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ABSTRACT
We demonstrate the most important new feature of SQL:2023,
namely SQL/PGQ, which eases querying graphs using SQL by in-
troducing new syntax for pattern matching and (shortest) path-
finding. We show how support for SQL/PGQ can be integrated into
an RDBMS, specifically in the DuckDB system, using an extension
module called DuckPGQ. As such, we also demonstrate the use of
the DuckDB extensibility mechanism, which allows us to add new
functions, data types, operators, optimizer rules, storage systems,
and even parsers to DuckDB. We also describe the new data struc-
tures and algorithms that the DuckPGQ module is based on, and
how they are injected into SQL plans.

While the demonstrated DuckPGQ extension module is lean
and efficient, we sketch a roadmap to (i) improve its performance
through new algorithms (factorized and WCOJ) and better paral-
lelism and (ii) extend its functionality to scenarios beyond SQL, e.g.,
building and analyzing Graph Neural Networks.
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1 SQL/PGQ
SQL/PGQ (Property Graph Queries) is part of the recently released
standard SQL:2023, and enables SQL users “to see graphs in tables”.
As an intuition, the standard mathematical notation 𝐺 (𝑉 , 𝐸) of
graphs can be used in relational database systems by seeing 𝑉 and
𝐸 as respectively a vertex and edge table.

A vertex table is a normal SQL table that represents each vertex as
a tuple and needs to have a unique key – though having an explicit
SQL constraint for that is not enforced in SQL/PGQ. Similarly, an
edge table consists of tuples that represent edges. It must contain
two referencing columns (or column combinations, in case of multi-
column keys), i.e., foreign keys (FKs); where these two respectively
point to the source and destination vertex of the edge. Finally,
the notion of properties, well-known from the property graph data
model (e.g., used in systems [5] such as Neo4j, TigerGraph, Dgraph,
JanusGraph, Oracle PGX, and AWS Neptune) is represented by the
non-key columns in the edge and vertex tables.
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SQL/PGQ is the first property graph query (sub-)language sup-
ported by a standards organization (ISO). The graph database sys-
tems we just mentioned all use a different graph query language [2]:
respectively Cypher, GSQL, GraphQL, Gremlin, PGQL and SPARQL
– the latter admittedly also a standard (recommendation) fromW3C,
but not for the property graph data model. This fragmentation of
query languages is not conducive to growing graph database adop-
tion, and therefore it is fortunate that the industry behind these
systems started to put efforts into standardization. The first result
of this effort and topic of this demo, SQL/PGQ, adopts ideas from
previous graph query languages: e.g., the pattern matching syntax
is inspired by Neo4j’s Cypher, and the path-finding expressions
were influenced by the PGQL language in Oracle PGX. Another
influence has been the G-CORE language [3] proposed by a con-
sortium of academia and industry brought together by the Linked
Data Benchmark Council (LDBC). LDBC is an organization founded
in 2013, initially focused on benchmarking but is now also active
in standardization. It has an ongoing liaison with the ISO work-
ing group for SQL, which allows LDBC members access to ISO
design documents1. ISO has almost finalized GQL [10], a native
graph query language that will eventually be able to not only re-
turn tabular results but also graphs; and with LDBC is designing a
specification for property graph schemas (early work is in [4]).

CREATE PROPERTY GRAPH pg
VERTEX TABLES(
Person PROPERTIES(id, firstName) LABEL Person ,
University PROPERTIES(id, name) LABEL University ,
Message PROPERTIES(messageId , content)

LABEL Message IN MessageType(Post , Comment))
EDGE TABLES(
Person_knows_Person
SOURCE KEY(person1Id) REFERENCES Person(id)
DESTINATION KEY(person2Id) REFERENCES Person(id)
PROPERTIES(creationDate , interactionCount)
LABEL know ,

Person_likes_Message
SOURCE KEY(personId) REFERENCES Person(id)
DESTINATION KEY(messageId) REFERENCES Message(id)
PROPERTIES(creationDate)
LABEL likes ,

Person_studyAt_University
SOURCE KEY(personId) REFERENCES Person(id)
DESTINATION KEY(universityId) REFERENCES University(id)
PROPERTIES(classYear)
LABEL studyAt);

Listing 1: SQL/PGQ query to create a property graph

The above statement defines a property graph storing a social
graph of persons who know each other, like each other’s messages,
and study at universities.

After creating this property graph (with name pg), it can be used
in queries. At the heart of SQL/PGQ is the new MATCH clause [7],

1One can become a personal member of LDBC for free at ldbcouncil.org.
Gábor Szárnyas in the past years helped manage LDBC as a member of its steering
committee, and Peter Boncz is co-founder and current chair of LDBC.
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which embeds Cypher-like graph pattern queries, where vertex
patterns are denoted with round parentheses and edge patterns
with square brackets. Restrictions on labels are denoted v:label,
where v is a (tuple) variable to bind and label is a label restriction. It
is possible to add additional WHERE filters inside both vertex and edge
patterns. The edges use “ASCII art” notation to specify conditions
for matching edges, i.e., right- (-[]->), left- (<-[]-), left-right- (<-[]->),
and any-directed (-[]-) edge patterns.

Our first example query doing pattern-matching asks for years
and university names where Bob studied:
SELECT study.classYear , study.name
FROM GRAPH_TABLE (pg,

MATCH (a:Person WHERE a.firstName = 'Bob')
-[s:studyAt]->(u:University)

COLUMNS (s.classYear , u.name)) study;

Listing 2: Q1: basic pattern matching

The result of matching is an imaginary binding table, where each
column is a variable (a, s, u) and each row a binding that matches all
constraints in the pattern. But these variables are tuple variables,
not scalar values. Hence, the role of the COLUMNS clause is to turn tuple
variables into scalar values, by selecting properties, e.g., s.classYear
selects property classYear of studyAt edges matched on variable s.
The result of this all is a table study(classYear, name), returned by the
SQL/PGQ table function GRAPH_TABLE in the FROM clause of SQL; and
hence it can be further processed with SQL (filtered, joined with
other tables, aggregated, etc.). SQL/PGQ also supports both bounded
path queries, where a lower and upper amount of hops between
two nodes is specified (e.g., -[]->{1,4}) as well as unbounded path
queries, where no upper limit is defined (-[]->* or -[]->+).
SELECT friends.p2_firstName
FROM GRAPH_TABLE (pg,

MATCH (a:Person WHERE a.firstName = 'Bob')
-[s:know]->* (p2:Person)

COLUMNS (p2.firstName)) friends;

Listing 3: Q2: basic path-finding (reachability)

This second example query is about reachability: we are looking
for all persons p2 Bob can reach over know edges, but we do not
return the specific paths. The query could have asked to return
a path by adding SHORTEST p = just after MATCH, turning this into a
path-finding query that would return one (any) shortest path from
Bob to each reachable person p2.

2 DUCKPGQ: ADDING SQL/PGQ TO DUCKDB
DuckDB is an extensible state-of-the-art single-node analytical
database system [23]; featuring columnar storage with MinMax
predicate pushdown [1], lightweight compression [27] on all data-
types including strings [6] and doubles [18], morsel-driven paral-
lel multi-core execution [16], complete query decorrelation [19],
full support for window functions [17], dynamic programming-
optimized join order enumeration [20], cardinality estimates based
on samples and Hyperloglogs [11], a compressed-vector respre-
sentation (shared with Velox [22]), out-of-core algorithms for join,
aggregation and sort [15] as well as adaptive mapping of semi-
structured data in CSV [8] and JSON2 to DuckDB’s non-first-normal-
form data model that shreds column values that are lists or structs
or nested combinations thereof into internal columns.
2Shredding deeply nested JSON, one vector at a time: bit.ly/duckdb-json-laurens-kuiper

The life of a query in DuckDB passes through the following
stages: (i) parsing SQL into a syntax tree, (ii) transforming the
syntax trees into a parsed statement representation, (iii) binding of
table names (using catalog lookups) and typing of expressions as
well as performing all semantic checks and any needed error raising
(iv) generating a logical relational algebra plan and (v) optimizing
this query plan and generating a physical query operator tree,
followed finally by (vi) query execution – using push-based morsel-
driven vectorized execution; where operators in a pipeline push
data in chunks (using a vector size of 2048 tuples) from a source
operator (e.g., a table scan) through streaming operators (such as a
hash-join probe or filter) upwards to the top of the pipeline where
results are materialized in a sink operator (e.g., a hash-table build).

The original creators of DuckDB, Hannes Mühleisen and Mark
Raasveldt, and CWI have moved the core system code to an open-
source foundation (duckdb.org) and also created a spin-off company
(DuckDB Labs) that aims to grow the adoption of the system under
its open-source charter. Their efforts have resulted in sharp growth
in the adoption of DuckDB. It is the first system in its own class
of embeddable analytics: it is used as a library and runs inside, e.g.,
the R or Python interpreter, such that data scientists working on
notebooks using popular packages such as dplyr and NumPy/pan-
das (and PyTorch and TensorFlow) can get zero-copy SQL access
to dataframes. While data science is the home turf of DuckDB
adoption, its low footprint and embeddable nature make it suit-
able for many (new) use cases, including mobile applications, edge
computing, in-browser computing, embedding in storage devices
(computational storage); but of course also cloud computing. The
DuckDB founders have also co-founded a startup for cloud-based
DuckDB computing (MotherDuck).

DuckDB is purely written in C++ with no software dependencies,
nor explicit usage of platform-specific code such as assembly or
intrinsics in order to keep the system portable. These characteristics
also allow it to be compiled to WebAssembly [14] and therefore run
inside any modern web browser (demo of that: shell.duckdb.org).

DuckDB provides the possibility to create C++ extension modules
that can add new scalar and aggregation functions, data types,
relational operators, optimizer rules that put these to use, and even
new transactional storage systems or query parsers to DuckDB.
The parser extension feature of DuckDB registers a separate parser,
which DuckDB invokes after syntax error in its SQL parser, which
is a C++ port of the PostgreSQL parser.

DuckPGQ is the result of a research project at CWI into efficient
graph analytics systems design. The support for SQL/PGQ – the
topic of this demonstration – is on the one hand a central fea-
ture, but only the stepping stone in this project, which aims be-
yond the query language support also for fluent interaction with
dataframe libraries (dplyr, NumPy/pandas and Arrow), but also
tools for machine learning and specifically training, analyzing and
scoring Graph Neural Networks [13] and graph visualization (e.g.,
NetworkX).

Supporting SQL/PGQ in DuckDB exercises its extensibility API
in various ways. The DuckDB parser extension API was originally
intended to allow extension modules to introduce new statement
types, but in the case of DuckPGQ, we register a complete SQL
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(a) Relational algebra tree for Q1 (defined in Listing 2)
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Figure 1: Relational algebra trees for expressing Q1 and the user-defined functions create_csr_vertex and create_csr_edge

parser built from a fork of DuckDB; that is, it parses a superset of
SQL with the addition being PGQ.

The initial version of DuckPGQ that we will demo in fact only
affects the first three stages in the life of a query: parsing, trans-
forming, and binding, as it maps the new SQL/PGQ functionality
into a traditional logical SQL query plan that mainline DuckDB can
handle, with the help of some scalar User Defined Functions (UDFs)
implemented in C++ that the module provides. This SQL-rewriting
approach is sufficient for translating all SQL/PGQ functionality.
For example, the first example query gets converted to the plan
depicted in Figure 1a. This plan contains two equi-joins on the
PK-FK relationships defined during the creation of the edge table
for this property graph (arguably the join order is not optimal here,
but this way it is shorter so let us consider that a logical plan).

For path-finding and reachability, we decided not to map to WITH

RECURSIVE SQL query plans, for performance reasons but instead
introduced scalar UDFs that create a Compressed Sparse Row (CSR)
data structure on the fly and which is used for path-finding. The
CSR data structure consists of a vertex array and an edge array:
the latter contains the vertex destination-positions of all edges. It
consecutively holds the group of destination vertex-positions of all
edges starting at one source vertex and holds these groups consec-
utively in the storage order of the vertex array. The vertex array
contains the position in the edge array corresponding to its first
outgoing edge.We create the CSR using two scalar UDFs in DuckDB
that fill either CSR array with the result of a subquery we generate.
For create_csr_vertex() the subquery delivers dense vertex IDs and
their edge count (a count aggregate over an outer join between ver-
tex and edge table) as shown in Figure 1b. For create_csr_edge() the
subquery delivers for all edges, the dense vertex IDs for its source
and destination (a double join between edge and vertex tables, on
the source and destination keys, respectively), see Figure 1c. Rather
than generating dense vertex IDs using a DENSE_RANK() window func-
tion, we exploit the fact that DuckDB tables already have ROWIDs that
are semi-dense integers; wasting a bit of space on possible holes left
by non-checkpointed deletes. The fact that the CSR-constructed
subquery, that we generate under the hood, is implemented with
simple scalar UDFs – which a vectorized engine executes just as
fast as builtin expressions – makes DuckPGQ profit frommulti-core
parallelism in DuckDB out-of-the-box.

Our motivation to create a CSR on the fly for each path-finding
predicate is that the alternative, mapping into WITH RECURSIVE queries,
would typically end up using hash-joins and specifically a hash-
table lookup for each traversed edge. We think that the investment

in creating a CSR data structure that allows positional lookup is
typically worthwhile, due to the large number of lookups required
for path-finding. A second reason is that such a data structure
provides a good basis for Worst-Case Optimal Join (WCOJ) algo-
rithms [12] and factorized query execution. A third reason is that
CSR data structures are not only useful for query processing: they
also form the backbone of GNN libraries such as DGL and PyTorch-
geometric [21] and when linked into a Python process, DuckPGQ
eventually aims to provide zero-copy access to ingest graphs into
these machine learning tools, as well as the possibility to analyze
the trained graphs using SQL/PGQ.

Most of this is in the future roadmap and has not yet been imple-
mented yet. What has been implemented, and will be demonstrated,
are the Multi-Source BFS algorithms (MS-BFS [26], which can be
used for computing reachability, simple path-finding, and shortest
path-finding (with an additional weight column, adjacent to the
CSR edge array). If paths need to be returned we keep yet another
adjacent array of edge ROWIDs – DuckPGQ returns paths as DuckDB
lists of alternating vertex and edge ROWIDs that point back into the
vertex and edge tables. SQL/PGQ introduces the ELEMENT_ID(e) func-
tion that returns a numeric internal identifier for elements (vertex
or edge variables), and DuckPGQ implements these simply as ROWIDs.

The MS-BFS algorithm is a good match for DuckPGQ because
of its vectorized nature: its performance advantage comes from
the bulk sequential access through a CSR data structure, and the
fact that MS-BFS executes many path searches simultaneously,
exploiting the power of SIMD instructions: for keeping track of
which vertexes have been visited a single bit suffices, such that
an AVX512 register can keep track of 512 searches. Note that this
does not require use of assembly or intrinsics, well-coded MS-BFS
algorithms can be auto-vectorized efficiently by C++ compilers.
The benefits of MS-BFS stem from the need to execute fewer CPU
instructions in total, as instructions perform work for multiple
active searches, as well as thanks to reduces memory access.

We implemented path-finding using simple scalar UDFs that as
input get a vector of source vertexes and a vector of destination
vertexes, such that each call to such a UDF is tasked to handle
2048 path-finding searches. This fits MS-BFS, as it needs at least
hundreds of searches to exploit SIMD. Like with CSR creation, UDFs
again provide out-of-the-box parallelism for path-finding making
DuckPGQ outperform all graph database systems we tested [25].

However, this simple way of implementing MS-BFS requires
queries that generate thousands of searches, and not all queries
do so. Hence we believe we will eventually implement MS-BFS



with a different mechanism (possible useful DuckDB extensibility
mechanisms are: creating an input-output table function, as used in
LATERAL JOIN queries; or creating a whole new relational operator).
However, the horizontal parallelism that would befit MS-BFS, where
each breadth-first step would horizontally partition the vertexes
in the CSR over multiple threads, would need to be elegantly and
efficiently integrated with the DuckDB parallelism model; which
provides another research item on our roadmap.

Beyond SQL/PGQ. The SQL/PGQ CREATE PROPERTY GRAPH statement
gives all tuples in a vertex or edge table the same label or set of
labels. We found this mechanism alone too rigid and implemented
an extension that allows for flexible assignment of labels, that is e.g.,
capable of expressing inheritance, see vertex table Message in List-
ing 1. The label Message is a global label that applies to all entries
in the Message table. In DuckPGQ, a so-called discriminator column,
here MessageType, contains integers – interpreted as bitmaps. Bit 𝑥
is then set iff the element is part of the subset listed as the 𝑥th
element in the list following the discriminator. So in this example,
the value 1 in Message.MessageType means the message has label Post
and a value 2 label Comment. All vertexes in this table have the global
label Message. A value of 3 would mean a vertex has all three labels.

Currently, the SQL/PGQ specification only defines how to per-
form shortest path-finding, while cheapest path-finding is marked
as a “language opportunity” [7]. DuckPGQ supports cheapest path-
finding using the keyword COST followed by an expression defining
edge weights. DuckDB uses a SIMD-friendly variant of MS-BFS,
Multi-Source Bellman-Ford [26] to execute such queries. In order
to return the actual cost of the shortest path, we allow COST(p) to be
used in the COLUMNS clause, where p has been bound to a path.
SELECT cheapest.path , cheapest.cost
FROM GRAPH_TABLE (pg,

MATCH CHEAPEST PATH p =
(a:Person WHERE a.firstName = 'Alice ')

-[k:know COST 1/k.interactionCount ]->*
(b:Person WHERE b.firstName = 'Bob')

COLUMNS (ELEMENT_ID(p) path , COST(p) cost)) cheapest;

Listing 4: Q2: cheapest path SQL/PGQ support in DuckPGQ

This third example query looks for the cheapest path between
Alice and Bob, where the edge cost is proportionally lower between
people that interact often with each other. Similar to COST(p) we
use ELEMENT_ID(p) to turn a path into a list of ELEMENT_IDs (which as
mentioned are DuckDB ROWIDs in DuckPGQ).

3 DEMONSTRATION
This demonstration will use a laptop showing a python notebook
interface with DuckDB on a large monitor, and a combination of
prepared queries to interactively demonstrate the salient features
of SQL/PGQ in general and DuckPGQ specifically (see also the
submitted video). There will also be room for interactive query
formulation by attendees.

The goal of the demonstration is to familiarize attendees with the
new SQL/PGQ syntax, allow users to formulate queries with this
new syntax, and show how these queries are executed in DuckPGQ.
For the latter purpose, we will use supportive material in our poster,
but also the output of EXPlAIN PLAN features of DuckDB to show how

SQL/PGQ is mapped on the underlying primitives, and how the
various operations perform.

The LDBC Social Network Benchmark dataset at various scale
factors will be available to the user during the demonstration with
SQL/PGQ queries from the BI [24] and Interactive [9] workloads.

Stretch goals of the demonstration are (i) to have the DuckPGQ
extension module pre-compiled online for various platforms, so
users will also be able to install it on their own devices to con-
tinue working with their own data (ii) to demonstrate some of
our ongoing “zero-copy” graph access between DuckPGQ’s CSR
data structures and machine learning libraries; using SQL/PGQ to
prepare and analyze GNN models.
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