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Abstract

We investigate some graph parameters asking to maximize the size of biindependent pairs
(A, B) in a bipartite graph G = (V3 U Vs, E), where A C V;, B C V5 and AU B is independent.
These parameters also allow to study bicliques in general graphs (via bipartite double graphs).
When the size is the number |AU B of vertices one finds the stability number «a(G), well-known
to be polynomial-time computable. When the size is the product | A|-|B| one finds the parameter
g(G), shown to be NP-hard by Peeters (2003), and when the size is the ratio |A| - |B|/|A U B|
one finds the parameter h(G), introduced by Vallentin (2020) for bounding product-free sets in
finite groups. We show that h(G) is an NP-hard parameter and, as a crucial ingredient, that it is
NP-complete to decide whether a bipartite graph G has a balanced maximum independent set.
These hardness results motivate introducing semidefinite programming bounds for ¢g(G), h(G),
and apa(G) (the maximum cardinality of a balanced independent set). We show that these
bounds can be seen as natural variations of the Lovasz ¥-number, a well-known semidefinite
bound on a(G) (equal to it for G bipartite). In addition we formulate closed-form eigenvalue
bounds, which coincide with the semidefinite bounds for vertex- and edge-transitive graphs,
and we show relationships among them as well as with earlier spectral parameters by Hoffman,
Haemers (2001) and Vallentin (2020).

Keywords. Independent set, biclique, biindependent pair, Lovasz theta number, semidefinite
programming, polynomial optimization, eigenvalue bound, stability number of a graph, Hoffman’s
ratio bound
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1 Introduction

Given a bipartite graph G = (V4 U Vo, E), a bipartite biindependent pair in G is a pair (A, B)
of subsets A C V; and B C V5 such that no pair of nodes {i,j} € A x B is an edge of G. The
adjective “bipartite” is used to indicate that we restrict to the pairs (A, B) that respect the bipartite
structure of G, i.e., with A C V; and B C V5; we will however sometimes omit it for the sake of
brevity. The maximum sum |A| + |B| taken over all bipartite biindependent pairs (A, B) is the
well-studied parameter o(G), known as the stability number of G. We consider the following two

other parameters, asking for the maximum product |A| - |B| and the maximum ratio mu@w

9(G) :== max{|A| - |B| : (A, B) is a bipartite biindependent pair in G}, (1)
h(G) := max {% : (A, B) is a bipartite biindependent pair in G}. (2)
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If G is a complete bipartite graph, then any bipartite biindependent pair has A = () or B = () (and
thus g(G) = h(G) = 0); such a pair is called trivial. Otherwise, in the definition of ¢(G) and h(G),
one may restrict the optimization to nontrivial pairs (A, B), i.e., with A, B # (. A pair (A, B) is
called balanced if |A| = |B|. Then a related parameter of interest is o, (G), the maximum number
of vertices in a balanced biindependent pair, given by

apal(G) = max{|A| + |B| : (4, B) is a balanced bipartite biindependent pair in G}.

One can also define the parameters gn,(G) and hp,(G) as the analogs of g(G) and h(G), where
one restricts the optimization to balanced pairs in and , respectively. Here are some easy
relations that hold among the above parameters.

Lemma 1.1. Let G be a bipartite graph. Then, we have

Tapa (G \/ 9bal(G) = hbal(G) < h(G) < 34/9(G) < (@), (3)
1 1 1
hG) = Za@ = SV4(G) = 70(G) = a(G) = an(G) (1)
Proof. The equalities iabal \/ 9bal(G) = hpat(G) follow from the definitions. We now show

the inequalities in (3)). First, 1f (A B) is optlmal for abal(G), then |A| = |B| and thus we have
Al|-|B . . .
h(G) > % = |A]/2 = aa(G)/4. Second, if (A, B) is optimal for h(G), then 3,/g(G) >
VIA[-|B] > Ilﬁ!@\ = h(G), where the last inequality holds as (\/|A| — v/|B|)? > 0. Third, if
(A, B) is optimal for ¢g(G), then %a(G) 1(|Al + |B]) > 3/IA] - |B| = £1/9(G), where again the
last inequality holds as (\/]A| — +/|B|)? > 0. This concludes the proof of . Moreover, equality
1a(G) = 11/9(G) implies |A| = |B|, and thus (A, B) is a balanced optimal solution for a(G), so
that a(G) = apa(G). In addition, if h(G) = 1a(G), then 1a(G) = 31/9(G) by , which, as we
just observed, implies a(G) = apal(G). The other implications follow directly from (3)). O

In the rest of this section we first explain how the above parameters also permit to model
problems about bicliques (in arbitrary graphs) and we mention some applications. Then we present
a roadmap through our main results, that deal with complexity questions, and with designing
semidefinite bounds and closed-form eigenvalue-based bounds, topics to which we come back in

detail in Sections [2] [ [} and [6]

Biindependent pairs and bicliques in arbitrary graphs

Bipartite biindependent pairs in bipartite graphs also permit to model general biindependent pairs

and bicliques in arbitrary graphs. Consider an arbitrary graph G = (V, E) (not necessarily bipar-

tite). A biindependent pair in G is a pair (A, B) of disjoint subsets of V' such that no pair of nodes

{i,j} € Ax B is an edge of G (but edges are allowed within A or B). One then defines analogously

the parameters gp; (G) and hyi(G), respectively, as the maximum product |A|- \B#and the maximum
p

ratio %, taken over all biindependent pairs in GG. The analog of relation (3|) holds:

hui(G) < 5/ gni(G) < %|V|-

=2
Note that hpi(G) > 1a(G) if a(G) is even and hyi(G) > 1 (a(G) — ﬁ) if o(G) is odd (which can
be seen by partitioning a maximum stable set into two almost equally sized parts). The parameters
hyi(G) and gpi(G) can in fact be reformulated in terms of the parameters g(-) and h(-) for an



associated bipartite graph By(G), the extended bipartite double of G, defined as follows. First we
define the bipartite double B(G), whose node set is VUV’ where V' = {i’ : i € V'} is a disjoint copy
of V, and whose edges are the pairs {7, '} and {j,i'} for {i,j} € E. Then, the extended bipartite
double By(G) is obtained by adding all pairs {i,7'} (i € V') as edges to B(G). Now, observe that
a pair (A, B) is biindependent in G precisely when the pair (A C V,B' :={i’ : i € B} C V') is
bipartite biindependent in By(G). Therefore we have

9i(G) = g(Bo(G)) and  hyi(G) = h(Bo(G))  for any graph G. (5)

One can also model bicliques in an arbitrary graph G = (V| E). A biclique in G is a pair
(A, B) of disjoint subsets of V/ such that A x B C FE or, equivalently, (A, B) is a biindependent
pair in the complementary graph G = (V, E) of G. In analogy, let gp.(G) and hp.(G) denote the

|AL| B

maximum product |A| - |B| and ratio TA1715]> taken over all bicliques (A, B) in G, so that

gvc(G) = gni(G) = g(Bo(G))  and  hie(G) = hii(G) = h(Bo(G))  for any graph G.  (6)

In the case when G = (V3 U Va, F) is a bipartite graph, nontrivial bicliques in G correspond to
nontrivial bipartite biindependent pairs in the bipartite graph G = (V1UVa, (Vi x Vo) \ E), known
as the bipartite complement of G. So we also have

Ire(G) = g(@b) and  hpe(G) = h(@b) for any graph G. (7)

So relations (6)) and offer different formulations for the parameters gp(-) and hpe(-), we
will investigate in Section how the associated semidefinite bounds relate.

Complexity results

As is well-known there are polynomial-time algorithms for computing the stability number a(G)
of a bipartite graph G. On the other hand, Peeters [37] shows that, given an integer k, deciding
whether a bipartite graph G has a biclique (A, B) with |A| - |B| > k is an NP-complete problem.
Hence, computing the parameter g(G) is an NP-hard problem (by switching between bicliques and
biindependent pairs).

We will show that also h(G) is hard to compute. For this we show that the problem (denoted
a-BAL-BIP in Section [2)) of deciding whether a bipartite graph G has a balanced maximum inde-
pendent set, i.e., whether a(G) = apa(G), is NP-complete (see Theorem [2.1). Combining with
Lemma it follows that deciding whether h(G) > 1a(G) is an NP-complete problem.

It is known that, given an integer k, deciding whether a bipartite graph G contains a bipartite
biindependent pair (A, B) with |A| = |B| = k is an NP-complete problem [I5, 23] (switching
between biindependent pairs and bicliques). Hence our hardness result for problem a-BAL-BIP
shows hardness of this problem already for the case k = $a/(G).

Our proof technique will in fact permit to show NP-hardness for a broader set of problems,
namely for deciding whether any of the following equalities holds: ¢(G) = gpai(G), h(G) = hpa(G),
hG) = 3/9(G), or £1/9(G) = 1a(G) (thus whether the inequalities in hold at equality). See
Theorem 2.7 and Corollary [2.8]

Some applications for the parameters ¢(-) and A(-)

As explained above the parameter g(-) also allows to model maximum edge cardinality bicliques
in bipartite (or general) graphs. This problem has many real life applications, such as reducing



assembly times in product manufacturing lines and in the area of formal concept analysis, as
explained in [7] (see also [8, B9]). The related parameter asking for the maximum number of
vertices in a balanced biclique has also many applications; e.g., in VLSI design (e.g., [2, B8], 40],
in the analysis of biological data (as instance of bicluster, e.g., [43]) and of interactions of proteins
(e.g., [34]).

The parameter g(-) is also relevant for bounding the nonnegative rank of a matrix. Given

a matrix M € RLY”X'%', its nonnegative rank rank; (M) is the smallest integer r € N such that

M = Y",_, asb] for some nonnegative vectors a, € lel‘ and by € ]RLYQl; computing rank, () is an
NP-hard problem [42]. A classical combinatorial lower bound for rank, (M) is the rectangle covering
bound rc(M), defined as the smallest number of rectangles A x B C V; x V5 whose union is equal
to the support Sy = {(4,5) € V1 x Vo : M;; # 0} of M. (See, e.g., [12]). The rectangle covering
bound was used, e.g., in [I3] to show an exponential lower bound on the extension complexity
of combinatorial polytopes such as the traveling salesman and correlation polytopes. Also the
parameter rc(M) is not easy to compute. To approximate it, one can consider the bipartite graph
By, with vertex set Vi3 U Vo and edge set Eyr := (Vi x V3) \ Spyr. Then one can show that
rc(M) - g(Bar) > |Sa|. Hence, an upper bound on g(Bjs) gives directly a lower bound on rc(M)
and thus a lower bound on the nonnegative rank rank (M).

The parameter h(-) was introduced by Vallentin [41], who observed its relevance to maximum
product-free subsets in groups in work of Gowers [I7]. Let I" be a finite group. A set A C I is
called product-free if ab & A for all a,b € A, and one is interested in finding the largest cardinality
of a product-free set in I' (see [I7), 26] for background on this problem). We now briefly indicate
how to bound this parameter using the parameter h(-); for the interested reader we will present
this connection in more detail in Appendix [A]

Assume A C I' is product-free. Let Gr 4 = (V1 U Vi, E) be the associated bipartite Cayley
graph, where V7 and Vs are disjoint copies of I' and there is an edge between v; € V1 and ve € Vo
if their product vivy belongs to A. The crucial observation now is that since A is product-free,
the pair (A;, A2) is (balanced) bipartite biindependent in Gr 4, where Ay C V;, Ay C V;, are the
corresponding disjoint copies of A. This implies %l < h(Gr,4). Hence, upper bounds on h(Gr 4)
give upper bounds on product-free sets in I'. Vallentin [41] introduced the eigenvalue-based upper
bound A(G) < %AQ(AG) for any r-regular bipartite graph G. Applying it to the |A|-regular
bipartite graph Gr 4, he could recover a result by Gowers [I7], which states that a product-free
subset A in I' has cardinality |A| < |T'|/kY/?, where k is the minimum dimension of a nontrivial

representation of I'. We will show the sharper eigenvalue-based bound h(G) < /H(G) = %T)f/{éf;)

(see Proposition , and use it to show a slight sharpening of Gowers’ bound, replacing AL by

L1/3
H‘ﬂ/s (see Theorem [A.2]).

In fact, for this application, one is only interested in balanced biindependent pairs in the graph
Gr,4 and we have 2|A| < apa(Ga) if A is product-free in I'. This motivates investigating whether
sharper semidefinite and eigenvalue-based bounds can be found for the balanced parameters. We
come back briefly to this question later in the introduction and it will be investigated in detail in

Section [6l

Semidefinite approximations

The parameters g(G) and h(G) can be formulated as polynomial optimization problems, which
leads to hierarchies of semidefinite programming (SDP) upper bounds g,(G) and h,(G) (for r > 1),
able to find the original parameters at order r = a(G). We investigate in particular the SDP



bounds obtained at the first order » = 1. As we will see they take the form

ia, T
0(G) = max {(€.%) (diagl(X) d g)((X) ) =0, Xy =01 {i.j} € B}, (8)
hi(G) = )r(rgg}g/{(C, X): X>0, Tr(X) =1, X;; =0if {3,j} € E}. 9)

Here C = (5 ) € RIVi+IV2l| where J denotes the all-ones matrix of appropriate size. The
parameters g1 (G) and h;(G) can be seen as quadratic variations of the parameter ¥(G), introduced
by Lovéasz [32] as upper bound on «(G) for any G (and equal to «(G) when G is bipartite). Indeed,
if we replace the objective (C, X) by Tr(X) in program (8) and by (J, X) in program (9), then we
obtain ¥(G) in both cases (see and (24)). We will show the following relations between the
parameters h(G), g(G), hi1(G), g1(G), and o(G).

Proposition 1.2. For any bipartite graph G we have

h(G) < 1/4(G) < m(G) < 15 (G) <

It is interesting to note that h1(G) may improve the bound 14/g1(G) for $1/¢g(G). Indeed,
the inequality h1(G) < % 91(G) can be strict, e.g., when G is K, , minus a perfect matching
with n > 5, as we see in Section The key ingredient to show this is getting eigenvalue-based
reformulations for the parameters when G enjoys symmetry properties, as we discuss next.

a(G)

[ =

Eigenvalue bounds

When G is a bipartite r-regular graph we can give closed-form bounds in terms of the second
largest eigenvalue of the adjacency matrix Ag of G. These bounds are obtained by restricting in
the definitions and (9) of ¢1(G) and hi(G) the optimization to matrices with some symmetry.

Proposition 1.3. Assume G is a bipartite r-reqular graph, set n := |V1| = |Va|, and let Ay be the
second largest eigenvalue of the adjacency matriz Ag of G. Then we have

nQA% .
—~ f,r S 3)\27 -~ n)\g
G) <G(Q) = Cofr® 1t and 7y (G) < h(G) = —22
91(G) <4(G) {8(22_A/\22) otherwise, 1(6) < () 2(A2 + 1)

Moreover, we have equality g1(G) = g(G) if G is vertez- and edge-transitive, and equality hy(G) =
h(G) if G is edge-transitive.

Observe that the bound A(G) < ﬁ(G) sharpens the bound h(G) < %Ay by Vallentin [41].
Moreover, one can check that E(G) < 1./9(G), which mirrors the inequalities h(G) < £+/9(G) and
h(G) < $1/91(G) (in Proposition . We will see in Section |5/ several classes of graphs for which
strict inequality E(G) < £4/9(G) holds and, in Section 4| we will compare the parameter B() with
other eigenvalue bounds by Hoffman and by Haemers [20] 21].

Bounds for the balanced parameters

As we have seen earlier, the parameter oy, (G), asking for the maximum cardinality of a balanced
independent set in G, arises naturally when considering the parameters h(-) and g(-). An additional
motivation comes from its relevance to product-free sets in groups and other applications as in
[2, [34] [38], 40, 43]. The question thus arises of finding semidefinite and eigenvalue-based bounds for



apal(G) (and the related parameters hpa(G) and gha(G)) that improve on the bounds hi(G) and
h(G) designed for the general (not necessarily balanced) parameters. We investigate this question
in detail in Section @ We define semidefinite bounds laspa; 1(G) and Upa1(G) for ana1(G), ghal1(G)
for gpai(G), and hpay1(G) for hpa(G), and we show they satisfy %lasbal,l(G) < %\/gbal,l(G) <
ha11(G) = iﬁbal(G) (see Proposition . Interestingly, the “balanced versions” of the theta
number may lead to different parameters, i.e., laspa11(G) < ¥pal(G) may hold (see Example .
On the other hand, we show that the closed-form values obtained by restricting the optimization
to symmetric solutions in each of these semidefinite bounds in fact recover (up to the correct
transformation) the eigenvalue bound h(G) (see Proposition .

Organization of the paper

The paper is organized as follows. Section [2|is devoted to the study of the complexity status of
the parameters h(-), g(-) and their balanced analogs apai(-), gpal(-) and hpa(-). In Section 3] we
investigate semidefinite bounds for g(-) and A(-) and, in Section {4} we study the corresponding
eigenvalue-based bounds. In Section [5| we illustrate the behaviour of the various parameters on
several classes of regular bipartite graphs. We turn our attention to bounds for the balanced
parameters in Section [6]and conclude with several remarks and open questions in the final Section[7}
In Appendix [A| we briefly present the application of the parameters h(‘),ﬁ(-), apal(+) to bounding
product-free sets in finite groups and we group several technical proofs in Appendices [B] [C] and

Some notation and preliminaries

Throughout 8™ denotes the set of real symmetric n x n matrices. Let I,,J, € 8™ denote, respec-
tively, the identity matrix and the all-ones matrix (also denoted as I, J when the dimension is clear
from the context). Given integers a,b > 1 we also let J,j denote the a x b all-ones matrix. Given a
graph G = (V = [n], E), Sg denotes the set of matrices M € 8™ that are supported by G, i.e., such
that M;; = 0 for all 4,5 € V such that {i,j} ¢ E. For a matrix X € 8", diag(X) = (X)), € R”
denotes the vector of its diagonal entries and, for a vector z € R", Diag(z) € 8™ is the diagonal
matrix with the x;’s as its diagonal entries. We use the symbol e € R” to denote the all-ones vector
(whose dimension should be clear from the context).

For a real symmetric matrix A € S we denote its eigenvalues as A\{(A4) > ... > Avi(A). We
will often consider the case when A has a bipartite structure, of the form

A= <MOT z\04> e sl (10)

where V is partitioned as V = V; U Vp with |Vi| = |[Va| =: n and M € RIVilXIV2l Then the
eigenvalues of A are :I:\/W, ooy BV AR (MMT), thus arising from the singular values of M.

For a subset U C V we let XU € RV denotes its characteristic vector, whose ith entry is 1 if
i €U and0ifi€ V\U. For amatrix M € SV, M[U] = (M;;); jeu denotes the principal submatrix
of M indexed by U.

2 Complexity results

In this section we prove several complexity results. Recall that a cligue in G is a set of pairwise

adjacent vertices and w(G) denotes the maximum cardinality of a clique in G, so that w(G) = a(G).
We consider the following problems.



Problem 1 (a-BAL-BIP). Given a bipartite graph G, decide whether o(G) = apal(G), i.e., whether
G has a balanced mazimum independent set.

Problem 2 (HALF-SIZE-CLIQUE-EDGE). Given a graph G = (V, E) with |V| even and |E| =
1IVI(|V| = 2), decide whether w(G) > %l

Problem 3 (HALF-SIZE-CLIQUE). Given a graph G = (V,E) with |V| even, decide whether
w(@) > L

Problem 4 (CLIQUE). Given a graph G and an integer k € N, decide whether w(G) > k.

It is well-known that CLIQUE is an NP-complete problem [25] as well as problem HALF-
SIZE-CLIQUE; we refer, e.g., to [I] for an easy reduction of CLIQUE to HALF-SIZE-CLIQUE. In

what follows we will show the following reductions
HALF-SIZE-CLIQUE <p HALF-SIZE-CLIQUE-EDGE <p a-BAL-BIP. (11)

Here we say that L; <p Ls if we have a polynomial-time algorithm permitting to encode an instance
of L as an instance of Ly. We will show the first reduction in Theorem and the second one in
Theorem below. Then, using the reductions in , we obtain the following complexity results.

Theorem 2.1. Problem[1] (a-BAL-BIP) is an NP-complete problem.
Corollary 2.2. Computing the parameter h(G) for G bipartite is NP-hard.

Proof. Recall that computing «(G) in bipartite graphs can be done in polynomial time. Hence, if
there is a polynomial time algorithm for computing th), then one can decide in polynomial time

whether h(G) = @, which is equivalent to Problem |1} in view of Lemma O

The proof technique used to show the reduction from problem HALF-SIZE-CLIQUE-EDGE to
problem a-BAL-BIP will in fact allow to show a broader set of results. Namely it permits to show
hardness of testing whether any of the following equalities holds: ¢g(G) = gbal(G), h(G) = hpa(G),
or h(G) = 1./g(G). In other words, it is NP-hard to check whether any of the inequalities in
relation holds at equality. See Corollary below for these and other hardness results.

In the rest of the section we will prove the two reductions from relation and related
hardness results for the other (balanced) parameters. For this we use as a first ingredient the
following graph constructions.

Definition 2.1. Let G = (V(G), E(GQ)) and H = (V(H), E(H)) be two graphs with disjoint vertex

sets and let k > 1 be an integer.

(i) The disjoint union of G and H, denoted by G & H, is the graph with vertez set V(G) UV (H)
and edge set E(G)U E(H).

(ii) The join of G and H, denoted by G <1 H, is the graph with vertex set V(G) UV (H) and edge
set E(G)UE(H)U (V(G) x V(H)).

(iii) The k-th expansion of G, denoted by G®) | is the graph constructed as follows: its vertex set
is UveV(G) X, where X, are disjoint sets, each of size k, and we have a clique on each X,
and a complete bipartite graph between X, and X, whenever {u,v} € E(G).



Figure 1: Graph F, w(F') = 3, 6 nodes, 10 edges.

Clearly we have the following relations

V(Ge H)|=|V(G)|+|V(H)|, [E(Ge H)|=|EG)|+I|EH)],  (12)
w(G@® H) = max{w(G),w(H)},  (13)
V(G H)| = [V(G)[ + [V(H)|, |E(Gra H)| = [E(G)| + |EH)[+[V(G)]-[V(H)|,  (14)
w(G@x H) =w(qQ) +w(H), (15)
V(G| = bV (@), [B(GW)| = 5)IV(G)] + F|EG)], w(GP) = ke(G).  (16)

Theorem 2.3. HALF-SIZE-CLIQUE <p HALF-SIZE-CLIQUE-EDGE.
Proof. Let G be an instance of HALF-SIZE-CLIQUE, set |V (G)| = 2n, |E(G)| = m. Let t be the
smallest integer such that ( ) > 9n2+n-+m. Consider the graph F from Flg and define the graph

H := ((G>a F™) xa K;) @ Hy, where Hy is a graph with ¢ nodes and ( ) — (9n? + n + m) edges.
So the role of Hy is to add enough edges in order to ensure that |[E(H)| = \V( )W(V(H)| —2)/4.
Observe that H can be constructed in polynomial time. Using —, we obtain

|V(H)| = 8n+ 2t,

|E(H)| = (m+6(3) + 100 + 12n%) + (3) + 8nt + ((5) — 9n® —n —m)
= (n—+t)(dn+t—1) = 2(8n+2t)(8n +2t — 2),

w(H) =w(G) + 3n +t.

Hence, H is an instance of HALF-SIZE-CLIQUE-EDGE and w(H) > |V(H)|/2 if and only if
w(G) > |V(G)|/2. Therefore, if there is a polynomial time algorithm for solving HALF-SIZE-
CLIQUE-EDGE, then we can solve HALF-SIZE-CLIQUE in polynomial time. O

As a next step we show the reduction of HALF-SIZE-CLIQUE-EDGE to a-BAL-BIP. Our
proof is inspired from an argument in [4], where the authors consider minimum vertex covers in a
bipartite graph restricted to have at least k; vertices in one side of the bipartition and at least ko
vertices in the other side. In [4, Theorem 3.1] it is shown that deciding existence of such vertex
covers is NP-complete by giving a reduction from CLIQUE. We adapt this reduction by suitably
selecting the values of k; and ks, considering independent sets (complements of vertex covers)
instead of vertex covers, and modifying the graph construction used in [4].

The following graph construction will play a central role for the reduction of HALF-SIZE-
CLIQUE-EDGE to a-BAL-BIP (and other related problems).

Definition 2.4. Given a graph G = (V,E) with n := |V| and m := |E|, consider the bipartite
graph Hg = (V1 U Vo, Exy) constructed as follows.

(1) For each vertex v € V we construct two vertices v1 € Vi and vy € Vo and add the edge {v1,va}
to Eg.

(ii) For each edge e € E we construct two vertex sets L, C Vi and Re C Vo with |Le| = |Re| = n+1
and add all edges in L. X Re to Ep.



(iii) Ifv € V is incident to e € E, then we let v1 be adjacent in Hg to all vertices of Re.

Hence, setting Ly == {vi :v € V}, Ry :={vp : v € V}, Lg := U,cp Le, and Rg := J.cp Re, we
have Vi = Ly U Lg and Vo = Ry U Rg, there is a perfect matching between Ly and Ry, there is a
complete bipartite graph between L. and R, for each e € E, and there is a complete bipartite graph
between v1 € Vi and R, for each edge e € E containing v € V.

The next lemma shows that the maximal independent sets in the bipartite graph Hg have a
very special structure, which will be useful for the proof of Theorem below.

Lemma 2.5. Let G = (V, E) be a graph, n := |V|, m := |E|, and let Hg be the associated bipartite
graph as in Definition . Assume I C V(Hg) = Vi UV, is a maximal independent set of He.
Then I takes the following form

Invi={vi:veAdtu |J L, InVa={v:veBlu ] R, (17)
ecl ecE>

where ACV, B=V \ A, E; is the set of edges e € E that are incident to some node v € A, and
Es = E\ Eq (thus the set of edges e € E contained in B). Moreover, I is a mazimum independent
set of Hg and a(Hg) = n+m(n+1). Conversely, any set I as in is a (mazimum) independent
set of Hg.

Proof. Assume I C V3 UV, is a maximal independent set of Hg. Set A := {v € V : v € I},
B:={veV:v €l}, and Ey := E\ E;, where Ej is the set of edges e € E that are incident
to some node v € A; we show that holds. First, we have AN B = {) (for, if v € AN B, then
the edge {vi,v2} of Hg would be contained in I, contradicting that I is independent). Moreover,
AUB =V (for,if v € V\ (AUB), then the set I U{v2} would be independent in H¢, contradicting
the maximality of I). So we have IN Ly = {v; : v € A} and I N Ry = {v2 : v € B}. We now
claim that I N L = UeeE1 L, and INRg = UeeE1 R.. First note that, if I N R, # 0, then e is
not incident to any node of A and thus e € E5. Moreover, by maximality of I, we have R, C I for
any e € Fy. So we indeed have I N R = UeeE2 R. and in turn this implies I N Lg = UeeE1 L.
Therefore we have |I| = n + m(n + 1), which implies that a(Hg) = n + m(n + 1) and that I is
maximum independent. This concludes the proof (since the last (reverse) claim is straigthforward
to check). O

Corollary 2.6. Let G = (V, E) be a graph and let Hg be the bipartite graph as in Definition .
The following assertions are equivalent.

(i) ava(Hg) = a(Hg).
(ii) gvai(Ha) = g(Hg).
(iii) hbal(HG) = h(HG')

Proof. The implications (i) = (ii) and (i) = (iii) follow from relation (3). Conversely, assume (ii)
holds and let (A, B) be a balanced optimal solution for g(Hg). Then AU B is maximal independent
in Hg and thus, by Lemma [2.5] it is maximum, so that a(Hg) = |A U B| = apa(Hg) as (A, B) is
balanced. The same argument shows the implication (iii) = (i). O

Now we show the main result of the section, which combined with Theorem implies
Theorem 211



Theorem 2.7. Let G = (V, E) be a graph satisfying |E| = 1|V|(|V|—2) and let Hg be the associated
bipartite graph as in Definition|2.4. The following assertions are equivalent.

(i) G has a clique of size |V|/2, i.e., w(G) > |V|/2.

(il) a(Hg) = apa(Hg).
Therefore, HALF-SIZE-CLIQUE-EDGE <p a-BAL-BIP.

Proof. We first show (i) = (ii). Assume C' is a clique of G with |C| = [V|/2. Let E3 be the
set of edges of G that are contained in C, so that Ey := E \ E is the set of edges of G that

are incident to some node in V' \ C. By the assumption on G we have (|V2|/ 2) = @ and thus
|Es| = (|V2|/2) = @ = |F4]|. Consider the subset I C V; U V3 of V(Hg), which is defined by

INVi={n:v¢Chu | J L, INVa={v:veC}u ] R
ecEq ecks

By Lemma I is a maximum independent set in Hg and a(Hg) = n + m(n + 1). Moreover, we
have |I N'Vi| = |I N Va|, which shows that ap.(Hg) = a(Hg).

Now we show (ii) = (i). By the assumption (ii), Hg has a balanced maximum independent
set I. By Lemma I takes the form as in (I7)). As I is balanced we have [I NV;i| = [I N V3| and
thus ||A| — |B|| = (n+ 1)||E2| — | E1l||. If |E1| # |F2| then the left hand side is at most n while the
right hand side is at least n + 1. Therefore we have |Eq| = |E2| = |E|/2 and |A| = |B| = |V|/2.
Moreover, |Eq| < (“23‘) = (|V2|/ 2) since Fy consists of the edges that are contained in B. This gives
|E| = 2|Es| < 2(|V2|/2) = |V|(|JV| — 2)/4. We now use the assumption |E| = |V|(|V| — 2)/4 on the
number of edges of G, which implies that equality holds throughout and thus that B is a clique in
G of size |B| = |V'|/2, showing (i). O

Corollary 2.8. Given a bipartite graph G it is NP-hard to decide whether any of the following
equalities holds.

(i) 9(G) = gbal(G).
(ii) 1(G) = hba(G).
(iii) ~(G) = 1a(G).
(iv) 3v/9(G) = ;a(G).

(v) MG) =319(G).

Proof. We show that it is NP-hard to check any of the equalities (i)-(v) for the class of bipartite
graphs that are of the form H¢ (as in Definition for some graph G with |E| = 2|V|(|V| - 2).
The key fact is that, for bipartite graphs of the form Hg, any of the assertions (i)-(v) is equivalent
to a(Hg) = apal(Hg); this was shown in Corollary for (i)-(ii) and in relation for (iii)-(iv),
and one can easily verify that (v) implies (i). Then the corollary follows using Theorems [2.3|and
together with hardness of HALF-SIZE-CLIQUE. O

Remark 2.9. The hardness results in Corollary hold in fact for a broader class of bipartite
graph parameters. For this consider a bivariate function f : Ri — R that satisfies the condition
a+b a+b

f(a,b) < T and f(a,b) = 1 < a=b, foralabeN (18)
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and define the corresponding graph parameter

f(G) :=max{f(|Al, |B]) : (4, B) is bipartite biindependent in G}  for G bipartite.

Using relation @ one can check the inequalities %(G) < f(@) < @ and the equivalence

f(G) = @ < a(GQ) = apa(G). Using Theorem it follows that computing f(-) is NP-hard
(already for the bipartite graphs of the form Hg for some graph G with |V |(|[V| —2)/4 edges).

Ezxamples of functions satisfying @ include f(a,b) = a%) (giving the parameter h(G)) and

f(a,b) = %\/@ (giving 11/9(G)), or any f(-) nested between h(-) and 1/g(-). As another ezample
1—
consider f(a,b) = (%\/@)p(‘%b> 8 with 0 < p < 1, which gives a graph parameter f(-) nested

between 3+/g(-) and #.

3 Semidefinite approximations for the parameters ¢(G) and h(G)

In this section we introduce semidefinite approximations for the parameters g(-) and h(-) from
and , which are both NP-hard to compute as we saw in the previous sections. Let G = (V =
Vi U Va, E) be a bipartite graph and let C' be the matrix from relation below. The starting
point is to formulate the parameters g(G) and h(G) as maximizing, respectively, the quadratic
polynomial 2TCz and the rational function ’”;T(’;c L over the vectors x € {0, 1}|V| such that z;z; =0
for all {i,7} € E. Then, to get a tractable approximation, a common approach is to linearize the

quadratic terms by introducing a matrix X modeling zz" in the case of ¢(G), and modeling % in
the case of h(G). In this way one obtains the semidefinite bounds g1 (G) and hi(G) introduced earlier
in and ([9). More generally, one can define hierarchies of semidefinite parameters (h,(G))ren
and (g,(G))ren that upper bound h(G) and ¢g(G), respectively, using polynomial optimization
techniques. Then the parameters h;(G) and g1 (G) correspond to the bounds at the first level r = 1
in these hierarchies. We will next briefly recall how the polynomial optimization approach applies
for bounding the parameters g(G) and h(G) and after that we investigate the bounds ¢1(G) and
h1(G) in more detail.

3.1 Polynomial optimization formulations and bounds

We begin with a short recap on notation about polynomials and their use for approximating stable
sets in graphs. For an integer r € N, R[z], = R[z1,...,z,], denotes the set of n-variate polynomials
with degree at most r. Then ¥, C R[z]s, denotes the set of sums of squares of polynomials, of the
form Zle u? with u; € R[z], and k € N. Recall that one can test whether a polynomial f € R[z]a,
belongs to Y, via semidefinite optimization. Indeed, f € ¥, if and only if there exists a positive
semidefinite matrix @ that satisfies the polynomial identity f(z) = [2z]TQ[z],, where [z], denotes
the vector of square-free (aka multilinear) monomials of degree at most r. In particular [z]; denotes
the (column) vector (1,z1,...,2,)T.

Let G = (V = [n], E) be a graph. Define the ideal I C R[z| generated by the polynomials
2} —z; (i € V) and z;z; ({i,j} € E), which consists of the polynomials ¢ = >,y ui(z? — z;) +
Z{i,j}eE wijriz; with ui,u;; € Rlz]. For an integer r € N, let I 2, C R[z]s, denote its degree 2r
truncation consisting of the above polynomials ¢, where we require that u; and u;; have degree at
most 2r — 2. The motivation for considering the ideal I comes from the fact that the stable sets in
G correspond to the vectors in its variety V(Ig), i.e., to the vectors x € R™ satisfying x? —x; =0

11



for i € V and x;x; = 0 for {7,j} € E. This enables reformulating the stability number of G as
a(G) = max{in S V(Ig)} = min{)\ A — sz >0 for all x € V(Ig)} (19)
2% eV

= min {)\ A — Z x; € Ea(G) + IG’,Za(G)}' (20)
i€V

Here, the last equality follows from the following well-known key fact: for a polynomial p € R[z],

p(z) >0forallz e V(Ig) <=p¢€ Yo+ 1la (21)
(see [29], [30]). This motivates defining the parameters
las, (G) := min {)\ A — Zmz eX,+ IG,QT} for any r € N, (22)
eV

also known as the Lasserre bounds for «(G). The parameter las,(G) can be expressed via a
semidefinite program and we have a(G) < las,4+1(G) < las,(G), with equality a(G) = las,(G) if
r > a(G) [30]. At order r = 1 we obtain the bound las; (G) which, after applying SDP duality, can
be checked to take the form

1 diag(X)T

las; (G) = max {(1, X) : X € S", <diag(X) g

) =0, Xi; =0 for {i,j} € E} (23)

Another upper bound on «(G) is the theta number by Lovasz [32], defined by
Y(G) =max{(J,X): X €S", X >0, (I,X)=1, X;; =0for {i,j} € E}. (24)
As is well-known these two bounds coincide:
las; (G) = 9(Q) (25)

(see, e.g., [18]; see also Remark [3.7)). Moreover, J(G) = a(G) if G is bipartite (more generally, if
G is perfect, see [18]). We now indicate how the polynomial optimization approach sketched above
also applies to the parameters g(-) and h(-).

Assume now G = (V = V3 U Vi, F) is a bipartite graph. Define the matrix

o=t ( 0 J|v1,|v2|) c sV, (26)
2 \Jjval,val

so that 2'Cx = (Yiev, i) (X jeva zj). As observed above one can encode a biindependent pair
(A, B) with A C V; and B C V4 by its characteristic vector x = y4“Z, which belongs to the variety
V(Ig). Then we can express the parameters g(G) and h(G) as

9(G) = max {xTCx 2= (i€ V), ma; =0 ({i,j} € E)}, (27)
r'Cx , .
hG) = max{ ol (teV), zjxz; =0 ({i,5} € E)} (28)
The Lasserre bounds of order r for g(G) and h(G) read, respectively,
g-(G) :==min{\: A\ —2"Cx € %, + Igar}, (29)
he(G) := min{\: T (A — C)z € B, + Igar}, (30)

and the next result follows as a direct application of relation .

12



Lemma 3.1. Let G be a bipartite graph. For any integer r > 1, we have g(G) < g¢.(G) and
h(G) < hy(G), with equality if r > a(G).

Since sums of squares of polynomials can be modelled using positive semidefinite matrices the
parameters las,(G), ¢,(G), h.(G) can be formulated using a semidefinite program. In later sections
we will give the explicit semidefinite programs for the parameters ¢ (G) and hi(G), their symmetric
versions and their balanced analogs. An important property that we will use is that strong duality
holds for all these semidefinite programs, which follows from a result in [24] (thanks to the presence
of the equations 22 — z; = 0 for 7 € V in the original polynomial optimization problems).

i

3.2 Semidefinite formulations for the Lasserre bounds h,(G) and ¢;(G)

In this section we give explicit semidefinite formulations for the Lasserre bounds and of
order r = 1 for g(G) and h(G). In particular, we indicate how to obtain the formulations given
earlier in and égl) Recall that S consists of the matrices in SV that are supported by G. We
begin with a claim expressing polynomials in the truncated ideal I that we will repeatedly use.

Lemma 3.2. Given a graph G = (V, E) and a matrizc M € StV (indezed by {0} UV ) we have
[z]] M[z]1 € Ig2 if and only if M takes the form

M = 0 —u' /2 for someu e RVl Z e S (31)
—u/2 Diag(u)+ Z ’ G

Proof. By definition, [z]{ M[z] € Igz if [#]{ M[z]y = 3,0y wi(a? — z;) + >_{i,j}ep WijTix; for some

u;, u;; € R. The result follows by equating coefficients at both sides of this polynomial identity. [J

We now give semidefinite formulations for the parameters hi(G) and ¢1(G).

Lemma 3.3. Let G = (V = V1 U Vi, E) be a bipartite graph. Then the Lasserre bound of order
r =1 for h(G) can be reformulated as

m(G) = min [N\ +Z-Cr0, ZeSa), (32)
= )1{11@:/{(0, X): X >0, Te(X) =1, X35 =0 for {i,j} € E}. (33)
€

Proof. By definition, hq(G) is the smallest scalar A for which zT(AM — O)x € % + Ig 2, i.e., the
smallest A for which [z]] Q[z]; — 2T (A — C)x € Ig 2 for some matrix @ = 0 (indexed by {0} U V).
Using Lemma we obtain that Qo = 0 and thus Q; = 0 for all i € V' (as @ > 0). From this
follows that the principal submatrix indexed by V takes the form Q[V] = Z + AI — C for some
Z € 8¢ and we arrive at the formulation for hi(G). By taking the semidefinite dual we obtain
the formulation . As already noted above strong duality holds, as an application of [24]. O

Lemma 3.4. Let G be a bipartite graph. Then we have

_ . A u'/2

91(G) = AR RV ZeSV {)\ ' <U/2 Diag(u) — C'+ Z> =0 2e SG}7 oy
B . 1 diag(X)T o .
_)?é%}\(/{<c’X> : <diag(X) Y =0, X;; =0 for {z,j}EE}. (35)

Proof. By definition g1(G) is the smallest scalar A for which A —27Cxz € Y3 + I 2. In other words
this is the smallest A for which there exists @ = 0 such that [z]{ (Q — (5 _%))[z]1 € Ig,2. Using
Lemma we obtain the formulation of ¢1(G) as in (34). Then the formulation follows by
taking the dual of the semidefinite program and strong duality holds, by a result in [24]. O
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Remark 3.5. In order to highlight some similarities and differences between the parameters las; (G),
91(G) and hy(G) we indicate how to derive the formulation of las1(G). Let us start with the def-
inition of lasi (G) as the smallest X for which X\=3 ..y, x; € Bo+1Ig 2. Since Y oy —x'lz e Ico
we can alternatively search for the smallest A for which [:EH(Q — (3 f),)) [z]1 € Ig2. Using
Lemma 3.2 we obtain

lasy (G) = min {)\ : A u'/2 =0, Z e Sg}. (36)
AERueRY ,ZeSV u/2 Diag(u)—I+2Z) =7
Taking the dual semidefinite program of (@) we arrive at the formulation .
Note the similarity between programs and @, which are the same up to exchanging the
matrices C' and I. Note also that it is possible to simplify program (@) and to bring it in the form

-
las;(G) = min {)\: <>€\ Ij—Z) =0, ZESG}7 (37)

AER,ZeSV
which is another well-known formulation of ¥(G). To see this, call Q the matriz in program (@)
As Qi = u; — 1 >0 we have u; > 1 for all i € V. By scaling the ith column/row of Q by 2/u;
_9)\2
and adding 1 — %(uz -1) = % > 0 to entry Qi, we obtain a new matriz Q' = 0 satisfying
Q= Q=1 for alli € V, thus feasible for . This shows the equivalence of (@ and .
Note, however, that the above rescaling trick could not be applied to program ; indeed if Q
denotes the matrix appearing in , then one must have Q;; = —1/2 for all positions (i, j) € VixVa
corresponding to non-edges of G.

Finally, we mention a natural strengthening of hi(G), obtained by adding one row/column to
the matrix variable (as in the definition of ¢1(G)):

Ry (G) == max{(C,X} : <i i) =0, Tr(X) =1, z = diag(X), X;; =0 for {i,j} € E} (38)

We have
h(G) < W (G) < h(G).

The inequality h}(G) < hi(G) is clear since any feasible solution of gives a feasible solution
of . To see that h(G) < b} (G), let (A, B) be an optimal solution for h(G) and set y := xy“5.
Then z := y/e'y and X := yy' /eTy provide a feasible solution for k) (G), with value (C, X) =
|A| - |B|/|AU B| = h(G) (using the fact that X — 22T = yyT(eTy — 1)/(eTy)? = 0). In the next
section we will show that hy(G) upper bounds also 31/g(G); the next example shows this is not
true for A} (G).

Example 3.6. Let G = (V1UVa, E) be the bipartite graph with Vi = {1,2}, Vo = {3,4}, and a single
edge {1,3}, see Figure . We have by (G) < (@ =)1/9(G) = hi(G). Indeed, hi(G) > 3/9(G)
holds by Proposition and hi1(G) < ? follows from the fact that gl + Ag — C = 0, which
exhibits a feasible solution to . Moreover, the strict inequality hy (G) < ? follows from the fact
that the dual program (defined below) of has feasible solution A = 0.0002, n = 0.7068,
u = (—0.01,0.004, —0.01,0.004)T, Z = 0.99A¢, with objective value 0.707 < ¥%2.
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3.3 Comparison of the Lasserre bounds h,(G) and ¢,(G)

In this section we show the following inequalities
h(G) < % 9(G) < hi(G) < %\/gl(G) < ia(G) for any bipartite graph G,

that were claimed in Proposition One may have strict inequalities 71 (G) < 31/91(G) < 3a(G),
e.g., when G is the complete bipartite graph K, minus a perfect matching and n > 5 (see
Section . To show the above inequalities we will use, in particular, the fact that the theta
number J(G) admits the two equivalent formulations that were given earlier in and (recall
([25)), see also Remark and the fact that ¥(G) = a(G) when G is a bipartite graph. Recall
that we already know h(G) < 31/¢(G) from Lemma Hence, in order to show Proposition
it suffices to show the inequalities 11/g(G) < hi(G), hi(G) < 1/91(G), M(G) < 3a(G), and
91(G) < a(G)(G).

Proof of 1/9(G) < hi(G). Let (A, B) be an optimal solution for ¢(G) with |A] =: a,|B| =: b
and let (A, Z) be a feasible solution for the formulation of hi(G); we show that A > V/ab.
By assumption, the matrix M := A\ + Z — C' is positive semidefinite and thus also its principal
submatrix M[A U B] is positive semidefinite. Observe that M[A U B] has the block-form

N,  —iJ b)
M[AUB] = oy 27w
AU (—ng,a AL

because Z;; = 0 fori € A,j € B as AUB is independent. By taking a Schur complement we obtain
that M[A U B] = 0 if and only if AI, — 5 J,q = 0. This implies A > $v/ab = £,/¢(G) and thus
hi(G) > 5/9(G). O
Proof of hi(G) < 11/91(G). Let X be an optimal solution for the formulation of hi(G).
Then X = 0 and thus X = (y;y;)ijev for some vectors y; € RVl (i € V). We may assume
without loss of generality that y; # 0 for ¢ € V' (since, if y; = 0, then we just replace X by its
principal submatrix indexed by V'\ {i}). Define the vectors y' := > .y, yi and y" = >7, ., v,
so that h1(G) = (C, X) = (y/)Ty". To shorten notation we set h := h1(G) = (/)7y". We may
assume h > 0, else there is nothing to prove. For e = £1, define the vector d. := % Here the
convention is that we consider the vector d. only if i/ +ey” # 0. Note that at least one of d; and d_;
is well-defined (since otherwise one would have y' = y” = 0, implying h1(G) = 0, a contradiction).
Then let X, denote the Gram matrix of the vectors ﬁg%yi for i € V; we claim that X, is feasible for
the formulation of g1(G). To see it, consider the matrix Y, defined as the Gram matrix of the
de yi

vectors d. and Tz Yi for ¢ € V, so that X is its principal submatrix indexed by V', and note that

Ye =0, (Yoo =1, (Yo)oi = (Ye)is fori € V, and (Ye);; = 0if {4, 5} € E. Hence, if one can show that
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(C,X.) > 4(C, X)? for some € € {£1}, then this implies g1(G) > (C, X.) > 4(C, X)? = 4h1(G)?
and the proof is complete. The rest of the proof is devoted to showing that (C, X.) > 4(C, X)? for
some € € {£1}, and is a bit technical.

In a first step, we show that the vectors y; (i € V') satisfy the following relations

yiy" = 2hllyi]|* (i€ W), (39)
iy = 2hlly;l* (G € Va). (40)

For this consider an optimal solution S := hl + Z — C' of the program defining hi(G), where
Z € Sg. As X and S are primal and dual optimal solutions we must have XS = 0, i.e.,, 0 =
hX + XZ — XC. We now compute the diagonal entries. Note that (XZ);; = 0 for all i € V' (since,
for each k € V, we have X;, = 0 or Z;; = 0). Hence, for i € V4, we have h||y;||? = hX; = (XO)y =
%ZEVQ Xij = 5le " and, for j € Va, we have hlly;|*> = hX;; = (XC);; = %Zie\ﬁ Xij = %y]Ty’

So and ) hold.

We now proceed to compute

dTZ/z dTy T
(C, Xe) = T RRTLENS (41)

First, we compute (part of) the inner term for ¢ € V; and j € Va:

dlyi-dly; 1 @4y +e)y; (42)
lyall*llyi > [y + ey”|I? lyall*lly; 12
1 NT INT, . NT,, . (N\T,,.
S 2(2h( V) b op W) b5y W) v () +ap%),  (43)
ly" + ey”|| [yl 19l il [ly;

where we have used relations , and that €2 = 1 to carry out the simplifications. Next
observe that

Ny, NT o /
ST =3 (S aln) = 2 Ty = S0/ = 2u

lill?

(1,§)EVI X Vo A% JjeVL eV %1
(44)
where we have used again relation . In the same way we have
(") "y
(i)evixvy 197
Combining , , and , we obtain
1 NT o (0T, 0 To,.
(X = s (W P+ I+ )Ty e S WLy
ly | () EVxVa [1yill* [l
1 W) i - (") iyl ys
- T 2(4h2uy’+ey"||2 AN e 30 )
Iy + ey’ VXV 1yl ;|
—An2 4 € < Z (y’)Tyi . (y//)Tyj . y;‘ryj _ 4h3> —4p2 4 €@ )
ly" + eyl X S s 1115112 ly + ey”|?

16



We can now conclude the proof. Assume first 3/ + 1" # 0, so that both dy and d_; are well-defined.
If ¢ > 0 then (C, X1) > 4h2. Otherwise, if ¢ < 0, then (C,X_1) > 4h%. So we have shown the
desired result: (C, X.) > 4h? for some € € {#1}. Consider now the case when 3’ = ey” for some
e € {£1}. Then, using relations and ([40), we obtain that ¢ = 0. Hence, if y' = y” (resp.,
y' = —y"), then we have (C, X1) > 4h? (resp., (C, X_1) > 4h?), which concludes the proof. O

Remark 3.7. Note that the proof for the inequality h1(G) < % 91(G) resembles - but is technically
more involved than - the classical proof for the inequality las;(G) > VU(G), where lasi(G) is given
by and Y(G) by and G is an arbitrary graph. (The reverse inequality 9(G) > lasi(G)
is straightforward.) We sketch the proof for las;(G) > 9(G) in order to highlight the resemblance
with the proof above for % 91(G) > hi(G). So assume X is optimal for (defined as the
Gram matriz of vectors y; for i € V) and construct the matriz X1 (as the Gram matriz of the

dly: .
vectors g Lzy; fori € V, where dy = (Yiey i)/l Ziey will ). Then, 9(G) = (J, X) = | Xicy uill®,
= (I, X) =Yy llyill®, and y]y; = 0 if {i, i} € E. This implies X1 is feasible for , and thus

las1 (G) > (X1, 1I). It suffices now to check that (X1,I) =3,y (T‘llylleQ > || Y ey vil> = 9(G). But

this follows easily using Cauchy-Schwartz inequality, namely

a7 . d ' dTZ‘Z
I il = 3w = (3, ) < (3 ) Q1) -3

eV i€V eV eV

Proof of hi(G) < 1a(G). Let X be optimal for the formulation of h1(G). Then X is
feasible for and thus 9(G) > (J, X). Since J —4C = 0 this implies (J, X) > 4(C, X) = 4h(G).
Combining both inequalities we get 4h1(G) < ¥(G) = a(G). O

Proof of ¢1(G) < a(G)hi1(G). Let X be an optimal solution for the formulation of g1(G).
Then sy is feasible for hy(G) and thus g1(G) = (0, X) < hi(G) - Tr(X). On the other hand,
X is feasible for (23), which gives 9(G) > Tr(X). Combining these two facts we obtain that
91(G) < h(G) -9(G) = hi(G) - (G). O

Remark 3.8. So we have the following chain of inequalities for any bipartite graph G,

Tona(@) < h(G) < Vg(@) < (@) < 10(G)

(Proposition and Lemma([1.1). Hence equality o(G) = apai(G) implies hi(G) = h(G). Observe
that the reverse implication holds when restricting to the bipartite graphs of the form Hg (con-
structed from some graph G as in Definition . Indeed, hi(Hg) = h(Hg) implies 3\/g(Hg) =
h(Hg), which in turn implies g(Ha) = ghal(He) (Corollary[2.8 and its proof) and thus a(Hg) =
apal(Hg) (Corollary @) This shows that deciding whether the parameter h(-) coincides with its
semidefinite relaxation hy(-) is an NP-hard problem (already when restricting to the bipartite graphs
of the form Hg, recall Theorem . This can be seen as an analog of the hardness of deciding
whether the basic semidefinite relazation of the mazimum cut problem is exact, as shown in [J].

4 Eigenvalue bounds for the parameters ¢g(G) and h(G)

Let G = (V, E) be a bipartite graph, with adjacency matrix Ag. We have introduced in Lemmas
and the parameters g1(G) and hq(G) that, respectively, upper bound the parameters g(G) and
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h(G). For convenience, we repeat their formulations

. . . T
91(G) = /\ER,ZIE%}‘I},?LERV {X: A(Diag(u) —C+2) — fuu' =0, A >0, Z € Sg},

hi(G)= min {A\: X[ +Z-C*0, Z € Sa}
AER,ZeSY

(where the formulation for g;(G) follows from after taking the Schur complement with respect
to the upper left corner A). In order to obtain closed-form parameters one may restrict the optimiza-
tion in each of the above programs to matrices Z = tA¢g (for some ¢t € R) and, for the parameter
91(G), to vectors u = pe (for some p € R). Let §(G) and h(G) denote the parameters obtained
in this way, so that ¢1(G) < g(G) and hi(G) < E(G) When the graph G is regular, the all-ones
vector is an eigenvector of the matrices involved in the programs defining g(G) and E(G), and, as
we will show below, this allows to show the closed-form expressions claimed in Proposition [T.3] for
9(G) and h(G) in terms of the second largest eigenvalue Ay of Ag and n := |V4| = |V3|.

We will use the following basic result about the eigenvalues of Ag. We refer, e.g., to the book
by Brouwer and Haemers [3] for general background about eigenvalues of graphs.

Lemma 4.1. Assume G = (V1 U Vo, E) is a bipartite r-regular graph with |Vi| = |Va| =1 n > 2.
Then its adjacency matriz is of the form

Ag = <1\35 ]‘gG> . where Mg € RIViIXIV2l, (46)

the eigenvalues of Ag are £/ Ni(MaMJ) fori € [n], Mi(Ag) =1, Aan(Ac) = —r, and A2(Ag) > 0,
with equality A\2(Ag) = 0 if and only if G is complete bipartite. In the case when G = B(H) is the
bipartite double of an r-reqular graph H, we have Mg = Ay, the eigenvalues of Ag(my are £A\i(An)
for i € [n] and thus A2(Apm)) = max{A2(An), —An(An)}. When G = Bo(H) is the evtended
bipartite double of H, we have Mg = Ay + I and Ma(Apg,(my) = max{Aa(Ay) + 1, =\ (An) — 1}.

4.1 An eigenvalue-based upper bound E(G) for h(G)

We give a closed-form eigenvalue-based upper bound for the parameter h(G) in the case when the
bipartite graph G is r-regular. Let n := |Vj| = |V3| and let Ay denote the second largest eigenvalue
of Ag (i-e., the second largest singular value of Mg, by Lemma [4.1)). Vallentin [4I] shows that
h(G) < % Xg, our next result gives a sharpening of this bound.

Proposition 4.2. Assume G is a bipartite r-reqular graph, set |Vi| = |Va| =: n, and let Ay be the
second largest eigenvalue of its adjacency matriz Aq. Then we have

~ n A n
h(G) < WG) = 5 - —|—2>\2 < e (47)
Moreover, equality hi(G) = %riiz holds when G is edge-transitive.

Proof. We may assume G is not complete bipartite (else A2 = 0 and h(G) = h1(G) = E(G) =0).
The inequality & - iig < 2y is clear; we now show h1(G) < 5 J)F‘QAQ For this we use the formulation
of h1(G) from (32), where we restrict the optimization to matrices Z of the form Z = tAg for some

scalar ¢ € R; we will show that the resulting optimal value is equal to 5 ii . Note that when G
2
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is edge-transitive this restriction can be made without loss of generality. Thus we aim to compute
the optimum value of the program

h(@G) = min {A: A +tAg — C = 0}, (48)

which upper bounds hi(G) and is equal to it when G is edge-transitive. By taking a Schur com-
plement, the matrix

_1
/\I+tAg—C—< M tMe 2‘]>

tML —3J A
is positive semidefinite if and only if A > 0 and the matrix
NI — (tMg — $0)(tME — 37) = N2T — (Mg ME — §MaJ — LIME + 1?)

= NI - MM+ ST+ 3T —2J

= NI —*MgM&+ (rt — 2)J = Q
is positive semidefinite. Since G is not complete bipartite we have A > 0. We now analyze when @
is positive semidefinite. The all-ones vector e is an eigenvector of MgMg and J, and thus also of
Q. Any eigenvector w L e of MgMg for )\Z-(MgM-Gr) (2 < i <mn)is an eigenvector of Q). Then the
eigenvalues of ) at these eigenvectors are as follows:

at e: AN — %% +n(tr — ),
atw Le M- t2)\i(MgMg) fori=2,...,n.

Hence, Q = 0 if and only if A2 — 212 + n(tr — %) >0 and A2 — tQAi(MgMg) > 0 for any ¢ > 2,
which is equivalent to A2 — ¢2A3 > 0 (recall Lemma . Therefore, we must select ¢ such that

max{t’\2, t*r? — ntr + %2} is smallest possible.

This maximum value is minimized at a root of the quadratic function ¢(t) := (t?r% — trn + %2) -

223 =t2(r? — \3) —trn + "72. Its discriminant is r2n? — n?(r? — A\3) = n?)3 and ¢(¢) has two roots
rnt+ende n
2(r2—23) — 2(r—eX2)

t:= m Therefore we have }\L(G) =ty = Q(T’CLTA%Q)’ which proves . O

for € = +1. So max{t?\3,t*r? — ntr + %2} is minimized at the smallest root

The parameter k) (G) introduced in provides an upper bound for h(G) that is at least as
good as h1(G). A natural question is whether one can derive from it another closed-form bound for
h(G) that may improve on h(G) when G is regular. To define such a bound one follows the same
strategy as for ﬁ(G) First, one writes the dual formulation of , which reads

min {)\ +n: A —u' /2
AnER uER™, ZeSn ' —uT/2 Diag(u) +nl + Z — C
Then one restricts the optimization to u = pe and Z = tAg for scalars u,t € R and, after that,

one takes again the dual, which gives the parameter

(G) = max{<c,X> : (; i) =0, Te(X) =1, 'z =1, (Ag, X) = o}. (50)

>zo, ZeSG}. (49)

To ease the comparison with ﬁ(G), let us also write the dual program of , which reads
1(G) = max{(C,X): X = 0, Tr(X) =1, (Ag, X) = 0}. (51)

(Strong duality holds since is strictly feasible.) Both parameters lAl(G) and b/ (G) in fact coin-
cide. To show this we need the following auxiliary result, whose proof is postponed to Appendix
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Lemma 4.3. Assume X € S" satisfies X > 0 and Tr(X) = 1. Then there exists a vector x € R"

T
such that <i - ) =0 and e'z =1 if and only if (J, X) > 1.

X
Proposition 4.4. For any bipartite reqular graph G we have E(G) = ﬁ’(G).

Proof. Comparing (50) with (51) it is clear that 2/(G) < h(G). If G = K,,, then both bounds
are equal to 0. Assume G # K, , and let X be an optimal solution for . As J—-4C = 0
we have (J, X) > 4(C, X) = 4-h(G) > 4- h(G) > 2 (where h(G) > 1/2 follows by considering a
biindependent pair ({a},{b}) with a € V] and b € V5). Hence we can apply Lemma 4.3 and find a
vector x such that (x, X) is feasible for , which shows that 7/(G) > (C, X) = h(G). O

4.2 An eigenvalue-based upper bound g(G) for ¢(G)

In the same way one can give an eigenvalue-based upper bound g(G) for the parameter g(G) when
G is bipartite r-regular. It is obtained by solving analytically the following optimization problem

SO = i (] Y
3(G) - A%IEIR{A.A(NI C +tAg) 4J_0,/\_0}.

The details are analogous to those for the parameter E(G) considered in the previous section, but
technically more involved. So we postpone the proof of the next result to Appendix [C]

Proposition 4.5. Assume G is a bipartite r-reqular graph, set n := |Vi| = |Va|, and let Ay be the
second largest eigenvalue of the adjacency matrix Aq of G. Then we have

n2\3 .
g1(G) < /g\(G) {(Ag—i— r)?2 Zf’f’ < 3/\2,

n2\y .
(=) otherwise.

Moreover, equality g1(G) = g(G) holds if G is vertex- and edge-transitive.

Remark 4.6. Here are examples of reqular bipartite graphs satisfying r < 3)Xo, or the reverse
inequality 3ha < r: If G is a perfect matching on 2n vertices, then Aoa = r = 1 and thus r < 3Xg
(see Section ; on the other hand, if G' is the complete bipartite graph K, , minus a perfect
matching, then r =n —1 and As = 1 and thus r > 3X9 if n > 4 (see Section .

Recall the inequalities h(G) < $1/g(G) (from Lemma and hi(G) < 3/q1(G) (from

Proposition . One can check that also the eigenvalue bounds satisfy the analogous relation

E(G) < % 9(G), with equality if and only ifr < 3)Xy. Hence, in the regime 3)\2 < r, the parameter

1(G) provides a strictly better bound than 3V 39(G) for both h(G) and 3+/g

So we have hi(G) < mln{h ), 2Va(G)} < max{h ,2\/91 )} < Vg We now
observe that the two parameters h(G ) and 2\/917 are incomparable. Indeed, as Observed abowve,
strict inequality ?L(G) < 3/ 91(G) may hold (e.g., for Ky, ,, minus a perfect matching). On the other
hand, there are reqular bipartite graphs satisfying % 91(G) < iAL(G) (such G is not edge-transitive).
As an example, let G be the disjoint union of Cy and Cg, thus 2-regular with Ao = 2. Then, we

verified that £/g1(G) = 16 < 2 = //{(G)
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4.3 Links to some other eigenvalue bounds

In this section we investigate links between the new bounds introduced in previous sections and
some known eigenvalue bounds in the literature. First we point out a natural link between ﬁ()
and Hoffman’s ratio bound for the stability number of a graph. After that, we present links to
some spectral parameters ¢(G), ¢'(G) and ¢ (G) by Haemers |20}, 21], which he used to bound the
parameter gp.(G), the maximum number of edges in a biclique of an arbitrary graph G; see ,
and below for the exact definitions. As gue(G) = gni(G) = g(Bo(G)), also the parameter
h1(Bo(G)) provides an upper bound for gn.(G). We will review the parameters of Haemers and
investigate their relationships with the parameters hy(-) and h(-).

~

4.3.1 Linking the parameter h(B(G)) to Hoffman’s bound for a(G)

Let G = (V = [n],E) be an arbitrary graph and let \,(Ag) be the smallest eigenvalue of its
adjacency matrix. If G is r-regular, then the following bound holds for its stability number:

- (Ag)
a(G) < nr_)\n(AG)'
This bound was proved by Hoffman (unpublished) and is known as Hoffman’s ratio bound (see
Haemers [22] for a short proof and a historical account). There is a tight link between Hoffman’s
ratio bound for G and the parameter h(-) for its bipartite double B(G). Indeed, if A C V is an
independent set in G, then the pair (A, A) is a balanced biindependent pair in B(G). So |A| < a(G)
and 2|A| < apu(B(G)) < 4 - h(B(G)), giving
1

(52)

A2 (Ap))
r+ Xa(Ape)
By Lemma we have \2(Apq)) = max{A2(Ag), —An(Ag)}, and thus

o —a(Ac) " A2 (Apa))
r— M (Ag) T+ X (Ap@)
Lovész [32] showed that also ¥(G) is upper bounded by Hoffman’s ratio bound. The parameters
Y(G) and hi(B(G)) satisfy the analogous relationship: 9(G) < 2 - hi(B(G)). Indeed, if X is an
optimal solution to program , then the matrix X' := (¥ %) is feasible for with objective
value (C, X') = %(J,X) = %ﬁ(G), giving the desired inequality.

a(G) < g (B(G)) < 2-W(B(G)) =n (53)

<2 R(B(G)) =

4.3.2 Linking the parameter h;(By(G)) to Haemers’ spectral bound ¢(G)

As we saw earlier, for any bipartite graph G, the parameter h;(G) provides an upper bound for

the parameter g(G), via % 9(G) < hi(G). This also directly gives a bound for the parameter

91i(G) = g(Bo(G)) when G is an arbitrary graph, namely 3+/gni(G) < hi(Bo(G)).
For an arbitrary graph G = (V, E), Haemers [2I] introduces the spectral parameter

©(G) = min {Aps(M) : M;; =1 for all {i,j} € E}, (54)
MeSIVI

where Agps(M) denotes the maximum absolute value of an eigenvalue of M, and he shows that

©(G) provides an upper bound for the parameter gn.(G) = gni(G) via the inequality
gre(G) < 9(G). (55)
So we have two bounds for g,(G), namely £+/gvc(G) < 30(G) and 31/gue(G) < hi(Bo(G)).

We now show that these two upper bounds in fact coincide.
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Lemma 4.7. For any graph G, we have h1(By(G)) = 3¢(G).
Proof. Let G = (V,E) and G = (V, E). First observe the parameter ¢(G) can be reformulated as

0(G) = min{)\maX(Y) Y = (1\04 1\()4) , M eVl My =1 forall {i,j} E}; (56)

this follows from the fact that the eigenvalues of any Y in are £\;(M) for i € [|[V]]. Let VUV’
be the vertex set of the extended bipartite double By(G), where V' is a disjoint copy of V, and
let C' be the matrix from , which is now indexed by V U V’'. We use the formulation of
h1(Bo(G)), defined as the smallest scalar A for which A\ — C + Z = 0 for some Z € Sp(g) or,
equivalently, as the minimum value of A\y.x(C' — Z) for Z € S Bo(q)- Since the condition Z € S ()
corresponds to Y := 2(C' — Z) being feasible for , we can conclude that 2h;(Bo(G)) = p(G). O

4.3.3 Linking h1(By(G)) to Haemers’ spectral bounds ¢'(G) and ¢y (G)

In the previous section we mentioned the spectral bound ¢(G) from of Haemers [2] for the
parameter gp.(G) and observed its link to the parameter hj(-), recall and Lemma In
some earlier work [20], Haemers introduced the following spectral parameter for an arbitrary graph

G=(V= [n],E),

¢'(G) =

A(M
= min { #:Me:e, Mij:Ofor{i,j}EE}, (57)
MeslVi

T A
where A(M) denotes the second largest absolute value of an eigenvalue of M. Haemers [21] showed
that ¢(G) < ¢'(G) for all G and that there are graphs G for which the inequality is strict.

Let Lg denote the Laplacian matrix of G that is defined as Lg = Dg — Ag, where Dg € S”
is the diagonal matrix whose i-th entry is the degree of vertex ¢ € V' in GG. In what follows we let

0= <p2<...< puy, denote the eigenvalues of the Laplacian matrix Lg. In [20, Theorem 2.4]
Haemers shows the inequality

1A _n K
#(@) < on(G) = 5(1-12) (58)

for any graph G (on n nodes), and he shows that equality holds in if G is vertex- and edge-
transitive. So we have the following inequalities

(h1(Bo(G)) =) 5¢(G) <

D[
D[

¢(0) < gon(@) = §(1-12). (59)

where the right most inequality is an equality if G is vertex- and edge-transitive. We next sharpen

this latter result and show that hi(By(G)) = %( — ﬁ—i) if G is vertex- and edge-transitive.

Proposition 4.8. Let G = (V, E) be a graph, set n:=|V|, and let 0 = p1 < pg < ... < u, denote
the eigenvalues of the Laplacian matrixz of G. Then we have

m(Bu(G) = 59(C) < gen(C) = 3 (1-12),

with equality if G is vertex- and edge-transitive.
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Proof. Consider the parameter h(G) obtained from the definition of k1 (Bo(G)) in , where we
restrict the optimization to matrices Z of the form Z = (th+uI the +‘”) for scalars t,u € R.

Hence, hi(By(G)) < h(G). First, we show that if G is vertex- and edge-transitive (hence regular),
then this restriction can be made without loss of generality and thus hi(Bo(G)) = h(G).

For this, for any permutation o of V' consider the associated permutation o of VU V' (the
vertex set of By(G), where V' is a disjoint copy of V) defined by (i) = o(i) and (i) := o (i)’
for i € V; clearly, ¢ is an automorphism of By(G) if o is an automorphism of G. Consider in
addition the automorphism 7 of By(G) obtained by flipping V and V': 7(i) = ¢’ and n(i') = 4
for i € V. Then, under the action of the group of automorphisms of By(G) generated by
and ¢ (for o automorphism of G), the edge set of By(G) is partitioned into two orbits, the orbit

= {{4,7'} : i € V} and the orbit Qp := {{i,5'},{7, 7} : {i,j} € E}. Now, if (A, Z) is feasible
for hq1(By(G)), then the same holds for its symmetrization obtained by averaging over the group of
automorphisms of By(G) just described. This gives a new feasible solution (A, Z), where the entries
of Z take two possible nonzero values, depending whether the entry corresponds to an edge in Qy
or in Qp, and thus Z has indeed the desired form claimed above.

We now aim to compute the optimum value of the program

= . A tLg 4+ pl — 3J }
= : -
MG = min, { <tLG =17 A =0

n

and to show it is equal to Z( — #—) By taking a Schur complement (and assuming A > 0) the
matrix in the above semidefinite program is positive semidefinite if and only if the matrix

NI — (tLg + pl — 3J)(tLg + pl — 3J) = (N — p®) — *LE — 2tule + (u— %)J = Q

is positive semidefinite. Let e denote the all-ones vector, which is an eigenvector of Lg for its
smallest eigenvalue 1 = 0, and let w; L e be an eigenvector of L for its eigenvalue p; with ¢ > 2.
Then the eigenvalues of () at these eigenvectors are as follows:

at e: )\2—p2+n(u—%):)\27(uig)2’
at w; L e: )\2—(t,ui+,u)2, fori=2,...,n.

Hence @ > 0 if and only if all these eigenvalues are nonnegative and thus we must select ¢, u such
that

max {(,u — 02 (tpe + p)?, (tun + ,u)Q} is smallest possible.

So we must find the smallest value of A for which there exist ¢, u satisfying the system

A ftpe +pl, A= [tun+pl, A= |p—3

First, note that taking p := % + Zﬁj 1= g, and A = %( _ﬁ) is feasible for the above system
(since tpg +pu = X, tpn +p = p— 5 = —A), which shows h(G) < %(1 — Z—Q) We now show

the reverse inequality. Assume A, t, u satisfy the above system. The condltlons A > —tup —p
and A > tug + p together give \ > 2( — pn)t, and the conditions X\ > tus +p and A > —p + 5
give A > B2t 4 %. Therefore, E(G) is at least the smallest value of A for which there exists ¢
such that A > max{1(u2 — pn)t, 2t + 2}. Now observe that this maximum is minimized at the
intersection point, where ¢ = QZ (since pg — py, < 0 and pg > 0). This gives the desired relation

G > 32 — ,un)(%un) =501 - 5—2) which concludes the proof. O
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An interesting feature of the closed-form bound %gp u(GQ) = %(1 — 5—2) in Proposition is

that it is valid without any regularity assumption on the graph G.

Assume now G is r-regular, still arbitrary (not necessarily bipartite) on n nodes. Then its
adjacency matrix Ag satisfies Ag = rI — Lg and thus its eigenvalues are \; = r — p; for @ € [n],
with A\ =7 > Xy > ... > \,. Therefore, for any r-regular graph G, we have

1 n 2 n>\2 - )\n
< _ f— _— —_ - .
i (Bo(@)) < 5on(G) = 7 (1 un) 47—,

(60)

As shown in Proposition equality hy (Bo(G)) = 2¢u(G) holds if G is vertex- and edge-transitive.
Since the extended bipartite double graph By(G) is (r + 1)-regular, one can also upper bound
h1(Bo(G)) by the parameter E(BO(G)) (as defined in Proposition . By Lemma the second
largest eigenvalue of the adjacency matrix of By(G) equals max{\a + 1, —\,, — 1}, and thus

~n max{A+1,-A, — 1}
C 2max{Ay +1,-\, — 1} +r+1°

Next we compare the upper bounds in and .

Proposition 4.9. Let G be an r-reqular graph. Then we have $pp(G) < ﬁ(BO(G)), with equality
if and only if Ao =1r or Ada + A, +2 =0.

71 (Bo(G)) < h(Bo(G)) (61)

Proof. Set p := max{X\s + 1,—\, — 1} and note that 3¢y (G) < h(By(@)) is equivalent to v :=
uha + Ay —2r) + (r+ 1A —A\p) < 0. If Ao+ Ay +2 > 0 then 4 = A2 + 1 and we have
P = (A2 —1r)( A2+ A\ +2) < 0. Otherwise, Ao + A\, +2 < 0, p = =\, — 1 and we have ¢ =
(r—=X2)(A2+ A +2) <0. O

So Haemers’ bound ¢y (G) improves on the bound ﬁ(Bo(G)) for any regular graph G. On
the other hand, also the reverse situation may occur, where the parameter h improves on Haemers’
bound ¢g. For this consider a bipartite graph G = (V3 U Vo, E). As observed in , we have

9be(G) = g(G"), where G = (V1 UV, (Vi x V5) \ E) is the bipartite complement of G. Hence we
have the inequalities

N

(62)

SVl = 51/9(Bo(@) < I (Bol@) < 50 (@),

where we assume that G is regular when considering the parameters ﬁ(@b) and g (G). Next we
show that h1(Bo(G)) = h1(G") and that h(G") < Loy (G).

Proposition 4.10. Let G be a bipartite graph. Then we have hi(Bo(G)) = hl(éb). Moreover, if

G is r-reqular, n = |V1| = |Va| and Mg denotes the second largest eigenvalue of Ac, then we have
~ —b n Ao 1 — n  Ad+r
hWG)=-——""<-pu(G) = - ——— 63

@)= rn—r =299 = 55y (63)

with strict inequality precisely when Ay <1 < n, i.e., when G is connected and G # K, ,.
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Proof. First we prove hi(Bo(G)) = h1 (éb). For this we use the formulation for the parameter
i}vl() Recall the definition of the matrix C' € SIVI for the bipartition V = V; U V4, and let
C e SVIHIV'I denote the analogous matrix corresponding now to the bipartition V' U V', where
V.=V UV, and V' = V] UVj is a disjoint copy of V. The matrices C and Ap g have the

o J J 0 0 A@G) 1 0
~_1({J o o J _ | Aac™ 0 0 I . sis
form C'= 3 <J o o J> and ABo(é) = <1 o o a@h with respect to the partition
o J J o0 o 7 AGY) o

Vi UVJ UV UV, (taken in that order), setting A(éb) 1= Az for easier notation. If X € SV
is optimal for hl(éb), then Y := (¥ %) is feasible for h1(Bo(G)) with (C,Y) = (C, X), which

shows hi(Bo(G)) > hl(Gb). Conversely, assume Y € SVITIV'l is optimal for hi(By(G)). Let
X (resp., X') denote the principal submatrix of ¥ indexed by Vi U VJ (resp., V{ U V2). Then

X/Tr(X) and X'/Tr(X’) are both feasible for hi(G'), which implies hi(G') - Tr(X) > (C,X)

and hl(éb) - Tr(X') > (C,X’). Summing up and using Tr(X) + Tr(X’) = Tr(Y) = 1, we get
7b ~ J—
hi(G7) 2 (C, X) +(C, X') = (C,Y) = hi(Bo(G)).
Assume now G is bipartite r-regular, Ao = X2(A¢) and n := |Vi| = |Va|; we show (63). First
we compute the parameter ﬁ(éb). For this note that G is (n—r)-regular. Moreover, if Mg denotes

the incidence matrix of GG, then the incidence matrix of Gis J— Mg, whose second largest singular
value is equal to the second largest singular value of Mg and thus to As. Hence, using relation ,

b . el :
we obtain h(G) = %n—i\i/\y as desired. Next we compute the parameter ¢y (G). For this note

that G is (2n — 1 — r)-regular, the second largest eigenvalue of A is —1 — Apin(Ag) = 7 — 1 and
its smallest eigenvalue is —1 — A\y(Ag) = —1 — Ag. In view of 1@' we get pp(G) = n2nr_t)‘f/\2, as
desired. One can then easily check that the inequality in is equivalent to (r — A2)(n —r) >0,
which holds since Ay < r < n. Hence the inequality in is strict precisely when Ay < r < n, i.e.,

when G is connected and G # K, . O

We summarize the various bounds obtained above for the parameter gp.(G) when G is an
arbitrary r-regular graph (Figure and when G is bipartite r-regular (Figure . As before
let Ay =7 > Ao > ... > A\, denote the eigenvalues of Ag. Then G is (n — 1 — r)-regular, with
)\2(14@) =—-1- )\n and )\n(Aé) =—-1- AQ.

with equality if G is vertex- with equality if and only if
and edge-transitive Ao =rorr=n
Prop. [4.8] Prop

1 — — ~ — 1 — —b ~ —p — ~ J—

5V 00e(G) < 1(Bo(G)) < 30m(G) S h(Bo(G) 5V 90e(G) < m(Bo(G)) = (G") < W(E) < 3¢ (G) < h(Bo(G))
with equality if and only if Prop. with equality if and only if
Ap =T —nor A\ An =0 Ap =T —nor A An =0

Prop. Prop.
(a) Bounds on gno(G) for G r-regular (b) Bounds on gpc(G) for G bipartite r-regular

Figure 3: Bounds on gp(G); recall hy(By(G)) < /ﬁ(Bo (@)), with equality if By(G) is edge-transitive

(Proposition .

5 Examples

We now illustrate the behaviour of the various parameters discussed above on some classes of
regular graphs. Recall the definition of the matrix Mg in Lemma 4.1
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5.1 The perfect matching

For n > 2, let G be a perfect matching on 2n vertices. Then Mg =1, r =1, Ay = 1, and G is
vertex- and edge-transitive. Using Proposition we obtain
n Ao

~ n
M) =M =5 T, T

and  g1(G) = §(G) = .

We have g(G) = [n/2][n/2] and h(G) = L|n/2][n/2] (obtained by maximizing ab and —b with
a,b > 0 integers and a + b < n). Hence, hl(G) $1/91(G) and hi(G), g1(G) give tight bounds for
h(G), g(G) (with equality for n even and up to rounding for n odd).

5.2 The complete bipartite graph K, , minus a perfect matching

For n > 2, let G be the complete bipartite graph K, , with a deleted perfect matching (also
known as the crown graph on 2n vertices). Then G is vertex- and edge-transitive, (n — 1)-regular,
Mg = J, — I, and Ay = 1. We have h(G) =  and g(G) = 1. Using Proposition we obtain

2
and ¢1(GQ) = §(G) = {82 "=
91(G) = 9(G) {1 n<a

n X 1
274+ X\ 2’

hi(G) = h(G) =

Hence the bound h1(G) is tight for both h(G) and 3./g(G), while the ratio g1(G)/g(G) grows
linearly in n. Note that hy(G) < %\/m for n > 5, which gives an example with strict separation
between the parameters h; and %\/ﬁ (and thus h and %\/ﬁ) In view of 1} the parameter be(G)
is upper bounded by 4%(@17)2 and by ¢y (G)%. Note that 4%(@17)2 =4(%)* = 4 , which improves

on Haemers’ bound ¢y (G)? = (n"—jZ)2 for n > 3. This thus gives a class of graphs for which strict
inequality holds in .

5.3 The cycle graph C,

Let G be the cycle C), on n > 3 vertices, which is vertex- and edge-transitive, and 2-regular. The

eigenvalues of the adjacency matrix Ac, are 2cos(2mj/n) where j = 0,...,n — 1 (see, e.g., [3]),

so X2(A¢,) = 2cos(2m/n), and A, (Ac,) = —2 if n is even, \,(Ac,) = —2cos(m/n) if n is odd.
First we compute the parameters for the extended bipartite double graph By(C)). Using

Proposition and relations , , we get

os(m/n)? if n even, ~ n2cos(2m/n) +1

(2cos(m/n) —1) if n odd, MBo(Cn)) = 4 cos(2m/n) +2

hﬂmm»}mo>{

(S %\3

Hence we have hy(By(C,)) = E(BO(C'”))(: 0) for n = 3 (in which case By(C3) = K33), and strict
inequality hy(Bo(Cy)) < h(Bo(Cp)) for n > 4 (as expected from Proposition . Note also that
By(Cy,) is not edge-transitive if n > 4. One can also show that

1tn—2) if n even, 1(n —2)? if n even,
M(Bo(C) =4 B2 g(Bo(Ca)) = { 172 !
=) if n odd, 7(n—=1)(n—=3) if n odd.

So h(Bo(Cr)) < $1/9(Bo(C)), with equality for n even. Moreover, the ratio E(Bo(Cn))/h(Bo(Cn))
tends to 1 as n — oo so the bound iAL(BQ(Cn)) (and thus hq(Bo(Cy)) too) is asymptotically tight

for h(By(C,,)) and % 57 9(Bo(C,
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For n even the graph G = C,, is bipartite. Then we have

n Ay n cos(2m/n) <04(Cn)_§

< =h(C,) = — =— =<
f(Cn) < h(Cn) = P(Ch) 4X+r 4dcos(2m/n)+1~ 4 8

So hi1(Cy) = O(n/8) = ©(a(Cy)/4). Moreover, one can construct a bipartite biindependent pair
(A, B) showing h(C,) = ©(n/8) (see also [5]). Namely, forn =0 (mod 4),set A= {1,3,...,5—1},
B ={%+2%+4,...,n—2} with [A| = %,|B] = § — 1, and, for n = 2 (mod 4), set A =

{1,3,...,2 -2}, B={2+1,2+3,...,n— 2} with |[4| = |B| = 2.

5.4 The hypercube graph @,

The hypercube graph @, is the bipartite graph with vertex set V' = {0,1}", where two vertices are
adjacent when their Hamming distance is 1. So the bipartition is V' = Vj U V;, where V; (resp.,
V2) consists of all x € V' with an even (resp., odd) Hamming weight |z|. The graph @, is vertex-
and edge-transitive, and r-regular. The eigenvalues of Ag, are r — 2k for £ = 0,...,r, where the
eigenvalue r — 2k has multiplicity (Z) So A2(Ag,) = r—2. Thus the parameter hq(Q;) is given by

r—2

_7 __ or—3
hl(Qr) - h(Qr) =2 ’I”j

One can show that lim, o h1(Q,)/h(Q,) = 1. For this, we will show that h(Q,) > a(Tl), where
the sequence (a(r)),>0 is defined recursively by

a(2r) = 2% — <2:>, a(2r+1):=2-a(2r) if r > 1, and a(0) = 0. (64)

Using the fact that (2:) ~ \2/% one obtains a(r — 1) ~ 2"~1 and h(Q,) > 2"73(1 — ¢/\/r) (for
some constant ¢ > 0) and thus h1(Qr)/h(Q,) tends to 1 as r — oco. Note that the bound h(Q,) <
a(Qr)/4 = 2771 /4 = 2773 from Lemma is slightly weaker than h(Q,) < hi1(Q,), but already
strong enough to exhibit h(Q,) ~ 2"~3 (when combined with the lower bound h(Q,) > %)

We now show that h(Q,) > @. For this, it is useful to observe that the graph @, is
isomorphic to By(Q,—1), the extended bipartite double of @1 (the bipartition of @, provides the
bipartition of By(Q,—1) by simply deleting the last coordinate in all vertices of @,.). Thus we have
h(Qr) = h(Bo(Qr-1)) = hui(Qr—1), where the last equality follows from (). Hence, instead of
searching for bipartite biindependent pairs in @), we may as well search for (general) biindependent
pairs in Q,_1, which is a simpler task. We show that hy;(Q,) > %a(r) for all » > 1. First consider
the case of (Qo,. Define the sets

L:={zxc{0,1}*:|z|<r—1}, U:={zec{0,1}* :|z|>r+1}.
Then, (L,U) is a (balanced) biindependent pair in Qo,, with |L| = |U| = § (22" — (2:)) = 1a(2r),
which implies hpi(Qr) > 1a(2r). Consider now the case of Qoy+1. Define L’ := L x {0,1} and
U':=U x {0,1} C {0,1}*"*1. Then the pair (L’,U’) is (balanced) biindependent in Q2 1, with
IL'| = |U'| = a(2r) = a(2r + 1), which implies i (Q2+1) > $a(2r + 1).

The above construction can be used to show that apa (@) > a(r — 1) for all » > 1. For this,
given A C {0,1}", define the following subsets of {0,1}"*! obtained by adding a parity bit,

Aeven = {(z,]|z] mod 2) : 2 € A} C {0,1}" ", Agqq := {(z,]2| + 1 mod 2) : z € A} C {0,1}" 1.
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Applying this to the above sets L,U C {0,1}?", we obtain Leven, Uoqqa C {0,1}*"*! such that
(Leven; Uoqq) is balanced bipartite biindependent in Qo411 with |Leven| = |Usdd| = |L| = a(2r)/2,
which implies apa(Q2,+1) > a(2r). Similarly, using the sets L', U’ C {0,1}**!, we obtain
Llens Ul gq € {0,1}272 that provide a balanced bipartite biindependent pair in Q2,42 with |L..| =
|U!4al = |L'| = a(2r + 1)/2, which implies apai(Qar42) > a(2r + 1).

Conjecture 5.1. We conjecture that equality an.(Qr) = a(r — 1) holds for all r > 1.

We have verified numerically that Conjecture indeed holds for any r < 13. For r < 8 this
can be verified using an integer programming solver (like Gurobi [19]). For larger values r < 13
we show this in an indirect manner. We consider the semidefinite upper bound on apa(Q,) that
is obtained from the Lasserre relaxation of order 2. After applying a symmetry reduction (as done
in 16, B1]), we solve the resulting semidefinite program numerically and obtain an upper bound
that coincides with a(r — 1) for r < 13. In addition, ap,(Q.)/a(r —1) — 1 as r — oo since
apal(@Qr) < a(Qp) =271 and a(r — 1) ~ 2771,

Observe that apai(Qri1) > 2-apa(Qy). For this, for x € {0,1}" let 2’ € {0,1}" be obtained by
switching the last bit of x, so that the weights of x, 2’ have distinct parities and, for aset A C {0,1}"
and b € {0, 1}, define Ab:= {(z,b) : z € A} C {0,1}"*1. The claim now follows from the fact that
if (A, B) is a balanced bipartite biindependent pair in @,, then the pair (B1 U B'0, A1 U A’0) is
balanced bipartite biindependent in @41 with size 2|A U B|. Hence, the above conjecture implies
equality apal(Qr+1) = 2 - apal (@) for r odd.

Interestingly, the sequence a(r) in (64) corresponds to the sequence A307768 in OEIS [36],
which counts the number of heads-or-tails games of length r during which at some point there
are as many heads as tails. It is also related to several other well-known combinatorial counting
problems; see, e.g., [10] or [I1, Chapter III| for an overview. It is interesting to understand the
exact relationship of this sequence with the parameter oy (Qr).

6 Lasserre bounds for the balanced parameters

In this section we turn our attention to the “balanced” parameters apa(G), gpal(G) and hpa(G)
that are obtained by restricting the optimization to balanced bipartite biindependent pairs in the
definition of a(G), g(G) and h(G). Recall from 1} that Tapa(G) = 31/9bal(G) = hba(G). Since
these are NP-hard parameters one is interested in finding efficient bounds for them, strengthening
those for the original parameters ¢(G) and h(G).

Let G = (V = V3 UV, E) be a bipartite graph. Following the approach in Section each
of the parameters apa1(G), ghal(G) and hy, (G) has a natural polynomial optimization formulation,
which offers the starting point to define several hierarchies of semidefinite relaxations. For this
define the vector f := le —x"2. Let I bal denote the ideal in R[z] that is generated by the ideal
I (itself generated by x2 — x; for i € V and z;z; for {i,5} € E) and the polynomial fTz. For an
integer t let Ig a1 denote its truncation at degree ¢, where all summands are restricted to have
degree at most t. Then the formulation for ay,.1(G) follows by replacing the ideal I (resp., I 2q(q))
by the ideal Igpa (resp., I pal2q(c)) in (resp., ) Similarly, gpa1(G) (resp., hpa(G)) is
obtained by adding the “balancing” constraint fTa = 0 to the program defining ¢(G) (resp.,
to the program defining h(G)). Now each of these polynomial optimization formulations can
be used to define a Lasserre-type hierarchy. In this way one obtains the hierarchies laspa - (G),
Gbal,r(G), and hpa - (G) for r € N that converge to anal(G), gbal(G), and hpa (G), respectively, after
r > a(G) steps. They are obtained, respectively, from the programs (defining las,(G)), (29)
(defining g,(G)), and (defining h,(G)) by replacing the truncated ideal I 2, by its balanced
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analog I pbal2r; that is,

lasbal’r(G) = min {)\ A—zTze Yo+ IG’baLQT},
gbarr(G) =min {A: A= 2"Cx € Sy + Igparar }
hbalr = min {\ : 2T (A — C)z € $o + I bal2r }-

We will now focus on the Lasserre bounds of order » = 1. We will give explicit semidefinite
formulations and show relationships between the various parameters. The parameter lasp, 1(G) is
the analog of las; (G) = ¥(G) obtained by adding a balancing constraint to program . However,
adding a balancing constraint to the formulation of ¥(G) in leads to another parameter ¥y, (G)
that is in general weaker than lasp, 1 (G). The parameters gpa11(G) and hpay 1 (G) are obtained by
adding a balancing constraint to the respective programs defining g1 (G) and h1(G). Moreover, they
can be shown to be nested between lasp,) 1(G) and Upa1(G), see Proposition below. For bipartite
regular graphs we will investigate some natural symmetric variations of these parameters, with the
hope of obtaining a new closed-form parameter strengthening h(G). However, as we will show,
it turns out that in all cases one recovers the parameter iAL(G), see Propositions and So
the refined formulations taking into account the balancing constraints do not yet lead to stronger
eigenvalue bounds for the parameter apa(-).

6.1 The Lasserre bounds of order » = 1 for the balanced parameters
We begin with semidefinite reformulations for the parameter laspa 1(G).

Lemma 6.1. For any bipartite graph G = (V, E) we have

~ T
laSbal,l(G) = Xnelg\}‘(/\ {<I,X> : (dlagl(X)dlag)((X) > =0, Xij =0 ’Lf {l,j} € F, <ffT,X> _ 0}?
(65)
_ : A —ul /2
— Zeglvlglel%\w,seﬂ{ {)\ : (U/Q Diag(u) By SffT> = 0, 7 € SG} . (66)

Proof. As in Section the proof uses Lemma, By definition, lasp,) 1(G) is the smallest scalar

A for which A — 271z € 9 + Ig pal2, i.6., A — 2 Iz — (ag + a'2) fTa € X9 + I for some ag € R,
a € R™. Thus lasp,1(G) is the smallest A such that [z]] (Q — <a0;/2 y jOLLf;T/;faT))[w]l € Ig o for
some a9 € R,a € R". Applying Lemma [3.2] we arrive at the program

A 1(—u + aof)T
laspar1 (G) = min {)\: 2 ~0,Z¢S }
bal,l( ) ZeSIVlu,acRIVI ageR (%(_U + aOf) Dlag(u) —1+Z+ M o “

Now we take the dual of this semidefinite program. We also apply some simplifications, such
as observing that X f = 0 is equivalent to (ff',X) = 0 when X > 0, which in turn implies

fTdiag(X) = 0 when (amé(m diag)({X)T) = 0. In this way we arrive at the program . Taking the
dual of gives the (simplified) program (66]). Note that strong duality holds since program
is strictly feasible (e.g., take s =0, Z =0, u = pe with g > 1, and A > %H“—_Zl) O

Hence program is the analog of program defining las; (G) = ¥(G) to which we add
the balancing condition (ffT,X) = 0. Next we consider the analog of program to which we
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add the balancing conditions (ffT, X) =0 and fTdiag(X) = 0, giving the parameter

Upal(G) := max { (J,X): X =0, Te(X) =1, X;; =0if {i,j} € E,

Xeslvi (67)
(ff7,X) =0, (Diag(f =0},
-  min {A;AI—J+Z+vDiag(f)+sffT50,ZeSG}, (68)
ZeSIVI X\, s,veR

where the second formulation follows by taking the dual of (and observing that is
strictly feasible). We will see in Proposition below that ¥pa1(G) provides a weaker bound for
abal(G) than laspa 1(G).

We now consider the parameter gpa1(G). By definition, gha11(G) is the smallest scalar A
for which A — 27Cz € 9 + I pal2. Comparing with the definition of laspa 1 (G) we see that it
suffices to exchange the matrices C' and I to get the semidefinite formulations of gna1(G) in the
next lemma (recall also Remark [3.5).

Lemma 6.2. For any bipartite graph G = (V, E) we have

gbal,l(G) = max {<C,X> : < . ! ) diag)((X)T> = 07 Xz'j =0 Zf{Z,]} € Ev <ffTaX> = O},

Xeslvi diag(X
(69)
A —u'/2
= A . =0, Z€S8gy. 70
STV RS (L) (RS ) ELE L S
Finally we give semidefinite formulations for the parameter hp,1(G).
Lemma 6.3. Let G = (V, E) be a bipartite graph. Then we have
hbal,l(G) = max {(C,X): X =0, Tr(X) =1, Xi; =0 iof {i,j} € E,
Xeslvi (71)
(ff7,X) =0, (Diag(f), X) = 0},
hpar1 (G) = min ~ {A: A\ —C + Z+vDiag(f)+sffT =0, Z e Sg}. (72)

\v,s€R,ZeSIV]

Proof. The argument is similar to the one used to show Lemma Namely, one starts with the
definition of hp,1(G) as the smallest A for which (A —C)x € Xg + IG pa12. Using Lemma
one arrives at a semidefinite program whose dual can be shown (after some simplifications) to take
the form . Then one takes the dual of program , which has the form . O

We now compare the parameters laspal 1 (G), Yba1(G), gba1,1(G) and hpar1(G).
Proposition 6.4. For any bipartite graph G, we have the inequalities

1
—laspal1(G) <

1
1 bal 1(G) < hpa11(G) = EﬂbaI(G)'

N | =

Moreover, we have L 5/ 9al1 (G) = iﬁbal(G) > laspal1(G) = Vpal(G).
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Proof. The equality ¥pa(G) = 4hpa)1(G) follows from the fact that the programs (defining
Ypal(G)) and (defining hpa1(G)) differ only in their objective functions that are, respectively,
(J,X) and (C, X), combined with the identity J —4C = ffT.

The inequality laspa) 1(G) < Upal(G) follows using the formulations and and a classic
argument (repeated for convenience). If X is optimal for with z := diag(X), then X —zzT = 0,
fTz =0, Tr(X) = e'x, so X/Tr(X) = X/e'z is feasible for (67) and thus we have ¥y, (G) >
i(J,X) > ﬁ((], zxT) = elx = laspa 1 (G).

For the inequality laspa 1(G)? < 4 - gha11(G), pick an optimal solution X for (65) with x :=
diag(X), so that X — zz" = 0, and use again the fact that 4C = J — ffT. Then we have
4 grar1(G) > (4C, X) = (J, X) > (JyzzT) = (eT2)? = (I, X)? = laspa11(G)2.

We now show the inequality 4 - gha11(G) < Upai(G)?. For this let X be optimal for program
defining gpa1,1(G). Then X is feasible for and thus laspa; 1(G) > Tr(X). In addition,
X/Tr(X) is feasible for @ and thus Jp(G) > ﬁu, X). Using 4C = J — ffT, we obtain
4. gbal,l(G) = <4C, X> = <J,X> = TI"(X) : (J, X/TI“(X)> S lasbal,l(G) : ﬁbal(G) S ﬁbal(G)Q. Finally,
this argument also shows that equality 4 - gha11(G) = Upal(G)? implies laspa 1 (G) = Ipa(G), which
concludes the proof. ]

Quite surprisingly, while we had the inequality h;1(G) < % 91(G) (recall Proposition , we
now have the reverse inequality % a1 (G) < hpa11(G) for the balanced analogs. We next give
an example where this inequality is strict.

Example 6.5. Let G be the bipartite graph from Figure @ One can check that hyay1(G) = 2/3,
gra1(G) = 4/3 and laspa1(G) = 9/4, which shows that the strict inequalities laspa1(G) <
3/ 90a1.1(G) < hia11(G) hold. To see this consider the matrices

110 2 310 4 12 3 0 15
15 2 4 1 7 4 4 3 24 15 12

_ 1 —1 =1

Xi=1m g 91 1| X2=9|g 43 1| %= 15 12 3
2 415 4 4 1 7 15 12 3 24

Then, X, is feasible for with (C, X1) = 2/3, Xs is feasible for (69) with (C,X2) = 4/3, and
X3 is feasible for @ with (I, X3) = 9/4. One can check optimality of these solutions for the
respective programs (for this, use the constraint (ff7,X) = 0 to reduce the semidefinite program
to an equivalent semidefinite program involving smaller matrices, and then construct a solution of
the dual program with the same objective value).

6.2 Symmetric versions of the parameters lasp, 1(G), Vpa(G) and gpa1(G)

Here we address the question whether it is possible to obtain closed-form eigenvalue-based upper
bounds for ap,(G) that improve on the spectral parameter /H(G) from (47). For this a natural
approach is to restrict the optimization in the programs , , to matrices Z = tAg
for some t € R and, for and , to vectors u = pe for some p € R. Moreover, we add a
term vDiag(f) to the matrix involved in and , which amounts to adding the redundant
constraint (Diag(f),X) = 0 to the programs and . The motivation for this is to get
possibly sharper bounds. In addition, the bounds obtained in this way are easier to compare (see
Proposition . However, as we will show in Proposition these additional constraints will
turn out to be redundant for bipartite regular graphs.
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So we consider the parameters

PR o . ) A —pel /2
laspar(G) = | min _{A: (—/1,6/2 (4 — I + tAg + sffT + vDiag( f)> = 0}, (73)
T
= e {00 (5 %) =000 = €T (6, X) = 0,077, X) = 0, (Diag(£).X) =0},
(74)
%(G) = )\gr;lsl’leR{)\ M — J +tAg + vDiag(f) + sffT = 0}, (75)
= max{(J, X) : X =0, Te(X) = 1, (Ag,X) =0, {ffT,X) =0, (Diag(f),X) =0},  (76)
g . . ) A —pel /2
w3 = i (3 (L -0 v aag o 17+ i) =00 7
T
= e {030 (5 ) =000 = €T (X, 46) = 0, (747, X) = 0, (Ding(£). X) = 0}.
(78)

(Since each of the programs , , is strictly feasible, strong duality holds as claimed
above.) We begin with comparing the above parameters and show the analog of Proposition

Proposition 6.6. For any bipartite graph G, we have
1 ——

1 1
L <= <z .
41a5ba1(G) <3 gbal(G) < 419ba1(G)

Proof. We use the formulations , , for the parameters 1@1((1), 79/};1(67’), Ioal(G),
respectively. Then the inequalities follow in the same way as in the proof of Proposition [6.4 [

Next we compute the parameter @(G) and show its relation to E(G)

Proposition 6.7. Assume G = (V1 U Va, E) is bipartite r-regular, set n : \Vl\ = |Va| and let o

denote the second largest eigenvalue of Ag. Then we have 1%;1 G) = 222 — 4. }(@).
r+A2

We delay the proof, which is a bit technical, to Appendix D] As the proof will show, the program
o)) defining ﬁbal(G) admits an optimal solution with v = 0. Hence, when G is bipartite regular,
the constraint (Diag(f), X) = 0 is redundant in program and one can set v = 0 in program
, and the same observation applies to the programs defining gp,(G) and l;s;l(G).

We can now compute the parameters lgb\al(G) and goai(G) and show their relation to i(G).
Proposition 6.8. For any regular bipartite graph G we have

Elasbd(G) = 5 gbal(G) = Zﬁbal(G) = h(G)

Proof. Assume G is bipartite regular and set n := |Vi| = |Va|. If G is complete bipartite, then
apal(G) = 0 and, using and Proposition one can check that @(G) = 0, so the result
holds. We now assume that G is not complete bipartite. In view of Propositions and it
suffices to show lgb\al(G) > 19/1;1(G). Assume that (\, p,t,s,v) is feasible for the program
defining lgsgl(G), we construct a feasible solution for the program defining @(G) with the
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same objective value A. Call Q € S'TIVil+12l the matrix appearing in program . By taking a
Schur complement with respect to its upper left corner entry A, we obtain

A(p = VI +tAg + sffT + vDiag(f)) — &7 = 0.

We now claim that p > 1. For this observe that the submatrices of ) indexed by Vi and V5 read
(w— 1)1, + sJ, £ vl,. Since they are both positive semidefinite this implies (u — 1)I,, + sJ,, = 0
and thus g > 1. Assume that 4 = 1. Then the conditions sJ, £ vl, = 0 imply v = 0. Let 1 € 1}
and j € V5 that are not adjacent (they exist since G # K, ). Then the principal submatrix of

A —1/2  —1/2

@ indexed by {0,4,j} takes the form (_lﬁ s -s | and it must be positive semidefinite, so we

—S S

reach a contradiction. Hence we have p > 1. Thus we can scale the above matrix and obtain

\J )\t AS T AU . /ﬂ

Note that

—1=4 2))>Oandadd(

4@ 0 1)J > 0 to the above matrix. So we obtain

4(p-1)
At A A

A+ Ao+ —2 1T+ 2" _Diag(f) — J = 0,
w—1 w—1 nw—1

which gives a feasible solution to the formulation of @(G) and thus shows 19/13:1(6‘) < A
lasbal(G).

(I

Remark 6.9. One idea for trying to get a stronger closed-form bound for an,(G) could be to
consider a possibly weaker symmetrization of the parameter laspa 1(G), where we now allow a
vector u taking distinct values for nodes in Vi and in Vo instead of restricting to uw = pe for some
uw € R. So we consider the following variation l;gl;;l(G) of the parameter 1;8;1(G), defined by

min {)\ : A —u' /2 =0, u= '+ }
A ntswer U \—u/2 Diag(u) — I +tAg + sffT +vDiag(f) Xt o+ g
(79)
By its definition, the parameter 158\1;1(G) lower bounds lgs;l(G), for which the optimization is
restricted to the case p1 = pa. Nevertheless it turns out that the two parameters are in fact equal.
To see this let us use the dual semidefinite program of (@, which reads

—~ 1 27

lasbal(G):max{(I,X> : (x X) =0, (Ag, X) =0, (ffT,X)=0

(Diag(f), X) =0, (Diag(x"*),X) =z"x" for k = 1,2}.

(80)

Assume (x, X) is optimal for the program defining IESEI(G). In order to show that (x,X) is
feasible for we only need to check that (Diag(x"*), X) = x"x"* for k = 1,2. For this note
that feasibility for implies a:Tf = 0 and thus a:Txvl = xTXVQ. Moreover <Diag(f),X> =0
gives <Diag(xv1) X) = (Diag(x"?), X) and Tr(X) = e'z gives (Diag(x"), X> (Diag(x"?), X) =
TV + 2T, C’ombmmg these facts we get the desired identities <D1ag( #), X) = 2T\ for
k=1,2. This shows lasbal(G) < lasbal(G) and thus equality 1@1((;) lasbal(G) holds.
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7 Concluding remarks

In this paper we investigate the parameters g(G), h(G), ana(G) (and other related parameters)
dealing with (balanced) bipartite biindependent pairs in a bipartite graph G. We show that de-
ciding whether ap,(G) = «(G) is an NP-complete problem and that this implies NP-hardness of
the parameters apa(G), h(G), g(G). We offer a systematic study of the basic semidefinite bounds
that are obtained at the first level of sums-of-squares (Lasserre) hierarchies. In particular, we intro-
duce the semidefinite bounds h1(G), g1(G) (for g(G), h(G)), and laspa) 1(G), Vbal(G) (for apai(G)).
These semidefinite bounds can be seen as natural variations of the celebrated theta number J(G)
of Lovész [32], allowing a quadratic objective (for hi(G), g1(G)) or adding a balancing constraint
(for laspa) 1 (G), Upal(G)). However, while 9(G) = a(G) when G is bipartite, the parameters hq(G),
91(G), laspa,1(G), Ypal(G) give only upper bounds for the respective combinatorial graph parame-
ters. An interesting fact is that hy(G) in fact provides a better bound for ¢(G) than ¢;(G) (recall
Proposition. Another interesting fact is that laspay 1 (G) < ¥pa1(G) and that the inequality may
be strict, while the unbalanced analogs both coincide with J(G) (recall Proposition and relation
(25)). We also show that deciding whether h(G) = hi(G) is an NP-hard problem. An object of
further study will be to investigate the numerical behaviour of the various bounds introduced in
this paper.

When G is an r-regular bipartite graph, we give closed-form eigenvalue-based bounds that
are obtained by restricting to symmetric solutions in the definitions of h1(G), g1(G), laspa,1(G),
and Upa(G). In this way we obtain the parameter ﬁ(G) = %rif\z,

eigenvalue of Ag and G has n vertices on each side of its bipartition. Then h(G) < hi(G) < E(G)
holds and it turns out that E(G) provides a better bound for g(G) than its corresponding eigenvalue
bound g(G). Moreover, only edge-transitivity is required to show equality hi(G) = h(G), while one
needs vertex- and edge-transitivity to show ¢1(G) = g(G). Bipartite regular graphs that are edge-
transitive but not vertex-transitive are known as semi-symmetric graphs; the smallest such graph,
constructed by Folkman [I4], is 4-regular with 20 vertices. We show that the natural eigenvalue
bounds corresponding to the various semidefinite relaxations of apa(G) all coincide (up to simple
transformation) with the parameter h(G), and that the same holds for a natural strengthening of
h1(G) (recall Proposition [4.4). Hence, finding a stronger closed-form bound for ap,i(G) that is able
to take advantage of the restriction to balanced independent sets remains an open problem.

So we see in this paper an application of the second largest eigenvalue Ao to the study of
parameters involving (balanced) independent sets in bipartite graphs. The second largest eigen-
value A2 has been widely studied and has well-known applications to various graph properties. For
instance, there is a classical upper bound on A9 for any r-regular graph in terms of r and its diame-
ter [35], and large r-regular graphs with small second eigenvalue are shown to be Hamiltonian [28].
A notable application of Ay is for bounding the edge expansion (or isoperimetric number), some-
times denoted h¢, and defined as the minimum value of E(S,V \ S)/|S| taken over all S C V with
1 < |S| < |V|/2. Namely, if G is r-regular, then (r — X2)/2 < hg < /12 — A3 (see [33]). We refer,
e.g., to [0, B] and further references therein for more information.

Among other examples we have considered the hypercube G = @, on {0,1}". We show that
al(@r) > a(r — 1) for all r > 1, where a(r) is as defined in (64). Computational experiments
suggest that this is the exact value. Showing apa(Qr) = a(r — 1) for all r is an interesting open
problem that would offer a new link from balanced biindependent sets to other combinatorial
counting problems such as the number of r-steps random walks on a line starting from the origin
and returning to it at least once.

where Ao is the second largest
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A Application to product-free sets in finite groups

Let T be a finite group. A subset A C T is called product-free if uv ¢ A for all u,v € A. A problem
of interest is to find the maximum cardinality of a product-free set in I'; see, e.g., Kedlaya [26],
Gowers [17] for background and an overview of results on this problem. As in [26] let 3(I") denote
the maximum density |A|/|T'| of a product-free set A C I'. Clearly, S(I') < 1/2 (since, for any
x € A, the sets A and xA are disjoint subsets of I'). It is known that any finite abelian group
satisfies 1/7 < B(I') < 1/2. Moreover any finite group satisfies (I') = Q(1/n3/1*) and the question
arose whether B(I') = Q(1/nf) for all € > 0. Gowers [I7] answered in the negative by showing that
B(PSLay(q)) = O(1/n'/?) (see Example below).

As a crucial ingredient in his proof (which applies in fact to a more general setting) Gowers [17]
introduces an upper bound on the product-free set density of I' in terms of the second eigenvalue of
an associated bipartite Cayley graph. We follow the exposition by Kedlaya [26] and Vallentin [41],
which relies on using (a variation of) the parameter h applied to this bipartite Caley graph.

Let us fix a product-free set A C I' and define the bipartite Cayley graph Gr 4 = (V1 UV, E),
where V1, V5 are two disjoint copies of I', where u € Vi, v € V5 are adjacent in Gr 4 if uv € A. Note
that the graph Gr 4 is |A|-regular. Let Aj denote the copy of A within the set Vj for k = 1,2.
Then, by construction, (A1, Az) is a biindependent pair in Gr 4 since A is product-free.

The next result relates the size of |A| to the second largest eigenvalue of the adjacency matrix of
Gr,a. It is essentially based on [I7, Lemma 3.2], [26, Lemma 5.3] (and Vallentin’s presentation [41]).

Lemma A.1. Let I be a finite group, n := |I'|, and let k denote the minimum dimension of a
non-trivial representation of I'. Let A C IT" be a product-free set and let Ao denote the second largest
eigenvalue of the adjacency matrixz of the bipartite Cayley graph Gr a. Then we have

|[Al(n = [A])

A2 < ?

. (81)
Proof. Set G := Gr 4 and write its adjacency matrix as in . By Lemma A3 is the second
largest eigenvalue of Mg MJ; let ko denote its multiplicity. Since G is |A|-regular, G has n|A| edges
and thus Tr(MgM/) = n|A|. On the other hand, by considering the spectral decomposition of
MgM[, we obtain Tr(MgMJ) > |A|?+A3ke. By combining both facts we deduce n|A| > |A|?+ A3k
and thus Ao < \/]A|(n — |A])/ko.

We now show that ko > k, which, combined with the above inequality for s, gives the desired
inequality . For this let W denote the eigenspace of M(;Mg corresponding to the eigenvalue
A3, so that W has dimension ky. One can easily check that

W={zeR":2Te=0, 2" MgMlz = \3|z||*}.

We show that W is invariant under some non-trivial action of I'. For this, consider the action of
I' on the space RV defined by right multiplication; that is, for ¥ € T and z = (zy)uer, define
27 := (Tuy)uer. We claim that (Mlz7), = (Mlx),-1, for any v € T. Indeed,

(M&a")y =3 Mg(uv)al = > ap= Y. zu=Y Mgwy )y = (Miz),,.

uel ueluve A wel:wy~lveA wel
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From this follows that ' McMlx = (27)TMgMlz? and e'z = eT2?. Hence z € W implies
27 € W and thus the space W is invariant under this action of I'. This action is non-trivial since
a nonzero vector x € W is not a multiple of the all-ones vector and thus 7 # x for some v € I'.
Therefore, we can conclude that ko = dim W > k and the proof is complete. O

We can now show the following bound on the product-free set density, which is essentially
Theorem 3.3 of Gowers [17] (see Remark below).

Theorem A.2. Let I' be a finite group and let k denote the minimum dimension of a non-trivial

representation of T'. If A is a product-free set in T', then we have |A| < 141%/3

Proof. Since (Ap, Ag) is a bipartite biindependent pair in G 4, we have ‘%l < h(Gr,a) and thus
A T . . . .
% < h(Gr,a) = %IAI)\TZ&’ which implies |A|? < Xo(n—|A]) < (n—|A|)\/|A|(n — |A])/k, using 1’

Al \3/2 1 .
Al )7 < iz and thus |A] < ;747 as desired. O

This implies (m <

Remark A.3. The upper estimates in and Theorem offer a slight sharpening of the known
results. Indeed Gowers shows Az := A2(Agy ,) < \/n|A|/k (Lemma 3.2 in [17]), a bound that is
a bit weaker than the one in , which he then uses to show |A| < 17z (Theorem 3.3 in [17]).

Vallentin [41] uses his eigenvalue bound to conclude |2ﬂ < h(Gr,a) < ﬁ')\g < ﬁwnM]/k, and
thus |A| < 22/3_ 1 Our slightly sharper estimate |A| < ﬁ follows using the sharper bound in

T3
and the sharper eigenvalue bound h(Gr a) < ﬁ(GrvA) = %\AﬁTQ/\Q

One recovers the known bound B(T) < 1/2 using Theorem [A.2  This bound is tight, for
instance, when I" is the symmetric group S, (in which case k = 1, since the sign representation is
a non-trivial representation of dimension 1). Since the set S, \ A, consisting of all permutations
with an odd sign is product-free with size n!/2, one gets 5(S,) > 1/2 and thus the bound is tight:
B(Sn) = 1/2. By contrast it has been a long standing open problem to determine the product-free
density of the alternating group A,; it was shown recently in [27] that B(Ay,) = ©(1/y/n).

Example A.4 (Gowers [17]). Consider the group I' = PSLs(q), which is the group of all 2 x 2-
matrices over Fy with determinant 1, quotiented by the subgroup {I,—1}. As Gowers notes, it
is one of the simplest infinite families of finite simple groups (i.e., nontrivial groups whose only
normal subgroups are the trivial group and the group itself). It is natural to consider simple finite
groups, because any product-free subset in a quotient of a finite group lifts to a product-free subset
in the group itself.

The order of PSLy(q) is n = q(q*>—1)/2. Frobenius proved that every non-trivial representation
of PSLy(q) has dimension at least k = (q — 1)/2, which is at least n'/3 /4. Applying Theorem
one obtains that the mazimum size of a product-free subset in T' is at most 41/3n3° and thus

B(PSLy(q)) = O(1/n'/?).

B Proof of Lemma 4.3

We use the fact that (i ”;T) =0 <= X —xz' = 0.

The “only if” part in Lemma is easy: if X — 22T = 0and e’z =1, then (J,X) > e'zz’e =1.
We now show the “if part”. So, assume X € S" satisfies X = 0, Tr(X) = 1 and (J, X) > 1;
we construct € R™ such that e’z = 1 and X — zz" = 0. For this, consider the spectral

38



decomposition X = Zz—l B,ul , where the u;’s form an orthonormal basis of eigenvectors, 8; > 0,
and y ;" B = Tr(X) = 1. Deﬁne the vectors

a = (\//EZ . ET’UJZ')?:l and T = Z 674”@6”2“74 Uy .

Then, we have ||al|? =Y., Bi(eTu;)? = (J,X) > 1 and ez = 1. We now show X — zxT = 0. For
this let z € R” be any vector; we show that 2T (X — xzT)z > 0. Indeed we have

1 /< 2
zT(X - JJJJT)Z =2 Xz — z x) g Bi( z ul W( E Bi-elu,; - zTuZ)
a
=1

_ Zﬁl z uZ H H4 (Z \/E(@Tui) . \/E(z-rui))2

> Z Bi(z"u)? — ”@1’\4 ( Zn: /Bi(eTui)2> ( > &(ZTW)Q)
: i=1 i=1
- Zﬁl T (1= ) 20

using Cauchy-Schwartz inequality for the first inequality and ||a|| > 1 for the last one. O

C Proof of Proposition

Here we show the result of Proposition As starting point we use the formulation of g1(G)
from , where we restrict the optimization to matrices Z of the form Z = tAqg for some scalar
t € R, and to vectors u of the form u = pe for some 1 € R. Note that when G is vertex- and edge-
transitive this restriction can be made without loss of generality. Then we consider the equivalent
reformulation obtained by taking the Schur complement with respect to the upper left corner A\ of
the matrix in (34]). So we aim to compute the optimum value of the program

§(G) := min {)\ | Apl — C +tAg) — .0 = 0, )\20}, (82)
A, teR
which upper bounds g;(G) and is equal to it when G is vertex- and edge-transitive; we will show
that this optimum value has the form claimed in Proposition For this we need to express the
condition that the eigenvalues of the matrix A(ul —C'+tAg)— 4 J are nonnegative. By considering
the eigenvalue of this matrix for the all-ones vector we get the condition
2
)—En>o. (83)

n
AMp— 5+t
(=5 +tr) ==

2

In addition to this we need to ensure that u/ — C' 4+ tAg = 0. Note that the matrix A :=tAg — C
has the block-form with M :=tM¢g —1J,. We have MM T = 2MgM[ + (n/4A—tr)J,. Hence
the eigenvalue of MM T at the all-ones vector is equal to t2r2 + n(n/4 — tr) = (tr —n/2)? and its
second largest eigenvalue is t2 g (MgM(T;) = t2)\2. Therefore, we obtain that

ul —C +tAg = 0 <= p > |tr —n/2| and p > [tha] = |t|Ae. (84)
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Again we assume G is not complete bipartite and thus A > 0. Then it follows from that
p— 5 +tr >0 and, combined with , we must have y — 5 +tr > 0. Set

w(t) := max{|tr — n/2|,|t|A2}. (85)

Then we can conclude that g1 (G) can be reformulated as

2
§(G) = min {F(u) = gm uAtr—n/2>0, p> u(t)}. (86)

Our task is now to compute the minimum value of the above program . It is useful to see the
behaviour of the function F(u). For this observe that its derivative is F'(u) = %% Hence
F'(p) < 0 (and thus F(p) is monotone nonincreasing) when pu lies between 0 and n — 2¢r, and
F’(u) > 0 (and thus F(u) is monotone nondecreasing) when p lies outside the interval [0, n — 2¢r]
or [n — 2tr,0] (depending on the sign of n — 2¢r). Note also that F'(u) has a vertical asymptote at
1 =mn/2 —tr (at which its denominator vanishes).

According to we need to discuss according to the value of u(t) in . So we partition
the range of values taken by t into R = T7 U T, U T3, where we set

Ty:={teR:tr—n/2>0}, Th:={teR:tr—n/2<0,t>0}, Tz:={teR:t<0}.

Then, for ¢ € {1,2,3} and for t € Ty, set
Fy(t) i= min{F () : p+ tr = /2> 0, o > u(t) },
W

so that we have
9(G) = min min Fy(t). 87
g( ) K€{1}2,3} tea“g E( ) ( )

We thus need to compute the value of minser, Fy(t) for each ¢ = 1,2,3. So we distinguish the three
cases £ = 1,2, 3.

Case 1: ¢/ =1. Assume t € T}. Then, t > 0 and p(t) = max{tr —n/2,t\2}. Then we have
Fi(t) = min{F(p) : p 2 p(t)} = F(u(?)),

where the last equality follows since the function F'(u) is monotone nondecreasing on [0, 00). We
have two cases.

e Either tr — n/2 > t\g, which implies u(t) = tr — n/2 and thus Fi(t) = F(tr —n/2) =
%(tr —n/2). Note that in this case we have r > A2. Then we obtain

n }:n2 Ao

n
1 : — > = 1 — — N > -/ - .
min{Fy(t) : tr —n/2 > tia} mln{4(t7“ n/2):t> 50— %) p—

88
teTy ( )
e Ortr —n/2 <thg, so that ¢t < ﬁ if Ao <, and p(t) = tAa. Then we have

n 273 N
2t(Ag+71)—n/2 2r —

min{ Fy(t) : tr — n/2 < tA2} = min {F(t)\z) =

t <
teT

)

setting ﬁ = oo if r = Ag. Consider the function 1 (t) := F(tA2), whose derivative is

r—

n < _n n
2 (t(A2+r)—n/2)2 2(A2+r) = 2r = Ao+r?

where T is an aymptote of
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P (t) (as it is a zero of its denominator). We also need to compare the relative positions of

o (zero of ¢/(t)) and ﬁ (upper bound of the range for ¢); note that " < ﬁ

if and only if r < 3\2. We can now compute the minimum value taken by the function (t)

2y2
for 2% <t< ﬁ When r < 3\ it is attained at +2— with value 1/1()\;17,) = 7; Ay > and

Ao+r (A gr)
when r > 3\ (so that Ay < r) it is attained at gy With value 1/1(2(72)\2)) = 8(’;3‘;2). In
summary we have shown that

n?\3
in{ I ttr—n/2 < = —=_ if r <
?éuTrll{ 1(t) s tr —n/2 < tla} Dot 12 if r < 3\g, (89)
nQAQ
= "° if r > 3)Xs. 90
8(r — Aa) B= e (90)
We can now compute minier, Fi(¢) by comparing (88)) and , . We obtain:
n% Ao n2\2 n2\2
'Ft:'{— , 2}: 2 it r < 3o, 91
) = N Ba T T Bt r? st O
in Fy (t) o if 7 > 3 (92)
min = — if r :
teT) ! 8 r— Ao =072

Case 2: { = 2. Assume t € Ty, then tr—n/2 < 0 and ¢ > 0. In this case u(t) = max{n/2—tr,tA2}.
We now have 0 < n/2 — tr < u(t). Moreover, one can verify that

Fy(t) = min F(u) = F(n — 2tr) if p(t) <n—2tr, (93)
w>pu(t)

= F(u(t)) > F(n — 2tr) if u(t) >n— 2tr. (94)

Hence, the minimum value of Fy(t) for t € Ty is equal to F'(n— 2tr) = n(n — 2tr), which is obtained
when u(t) < n — 2tr. We now proceed to compute the minimum value taken by F(n — 2t¢r) for
t € Ty and p(t) < n — 2tr. For this we distinguish two cases depending on the value of p(t).

e Either n/2 —tr > tho, ie., t < m and thus u(t) =n/2 — tr < n — 2tr. Then we have
i {Fa(t): < -} —min {n(n—2er) 0 e < YR (g
min : ————— ¢t =min{n(n — 2tr) : = .
e, U277 = 2(r - g) ST 2r+ M) N

o Or n/2 —tr < thg, ie., t > 5~ and thus u(t) = tAa. Then u(t) = tha < n — 2tr is

2(?“+)\2)
equivalent to ¢ < ﬁ (< 32). Then we have
n n n n

nd{mt): — " <it< }: { o) — << } 96
?é%él{ 20 5y STS N rars T i =20 ey StS s (6)

HQAQ
= . 97
Ao + 2r ( )

Comparing the values in (95)) and (97)) we obtain that

nQAQ
in F5(t) = .

i Fa(t) = 7, (98)
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Case 3: (= 3. Assume t € T3, i.e., t <0, and thus tr —n/2 < 0 and p(t) = max{n/2 — tr, —tA2}.
Then F3(t) = min,> ) F'(p) (since p+tr —n/2 > 0). If —tAy < n/2—tr then u(t) = n/2 —tr and
we find that F5(t) = F(n — 2tr). Else, if —tAg < n/2 —tr then p(t) = —tAa < n — 2tr and we have
again F3(t) = F(n — 2tr). Hence F3(t) = F(n — 2tr) = n(n — 2tr) for all t € T3. Then we have

min F3(t) = min{n(n — 2tr) : t < 0} = n°. (99)
teTs

We can now finally compute the value of g(G) as defined in (87)) based on relations (91)-(92]),
2y2
and . Note that n? > n?ly PN mPhe g e %2732)\2 if ¥ > 3)\2. Based on this

Ao+2r? ()\2+7‘)2 — Ao+42r? Ao+2r —
we obtain
A3 i< 30
9G) =
n .
S(T_f2) if r > 3\,
which is the desired result. O

D Proof of Proposition

We give here the proof of Proposition For this let P := A — J + tAg + vDiag(f) + sff"
denote the matrix appearing in program . We need to find the smallest A for which there exist
t,v,s € R such that P = 0. Note that Age = re, (Diagf)e = f, ffTe =0, Je = 2ne, Agf = —rf,
(Diagf)f =e, ffTf =2nf, and Jf = 0. Hence P leaves the subspaces (e, f) and (e, f)* invariant.
Let u be an eigenvector of P for eigenvalue 7, and write u = x +y with = € (e, f) and y € (e, f)*.
Then Px 4+ Py = 1o + 1y, so Px — 7o = 7y — Py. The left-hand side is contained in (e, f), while
the right-hand side is contained in (e, f)*, so both sides of the equality are 0. So 7 is an eigenvalue
corresponding to x (if 2 # 0) and also corresponding to y (if y # 0). Hence

P s x"Px >0 forall x € (e, f),

y Py >0 forallyc (e )"
We now characterize when 2" Pz > 0 for all = € (e, f), and when yT Py > 0 for all y € (e, f)*.
(i) Let x € (e, f) and write x = ae 4+ bf with a,b € R. Then

Pz =a(Ae+tre+vf —2ne) + b(Af —trf 4+ ve + 2nsf)
= (a(A+tr —2n) + bv) e + (av + b(X — tr + 2ns)) f,

so x' Pz = 2na (a(\ + tr — 2n) + bv) e + 2nb (av + b(\ — tr + 2ns)) f. Hence

TPz >0 V€ (e f) <= a’(A\+tr — 2n) + 2abv + b*(\ — tr + 2ns) > 0 Ya,b € R

{02 < (A+tr —2n)(A —tr + 2ns),

(100)
A+itr—2n > 0.

Here the first equivalence follows by rearranging terms in 2T Pz, and the second one by consid-
ering the expression in a and b as a quadratic equation in @ and computing the discriminant.

(ii) Assume that y = (¢ d)" € (e, f)* is an eigenvector of P for eigenvalue 7, where ¢,d € R".
Then, ¢'e = d"e = 0. Using the block-form of P we obtain

Py — Act+tMgd+wve _ (c
Y=\ +tMlc—va) =" \a)
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So (T—A—v)c = tMd and (T—A+v)d = tM/e. It follows that t? M Mgd = (1—A—v)tMle =
(T=A=0v)(T=A+v)d = ((1 — \)? —v?)d. Similarly, ?McMlc= ((1 —A)? —v?)e. Asc#0
or d # 0, we have that (T_/\t# is an eigenvalue of ML Mg (if t # 0), which is distinct from

its eigenvalue 72 for eigenvector e, as e'c =e'd = 0. So

(1= N2 —0? = 2N (MLMg) (i > 2),

and thus 7=+ \/v2 + 2N (MLMe) (i >2).

We need to ensure 7 > 0. Hence we obtain the condition

A > o2+ 20a(MEMG) = \Jo? + 203,
Note this also holds if ¢ = 0.

Summarizing, we obtain that 19/1021(61) is the smallest A such that there exist ¢,s,v € R satisfying

v2 < (A +tr —2n)(\ — tr + 2ns),
A+tr—2n >0,

A > o2 4123,

Without loss of generality we may set v = 0, since if (A, ¢, s,v) is feasible, then also (A, t,s,v = 0)
is feasible. Hence ¥, (G) is the minimum A such that there exist ¢, s € R satisfying

A+tr—2n>0,
A—tr+2ns >0,
A > |t

Now_we may eliminate the second equation, as we can choose s such that A — ¢r + 2ns = 0.
S0 Upa1(G) is the minimum A such that there exists ¢ € R satisfying

A+tr—2n >0,
A > |t A

This implies A > 2n—tr and A > t\o. Hence ) is above the point of intersection, where 2n—tr = tAg,

ie., t = %, which implies A > thy = ?\Z—iﬁ Setting t = )\Qir and A = Aot is feasible, so the

optimum A is i?j\ri, which completes the proof of Proposition ]

Let us point out that it follows from the above proof that one may set v = 0 in the program
defining ¥y,,1(G); this observation was mentioned just after Proposition
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