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Abstract

We investigate the hierarchy of conic inner approximations K(r)
n (r ∈ N) for the copositive cone

COPn, introduced by Parrilo (Structured Semidefinite Programs and Semialgebraic Geometry Meth-
ods in Robustness and Optimization, PhD Thesis, California Institute of Technology, 2001). It is

known that COP4 = K(0)
4 and that, while the union of the cones K(r)

n covers the interior of COPn,
it does not cover the full cone COPn if n ≥ 6. Here we investigate the remaining case n = 5,
where all extreme rays have been fully characterized by Hildebrand (The extreme rays of the 5 ×
5 copositive cone. Linear Algebra and its Applications, 437(7):1538–1547, 2012). We show that
the Horn matrix H and its positive diagonal scalings play an exceptional role among the extreme

rays of COP5. We show that equality COP5 =
⋃

r≥0K
(r)
5 holds if and only if any positive diagonal

scaling of H belongs to K(r)
5 for some r ∈ N. As a main ingredient for the proof, we introduce new

Lasserre-type conic inner approximations for COPn, based on sums of squares of polynomials. We

show their links to the cones K(r)
n , and we use an optimization approach that permits to exploit finite

convergence results on Lasserre hierarchy to show membership in the new cones.

Keywords Copositive cone, Horn matrix, sum-of-squares polynomials

1 Introduction

The main object of study in this paper is the cone of copositive matrices COPn, defined as

COPn = {M ∈ Sn : xTMx ≥ 0 for all x ∈ R
n
+} (1.1)

or, equivalently, as

COPn = {M ∈ Sn : (x◦2)TMx◦2 ≥ 0 for all x ∈ R
n}, (1.2)

after setting x◦2 = (x21, . . . , x
2
n) and Rn

+ = {x ∈ Rn : x ≥ 0}. Optimizing over the copositive cone is hard in
general since this captures a wealth of hard combinatorial optimization problems such as finding maximum stable
sets in graphs and minimum graph coloring, and, more generally, mixed-integer binary optimization problems (see,
e.g., [2], [9], [3], [7]). Determining whether a matrix M is copositive is a co-NP-complete problem (see [19]). These
hardness results motivate investigating hierarchies of cones that offer tractable approximations for the copositive cone.
Such conic approximations arise naturally by replacing the condition xTMx ≥ 0 on Rn

+ in (1.1), or the condition

(x◦2)TMx◦2 ≥ 0 on Rn in (1.2), by a sufficient condition for nonnegativity. Parrilo [21] introduced the cones K(r)
n ,

whose definition relies on requiring that the polynomial (
∑n

i=1 x
2
i )

r(x◦2)Mx◦2 is a sum of squares of polynomials,
i.e.,

K(r)
n =

{
M ∈ Sn :

( n∑

i=1

x2i

)r
(x◦2)TMx◦2 ∈ Σ

}
. (1.3)
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Here and throughout,Σ = {∑i q
2
i : qi ∈ R[x]} denotes the cone of sums of squares of polynomials, R[x]r denotes the

space of polynomials with degree at most r and we set Σr = Σ ∩ R[x]r. By construction we have K(r)
n ⊆ K(r+1)

n ⊆
COPn and thus

⋃

r≥0

K(r)
n ⊆ COPn. (1.4)

In addition, the cones K(r)
n cover the interior of the copositive cone, i.e.,

int(COPn) ⊆
⋃

r≥0

K(r)
n . (1.5)

Indeed, a matrix M lies in the interior of COPn precisely when xTMx > 0 on Rn
+ \ {0}, or, equivalently, when

(x◦2)TMx◦2 > 0 on Rn \ {0}. Using a result of Reznick [24], this positivity condition implies existence of an integer
r ∈ N for which (

∑n
i=1 x

2
i )

r(x◦2)TMx◦2 is a sum of squares.

As is well-known we have equality COPn = K(0)
n if and only if n ≤ 4 [4]. For n ≥ 6, copositive matrices that do

not belong to any cone K(r)
n have been constructed in [16], so the inclusion (1.4) is strict for any n ≥ 6. However,

the question of deciding whether the inclusion (1.4) is strict for n = 5, which is the main topic of this paper, remains
open.

Question 1.1 ([16]). Does equality COP5 =
⋃

r≥0 K
(r)
5 hold?

It is known that the inclusion K(0)
5 ⊆ COP5 is strict. For instance, the following matrix, known as the Horn matrix,

H =




1 1 −1 −1 1
1 1 1 −1 −1
−1 1 1 1 −1
−1 −1 1 1 1
1 −1 −1 1 1


 (1.6)

is copositive, but it does not belong to the cone K(0)
5 . On the other hand, H belongs to the cone K(1)

5 (see [21]).
Clearly, any positive diagonal scaling of a copositive matrix remains a copositive matrix, i.e., M ∈ COPn implies
DMD ∈ COPn for any diagonal matrix D with Dii > 0 for i ∈ [n]. However, this operation does not preserve the

cone K(r)
n for r ≥ 1 (see [5]). For instance, H ∈ K(1)

5 , but not every positive diagonal scaling of H belongs to K(1)
5 ;

the positive diagonal scalings of H that still belong to K(1)
5 are characterized in [16]. It is an open question whether

any positive diagonal scaling of H belongs to some cone K(r)
5 .

Question 1.2. Is it true that DHD ∈ ⋃r≥0 K
(r)
5 for all positive diagonal matrices D?

As we will show in this paper, a positive answer to Question 1.2 would imply a positive answer to Question 1.1. The
following is the main contribution of this paper.

Theorem 1.3. Equality COP5 =
⋃

r≥0K
(r)
5 holds if and only ifDHD ∈ ⋃r≥0 K

(r)
5 for all positive diagonal matrices

D.

In view of relation (1.5), in order to show that any 5 × 5 copositive matrix lies in some K(r)
5 , we can restrict our

attention to copositive matrices that lie on the boundary ∂COP5 of the copositive cone. Moreover, it suffices to
consider matrices that lie on an extreme ray of COP5. A crucial ingredient for the proof of Theorem 1.3 is the fact
that all the extreme rays of the cone COP5 are known. They have been characterized by Hildebrand [11], who proved
that (up to simultaneous row/column permutation) they fall into three categories: either they are generated by a matrix

in K(0)
5 , or they are generated by a positive diagonal scaling of the Horn matrix, or they are generated by a positive

diagonal scaling of a class of special matrices T (ψ) (see Theorem 2.2 below for details). In order to show Theorem

1.3 we thus need to show that all positive diagonal scalings of the matrices T (ψ) lie in some cone K(r)
5 . This forms

the main technical part of the paper, which, as we will explain below, relies on following an optimization approach.

Organization of the paper

In Section 2 we give an overview of the main tools and results: we introduce other sum-of-squares hierarchies of inner

approximations for COPn (including the cones LAS(r)
n ), we present the known description of the extreme rays of
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COP5 (that include the matrices T (ψ) (ψ ∈ Ψ) from (2.7)), and we sketch the main arguments used to show the main
result (Theorem 1.3). As we explain there, Theorem 1.3 reduces to showing that every positive diagonal scaling of the

matrices T (ψ) (ψ ∈ Ψ) belongs to some of the cones LAS(r)
n (Theorem 2.3). In Section 3 we show the relationships

between the various hierarchies of inner approximations for COPn. Section 4 is devoted to the proof of Theorem 2.3.
In the final Section 5 we group some conclusions, questions, and further research directions.

Notation

Throughout we let Dn denote the set of diagonal matrices and Dn
++ the set of diagonal matrices with positive diagonal

entries. For d ∈ Rn we let D = Diag(d) ∈ Dn denote the diagonal matrix with diagonal entries Dii = di for i ∈ [n].

For x ∈ R
n, ‖x‖ =

√∑n
i=1 x

2
i denotes its Euclidean norm and ‖x‖1 =

∑n
i=1 |xi| denotes its ℓ1-norm. For a vector

x ∈ Rn, Supp(x) = {i ∈ [n] : xi 6= 0} denotes its support. The vectors e1, . . . , en denote the standard basis vectors
in Rn, and we let e = e1 + . . .+ en denote the all-ones vector.

Given polynomials p1, . . . , pk, we let (p1, . . . , pk) = {∑k

i=1 uipi : ui ∈ R[x]} denote the ideal generated by the pi’s.

Throughout we denote by I∆ the ideal generated by the polynomial
∑n

i=1 xi − 1. For a subset S ⊆ [n] and variables

x = (x1, . . . , xn), we use the notation xS =
∏

i∈S xi and, for a sequence β ∈ Nn, we set xβ = xβ1

1 · · ·xβn

n .

2 Overview of results and methods

In this section we give a broad overview of the strategy that we will follow to show our main result. As indicated
above, we need to show that any positive diagonal scaling of the special matrices T (ψ) (introduced below in relation

(2.7)) lies in some cone K(r)
5 . In fact we will show a sharper result and show membership in another, more restricted,

conic hierarchy. This alternative conic hierarchy arises naturally by considering other sufficient positivity conditions
for the polynomials xTMx and (x◦2)TMx◦2. We begin with introducing these alternative conic approximations.

2.1 Alternative conic approximations for COPn

The definitions of the cone COPn in (1.1) and in (1.2) rely on requiring, respectively, nonnegativity of the polynomial
xTMx on Rn

+, and nonnegativity of the polynomial (x◦2)TMx◦2 on Rn. Since these two polynomials are homoge-

neous, this is equivalent to requiring, respectively, nonnegativity of xTMx on the standard simplex ∆n = {x ∈ Rn
+ :∑n

i=1 xi = 1}, and nonnegativity of (x◦2)TMx◦2 on the unit sphere Sn−1 = {x ∈ Rn :
∑n

i=1 x
2
i = 1}. In other

words we can reformulate the copositive cone as

COPn ={M ∈ Sn : xTMx ≥ 0 for all x ∈ ∆n}, (2.1)

COPn ={M ∈ Sn : (x◦2)TMx◦2 ≥ 0 for all x ∈ S
n−1}. (2.2)

Now we relax the nonnegativity condition and ask instead for a sufficient condition for nonnegativity on the simplex
∆n or on the unit sphere Sn−1, in terms of sum-of-squares representations that involve the constraints defining the
simplex or the sphere. This follows the commonly used approach in polynomial optimization, based on Lasserre-type
relaxations (see [12] and overviews in, e.g., [13], [14]), which justifies our notation below.

For any integer r ∈ N, based on definition (2.1) for COPn, we define the following cones

LAS
(r)
∆n

=
{
M ∈ Sn : xTMx = σ0 +

n∑

i=1

σixi + q for σ0 ∈ Σr, σi ∈ Σr−1 and q ∈ I∆

}
, (2.3)

LAS
(r)
∆n,P

=
{
M ∈ Sn : xTMx =

∑

S⊆[n],|S|≤r

σSx
S + q for σS ∈ Σ|S|−r and q ∈ I∆

}
. (2.4)

Recall I∆ is the ideal generated by
∑n

i=1 xi− 1. The index ‘P’ used in the notation LAS
(r)
∆n,P

refers to the fact that the

decomposition uses the preordering, which consists of all conic combinations of products of the constraints defining
the simplex with sum-of-squares polynomials as multipliers. Clearly, for any integer r ≥ 0, we have

LAS
(r)
∆n

⊆ LAS
(r)
∆n,P

⊆ COPn.

Moreover, the cones LAS
(r)
∆n

cover the interior of the copositive cone.

Lemma 2.1. int(COPn) ⊆
⋃

r≥0 LAS
(r)
∆n
.
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This follows from Putinar’s Positivstellensatz [23] applied to the simplex (see Theorem 4.1).

In a similar manner, based on definition (2.2) for COPn, we define the following cone

LAS
(r)
Sn−1 =

{
M ∈ Sn : (x◦2)TMx◦2 = σ0 + u

( n∑

i=1

x2i − 1
)

for some σ0 ∈ Σr and u ∈ R[x]
}
. (2.5)

As we will show later (see Theorem 3.1), we have the following relationships between the various approximation
cones for COPn that were introduced above:

LAS
(r)
∆n

⊆ K(r−2)
n = LAS

(r)
∆n,P

= LAS
(2r)
Sn−1 for any n ≥ 1 and r ≥ 2. (2.6)

A main motivation for introducing the cones LAS
(r)
∆n

lies in the fact that they permit to capture certain copositive
matrices on the boundary of COPn, namely those matrices M that arise as positive diagonal scaling of a class of
matrices generating extreme rays of COP5 (see Theorem 2.2 and Theorem 2.3 below).

2.2 Extreme rays of COP5

For answering the question of whether the two cones COP5 and
⋃

r≥0 K
(r)
5 coincide it suffices to look at the matrices

that generate an extreme ray of COP5. This indeed follows directly from the fact that any M ∈ COP5 can be
decomposed as a finite sum of matrices generating an extreme ray. For convenience we say that a copositive matrix is
extreme if it generates an extreme ray of COPn.

A positive diagonal scaling of a matrix M is a matrix of the form DMD where D ∈ Dn
++. Notice that if M

is an extreme matrix of COPn then every positive diagonal scaling of M is also an extreme matrix. Moreover, if
M ∈ COPn is an extreme matrix then the same holds for every row/column permutation of M , i.e., for any matrix of
the form PTMP , where P is a permutation matrix. As observed above, positive diagonal scaling does not preserve in

general membership in K(r)
n (r ≥ 1), however taking a row/column permutation clearly does preserve membership in

any K(r)
n (r ≥ 0).

Hildebrand [11] characterized the set of extreme matrices of COP5. For this, he defined the following matrices

T (ψ) =




1 − cosψ4 cos(ψ4 + ψ5) cos(ψ2 + ψ3) − cosψ3

− cosψ4 1 − cosψ5 cos(ψ5 + ψ1) cos(ψ3 + ψ4)
cos(ψ4 + ψ5) − cosψ5 1 − cosψ1 cos(ψ1 + ψ2)
cos(ψ2 + ψ3) cos(ψ5 + ψ1) − cosψ1 1 − cosψ2

− cosψ3 cos(ψ3 + ψ4) cos(ψ1 + ψ2) − cosψ2 1


 , (2.7)

where ψ ∈ R5, and proved the following theorem.

Theorem 2.2 ([11]). Let M ∈ COP5 be an extreme matrix, and assume that M is neither an element of K(0)
5 nor a

positive diagonal scaling (of a row/column permutation) of the Horn matrix. Then M is of the form

M = P ·D · T (ψ) ·D · PT ,

where P is a permutation matrix, D ∈ D5
++ and the quintuple ψ is an element of the set

Ψ =
{
ψ ∈ R

5 :

5∑

i=1

ψi < π, ψi > 0 for i ∈ [5]
}
. (2.8)

In summary, the extreme matrices M of COP5 can be divided into three categories:

(i) M ∈ K(0)
n ,

(ii) M is (up to row/column permutation) a positive diagonal scaling of the Horn matrix,

(iii) M is (up to row/column permutation) a positive diagonal scaling of a matrix T (ψ) for some ψ ∈ Ψ.

Our main result in this paper is to show that every matrix from the third category of extreme matrices of COP5 belongs

to some cone LAS
(r)
∆5

and thus, in view of (2.6), to some cone K(r)
5 .

Theorem 2.3. Let D ∈ D++ be a positive diagonal matrix. Then, for all ψ ∈ Ψ, we have D · T (ψ) · D ∈⋃
r≥0 LAS

(r)
∆5

⊆ ⋃r≥0K
(r)
5 .

4



In view of Theorem 2.2, Theorem 1.3 directly follows from Theorem 2.3. As a direct consequence, in order to answer
Question 1.1, it suffices to look at the extreme matrices from the second category (i.e., at the positive diagonal scalings
of the Horn matrix H).

On the other hand, as we will show later in Lemma 3.10, the Horn matrix H does not belong to any of the cones

LAS
(r)
∆5

. Hence, in order to show that any diagonal scaling of the Horn matrix belongs to some cone K(r)
5 and thus give

an affirmative answer to Question 1.1, it will not be sufficient to consider the cones LAS
(r)
∆5

. A different, new strategy
will be needed.

2.3 Sketch of the proof

We are left with the task of proving Theorem 2.3. For this we follow an optimization approach and consider the
following standard quadratic program, for a given copositive matrix M ∈ COPn:

p∗M := min{xTMx : x ∈ ∆n}. (SQPM )

If p∗M > 0 then M ∈ int(COPn) and thus, by Lemma 2.1, M ∈ ⋃r≥0 LAS
(r)
∆n

. Hence we may restrict our attention to

the case when p∗M = 0, i.e., whenM ∈ ∂COPn. We now consider the Lasserre sum-of-squares hierarchy for problem
(SQPM ), where, for any integer r ≥ 1, we set

p
(r)
M := sup{λ : xTMx− λ = σ0 +

∑n

i=1 xiσi + q for some q ∈ I∆,
and σ0 ∈ Σr, σi ∈ Σr−1}.

(2.9)

Then the bounds p
(r)
M converge asymptotically to p∗M = 0. Moreover, in program (2.9) the supremum is attained and

thus one may replace ‘sup’ by ‘max’. Hence, we have p
(r)
M = 0 if and only if the matrix M belongs to the cone

LAS(r)
n . Therefore, when p∗M = 0, we have M ∈

⋃
r≥0 LAS

(r)
∆n

if and only if the Lasserre hierarchy (2.9) has finite

convergence, i.e., p
(r)
M = 0 for some r. Based on this observation, our strategy is now to show finite convergence of

the Lasserre hierarchy (2.9) in the case when M is a positive diagonal scaling of a matrix T (ψ) with ψ ∈ Ψ.

For this we will use a general theorem of Nie [20] that ensures finite convergence of the Lasserre hierachy (2.9)
when the classical optimality conditions hold at every global minimizer (see Theorem 4.2 below). In our case the
global minimizers of problem (SQPM ) are given by the zeroes of the quadratic form xTMx in ∆n, whose structure is
well-understood for the matrices M = T (ψ). See Section 4 for details.

3 Relationships between sum-of-squares conic approximations for COP
n

In this section we show the relationships from (2.6) between the cones K(r)
n , LAS

(r)
∆n

, LAS
(r)
∆n,P

and LAS
(r)
Sn−1 intro-

duced in the previous sections. In addition, we highlight the relationship to the cones Q(r)
n introduced in [22] and point

out how these cones can all be seen as distinct variations within a common framework.

3.1 Links between the cones K(r)
n , LAS

(r)
∆n

, LAS
(r)
∆n,P

, and LAS
(r)
Sn−1

Here we show the following result, which establishes the links announced in relation (2.6) between the various cones
defined in previous sections. This result is implicitly shown in [15] (see Corollary 3.9), where we compared different
bounds for standard quadratic programs obtained via sums of squares of polynomials.

Theorem 3.1. Let r ≥ 2 and n ≥ 1, then we have

LAS
(r)
∆n

⊆ K(r−2)
n = LAS

(r)
∆n,P

= LAS
(2r)
Sn−1 .

We begin with observing that in the definition (2.4) of the cone LAS
(r)
∆n,P

we may assume that the summation only

involves sets S ⊆ [n] with |S| ≡ r (mod 2).

Lemma 3.2. We have

LAS
(r)
∆n,P

=
{
M ∈ Sn : xTMx =

∑

S⊆[n],|S|≤r

|S|≡r(mod 2)

σSx
S + q with σS ∈ Σr−|S| and q ∈ I∆

}
.
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Proof. To see this consider a term xSσS , where |S| ≤ r, |S| 6≡ r (mod 2) and σS ∈ Σr−|S|. Then |S| ≤ r − 1,

deg(σS) ≤ r − |S| − 1 and thus, modulo the ideal I∆, we can replace xSσS by xSσS(
∑n

i=1 xi). Now expand this

expression as
∑

i∈S x
S\{i} · σSx2i +

∑
i∈[n]\S x

S∪{i}σS . So each term in this summation is of the form xTσT with

|T | ≤ r, |T | ≡ r (mod 2), and deg(σT ) ≤ r − |T |.

Next we recall an alternative definition of the cone K(r)
n , following from a result in [25].

Theorem 3.3 ([25], Prop 9). Let f ∈ R[x] be a homogeneous polynomial with deg(f) = d. Then the polynomial
f(x◦2) is a sum of squares if and only if f admits a decomposition of the form

f =
∑

S⊆[n],|S|≤d

|S|≡d (mod 2)

σSx
S for some σS ∈ Σd−|S|. (3.1)

In particular, for any r ≥ 0, we have

K(r)
n =

{
M ∈ Sn :

( r∑

i=1

xi

)r
xTMx =

∑

S⊆[n],|S|≤r+2
|S|≡r (mod 2)

σSx
S for some σS ∈ Σr+2−|S|

}
. (3.2)

Note the similarity between the description of LAS
(r)
∆n,P

in Lemma 3.2 and that of K(r−2)
n in relation (3.2). The

difference lies in the fact that for LAS
(r)
∆n,P

we have a representation of xTMxmodulo the ideal I∆, while for K(r−2)
n

we have a representation of (
∑

i xi)
r−2xTMx. The next lemma (whose main idea was already used, e.g., in [8]) gives

a simple trick, useful to navigate between these two types of representations.

Lemma 3.4. Let f, g ∈ R[x] and assume f is homogeneous. The following assertions hold.

(i) If (
∑n

i=1 xi)
rf(x) = g(x), then f − g ∈ I∆.

(ii) Let deg(f) = d, deg(g) = d + r (r ∈ N), and define g̃(x) = (
∑n

i=1 xi)
d+rg(x/(

∑n
i=1 xi)). Then, g̃ is a

homogeneous polynomial of degree d+ r. Moreover, if f − g ∈ I∆, then (
∑n

i=1 xi)
rf(x) = g̃(x).

Proof. The assertion (i) follows by expanding (
∑n

i=1 xi)
r as the sum

( n∑

i=1

xi

)r
=
( n∑

I=1

xi − 1 + 1
)r

= 1 +
( n∑

i=1

xi − 1
)( r∑

k=1

(
r

k

)( n∑

i=1

xi − 1
)k−1)

.

We now show (ii). The claim that g̃ is a homogeneous polynomial of degree d + r is easy to check. Assume now
f−g ∈ I∆. By evaluating f−g at x/(

∑n

i=1 xi), we obtain f(x/(
∑n

i=1 xi)) = g(x/(
∑n

i=1 xi)). As f is homogeneous

of degree d this implies f(x) = (
∑d

i=1 xi)
dg(x/(

∑n

i=1 xi)), and the result follows after multiplying both sides by

(
∑n

i=1 xi)
r.

We will also use the following simple fact.

Lemma 3.5. Let σ ∈ Σk and define σ̃(x) = (
∑n

i=1 xi)
kσ(x/(

∑n

i=1 xi)). Then σ̃ is a homogeneous polynomial of
degree k. Moreover,

(i) If k ≡ deg(σ) (mod 2), then σ̃ ∈ Σ.

(ii) If k 6≡ deg(σ) (mod 2), then σ̃ = (
∑n

i=1 xi)σ̂, where σ̂ ∈ Σ.

Proof. Note that σ̃ = (
∑n

i=1 xi)
k−deg(σ)σ′, where σ′ := (

∑n

i=1 xi)
deg(σ)σ(x/(

∑n

i=1 xi)) is a homogeneous poly-

nomial with degree deg(σ). It suffices now to observe that (
∑n

i=1 xi)
k−deg(σ) is a square if k − deg(σ) is even, and

it is a square times (
∑

i xi) if k − deg(σ) is odd.

Using these two lemmas we can now relate the two cones LAS
(r)
∆n,P

and K(r−2)
n .

Lemma 3.6. For any r ≥ 2, we have LAS
(r)
∆n,P

= K(r−2)
n .

6



Proof. First assume M ∈ LAS
(r)
∆n,P

. Using Lemma 3.2, we have a decomposition of the form xTMx = g(x) + q(x),

where q ∈ I∆ and g(x) =
∑

|S|≤r,|S|≡r(mod 2) σSx
S , with σS ∈ Σr−|S|. Using Lemma 3.4(ii) we get

( n∑

i=1

xi

)r−2

xTMx =
( n∑

i=1

xi

)r
g
( x∑

i xi

)
=

∑

|S|≤r,|S|≡r(mod 2)

xS
( n∑

i=1

xi

)r−|S|

σS

( x∑
i xi

)

︸ ︷︷ ︸
=σ̃S(x)

.

As r − |S| ≡ deg(σ̃S)(mod 2) we have σ̃S ∈ Σr−|S| by Lemma 3.5(i). In view of relation (3.2), this shows that

M ∈ K(r−2)
n .

Conversely, assume M ∈ K(r−2)
n . Then, in view of (3.2), we have a decomposition of the form

(
∑n

i=1)
r−2xTMx =

∑
|S|≤r,|S|≡r(mod 2) σSx

S , where σS ∈ Σr−|S|. By applying Lemma 3.4(i), we obtain

xTMx =
∑

|S|≤r,|S|≡r(mod 2) σSx
S + q, where q ∈ I∆. Combining with Lemma 3.2 this shows M ∈ LAS

(r)
∆n,P

.

To complete the proof of Theorem 3.1 we now establish the relation to the cone LAS
(r)
Sn−1 , which follows from a result

in [8].

Proposition 3.7 ([8]). Let f be a homogeneous polynomial of degree 2d and r ∈ N. Then, f
(∑n

i=1 x
2
i

)r
∈ Σ if and

only if f = σ + u(
∑n

i=1 x
2
i − 1) for some σ ∈ Σ2r+2d and u ∈ R[x].

In particular, for any r ≥ 2 we have

LAS
(r)
Sn−1 =

{
M ∈ Sn :

( n∑

i=1

x2i

)r−2

(x◦2)TMx◦2 ∈ Σ
}
= K(r−2)

n . (3.3)

We conclude this section with a reformulation for the cone LAS
(r)
∆n

in the same vein as the reformulation of LAS
(r)
∆n,P

in Lemma 3.2.

Lemma 3.8. Let r ≥ 2. If r is odd, then we have

LAS
(r)
∆n

=
{
M ∈ Sn :

( n∑

i=1

xi

)r−2

xTMx =

n∑

i=1

σixi with σi ∈ Σr−1

}
. (3.4)

If r is even and r ≥ 4, then we have LAS
(r)
∆n

= LAS
(r−1)
∆n

.

Proof. The proof is similar to that of Lemma 3.2, except we now have a summation that involves only sets S ⊆ [n]

with |S| ≤ 1. We spel out the details for clarity. Consider first the case when r is odd. Assume M ∈ LAS
(r)
∆n

, so that

xTMx = σ0 +
∑n

i=1 σixi + q, where q ∈ I∆, σ0 ∈ Σr, σi ∈ Σr−1. Combining Lemma 3.4(ii) and Lemma 3.5 we
obtain a decomposition as in (3.4). Conversely, starting from a decomposition as in (3.4) we get a decomposition as in
(2.3) by applying Lemma 3.4(i).

Consider now the case r ≥ 4 even. Assume M ∈ LAS
(r)
∆n

, we show M ∈ LAS
(r−1)
∆n

. Starting from a decomposition
as in (2.3) and using as above Lemma 3.4(i) and Lemma 3.5, we obtain a decomposition

(

n∑

j=1

xj)
r−2xTMx = σ̃0 + (

n∑

j=1

xj)

n∑

i=1

σ̃ixi,

where σ̃0 ∈ Σr and σ̃i ∈ ∆r−1. From this it follows that the polynomial
∑n

j=1 xj divides σ̃0, which implies its

square divides σ̃0. Then we can divide out by
∑n

j=1 xj and obtain an expression as in (3.4) (replacing r by r− 1), that

certifies membership of M in LAS
(r−1)
∆n

.

3.2 Link to the cones Q(r)
n

The definition (3.2) of the cone K(r)
n involves only square-free monomials, of the form xS =

∏
i∈S xi. As observed in

[25, 22], one can allow arbitrary monomials and, after using again the argument of Lemma 3.4, we get the following
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alternative definitions

K(r)
n =

{
M ∈ Sn :

( n∑

i=1

xi

)r
xTMx =

∑

β∈N
n

|β|≤r+2

σβx
β for σβ ∈ Σr+2−|β|

}
(3.5)

=
{
M ∈ Sn : xTMx =

∑

β∈N
n

|β|≤r+2

σβx
β + q for σβ ∈ Σr+2−|β| and q ∈ I∆

}
. (3.6)

Based on relation (3.5), the authors of [22] proposed the cones Q(r)
n , that are defined as the variation (3.7) of (3.5)

obtained by just considering the terms associated to the monomials xβ with highest degree r or r+ 2. In other words,

Q(r)
n =

{
M ∈ Sn :

( n∑

i=1

xi

)r
xTMx =

∑

β∈N
n

|β|=r,r+2

σβx
β for σβ ∈ Σr+2−|β|

}
, (3.7)

=
{
M ∈ Sn : xTMx =

∑

β∈N
n

|β|=r,r+2

σβx
β + q for σβ ∈ Σr+2−|β| and q ∈ I∆

}
, (3.8)

where the equivalence of (3.7) and (3.8) follows again using Lemma 3.4. Clearly, we have inclusion Q(r)
n ⊆ K(r)

n for

all n ≥ 1 and r ≥ 0, with equality Q(r)
n = K(r)

n for r = 0, 1.

Remark 3.9. For any r ≥ 2, the two cones LAS
(r)
∆n

and Q(r−2)
n are both contained in the cone K(r−2)

n . In view of

(3.6), membership in K(r−2)
n requires a decomposition using terms of the form xβσβ for all β such that |β| ≤ r and

|β| ≡ r(mod 2). In view of (2.3), for membership in LAS
(r)
∆n

, we consider only the terms xβσβ with lowest degree

|β| = 0, 1. On the other hand, in view of (3.8), for membership in Q(r−2)
n , we consider only the terms with highest

degree |β| = r, r − 2. Hence, it is interesting to note that the two cones LAS
(r)
∆n

and Q(r−2)
n use the “two opposite

ends” of the spectrum of possible degrees for the terms xβσβ .

We conclude this section with observing that, while the Horn matrix H belongs to K(1)
5 , it in fact does not belong to

any of the cones LAS
(r)
∆n

. The proof exploits the fact that the quadratic form xTHx has infinitely many zeros in the
simplex ∆n.

Lemma 3.10. For all r ∈ N we have H /∈ LAS
(r)
∆5

.

Proof. Assume by contradiction that H ∈ LAS
(r)
∆5

for some r ∈ N, i.e.,

xTHx = σ0 +

n∑

i=1

xiσi + q(x)(

n∑

i=1

xi − 1),

for some σ0, σi ∈ Σ and q(x) ∈ R[x]. For a fixed scalar t ∈ (0, 1), consider the vector ut = (12 , 0,
t
2 ,

1−t
2 , 0) ∈ ∆5,

which can be verified to define a zero of xTHx, i.e., uTt Hut = 0. By evaluating the quadratic form xTHx at the point
x+ ut we obtain

(x + ut)
TH(x+ ut) =σ0(x+ ut) +

5∑

i=1

(x+ ut)iσi(x+ ut) + q(x+ ut)(

n∑

i=1

xi).

As uTt Hut = 0 and xTHut = x2t+ (1 − t)x5 we obtain

xTHx+ 2x2t+ 2(1− t)x5 = σ0(x+ ut) +
1
2σ1(x + ut) +

t
2σ3(x+ ut) +

1−t
2 σ4(x+ ut)

+
∑5

i=1 xiσi(x+ ut) + q(x+ ut)(
∑n

i=1 xi).
(3.9)

We now compare some coefficients of the monomials (in x) in both sides of (3.9) in order to reach a contradiction.
As there is no constant term in the left hand side, the constant term in the right hand side is equal to 0. This gives
σ0(ut) + σ1(ut)/2 + tσ3(ut)/2 + (1 − t)σ4(ut) = 0 and thus σi(ut) = 0 for i = 0, 1, 3, 4. As σi(x + ut) is a sum-
of-squares polynomial in x this in turn implies that there is no linear term in x in each of the polynomials σi(x + ut)
for i = 0, 1, 3, 4. Next, combining this with the fact that the coefficient of x1 in the left hand side is equal to 0, one
obtains that the polynomial q(x + ut) has no constant term (i.e., q(ut) = 0). Now we compare the coefficients of x2
in both sides. In the left hand side it is equal to 2t, while in the right hand side it is equal to σ2(ut). Hence we have
2t = σ2(ut). We now reach a contradiction since σ2(ut) is a sum-of-squares polynomial in t.
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We now show that the cones LAS(r)
n cover the copositive cone only in the case n = 2.

Proposition 3.11. We have COP2 = LAS
(3)
∆2

, and the inclusion
⋃

r≥0 LAS
(r)
∆n

⊂ COPn is strict for any n ≥ 3.

Proof. First, assume M =

(
a c
c b

)
∈ COP2, we show M ∈ LAS

(3)
∆2

. Note that a, b ≥ 0 and c ≥ −
√
ab (using the

fact that uTMu ≥ 0 with u = (1, 0), (0, 1), and (
√
b,
√
a)). Then we can write xTMx = (

√
ax1 −

√
bx2)

2 + 2(c+√
ab)x1x2, which, modulo the ideal I∆, is equal to (

√
ax1 −

√
bx2)

2(x1 + x2) + 2(c +
√
ab)(x22x1 + x21x2), thus

showing M ∈ LAS
(3)
∆2

.

Assume now n = 3, we show that the matrix

M =

(
0 1 0
1 0 0
0 0 0

)
∈ COP3

does not belong to any of the cones LAS
(r)
3 . The proof follows a similar argument as the one used for Lemma 3.10,

using the fact that ut = (t, 0, 1− t) defines a zero of M for any t ∈ (0, 1), i.e., uTt Mut = 0.

4 Proof of Theorem 2.3

We now proceed to prove Theorem 2.3. As mentioned in Section 2.3, we will follow an optimization approach, which
allows us to apply a result of Nie [20] as a key ingredient for our proof. We proceed in three steps. First, we recall
the sum-of-squares Lasserre hierarchy for a general polynomial optimization problem and the result of Nie [20], that
shows finite convergence of this hierarchy under the classical optimality conditions. Second, applying this result to a
class of standard quadratic programs, we obtain a set of sufficient conditions for a matrix M ∈ ∂COPn, that permit

to claim that any positive diagonal scaling of M belongs to some cone LAS
(r)
∆n

. Finally, we show that these sufficient

conditions hold for the matrices T (ψ) (ψ ∈ Ψ), which concludes the proof of Theorem 2.3.

4.1 Optimality conditions and finite convergence of Lasserre hierarchy

In this section we recall a useful general result of Nie [20] that gives sufficient conditions for having finite convergence
of the Lasserre hierarchy for a general polynomial optimization problem.

Given n-variate polynomials f , gj for j ∈ [m], and hi for i ∈ [k], consider the general polynomial optimization
problem

fmin = inf
x∈K

f(x), (Poly-Opt)

where K is the semialgebraic set defined by

K = {x ∈ R
n : gj(x) ≥ 0 for j ∈ [m], hi(x) = 0 for i ∈ [k]}.

We say that the Archimedean condition holds if there exists N ∈ R such that

N −
n∑

i=1

x2i = σ0 +
m∑

j=1

σjgj +
k∑

i=1

uihi for some σ0, σj ∈ Σ and ui ∈ R[x]. (4.1)

For any integer r ∈ N consider the corresponding Lasserre sum-of-squares hierarchy

f (r) = sup
{
λ : f − λ = σ0 +

m∑

j=1

σjgj +

k∑

i=1

uihi(x) for some σ0 ∈ Σr, σi ∈ Σr−deg(gi)

and ui ∈ R[x]r−deg(hi)

}
.

(4.2)

By the following result of Putinar [23], under the Archimedean condition, asymptotic convergence is guaranteed, i.e.,

f (r) → fmin as r → ∞.

Theorem 4.1 ([23]). Assume K satisfies the Archimedean condition (4.1). If a polynomial p is strictly positive on K ,

then p can be written as p = σ0 +
∑m

j=1 σjgj +
∑k

i=1 uihi for some σ0, σj ∈ Σ (j ∈ [m]) and ui ∈ R[x] (i ∈ [k]).
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The Lasserre hierarchy is said to have finite convergence if f (r) = fmin for some r ∈ N. In general, finite convergence
is not always achieved. However, Nie showed in [20] a very useful result that permits to show finite convergence of
the Lasserre hierarchy under some extra conditions apart from the Archimedean condition. These conditions rely on
the classical optimality conditions, that we now recall (see, e.g., the textbook [1]).

Let u be a local minimizer of problem (Poly-Opt) and let J(u) = {j ∈ [m] : gj(u) = 0} be the set of inequality
constraints that are active at u. Then the constraint qualification constraint (abbreviated as CQC) holds at u if the
set {∇gj(u) : j ∈ J(u)} ∪ {∇hi(u) : i ∈ [k]} is linearly independent. if CQC holds at u then there exist scalars
λ1, . . . , λk, µ1, . . . , µm ∈ R satisfying

∇f(u) =
k∑

i=1

λi∇hi(u) +
∑

j∈J(u)

µj∇gj(u), µj ≥ 0 for j ∈ J(u), µj = 0 for j ∈ [m] \ J(u).

If, in addition, µj > 0 holds for all j ∈ J(u), then one says that the strict complementarity condition (abbreviated as
SCC) holds. Let L(x) the Lagrangian function, defined by

L(x) = f(x)−
k∑

i=1

λihi(x)−
∑

j∈J(u)

µjgj(x).

Another necessary condition for u to be a local minimizer is the following inequality

vT∇2L(u)v ≥ 0 for all v ∈ G(u)⊥, (SONC)

where G(u) is defined by

G(u)⊥ = {x ∈ R
n : xT∇gj(u) = 0 for all j ∈ J(u) and xT∇hi(u) = 0 for all i ∈ [k]}.

If it happens that the inequality (SONC) is strict, i.e., if

vT∇2L(u)v > 0 for all 0 6= v ∈ G(u)⊥, (SOSC)

then one says that the second order sufficiency condition (SOSC) holds at u.

We can now state the following result by Nie [20].

Theorem 4.2 ([20]). Assume the Archimedean condition (4.1) holds for the polynomial tuples h and g in problem
(Poly-Opt). If the constraint qualification condition (CQC), the strict complementarity condition (SCC), and the
second order sufficiency condition (SOSC) hold at every global minimizer of (Poly-Opt), then the Lasserre hierarchy
(4.2) has finite convergence, i.e., f (r) = fmin for some r ∈ N.

In the next section we will apply Theorem 4.2 to a class of standard quadratic programs in order to show finite
convergence of the corresponding Lasserre hierarchy. One important observation, already made in [20], is that this
strategy can only work when the number of global minimizers is finite.

4.2 Optimality conditions for standard quadratic programs

Consider a matrix M ∈ ∂COPn. The objective of this section is to give sufficient conditions on M that permit to

conclude that DMD ∈ ⋃r≥0 LAS
(r)
∆n

for all D ∈ Dn
++. This will be very useful since, in the next section, we will

show that the matrices T (ψ) (ψ ∈ Ψ) satisfy these sufficient conditions and thus we will be able to conclude the proof
of Theorem 2.3. Our strategy is to apply the result from Theorem 4.2 to the setting of standard quadratic programs.
Let us recall the following problem, already introduced in Section 2.3:

min{xTMx : x ∈ ∆n} (SQPM )

and the corresponding Lasserre hierarchy introduced in relation (2.9). Note the optimal value of (SQPM ) is zero as
M ∈ ∂COPn.

Now we will apply Theorem 4.2 to problem (SQPM ). The set K = ∆n indeed satisfies the Archimedean condition
(this is well-known and easy to check; see, e.g., [15]). By [17, Theorem 3.1], the feasible region of the Lasserre
hierarchy (2.9) associated to problem (SQPM ) is a closed set. Hence, the ‘sup’ in program (2.9) can be changed
to a ’max’. As a consequence, for a matrix M ∈ ∂COPn, having finite convergence of the Lasserre hierachy (2.9)

associated to problem (SQPM ) is equivalent to having M ∈ ⋃r≥0 LAS
(r)
∆n

. So we obtain the following corollary.
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Corollary 4.3. Let M ∈ ∂COPn. If the optimality conditions (CQC), (SCC) and (SOSC) hold at every global

minimizer of problem (SQPM ) then M ∈ ⋃r≥0 LAS
(r)
∆n

.

As mentioned earlier, our objective is to give sufficient conditions on M that permit to claim DMD ∈
⋃

r≥0 LAS
(r)
∆n

for allD ∈ Dn
++. For this we will apply Corollary 4.3. A key fact we will show is that, if the optimality conditions hold

at every minimizer of problem (SQPM ) for M , then the same holds for DMD for any D ∈ Dn
++. Given D ∈ Dn

++,
let us consider the standard quadratic program associated to DMD:

min{xTDMDx : x ∈ ∆n}. (SQPDMD)

Observe that the optimal value of program (SQPDMD) is zero. Indeed, if u ∈ ∆n is a minimizer of problem (SQPM ),

then D−1u
‖D−1u‖1

∈ ∆n is a minimizer of problem (SQPDMD). Conversely, if v ∈ ∆n is a minimizer of (SQPDMD),

then Dv
‖Dv‖1

is a minimizer of (SQPM ). Hence, the minimizers of both problems are in one-to-one correspondence, and

thus problem (SQPM ) has finitely many minimizers if and only if problem (SQPDMD) has finitely many minimizers.

Now we analyze the optimality conditions (CQC), (SCC) and (SOSC) for problems (SQPM ) and (SQPDMD). Observe
that the constraint qualification condition (CQC) is satisfied at every minimizer. Indeed, if u ∈ ∆n, then J(u) = {i ∈
[n] : xi = 0} = [n] \ Supp(u), and the vectors e, ei (for i ∈ J(u)) are linearly independent.

Let us recall a result from [4] about the support of optimal solutions for problem (SQPM ), which we will use for the
analysis of the conditions (SCC) and (SOSC). We give the short proof for clarity.

Lemma 4.4. [4, Lemma 7 (i)] Let M ∈ COPn and let x ∈ Rn
+ be such that xTMx = 0. Let S = Supp(x) be the

support of x. Then M [S], the principal submatrix of M indexed by S, is positive semidefinite.

Proof. Let x̃ = x|S be the restriction of x to the coordinates indexed by S, so x̃TM [S]x̃ = 0. Assume by contradiction
that M [S] is not positive semidefinite. Then there exists y ∈ RS such that yTM [S]y < 0 and we can assume that
yTM [S]x̃ ≤ 0 (else replace y by −y). Since all entries of x̃ are positive, there exists λ ≥ 0 such that the vector
λx̃ + y has all its entries positive. Thus, (λx̃ + y)TM [S](λx̃+ y) = λ2x̃TM [S]x̃+ 2λx̃TM [S]y + yTM [S]y < 0,
contradicting that M [S] is copositive.

We now characterize the minimizers for which the strict complementarity condition (SCC) holds. Moreover, we show

that, if a minimizer u of problem (SQPM ) satisfies (SCC), then the corresponding minimizer D−1u
‖D−1u‖ of problem

(SQPDMD) also satisfies (SCC).

Lemma 4.5. Let M ∈ ∂COPn, D ∈ Dn
++, and let u be a minimizer of problem (SQPM ). The strict complementarity

condition (SCC) holds at u if and only if Supp(Mu) = [n] \ Supp(u) or, equivalently, (Mu)i > 0 for all i ∈
[n] \ Supp(u).

As a consequence, (SCC) holds at u (for problem (SQPM )) if and only if (SCC) holds at D−1u
‖D−1u‖ (for problem

(SQPDMD).

Proof. Let S = Supp(u). We first prove that (Mu)i = 0 for any i ∈ S. Let ũ = u|S denote the restriction
of vector u to the coordinates indexed by S. Then, we have 0 = uTMu = ũTM [S]ũ. By Lemma 4.4, M [S]
is positive semidefinite, and thus ũ ∈ Ker(M [S]). Thus, 0 = (M [S]ũ)i = (Mu)i for any i ∈ S. This shows
Supp(Mu) ⊆ [n] \ S. Hence equality Supp(Mu) = [n] \ S holds if and only if (Mu)i =

∑
j∈Supp(u)Mijuj > 0 for

all i ∈ [n] \ Supp(u). It suffices now to show the link to (SCC).

In problem (SQPM ) the strict complementarity condition (SCC) reads:

Mu = λe +
∑

j∈[n]\S

µjej with µj > 0 for j ∈ [n] \ S.

By looking at the coordinate indexed by i ∈ S we obtain that 0 = (Mu)i = λ. Hence, (Mu)j = µj for any
j ∈ [n] \ S. Therefore (SCC) holds if and only if (Mu)j > 0 for all j ∈ [n] \ S.

The last claim of the lemma follows using the above characterization, combined with the correspondence between the
minimizers u of (SQPM ) and D−1u (up to scaling) of (SQPDMD) and the fact that Supp(Mu) = Supp(DMu) and
Supp(D−1u) = Supp(u) (as D is positive diagonal).
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As observed, e.g., in [20], if the sufficient optimality conditions (CQC), (SCC), (SOSC) hold at every global minimizer,
then the number of minimizers must be finite. We now show a useful fact: if a standard quadratic program has finitely
many minimizers, then (SOSC) holds at all of them.

Lemma 4.6. Let M ∈ ∂COPn, so that problem (SQPM ) has optimal value zero. If (SQPM ) has finitely many
minimizers, then (SOSC) holds at every global minimizer.

Proof. Assume M ∈ ∂COPn and (SQPM ) has finitely many minimizers. We first prove that, given S ⊆ [n], problem
(SQPM ) has at most one optimal solution with support S. For this, assume by contradiction that u 6= v ∈ ∆n are
solutions of xTMx = 0 with support S. By Lemma 4.4 the matrix M [S] is positive semidefinite. Let ũ and ṽ be
the restrictions of the vectors u and v to the entries indexed by S. Hence, ũTM [S]ũ = ṽTM [S]ṽ = 0, and thus
M [S]ũ = M [S]ṽ = 0. This implies that every convex combination of ũ, ṽ belongs to the kernel of M [S], so that the
form xTM [S]x has infinitely many zeroes on ∆|S|. Hence, xTMx has infinitely many zeroes on ∆n, contradicting
the assumption.

Let u be a minimizer of problem (SQPM ) with support S and consider as above its restriction ũ ∈ R
|S|. Observe that

the second order sufficiency condition (SOSC) for problem (SQPM ) at u reads

vTMv > 0 for all v ∈ R
n \ {0} such that

n∑

i=1

vi = 0 and vj = 0 ∀j ∈ [n] \ S,

or, equivalently, aTM [S]a > 0 for all a ∈ R
|S| \ {0} such that

∑

i∈S

ai = 0.

Assume that aTM [S]a = 0, we show a = 0. Since M [S] � 0 we have that M [S]a = 0, so that M [S](λũ + a) = 0
for all λ ∈ R. Pick λ > 0 large enough so that all entries of λũ+ a are positive. Then λũ+ a should be a multiple of
ũ because u is the only minimizer over the simplex with support S. Combining with the fact that eTa = 0 this implies
a = 0.

As previously observed, the minimizers of problems (SQPM ) and (SQPDMD) are in one-to-one correspondence.
Thus, as a consequence of Lemma 4.6, (SOSC) holds at every globlal minimizer of (SQPM ) if and only if it holds
at every global minimizer of problem (SQPDMD). Moreover, we have shown in Lemma 4.5 that (SCC) holds for all
minimizers of problem (SQPDMD) if and only if it holds for all minimizers of (SQPM ). Therefore, using Corollary
4.3, we obtain the following result.

Theorem 4.7. Let M ∈ ∂COPn and assume problem (SQPM ) has finitely many mininizers. Assume moreover that,

for every minimizer u of problem (SQPM ), we have (Mu)i > 0 for all i ∈ [n]\Supp(u). ThenDMD ∈ ⋃r≥0 LAS(r)
n

for all D ∈ Dn
++.

4.3 Proof of Theorem 2.3

Now we can prove the result of Theorem 2.3; that is, we show that DT (ψ)D ∈ ⋃r≥0 LAS
(r)
∆n

for all D ∈ Dn
++ and

ψ ∈ Ψ. We show this result as a direct application of Theorem 4.7. It thus remains to check that the two assumptions
in Theorem 4.7 hold. First, by combining two results from [11], the description of the (finitely many) minimizers of
problem (SQPM ) for M = T (ψ) (ψ ∈ Ψ) can be found.

Lemma 4.8. The minimizers of problem (SQPM ) associated to the matrix M = T (ψ) (with ψ ∈ Ψ) are the vectors
vi =

ui

‖ui‖1

for i ∈ [5], where the ui’s are defined by

u1 =




sinψ5

sin(ψ4 + ψ5)
sinψ4

0
0


 , u2 =




sin(ψ3 + ψ4)
sinψ3

0
0

sinψ4


 , u3 =




0
sinψ1

sin(ψ1 + ψ5)
sinψ5

0


 , u4 =




0
0

sinψ2

sin(ψ1 + ψ2)
sinψ1


 , u5 =




sinψ2

0
0

sinψ3

sin(ψ2 + ψ3)


.

Proof. By [11, Theorem 2.5]) it follows that there are exactly five minimizers and that they are supported, respectively,
by the sets {1, 2, 3}, {1, 2, 5}, {2, 3, 4}, {3, 4, 5} and {1, 4, 5}. Next, using [11, Lemma 3.2]), we obtain that the
minimizers take the desired form.

We finally check that the second assumption of Theorem 4.7 holds for the matrices M = T (ψ) (ψ ∈ Ψ).

Lemma 4.9. Let ψ ∈ Ψ and let v be a minimizer of problem (SQPM ) where M = T (ψ). Then, we have (Mv)i > 0
for all i ∈ [5] \ Supp(v).
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Proof. By symmetry, it is enough to check this condition for one of the minimizers, say v1 (as given in Lemma
4.8). Since multiplying by a positive constant does not affect the sign we verify the condition for the vector u1. For
convenience, we set u = u1. As Supp(u) = {1, 2, 3} the condition we want to check reads as follows

3∑

i=1

T (ψ)i4ui > 0 and

3∑

i=1

T (ψ)i5ui > 0.

Again, it suffices to check just the first inequality since the second one is analogous (up to index permutation). We
will now check that the first expression is positive. Indeed we have

3∑

i=1

T (ψ)i4ui

=cos(ψ2 + ψ3) sinψ5 + cos(ψ5 + ψ1) sin(ψ4 + ψ5)− cosψ1 sinψ4

=cos(ψ2 + ψ3) sinψ5 + (cosψ5 cosψ1 − sinψ5 sinψ1)(sinψ4 cosψ5 + cosψ4 sinψ5)− cosψ1 sinψ4

=cos(ψ2 + ψ3) sinψ5 + (cos2 ψ5 − 1) cosψ1 sinψ4 + cosψ5 cosψ1 cosψ4 sinψ5

− sinψ5 sinψ1 sinψ4 cosψ5 − sin2 ψ5 sinψ1 cosψ4

=cos(ψ2 + ψ3) sin(ψ5)− sin2 ψ5 sin(ψ1 + ψ4) + sinψ5 cosψ5 cos(ψ1 + ψ4)

= cos(ψ2 + ψ3) sinψ5 + sinψ5 cos(ψ1 + ψ4 + ψ5)

= sinψ5(cos(ψ2 + ψ3) + cos(ψ1 + ψ4 + ψ5)).

We finish the proof by showing that both factors in the last expression are positive for ψ ∈ Ψ. By the definition of

Ψ,
∑5

i=1 ψi < π and ψi > 0 for i ∈ [5], so that ψ5 ∈ (0, π) and thus sinψ5 > 0. Now we use that cosine is a
monotone decreasing function in the interval (0, π). Observe that ψ2 + ψ3 and π − (ψ1 + ψ4 + ψ5) belong to (0, π)
and ψ2 + ψ3 < π − (ψ1 + ψ4 + ψ5). Thus, cos(ψ2 + ψ3) > cos(π − (ψ1 + ψ4 + ψ5)) = − cos(ψ1 + ψ4 + ψ5),
completing the proof.

5 Concluding remarks

In this paper we investigate whether the conesK(r)
n provide a complete approximation hierarchy for the copositive cone

COPn, i.e., whether their union covers the full cone COPn. As mentioned earlier, the answer is positive for n ≤ 4

(then K(0)
n = COPn [4]) and negative for n ≥ 6 [16]. For the case n = 5, it was shown in [5] that COP5 6= K(r)

5 for

any r ∈ N. Whether the cones K(r)
5 provide a complete hierarchy for COP5, i.e., whether equality COP5 =

⋃
r≥0K

(r)
5

holds, remains open and is the main topic of this paper. As our main result we show that equality holds if and only if

every positive diagonal scaling of the Horn matrixH belongs to
⋃

r≥0 K
(r)
5 . Our proof technique relies on considering

an alternative approximation hierarchy of COPn, provided by the Lasserre-type cones LAS
(r)
∆n

⊆ K(r)
n . Namely, we

show that all the extreme matrices of COP5, that do not belong to K(0)
5 and are not a positive diagonal scaling of the

Horn matrix, do indeed belong to
⋃

r≥0 LAS
(r)
∆n

.

On the impact of diagonal scaling

Diagonal scaling plays a crucial role in the analysis of the copositive cone. It is clear that any positive diagonal scaling
of a copositive matrix remains copositive. Moreover, a positive diagonal scaling of an extreme copositive matrix

remains extreme. However, this operation is not well-behaved with respect to the cones K(r)
n when r ≥ 1 and n ≥ 5.

Dickinson et al. [5] show that, for any matrix M ∈ COPn \ K(0)
n and any r ∈ N, there exists a positive diagonal

scaling of M that does not belong to K(r)
n . On the other hand, they also show that every 5 × 5 copositive matrix with

an all-ones diagonal belongs to K(1)
5 . Thus, a method for checking whether a 5× 5 matrix belongs to COP5 is to scale

it to obtain a matrix with binary diagonal entries and check whether this new matrix belongs to K(1)
5 . In contrast, as

shown in [16], for any n ≥ 7 there exist matrices M ∈ COP7 \
⋃

r≥0 K
(r)
n with an all-ones diagonal. The case n = 6

remains open.

Question 5.1. Let M ∈ COP6 with an all-ones diagonal. Does it hold that M ∈ ⋃r≥0 K
(r)
6 ?

13



Zeros of the form xTMx

As shown earlier, for a matrixM ∈ COPn, the number of zeros of the form xTMx in the simplex plays a fundamental

role for checking membership of M in the cones LAS(r)
n . If M is strictly copositive (i.e., xTMx has no zeroes in

∆n), then M ∈ ⋃r≥0 LAS
(r)
∆n

⊆ ⋃r≥0K
(r)
n . If M has finitely many zeros in ∆n, then, as was shown in Section 4.1,

one possible strategy for showing membership in
⋃

r≥0 LAS(r)
n is checking the classical optimality conditions over

∆n at every zero of xTMx. This was, in fact, our strategy for showing that the matrices T (ψ) for ψ ∈ Ψ belong to

some cone LAS(r)
n and thus to some cone K(r)

n . Finally, if xTMx has infinitely many zeros in ∆n, then the classical
optimality conditions cannot hold and thus the strategy from Section 4.1 does not work. One example that shows how

the number of minimizers causes issues is the Horn matrix H . While H belongs to K(1)
5 , it does not belong to LAS

(r)
∆5

for any r ∈ N. To show that, we exploit the structure of the (infinitely many) zeros of the form xTHx on ∆n. Hence,

another strategy will be needed for settling the question whether any diagonal scaling ofH belongs to some cone K(r)
5 .

Copositive matrices from graphs

The cones K(r)
n are used by de Klerk and Pasechnik [9] for defining a hierarchy of upper bounds ϑ(r)(G) for the

stability number α(G) of a graph G. They conjectured that these bounds converge to α(G) in α(G) steps. Define the
graph matrix MG = α(G)(AG + I) − J , where AG, I and J are, respectively, the adjacency, identity and all-ones
matrices. As an application of a result of Motzkin-Straus [18], MG is a copositive matrix and the conjecture in [9]

boils down to claiming that MG belongs to the cone K(α(G)−1)
n . In fact, it is not even known whether MG belongs to

some cone K(r)
n . So the following two conjectures remain open.

Conjecture 5.2 ([9]). For any graph G, we have MG ∈ K(α(G)−1)
n .

Conjecture 5.3 ([15]). For any graph G, we have MG ∈ ⋃r≥0K
(r)
n .

The subcones Q(r)
n and LAS

(r)
∆n

of K(r)
n , defined in (2.3) and in (3.7), have been used to partially resolve these two

conjectures. On the one hand, Laurent and Gvozdenović [10] established Conjecture 5.2 for graphs with α(G) ≤ 8,

by showing MG ∈ Q(α(G)−1)
n for these graphs (see also [22] for the case α(G) ≤ 6). On the other hand, we showed

in [15] that MG belongs to some cone LAS
(r)
∆n

wheneverG has no critical edges, i.e., when α(G \ e) = α(G) for any
edge e. Observe that the Horn matrix coincides with the graph matrix MC5

when G = C5 is the 5-cycle. In fact, by

Lemma 3.10, MC5
/∈ ⋃r≥0 LAS(r), but MC5

∈ K(1)
5 = Q(1)

5 . Notice also that C5 is critical (i.e., all its edges are

critical). As observed in [15] it in fact suffices to show Conjectures 5.2 and 5.3 for the class of critical graphs.

The class of graph matrices MG has been recently further investigated in [6], where they are used, in particular, to
construct large classes of extreme matrices of COPn.

References

[1] D.P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

[2] I.M. Bomze, M. Dür, E. de Klerk, C. Roos, A.J. Quist, T. Terlaky. On copositive programming and standard
quadratic optimization problems. J. Global Optim., 18(4):301–320, 2000.

[3] S. Burer. On the copositive representation of binary and continuous nonconvex quadratic programs. Mathemati-
cal Programming, Ser. A, 120:479–495, 2009.

[4] P. Diananda. On non-negative forms in real variables some or all of which are non-negative. Mathematical
Proceedings of the Cambridge Philosophical Society, 58(1):17–25, 1962.

[5] P.J.C. Dickinson, M. Dür, L. Gijben and R. Hildebrand. Scaling relationship between the copositive cone and
Parrilo‘s first level approximation. Optimization Letters, 7(8):1669–1679, 2013.

[6] P.J.C. Dickinson and R. de Zeeuw. Generating irreducible copositive matrices using the stable set problem.
Discrete Applied Mathematics, 296:103–117, 2021.

[7] M. Dür and F. Rendl. Conic optimization: a survey with special focus on copositive optimization and binary
quadratic problems. EURO Journal on Computational Optimization, Vol. 9, 100021, 2021.

[8] E. de Klerk, M. Laurent, and P. Parrilo. On the equivalence of algebraic approaches to the minimization of forms
on the simplex. In Positive Polynomials in Control, D. Henrion and A. Garulli, eds., Lecture Notes on Control
and Information Sciences, Number 312, pages 121-133. Springer Verlag, Germany, 2005.

14



[9] E. de Klerk and D. Pasechnik. Approximation of the stability number of a graph via copositive programming.
SIAM Journal on Optimization, 12:875–892, 2002.
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