩽
(SV + ε/2)∥f∥∞, we have

∥g∥L∞(X;V ) ⩽
∑
k⩾1

∥gk∥∞ ⩽ ε′ ⩽
ε

2
∥f∥∞.

Hence, for k = 0, 1, . . . ,

∥
k∑

j=0

f ◦ T j∥L∞(X;V ) ⩽ ∥g ◦ T k+1 − g∥L∞(X;V )

⩽ ∥g ◦ T k+1∥∞ + ∥g∥L∞(X;V ) ⩽ (SV + ε)∥f∥∞,

proving the required result.

Lemma 8.4. Let f : [0, 1] → Rd with components f1, . . . , fd , and let Pi : Rd → R
the projection onto ith coordinate. Then:

(i) f−1(X1 × · · · ×Xd) =
⋂d

i=1 f
−1
i (Xi) for any X1, . . . , Xd ⊂ R;

(ii) if f is a measurable function, then σ(f) ⊂ σ(f1)× · · · × σ(fd);
(iii) if f ∈ L∞([0, 1];Rd), then σ(f) is compact in Rd and σ(fi) ⊂ Pi(σ(f)),

i = 1, . . . , d;
(iv) f ∈ L∞([0, 1];Rd) ⇔ f1, . . . , fd ∈ L∞[0, 1];
(v) if f ∈ L∞([0, 1];Rd) and if a norm on Rd is such that |Pi( · )| ⩽ ∥ · ∥, then

∥fi∥∞ ⩽ ∥f∥∞ , i = 1, . . . , d.
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Proof. First of all, let us observe that f1, . . . , fd are measurable if and only if so
is f (see [12], Lemma 2.12.5).

(i) Indeed, t ∈ f−1(X1 × · · · × Xd) ⇔ f(t) ∈ X1 × · · · × Xd ⇔ fi(t) ∈ Xi,
i = 1, . . . , d ⇔ t ∈

⋂d
i=1 f

−1
i (Xi).

(ii) Let v ∈ σ(f), and let Ui be neighbourhoods of Pi(v) in R for each i. Then
U := U1×· · ·×Ud is a neighbourhood of v. By (i), f−1(U) ⊂ f−1

i (Ui), i = 1, . . . , d.
Therefore, λ(f−1

i (Ui)) > 0, that is, Pi(v) ∈ σ(fi), i = 1, . . . , d. Hence,

σ(f) ⊂ σ(f1)× · · · × σ(fd).

(iii) Since f ∈ L∞([0, 1];Rd), it follows that σ(f) is bounded in Rd. So, it
remains to prove that σ(f) is closed. Assume that σ(f) ∋ vn → v. Then, for every
neighbourhood U of the point v, there exists an index n for which vn ∈ U . In this
case, λ(f−1(U)) > 0. Hence, v ∈ σ(f). In other words, σ(f) is compact.

Let 1 ⩽ i ⩽ d, t ∈ σ(fi). By (i), we have

λ

(
f−1

(
Ri−1 ×

[
t− 1

n
, t+

1

n

]
× Rd−i

))
= λ

(
f−1
i

([
t− 1

n
, t+

1

n

]))
> 0

for every n ∈ N. So, we have

Kn :=

(
Ri−1 ×

[
t− 1

n
, t+

1

n

]
× Rd−i

)
∩ σ(f)

is a non-empty compact set in Rd for every n ∈ N. Observing that {Kn}∞n=1 is
a centred system of compacts, we infer that

σ(f) ∩ (Ri−1 × {t} × Rd−i) =

∞⋂
n=1

Kn ̸= ∅.

In particular, t ∈ Pi(σ(f)), and, therefore, σ(fi) ⊂ Pi(σ(f)), i = 1, . . . , d.
(iv) This follows from a combination of (ii) and (iii).
(v) There exists r ∈ σ(fi) such that ∥fi∥∞ = |r|. By (iii), we know that r = Pi(v)

for some v ∈ σ(f). Then ∥fi∥∞ = |r| = |Pi(v)| ⩽ ∥v∥ ⩽ sup{∥w∥ : w ∈ σ(f)} =
∥f∥∞. Lemma 8.4 is proved.

Proof of Corollary 1.1. Let f ∈ L∞([0, 1]) be a complex-valued mean zero function,
f1 := Re(f), f2 := Im(f) ∈ L∞[0, 1]. Then f̃ := (f1, f2) ∈ L∞([0, 1];R2) (see
Lemma 8.4 (iv)), where R2 is equipped with the Euclidean norm ∥ · ∥.

Theorem 1.2 guarantees that there exist g̃ ∈ L∞([0, 1];R2) and an ergodic mod0
automorphism T of [0, 1] such that

f̃ = g̃ ◦ T − g̃, ∥g̃∥∞ ⩽ (SR2 + ε)∥f̃∥∞ = ∥f∥∞.

Let g̃ = (g1, g2), then g := g1 + ig2 ∈L∞[0, 1] (see Lemma 8.4, (iv)), ∥g∥∞= ∥g̃∥∞
and

f = g ◦ T − g, ∥g∥∞ ⩽

(√
5

2
+ ε

)
∥f∥∞,

since SR2 =
√
5/2 (see [16], Theorem 2, and [17]). Corollary is proved.
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Another interesting extension of Theorem 1.1 may be stated for an arbitrary
finite collection of real valued mean zero functions.

Theorem 8.2. Let f1, . . . , fn ∈ L∞[0, 1] be mean zero real-valued functions. Then,
for any ε > 0, there exists an ergodic mod0 automorphism T and real-valued func-
tions g1, . . . , gn ∈ L∞[0, 1] with ∥gi∥∞ ⩽ (n + ε)∥fi∥∞ such that fi = gi ◦ T − gi ,
i = 1, . . . , n.

Proof. Without loss of generality, we may assume that ∥fi∥∞ ̸=0, i = 1, . . . , n.
Consider the norm on Rn

∥v∥ = max
i

(|vi|), v = (v1, . . . , vn),

and define the function

f̃ = (f̃1, . . . , f̃n) : [0, 1] → Rn,

where f̃i = fi/∥fi∥∞, i = 1, . . . , n. By Lemma 8.4 (iv), (ii),

f̃ ∈ L∞([0, 1];Rn), ∥f̃∥∞ ⩽ 1.

It is straightforward that f̃ is a mean zero function.
By Theorem 1.2, there exists a g̃ ∈ L∞([0, 1];Rn) and an ergodic mod0 auto-

morphism mod0 T of [0, 1] such that

f̃ = g̃ ◦ T − g̃, ∥g̃∥∞ ⩽ n+ ε,

since SRn ⩽ n (see [15]).
Let g̃ = (g̃1, . . . , g̃n), then g̃1, . . . , g̃n ∈ L∞[0, 1] and ∥g̃i∥∞ ⩽ ∥g̃∥∞, i = 1, . . . , d

(Lemma 8.4 (iv), (v)). Therefore,

∥g̃i∥∞ ⩽ n+ ε, f̃i = g̃i ◦ T − g̃i, i = 1, . . . , n.

It remains to set gi = ∥fi∥∞g̃i, i = 1, . . . , n. Theorem 8.2 is proved.

The authors want to thank Thomas Scheckter for his comments that improved
the exposition and Igor Shparlinski for his help on the Diophantine approximation
part.
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