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ABSTRACT
We present Oven: a toolset to assure safety and liveness of commu-
nication protocols among threads in concurrent programs in Scala.

Oven is the first practical toolset that is built on top of new theo-
retical foundations of synthetic behavioural type analysis, recently
developed by us to improve the expressiveness of existing work.

We explain Oven’s usage, summarise its design and implementa-
tion (main challenge: how to encode the new synthetic behavioural
typing rules in Scala’s existing type system), and discuss a prelimi-
nary evaluation of expressiveness (the results provide first evidence
that Oven is an improvement over two state-of-the-art tools).

CCS CONCEPTS
• Software and its engineering → Software notations and
tools.

KEYWORDS
behavioural types, multiparty session types, choreographies
ACM Reference Format:
Francisco Ferreira and Sung-Shik Jongmans. 2023. Oven: Safe and Live
Communication Protocols in Scala, using Synthetic Behavioural Type Anal-
ysis. In Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA ’23), July 17–21, 2023, Seattle, WA,
USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3597926.
3604926

1 INTRODUCTION
Background. To take advantage of multi-core processors, concur-
rent programming with shared memory—a notoriously difficult
enterprise—has become increasingly important. In the wake of this
development, programming languages have started to offer core
support for high-level communication primitives, in the form of mes-
sage passing through channels (e.g., Go, Rust, Clojure), in addition
to lower-level synchronisation primitives. The idea is that channels
can serve as a programming abstraction for shared memory.

Supposedly, the usage of channels is less prone to concurrency
bugs than the usage of locks, semaphores, etc. However, evidence
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Figure 1: Two possible executions of the logging protocol

suggests otherwise. For instance, Tu et al. [24] find that “message
passing [using channels] does not necessarily make multi-threaded
programs less error-prone than shared memory [using locks]”.

One of the challenges ofmessage passing is how to assure that the
implementation of communication protocols is safe and live relative
to their specification. Safety means that “bad” communications
never happen: if a communication happens in the implementation,
then it is allowed to happen by the specification. Liveness means
that “good” communications eventually happen.

Multiparty session typing (MPST) [9] is a method to automati-
cally assure safety and liveness of protocol implementations relative
to protocol specifications. The idea is to specify protocols as be-
havioural types [2, 12] against which threads are type-checked; the
method ensures that static well-typedness at compile-time implies
dynamic safety and liveness at execution-time. Over the past 10–15
years, substantial progress has been made, including the devel-
opment of practical tools for many programming languages (e.g.,
F# [21], F★ [26], Go [6], Java [10, 11], OCaml [13], Rust [17, 18],
Scala [7, 22], and TypeScript [20]).

This paper. The problem with MPST is expressiveness: many de-
sirable protocols cannot be specified and implemented using MPST,
as they are conservatively rejected by the existing behavioural type
analysis techniques. To improve expressiveness, the MPST com-
munity has been working extensively on making the techniques
more liberal (e.g., [3–5, 19, 25]). As part of these research efforts,
we recently developed new theoretical foundations of synthetic
behavioural type analysis [14]. In this companion paper, we present
the first practical toolset that is built on top of that: Oven.

In §2, we explain Oven’s usage. In §3, we summarise its design
and implementation. In §4, we discuss a preliminary evaluation
of expressiveness. The envisioned users of Oven are programmers
that use message passing through channels as a programming ab-
straction for shared memory. The current version of Oven has been
archived in a virtual machine [15], while the source code is presently
hosted at https://github.com/nuscr/oven.

2 USAGE OF THE Oven TOOLSET
To explain the usage of Oven, we will develop a simple concurrent
program that consists of three threads, say, Alice, Bob, and Carol.
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1. Specify protocol

2. Generate FSMs

3. Check well-behavedness

4. Generate APIs

5. Implement protocol

6. Check well-typedness

abort
if fail

abort
if fail

Figure 2: Usage of Oven

1 global Logging(role A,
2 role B,
3 role C) {
4 fin {
5 choice {
6 String from A to C;
7 } or {
8 String from B to C;
9 } }
10 par {
11 Unit from C to A;
12 } and {
13 Unit from C to B;
14 } }

Figure 3: Specification of the
logging protocol
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Figure 4: FSMs for Alice and Carol in the logging protocol

The threads engage in a logging protocol: Alice and Bob indepen-
dently tell Carol to log messages (by sending strings), until Carol
tells Alice and Bob that the log is full (by sending units). Figure 1
visualises two possible executions as sequence diagrams.

Figure 2 visualises the main steps of using Oven; light grey boxes
indicate manual work by the programmer; dark gray boxes indicate
automatic work by Oven. We explain and exemplify the steps.

Step 1: Specify protocol. First, the programmer specifies the pro-
tocol in the Oven language; it is an extension of the Scribble language
[8], which is a DSL for protocols that is used in most MPST tools.

Figure 3 shows the Oven code for the logging protocol. Lines 1-3
defines the name of the protocol (Logging) and the names of the
roles that the threads enact (A, B, C). Lines 4–14 define the body of
the protocol: lines 4–9 define that, iteratively (fin), a string is com-
municated either from Alice, or from Bob, to Carol (choice); lines
10–14 define that a unit is communicated from Carol to both Alice
and Bob in unspecified order (par). Intuitively, the specification in
Figure 3 is a textual version of the sequence diagrams in Figure 1.

Step 2: Generate finite state machines. Next, Oven consumes
the protocol specification as input and produces thread-specific
finite state machines (FSM) as output. Each FSM models the commu-
nication behaviour of a single thread from that thread’s perspective.

Figure 4 shows the FSMs for Alice and Carol in the logging
protocol; Bob’s FSM is similar to Alice’s. Each state models a control
point in the protocol; each transition models an action by a thread
(!/?) or by the environment of a thread (τ). For instance, in Alice’s
FSM, the C!String-transition models the send of a string to Carol
by Alice, while in Carol’s FSM, the A?String-transition models
the corresponding receive. The τ-transitions in Alice’s FSM model
actions by Bob and Carol that are unobservable to Alice. Intuitively,
each FSM in Figure 4 is a formal version of a lifeline in Figure 1.

1 class S1:
2 def loop(f: (S1, S1 => S4) => S4): S4 = ...
3 def select[L1 <: (Null | (Unit , S2 => S4)),
4 L2 <: (Null | (Unit , S3 => S4))]
5 (sendUnitToA: L1 = null ,
6 sendUnitToB: L2 = null ,
7 recvStringFromA: (String , S1) => S4,
8 recvStringFromB: (String , S1) => S4)
9 (implicit ev: (L1 =:= (Unit , S2 => S4))
10 | (L2 =:= (Unit , S3 => S4)))
11 : S4 = ...
12 class S2:
13 def select[L1 <: (Null | (Unit , S4 => S4))]
14 (sendUnitToB: L1 = null)
15 (implicit ev: (L1 =:= (Unit , S4 => S4)))
16 : S4 = ...
17 class S3:
18 def select[L1 <: (Null | (Unit , S4 => S4))]
19 (sendUnitToA: L1 = null)
20 (implicit ev: (L1 =:= (Unit , S4 => S4)))
21 : S4 = ...
22 class S4 // empty

Figure 5: API for the FSM for Carol in the logging protocol

Step 3: Check well-behavedness. Next, Oven consumes each
FSM as input and produces an accept/reject verdict as output. If the
FSM is accepted, it is well-behaved [14]: this is a sufficient condition
to assure that well-typedness implies safety and liveness (step 6).
If the FSM is rejected, Oven produces an error message to indicate
why; in this case, the protocol as specified is not supported by Oven.

Informally, an FSM is well-behaved when these conditions hold:
(1) external actions are neutral: the same transitions are possible

both before and after τ-transitions;
(2) sending is causal: a !-transition is possible initially, or after a

non-τ-transition, or both before and after a τ-transition;
(3) receiving is deterministic: ?-transitions from the same source

state to different target states have different labels.
The FSMs in Figure 4 are well-behaved. To exemplify condition 1,
in the Alice’s FSM, a C?Unit-transition is possible both before a τ-
transition in state 1 and after a τ-transition in state 3. To exemplify
condition 2, in Carol’s FSM, each !-transition is possible initially or
after a non-τ-transition. To exemplify condition 3, vacuously, there
are no ?-transitions from the same source to different targets.

Step 4: Generate APIs. Next, Oven consumes each FSM as in-
put, determinises it (modulo τ-transitions), and produces a thread-
specific API in Scala. Roughly, every state in the FSM is encoded as
a class in the API; every set of transitions out of the same state is
encoded as a method. The idea is that if the usage of the API is well-
typed at compile-time, then the corresponding thread will faithfully
simulate a run of the corresponding FSM at execution-time.

Figure 5 shows (an excerpt of) the API generated for Carol’s FSM
in the logging protocol. Classes S1, S2, S3, and S4 encode states 1,
2, 3, and 4 in Carol’s FSM in Figure 4; each method select of class
S𝑖 encodes the transitions out of state 𝑖 . Furthermore, method loop
of class S1 allows the programmer to implement loops of state 1.

Each method select has one or more named arguments (lines
5–8, line 14, and line 19), some of which also have a default value of
null. If select is called, then the instantiation of named arguments
indicates which transitions the thread is willing to make. For in-
stance, if S1.select is called and sendUnitToA, recvStringFromA,
and recvStringFromB are instantiated, then Carol is willing to send
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1 def carolGood(s: S1): S4 =
2 s.loop((s, recur) => s.select(
3 sendUnitToA = ((), s => s.select(
4 sendUnitToB = ((), s => s))),
5 sendUnitToB = ((), s => s.select(
6 sendUnitToA = ((), s => s))),
7 recvStringFromA = (_, s) => recur(s),
8 recvStringFromB = (_, s) => recur(s)))
9
10 def carolBad1(s: S1): S4 =
11 s.loop((s, recur) => s.select(
12 recvStringFromA = (_, s) => recur(s),
13 recvStringFromB = (_, s) => recur(s)))
14
15 def carolBad2(s: S1): S4 =
16 s.loop((s, recur) => s.select(
17 sendUnitToA = ((), s => s.select(
18 sendUnitToB = ((), s => s))),
19 sendUnitToB = ((), s => s.select(
20 sendUnitToA = ((), s => s))),
21 recvStringFromB = (_, s) => recur(s)))
22
23 def carolBad3(s: S1): S4 =
24 s.loop((s, recur) => s.select(
25 sendUnitToA = ((), s => recur(s)),
26 sendUnitToB = ((), s => s.select(
27 sendUnitToA = ((), s => s))),
28 recvStringFromA = (_, s) => recur(s),
29 recvStringFromB = (_, s) => recur(s)))
30
31 def carolBad4(s: S1): S4 =
32 s.loop((s, recur) => s.select(
33 sendUnitToA = ((), s => s.select(
34 sendUnitToB = ((), s => s))),
35 sendUnitToB = ((), s => s.select(
36 sendUnitToA = ((), s => s))),
37 recvStringFromA = (_, s) => s,
38 recvStringFromB = (_, s) => recur(s)))

Figure 6: Implementations of Carol in the logging protocol

to Alice, receive from Alice, or receive from Bob, but not send to Bob;
the body of S1.select non-deterministically chooses one of these
alternatives, depending also on the environment (e.g., a receive can
happen only if the corresponding send has happened).

Named arguments that encode !-transitions are pairs that consist
of a value to send and a callback function (input: a successor state ob-
ject; output: a final state object). Symmetrically, named arguments
that encode ?-transitions are callback functions (input: a received
value and a successor state object; output: a final state object).

Step 5: Implement protocol. Next, the programmer implements
the protocol in Scala, using the generated APIs.

Figure 6 shows Scala code for five versions of Carol in the logging
protocol, using the API from Figure 5. Each version is implemented
as a function that consumes an initial state object (of type S1) and
produces a final state object (of type S4). To actually spawn Carol,
a thread can be created that calls one of the five functions.

In function carolGood, all named arguments are instantiated
when select is called (lines 3, 5, 7, and 8). Thus, in this version,
Carol is willing to make any transition out of state 1 in Carol’s FSM
in Figure 4. Conversely, in function carolBad1, only some named
arguments are instantiated (lines 12 and 13). Thus, in this version,
Carol is willing to make only any ?-transition.

Step 6: Checkwell-typedness. Last, the Scala compiler consumes
the protocol implementation as input and produces an accept/reject
verdict as output. If the protocol implementation is accepted, it is
well-typed: combined with the well-behavedness of the FSMs (step

3), well-typedness implies safety and liveness, modulo non-linear
usage of API objects (checked dynamically) and non-terminating/
exceptional behaviour (beyond the scope); these caveats are stan-
dard when encoding session typing in a mainstream programming
language [6, 10, 16, 20–22]. If the protocol implementation is re-
jected, the Scala compiler produces an error message; in this case,
the protocol as implemented is not supported.

Informally, a protocol implementation is well-typed when these
conditions hold for each call of method select:

(1) partially output-enabled: if there are ≥1 named arguments
for !-transitions, then at least one of them is instantiated;

(2) totally input-enabled: each named argument for a ?-transition
is instantiated.

Thus, a thread must implement each receive as specified in its FSM
(to be able to process any input provided by its environment), but
it may implement only some sends. Condition 1 is checked using
type parameters with union types (e.g., lines 3–4 in Figure 5), and
using implicit parameters with type constraints (e.g., lines 9–10 in
Figure 5): the former allows to express that instantiation of named
arguments is optional, by providing a default value of null (e.g.,
lines 5–6); the latter allows to express that, nevertheless, at least
one named argument with a default value needs to be instantiated.

Function carolGood in Figure 6 is well-typed (i.e., it satisfies the
two conditions). In contrast, the remaining functions in Figure 6
are ill-typed: carolBad1 violates condition 1; carolBad2 violates
condition 2; carolBad3 calls recurwith a state object of the wrong
type (S2 instead of S1; line 25), indicating an attempt to re-enter
the loop in the wrong state of the FSM; carolBad4 returns a state
object of the wrong type (S1 instead of S4; line 37), indicating an
attempt to exit the loop in the wrong state of the FSM.

3 DESIGN AND IMPLEMENTATION
The Oven toolset consists of two separate tools:

• OvenMPST is a programming language-generic front-end for
steps 1–3 in Figure 2. It is written in OCaml, but via OCaml-
to-Javascript compilation, it runs with a GUI in the browser,
including visualisation of FSMs (useful to diagnose well-
behavedness errors).
To support step 1, OvenMPST applies standard parsing tech-
niques from concrete syntax to abstract syntax. To support
step 2, OvenMPST runs an interpreter on the abstract syntax to
build the state space. The abstract syntax and the interpreter
of OvenMPST essentially implement the formal grammar and
transition rules (operational semantics) of a core calculus of
the Oven language [14]. To support step 3, OvenMPST checks
the three well-behavedness conditions; it implements the for-
mal definitions of these conditions, including an algorithm
to equate states modulo weak bisimilarity [1].

• OvenCG is a Scala-specific back-end for step 4. It is written
in Java and runs with a CLI in the terminal. OvenCG encodes
FSMs as classes in Scala, as exemplified in §2. Internally,
a lightweight run-time library uses channels to transport
messages between threads via shared memory. To encode
the advanced typing rules from new theoretical foundations
[14], we crucially leverage advanced features of Scala’s type
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Table 1: Preliminary evaluation

Protocol 1 2 3 mpstk [23] mpstpp [16] Oven

Logging [§2] ✓ � ✓ – lin. lin.

Summation [14] ✓ � � exp. – lin.
Recursive Two Buyer [14] ✓ � � exp. – lin.
Binomial (data types) [14] � � � exp. lin. lin.
Binomial (threads) [14] � � ✓ – lin. lin.
Acq.-Use-Rel. [14] ✓ ✓ ✓ – – lin.
Unfair Acq.-Use-Rel. [14] ✓ ✓ ✓ – – lin.

Example 9 [25] ✓ � � exp. – lin.
Example 13 [25] � � ✓ – lin. lin.
Example 15 [25] � � ✓ – – lin.

Communication patterns:
1: Different threads participate in different branches
2: A receiver choose a sender of the first communication
3: ≥2 threads synchronously choose a sender and receiver of a next communication

system (the combination of type parameters, union types,
implicit parameters, type constraints).

The advantage of the separation between OvenMPST and OvenCG is
that back-ends for other implementation languages can be devel-
oped independent of the front-end. The interface between OvenMPST
and OvenCG is the existing DOT language to represent graphs.

4 PRELIMINARY EVALUATION AND FUTURE
The aim of developing Oven was to provide evidence that our new
theoretical foundations of synthetic behavioural type analysis [14]:
(1) can form the basis of a practical toolset; (2) increase expres-
siveness relative to existing MPST tools. Point 1 is evidenced by
Oven’s existence. To substantiate point 2, we applied Oven to a va-
riety of protocols (selected to cover a variety of combinations of
features), summarised in Table 1; Examples 9/13/15 constitute basic
multiparty buyer–seller scenarios. Columns “1”, “2”, and “3” indi-
cate communication patterns required in the protocols. Columns
“mpstk [23]”, “mpstpp [16]”, and “Oven” indicate non-support (“–”),
support using exponential-time analysis in the number of threads
(“exp.”), or support using linear-time analysis (“lin.”).

Oven supports all protocols under study using linear-time anal-
ysis. In contrast, mpstk supports fewer protocols, and it uses ex-
ponential-time analysis to support the remaining ones. Similarly,
mpstpp supports fewer protocols, but unlike mpstk, it uses linear-
time analysis to support the remaining ones. We conclude that Oven
indeed increases expressiveness relative to mpstk and mpstpp.

In future work, we aim to extend the evaluation by studying a
larger set of protocols and conduct bigger real(istic) case studies.
Although Oven targets shared-memory concurrent programming,
to evaluate expressiveness, a very interesting source of case studies
is distributed algorithms. For instance, we believe that Oven might
be the first MPST tool that supports the Paxos protocol to solve
consensus, if we assume a statically fixed number of threads and
synchronous communication; extensions to a dynamically flexible
number of threads and asynchronous communication are also very
interesting, but they first require significant theoretical advances.
Another direction for future work is to extend Oven with additional
back-ends for other programming languages, beyond Scala. Due to
its powerful type system, Rust would be an interesting candidate.
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