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Abstract

De Klerk and Pasechnik (2002) introduced the bounds ϑ(r)(G) (r ∈ N) for the stability number

α(G) of a graph G and conjectured exactness at order α(G) − 1: ϑ(α(G)−1)(G) = α(G). These

bounds rely on the conic approximations K
(r)
n by Parrilo (2000) for the copositive cone COPn. A

difficulty in the convergence analysis of ϑ(r) is the bad behaviour of the cones K
(r)
n under adding

a zero row/column: when applied to a matrix not in K
(0)
n this gives a matrix not in any K

(r)
n+1,

thereby showing strict inclusion
⋃

r≥0K
(r)
n ⊂ COPn for n ≥ 6. We investigate the graphs with

ϑ(r)(G) = α(G) for r = 0, 1: we algorithmically reduce testing exactness of ϑ(0) to acritical

graphs, we characterize critical graphs with ϑ(0) exact, and we exhibit graphs for which exactness of

ϑ(1) is not preserved under adding an isolated node. This disproves a conjecture by Gvozdenović and
Laurent (2007) which, if true, would have implied the above conjecture by de Klerk and Pasechnik.

Keywords stable set problem · α-critical graph · sum-of-squares polynomial · copositive matrix · semidefinite
programming · Shor relaxation

AMS subject classification 05Cxx; 90C22; 90C26; 90C27; 90C30; 11E25

1 Introduction

The problem of computing the stability number α(G) of a graph G = (V = [n], E), defined as the maximum
cardinality of a stable set in G, is a central problem in combinatorial optimization with a wide range of applications
(e.g., to scheduling, social networks analysis, genetics and chemistry, see [1], [33], [15] and references therein). This
problem is well-known to be NP-hard [16], which motivates the study of tractable approximations obtained by means

of linear or semidefinite relaxations. In this paper we investigate some semidefinite bounds ϑ(r)(G) (r ∈ N) that
were introduced in [5], with a special focus on the question of understanding for which graphs the bounds are exact,
especially for low order r = 0 and r = 1. Exactness of the bounds is closely related to the question whether certain
associated graph matrices MG admit copositivity certificates of semidefinite type or, equivalently, whether certain
associated graph polynomials FG admit nonnegativity certificates in terms of sums of squares.

The starting point to define these notions is the following copositive reformulation from [5] for the stability number:

α(G) = min{t : t(I +AG)− J ∈ COPn}. (1.1)

Here, AG, I and J denote, respectively, the adjacency matrix of G, the identity matrix and the all-ones matrix, and
COPn is the cone of copositive matrices defined as

COPn = {M ∈ Sn : (x◦2)TMx◦2 ≥ 0 for all x ∈ R
n},

setting x◦2 = (x2
1, . . . , x

2
n). Since the minimum is attained in program (1.1) the following graph matrix

MG := α(G)(AG + I)− J (1.2)
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is copositive or, equivalently, the following graph polynomial

FG(x) := (x◦2)TMGx
◦2 (1.3)

is nonnegative on R
n. A natural question is whether there exist certificates for copositivity of MG based on semidef-

inite programming and whether there exist certificates of nonnegativity for FG based on sums of squares of polyno-
mials. Such certificates can be designed using the hierarchy of inner approximations for the copositive cone COPn

proposed by Parrilo [24], and defined by

K(r)
n = {M ∈ Sn :

(
n∑

i=1

x2
i

)r
(x◦2)TMx◦2 ∈ Σ} for r ∈ N, (1.4)

where Σ denotes the cone of sums of squares of polynomials. These cones satisfy K
(r)
n ⊆ K

(r+1)
n ⊆ COPn and they

cover the interior of the copositive cone:

int(COPn) ⊆
⋃

r≥0

K(r)
n ⊆ COPn. (1.5)

Starting from the copositive formulation (1.1) and using the cones K
(r)
n , de Klerk and Pasechnik [5] introduced the

following hierarchy of approximations for α(G):

ϑ(r)(G) = min{t : t(AG + I)− J ∈ K(r)
n }, (1.6)

which satisfy α(G) ≤ ϑ(r+1)(G) ≤ ϑ(r)(G) for all r ∈ N and limr→∞ ϑ(r)(G) = α(G). Note the minimum is indeed
attained in program (1.6). As sums of squares of polynomials can be modelled using semidefinite programming each

bound ϑ(r)(G) is defined via a semidefinite program. The bound is said to be exact at order r if ϑ(r)(G) = α(G).

Yet another useful notion is the parameter ϑ-rank(G), called the ϑ-rank of G, which is defined in [19] as the smallest

integer r for which ϑ(r)(G) = α(G), setting ϑ-rank(G) = ∞ if no such r exists.

For clarity let us summarize the following links between the above notions: for any integer r ∈ N we have

MG ∈ K(r)
n ⇐⇒

(
n∑

i=1

x2
i

)r
FG ∈ Σ ⇐⇒ ϑ(r)(G) = α(G) ⇐⇒ ϑ-rank(G) ≤ r. (1.7)

De Klerk and Pasechnik [5] conjectured that the hierarchy ϑ(r)(G) converges to α(G) in at most α(G) − 1 steps,
which would show that this continuous copositive-based hierarchy has the same convergence behaviour as the Lasserre
hierarchy based on discrete formulations of α(G) [17, 18]. In view of (1.7) this can be reformulated as follows.

Conjecture 1.1 ([5]). For a graph G, any of the following equivalent claims holds: (i) MG ∈ K
(α(G)−1)
n ,

(ii) (
∑n

i=1 x
2
i )

α(G)−1FG ∈ Σ, (iii) ϑ(α(G)−1)(G) = α(G), (iv) ϑ-rank(G) ≤ α(G) − 1.

The weaker conjecture asking whether finite convergence holds at some order r ∈ N is also open.

Conjecture 1.2 ([19]). For a graph G, any of the following equivalent claims holds: (i) MG ∈
⋃

r∈N
K

(r)
n ,

(ii) (
∑n

i=1 x
2
i )

rFG ∈ Σ for some r ∈ N, (iii) ϑ(r)(G) = α(G) for some r ∈ N, (iv) ϑ-rank(G) < ∞.

Let us recap some of the main known results about these conjectures. In [12] Conjecture 1 was shown to hold for all
graphs with α(G) ≤ 8 (see also [31] for the case α(G) ≤ 6). In [19] it was observed that it suffices to prove both
Conjectures 1 and 2 for the class of critical graphs, i.e., for the graphs G satisfying α(G \ e) = α(G) + 1 for all edges
e of G. In addition, it is shown in [19] that Conjecture 2 holds for acritical graphs, i.e., for the graphs G satisfying
α(G \ e) = α(G) for all edges.

Some possible directions for resolving Conjectures 1.1 and 1.2. In what follows we mention some possible strate-
gies that could be followed to attack the above two conjectures along with their pitfalls.

A first idea is to investigate whether one can exploit the fact that any graph matrix MG has its diagonal entries that
all take the same value (equal to α(G) − 1). Indeed it is conjectured in [7] that any copositive matrix with diagonal

entries 0 or 1 belongs to some cone K
(r)
n and it is shown that this is true for matrix size n = 5 (with r = 1 in that case).

Hence a positive answer to this conjecture would immediately imply that MG belongs to some cone K
(r)
n and thus

settle Conjecture 1.2. However, we will disprove the above conjecture from [7] for matrix size n ≥ 6 (see Section 3).

In particular, this shows that the inclusion
⋃

r≥0 K
(r)
n ⊆ COPn in (1.5) is strict for any n ≥ 6.

A second possible strategy is to consider the impact of adding an isolated node. Let G⊕ i0 denote the graph obtained
by adding i0 as an isolated node to G. Consider the following two conjectures.
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Conjecture 1.3 ([12]). For any graph G, we have ϑ-rank(G⊕ i0) ≤ ϑ-rank(G).

Conjecture 1.4. For any graph G, ϑ-rank(G) < ∞ implies ϑ-rank(G⊕ i0) < ∞.

Conjecture 1.3 is in fact posed in [12] in a more general form (see [12, Conjecture 4]. In addition, it is shown in [12]
that Conjecture 1.3 implies Conjecture 1.1. We will show that Conjecture 1.4 is in fact equivalent to Conjecture 1.2
(see Proposition 4.6). In an attempt to relate ϑ-rank(G⊕i0) and ϑ-rank(G) let us consider the following decomposition
of the graph matrices, proposed in [12], where we set α := α(G) so that α(G ⊕ i0) = α+ 1:

MG⊕i0 =

(
α −1
−1 (α+ 1)(I +AG)− J

)

=

(
α −1
−1 1

α
J

)

+
α+ 1

α

(
0 0
0 α(I +AG)− J

)

. (1.8)

If the operation of adding a zero row/column preserves membership in the cones K(r) then, in view of (1.8), it would

immediately follow that MG ∈ K
(r)
n implies MG⊕i0 ∈ K

(r)
n+1, which would show Conjecture 1.3 (and thus also

Conjecture 1.1). In addition, if adding a zero row/column preserves membership in the union
⋃

r∈N
K(r), then again in

view of (1.8), Conjecture 1.4 would be true and thus Conjecture 1.2 too. However, adding a zero row/column does not

in general preserve membership in the cones K(r) for a given order r ≥ 1 (while this is clearly true for order r = 0);

this was observed (numerically) for order r = 1 using the graph matrix MC5
∈ K

(1)
5 of the 5-cycle (see [5]). We will

show that also the second property fails: adding a zero row/column to a matrix M ∈
⋃

r∈N
K

(r)
n \ K

(0)
n produces a

matrix that does not belong to the union
⋃

r∈N
K

(r)
n+1 (see Theorem 3.2).

Motivated by the above observations, our focus in this paper is to investigate the following topics: the impact of adding

a zero row/column to a matrix in
⋃

r∈N
K

(r)
n \K

(0)
n (in Section 3), the behaviour of the ϑ-rank under some simple graph

operations in relation to Conjectures 1.1 and 1.2 (in Section 4), structural properties of the graphs with ϑ-rank(G) = 0
(in Section 5), and the impact of adding an isolated node to a graph G with ϑ-rank(G) = 1 (in Section 6). We now
give some more details about the last two topics.

Graphs with small ϑ-rank 0 or 1. In order to investigate the graphs with small ϑ-rank(G) = 0 or 1 we will use the

explicit characterizations of the cones K
(0)
n and K

(1)
n provided by Parrilo [24]. There it is shown that a matrix M ∈ Sn

belongs to K
(0)
n if and only if M admits a decompositionM = P +N with P � 0, N ≥ 0 and Nii = 0 for all i ∈ [n];

we call such matrix P a K(0)-certificate for M . This in particular permits to show that the bound ϑ(0)(G) coincides
with the bound ϑ′(G), which is the Lovasz’ theta number strenghtened by adding a nonnegativity constraint (see [5]).

Parrilo [24] also showed that M ∈ K
(1)
n if and only if there exist positive semidefinite matrices P (1), P (2), . . . , P (n)

satisfying certain linear constraints (see Lemma 2.2); we say that such matrices form a K(1)-certificate for M . We

exploit the structure of the zeros of the quadratic form xTMx to obtain information about the kernels of K(0)- and

K(1)-certificates for M . This information plays a crucial role in our study of the graphs with ϑ-rank(G) = 0 or 1,

i.e, for which MG belongs to K
(0)
n or K

(1)
n . In some cases it permits to show uniqueness of the certificates, a useful

property for the study of the ϑ-rank. As an example, the graph matrix MC5
of the 5-cycle has a unique K(1)-certificate

and this uniqueness property permits to characterize the diagonal scalings of MC5
that belong to K

(1)
5 (see Section 3.2).

Our main results are as follows. We characterize the critical graphs with ϑ-rank 0 as the disjoint unions of cliques, and
we reduce the problem of deciding whether a graph has ϑ-rank 0 to the same problem for the class of acritical graphs
(see Section 5). This reduction can be done in polynomial time for the class of graphs G with fixed value of α(G). In
addition we show that adding an isolated node to a graph with ϑ-rank 1 may produce a graph with ϑ-rank at least 2,
thus disproving Conjecture 1.3 above. We also characterize the maximum number of isolated nodes that can be added
to some graphs with ϑ-rank 1 (such as odd cycles and their complements) while preserving the ϑ-rank 1 property (see
Section 6). For example, for the graph C5 this maximum number of nodes is shown to be equal to 8. Here too we will

exploit uniqueness properties of some of the matrices arising in K(1)-certificates.

The study of the graphs with ϑ-rank 0 is also relevant to the question of understanding when the basic semidefinite
relaxation (also known as the Shor relaxation) of a quadratic (or, more generally, polynomial) optimization problem is
exact. This question has received increased attention in the recent years. We refer, e.g., to the works [2, 11, 32] (and
references therein), which investigate this question for various classes of quadratic problems, such as random instances
in [2] and standard quadratic programs in [11]. In fact, thanks to a reformulation of α(G) as the optimum value of a

suitable polynomial optimization problem (involving degree 2r+2 forms), it turns out that the parameter ϑ(r)(G) can
also be viewed as the optimum value of the Shor relaxation of this polynomial optimization problem (see [12, Section
6.3]). Hence, also Conjectures 1.1 and 1.2 can be seen in the light of understanding exactness of Shor relaxations.
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Yet another motivation for the study of the graphs with ϑ-rank 0 comes from its relevance to fundamental questions
in complexity theory. Deciding whether a graph G has ϑ-rank(G) = 0 indeed amounts to deciding whether the
polynomial FG(x) = (x◦2)TMGx

◦2 is a sum of squares, i.e, whether an associated semidefinite program is feasible.
Equivalently, as mentioned above, ϑ-rank(G) = 0 if and only if there exists a positive semidefinite matrix P ∈ Sn

satisfying the linear constraints: Pii = α(G) − 1 for i ∈ V and Pi,j ≤ −1 for {i, j} /∈ E, which thus again
asks about the feasibility of a semidefinite program. Recall that the complexity status of deciding feasibility of a
semidefinite program is still unknown. On the positive side it was shown in [27] that one can test feasibility of a
semidefinite program involving matrices of size n and with m linear constraints in polynomial time when n or m is
fixed. In addition, it was shown in [28] that this problem belongs to the class NP if and only if it belongs to co-NP.
Understanding the complexity status for the class of semidefinite programs related to the question of testing whether
ϑ-rank(G) = 0 offers a rich playground to be explored later.

Organization of the paper. The paper is organized as follows. In Section 2 we group some preliminary results. In

particular, we recall the characterization of the cones K
(0)
n and K

(1)
n from [24] and we give some structural properties

of the matrices arising in K(0)- and K(1)-certificates for membership in these cones. We also recall a characterization
for the minimizers of the Motzkin-Straus formulation (2.8) for α(G). In Section 3, we provide explicit constructions

showing that adding a zero row/column to a matrix in
⋃

r≥0K
(r)
n \K

(0)
n may produce a matrix in COPn+1\

⋃

r≥0 K
(r)
n+1,

thereby showing strict inclusion
⋃

r≥0 K
(r)
n ⊂ COPn for any n ≥ 6. We also construct copositive matrices with an

all-ones diagonal that do not belong to any cone K
(r)
n for n ≥ 7, thereby disproving a conjecture from [7]. Exploiting

the fact that the graph matrix MC5
admits a unique K(1)-certificate, we can characterize the diagonal scalings of MC5

that still belong to K
(1)
5 . In Section 4 we present some known and new results dealing with the behavior on the ϑ-rank

under simple graph operations like adding an isolated node and deleting an acritical edge, and we investigate their
relevance for Conjectures 1.1 and 1.2. In Section 5 we discuss the role of critical edges in the study of the graphs with
ϑ-rank 0. In particular, we characterize the critical graphs with ϑ-rank 0 and we give an algorithmic procedure that
reduces the problem of deciding whether a graph has ϑ-rank 0 to the same problem restricted to graphs with no critical
edges. In Section 6 we develop some tools using criticality (as well as symmetry and kernel properties) to study the
impact of adding isolated nodes to graphs with ϑ-rank 1. As an application we can characterize how many isolated
nodes can be added to an odd cycle (or its complement) while preserving the ϑ-rank 1 property. As a byproduct, we
show that adding an isolated node can increase the ϑ-rank, thereby refuting Conjecture 1.3.

Notation. Given a graph G = (V,E), a set S ⊆ V is stable (aka independent) if S does not contain any edge of G.
Then, α(G) denotes the maximum cardinality of a stable set, called the stability number of G. For a subset U ⊆ V ,
G[U ] denotes the induced subgraph of G, with vertex set U and edge set {{i, j} ∈ E : i, j ∈ U} and, given an
edge e ∈ E, G \ e = (V,E \ {e}) is the subgraph obtained by deleting the edge e. An edge e ∈ E is critical if
α(G \ e) = α(G) + 1 and e is called acritical otherwise. We say that G is critical if all its edges are critical and
that G is acritical if it has no critical edges. A set C ⊆ V is a clique if {i, j} ∈ E for all i 6= j ∈ C and the

maximum cardinality of a clique is ω(G) = α(G). Then χ(G) (resp., χ(G)) denotes the minimum number of stable

sets (resp., cliques) whose union is V . For convenience we also set χ(G) = χ(G). Clearly one has ω(G) ≤ χ(G)
and α(G) ≤ χ(G). Recall that a graph G is called perfect if χ(H) = ω(H) for every induced subgraph H of G.
The celebrated strong perfect graph theorem of Chudnovsky et al. [3] shows that G is perfect if and only if G does

not contain an odd cycle C2n+1 or its complement C2n+1 (n ≥ 2) as an induced subgraph. For a node i ∈ V , N(i)
denotes the set of nodes j ∈ V that are adjacent to i and i⊥ := {i} ∪N(i) is the closed neighborhood of i; then i is
called an isolated node if N(i) = ∅. For a subset S ⊆ V set NS(i) = N(i) ∩ S. For a graph G and a node i0 6∈ V ,
G⊕ i0 = (V ∪ {i0}, E) denotes the graph obtained by adding the isolated node i0 to G. In general, given two graphs
G and H , the graph G⊕H = (V (G) ∪ V (H), E(G) ∪ E(H)) denotes the disjoint union of G and H .

We let Sn denote the set of n × n symmetric matrices. For a matrix M ∈ Sn, we write M � 0 if it is positive
semidefinite (i.e., xTMx ≥ 0 for all x ∈ R

n) and M ≥ 0 if all its entries are nonnegative. For a set S ⊆ [n],
M [S] denotes the principal submatrix of M whose rows and columns are indexed by S. Throughout Jn, In denote
the all-ones matrix and the identity matrix of size n and we may omit the subscript n when the size is not important
or clear from the context. For integers m,n ≥ 1, Jm,n denotes the m × n all-ones matrix. Throughout e denotes the
all-ones vector (of appropriate size). For a vector x ∈ R

n, Supp(x) = {i ∈ [n] : xi 6= 0} denotes its support. The
adjacency matrix AG ∈ Sn of a graph G = (V = [n], E) has entries (AG)ij = 1 if {i, j} ∈ E and zero otherwise.

Throughout R[x] = R[x1, . . . , xn] denotes the set of n-variate polynomials and Σ is the set of sums of squares of
polynomials, i.e., of the form p21 + . . . + p2m for some m ∈ N and p1, . . . , pm ∈ R[x]. The degree of a polynomial
f ∈ R[x] is the largest degree d of its terms and f is said to be homogeneous of degree d if all its terms have degree d.
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2 Preliminaries on the cones K
(r)
n

Recall that the cone K
(r)
n consists of the matrices M ∈ Sn for which the polynomial (

∑n

i=1 x
2
i )

r((x◦2)TMx◦2) is a

sum of squares of polynomials. A useful characterization for matrices in K
(r)
n is given by the following general result.

Theorem 2.1 (Peña et al. [31]). Let q ∈ R[x] be a homogeneous polynomial of degree d and define the degree 2d
polynomial Q(x) := q(x◦2) = q(x2

1, . . . , x
2
n). Then, Q ∈ Σ if and only if q can be decomposed as

q(x) =
∑

I⊆[n]
|I|≤d,|I|≡d (mod 2)

σI(x)
∏

i∈I

xi, (2.1)

where σI is a homogeneous polynomial with degree d− |I| and σI ∈ Σ.

As an application, M ∈ K
(0)
n if and only if there exist a matrix P � 0 and scalars cij ≥ 0 for 1 ≤ i < j ≤ n such that

xTMx = xTPx+
∑

0≤i<j≤n

cijxixj . (2.2)

This corresponds to the characterization of the cone K
(0)
n given by Parrilo in [24], which reads

K(0)
n = {P +N : P � 0, N ≥ 0}. (2.3)

Note that in (2.3) we can indeed assume, without loss of generality, that Nii = 0 for all i ∈ [n]. We say that P is a

K(0)-certificate for M if P � 0, P ≤ M and Pii = Mii for all i ∈ [n]. In other words, P is a K(0)-certificate for M
if there exist scalars cij ≥ 0 for 1 ≤ i < j ≤ n for which Eq. (2.2) holds.

Similarly, using Theorem 2.1, M ∈ K
(1)
n if and only if there exist matrices P (i) � 0 for i ∈ [n] and scalars cijk ≥ 0

for distinct i, j, k ∈ [n] such that

( n∑

i=1

xi

)

xTMx =

n∑

i=1

xix
TP (i)x+

∑

1≤i<j<k≤n

cijkxixjxk. (2.4)

From this, we get the characterization of the cone K
(1)
n from Parrilo [24] (see also [5]).

Lemma 2.2. A matrix M belongs to the cone K
(1)
n if and only if there exist matrices P (i) � 0 for i ∈ [n] and scalars

cijk ≥ 0 for 1 ≤ i < j < k ≤ n satisfying Equation (2.4). Equivalently, there exist matrices P (i) ∈ Sn for i ∈ [n]
satisfying the following conditions:

(i) P (i) � 0 for all i ∈ [n],

(ii) P (i)ii = Mii for all i ∈ [n],

(iii) 2P (i)ij + P (j)ii = 2Mij +Mii for all i 6= j ∈ [n],

(iv) P (i)jk + P (j)ik + P (k)ij ≤ Mij +Mik +Mjk for all distinct i, j, k ∈ [n].

Proof. As observed above, M ∈ K
(1)
n if and only if there exist matrices P (i) � 0 for i ∈ [n] and scalars cijk ≥ 0

satisfying Eq.(2.4). We now obtain the conditions (ii)-(iv) by comparing coefficients at both sides of (2.4). We give
the details since they will be useful later. First, we start with the left hand side in (2.4):

( n∑

i=1

xi

)

xTMx =

n∑

i=1

Miix
3
i +

∑

i6=j∈[n]

x2
i xj(Mii + 2Mij) +

∑

1≤i<i<j<k≤n

xixjxk(Mij +Mjk +Mik). (2.5)

Now we expand the right hand side in (2.4):

∑n
i=1 xix

TP (i)x+
∑

1≤i<j<k≤n cijkxixjxk

=
∑n

i=1 x
3
iP (i)ii +

∑

i6=j∈[n] x
2
i xj(P (j)ii + 2P (i)ij) +

∑

1≤i<j<k≤n xixjxk(P (i)jk + P (j)ik + P (k)ij + cijk).

(2.6)
Comparing coefficients at both sides we obtain the desired result.
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Remark 2.3. Observe that Lemma 2.2 remains valid if in (i) we replace the condition P (i) � 0 by the weaker

condition P (i) ∈ K
(0)
n . Indeed, as K

(0)
n = Sn

+ + R
n×n
+ , the ‘only if’ part is clear since Sn

+ ⊆ K
(0)
n , and the ‘if part’

follows easily from the fact that (x◦2)TNx◦2 ∈ Σ for any N ∈ R
n×n
+ .

We say that the matrices P (1), P (2), . . . P (n) are a K(1)-certificate for M if they satisfy the conditions (i)-(iv) of

Lemma 2.2. In other words, the matrices P (1), . . . , P (n) are a K(1)-certificate of M if they are positive semidefinite
and there exist scalars cijk ≥ 0 for 1 ≤ i < j < k ≤ n satisfying Eq. (2.4).

Now we give some easy, but crucial properties of K(0)- and K(1)-certificates, involving their kernel, that will be
repeated used in the paper.

Lemma 2.4. Let M ∈ K
(0)
n and let P be a K(0)-certificate of M . If x ∈ R

n
+ and xTMx = 0, then Px = 0 and

P [S] = M [S], where S = {i ∈ [n] : xi > 0} is the support of x.

Proof. Since P is a K(0)-certificate there exists a matrix N ≥ 0 such that M = P + N . Hence, 0 = xTMx =
xTPx + xTNx. Then xTPx = 0 = xTNx as P � 0 and N ≥ 0. This implies Px = 0 since P � 0. On the other
hand, since xTNx = 0 and N ≥ 0, we get Nij = 0 for i, j ∈ S. Hence, M [S] = P [S], as M = P +N .

Lemma 2.5. Let M ∈ K
(1)
n and let P (1), . . . , P (n) be a K(1)-certificate of M . Let x ∈ R

n
+ such that xTMx = 0.

Then the following holds:

(i) If xi > 0 then P (i)x = 0.

(ii) If xi, xj , xk > 0 then Mij +Mjk +Mik = P (i)ij + P (j)ik + P (k)ij .

Proof. By evaluating Eq. (2.4) at x, we get that the left hand side is zero while all terms in the right hand side are
nonnegative, so all of them vanish. Hence, if xi > 0 then xTP (i)x = 0, which implies P (i)x = 0 as P (i) � 0. On
the other hand, if xixjxk > 0 then cijk = 0, which implies the desired identity (see Eq. (2.5) and Eq. (2.6)).

Example 2.6. Consider the 5-cycle C5 shown in Fig. 1 and the associated graph matrix MC5
= 2(AC5

+ I) − J ,
also known as the Horn matrix and denoted by H .

4 3

2

1

5

Figure 1: Graph C5

H = MC5
=








1 1 −1 −1 1
1 1 1 −1 −1
−1 1 1 1 −1
−1 −1 1 1 1
1 −1 −1 1 1








The Horn matrix

The Horn matrix H is known to belong to K
(1)
n [24]. As we now show, it admits a unique K(1)-certificate, where the

matrices P (1), . . . , P (5) are of the form shown below:

P (1) =








1 1 −1 −1 1
1 1 −1 −1 1
−1 −1 1 1 −1
−1 −1 1 1 −1
1 1 −1 −1 1








, P (i) =








i⊥

︷ ︸︸ ︷

1 1 1

V \ i⊥

︷ ︸︸ ︷

− 1 −1
1 1 1 −1 −1
1 1 1 −1 −1
−1 −1 −1 1 1
−1 −1 −1 1 1








for i ∈ [5]. (2.7)

Up to symmetry it suffices to show that P (1) has the above shape. Let C1, C2, C3, C4, C5 denote its columns. Since
the vectors (1, 0, 1, 0, 0), (1, 0, 0, 1, 0), (1, 1, 0, 2, 0), (1, 0, 2, 0, 1) are zeros of the form xTHx, by Lemma 2.5 (i), we
obtain C1 = −C3, C1 = −C4, C1+C2+2C4 = 0 and C1+C5+2C3 = 0. Hence, C1 = C2 = C5 = −C3 = −C4.
Since P (1)11 = 1 the above conditions determine the first row and column and therefore the rest of the matrix P (1),
which thus has the desired shape.

As shown in the previous lemmas, the zeros of the quadratic form xTMx give us information about the kernel of

K(0)- and K(1)-certificates for M . For the case of the graph matrices MG = α(G)(AG + I) − J there is a full
characterization of the zeros of this quadratic form in ∆n (and thus in R

n
+). First, observe that, for x ∈ ∆n, we have

xTMGx = 0 if and only if x is an optimal solution of the following program

1

α(G)
= min{xT (I +AG)x : x ∈ ∆n}. (2.8)
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Indeed we have

xTMGx = 0 ⇐⇒ α(G)xT (AG + I)x− xT Jx = 0 ⇐⇒ xT (AG + I)x =
1

α(G)
. (2.9)

The formulation of α(G) in (2.8) is due to Motzkin and Straus [23] and underlies its copositive formulation in (1.1).

We conclude with recalling the characterization of the minimizers of problem (2.8), following [19, Corollary 4.4] (see
also [10]).

Theorem 2.7. Let x ∈ ∆n with support S = {i ∈ [n] : xi > 0}, and let V1, V2, . . . , Vk denote the connected
components of the graph G[S]. Then x is an optimal solution of (M-S) if and only if k = α(G), Vi is a clique and
∑

j∈Vi
xj =

1
α(G) for all i ∈ [k]. In that case all edges in G[S] are critical edges of G.

3 On the exactness of the approximation of COP
n

by the Parrilo cones K
(r)
n

In this section we investigate the cones K
(r)
n , which were introduced by Parrilo [24] as inner approximations of the

coositive cone COPn and satisfy

int(COPn) ⊆
⋃

r≥0

K(r)
n ⊆ COPn.

As pointed out in [5, 12], one difficulty for the understanding of the cones K
(r)
n is that they are not closed under adding

a zero row/column when r ≥ 1. In addition, while COP4 = K
(0)
4 , it is shown in [7] that for any n ≥ 5 the copositive

cone COPn is not contained in a single cone K
(r)
n for any r ∈ N. Here we prove that the situation is even worse: for

n ≥ 6, the cone COPn is not even contained in the union of the cones K
(r)
n . For this, we show that if a copositive

matrix does not belong to the cone K
(0)
n then after adding to it a zero row/column the resulting matrix does not belong

to any of the cones K
(r)
n+1 (r ≥ 0). The question of whether the union of the cones K

(r)
5 covers the full copositive

cone COP5 remains open. Motivated by this question one may ask whether any diagonal scaling of the Horn matrix

H = MC5
lies in some cone K

(r)
5 . We will characterize the diagonal scalings of H that belong to the cone K

(1)
5 , which

crucially relies on the fact that H admits a unique K(1)-certificate.

3.1 Constructing copositive matrices not belonging to any Parrilo cone

Dickinson et al. [7] conjectured that for any integer n ≥ 1 there exists an integer r ≥ 0 such that any copositive

matrix of size n with 0, 1-valued diagonal entries lies in the cone K
(r)
n . The conjecture holds for n ≤ 4 with r = 0

since COP4 = K
(0)
4 . For n = 5 it is shown in [7] that the conjecture holds with r = 1. Here we will show that this

conjecture does not hold for n ≥ 6. Even more we give an example of copositive matrix with an all-ones diagonal

that does not belong to any of the cones K
(r)
n . For this, we consider the following construction. Given two copositive

matrices M1 ∈ COPn and M2 ∈ COPm, we consider their direct sum

M1 ⊕M2 :=

(
M1 0
0 M2

)

, (3.1)

which is clearly copositive. We will show below that, under some conditions on M1,M2, the matrix M1 ⊕M2 does

not belong to any of the cones K
(r)
n+m. We start with a preliminary result on sums of squares of polynomials.

Lemma 3.1. Let f be a polynomial of degree 2d in n variables. Write f = fr + fr+1 + . . . f2d where fr 6= 0 and, for
r ≤ j ≤ 2d, each fj is a homogeneous polynomial with degree j. If f is a sum of squares then fr is a sum of squares.

Proof. Since f is a sum of squares we have f =
∑m

i=1 q
2
i for some qi ∈ R[x] wtih deg(qi) ≤ d for all i ∈ [m]. Then

each qi has the form qi =
∑d

j=0 a
(j)
i , where each nonzero a

(j)
i is a homogeneous polynomial of degree j. For i ∈ [m]

set Li = min{j : a
(j)
i 6= 0} and set L = min{Li : i ∈ [m]}. Notice that there is no monomial with degree less that

2L in
∑

i q
2
i = f and f2L =

∑m
i=1(a

(L)
i )2 6= 0. Hence it follows that fr = f2L is a sum of squares.

Theorem 3.2. Let M1 ∈ COPn and M2 ∈ COPm be two copositive matrices. Assume that M1 /∈ K
(0)
n and that there

exists 0 6= z ∈ R
m
+ such that zTM2z = 0. Then we have

(
M1 0
0 M2

)

∈ COPn+m \
⋃

r∈N

K
(r)
n+m. (3.2)
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Proof. Assume for contradiction M1 ⊕M2 ∈ K
(r)
n , i.e., the polynomial (pM1

(x) + pM2
(y))(

∑n
i=1 x

2
i +

∑m
j=1 y

2
j )

r

is a sum of squares. Here, for convenience, we denote the n +m variables as xi (i ∈ [n]) and yj (j ∈ [m]) and we

set pM1
(x) = (x◦2)TM1x

◦2 and pM2
(y) = (y◦2)TM2y

◦2. Write z = y◦2 for some y ∈ R
m, so that pM2

(y) = 0, and
c :=

∑m

j=1 y
2
j > 0. Then the polynomial f(x) := pM1

(x)(
∑n

i=1 x
2
i + c)r is a sum of squares. By decomposing f

as a sum of homogeneous polynomials we see that its least degree homogeneous part is the polynomial cpM1
(x), with

degree 4. By Lemma 3.1 we obtain that cpM1
(x) is a sum of squares, i.e, M1 ∈ K

(0)
n , yielding a contradiction.

We now use Theorem 3.2 to give some classes of copositive matrices that do not belong to K(r) for any r ∈ N. As a
first application we obtain

M ∈ COPn \ K(0)
n =⇒

(
M 0
0 0

)

∈ COPn+1 \
⋃

r∈N

K
(r)
n+1. (3.3)

Since the inclusion K
(0)
5 ⊂ COP5 is strict this shows that also the inclusion

⋃

r∈N
K

(r)
n ⊂ COPn is strict for any n ≥ 6.

Hence the cone
⋃

r∈N
K

(r)
n is not a closed set for n ≥ 6. On the other hand, we have COPn = K

(0)
n for n ≤ 4 [6]. The

situation for the case of 5× 5 matrices remains open.

Question 3.3. Does equality COP5 =
⋃

r≥0

K
(r)
5 hold?

Dickinson et al. [7] proved that any 5 × 5 copostive matrix with 0,1-valued diagonal entries belongs to K
(1)
5 . They

conjectured that for any integer n ≥ 6 there exists an integer r ≥ 0 such that any n × n copositive matrix with 0, 1-

valued diagonal entries belongs to K
(r)
n (see [7, Conjecture 1]). Using Theorem 3.2 we can disprove this conjecture.

Example 3.4. Let M1 := MC5
= H be the Horn matrix, known to be copositive with H /∈ K

(0)
n . For the matrix M2

we first consider the 1 × 1 matrix M2 = 0 and as a second example we consider M2 =

(
1 −1
−1 1

)

∈ COP2. Then,

as an application of Theorem 3.2, we obtain

(
H 0
0 0

)

∈ COP6 \
⋃

r∈N

K
(r)
6 ,

(
H 0

0
1 −1
−1 1

)

∈ COP7 \
⋃

r∈N

K
(r)
7 . (3.4)

The left most matrix in (3.4) is copositive, has all its diagonal entries equal to 0, 1 and does not belong to any of the

cones K
(r)
6 ; selecting for M2 the zero matrix of size m ≥ 1 gives a matrix in COPn \

⋃

r≥0K
(r)
n for any size n ≥ 6.

The right most matrix in (3.4) is copositive, has all its diagonal entries equal to 1 and does not lie in any of the cones

K
(r)
7 . More generally, if we select the matrix M2 = 1

m−1 (mIm−Jm), which is positive semidefinite with eTM2e = 0,

then we obtain a matrix in COPn \
⋃

r≥0 K
(r)
n with diagonal entries equal to 1, for any size n ≥ 7. In contrast, as

mentioned above, Dickinson et al. [7] proved that any copositive 5 × 5 matrix with an all-ones diagonal belongs to

K
(1)
5 . The situation for the case of 6× 6 copositive matrices remains open.

Question 3.5. Is it true that any 6× 6 copositive matrix with an all-ones diagonal belongs to K
(r)
6 for some r ∈ N?

We conclude with an observation on the number of zeros in the simplex ∆n of the quadratic form xTMx when M is
a copositive matrix. For the class of copositive matrices arising from the graph matrices MG = α(G)(AG + I)− J it
is proved in [19] that the number of such zeros is finite if and only if the graph G is acritical, in which case the matrix

MG belongs to some cone K(r). We now show that the property of having finitely many zeros in the simplex for the

quadratic form xTMx is in general not sufficient to ensure membership of M in some cone K(r). Specifically, we

give a class of copositive matrices M 6∈ ∪rK(r) for which the quadratic form xTMx has a unique zero in ∆n.

Example 3.6. Let M1 ∈ COPn be a strictly copositive matrix such that M1 6∈ K
(0)
n . For instance, one can take

M1 = t(I +AG)− J , where G is a graph with ϑ-rank(G) ≥ 1 and α(G) < t < ϑ(0)(G). By Theorem 3.2 we have

M :=

(
M1 0

0
1 −1
−1 1

)

∈ COPn+2 \
⋃

r≥0

K
(r)
n+2. (3.5)

Now we prove that the quadratic form xTMx has a unique zero in the simplex. For this let x ∈ ∆n+2 such that
xTMx = 0. Since M1 is strictly copositive and y := (x1, . . . , xn) is a zero of the quadratic form yTM1y it follows

8



that x1 = . . . = xn = 0. Hence (xn+1, xn+2) is a zero of the quadratic form x2
n+1 − 2xn+1xn+2 + x2

n+2 in the

simplex ∆2 and thus xn+1 = xn+2 = 1/2. This shows that the only zero of the quadratic form xTMx in the simplex
is (0, 0, . . . , 0, 1

2 ,
1
2 ), as desired.

3.2 Characterizing the diagonal scalings of the Horn matrix in K(1)

As mentioned above, it is not known whether the union of the cones K
(r)
5 covers the full cone COP5, but any matrix

in COP5 with 0, 1-valued diagonal entries lies in the cone K
(1)
5 [7]. One of the key ingredients for this result is the

complete characterization of the extreme rays of the cone COP5 by Hildebrand [14]. In particular the Horn matrix
H and its positive diagonal scalings define a class of extreme rays of COP5, so the question arises whether all of

them lie in some cone K
(r)
5 . Here, a positive diagonal scaling of a matrix M is a matrix of the form DMD, where

D = diag(d1, . . . , d5) with d1, . . . , d5 > 0.

Question 3.7. Is it true that every positive diagonal scaling of the Horn matrix belongs to K
(r)
5 for some r?

As a first partial step we characterize the diagonal scalings of the Horn matrix that lie in K
(1)
5 . A key ingredient for

this is the fact that the Horn matrix admits a unique K(1)-certificate, as was observed in Example 2.6.

Theorem 3.8. Let D = diag(d1, d2, d3, d4, d5) with d1, . . . , d5 > 0 and let H be the Horn matrix. Then, DHD

belongs to K
(1)
5 if and only if d1, . . . , d5 satisfy the following inequalities

di−1di + didi+1 ≥ di−1di+1 for i ∈ [5] (indices taken modulo 5). (3.6)

Proof. Set M := DHD. First we show the ‘if part’. Assume d1, . . . , d5 satisfy conditions (3.6); we show M ∈ K
(1)
5 .

For this consider the matrices Q(i) := DP (i)D, where the matrices P (i) are the K(1)-certificate for H from (2.7);

we show that the matrices Q(i) form a K(1)-certificate for M , i.e., satisfy the conditions (i)-(iv) from Lemma 2.2.
Clearly Q(i) � 0 and Q(i)ii = d2i for all i ∈ [5], so (i), (ii) hold. Also, 2Q(i)ij+Q(j)ii = 2didjP (i)ij +d2iP (j)ii =
2Mij+Mii since P (i)ij = Hij and P (j)ii = Hii, so (iii) holds. We now check (iv), i.e., Q(i)jk+Q(j)ik+Q(k)ij ≤
Mij +Mjk +Mik for any distinct i, j, k ∈ [5]. There are two possible patterns (up to symmetry): (i, j, k) = (1, 2, 4)
and (i, j, k) = (5, 1, 2). For the first pattern we get

Q(1)24 +Q(2)14 +Q(4)12 = d2d4P (1)24 + d1d4P (2)14 + d1d2P (4)12 = M24 +M14 +M12.

For the second pattern we get

M12 +M25 +M15 − (Q(5)12 +Q(1)25 +Q(2)15)
= d1d2 − d2d5 + d1d5 − (d1d2P (5)12 + d2d5P (1)25 + d1d5P (2)15)
= d1d2 − d2d5 + d1d5 − (−d1d2 + d2d5 − d1d5)
= 2(d1d2 − d2d5 + d1d5),

which is nonnegative if and only if (3.6) holds. Hence the conditions (3.6) indeed imply that the condition (iii) of

Lemma 2.2 holds for the matrices Q(i) and thus they form a K(1)-certificate for M , as desired.

Conversely, assume M = DHD ∈ K
(1)
5 and let Q(i) (i ∈ [5]) be a K(1)-certificate for M ; we show Q(i) = DP (i)D

for i ∈ [5], where the matrices P (i) are the unique K(1)-certificate for H from (2.7). In view of the above this implies
that the di’s satisfy the conditions (3.6), as desired. Up to symmetry it suffices to show Q(1) = DP (1)D. For this
note that if zTHz = 0 for z ∈ R

n
+, then yTMy = 0 for y := D−1z ∈ R

n
+ and thus, by Lemma 2.5, Q(i)y = 0

whenever yi > 0. Consider the vectors z1 = (1, 0, 1, 0, 0), z2 = (1, 0, 0, 1, 0), z3 = (1, 1, 0, 2, 0), z4 = (1, 0, 2, 0, 1),
which are zeros of xTHx, and the corresponding vectors yi = D−1zi for i = 1, 2, 3, 4, which are zeros of xTMx.
Let C1, . . . , C5 denote the columns of Q(1). Then, using the zeros y1, . . . , y5 of xTMx we obtain the relations

C1

d1
+

C3

d3
= 0,

C1

d1
+

C4

d4
= 0,

C1

d1
+

C2

d2
+ 2

C4

d4
= 0,

C1

d1
+ 2

C3

d3
+

C5

d5
= 0,

which imply C1

d1

= C2

d2

= C5

d5

= −C3

d3

= −C4

d4

. As Q(1)11 = d21 one easily deduces Q(1) = DP (1)D, as desired.

4 Behavior of the ϑ-rank under simple graph operations

Recall that the ϑ-rank of G is the minimum integer r such that ϑ(r)(G) = α(G). In this section, we present some
useful ideas for bounding the ϑ-rank based on simple graph operations. Namely, we investigate the role of isolated
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nodes and of critical edges, and their impact on Conjectures 1.1 and 1.2. In particular, we will show that it suffices to
show Conjectures 1.1 and 1.2 for the class of critical graphs and that Conjecture 1.2 holds if the ϑ-rank remains finite
under the operation of adding isolated nodes.

We start with a lemma relating the ϑ-rank of a graph and that of its induced subgraphs with the same stability number,
which we will use later on.

Lemma 4.1. Let G = (V,E) be a graph and let H be an induced subgraph of G such that α(G) = α(H). Then,
ϑ-rank(H) ≤ ϑ-rank(G).

Proof. As α(G) = α(H) =: α we have MG = α(AG + I) − J and MH = α(AH + I) − J . As H is an induced

subgraph of G, MH is a principal submatrix of MG and thus MG ∈ K(r) implies MH ∈ K(r).

Remark 4.2. Let G be the graph obtained by adding a pendant edge to C5 (see the left most graph in Fig. 3), so that
α(G) = 3 = α(C5) + 1. Then, G has ϑ-rank 0 as it can be covered by α(G) = 3 cliques. However, C5 is an induced
subgraph of G and has ϑ-rank 1 (see Example 2.6). This shows that the condition of having the same stability number
in Lemma 4.1 cannot be dropped.

4.1 Role of isolated nodes

We recall a result from [12], which is useful for bounding the ϑ-rank of a graph in terms of the ϑ-rank of certain
subgraphs with an added isolated node.

Proposition 4.3 ([12]). For any graph G = (V,E) we have:

ϑ-rank(G) ≤ 1 + max
i∈V

ϑ-rank((G \ i⊥)⊕ i). (4.1)

In view of Proposition 4.3, understanding how adding isolated nodes changes the ϑ-rank is crucial for Conjectures 1.1
and 1.2. On the one hand, it was shown in [12] that if adding an isolated node does not increase the ϑ-rank then
Conjecture 1.1 holds.

Proposition 4.4 ([12]). Assume ϑ-rank(G⊕ i0) ≤ ϑ-rank(G) for any graph G. Then Conjecture 1.1 holds.

As we now show, if after adding an isolated node the ϑ-rank can increase by at most an absolute constant a ∈ N, then
we can bound ϑ-rank(G) in terms of α(G). In particular, when a = 0 we recover Proposition 4.4.

Proposition 4.5. Let a ∈ N be a nonnegative number. Assume that ϑ-rank(G ⊕ i0) ≤ ϑ-rank(G) + a for all graphs
G. Then ϑ-rank(G) ≤ (a+ 1)α(G) − 1 for all graphs G.

Proof. We proceed by induction on α(G). If α(G) = 1 then ϑ-rank(G) = 0 ≤ a. Assume now α(G) ≥ 2. Using

Proposition 4.3 and the assumption we get ϑ-rank(G) ≤ a+1+maxi∈V ϑ-rank(G\i⊥). Since α(G\i⊥) ≤ α(G)−1,

we can apply the induction assumption to G \ i⊥ and obtain ϑ-rank(G \ i⊥) ≤ (a + 1)(α(G) − 1) − 1. This gives
ϑ-rank(G) ≤ a+ 1 + (a+ 1)(α(G) − 1)− 1 = (a+ 1)α(G) − 1.

On the other hand, as we now show, Conjecture 1.2 holds if and only if the ϑ-rank remains finite after adding isolated
nodes to finite ϑ-rank graphs.

Proposition 4.6. Conjecture 1.2 holds if and only if ϑ-rank(G) < ∞ implies ϑ-rank(G⊕ i0) < ∞.

Proof. The ‘only if’ part is clear. We show the ‘if’ part by contradiction. So assume that ϑ-rank(G) < ∞ implies
ϑ-rank(G ⊕ i0) < ∞. Assume also that Conjecture 1.2 does not hold and let G = (V,E) be a counterexample with

the minimum number of nodes, so ϑ-rank(G) = ∞. By Proposition 4.3, we obtain that ϑ-rank(G \ i⊥ ⊕ i) = ∞ for

some i ∈ V . If i is not isolated in G, then G \ i⊥⊕ i would be a counterexample with less nodes than G, contradicting
the minimality of G. Hence i is isolated in G, and thus we have G = (G \ i) ⊕ i. Using again the minimality
assumption, we know that ϑ-rank(G \ i) < ∞, which implies ϑ-rank(G) = ϑ-rank((G \ i)⊕ i) < ∞, thus yielding a
contradiction.

Clearly, if G has an isolated node i0, then G \ i0 ⊕ i0 = G and thus the above result in Proposition 4.3 is of no use to

derive information about the ϑ-rank of G from the ϑ-rank of the graphs G \ i⊥ ⊕ i. This observation (already made
in [12]) points out to the difficulty of analysing the ϑ-rank of graphs with isolated nodes. We will investigate this
question in Section 6.2 below.
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On the other hand, adding an isolated node to a graph with ϑ-rank = 0 preserves the property of having ϑ-rank = 0.
To see this, consider a graph G and set α(G) = α, so that α(G ⊕ i0) = α + 1. Then, in view of (1.8), the matrix

MG⊕i0 belongs to K
(0)
n+1 if MG ∈ K

(0)
n . Indeed, the first matrix in the sum in (1.8) is positive semidefinite and the

second one belongs to K
(0)
n+1 because adding a zero row/column preserves the cone K(0). Since adding an isolated

node preserves the ϑ-rank 0 property, the next result follows as a direct application of Proposition 4.3.

Lemma 4.7 ([5]). If ϑ-rank(G \ i⊥) = 0 for all i ∈ V then ϑ-rank(G) ≤ 1.

Example 4.8. As an application of Lemma 4.7 we obtain that ϑ-rank(C2n+1) ≤ 1 and ϑ-rank(C2n+1) ≤ 1. Moreover,

if G is a graph with α(G) = 2 then, for all nodes i ∈ V , the graph G \ i⊥ is a clique and thus has ϑ-rank 0. Hence,
by Lemma 4.7, ϑ-rank(G) ≤ 1 and thus Conjecture 1.1 holds for graphs with α(G) = 2 (as shown in [5]).

Let G = C5⊕i0 be the graph obtained by adding one isolated node to the 5-cycle. As shown in [5] G has ϑ-rank 1 and
the graph G \ i⊥0 is the 5-cycle which also has ϑ-rank 1. This shows that Lemma 4.7 does not permit to characterize,
in general, graphs with ϑ-rank 1. For details on the impact of adding isolated nodes to C5 see Corollary 6.14.

4.2 Role of critical edges

We finish this section with two results that are useful for bounding the ϑ-rank and show the role of critical edges in
this context. On the one hand, deleting non-critical edges can only increase the ϑ-rank. On the other hand, we can
strengthen a result from [12] for the class of acritical graphs.

Lemma 4.9 ([19]). Let G = (V,E) be a graph and let e ∈ E. If e is not a critical edge, i.e., α(G) = α(G \ e), then
ϑ-rank(G) ≤ ϑ-rank(G \ e). Hence, it suffices to show Conjectures 1.1 and 1.2 for the class of critical graphs.

Remark 4.10. Let G = (V,E) be a graph. Then one can find a subgraph H = (V, F ) of G (with F ⊆ E), which
is critical and has the same stability number: α(G) = α(H). Indeed to get such a graph H it suffices to delete
successively any non-critical edge until getting a subgraph where all edges are critical. Then, by Lemma 4.9, for any
such H we have

ϑ-rank(G) ≤ ϑ-rank(H). (4.2)

In the above lemma it was observed that critical edges play a role in the study of the ϑ-rank, namely it would suffice to
bound the ϑ-rank of critical graphs. On the other hand, we now prove a stronger version of Conjecture 1.1 for acritical
graphs with α(G) ≤ 8. In [12] the authors proposed the following conjecture and proved that it implies Conjecture 1.1.

Conjecture 4.11 ([12]). For any r ≥ 1, we have

ϑ(r)(G) ≤ r + max
S⊆V,Sstable ,|S|=r

ϑ(0)(G \ S⊥). (4.3)

Theorem 4.12 ([12]). Conjecture 4.11 holds for r ≤ min(6, α(G) − 1) and for r = 7 = α(G) − 1. In particular,
Conjecture 1.1 holds for graphs with α(G) ≤ 8.

In the case of acritical graphs we can show a stronger bound on the ϑ-rank for graphs with α(G) ≤ 8.

Proposition 4.13. Let G be an acritical graph with α(G) ≤ 8. Then ϑ-rank(G) ≤ α(G) − 2.

Proof. It suffices to show that ϑ(0)(G \ S⊥) ≤ 2 if S is stable of size α(G)− 2 since then the result follows from Eq.

(4.3). Let S = {i1, i2, . . . , iα(G)−2} be a stable set of size α(G)− 2 in G, so that α(G \ S⊥) ≤ 2. If α(G \ S⊥) = 1

then ϑ(0)(G \ S⊥) = 1 and we are done. So assume that α(G \ S⊥) = 2. Then the graph H := (G \ S⊥)⊕ S is an
induced subgraph of G with α(H) = α(G). We claim that H is acritical. This follows from the fact that any critical
edge of H should also be a critical edge of G. Indeed, if e is critical in H then there exists a stable set in H \ e of size
α(H)+1 = α(G)+1, which is then also stable in G\e as H is an induced subgraph of G, so that e is critical in G. As

H is acritical also the graph G \ S⊥ is acritical. We claim that G \ S⊥ is perfect. For if not then, by the strong perfect

graph theorem ([3]), G \ S⊥ contains C5 or C2n+1 (n ≥ 2) as an induced subgraph. Since these graphs have stability

number equal to α(G \ S⊥) = 2 they must be acritical graphs by the above argument. Thus we reach a contradiction

since C5 and C2n+1 have critical edges. Hence G \ S⊥ is perfect and thus we have ϑ(0)(G \ S⊥) = α(G \ S⊥) = 2,
which completes the proof.

5 Towards characterizing graphs with ϑ-rank 0

In this section we investigate the graphs G with ϑ-rank 0, i.e, such that ϑ(0)(G) = α(G) or, equivalently, MG ∈ K
(0)
n .

Recall the well-known ‘sandwich inequality’ from [21]:

α(G) ≤ ϑ′(G) = ϑ(0)(G) ≤ ϑ(G) ≤ χ(G). (5.1)
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In view of (5.1), if G can be covered by α(G) cliques thenG has ϑ-rank 0. In addition, if α(G) = α and V1, V2, . . . , Vα

are cliques partitioning V then the matrix

P :=







(α− 1)J −J · · · −J
−J (α− 1)J · · · −J

...
...

. . .
...

−J −J · · · (α− 1)J







,

whose block-structure is induced by the partition V = V1 ∪ · · · ∪ Vα, is a K(0)-certificate for MG. In this section we
show that the reverse is true for critical graphs and for graphs with α(G) ≤ 2. We also provide an algorithmic method
that permits to reduce the characterization of ϑ-rank 0 graphs to the same property for the class of acritical graphs.

Throughout we often set α := α(G) to simplify notation and we say that a set S ⊆ V is an α-stable set if it is a stable
set of size α(G).

5.1 Characterizing critical graphs with ϑ-rank 0

The following result will be repeatedly used.

Lemma 5.1. Let G be a graph with α(G) = α and let S be an α-stable set. Assume MG ∈ K
(0)
n and let P be a

K(0)-certificate for MG. Then, χS ∈ ker(P ) and P [S] = αIα − Jα.

Proof. Directly from Lemma 2.4 since (χS)TMGχ
S = 0 as χS/|S| is a global minimizer of (2.8) (recall (2.9)).

Proposition 5.2. Let G = (V,E) be a graph, let Ec denote the set of critical edges of G and let Gc = (V,Ec) be the
corresponding subgraph of G. If ϑ-rank(G) = 0 then each connected component of the graph Gc is a clique of G.

Proof. By assumption, ϑ-rank(G) = 0. Let P be a K(0)-certificate for MG. Let V1, V2, . . . , Vp be the connected
components of the graph Gc. We show that each component Vi is a clique in G. For this pick two nodes u 6= v ∈ Vi

that are connected in Gc. As the edge {u, v} is critical, there exists a set I ⊆ V such that I ∪ {u} and I ∪ {v} are

α-stable in G. Then, by Lemma 5.1, the characteristic vectors χI∪{u} and χI∪{v} both belong to the kernel of P and

thus χ{u} − χ{v} ∈ kerP . From this we deduce that the columns of P indexed by the nodes in Vi are all equal.
Combining this with the fact that the diagonal entries of P are equal to α−1 and that P is symmetric we can conclude
that, with respect to the partition V = V1 ∪ . . . ∪ Vp, the matrix P has the following block-form:

P =







(α− 1)J|V1| a12J|V1|×|V2| · · · a1pJ|V1|×|Vp|

a21J|V2|×|V1| (α− 1)J|V2| · · · a2pJ|V2|×|Vp|

...
...

. . .
...

ap1J|Vp|×|V1| ap2J|Vp|×|V2| · · · (α− 1)J|Vp|







(5.2)

for some scalars aij (1 ≤ i < j ≤ p). We can now show that each Vi is a clique of G. For this pick two distinct nodes
u, v ∈ Vi. Then we have Puv = α− 1 ≤ (MG)uv , which implies that (MG)uv = α− 1 and thus {u, v} is an edge of
G. Here we use the fact that the off-diagonal entries of MG are equal to α−1 for positions corresponding to edges and
to −1 for non-edges. Hence we have shown that each component Vi is a clique of G, which concludes the proof.

Corollary 5.3. Assume G = (V,E) is a critical graph, i.e., all its edges are critical. Then we have ϑ-rank(G) = 0 if
and only if G is the disjoint union of α(G) cliques. In particular, ϑ-rank(G) = 0 if and only if χ(G) = α(G).

Proof. The ‘only if’ part follows from Proposition 5.2 and the ‘if part’ follows from Eq. (5.1). The last claim follows
directly.

Example 5.4. Let n ≥ 2. We saw in Remark 4.10 that ϑ-rank(C2n+1) ≤ 1 and ϑ-rank(C2n+1) ≤ 1. Here we can
show, as an application of Corollary 5.3, that their ϑ-rank is equal 1.

(i) The graph C2n+1 is critical and connected (and not a clique), so by Corollary 5.3, ϑ-rank(C2n+1) ≥ 1.

(ii) The critical edges of the graph G = C2n+1 are those of the form {i, i + 2} (for i ∈ [2n + 1], indices taken
modulo 2n + 1). Hence the subgraph Gc (of critical edges) is connected (and not a clique) and thus
ϑ-rank(C2n+1) ≥ 1.
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Next we give an example of an acritical graph with ϑ-rank 1.

Example 5.5. Consider the graph H9 from Figure 2. Note that α(H9) = 4 and that C9 is a critical subgraph of H9

with the same stability number. Hence, by Remark 4.10, ϑ-rank(H9) ≤ ϑ-rank(C9) = 1.

6
5

4

3

2

1

9

8

7

Figure 2: Graph H9, acritical

Now, we show that ϑ-rank(H9) ≥ 1. For this assume, for contradiction, that P is a K(0)-certificate for MH9
and let

C1, C2, . . . , C9 denote the columns of P . Since the sets {1, 3, 5, 8}, {2, 4, 7, 9}, {3, 5, 7, 9} and {2, 4, 6, 8} are stable
sets of size 4 in H9, by applying Lemma 5.1 we obtain

(1) C1 + C3 + C5 + C8 = 0, (2) C2 + C4 + C7 + C9 = 0,

(3) C3 + C5 + C7 + C9 = 0, (4) C2 + C4 + C6 + C8 = 0.

By combining (2) and (4) we get that C7 + C9 = C6 + C8. By combining (2) and (3) we get C2 + C4 = C3 + C5.
Using these two identities and (2), we get C3 + C5 + C6 + C8 = 0. Finally, using (1) and the last identity we obtain
C6 = C1. This implies P16 = P11 = 3 > −1, which yields a contradiction since P16 ≤ −1 as {1, 6} is a non-edge.

5.2 Characterizing graphs with α(G) = 2 and ϑ-rank(G) = 0

Here we observe that the result of Corollary 5.3 holds for all (not necessarily critical) graphs with α(G) ≤ 2. In
Section 5.4 we will show that this also holds for acritical graphs with α(G) ≥ |V | − 4 (see Proposition 5.17).

Lemma 5.6. Let G be a graph with α(G) ≤ 2. Then, ϑ-rank(G) = 0 if and only if χ(G) = α(G).

Proof. It suffices to show the ‘only if’ part. The case α(G) = 1 is trivial. So assume α(G) = 2 and ϑ-rank(G) = 0.

We show that G is perfect. For if not then, by the strong perfect graph theorem, G contains C5 or C2n+1 (n ≥ 2) as an
induced subgraph. Both of these graphs have ϑ-rank 1 (see Example 5.4). This contradicts Lemma 4.1 which claims
that for every induced subgraph H with α(H) = α(G) we must have ϑ-rank(H) ≤ ϑ-rank(G).

Example 5.7. We give some examples showing that the characterization in Corollary 5.3 and Lemma 5.6 of rank 0
graphs as those with χ(G) = α(G) does not hold if α(G) ≥ 3 and G has some non-critical edges.

Let G be the Petersen graph. Then G has rank 0, since ϑ(G) = ϑ(0)(G) = α(G) (= 4), but χ(G) = 5 > α(G) = 4
(see [21]). Note that the Petersen graph is in fact acritical. The graph G = G13 considered in [22] provides another
example with 3 = α(G) = ϑ(G) < χ(G) = 4 and ϑ-rank(G) = 0.

A class of counterexamples is provided by the Kneser graphs Gn,k when n ≥ 2k + 1 and k does not divide n. Recall
Gn,k has as vertex set the collection of all k-subsets of [n], where two vertices are adjacent if the corresponding
subsets are disjoint. Note that G5,2 is the Petersen graph. It has been shown by Lovász [21, 20] that

ϑ(Gn,k) = α(Gn,k) =

(
n− 1

k − 1

)

and ω(Gn,k) (= α(Gn,k)) = ⌊
n

k
⌋.

Therefore ϑ-rank(Gn,k) = 0. However, χ(Gn,k) ≥
(
n
k

)
/⌊n/k⌋ >

(
n−1
k−1

)
= α(Gn,k) if k does not divide n.

Note that Gn,k is acritical for any n > 2k. To see this one can use a result of Erdös et al. [9] who proved that for
n > 2k the maximum stable sets of the Kneser graph Gn,k are of the form Aj := {S ⊆ [n] : j ∈ S, |S| = k} for
j ∈ [n]. To see that Gn,k is acritical assume for contradiction that {A,B} is a critical edge. Then there exists a
collection I of k-subsets of [n] such that I ∪ {A} = Ai and I ∪ {B} = Aj for i 6= j ∈ [n]. Hence, every element of

I contains both i and j, so that |I| ≤
(
n−2
k−2

)
. This gives a contradiction as |I|+ 1 = |Aj | =

(
n−1
k−1

)
.

13



5.3 Reduction of ϑ-rank 0 graphs to the class of acritical graphs

Here we further investigate the structure of graphs with ϑ-rank 0. We introduce a reduction procedure, which we use to
reduce the task of checking the ϑ-rank 0 property to the same property for the class of acritical graphs. This procedure
relies on the following graph construction, which is motivated by Lemma 5.2.

Definition 5.8. Let G = (V,E) be a graph and let Gc = (V,Ec) be the subgraph of G, where Ec is the set of critical
edges of G. Let V1, . . . , Vp denote the connected components of Gc. Assume that each of V1, . . . , Vp is a clique in G.
We define the graph Γ(G) with vertex set {1, 2, . . . , p}, where a pair {i, j} ⊆ [p] is an edge of Γ(G) if Vi ∪ Vj is a
clique of G.

We show that this graph construction preserves the ϑ-rank 0 property and the stability number.

Lemma 5.9. Assume G is a graph with ϑ-rank(G) = 0 and let Γ(G) be the graph as in Definition 5.8. Then we have:
ϑ-rank(Γ(G)) = 0 and α(Γ(G)) = α(G).

Proof. Set α = α(G). First, we prove that α(Γ(G)) ≥ α. For this let S be an α-stable set in G and, for each v ∈ S,
let Vv denote the connected component of Gc that contains v. Since each Vi is a clique of G (by Lemma 5.2), we have
Vv 6= Vu for u 6= v ∈ S and moreover Vu ∪ Vv is not a clique in G. Hence, by defininition of the graph Γ(G), it
follows that the set {Vv : v ∈ S} provides a stable set of size α in Γ(G).

Next we show that ϑ-rank(Γ(G)) = 0. By assumption, ϑ-rank(G) = 0 and thus MG = P +N , where P � 0, N ≥ 0
and Pii = α − 1 for all i ∈ V . As shown in the proof of Lemma 5.2, the matrix P has the block-form (5.2) with
respect to the partition V = V1 ∪ . . . ∪ Vp. Then the following p× p matrix

P ′ :=







α− 1 a12 · · · a1p
a21 α− 1 · · · a2p

...
...

. . .
...

ap1 ap2 · · · α− 1







is positive semidefinite. We show that P ′ ≤ MΓ(G), thus proving that Γ(G) has ϑ-rank 0. As P ′ � 0, we have

|aij | ≤ α − 1 ≤ α(Γ(G)) − 1 for all i, j ∈ [p]. It suffices to check that aij ≤ −1 if {i, j} is not an edge of Γ(G).
Indeed, in this case, Vi ∪ Vj is not an clique in G and thus there exist vertices u ∈ Vi and v ∈ Vj such that {u, v} is
not an edge in G, which implies aij = Puv ≤ (MG)uv = −1. This concludes the proof.

Finally, we prove α(Γ(G)) ≤ α. For this let I ⊆ [p] be an α(Γ(G))-stable set. For any i 6= j ∈ I the set Vi ∪ Vj is
not a clique in G and thus aij ≤ −1 (as observed above). Consider the principal submatrix P ′[I] of P ′ indexed by I .
Then we have

0 ≤ eTP ′[I]e ≤ (α− 1)|I| − |I|(|I| − 1),

which implies |I| ≤ α and thus α(Γ(G)) ≤ α, concluding the proof.

Lemma 5.10. Assume ϑ-rank(G) = 0. Then we have χ(Γ(G)) ≥ χ(G). In particular, if Γ(G) is covered by α(Γ(G))
cliques, then G is covered by α(G) cliques.

Proof. If C ⊆ [p] is a clique of Γ(G), then
⋃

i∈C Ci is a clique in G. Therefore, if we can cover V (Γ(G)) = [p] by k
cliques of Γ(G), then we can cover V (G) by k cliques of G. The last claim follows from the fact that α(Γ(G)) = α(G)
(Lemma 5.9).

Now we provide a partial converse to the result of Lemma 5.9.

Lemma 5.11. Let G = (V,E) be a graph and let Gc = (V,Ec) be its subgraph of critical edges. Assume that the
connected components V1, . . . , Vp of Gc are cliques in G and let Γ(G) be as in Definition 5.8. If ϑ-rank(Γ(G)) = 0
and α(Γ(G)) ≤ α(G), then we have ϑ-rank(G) = 0.

Proof. By assumption, ϑ-rank(Γ(G)) = 0. Hence there exists a matrix P � 0 such that MΓ(G) ≥ P and Pii = αΓ :=
α(Γ(G)) for each i ∈ [p]. Write P as

P =







αΓ − 1 a1,2 · · · a1,p
a2,1 αΓ − 1 · · · a2,p

...
...

. . .
...

ap,1 ap,2 · · · αΓ − 1






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and consider the matrix indexed by V (G) = V1 ∪ . . . ∪ Vp with the following block-form

P ′ =







(αΓ − 1)J|V1| a12J|V1|×|V2| · · · a1pJ|V1|×|Vp|

a21J|V2|×|V1| (αΓ − 1)J|V2| · · · a2pJ|V2|×|Vp|

...
...

. . .
...

ap1J|Vp|×|V1| ap2J|Vp|×|V2| · · · (αΓ − 1)J|Vp|







.

Then, P ′ � 0. We claim that P ′ ≤ MG holds. This is true for the diagonal entries and for the positions corresponding
to edges of G (since we assume αΓ ≤ α(G)). Consider now a pair {u, v} ⊆ V of vertices that are not adjacent in G.
Say u ∈ Vi, v ∈ Vj . Then, as Vi ∪ Vj is not a clique in G, the two vertices i 6= j ∈ [p] are not adjacent in Γ(G) and
thus aij ≤ −1 since P ≤ MΓ(G).

So we have shown that if we apply the Γ-operator to a graph G with ϑ-rank 0, then we obtain a new graph Γ(G) with
ϑ-rank 0, with the same stability number and with |V (Γ(G))| ≤ |V (G)|, where the inequality is strict if G has critical
edges. We may iterate this construction until obtaining a graph without critical edges.

Definition 5.12. Let G be a graph with ϑ-rank(G) = 0. We define the residual graph R(G) of G as the graph Γk(G),
where k is the smallest integer such that Γk(G) has no critical edge, after setting Γi+1(G) = Γ(Γi(G)) for any i ≥ 0.

As a direct application of Lemmas 5.9 and 5.10 we obtain the following result.

Lemma 5.13. Let G be a graph with ϑ-rank(G) = 0 and let R(G) be its residual graph as defined in Definition 5.12.
Then R(G) has no critical edges and we have ϑ-rank(R(G)) = 0, α(R(G)) = α(G), and χ(R(G)) ≥ χ(G).

Based on the above results, we now present an algorithmic procedure that permits to reduce the task of checking
whether a graph has ϑ-rank 0 to the same task restricted to the class of graphs with no critical edges.

Algorithm: REDUCE-TO-ACRITICAL

Input: A graph G = (V,E).

Output: Either: ϑ-rank(G) ≥ 1. Or: the graph R(G), which is acritical with α(R(G)) = α(G) and such that
ϑ-rank(G) = 0⇐⇒ ϑ-rank(R(G)) = 0.

1. Compute the connected components V1, V2, . . . , Vp of the graph Gc = (V,Ec), where Ec is the set of critical
edges of G.

2. If Vi is a clique in G for all i ∈ [p], go to Step 3. Otherwise return: ϑ-rank(G) ≥ 1.

3. Compute the graph Γ(G), with set of vertices {1, 2, . . . , p} and where {i, j} is an edge if Vi ∪ Vj is a clique
in G. If α(Γ(G)) = α(G) then go to Step 4. Otherwise return: ϑ-rank(G) ≥ 1.

4. If Γ(G) is acritical then return: Γ(G). Otherwise set G = Γ(G) and go to Step 1.

We verify the correctness of the output of the above algorithm. For this let us assume the algorithm does not output
ϑ-rank(G) ≥ 1. In view of Definition 5.12 the returned graph at step 4 is the residual graph R(G), which is acritical
by construction. In addition, in view of Step 3, we have α(R(G)) = α(G). Remains to check that ϑ-rank(G) = 0
if and only if ϑ-rank(R(G)) = 0. Indeed, the ‘only if’ part follows using iteratively Lemma 5.9, and the ‘if part’
folllows using Lemma 5.11.

Observe that, if we apply the above algorithm to a class of graphs with a fixed stability number, then the algorithm
runs in polynomial time, so we have shown the following theorem.

Theorem 5.14. For any fixed integer α, the problem of deciding whether a graph with stability number α has ϑ-rank 0
is reducible in polynomial time to the problem of deciding whether a graph with no critical edges and stability number
α has ϑ-rank 0.

Example 5.15. We illustrate in Figure 3 the construction of the residual graph R(G) when G is the cycle C5 with a
pendant edge. We show the subgraph Gc (consisting of the critical edges of G) and the graph Γ(G), which is critical,

so that Γ(G) = Γ(G)c. Finally, as Γ2(G) = K3 has no critical edge, we have R(G) = Γ2(G) = K3. Clearly,
ϑ-rank(R(G)) = 0, which shows again ϑ-rank(G) = 0.
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Figure 3: From right to left, the graphs G, Gc (consisting of the critical edges of G), Γ(G), R(G) = Γ2(G)

Remark 5.16. The results from this section can be adapted to the Lovász parameter ϑ(G) instead of ϑ(0)(G). Recall
form [21] that ϑ(G) = α(G) if and only if there exists a positive semidefinite matrix P such that Pii = α(G) − 1 for
i ∈ V andPij = −1 for {i, j} ∈ E; call such a P a Lovász-exactness certificate for G. Then one can restate all results

from this section by replacing the notion ‘ϑ-rank(G) = 0’ by ‘ϑ(G) = α(G)’ and the notion of ‘K(0)-certificate’ by
‘Lovász-exactness certificate’. As a consequence, we obtain the following analogous result: For any fixed integer α
and for graphs with α(G) = α, the problem of deciding whether ϑ(G) = α is reducible in polynomial time to the
same problem for graphs with no critical edges.

5.4 Acritical graphs with large stability number and ϑ-rank 0

Motivated by the reduction to acritical graphs from the previous section, we now consider acritical graphs with large
stability number. We show that if G = (V,E) is acritical with α(G) ≥ |V | − 4, then V can be covered by α(G)
cliques and thus G has ϑ-rank 0.

Proposition 5.17. Let G = (V,E) be a graph and assume α(G) ≥ |V | − 4.

(i) If α(G) ≥ |V | − 2 then χ(G) = α(G) and thus ϑ-rank(G) = 0.

(ii) If α(G) = |V | − 3 then χ(G) = α(G) and thus ϑ-rank(G) = 0, unless G is the disjoint union of C5 and isolated
nodes in which case ϑ-rank(G) ≥ 1 and G is critical.

(iii) If α(G) = |V | − 4 and G is acritical then χ(G) = α(G) and thus ϑ-rank(G) = 0.

Proof. Throughout we set α = α(G). We will use the fact that perfect graphs satisfy χ(G) = α(G) and their
characterization via the strong perfect graph theorem. We distinguish several cases depending on the value of n = |V |.

Case 1: α(G) ≥ |V | − 2.

We claim that G is perfect. For, if not, then G contains an induced subgraph H = C2k+1 or H = C2k+1 (k ≥ 2); as
every stable set of G should exclude at least 3 vertices of H this implies α(G) ≤ |V | − 3, yielding a contradiction.

Case 2: α(G) = |V | − 3.
Let S be an α-stable set and set V \ S = {x, y, z}. Assume G is not covered by α cliques, we show that G is the
disjoint union of C5 and n− 5 isolated vertices. As χ(G) 6= α(G) the graph G is not perfect and thus it contains an

induced subgraph H which is an odd cycle C2k+1 or its complement C2k+1 with k ≥ 2. As |V (H) ∩ S| ≥ 2k − 2
it follows that α(H) ≥ 2k − 2. If H = C2k+1 then α(H) = k ≥ 2k − 2 implies k ≤ 2 and, if H = C2k+1, then
α(H) = 2 ≥ 2k− 2 again implies k ≤ 2. Hence k = 2, H = C5, and H contains two nodes of S and the three nodes
x, y, z. Say H is the cycle (x, u, y, w, z) with u,w ∈ S. If there exists a node u0 ∈ S \ {u,w} that is adjacent to a
node in {x, y, z} then one can cover the nodes in {u,w, u0, x, y, z} with three edges and thus V with α cliques, which
we had excluded. Therefore, one must have NS({x, y, z}) = {u,w}, which implies that G is C5 together with n− 5
isolated nodes.

Case 3: α(G) = |V | − 4 and G acritical.
Let S be an α-stable set and set T = {x, y, z, w} = V \ S. Note that every vertex of T has at least two neighbors
in S, otherwise the edge between that vertex and S would be a critical edge of G. In addition, if there is a matching
between T and S that covers all the nodes in T , then V is covered by α cliques (the four edges of the matching and
the remaining α− 4 vertices in S) and we are done. Hence we may now assume that there is no matching between S
and T that covers T . By Hall’s theorem (see [13]), there exists W ⊆ T such that |NS(W )| ≤ |W | − 1. Then |W | ≥ 3
since |NS(W )| ≥ 2. We distinguish two cases.

Case 3a: First assume |W | = 3, say W = {x, y, z}. Then |NS(W )| = 2, say NS(W ) = {u, v}. So NS(x) =
NS(y) = NS(z) = {u, v}. Since (S \ {u, v}) ∪ {x, y, z} is not stable, there is an edge between the vertices x, y, z,
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say {x, y} ∈ E. If w has a neighbor in S different from u and v, say {w, t} ∈ E for t ∈ S \ {u, v}, then V is covered
by the cliques {x, y, u}, {z, v}, {w, t} and the α − 3 singleton nodes in S \ {u, v, t}, showing χ(G) = α(G). So
we now assume that NS(w) = {u, v}. Note that χ(G) = α(G) holds in each of the following two cases: (i) when
T contains a clique of size 3 (say, {x, y, z}) and (ii) when T contains two disjoint edges (say, {x, y}, {z, w} ∈ E)
since then G is covered by the cliques {x, y, z, u}, {v, w} in case (i), or {x, y, u}, {z, w, v} in case (ii), and the α− 2
singletons in S \ {u, v}. So we may now assume that T does not contain a triangle nor two disjoint edges. But then
we reach a contradiction with the fact that each of the two sets S \ {u, v}∪ {x, z, w} and S \ {u, v}∪ {y, z, w} is not
a stable set and thus contains an edge.

Case 3b: Assume now W = T = {x, y, z, w} and |NS(W )| = 2, 3. If |NS(W )| = 2 then we are in the situation
NS(x) = NS(y) = NS(z) = NS(w) = {u, v} ⊆ S, already considered in the previous case. So we now assume
|NS(W )| = 3, say NS(W ) = {u, v, t} ⊆ S. We may also assume that G is not perfect (else we are done), so G
contains an induced subgraphH which is C2k+1 or C2k+1 with k ≥ 2. As V (H) ⊆ W ∪NS(W ) we have 2k+1 ≤ 7,

so H is C5, C7 or C7. Note H cannot be C7 since α(C7) = 2 while the set {u, v, t} is stable. If H = C7 then G is C7

together with n− 7 isolated nodes, but then we contradict the assumption that G is acritical. So assume now H = C5.
Then |V (H) ∩ S| = 1 or 2. We distinguish these two cases:
• Assume |V (H) ∩ S| = 1, say V (H) ∩ S = {u} and H is the 5-cycle (x, y, z, w, u). As H is an induced subgraph
of G it follows that {y, u}, {z, u} 6∈ E. As each of the vertices y and z has at least two neighbors is S, they are both
are adjacent to both v and t and thus {y, z, v} and {y, z, t} are cliques. Node w is adjacent to at least two nodes in S
and thus w is adjacent to v or t. If w is adjacent to v (resp., to t), then G is covered by the cliques {x, u}, {y, z, t},
{w, v} (resp., {y, z, v}, {w, t}) and the α− 3 singletons in S \ {u, v, t}.
• Assume |V (H) ∩ S| = 2, say V (H) ∩ S = {u, v} and H is the 5-cycle (x, y, v, z, u). As x, y must have at least
two neighbors in S this implies {x, t}, {y, t} ∈ E and thus {x, y, t} is a clique. As w has at least two neighbors in
S it follows that w is adjacent to u or v. Say, w is adjacent to u. Then G is covered by the cliques {x, y, t}, {w, u},
{z, v} and the α− 3 singletons in S \ {u, v, t}. This concludes the proof.

f

e

g

Figure 4: Graph G9 has α(G9) = 4, ϑ(G9) = ϑ(0)(G9) = 4.155, χ(G9) = 5

Remark 5.18. (i) As we just saw in Proposition 5.17 (ii), the only graphs G with α(G) = |V | − 3 that do not have

ϑ-rank 0 are of the form G = C5 ⊕Kn−5, the disjoint union of C5 and n− 5 isolated nodes. In fact, we will

show that ϑ-rank(C5 ⊕Kn−5) = 1 if and only if n ≤ 13 (see Corollary 6.14 in Section 6.2).

(ii) Proposition 5.17 shows that any acritical graph with α(G) ≥ |V | − 4 satisfies χ(G) = α(G) and thus has
ϑ-rank 0. The same holds for graphs with α(G) = 2 (Lemma 5.6). The next natural case to consider are
graphs with α(G) = 3 and n ≥ 8 nodes. Polak [26] verified (using computer) that if G is an acritical graph
on 8 nodes with α(G) = 3 then χ(G) = α(G) holds (and thus ϑ-rank(G) = 0). In addition, if G is acritical
on 9 nodes with α(G) = 3 then ϑ-rank(G) = 0 holds as well (but sometimes with χ(G) > α(G)). On the
other hand there exist acritical graphs on n = 10 nodes with α(G) = 3 that do not have ϑ-rank 0.

(iii) There are acritical graphs G with 4 ≤ α(G) ≤ |V | − 5 that cannot be covered by α(G) cliques. As a first
example consider the graph G9 in Figure 4, which is acritical, with |V | = 9, α(G9) = 4, χ(G9) = 5, and

ϑ(G9) = ϑ(0)(G9) = 4.155, and thus ϑ-rank(G9) ≥ 1. Moreover, with e, f, g being the three labeled edges

in G9, each of the three graphs G9 \ e,G9 \ {f, g} and G9 \ {e, f} is acritical and satisfies ϑ(0)(G) =
ϑ(G) > α(G). This gives four non-isomorphic acritical graphs on 9 vertices that have ϑ-rank at least 1
(and thus cannot be covered by α(G) cliques). Polak [26] verified (using computer) that these are the only
non-isomorphic acritical graphs on 9 vertices that do not have ϑ-rank 0.

(iv) Finally we use the graph H9 from Example 5.5 to construct a class of acritical graphs with χ(G) > α(G) and
ϑ-rank(G) ≥ 1. For any pair (n, α) with 4 ≤ α ≤ n− 5, we construct an acritical graph G on n nodes with
α(G) = α and χ(G) > α(G). For this we let the vertex set of G be partitioned as V = V0 ∪ V1 ∪ V2, where
|V0| = 9, |V1| = n − 5 − α and |V2| = α − 4, and we select the following edges: on V0 we put a copy of
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H9, on V1 we put a clique, we let every node of V1 be adjacent to every node of V0, and we let V2 consist of
isolated nodes. Then it is easy to see that α(G) = α, G is acritical and χ(G) > α(G). One can show that

ϑ-rank(G) = ϑ-rank(H9 ⊕Kα−4). This follows from the following (easy-to-check) property: If {i, j} is an
edge and N(i) ⊆ N(j) then ϑ-rank(G \ j) = ϑ-rank(G). Since ϑ-rank(H9) = 1 one can now deduce that
ϑ-rank(G) ≥ 1.

6 On the impact of isolated nodes on the ϑ-rank

As mentioned in Proposition 4.4, if the ϑ-rank does not increase under the simple graph operation of adding an isolated
node then Conjecture 1.1 holds. In [12] it was conjectured that adding isolated nodes indeed does not increase the
ϑ-rank. In this section we investigate this question and in fact disprove the latter conjecture, already for graphs with
ϑ-rank 1. For this we first observe that critical edges provide a lot of structure on the matrices P (i) (i ∈ V ) appearing

in K(1)-certificates, which can be exploited for verifying whether a graph has ϑ-rank 1. Then we investigate the impact
of adding isolated nodes to certain classes of graphs H with ϑ-rank 1. First, when the subgraph of critical edges of H
is connected, we give an upper bound on the number of isolated nodes that can be added to H while preserving the
ϑ-rank 1 property (Theorem 6.6). Second, we show that adding this number of isolated nodes indeed produces a graph
with ϑ-rank 1 when H satisfies the property ϑ-rank(H \ i⊥) = 0 for all its nodes (Theorem 6.13). As an application
we are able to determine the exact number of isolated nodes that can can be added to an odd cycle C2n+1 (n ≥ 2) or
its complement while preserving the ϑ-rank 1 property (see Corollary 6.14). As a byproduct we obtain that adding an

isolated node to a graph with ϑ-rank 1 can produce a graph with ϑ-rank ≥ 2. For instance, C5 ⊕K8 has ϑ-rank1 but

C5 ⊕K9 has ϑ-rank 2.

6.1 Properties of the kernel of K(1)-certificates

The following results are based on the kernel property observed in Lemma 2.5, which is applied to the matrices MG

and permits to exploit the structure of the graph G.

Lemma 6.1. Let G = (V = [n], E) be a graph with ϑ-rank(G) = 1. Let {P (i) : i ∈ V } be a K(1)-certificate for
MG, let i ∈ V and let C1, C2, . . . , Cn denote the columns of the matrix P (i). Then the following holds.

(i) If S is a stable set of size α(G) and i ∈ S, then we have
∑

j∈S Cj = 0.

(ii) If {i, j} ∈ E is a critical edge of G then we have Ci = Cj .

(iii) If α(G \ i⊥) = α(G) − 1 and {l,m} ∈ E is a critical edge of G \ i⊥, then we have Cl = Cm.

In particular, if G is critical and G \ i⊥ is critical and connected then the matrix P (i) takes the form

P (i) =

(
(α− 1)J|i⊥| −1

−1 1
α−1J|V \i⊥|

)

, (6.1)

where the blocks are indexed by i⊥ and V \ i⊥, respectively.

Proof. Set α := α(G) for short. Part (i) follows directly from Lemma 2.5 (i), which claims P (i)x = 0 as xTMGx = 0
for x = χS .

(ii) Since the edge {i, j} is critical in G there exists I ⊆ V such that I ∪ {i} and I ∪ {j} are α-stable sets in G; then,

using part (i), we get Ci = −
∑

k∈I Ck . Now, observe that the vector y = 1
2α (χ

I∪{i} + χI∪{j}) satisfies yTMy = 0

(recall Eq. (2.9) and Theorem 2.7). Using Lemma 2.5 (i), we obtain P (i)y = 0 and thus Ci

2 +
Cj

2 +
∑

k∈I Ck = 0.
Combining the two equations we get Ci = Cj .

(iii) If α(G \ i⊥) = α − 1 and {l,m} is critical in G \ i⊥ then there exists I ⊆ V with i ∈ I such that I ∪ {l} and
I ∪ {m} are stable of size α in G. Then, using again part (i), we get Cl = −

∑

k∈I Ck = Cm.

Finally, assume G is critical and G \ i⊥ is critical and connected. Since G is critical, by part (ii), we have Ci = Cj for

all j ∈ i⊥. Moreover, as G is critical, i belongs to an α-stable set and thus α(G \ i⊥) = α− 1. Then, part (iii) can be

applied and using the connectivity and criticality of G \ i⊥ we obtain that Cl = Cm for all l,m ∈ V \ i⊥. Therefore,

P (i) takes a block structure indexed by i⊥ and V \ i⊥. Using an α-stable set of the form {i} ∪ I (with I ⊆ V \ i⊥)
we have Ci +

∑

k∈I Ck = 0 which, combined with the fact that P (i)ii = α − 1, implies the desired structure for the

matrix P (i).
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Using Lemma 6.1 we can show that for some ϑ-rank 1 graphs the construction of the matrices P (i) in a K(1)-certificate
is in fact unique. We already saw that this is the case for the 5-cycle in Example 2.6, we now extend this to any critical
graph with α(G) = 2 and to the graph C5⊕i0. We show in Figure 5 an example of critical graph with stability number
α(G) = 2; of course C5 is another such example.

Figure 5: A critical graph with stability number 2

Example 6.2. Let G = (V,E) be a critical graph with α(G) = 2. Then MG ∈ K(1) (recall Theorem 4.12).

Let {P (i) : i ∈ V } be a K(1)-certificate for MG. We show that the matrices P (i) are uniquely determined using

Lemma 6.1. Indeed, as α(G) = 2, for any i ∈ V the graph G \ i⊥ is a clique and thus it is critical and connected with

α(G \ i⊥) = 1 = α(G) − 1. Hence Lemma 6.1 can be applied and we obtain that for every i ∈ V the matrix P (i)
takes the form (6.1).

Example 6.3. Let G = C5 ⊕ i0 = ([5]∪ {i0}, E), so that G \ i⊥0 = C5. As α(G \ i⊥0 ) = α(G)− 1 = 2 and G \ i⊥0 is
critical and connected, by Lemma 6.1 we conclude that the matrix P (i0) takes the form (6.1) (also displayed below).
In particular we have P (i0)ij = 1/2 and P (i0)i0i = −1 for all i, j ∈ [5]. We now show that for any i ∈ [5] also the
matrices P (i) are uniquely determined; by symmetry it suffices to show this for matrix P (1).

Since G is critical, by Lemma 6.1 (ii) (applied to the edges {1, 2} and {1, 5}), the columns of P (1) indexed by

nodes 1, 2, and 5 are identical. As the edge {3, 4} is critical in the graph G \ 1⊥, by Lemma 6.1 (iii), also the
two columns of P (1) indexed by 3 and 4 are identical. This implies that the matrix P (1) takes a block structure
indexed by the partition of its index set into {1, 2, 5}, {3, 4} and {i0}. By Lemma 2.2 we have P (1)11 = α − 1 = 2,
2P (1)1,i0 + P (i0)1,1 = α − 3 = 0 and P (1)i0,i0 + 2P (i0)1,i0 = α − 3 = 0 . Combining with the fact that

P (i0)11 = 1
2 and P (i0)1,i0 = −1 we obtain that P (1)1,i0 = − 1

4 and P (1)i0,i0 = 2. Finally, since {1, 3, i0} is stable,
using Lemma 6.1(i) we obtain that the columns indexed by 1,3 and i0 sum up to 0, which enables to complete the rest
of the matrix P (1), whose shape is shown below.

P (i0) =

(
i0 [5]

i0 2 −1
[5] −1 1/2

)

, P (1) =

(
i0 {3, 4} {1, 2, 5}

i0 2 −7/4 −1/4
{3, 4} −7/4 7/2 −7/4
{1, 2, 5} −1/4 −7/4 2

)

.

Lemma 6.4. Let G = (V,E) be a graph with MG ∈ K
(1)
n and let P (1), P (2), . . . , P (n) be a K(1)-certificate for MG.

Assume that for S ⊆ V the induced subgraph G[S] is the disjoint union of α(G) cliques.. Then, for any {i, j, k} ⊆ S,
we have

P (i)jk + P (j)ik + P (k)ij = (MG)ij + (MG)jk + (MG)ik = α(G) |E({i, j, k})| − 3.

Proof. By Theorem 2.7 there exists x ∈ ∆n such that xTMGx = 0 and Supp(x) = S. Then Lemma 2.5 (ii) gives the
desired result.

Example 6.5. Consider the graph G8 shown in Figure 6, which is critical with α(G8) = 3. We show that

ϑ-rank(G8) ≥ 2 (which was verified numerically in [31]). Assume for contradiction that MG ∈ K
(1)
8 and let

P (1), . . . , P (8) be a K(1)-certificate for MG. Notice that for i = 1, 2, 3, 4 the graph G \ i⊥ = C5 is critical
and connected. Hence, by Lemma 6.1, the matrices P (1), P (2), P (3) and P (4) take the form (6.1) and thus we have
P (1)23 + P (2)13 + P (3)12 = −1− 1 + 1

2 = − 3
2 . However, as the graph induced by {1, 2, 3, 6} is the disjoint union

of α(G) cliques, in view of Lemma 6.4 one should have P (1)23 + P (2)13 + P (3)12 = 3× 1 − 3 = 0, so we reach a
contradiction.
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Figure 6: The graph G8 (critical, α(G8) = 3)
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Figure 7: The graph H8 (critical, α(H8) = 3)
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It can also be shown that ϑ-rank(H8) ≥ 2, the arguments are similar but technical so we omit them. So we have
ϑ-rank(G8) = ϑ-rank(H8) = 2. In fact, G8 and H8 are the only critical graphs on 8 nodes with ϑ-rank = 2. To see
this one can use the list of critical graphs on 8 nodes from [29] and verify that all of them have ϑ-rank at most 1 except
G8 and H8. Note also that, as observed in [31], any graph with at most 7 nodes has ϑ-rank at most 1.

6.2 Adding isolated nodes to graphs with ϑ-rank 1

As we saw in Section 4, it is crucial to understand the role of isolated nodes for the ϑ-rank of a graph (recall Proposition
4.4). Here we investigate how many isolated nodes can be added to a graph H with ϑ-rank 1 (and satisfying certain
properties) without increasing its ϑ-rank. As an application we show that adding an isolated node to some ϑ-rank 1
graphs may produce a graph with ϑ-rank ≥ 2.

Throughout this section we consider a graph of the form G = H ⊕ Kα−k, where H = (V,E) has α(H) =: k, so
that α(G) = α. Here α and k are integers such that α ≥ k ≥ 2. Note that, if k = 1, then H is a clique and thus
G has ϑ-rank 0 for any α. We let W denote the set of isolated nodes that are added to H , so that |W | = α − k and
G = (V ∪W,E). We also consider the subgraph Hc = (V,Ec) of H , where Ec is the set of critical edges of H .

6.2.1 Upper bound on the number of isolated nodes

First, we investigate some necessary conditions about the parameters α and k that must hold if ϑ-rank(G) = 1.

Theorem 6.6. Given integers α > k ≥ 2, let H = (V,E) be a graph with α(H) = k and let G = H ⊕ Kα−k.
Assume the graph Hc = (V,Ec) is connected and ϑ-rank(G) = 1. Then we have

α ≤
k(k + 3)

k − 1
= k + 4 +

4

k − 1
. (6.2)

The rest of the section is devoted to the proof of Theorem 6.6. Throughout we assume that G and H are as defined in

Theorem 6.6, so MG = α(AG + I)− J ∈ K
(1)
n . We will use the following result of Dobre and Vera [8], which shows

the existence of a K(1)-certificate for MG, which inherits some symmetry properties of MG.

Proposition 6.7 ([8]). Assume that M ∈ K
(1)
n . Then M has a K(1)-certificate P (1), . . . , P (n) satisfying the following

symmetry property: σ(P (i)) = P (σ(i)) for all σ ∈ Sym(n) such that σ(M) = M .

So let {P (i) : i ∈ V } be a K(1)-certificate for MG satisfying the symmetry property from Proposition 6.7. In
particular, since any permutation σ ∈ Sym(W ) of the isolated nodes leaves the graph G invariant it follows that

σ(P (i)) = P (σ(i)), i.e., P (i)σ(j)σ(k) = P (σ(i))jk for all σ ∈ Sym(W ) and j, k ∈ V ∪W. (6.3)

We will use this symmetry property repeatedly in the proof. We mention a simple identity that follows as a direct
application of Lemma 6.4, which we will also repeatedly use in the rest of the section:

P (i)jk + P (j)ik + P (k)ij = −3 if {i, j, k} is contained in a stable set of G with size α(G). (6.4)

Now we prove some preliminary lemmas and we end with Lemma 6.11, which will directly imply Theorem 6.6. We
start with a general property about the structure of the submatrices P (i)[W ] when i ∈ W is an isolated node.

Lemma 6.8. There exists a scalar b ∈ R such that the following holds:

(i) P (i)ij = b for all distinct i, j ∈ W ,

(ii) P (i)jj = α− 2b− 3 for all distinct i, j ∈ W ,

(iii) P (i)jk = −1 for all distinct i, j, k ∈ W .

Proof. Let i, j, k ∈ W be distinct (isolated) nodes and set b := P (i)ij . First we show that b does not depend on the
choice of i, j ∈ W . For this we use the symmetry property from (6.3), which claims P (i)σ(i)σ(j) = P (σ(i))ij for

any σ ∈ Sym(W ). Using the permutation σ = (j, k) we get P (i)ij = P (i)ik = b, and using σ = (i, j) we get
P (i)ij = P (j)ij = b, thus showing (i). Now, by Lemma 2.2, we have P (i)jj + 2P (j)ij = α − 3, which implies
P (i)jj = α− 2b− 3 and thus (ii) holds. Using again (6.3) with σ = (i, k) we obtain P (i)σ(i),σ(j) = P (σ(i))i,j , and

thus P (i)jk = P (k)ij . Similarly, using σ = (i, j) we get P (i)σ(i)σ(k) = P (σ(i))ik and thus P (i)jk = P (j)ik . By

using Eq. (6.4) for the nodes i, j, k we obtain P (i)jk = P (j)ik = P (k)ij = −1, thus showing (iii).
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So we know the structure of the submatrix P (i)[W ] when i ∈ W is an isolated node. When the graph Hc (consisting
of the critical edges of H) is connected we can also derive the structure of the rest of the matrix P (i).

Lemma 6.9. Assume the graph Hc is connected. Then the matrix P (i) takes the form

P (i) =










i W \ i V

i d . . . d
βJ

W \ i
d

V
... βJ γJ
d










for all i ∈ W,

where the blocks are indexed by {i},W \ {i} and V , respectively, and the scalars d, β, γ are given by

d =
b(k + 1) + 1− α− bα

k
, β =

b+ 1− k

k
, γ =

α− k

k
.

Proof. Fix an isolated node i ∈ W . Let {l,m} ∈ Ec be a critical edge of H . By Lemma 6.1(iii) we get that the two
columns of P (i) indexed by l and m are identical. Since Hc is connected it follows that the columns of P (i) indexed
by V are all identical. From this follows that P (i)[V ] (the submatrix of P (i) indexed by V ) is of the form γiJ for
some scalar γi and there exists a vector bi ∈ R

W such that P (i)jh = (bi)j for all j ∈ W,h ∈ V .

Let j 6= k ∈ W \ {i} and v ∈ V . By applying Eq. (6.3) to the permutation σ = (j, k), we obtain P (i)σ(k)σ(v) =
P (σ(i))kv , and thus P (i)jv = P (i)kv . Therefore, the entries of bi indexed by W \ {i} are all equal, say to a scalar βi.
We set di := (bi)i. Finally we show that the scalars βi, γi, di in fact do not depend on the choice of i ∈ W and take
the values claimed in the lemma.

For this consider an α-stable set S of G. Then i ∈ S and thus, by Lemma 6.1(i), the columns of P (i) indexed by S
sum up to zero. Using the identities of Lemma 6.8 combined with the above facts on the remaining entries of P (i),
we obtain

(α− 1) + (α− k − 1)b+ kdi = 0 =⇒ di =
b(k + 1) + 1− α− bα

k
,

b− (α − k − 2) + (α− 2b− 3) + kβi = 0 =⇒ βi =
b+ 1− k

k
,

di + (α− k − 1)βi + kγi = 0 =⇒ γi =
α− k

k
.

This concludes the proof.

We now are able to conclude some properties on the structure of the matrices P (j) for j ∈ V .

Lemma 6.10. Assume Hc is connected. For any v ∈ V the submatrix P (v)[W ∪ {v}] takes the form

P (v)[W ∪ {v}] =

(
Mb

α
2 − α

2k − 1
α
2 − α

2k − 1 α− 1

)

, (6.5)

where the blocks are indexed by W and {v}, respectively. Here, b ∈ R is the constant from Lemma 6.8 and the matrix
Mb is indexed by V and takes the form

Mb =







a c · · · c
c a · · · c
...

...
. . .

...
c c · · · a







, with a = α− 3−
2

k

(

b(k + 1) + 1− α− bα
)

, c = −1−
2

k
(b+ 1). (6.6)

Proof. Consider an isolated node i ∈ W . By Lemma 2.2 we have P (v)ii + 2P (i)iv = α− 3. This implies P (v)ii =
α− 3− 2d and thus P (v)ii = α− 3− 2

k
(b(k + 1) + 1− α− bα), which shows the claimed value of a.

Consider i 6= j ∈ W . As Hc is connected, v belongs to a critical edge and thus there exists an α-stable set of G that
contains i, j, v. Then, by (6.4), we have P (i)vj + P (j)iv + P (v)ij = −3. This implies P (v)ij = −3− 2β and thus

P (v)ij = −1− 2(b+1)
k

, which shows the claimed value of c.

Let i ∈ W . Using again Lemma 2.2 we get 2P (v)iv + P (i)vv = α − 3. Hence P (v)iv = α−3−γ
2 , which implies

P (v)iv = α
2 − α

2k − 1. This completes the proof.
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The following lemma gives necessary and sufficient conditions for the matrix in Eq. (6.5) to be positive semidefinite.
In particular, the part (ii) of the lemma shows Theorem 6.6.

Lemma 6.11. The matrix in Eq. (6.5) is positive semidefinite if and only if the following two conditions hold:

(i) a ≥ c,

(ii) α ≤ k + 4 + 4
k−1 .

Proof. By taking the Schur complement of the matrix P (v)[W ∪{v}] in (6.5) with respect to its (v, v)-entry we obtain
that P (v)[W ∪ {v}] � 0 if and only if

(a− c)Iα−k + (c− 1
α−1 (

α
2 − α

2k − 1)2)Jα−k � 0.

This happens if and only a ≥ c and the following inequality holds:

a− c+ (α− k)
(

c−
1

α− 1

(α

2
−

α

2k
− 1
)2
)

≥ 0.

We show that this last inequality holds if and only if (ii) holds. First, notice that a+ (α− k − 1)c = k. Indeed, if we
see this expression as a polynomial in b then the coefficient of b is

−
2

k
(k − α+ 1)−

2

k
(α− k − 1) = 0

and the constant coefficient is

α− 3−
2(1− α)

k
+ (α− k − 1)(−1−

2

k
) = k.

Therefore, the inequality a− c+ (α− k)(c− 1
α−1 (

α
2 − α

2k − 1)2) ≥ 0 is equivalent to

k(α− 1) ≥ (α− k)
(α

2
−

α

2k
− 1
)2

.

Multiplying both sides by 4k2, this is equivalent to

4k3(α − 1) ≥ (α− k)(α(k − 1)− 2k)2

⇐⇒ 4k3α− 4k3 ≥ (α− k)(α2(k − 1)2 − 4k(k − 1)α+ 4k2)

⇐⇒ 4k3α− 4k3 ≥ α3(k − 1)2 − α2k(k − 1)2 − 4α2k(k − 1) + 4αk3 − 4k3

after cancelling terms in the right hand side. Cancelling terms at both sides and dividing by α2(k − 1) (as k ≥ 2) we
obtain α(k − 1)− 4k − k(k − 1) ≤ 0 and thus the desired inequality (ii).

6.2.2 Lower bound on the number of isolated nodes

In Theorem 6.6 we saw that if the subgraph Hc of critical edges of H is connected and the graph G = H ⊕Kα−k,
obtained by adding α−k isolated nodes to a graph H with α(H) = k, has ϑ-rank 1, then the parameters α and k must
satisfy the inequality (6.2). So this gives the upper bound α− k ≤ 4+ 4/(k− 1) on the number of isolated nodes that
can be added while preserving the ϑ-rank 1 property.

Here we provide some classes of graphs H for which it is indeed possible to add this maximum number of isolated
nodes and preserve the ϑ-rank 1 property. Hence, for these graphs, we characterize the exact number of isolated nodes
that can be added while preserving the ϑ-rank 1 property.

We begin with a preliminary lemma which we will use for our main result below.

Lemma 6.12. Assume α ≥ k ≥ 2 satisfy the inequality (6.2), and let M := αIα−k − Jα−k. Then
(

M α
2 − α

2k − 1
α
2 − α

2k − 1 α− 1

)

� 0.

Proof. The above matrix corresponds to the matrix in Eq. (6.5) with b = −1, which gives a = α− 1 and c = −1, so
that M = Mb = M−1. As a ≥ c, using Lemma 6.11, we get the desired result.
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Theorem 6.13. Given integers α ≥ k ≥ 2, let H = (V,E) be a graph with α(H) = k and let G = H ⊕ Kα−k.

Assume that ϑ-rank(H \ i⊥) = 0 for all i ∈ V and ϑ-rank(H) = 1. In addition assume that α, k satisfy the inequality
(6.2). Then we have ϑ-rank(G) = 1.

Proof. We construct a K(1)-certificate for the matrix MG. That is, we construct matrices P (i) (for i ∈ W ∪ V )
that satisfy the properties of Lemma 2.2. Recall Remark 2.3 where we observed that it will suffice to show that the

matrices P (i) belong to the cone K(0). For this consider the following construction (inspired from [12]), where we set
M := αIα−k − Jα−k.
• For i ∈ V , we set

P (i) =







M α
2 − α

2k − 1 − α
2k − 1

α
2 − α

2k − 1 α− 1 α
2 − 1− α2

2k

− α
2k − 1 α

2 − 1− α2

2k

{
α2

k
− 1 if i ≃ j

−1 else







,

where the blocks are indexed by W , i⊥ and V \ i⊥, respectively. Here the notation i ≃ j means that the nodes i and j
are equal or adjacent in G.
• For i ∈ W , we set

P (i) =

(
M −1

−1 α−k
k

J

)

,

where the blocks are indexed by W and V , respectively.

First we show that the matrix P (i) is positive semidefinite for all i ∈ W . Indeed, deleting repeated rows and columns
and taking the Schur complement with respect to the lower right corner we obtain that P (i) � 0 if and only if

0 � M − k
α−k

Jα−k = αIα−k − α
α−k

Jα−k, which is indeed true.

Next we show that P (i) ∈ K(0) for all i ∈ V . For this, let i ∈ V and observe that we can decompose P (i) as

P (i) = Q(i) + α2

k(k−1)R(i), where

Q(i) =






M α
2 − α

2k − 1 − α
2k − 1

α
2 − α

2k − 1 α− 1 α
2 − 1− α2

2k

− α
2k − 1 α

2 − 1− α2

2k
α2

k(k−1) − 1




 and R(i) =







0 0 0
0 0 0

0 0

{
k − 2 if i ≃ j
−1 else







,

whose blocks are indexed by W , i⊥ and V \ i⊥, respectively. We prove that Q(i) � 0 and R(i) ∈ K(0).

First, we show that Q(i) is positive semidefinite. By Lemma 6.12 we know that the submatrix Q(i)[W ∪i⊥] is positive

semidefinite. We will now show that any column Cv of Q(i) indexed by a node v ∈ V \ i⊥ (in the third block) can be
expressed as a linear combination of the columns Cu indexed by u ∈ W ∪ {i} (in the first two blocks), which directly
implies that Q(i) � 0. Namely, one can show Cv = 1

1−k
(
∑

j∈W Cj + Ci) =: C by direct inspection of the entries:

- for the entries indexed by u ∈ I we have:

Cu =
1

1− k

(

α− 1− (α− k − 1) +
α

2
−

α

2k
− 1
)

= −1−
α

2k
= (Cv)u,

- for the entries indexed by u ∈ i⊥ we have:

Cu =
1

1− k

(

(α − k)
(α

2
−

α

2k
− 1
)

+ α− 1
)

= −1 +
α

2
−

α2

2k
,

- for the entries indexed by u ∈ V \ i⊥ we have:

Cu =
1

1− k

(

(α − k)
(

−
α

2k
− 1
)

+
α

2
− 1−

α2

2k

)

=
α2

k(k − 1)
− 1.

Now we show that R(i) ∈ K(0). For this note that α(H \ i⊥) ≤ k − 1, which implies the entry-wise inequality
(

0 0
0 MH\i⊥

)

≤ R(i).

By hypothesis MH\i⊥ ∈ K(0). Since adding zero row/columns preserve membership in K(0) we get that R(i) ∈ K(0).

To conclude the proof we now need to check that the linear constraints (ii)-(iv) of Lemma 2.2 are satisfied by the
matrices P (i). This is direct case checking, but we give the details for clarity.
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Identity (ii): P (v)vv = α− 1 = (MG)vv for all v ∈ V ∪ I .

Identity (iii): We check that P (u)vv + 2P (v)uv = (MG)vv + 2(MG)uv for all u 6= v ∈ I ∪ V :

- for i, j ∈ I , we have P (i)jj + 2P (j)ij = α− 1− 2 = α− 3,

- for i ∈ I , v ∈ V , we have

• P (i)vv + 2P (v)iv = α−k
k

+ α− α
k
− 2 = α− 3,

• P (v)ii + 2P (i)iv = α− 1− 2 = α− 3,

- for u, v ∈ V , we have

• if {u, v} ∈ E then P (u)vv + 2P (v)uv = 3α− 3,

• if {u, v} /∈ E then P (u)vv + 2P (v)uv = α2

k
− 1 + 2(α2 − 1− α2

2k ) = α− 3.

Inequality (iv): We check P (u)vw+P (v)uw+P (w)uv ≤ (MG)uv+(MG)vw+(MG)vw for distinct u, v, w ∈ I∪V :

- for i, j, k ∈ I we have P (i)jk + P (j)ik + P (k)ij = −3,

- for i, j ∈ I, v ∈ V we have P (i)jv + P (j)iv + P (v)ij = −3,

- for i ∈ I, u, v ∈ V we have

• if {u, v} /∈ E then P (i)uv + P (u)iv + P (v)iu = α−k
k

− 2( α
2k + 1) = −3,

• if {u, v} ∈ E then P (i)uv + P (u)iv + P (v)iu = α−k
k

+ 2(α2 − α
2k − 1) = α− 3,

- for u, v, w ∈ V we have

• if {u, v}, {v, w}, {u,w} ∈ E then P (u)vw + P (v)uw + P (w)uv = 3(α− 1),

• if {u, v}, {u,w} ∈ E, {v, w} /∈ E then P (u)vw + P (v)uw + P (w)uv = α− 1+ 2(α2 − 1− α2

2k ) =

2α− 3− α2

2k ≤ 2α− 3,

• if {u, v} ∈ E, {u,w}, {v, w} /∈ E then P (u)vw +P (v)uw +P (w)uv = 2(α2 − 1− α2

2k )+
α2

k
− 1 =

α− 3,
• if {u, v}, {u,w}, {v, w} /∈ E then P (u)vw + P (v)uw + P (w)uv = −3.

This completes the proof.

We now give some examples of graphs for which the conditions of Theorem 6.6 and 6.13 hold, so that we are able to
compute the exact number of isolated nodes that can be added with the resulting graph still having ϑ-rank 1.

Corollary 6.14. For any integer n ≥ 2 the following holds:

(i) ϑ-rank(C2n+1 ⊕Km) = 1 if and only if m ≤ 4 + 4
n−1 .

(ii) ϑ-rank(C2n+1 ⊕Km) = 1 if and only if m ≤ 8.

Proof. Consider the graph H = C2n+1 or H = C2n+1. As pointed out in Example 4.8, H satisfies the property:
ϑ-rank(H \ i⊥) = 0 for all i ∈ V , and thus the assumption of Theorem 6.13 holds. For H = C2n+1 the inequality

(6.2) reads m ≤ 4 + 4
n−1 and, for H = C2n+1, it reads m ≤ 8. So the ‘if part’ in both (i), (ii) follows as a direct

application of Theorem 6.13.

The ‘only if’ part in both (i), (ii) follows as a direct application of Theorem 6.6, since the graph C2n+1 is critical while

the subgraph of critical edges of C2n+1 is a connected graph.

Corollary 6.15. Assume H is a graph with χ(H) > α(H) = 2. Then, ϑ-rank(H ⊕Km) = 1 if and only if m ≤ 8.

Proof. The ‘if’ part follows directly from Theorem 6.13. Now we prove that ϑ-rank(H ⊕Km) ≥ 2 for m ≥ 9. Since

H is not perfect it contains the graph H0 = C5 or H0 = C2n+1 (n ≥ 2) as an induced subgraph. Hence, H0 ⊕Km

is an induced subgraph of H ⊕ Km with the same stability number. Then, by Lemma 4.1, ϑ-rank(H ⊕ Km) ≥
ϑ-rank(H0 ⊕Km) ≥ 2, where the last inequality follows from Corollary 6.14.

Corollary 6.16. Consider a graph H and a connected component H0 of H . Assume α(H0) ≥ 2 and the subgraph
(H0)c of critical edges of H0 is connected. Then the following holds:

(i) If α(H) ≥ α(H0) + 9 then ϑ-rank(H) ≥ 2.
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(ii) If α(H) ≤ α(H0) + 8 then ϑ-rank(H ⊕Ks) ≥ 2 for s ≥ 9− α(H) + α(H0).

Proof. By Corollary 5.3 we know ϑ-rank(H0) ≥ 1. Pick a stable set W ⊆ V (H \H0) such that α(H0⊕W ) = α(H),
i.e., |W | = α(H)− α(H0). Then H0 ⊕W is an induced subgraph of H with the same stability number as H . Then,

by Lemma 4.1, ϑ-rank(H0 ⊕W ⊕Ks) ≤ ϑ-rank(H ⊕Ks) for any s ≥ 0. By applying Corollary 6.15 to the graph

H0, we obtain that ϑ-rank(H0 ⊕W ⊕Ks) ≥ 2 if s+ |W | ≥ 9. From these facts (i) and (ii) now follow easily.
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