
Semidefinite approximations for bicliques and biindependent pairs

Monique Laurent1 & Sven Polak2 & Luis Felipe Vargas3

February 20, 2023

Abstract

We investigate some graph parameters asking to maximize the size of biindependent pairs
(A,B) in a bipartite graph G = (V1 ∪ V2, E), where A ⊆ V1, B ⊆ V2 and A ∪B is independent.
These parameters also allow to study bicliques in general graphs (via bipartite double graphs).
When the size is the number |A∪B| of vertices one finds the stability number α(G), well-known
to be polynomial-time computable. When the size is the product |A|·|B| one finds the parameter
g(G), shown to be NP-hard by Peeters (2003), and when the size is the ratio |A| · |B|/|A ∪ B|
one finds the parameter h(G), introduced by Vallentin (2020) for bounding product-free sets in
finite groups. We show that h(G) is an NP-hard parameter and, as a crucial ingredient, that it is
NP-complete to decide whether a bipartite graph G has a balanced maximum independent set.
These hardness results motivate introducing semidefinite programming bounds for g(G), h(G),
and αbal(G) (the maximum cardinality of a balanced independent set). We show that these
bounds can be seen as natural variations of the Lovász ϑ-number, a well-known semidefinite
bound on α(G) (equal to it for G bipartite). In addition we formulate closed-form eigenvalue
bounds, which coincide with the semidefinite bounds for vertex- and edge-transitive graphs,
and we show relationships among them as well as with earlier spectral parameters by Hoffman,
Haemers (2001) and Vallentin (2020).

Keywords. Independent set, biclique, biindependent pair, Lovász theta number, semidefinite
programming, polynomial optimization, eigenvalue bound, stability number of a graph, Hoffman’s
ratio bound
MSC 2020. 05Cxx, 90C22, 90C23, 90C27, 90C60

1 Introduction

Given a bipartite graph G = (V1 ∪ V2, E), a bipartite biindependent pair in G is a pair (A,B)
of subsets A ⊆ V1 and B ⊆ V2 such that no pair of nodes {i, j} ∈ A × B is an edge of G. The
adjective “bipartite” is used to indicate that we restrict to the pairs (A,B) that respect the bipartite
structure of G, i.e., with A ⊆ V1 and B ⊆ V2; we will however sometimes omit it for the sake of
brevity. The maximum sum |A| + |B| taken over all bipartite biindependent pairs (A,B) is the
well-studied parameter α(G), known as the stability number of G. We consider the following two

other parameters, asking for the maximum product |A| · |B| and the maximum ratio |A|·|B|
|A|+|B| ,

g(G) := max{|A| · |B| : (A,B) is a bipartite biindependent pair in G}, (1)

h(G) := max
{
|A|·|B|
|A|+|B| : (A,B) is a bipartite biindependent pair in G

}
. (2)
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If G is a complete bipartite graph, then any bipartite biindependent pair has A = ∅ or B = ∅ (and
thus g(G) = h(G) = 0); such a pair is called trivial. Otherwise, in the definition of g(G) and h(G),
one may restrict the optimization to nontrivial pairs (A,B), i.e., with A,B 6= ∅. A pair (A,B) is
called balanced if |A| = |B|. Then a related parameter of interest is αbal(G), the maximum number
of vertices in a balanced biindependent pair, given by

αbal(G) := max{|A|+ |B| : (A,B) is a balanced bipartite biindependent pair in G}.

One can also define the parameters gbal(G) and hbal(G) as the analogs of g(G) and h(G), where
one restricts the optimization to balanced pairs in (1) and (2), respectively. Here are some easy
relations that hold among the above parameters.

Lemma 1.1. Let G be a bipartite graph. Then, we have

1
4αbal(G) =

1

2

√
gbal(G) = hbal(G) ≤ h(G) ≤ 1

2

√
g(G) ≤ 1

4α(G), (3)

h(G) =
1

4
α(G)⇐⇒ 1

2

√
g(G) =

1

4
α(G)⇐⇒ α(G) = αbal(G), (4)

Proof. The equalities 1
4αbal(G) = 1

2

√
gbal(G) = hbal(G) follow from the definitions. We now show

the inequalities in (3). First, if (A,B) is optimal for αbal(G), then |A| = |B| and thus we have

h(G) ≥ |A|·|B|
|A|+|B| = |A|/2 = αbal(G)/4. Second, if (A,B) is optimal for h(G), then 1

2

√
g(G) ≥

1
2

√
|A| · |B| ≥ |A|·|B|

|A|+|B| = h(G), where the last inequality holds as (
√
|A| −

√
|B|)2 ≥ 0. Third, if

(A,B) is optimal for g(G), then 1
4α(G) ≥ 1

4(|A|+ |B|) ≥ 1
2

√
|A| · |B| = 1

2

√
g(G), where again the

last inequality holds as (
√
|A| −

√
|B|)2 ≥ 0. This concludes the proof of (3). Moreover, equality

1
4α(G) = 1

2

√
g(G) implies |A| = |B|, and thus (A,B) is a balanced optimal solution for α(G), so

that α(G) = αbal(G). In addition, if h(G) = 1
4α(G), then 1

4α(G) = 1
2

√
g(G) by (3), which, as we

just observed, implies α(G) = αbal(G). The other implications follow directly from (3).

In the rest of this section we first explain how the above parameters also permit to model
problems about bicliques (in arbitrary graphs) and we mention some applications. Then we present
a roadmap through our main results, that deal with complexity questions, and with designing
semidefinite bounds and closed-form eigenvalue-based bounds, topics to which we come back in
detail in Sections 2, 3, 4, and 6.

Biindependent pairs and bicliques in arbitrary graphs

Bipartite biindependent pairs in bipartite graphs also permit to model general biindependent pairs
and bicliques in arbitrary graphs. Consider an arbitrary graph G = (V,E) (not necessarily bipar-
tite). A biindependent pair in G is a pair (A,B) of disjoint subsets of V such that no pair of nodes
{i, j} ∈ A×B is an edge of G (but edges are allowed within A or B). One then defines analogously
the parameters gbi(G) and hbi(G), respectively, as the maximum product |A|·|B| and the maximum

ratio |A|·|B|
|A|+|B| , taken over all biindependent pairs in G. The analog of relation (3) holds:

hbi(G) ≤ 1

2

√
gbi(G) ≤ 1

4
|V |.

Note that hbi(G) ≥ 1
4α(G) if α(G) is even and hbi(G) ≥ 1

4

(
α(G)− 1

α(G)

)
if α(G) is odd (which can

be seen by partitioning a maximum stable set into two almost equally sized parts). The parameters
hbi(G) and gbi(G) can in fact be reformulated in terms of the parameters g(·) and h(·) for an
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associated bipartite graph B0(G), the extended bipartite double of G, defined as follows. First we
define the bipartite double B(G), whose node set is V ∪V ′, where V ′ = {i′ : i ∈ V } is a disjoint copy
of V , and whose edges are the pairs {i, j′} and {j, i′} for {i, j} ∈ E. Then, the extended bipartite
double B0(G) is obtained by adding all pairs {i, i′} (i ∈ V ) as edges to B(G). Now, observe that
a pair (A,B) is biindependent in G precisely when the pair (A ⊆ V,B′ := {i′ : i ∈ B} ⊆ V ′) is
bipartite biindependent in B0(G). Therefore we have

gbi(G) = g(B0(G)) and hbi(G) = h(B0(G)) for any graph G. (5)

One can also model bicliques in an arbitrary graph G = (V,E). A biclique in G is a pair
(A,B) of disjoint subsets of V such that A × B ⊆ E or, equivalently, (A,B) is a biindependent
pair in the complementary graph G = (V,E) of G. In analogy, let gbc(G) and hbc(G) denote the

maximum product |A| · |B| and ratio |A|·|B|
|A|+|B| , taken over all bicliques (A,B) in G, so that

gbc(G) = gbi(G) = g(B0(G)) and hbc(G) = hbi(G) = h(B0(G)) for any graph G. (6)

In the case when G = (V1 ∪ V2, E) is a bipartite graph, nontrivial bicliques in G correspond to

nontrivial bipartite biindependent pairs in the bipartite graph G
b

:= (V1∪V2, (V1×V2)\E), known
as the bipartite complement of G. So we also have

gbc(G) = g(G
b
) and hbc(G) = h(G

b
) for any graph G. (7)

So relations (6) and (7) offer different formulations for the parameters gbc(·) and hbc(·), we
will investigate in Section 4.3 how the associated semidefinite bounds relate.

Complexity results

As is well-known there are polynomial-time algorithms for computing the stability number α(G)
of a bipartite graph G. On the other hand, Peeters [37] shows that, given an integer k, deciding
whether a bipartite graph G has a biclique (A,B) with |A| · |B| ≥ k is an NP-complete problem.
Hence, computing the parameter g(G) is an NP-hard problem (by switching between bicliques and
biindependent pairs).

We will show that also h(G) is hard to compute. For this we show that the problem (denoted
α-BAL-BIP in Section 2) of deciding whether a bipartite graph G has a balanced maximum inde-
pendent set, i.e., whether α(G) = αbal(G), is NP-complete (see Theorem 2.1). Combining with
Lemma 1.1, it follows that deciding whether h(G) ≥ 1

4α(G) is an NP-complete problem.
It is known that, given an integer k, deciding whether a bipartite graph G contains a bipartite

biindependent pair (A,B) with |A| = |B| = k is an NP-complete problem [15, 23] (switching
between biindependent pairs and bicliques). Hence our hardness result for problem α-BAL-BIP
shows hardness of this problem already for the case k = 1

2α(G).
Our proof technique will in fact permit to show NP-hardness for a broader set of problems,

namely for deciding whether any of the following equalities holds: g(G) = gbal(G), h(G) = hbal(G),
h(G) = 1

2

√
g(G), or 1

2

√
g(G) = 1

4α(G) (thus whether the inequalities in (3) hold at equality). See
Theorem 2.7 and Corollary 2.8.

Some applications for the parameters g(·) and h(·)

As explained above the parameter g(·) also allows to model maximum edge cardinality bicliques
in bipartite (or general) graphs. This problem has many real life applications, such as reducing
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assembly times in product manufacturing lines and in the area of formal concept analysis, as
explained in [7] (see also [8, 39]). The related parameter asking for the maximum number of
vertices in a balanced biclique has also many applications; e.g., in VLSI design (e.g., [2, 38, 40],
in the analysis of biological data (as instance of bicluster, e.g., [43]) and of interactions of proteins
(e.g., [34]).

The parameter g(·) is also relevant for bounding the nonnegative rank of a matrix. Given

a matrix M ∈ R|V1|×|V2|
+ , its nonnegative rank rank+(M) is the smallest integer r ∈ N such that

M =
∑r

`=1 a`b
T
` for some nonnegative vectors a` ∈ R|V1|

+ and b` ∈ R|V2|
+ ; computing rank+(·) is an

NP-hard problem [42]. A classical combinatorial lower bound for rank+(M) is the rectangle covering
bound rc(M), defined as the smallest number of rectangles A× B ⊆ V1 × V2 whose union is equal
to the support SM := {(i, j) ∈ V1 × V2 : Mij 6= 0} of M . (See, e.g., [12]). The rectangle covering
bound was used, e.g., in [13] to show an exponential lower bound on the extension complexity
of combinatorial polytopes such as the traveling salesman and correlation polytopes. Also the
parameter rc(M) is not easy to compute. To approximate it, one can consider the bipartite graph
BM , with vertex set V1 ∪ V2 and edge set EM := (V1 × V2) \ SM . Then one can show that
rc(M) · g(BM ) ≥ |SM |. Hence, an upper bound on g(BM ) gives directly a lower bound on rc(M)
and thus a lower bound on the nonnegative rank rank+(M).

The parameter h(·) was introduced by Vallentin [41], who observed its relevance to maximum
product-free subsets in groups in work of Gowers [17]. Let Γ be a finite group. A set A ⊆ Γ is
called product-free if ab 6∈ A for all a, b ∈ A, and one is interested in finding the largest cardinality
of a product-free set in Γ (see [17, 26] for background on this problem). We now briefly indicate
how to bound this parameter using the parameter h(·); for the interested reader we will present
this connection in more detail in Appendix A.

Assume A ⊆ Γ is product-free. Let GΓ,A = (V1 ∪ V2, E) be the associated bipartite Cayley
graph, where V1 and V2 are disjoint copies of Γ and there is an edge between v1 ∈ V1 and v2 ∈ V2

if their product v1v2 belongs to A. The crucial observation now is that since A is product-free,
the pair (A1, A2) is (balanced) bipartite biindependent in GΓ,A, where A1 ⊆ V1, A2 ⊆ V2 are the

corresponding disjoint copies of A. This implies |A|2 ≤ h(GΓ,A). Hence, upper bounds on h(GΓ,A)
give upper bounds on product-free sets in Γ. Vallentin [41] introduced the eigenvalue-based upper

bound h(G) ≤ |V |
2r λ2(AG) for any r-regular bipartite graph G. Applying it to the |A|-regular

bipartite graph GΓ,A, he could recover a result by Gowers [17], which states that a product-free
subset A in Γ has cardinality |A| ≤ |Γ|/k1/3, where k is the minimum dimension of a nontrivial

representation of Γ. We will show the sharper eigenvalue-based bound h(G) ≤ ĥ(G) = |V |
4

λ2(AG)
r+λ(AG)

(see Proposition 4.2), and use it to show a slight sharpening of Gowers’ bound, replacing |Γ|
k1/3 by

|Γ|
1+k1/3 (see Theorem A.2).

In fact, for this application, one is only interested in balanced biindependent pairs in the graph
GΓ,A and we have 2|A| ≤ αbal(GA) if A is product-free in Γ. This motivates investigating whether
sharper semidefinite and eigenvalue-based bounds can be found for the balanced parameters. We
come back briefly to this question later in the introduction and it will be investigated in detail in
Section 6.

Semidefinite approximations

The parameters g(G) and h(G) can be formulated as polynomial optimization problems, which
leads to hierarchies of semidefinite programming (SDP) upper bounds gr(G) and hr(G) (for r ≥ 1),
able to find the original parameters at order r = α(G). We investigate in particular the SDP
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bounds obtained at the first order r = 1. As we will see they take the form

g1(G) = max
X∈SV

{
〈C,X〉 :

(
1 diag(X)T

diag(X) X

)
� 0, Xij = 0 if {i, j} ∈ E

}
, (8)

h1(G) = max
X∈SV

{〈C,X〉 : X � 0, Tr(X) = 1, Xij = 0 if {i, j} ∈ E}. (9)

Here C = 1
2

(
0 J
J 0

)
∈ R|V1|+|V2|, where J denotes the all-ones matrix of appropriate size. The

parameters g1(G) and h1(G) can be seen as quadratic variations of the parameter ϑ(G), introduced
by Lovász [32] as upper bound on α(G) for any G (and equal to α(G) when G is bipartite). Indeed,
if we replace the objective 〈C,X〉 by Tr(X) in program (8) and by 〈J,X〉 in program (9), then we
obtain ϑ(G) in both cases (see (23) and (24)). We will show the following relations between the
parameters h(G), g(G), h1(G), g1(G), and α(G).

Proposition 1.2. For any bipartite graph G we have

h(G) ≤ 1
2

√
g(G) ≤ h1(G) ≤ 1

2

√
g1(G) ≤ 1

4α(G).

It is interesting to note that h1(G) may improve the bound 1
2

√
g1(G) for 1

2

√
g(G). Indeed,

the inequality h1(G) ≤ 1
2

√
g1(G) can be strict, e.g., when G is Kn,n minus a perfect matching

with n ≥ 5, as we see in Section 5. The key ingredient to show this is getting eigenvalue-based
reformulations for the parameters when G enjoys symmetry properties, as we discuss next.

Eigenvalue bounds

When G is a bipartite r-regular graph we can give closed-form bounds in terms of the second
largest eigenvalue of the adjacency matrix AG of G. These bounds are obtained by restricting in
the definitions (8) and (9) of g1(G) and h1(G) the optimization to matrices with some symmetry.

Proposition 1.3. Assume G is a bipartite r-regular graph, set n := |V1| = |V2|, and let λ2 be the
second largest eigenvalue of the adjacency matrix AG of G. Then we have

g1(G) ≤ ĝ(G) :=

{
n2λ2

2
(λ2+r)2 if r ≤ 3λ2,
n2λ2

8(r−λ2) otherwise,
and h1(G) ≤ ĥ(G) :=

nλ2

2(λ2 + r)
.

Moreover, we have equality g1(G) = ĝ(G) if G is vertex- and edge-transitive, and equality h1(G) =
ĥ(G) if G is edge-transitive.

Observe that the bound h(G) ≤ ĥ(G) sharpens the bound h(G) ≤ n
r λ2 by Vallentin [41].

Moreover, one can check that ĥ(G) ≤ 1
2

√
ĝ(G), which mirrors the inequalities h(G) ≤ 1

2

√
g(G) and

h1(G) ≤ 1
2

√
g1(G) (in Proposition 1.2). We will see in Section 5 several classes of graphs for which

strict inequality ĥ(G) < 1
2

√
ĝ(G) holds and, in Section 4, we will compare the parameter ĥ(·) with

other eigenvalue bounds by Hoffman and by Haemers [20, 21].

Bounds for the balanced parameters

As we have seen earlier, the parameter αbal(G), asking for the maximum cardinality of a balanced
independent set in G, arises naturally when considering the parameters h(·) and g(·). An additional
motivation comes from its relevance to product-free sets in groups and other applications as in
[2, 34, 38, 40, 43]. The question thus arises of finding semidefinite and eigenvalue-based bounds for
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αbal(G) (and the related parameters hbal(G) and gbal(G)) that improve on the bounds h1(G) and
ĥ(G) designed for the general (not necessarily balanced) parameters. We investigate this question
in detail in Section 6. We define semidefinite bounds lasbal,1(G) and ϑbal(G) for αbal(G), gbal,1(G)
for gbal(G), and hbal,1(G) for hbal(G), and we show they satisfy 1

4 lasbal,1(G) ≤ 1
2

√
gbal,1(G) ≤

hbal,1(G) = 1
4ϑbal(G) (see Proposition 6.4). Interestingly, the “balanced versions” of the theta

number may lead to different parameters, i.e., lasbal,1(G) < ϑbal(G) may hold (see Example 6.5).
On the other hand, we show that the closed-form values obtained by restricting the optimization
to symmetric solutions in each of these semidefinite bounds in fact recover (up to the correct
transformation) the eigenvalue bound ĥ(G) (see Proposition 6.8).

Organization of the paper

The paper is organized as follows. Section 2 is devoted to the study of the complexity status of
the parameters h(·), g(·) and their balanced analogs αbal(·), gbal(·) and hbal(·). In Section 3 we
investigate semidefinite bounds for g(·) and h(·) and, in Section 4, we study the corresponding
eigenvalue-based bounds. In Section 5 we illustrate the behaviour of the various parameters on
several classes of regular bipartite graphs. We turn our attention to bounds for the balanced
parameters in Section 6 and conclude with several remarks and open questions in the final Section 7.
In Appendix A we briefly present the application of the parameters h(·), ĥ(·), αbal(·) to bounding
product-free sets in finite groups and we group several technical proofs in Appendices B, C and D.

Some notation and preliminaries

Throughout Sn denotes the set of real symmetric n× n matrices. Let In, Jn ∈ Sn denote, respec-
tively, the identity matrix and the all-ones matrix (also denoted as I, J when the dimension is clear
from the context). Given integers a, b ≥ 1 we also let Ja,b denote the a× b all-ones matrix. Given a
graph G = (V = [n], E), SG denotes the set of matrices M ∈ Sn that are supported by G, i.e., such
that Mij = 0 for all i, j ∈ V such that {i, j} 6∈ E. For a matrix X ∈ Sn, diag(X) = (Xii)

n
i=1 ∈ Rn

denotes the vector of its diagonal entries and, for a vector x ∈ Rn, Diag(x) ∈ Sn is the diagonal
matrix with the xi’s as its diagonal entries. We use the symbol e ∈ Rn to denote the all-ones vector
(whose dimension should be clear from the context).

For a real symmetric matrix A ∈ SV we denote its eigenvalues as λ1(A) ≥ . . . ≥ λ|V |(A). We
will often consider the case when A has a bipartite structure, of the form

A =

(
0 M
MT 0

)
∈ S |V |, (10)

where V is partitioned as V = V1 ∪ V2 with |V1| = |V2| =: n and M ∈ R|V1|×|V2|. Then the
eigenvalues of A are ±

√
λ1(MMT), . . . ,±

√
λn(MMT), thus arising from the singular values of M .

For a subset U ⊆ V we let χU ∈ RV denotes its characteristic vector, whose ith entry is 1 if
i ∈ U and 0 if i ∈ V \U . For a matrix M ∈ SV , M [U ] = (Mij)i,j∈U denotes the principal submatrix
of M indexed by U .

2 Complexity results

In this section we prove several complexity results. Recall that a clique in G is a set of pairwise
adjacent vertices and ω(G) denotes the maximum cardinality of a clique in G, so that ω(G) = α(G).
We consider the following problems.
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Problem 1 (α-BAL-BIP). Given a bipartite graph G, decide whether α(G) = αbal(G), i.e., whether
G has a balanced maximum independent set.

Problem 2 (HALF-SIZE-CLIQUE-EDGE). Given a graph G = (V,E) with |V | even and |E| =
1
4 |V |(|V | − 2), decide whether ω(G) ≥ |V |2 .

Problem 3 (HALF-SIZE-CLIQUE). Given a graph G = (V,E) with |V | even, decide whether

ω(G) ≥ |V |2 .

Problem 4 (CLIQUE). Given a graph G and an integer k ∈ N, decide whether ω(G) ≥ k.

It is well-known that CLIQUE is an NP-complete problem [25] as well as problem HALF-
SIZE-CLIQUE; we refer, e.g., to [1] for an easy reduction of CLIQUE to HALF-SIZE-CLIQUE. In
what follows we will show the following reductions

HALF-SIZE-CLIQUE ≤P HALF-SIZE-CLIQUE-EDGE ≤P α-BAL-BIP. (11)

Here we say that L1 ≤P L2 if we have a polynomial-time algorithm permitting to encode an instance
of L1 as an instance of L2. We will show the first reduction in Theorem 2.3 and the second one in
Theorem 2.7 below. Then, using the reductions in (11), we obtain the following complexity results.

Theorem 2.1. Problem 1 (α-BAL-BIP) is an NP-complete problem.

Corollary 2.2. Computing the parameter h(G) for G bipartite is NP-hard.

Proof. Recall that computing α(G) in bipartite graphs can be done in polynomial time. Hence, if
there is a polynomial time algorithm for computing h(G), then one can decide in polynomial time

whether h(G) = α(G)
4 , which is equivalent to Problem 1, in view of Lemma 1.1.

The proof technique used to show the reduction from problem HALF-SIZE-CLIQUE-EDGE to
problem α-BAL-BIP will in fact allow to show a broader set of results. Namely it permits to show
hardness of testing whether any of the following equalities holds: g(G) = gbal(G), h(G) = hbal(G),
or h(G) = 1

2

√
g(G). In other words, it is NP-hard to check whether any of the inequalities in

relation (3) holds at equality. See Corollary 2.8 below for these and other hardness results.

In the rest of the section we will prove the two reductions from relation (11) and related
hardness results for the other (balanced) parameters. For this we use as a first ingredient the
following graph constructions.

Definition 2.1. Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs with disjoint vertex
sets and let k ≥ 1 be an integer.

(i) The disjoint union of G and H, denoted by G⊕H, is the graph with vertex set V (G) ∪ V (H)
and edge set E(G) ∪ E(H).

(ii) The join of G and H, denoted by G ./ H, is the graph with vertex set V (G) ∪ V (H) and edge
set E(G) ∪ E(H) ∪ (V (G)× V (H)).

(iii) The k-th expansion of G, denoted by G(k), is the graph constructed as follows: its vertex set
is
⋃
v∈V (G)Xv, where Xv are disjoint sets, each of size k, and we have a clique on each Xv

and a complete bipartite graph between Xu and Xv whenever {u, v} ∈ E(G).
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Figure 1: Graph F , ω(F ) = 3, 6 nodes, 10 edges.

Clearly we have the following relations

|V (G⊕H)| = |V (G)|+ |V (H)|, |E(G⊕H)| = |E(G)|+ |E(H)|, (12)

ω(G⊕H) = max{ω(G), ω(H)}, (13)

|V (G ./ H)| = |V (G)|+ |V (H)|, |E(G ./ H)| = |E(G)|+ |E(H)|+ |V (G)| · |V (H)|, (14)

ω(G ./ H) = ω(G) + ω(H), (15)

|V (G(k))| = k|V (G)|, |E(G(k))| =
(
k
2

)
|V (G)|+ k2|E(G)|, ω(G(k)) = kω(G). (16)

Theorem 2.3. HALF-SIZE-CLIQUE ≤P HALF-SIZE-CLIQUE-EDGE.

Proof. Let G be an instance of HALF-SIZE-CLIQUE, set |V (G)| = 2n, |E(G)| = m. Let t be the
smallest integer such that

(
t
2

)
≥ 9n2+n+m. Consider the graph F from Fig. 1 and define the graph

H := ((G ./ F (n)) ./ Kt) ⊕H0, where H0 is a graph with t nodes and
(
t
2

)
− (9n2 + n + m) edges.

So the role of H0 is to add enough edges in order to ensure that |E(H)| = |V (H)|(|V (H)| − 2)/4.
Observe that H can be constructed in polynomial time. Using (12)-(16), we obtain

|V (H)| = 8n+ 2t,

|E(H)| = (m+ 6
(
n
2

)
+ 10n2 + 12n2) +

(
t
2

)
+ 8nt+ (

(
t
2

)
− 9n2 − n−m)

= (4n+ t)(4n+ t− 1) = 1
4(8n+ 2t)(8n+ 2t− 2),

ω(H) = ω(G) + 3n+ t.

Hence, H is an instance of HALF-SIZE-CLIQUE-EDGE and ω(H) ≥ |V (H)|/2 if and only if
ω(G) ≥ |V (G)|/2. Therefore, if there is a polynomial time algorithm for solving HALF-SIZE-
CLIQUE-EDGE, then we can solve HALF-SIZE-CLIQUE in polynomial time.

As a next step we show the reduction of HALF-SIZE-CLIQUE-EDGE to α-BAL-BIP. Our
proof is inspired from an argument in [4], where the authors consider minimum vertex covers in a
bipartite graph restricted to have at least k1 vertices in one side of the bipartition and at least k2

vertices in the other side. In [4, Theorem 3.1] it is shown that deciding existence of such vertex
covers is NP-complete by giving a reduction from CLIQUE. We adapt this reduction by suitably
selecting the values of k1 and k2, considering independent sets (complements of vertex covers)
instead of vertex covers, and modifying the graph construction used in [4].

The following graph construction will play a central role for the reduction of HALF-SIZE-
CLIQUE-EDGE to α-BAL-BIP (and other related problems).

Definition 2.4. Given a graph G = (V,E) with n := |V | and m := |E|, consider the bipartite
graph HG = (V1 ∪ V2, EH) constructed as follows.

(i) For each vertex v ∈ V we construct two vertices v1 ∈ V1 and v2 ∈ V2 and add the edge {v1, v2}
to EH .

(ii) For each edge e ∈ E we construct two vertex sets Le ⊆ V1 and Re ⊆ V2 with |Le| = |Re| = n+1
and add all edges in Le ×Re to EH .
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(iii) If v ∈ V is incident to e ∈ E, then we let v1 be adjacent in HG to all vertices of Re.

Hence, setting LV := {v1 : v ∈ V }, RV := {v2 : v ∈ V }, LE :=
⋃
e∈E Le, and RE :=

⋃
e∈E Re, we

have V1 = LV ∪LE and V2 = RV ∪RE, there is a perfect matching between LV and RV , there is a
complete bipartite graph between Le and Re for each e ∈ E, and there is a complete bipartite graph
between v1 ∈ V1 and Re for each edge e ∈ E containing v ∈ V .

The next lemma shows that the maximal independent sets in the bipartite graph HG have a
very special structure, which will be useful for the proof of Theorem 2.7 below.

Lemma 2.5. Let G = (V,E) be a graph, n := |V |, m := |E|, and let HG be the associated bipartite
graph as in Definition 2.4. Assume I ⊆ V (HG) = V1 ∪ V2 is a maximal independent set of HG.
Then I takes the following form

I ∩ V1 = {v1 : v ∈ A} ∪
⋃
e∈E1

Le, I ∩ V2 = {v2 : v ∈ B} ∪
⋃
e∈E2

Re, (17)

where A ⊆ V , B = V \ A, E1 is the set of edges e ∈ E that are incident to some node v ∈ A, and
E2 = E \E1 (thus the set of edges e ∈ E contained in B). Moreover, I is a maximum independent
set of HG and α(HG) = n+m(n+1). Conversely, any set I as in (17) is a (maximum) independent
set of HG.

Proof. Assume I ⊆ V1 ∪ V2 is a maximal independent set of HG. Set A := {v ∈ V : v1 ∈ I},
B := {v ∈ V : v2 ∈ I}, and E2 := E \ E1, where E1 is the set of edges e ∈ E that are incident
to some node v ∈ A; we show that (17) holds. First, we have A ∩ B = ∅ (for, if v ∈ A ∩ B, then
the edge {v1, v2} of HG would be contained in I, contradicting that I is independent). Moreover,
A∪B = V (for, if v ∈ V \ (A∪B), then the set I ∪{v2} would be independent in HG, contradicting
the maximality of I). So we have I ∩ LV = {v1 : v ∈ A} and I ∩ RV = {v2 : v ∈ B}. We now
claim that I ∩ LE =

⋃
e∈E1

Le and I ∩ RE =
⋃
e∈E1

Re. First note that, if I ∩ Re 6= ∅, then e is
not incident to any node of A and thus e ∈ E2. Moreover, by maximality of I, we have Re ⊆ I for
any e ∈ E2. So we indeed have I ∩ RE =

⋃
e∈E2

Re and in turn this implies I ∩ LE =
⋃
e∈E1

Le.
Therefore we have |I| = n + m(n + 1), which implies that α(HG) = n + m(n + 1) and that I is
maximum independent. This concludes the proof (since the last (reverse) claim is straigthforward
to check).

Corollary 2.6. Let G = (V,E) be a graph and let HG be the bipartite graph as in Definition 2.4.
The following assertions are equivalent.

(i) αbal(HG) = α(HG).

(ii) gbal(HG) = g(HG).

(iii) hbal(HG) = h(HG).

Proof. The implications (i) =⇒ (ii) and (i) =⇒ (iii) follow from relation (3). Conversely, assume (ii)
holds and let (A,B) be a balanced optimal solution for g(HG). Then A∪B is maximal independent
in HG and thus, by Lemma 2.5, it is maximum, so that α(HG) = |A ∪B| = αbal(HG) as (A,B) is
balanced. The same argument shows the implication (iii) =⇒ (i).

Now we show the main result of the section, which combined with Theorem 2.3, implies
Theorem 2.1.
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Theorem 2.7. Let G = (V,E) be a graph satisfying |E| = 1
4 |V |(|V |−2) and let HG be the associated

bipartite graph as in Definition 2.4. The following assertions are equivalent.

(i) G has a clique of size |V |/2, i.e., ω(G) ≥ |V |/2.

(ii) α(HG) = αbal(HG).

Therefore, HALF-SIZE-CLIQUE-EDGE ≤P α-BAL-BIP.

Proof. We first show (i) =⇒ (ii). Assume C is a clique of G with |C| = |V |/2. Let E2 be the
set of edges of G that are contained in C, so that E1 := E \ E2 is the set of edges of G that

are incident to some node in V \ C. By the assumption on G we have
(|V |/2

2

)
= |E|

2 and thus

|E2| =
(|V |/2

2

)
= |E|

2 = |E1|. Consider the subset I ⊆ V1 ∪ V2 of V (HG), which is defined by

I ∩ V1 = {v1 : v /∈ C} ∪
⋃
e∈E1

Le, I ∩ V2 = {v2 : v ∈ C} ∪
⋃
e∈E2

Re.

By Lemma 2.5, I is a maximum independent set in HG and α(HG) = n+m(n+ 1). Moreover, we
have |I ∩ V1| = |I ∩ V2|, which shows that αbal(HG) = α(HG).

Now we show (ii) =⇒ (i). By the assumption (ii), HG has a balanced maximum independent
set I. By Lemma 2.5, I takes the form as in (17). As I is balanced we have |I ∩ V1| = |I ∩ V2| and
thus ||A| − |B|| = (n+ 1)||E2| − |E1||. If |E1| 6= |E2| then the left hand side is at most n while the
right hand side is at least n + 1. Therefore we have |E1| = |E2| = |E|/2 and |A| = |B| = |V |/2.
Moreover, |E2| ≤

(|B|
2

)
=
(|V |/2

2

)
since E2 consists of the edges that are contained in B. This gives

|E| = 2|E2| ≤ 2
(|V |/2

2

)
= |V |(|V | − 2)/4. We now use the assumption |E| = |V |(|V | − 2)/4 on the

number of edges of G, which implies that equality holds throughout and thus that B is a clique in
G of size |B| = |V |/2, showing (i).

Corollary 2.8. Given a bipartite graph G it is NP-hard to decide whether any of the following
equalities holds.

(i) g(G) = gbal(G).

(ii) h(G) = hbal(G).

(iii) h(G) = 1
4α(G).

(iv) 1
2

√
g(G) = 1

4α(G).

(v) h(G) = 1
2

√
g(G).

Proof. We show that it is NP-hard to check any of the equalities (i)-(v) for the class of bipartite
graphs that are of the form HG (as in Definition 2.4) for some graph G with |E| = 1

4 |V |(|V | − 2).
The key fact is that, for bipartite graphs of the form HG, any of the assertions (i)-(v) is equivalent
to α(HG) = αbal(HG); this was shown in Corollary 2.6 for (i)-(ii) and in relation (4) for (iii)-(iv),
and one can easily verify that (v) implies (i). Then the corollary follows using Theorems 2.3 and 2.7
together with hardness of HALF-SIZE-CLIQUE.

Remark 2.9. The hardness results in Corollary 2.8 hold in fact for a broader class of bipartite
graph parameters. For this consider a bivariate function f : R2

+ → R that satisfies the condition

f(a, b) ≤ a+ b

4
, and f(a, b) =

a+ b

4
⇐⇒ a = b, for all a, b ∈ N (18)
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and define the corresponding graph parameter

f(G) := max{f(|A|, |B|) : (A,B) is bipartite biindependent in G} for G bipartite.

Using relation (18) one can check the inequalities αbal(G)
4 ≤ f(G) ≤ α(G)

4 and the equivalence

f(G) = α(G)
4 ⇐⇒ α(G) = αbal(G). Using Theorem 2.7, it follows that computing f(·) is NP-hard

(already for the bipartite graphs of the form HG for some graph G with |V |(|V | − 2)/4 edges).
Examples of functions satisfying (18) include f(a, b) = ab

a+b (giving the parameter h(G)) and

f(a, b) = 1
2

√
ab (giving 1

2

√
g(G)), or any f(·) nested between h(·) and 1

2

√
g(·). As another example

consider f(a, b) :=
(

1
2

√
ab
)p(

a+b
4

)1−p
with 0 ≤ p ≤ 1, which gives a graph parameter f(·) nested

between 1
2

√
g(·) and α(·)

4 .

3 Semidefinite approximations for the parameters g(G) and h(G)

In this section we introduce semidefinite approximations for the parameters g(·) and h(·) from (1)
and (2), which are both NP-hard to compute as we saw in the previous sections. Let G = (V =
V1 ∪ V2, E) be a bipartite graph and let C be the matrix from relation (26) below. The starting
point is to formulate the parameters g(G) and h(G) as maximizing, respectively, the quadratic

polynomial xTCx and the rational function xTCx
xTx

over the vectors x ∈ {0, 1}|V | such that xixj = 0
for all {i, j} ∈ E. Then, to get a tractable approximation, a common approach is to linearize the

quadratic terms by introducing a matrix X modeling xxT in the case of g(G), and modeling xxT

xTx
in

the case of h(G). In this way one obtains the semidefinite bounds g1(G) and h1(G) introduced earlier
in (8) and (9). More generally, one can define hierarchies of semidefinite parameters (hr(G))r∈N
and (gr(G))r∈N that upper bound h(G) and g(G), respectively, using polynomial optimization
techniques. Then the parameters h1(G) and g1(G) correspond to the bounds at the first level r = 1
in these hierarchies. We will next briefly recall how the polynomial optimization approach applies
for bounding the parameters g(G) and h(G) and after that we investigate the bounds g1(G) and
h1(G) in more detail.

3.1 Polynomial optimization formulations and bounds

We begin with a short recap on notation about polynomials and their use for approximating stable
sets in graphs. For an integer r ∈ N, R[x]r = R[x1, . . . , xn]r denotes the set of n-variate polynomials
with degree at most r. Then Σr ⊆ R[x]2r denotes the set of sums of squares of polynomials, of the
form

∑k
i=1 u

2
i with ui ∈ R[x]r and k ∈ N. Recall that one can test whether a polynomial f ∈ R[x]2r

belongs to Σr via semidefinite optimization. Indeed, f ∈ Σr if and only if there exists a positive
semidefinite matrix Q that satisfies the polynomial identity f(x) = [x]TrQ[x]r, where [x]r denotes
the vector of square-free (aka multilinear) monomials of degree at most r. In particular [x]1 denotes
the (column) vector (1, x1, . . . , xn)T.

Let G = (V = [n], E) be a graph. Define the ideal IG ⊆ R[x] generated by the polynomials
x2
i − xi (i ∈ V ) and xixj ({i, j} ∈ E), which consists of the polynomials q =

∑
i∈V ui(x

2
i − xi) +∑

{i,j}∈E uijxixj with ui, uij ∈ R[x]. For an integer r ∈ N, let IG,2r ⊆ R[x]2r denote its degree 2r
truncation consisting of the above polynomials q, where we require that ui and uij have degree at
most 2r−2. The motivation for considering the ideal IG comes from the fact that the stable sets in
G correspond to the vectors in its variety V (IG), i.e., to the vectors x ∈ Rn satisfying x2

i − xi = 0
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for i ∈ V and xixj = 0 for {i, j} ∈ E. This enables reformulating the stability number of G as

α(G) = max
{∑
i∈V

xi : x ∈ V (IG)
}

= min
{
λ : λ−

∑
i∈V

xi ≥ 0 for all x ∈ V (IG)
}

(19)

= min
{
λ : λ−

∑
i∈V

xi ∈ Σα(G) + IG,2α(G)

}
. (20)

Here, the last equality follows from the following well-known key fact: for a polynomial p ∈ R[x],

p(x) ≥ 0 for all x ∈ V (IG)⇐⇒ p ∈ Σα(G) + IG (21)

(see [29], [30]). This motivates defining the parameters

lasr(G) := min
{
λ : λ−

∑
i∈V

xi ∈ Σr + IG,2r

}
for any r ∈ N, (22)

also known as the Lasserre bounds for α(G). The parameter lasr(G) can be expressed via a
semidefinite program and we have α(G) ≤ lasr+1(G) ≤ lasr(G), with equality α(G) = lasr(G) if
r ≥ α(G) [30]. At order r = 1 we obtain the bound las1(G) which, after applying SDP duality, can
be checked to take the form

las1(G) = max
{
〈I,X〉 : X ∈ Sn,

(
1 diag(X)T

diag(X) X

)
� 0, Xij = 0 for {i, j} ∈ E

}
. (23)

Another upper bound on α(G) is the theta number by Lovász [32], defined by

ϑ(G) = max{〈J,X〉 : X ∈ Sn, X � 0, 〈I,X〉 = 1, Xij = 0 for {i, j} ∈ E}. (24)

As is well-known these two bounds coincide:

las1(G) = ϑ(G) (25)

(see, e.g., [18]; see also Remark 3.7). Moreover, ϑ(G) = α(G) if G is bipartite (more generally, if
G is perfect, see [18]). We now indicate how the polynomial optimization approach sketched above
also applies to the parameters g(·) and h(·).

Assume now G = (V = V1 ∪ V2, E) is a bipartite graph. Define the matrix

C :=
1

2

(
0 J|V1|,|V2|

J|V2|,|V1| 0

)
∈ S |V |, (26)

so that xTCx =
(∑

i∈V1
xi
)(∑

j∈V2
xj
)
. As observed above one can encode a biindependent pair

(A,B) with A ⊆ V1 and B ⊆ V2 by its characteristic vector x = χA∪B, which belongs to the variety
V (IG). Then we can express the parameters g(G) and h(G) as

g(G) = max
{
xTCx : x2

i = xi (i ∈ V ), xixj = 0 ({i, j} ∈ E)
}
, (27)

h(G) = max
{xTCx
xTx

: x2
i = xi (i ∈ V ), xixj = 0 ({i, j} ∈ E)

}
. (28)

The Lasserre bounds of order r for g(G) and h(G) read, respectively,

gr(G) := min{λ : λ− xTCx ∈ Σr + IG,2r}, (29)

hr(G) := min{λ : xT(λI − C)x ∈ Σr + IG,2r}, (30)

and the next result follows as a direct application of relation (21).
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Lemma 3.1. Let G be a bipartite graph. For any integer r ≥ 1, we have g(G) ≤ gr(G) and
h(G) ≤ hr(G), with equality if r ≥ α(G).

Since sums of squares of polynomials can be modelled using positive semidefinite matrices the
parameters lasr(G), gr(G), hr(G) can be formulated using a semidefinite program. In later sections
we will give the explicit semidefinite programs for the parameters g1(G) and h1(G), their symmetric
versions and their balanced analogs. An important property that we will use is that strong duality
holds for all these semidefinite programs, which follows from a result in [24] (thanks to the presence
of the equations x2

i − xi = 0 for i ∈ V in the original polynomial optimization problems).

3.2 Semidefinite formulations for the Lasserre bounds h1(G) and g1(G)

In this section we give explicit semidefinite formulations for the Lasserre bounds (29) and (30) of
order r = 1 for g(G) and h(G). In particular, we indicate how to obtain the formulations given
earlier in (8) and (9). Recall that SG consists of the matrices in S |V | that are supported by G. We
begin with a claim expressing polynomials in the truncated ideal IG,2 that we will repeatedly use.

Lemma 3.2. Given a graph G = (V,E) and a matrix M ∈ S1+|V | (indexed by {0} ∪ V ) we have
[x]T1M [x]1 ∈ IG,2 if and only if M takes the form

M =

(
0 −uT/2
−u/2 Diag(u) + Z

)
for some u ∈ R|V |, Z ∈ SG. (31)

Proof. By definition, [x]T1M [x]1 ∈ IG,2 if [x]T1M [x]1 =
∑

i∈V ui(x
2
i −xi) +

∑
{i,j}∈E uijxixj for some

ui, uij ∈ R. The result follows by equating coefficients at both sides of this polynomial identity.

We now give semidefinite formulations for the parameters h1(G) and g1(G).

Lemma 3.3. Let G = (V = V1 ∪ V2, E) be a bipartite graph. Then the Lasserre bound of order
r = 1 for h(G) can be reformulated as

h1(G) = min
λ∈R,Z∈SV

{λ : λI + Z − C � 0, Z ∈ SG}, (32)

= max
X∈SV

{〈C,X〉 : X � 0, Tr(X) = 1, Xij = 0 for {i, j} ∈ E}. (33)

Proof. By definition, h1(G) is the smallest scalar λ for which xT(λI − C)x ∈ Σ2 + IG,2, i.e., the
smallest λ for which [x]T1Q[x]1 − xT(λI −C)x ∈ IG,2 for some matrix Q � 0 (indexed by {0} ∪ V ).
Using Lemma 3.2 we obtain that Q00 = 0 and thus Q0i = 0 for all i ∈ V (as Q � 0). From this
follows that the principal submatrix indexed by V takes the form Q[V ] = Z + λI − C for some
Z ∈ SG and we arrive at the formulation (32) for h1(G). By taking the semidefinite dual we obtain
the formulation (33). As already noted above strong duality holds, as an application of [24].

Lemma 3.4. Let G be a bipartite graph. Then we have

g1(G) = min
λ∈R,u∈RV ,Z∈SV

{
λ :

(
λ uT/2
u/2 Diag(u)− C + Z

)
� 0, Z ∈ SG

}
, (34)

= max
X∈SV

{
〈C,X〉 :

(
1 diag(X)T

diag(X) X

)
� 0, Xij = 0 for {i, j} ∈ E

}
. (35)

Proof. By definition g1(G) is the smallest scalar λ for which λ− xTCx ∈ Σ2 + IG,2. In other words
this is the smallest λ for which there exists Q � 0 such that [x]T1

(
Q −

(
λ 0
0 −C

))
[x]1 ∈ IG,2. Using

Lemma 3.2 we obtain the formulation of g1(G) as in (34). Then the formulation (35) follows by
taking the dual of the semidefinite program (34) and strong duality holds, by a result in [24].
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Remark 3.5. In order to highlight some similarities and differences between the parameters las1(G),
g1(G) and h1(G) we indicate how to derive the formulation (23) of las1(G). Let us start with the def-
inition of las1(G) as the smallest λ for which λ−

∑
i∈V xi ∈ Σ2 +IG,2. Since

∑
i∈V xi−xTIx ∈ IG,2

we can alternatively search for the smallest λ for which [x]T1
(
Q −

(
λ 0
0 −I

))
[x]1 ∈ IG,2. Using

Lemma 3.2 we obtain

las1(G) = min
λ∈R,u∈RV ,Z∈SV

{
λ :

(
λ uT/2
u/2 Diag(u)− I + Z

)
� 0, Z ∈ SG

}
. (36)

Taking the dual semidefinite program of (36) we arrive at the formulation (23).
Note the similarity between programs (34) and (36), which are the same up to exchanging the

matrices C and I. Note also that it is possible to simplify program (36) and to bring it in the form

las1(G) = min
λ∈R,Z∈SV

{
λ :

(
λ eT

e I + Z

)
� 0, Z ∈ SG

}
, (37)

which is another well-known formulation of ϑ(G). To see this, call Q the matrix in program (36).
As Qii = ui − 1 ≥ 0 we have ui ≥ 1 for all i ∈ V . By scaling the ith column/row of Q by 2/ui

and adding 1 − 4
u2
i
(ui − 1) = (ui−2)2

u2
i
≥ 0 to entry Qii, we obtain a new matrix Q′ � 0 satisfying

Q′0i = Q′ii = 1 for all i ∈ V , thus feasible for (37). This shows the equivalence of (36) and (37).
Note, however, that the above rescaling trick could not be applied to program (34); indeed if Q

denotes the matrix appearing in (34), then one must have Qij = −1/2 for all positions (i, j) ∈ V1×V2

corresponding to non-edges of G.

Finally, we mention a natural strengthening of h1(G), obtained by adding one row/column to
the matrix variable (as in the definition (35) of g1(G)):

h′1(G) := max
{
〈C,X〉 :

(
1 xT

x X

)
� 0, Tr(X) = 1, x = diag(X), Xij = 0 for {i, j} ∈ E

}
. (38)

We have
h(G) ≤ h′1(G) ≤ h1(G).

The inequality h′1(G) ≤ h1(G) is clear since any feasible solution of (38) gives a feasible solution
of (33). To see that h(G) ≤ h′1(G), let (A,B) be an optimal solution for h(G) and set y := χA∪B.
Then x := y/eTy and X := yyT/eTy provide a feasible solution for h′1(G), with value 〈C,X〉 =
|A| · |B|/|A ∪ B| = h(G) (using the fact that X − xxT = yyT(eTy − 1)/(eTy)2 � 0). In the next
section we will show that h1(G) upper bounds also 1

2

√
g(G); the next example shows this is not

true for h′1(G).

Example 3.6. Let G = (V1∪V2, E) be the bipartite graph with V1 = {1, 2}, V2 = {3, 4}, and a single

edge {1, 3}, see Figure 2. We have h′1(G) <
(√

2
2 =

)
1
2

√
g(G) = h1(G). Indeed, h1(G) ≥ 1

2

√
g(G)

holds by Proposition 1.2, and h1(G) ≤
√

2
2 follows from the fact that

√
2

2 I + AG − C � 0, which

exhibits a feasible solution to (32). Moreover, the strict inequality h′1(G) <
√

2
2 follows from the fact

that the dual program (49) (defined below) of (38) has feasible solution λ = 0.0002, η = 0.7068,

u = (−0.01, 0.004,−0.01, 0.004)T, Z = 0.99AG, with objective value 0.707 <
√

2
2 .

14



1

2

3

4
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Figure 2: Graph G with α(G) = 3, αbal(G) = 2, h(G) = 2/3, and g(G) = 2

3.3 Comparison of the Lasserre bounds h1(G) and g1(G)

In this section we show the following inequalities

h(G) ≤ 1
2

√
g(G) ≤ h1(G) ≤ 1

2

√
g1(G) ≤ 1

4α(G) for any bipartite graph G,

that were claimed in Proposition 1.2. One may have strict inequalities h1(G) < 1
2

√
g1(G) < 1

4α(G),
e.g., when G is the complete bipartite graph Kn,n minus a perfect matching and n ≥ 5 (see
Section 5.2). To show the above inequalities we will use, in particular, the fact that the theta
number ϑ(G) admits the two equivalent formulations that were given earlier in (23) and (24) (recall
(25), see also Remark 3.7) and the fact that ϑ(G) = α(G) when G is a bipartite graph. Recall
that we already know h(G) ≤ 1

2

√
g(G) from Lemma 1.1. Hence, in order to show Proposition 1.2,

it suffices to show the inequalities 1
2

√
g(G) ≤ h1(G), h1(G) ≤ 1

2

√
g1(G), h1(G) ≤ 1

4α(G), and
g1(G) ≤ α(G)h1(G).

Proof of 1
2

√
g(G) ≤ h1(G). Let (A,B) be an optimal solution for g(G) with |A| =: a, |B| =: b

and let (λ, Z) be a feasible solution for the formulation (32) of h1(G); we show that λ ≥ 1
2

√
ab.

By assumption, the matrix M := λI + Z − C is positive semidefinite and thus also its principal
submatrix M [A ∪B] is positive semidefinite. Observe that M [A ∪B] has the block-form

M [A ∪B] =

(
λIa −1

2Ja,b
−1

2Jb,a λIb

)
,

because Zij = 0 for i ∈ A, j ∈ B as A∪B is independent. By taking a Schur complement we obtain
that M [A ∪ B] � 0 if and only if λIa − b

4λJa,a � 0. This implies λ ≥ 1
2

√
ab = 1

2

√
g(G) and thus

h1(G) ≥ 1
2

√
g(G).

Proof of h1(G) ≤ 1
2

√
g1(G). Let X be an optimal solution for the formulation (33) of h1(G).

Then X � 0 and thus X = (yTi yj)i,j∈V for some vectors yi ∈ R|V | (i ∈ V ). We may assume
without loss of generality that yi 6= 0 for i ∈ V (since, if yi = 0, then we just replace X by its
principal submatrix indexed by V \ {i}). Define the vectors y′ :=

∑
i∈V1

yi and y′′ :=
∑

i∈V2
yi,

so that h1(G) = 〈C,X〉 = (y′)Ty′′. To shorten notation we set h := h1(G) = (y′)Ty′′. We may

assume h > 0, else there is nothing to prove. For ε = ±1, define the vector dε := y′+εy′′

‖y′+εy′′‖ . Here the

convention is that we consider the vector dε only if y′+εy′′ 6= 0. Note that at least one of d1 and d−1

is well-defined (since otherwise one would have y′ = y′′ = 0, implying h1(G) = 0, a contradiction).

Then let Xε denote the Gram matrix of the vectors dTε yi
‖yi‖2 yi for i ∈ V ; we claim that Xε is feasible for

the formulation (35) of g1(G). To see it, consider the matrix Yε defined as the Gram matrix of the

vectors dε and dTε yi
‖yi‖2 yi for i ∈ V , so that Xε is its principal submatrix indexed by V , and note that

Yε � 0, (Yε)00 = 1, (Yε)0i = (Yε)ii for i ∈ V , and (Yε)ij = 0 if {i, j} ∈ E. Hence, if one can show that
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〈C,Xε〉 ≥ 4〈C,X〉2 for some ε ∈ {±1}, then this implies g1(G) ≥ 〈C,Xε〉 ≥ 4〈C,X〉2 = 4h1(G)2

and the proof is complete. The rest of the proof is devoted to showing that 〈C,Xε〉 ≥ 4〈C,X〉2 for
some ε ∈ {±1}, and is a bit technical.

In a first step, we show that the vectors yi (i ∈ V ) satisfy the following relations

yTi y
′′ = 2h‖yi‖2 (i ∈ V1), (39)

yTj y
′ = 2h‖yj‖2 (j ∈ V2). (40)

For this consider an optimal solution S := hI + Z − C of the program (32) defining h1(G), where
Z ∈ SG. As X and S are primal and dual optimal solutions we must have XS = 0, i.e., 0 =
hX +XZ −XC. We now compute the diagonal entries. Note that (XZ)ii = 0 for all i ∈ V (since,
for each k ∈ V , we have Xik = 0 or Zki = 0). Hence, for i ∈ V1, we have h‖yi‖2 = hXii = (XC)ii =
1
2

∑
j∈V2

Xij = 1
2y

T
i y
′′, and, for j ∈ V2, we have h‖yj‖2 = hXjj = (XC)jj = 1

2

∑
i∈V1

Xij = 1
2y

T
j y
′.

So (39) and (40) hold.
We now proceed to compute

〈C,Xε〉 =
∑

(i,j)∈V1×V2

dTε yi · dTε yj
‖yi‖2‖yj‖2

· yTi yj . (41)

First, we compute (part of) the inner term for i ∈ V1 and j ∈ V2:

dTε yi · dTε yj
‖yi‖2‖yj‖2

=
1

‖y′ + εy′′‖2
(y′ + εy′′)Tyi · (y′ + εy′′)Tyj

‖yi‖2‖yj‖2
(42)

=
1

‖y′ + εy′′‖2
(

2h
(y′)Tyi
‖yi‖2

+ 2h
(y′′)Tyj
‖yj‖2

+ ε
(y′)Tyi · (y′′)Tyj
‖yi‖2‖yj‖2

+ 4h2ε
)
, (43)

where we have used relations (39), (40) and that ε2 = 1 to carry out the simplifications. Next
observe that∑

(i,j)∈V1×V2

(y′)Tyi
‖yi‖2

yTi yj =
∑
i∈V1

(y′)Tyi
‖yi‖2

(∑
j∈V2

yTi yj

)
=
∑
i∈V1

(y′)Tyi
‖yi‖2

yTi y
′′ = 2h

∑
i∈V1

(y′)Tyi = 2h‖y′‖2,

(44)

where we have used again relation (39). In the same way we have∑
(i,j)∈V1×V2

(y′′)Tyj
‖yj‖2

yTi yj = 2h‖y′′‖2. (45)

Combining (41), (43), (44) and (45), we obtain

〈C,Xε〉 =
1

‖y′ + εy′′‖2
(

4h2(‖y′‖2 + ‖y′′‖2 + ε(y′)Ty′′) + ε
∑

(i,j)∈V1×V2

(y′)Tyi · (y′′)Tyj · yTi yj
‖yi‖2‖yj‖2

)
=

1

‖y′ + εy′′‖2
(

4h2‖y′ + εy′′‖2 − 4h2ε(y′)Ty′′ + ε
∑

(i,j)∈V1×V2

(y′)Tyi · (y′′)Tyj · yTi yj
‖yi‖2‖yj‖2

)
= 4h2 +

ε

‖y′ + εy′′‖2
( ∑

(i,j)∈V1×V2

(y′)Tyi · (y′′)Tyj · yTi yj
‖yi‖2‖yj‖2

− 4h3

︸ ︷︷ ︸
=:ϕ

)
= 4h2 +

ε · ϕ
‖y′ + εy′′‖2

.
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We can now conclude the proof. Assume first y′±y′′ 6= 0, so that both d1 and d−1 are well-defined.
If ϕ ≥ 0 then 〈C,X1〉 ≥ 4h2. Otherwise, if ϕ < 0, then 〈C,X−1〉 ≥ 4h2. So we have shown the
desired result: 〈C,Xε〉 ≥ 4h2 for some ε ∈ {±1}. Consider now the case when y′ = εy′′ for some
ε ∈ {±1}. Then, using relations (39) and (40), we obtain that ϕ = 0. Hence, if y′ = y′′ (resp.,
y′ = −y′′), then we have 〈C,X1〉 ≥ 4h2 (resp., 〈C,X−1〉 ≥ 4h2), which concludes the proof.

Remark 3.7. Note that the proof for the inequality h1(G) ≤ 1
2

√
g1(G) resembles - but is technically

more involved than - the classical proof for the inequality las1(G) ≥ ϑ(G), where las1(G) is given
by (23) and ϑ(G) by (24) and G is an arbitrary graph. (The reverse inequality ϑ(G) ≥ las1(G)
is straightforward.) We sketch the proof for las1(G) ≥ ϑ(G) in order to highlight the resemblance
with the proof above for 1

2

√
g1(G) ≥ h1(G). So assume X is optimal for (24) (defined as the

Gram matrix of vectors yi for i ∈ V ) and construct the matrix X1 (as the Gram matrix of the

vectors
dT1yi
‖yi‖2 yi for i ∈ V , where d1 := (

∑
i∈V yi)/‖

∑
i∈V yi‖). Then, ϑ(G) = 〈J,X〉 = ‖

∑
i∈V yi‖2,

1 = 〈I,X〉 =
∑

i∈V ‖yi‖2, and yTi yj = 0 if {i, j} ∈ E. This implies X1 is feasible for (23), and thus

las1(G) ≥ 〈X1, I〉. It suffices now to check that 〈X1, I〉 =
∑

i∈V
(dT1yi)

2

‖yi‖2 ≥ ‖
∑

i∈V yi‖2 = ϑ(G). But

this follows easily using Cauchy-Schwartz inequality, namely

‖
∑
i∈V

yi‖2 = (dT1
∑
i∈V

yi)
2 =

(∑
i∈V

dT1 yi
‖yi‖
‖yi‖

)2 ≤ (∑
i∈V

(dT1 yi)
2

‖yi‖2
)
(
∑
i∈V
‖yi‖2) =

∑
i∈V

(dT1 yi)
2

‖yi‖2
.

Proof of h1(G) ≤ 1
4α(G). Let X be optimal for the formulation (33) of h1(G). Then X is

feasible for (24) and thus ϑ(G) ≥ 〈J,X〉. Since J−4C � 0 this implies 〈J,X〉 ≥ 4〈C,X〉 = 4h1(G).
Combining both inequalities we get 4h1(G) ≤ ϑ(G) = α(G).

Proof of g1(G) ≤ α(G)h1(G). Let X be an optimal solution for the formulation (35) of g1(G).
Then X

Tr(X) is feasible for h1(G) and thus g1(G) = 〈C,X〉 ≤ h1(G) · Tr(X). On the other hand,

X is feasible for (23), which gives ϑ(G) ≥ Tr(X). Combining these two facts we obtain that
g1(G) ≤ h1(G) · ϑ(G) = h1(G) · α(G).

Remark 3.8. So we have the following chain of inequalities for any bipartite graph G,

1

4
αbal(G) ≤ h(G) ≤ 1

2

√
g(G) ≤ h1(G) ≤ 1

4
α(G)

(Proposition 1.2 and Lemma 1.1). Hence equality α(G) = αbal(G) implies h1(G) = h(G). Observe
that the reverse implication holds when restricting to the bipartite graphs of the form HG (con-
structed from some graph G as in Definition 2.4). Indeed, h1(HG) = h(HG) implies 1

2

√
g(HG) =

h(HG), which in turn implies g(HG) = gbal(HG) (Corollary 2.8 and its proof) and thus α(HG) =
αbal(HG) (Corollary 2.6). This shows that deciding whether the parameter h(·) coincides with its
semidefinite relaxation h1(·) is an NP-hard problem (already when restricting to the bipartite graphs
of the form HG, recall Theorem 2.7). This can be seen as an analog of the hardness of deciding
whether the basic semidefinite relaxation of the maximum cut problem is exact, as shown in [9].

4 Eigenvalue bounds for the parameters g(G) and h(G)

Let G = (V,E) be a bipartite graph, with adjacency matrix AG. We have introduced in Lemmas 3.3
and 3.4 the parameters g1(G) and h1(G) that, respectively, upper bound the parameters g(G) and
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h(G). For convenience, we repeat their formulations

g1(G) = min
λ∈R,Z∈SV ,u∈RV

{
λ : λ(Diag(u)− C + Z)− 1

4uu
T � 0, λ ≥ 0, Z ∈ SG

}
,

h1(G) = min
λ∈R,Z∈SV

{λ : λI + Z − C � 0, Z ∈ SG}

(where the formulation for g1(G) follows from (34) after taking the Schur complement with respect
to the upper left corner λ). In order to obtain closed-form parameters one may restrict the optimiza-
tion in each of the above programs to matrices Z = tAG (for some t ∈ R) and, for the parameter
g1(G), to vectors u = µe (for some µ ∈ R). Let ĝ(G) and ĥ(G) denote the parameters obtained
in this way, so that g1(G) ≤ ĝ(G) and h1(G) ≤ ĥ(G). When the graph G is regular, the all-ones
vector is an eigenvector of the matrices involved in the programs defining ĝ(G) and ĥ(G), and, as
we will show below, this allows to show the closed-form expressions claimed in Proposition 1.3 for
ĝ(G) and ĥ(G) in terms of the second largest eigenvalue λ2 of AG and n := |V1| = |V2|.

We will use the following basic result about the eigenvalues of AG. We refer, e.g., to the book
by Brouwer and Haemers [3] for general background about eigenvalues of graphs.

Lemma 4.1. Assume G = (V1 ∪ V2, E) is a bipartite r-regular graph with |V1| = |V2| =: n ≥ 2.
Then its adjacency matrix is of the form

AG =

(
0 MG

MT
G 0

)
, where MG ∈ R|V1|×|V2|, (46)

the eigenvalues of AG are ±
√
λi(MGMT

G) for i ∈ [n], λ1(AG) = r, λ2n(AG) = −r, and λ2(AG) ≥ 0,

with equality λ2(AG) = 0 if and only if G is complete bipartite. In the case when G = B(H) is the
bipartite double of an r-regular graph H, we have MG = AH , the eigenvalues of AB(H) are ±λi(AH)
for i ∈ [n] and thus λ2(AB(H)) = max{λ2(AH),−λn(AH)}. When G = B0(H) is the extended
bipartite double of H, we have MG = AH + I and λ2(AB0(H)) = max{λ2(AH) + 1,−λn(AH)− 1}.

4.1 An eigenvalue-based upper bound ĥ(G) for h(G)

We give a closed-form eigenvalue-based upper bound for the parameter h(G) in the case when the
bipartite graph G is r-regular. Let n := |V1| = |V2| and let λ2 denote the second largest eigenvalue
of AG (i.e., the second largest singular value of MG, by Lemma 4.1). Vallentin [41] shows that
h(G) ≤ n

r λ2, our next result gives a sharpening of this bound.

Proposition 4.2. Assume G is a bipartite r-regular graph, set |V1| = |V2| =: n, and let λ2 be the
second largest eigenvalue of its adjacency matrix AG. Then we have

h1(G) ≤ ĥ(G) =
n

2

λ2

r + λ2
≤ n

r
λ2. (47)

Moreover, equality h1(G) = n
2

λ2
r+λ2

holds when G is edge-transitive.

Proof. We may assume G is not complete bipartite (else λ2 = 0 and h(G) = h1(G) = ĥ(G) = 0).
The inequality n

2
λ2
r+λ2

≤ n
2λ2 is clear; we now show h1(G) ≤ n

2
λ2
r+λ2

. For this we use the formulation
of h1(G) from (32), where we restrict the optimization to matrices Z of the form Z = tAG for some
scalar t ∈ R; we will show that the resulting optimal value is equal to n

2
λ2
r+λ2

. Note that when G
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is edge-transitive this restriction can be made without loss of generality. Thus we aim to compute
the optimum value of the program

ĥ(G) := min
λ,t∈R
{λ : λI + tAG − C � 0}, (48)

which upper bounds h1(G) and is equal to it when G is edge-transitive. By taking a Schur com-
plement, the matrix

λI + tAG − C =

(
λI tMG − 1

2J
tMT

G −
1
2J λI

)
is positive semidefinite if and only if λ > 0 and the matrix

λ2I − (tMG − 1
2J)(tMT

G − 1
2J) = λ2I − (t2MGM

T
G − t

2MGJ − t
2JM

T
G + 1

4J
2)

= λ2I − t2MGM
T
G + rt

2 J + rt
2 J −

n
4J

= λ2I − t2MGM
T
G + (rt− n

4 )J =: Q

is positive semidefinite. Since G is not complete bipartite we have λ > 0. We now analyze when Q
is positive semidefinite. The all-ones vector e is an eigenvector of MGM

T
G and J , and thus also of

Q. Any eigenvector w ⊥ e of MGM
T
G for λi(MGM

T
G) (2 ≤ i ≤ n) is an eigenvector of Q. Then the

eigenvalues of Q at these eigenvectors are as follows:

at e: λ2 − t2r2 + n(tr − n
4 ),

at w ⊥ e: λ2 − t2λi(MGM
T
G) for i = 2, . . . , n.

Hence, Q � 0 if and only if λ2 − t2r2 + n(tr − n
4 ) ≥ 0 and λ2 − t2λi(MGM

T
G) ≥ 0 for any i ≥ 2,

which is equivalent to λ2 − t2λ2
2 ≥ 0 (recall Lemma 4.1). Therefore, we must select t such that

max{t2λ2
2, t

2r2 − ntr + n2

4 } is smallest possible.

This maximum value is minimized at a root of the quadratic function φ(t) := (t2r2 − trn + n2

4 )−
t2λ2

2 = t2(r2− λ2
2)− trn+ n2

4 . Its discriminant is r2n2− n2(r2− λ2
2) = n2λ2

2 and φ(t) has two roots
rn+εnλ2

2(r2−λ2
2)

= n
2(r−ελ2) for ε = ±1. So max{t2λ2

2, t
2r2 − ntr + n2

4 } is minimized at the smallest root

t := n
2(r+λ2) . Therefore we have ĥ(G) = tλ2 = nλ2

2(r+λ2) , which proves (47).

The parameter h′1(G) introduced in (38) provides an upper bound for h(G) that is at least as
good as h1(G). A natural question is whether one can derive from it another closed-form bound for
h(G) that may improve on ĥ(G) when G is regular. To define such a bound one follows the same
strategy as for ĥ(G). First, one writes the dual formulation of (38), which reads

min
λ,η∈R,u∈Rn,Z∈Sn

{
λ+ η :

(
λ −uT/2

−uT/2 Diag(u) + ηI + Z − C

)
� 0, Z ∈ SG

}
. (49)

Then one restricts the optimization to u = µe and Z = tAG for scalars µ, t ∈ R and, after that,
one takes again the dual, which gives the parameter

ĥ′(G) := max
{
〈C,X〉 :

(
1 xT

x X

)
� 0, Tr(X) = 1, eTx = 1, 〈AG, X〉 = 0

}
. (50)

To ease the comparison with ĥ(G), let us also write the dual program of (48), which reads

ĥ(G) = max{〈C,X〉 : X � 0, Tr(X) = 1, 〈AG, X〉 = 0}. (51)

(Strong duality holds since (48) is strictly feasible.) Both parameters ĥ(G) and ĥ′(G) in fact coin-
cide. To show this we need the following auxiliary result, whose proof is postponed to Appendix B.
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Lemma 4.3. Assume X ∈ Sn satisfies X � 0 and Tr(X) = 1. Then there exists a vector x ∈ Rn

such that

(
1 xT

x X

)
� 0 and eTx = 1 if and only if 〈J,X〉 ≥ 1.

Proposition 4.4. For any bipartite regular graph G we have ĥ(G) = ĥ′(G).

Proof. Comparing (50) with (51) it is clear that ĥ′(G) ≤ ĥ(G). If G = Kn,n, then both bounds
are equal to 0. Assume G 6= Kn,n and let X be an optimal solution for (51). As J − 4C � 0

we have 〈J,X〉 ≥ 4〈C,X〉 = 4 · ĥ(G) ≥ 4 · h(G) ≥ 2 (where h(G) ≥ 1/2 follows by considering a
biindependent pair ({a}, {b}) with a ∈ V1 and b ∈ V2). Hence we can apply Lemma 4.3 and find a
vector x such that (x,X) is feasible for (50), which shows that ĥ′(G) ≥ 〈C,X〉 = ĥ(G).

4.2 An eigenvalue-based upper bound ĝ(G) for g(G)

In the same way one can give an eigenvalue-based upper bound ĝ(G) for the parameter g(G) when
G is bipartite r-regular. It is obtained by solving analytically the following optimization problem

ĝ(G) := min
λ,µ,t∈R

{
λ : λ(µI − C + tAG)− µ2

4 J � 0, λ ≥ 0
}
.

The details are analogous to those for the parameter ĥ(G) considered in the previous section, but
technically more involved. So we postpone the proof of the next result to Appendix C.

Proposition 4.5. Assume G is a bipartite r-regular graph, set n := |V1| = |V2|, and let λ2 be the
second largest eigenvalue of the adjacency matrix AG of G. Then we have

g1(G) ≤ ĝ(G) =

{
n2λ2

2
(λ2+r)2 if r ≤ 3λ2,
n2λ2

8(r−λ2) otherwise.

Moreover, equality g1(G) = ĝ(G) holds if G is vertex- and edge-transitive.

Remark 4.6. Here are examples of regular bipartite graphs satisfying r ≤ 3λ2, or the reverse
inequality 3λ2 ≤ r: If G is a perfect matching on 2n vertices, then λ2 = r = 1 and thus r < 3λ2

(see Section 5.1); on the other hand, if G is the complete bipartite graph Kn,n minus a perfect
matching, then r = n− 1 and λ2 = 1 and thus r ≥ 3λ2 if n ≥ 4 (see Section 5.2).

Recall the inequalities h(G) ≤ 1
2

√
g(G) (from Lemma 1.1) and h1(G) ≤ 1

2

√
g1(G) (from

Proposition 1.2). One can check that also the eigenvalue bounds satisfy the analogous relation
ĥ(G) ≤ 1

2

√
ĝ(G), with equality if and only if r ≤ 3λ2. Hence, in the regime 3λ2 < r, the parameter

ĥ(G) provides a strictly better bound than 1
2

√
ĝ(G) for both h(G) and 1

2

√
g(G).

So we have h1(G) ≤ min{ĥ(G), 1
2

√
g1(G)} ≤ max{ĥ(G), 1

2

√
g1(G)} ≤ 1

2

√
ĝ(G). We now

observe that the two parameters ĥ(G) and 1
2

√
g1(G) are incomparable. Indeed, as observed above,

strict inequality ĥ(G) < 1
2

√
g1(G) may hold (e.g., for Kn,n minus a perfect matching). On the other

hand, there are regular bipartite graphs satisfying 1
2

√
g1(G) < ĥ(G) (such G is not edge-transitive).

As an example, let G be the disjoint union of C4 and C6, thus 2-regular with λ2 = 2. Then, we
verified that 1

2

√
g1(G) = 1

2

√
6 < 5

4 = ĥ(G).
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4.3 Links to some other eigenvalue bounds

In this section we investigate links between the new bounds introduced in previous sections and
some known eigenvalue bounds in the literature. First we point out a natural link between ĥ(·)
and Hoffman’s ratio bound (52) for the stability number of a graph. After that, we present links to
some spectral parameters ϕ(G), ϕ′(G) and ϕH(G) by Haemers [20, 21], which he used to bound the
parameter gbc(G), the maximum number of edges in a biclique of an arbitrary graph G; see (54),
(57) and (60) below for the exact definitions. As gbc(G) = gbi(G) = g(B0(G)), also the parameter
h1(B0(G)) provides an upper bound for gbc(G). We will review the parameters of Haemers and
investigate their relationships with the parameters h1(·) and ĥ(·).

4.3.1 Linking the parameter ĥ(B(G)) to Hoffman’s bound for α(G)

Let G = (V = [n], E) be an arbitrary graph and let λn(AG) be the smallest eigenvalue of its
adjacency matrix. If G is r-regular, then the following bound holds for its stability number:

α(G) ≤ n −λn(AG)

r − λn(AG)
. (52)

This bound was proved by Hoffman (unpublished) and is known as Hoffman’s ratio bound (see
Haemers [22] for a short proof and a historical account). There is a tight link between Hoffman’s
ratio bound for G and the parameter ĥ(·) for its bipartite double B(G). Indeed, if A ⊆ V is an
independent set in G, then the pair (A,A) is a balanced biindependent pair in B(G). So |A| ≤ α(G)
and 2|A| ≤ αbal(B(G)) ≤ 4 · ĥ(B(G)), giving

α(G) ≤ 1

2
αbal(B(G)) ≤ 2 · ĥ(B(G)) = n

λ2(AB(G))

r + λ2(AB(G))
. (53)

By Lemma 4.1, we have λ2(AB(G)) = max{λ2(AG),−λn(AG)}, and thus

n
−λn(AG)

r − λn(AG)
≤ 2 · ĥ(B(G)) = n

λ2(AB(G))

r + λ2(AB(G))
.

Lovász [32] showed that also ϑ(G) is upper bounded by Hoffman’s ratio bound. The parameters
ϑ(G) and h1(B(G)) satisfy the analogous relationship: ϑ(G) ≤ 2 · h1(B(G)). Indeed, if X is an
optimal solution to program (24), then the matrix X ′ := 1

2

(
X X
X X

)
is feasible for (33) with objective

value 〈C,X ′〉 = 1
2〈J,X〉 = 1

2ϑ(G), giving the desired inequality.

4.3.2 Linking the parameter h1(B0(G)) to Haemers’ spectral bound ϕ(G)

As we saw earlier, for any bipartite graph G, the parameter h1(G) provides an upper bound for
the parameter g(G), via 1

2

√
g(G) ≤ h1(G). This also directly gives a bound for the parameter

gbi(G) = g(B0(G)) when G is an arbitrary graph, namely 1
2

√
gbi(G) ≤ h1(B0(G)).

For an arbitrary graph G = (V,E), Haemers [21] introduces the spectral parameter

ϕ(G) := min
M∈S|V |

{λabs(M) : Mij = 1 for all {i, j} ∈ E}, (54)

where λabs(M) denotes the maximum absolute value of an eigenvalue of M , and he shows that
ϕ(G) provides an upper bound for the parameter gbc(G) = gbi(G) via the inequality√

gbc(G) ≤ ϕ(G). (55)

So we have two bounds for gbc(G), namely 1
2

√
gbc(G) ≤ 1

2ϕ(G) and 1
2

√
gbc(G) ≤ h1(B0(G)).

We now show that these two upper bounds in fact coincide.
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Lemma 4.7. For any graph G, we have h1(B0(G)) = 1
2ϕ(G).

Proof. Let G = (V,E) and G = (V,E). First observe the parameter ϕ(G) can be reformulated as

ϕ(G) = min
{
λmax(Y ) : Y =

(
0 M
M 0

)
, M ∈ S |V |, Mij = 1 for all {i, j} ∈ E

}
; (56)

this follows from the fact that the eigenvalues of any Y in (56) are ±λi(M) for i ∈ [|V |]. Let V ∪V ′
be the vertex set of the extended bipartite double B0(G), where V ′ is a disjoint copy of V , and
let C be the matrix from (26), which is now indexed by V ∪ V ′. We use the formulation (32) of
h1(B0(G)), defined as the smallest scalar λ for which λI − C + Z � 0 for some Z ∈ SB0(G) or,
equivalently, as the minimum value of λmax(C−Z) for Z ∈ SB0(G). Since the condition Z ∈ SB0(G)

corresponds to Y := 2(C−Z) being feasible for (56), we can conclude that 2h1(B0(G)) = ϕ(G).

4.3.3 Linking h1(B0(G)) to Haemers’ spectral bounds ϕ′(G) and ϕH(G)

In the previous section we mentioned the spectral bound ϕ(G) from (54) of Haemers [21] for the
parameter gbc(G) and observed its link to the parameter h1(·), recall (55) and Lemma 4.7. In
some earlier work [20], Haemers introduced the following spectral parameter for an arbitrary graph
G = (V = [n], E),

ϕ′(G) := min
M∈S|V |

{
n

λ(M)

1 + λ(M)
: Me = e, Mij = 0 for {i, j} ∈ E

}
, (57)

where λ(M) denotes the second largest absolute value of an eigenvalue of M . Haemers [21] showed
that ϕ(G) ≤ ϕ′(G) for all G and that there are graphs G for which the inequality is strict.

Let LG denote the Laplacian matrix of G that is defined as LG = DG − AG, where DG ∈ Sn
is the diagonal matrix whose i-th entry is the degree of vertex i ∈ V in G. In what follows we let
0 = µ1 ≤ µ2 ≤ . . . ≤ µn denote the eigenvalues of the Laplacian matrix LG. In [20, Theorem 2.4]
Haemers shows the inequality

ϕ′(G) ≤ ϕH(G) :=
n

2

(
1− µ2

µn

)
(58)

for any graph G (on n nodes), and he shows that equality holds in (58) if G is vertex- and edge-
transitive. So we have the following inequalities

(h1(B0(G)) =) 1
2ϕ(G) ≤ 1

2ϕ
′(G) ≤ 1

2
ϕH(G) =

n

4

(
1− µ2

µn

)
, (59)

where the right most inequality is an equality if G is vertex- and edge-transitive. We next sharpen

this latter result and show that h1(B0(G)) = n
4

(
1− µ2

µn

)
if G is vertex- and edge-transitive.

Proposition 4.8. Let G = (V,E) be a graph, set n := |V |, and let 0 = µ1 ≤ µ2 ≤ . . . ≤ µn denote
the eigenvalues of the Laplacian matrix of G. Then we have

h1(B0(G)) =
1

2
ϕ(G) ≤ 1

2
ϕH(G) =

n

4

(
1− µ2

µn

)
,

with equality if G is vertex- and edge-transitive.
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Proof. Consider the parameter h̃(G) obtained from the definition of h1(B0(G)) in (32), where we
restrict the optimization to matrices Z of the form Z =

(
0 tLG + µI

tLG + µI 0

)
for scalars t, µ ∈ R.

Hence, h1(B0(G)) ≤ h̃(G). First, we show that if G is vertex- and edge-transitive (hence regular),
then this restriction can be made without loss of generality and thus h1(B0(G)) = h̃(G).

For this, for any permutation σ of V consider the associated permutation σ̃ of V ∪ V ′ (the
vertex set of B0(G), where V ′ is a disjoint copy of V ) defined by σ̃(i) = σ(i) and σ̃(i′) := σ(i)′

for i ∈ V ; clearly, σ̃ is an automorphism of B0(G) if σ is an automorphism of G. Consider in
addition the automorphism π of B0(G) obtained by flipping V and V ′: π(i) = i′ and π(i′) = i
for i ∈ V . Then, under the action of the group of automorphisms of B0(G) generated by π
and σ̃ (for σ automorphism of G), the edge set of B0(G) is partitioned into two orbits, the orbit
ΩV := {{i, i′} : i ∈ V } and the orbit ΩE := {{i, j′}, {i′, j} : {i, j} ∈ E}. Now, if (λ, Z) is feasible
for h1(B0(G)), then the same holds for its symmetrization obtained by averaging over the group of
automorphisms of B0(G) just described. This gives a new feasible solution (λ, Z), where the entries
of Z take two possible nonzero values, depending whether the entry corresponds to an edge in ΩV

or in ΩE , and thus Z has indeed the desired form claimed above.
We now aim to compute the optimum value of the program

h̃(G) = min
λ,t,µ∈R

{
λ :

(
λI tLG + µI − 1

2J
tLG + µI − 1

2J λI

)
� 0
}

and to show it is equal to n
4

(
1 − µ2

µn

)
. By taking a Schur complement (and assuming λ > 0) the

matrix in the above semidefinite program is positive semidefinite if and only if the matrix

λ2I − (tLG + µI − 1
2J)(tLG + µI − 1

2J) = (λ2 − µ2)I − t2L2
G − 2tµLG + (µ− n

4 )J =: Q

is positive semidefinite. Let e denote the all-ones vector, which is an eigenvector of LG for its
smallest eigenvalue µ1 = 0, and let wi ⊥ e be an eigenvector of LG for its eigenvalue µi with i ≥ 2.
Then the eigenvalues of Q at these eigenvectors are as follows:

at e: λ2 − µ2 + n(µ− n
4 ) = λ2 − (µ− n

2 )2,

at wi ⊥ e: λ2 − (tµi + µ)2, for i = 2, . . . , n.

Hence Q � 0 if and only if all these eigenvalues are nonnegative and thus we must select t, µ such
that

max
{

(µ− n
2 )2, (tµ2 + µ)2, (tµn + µ)2

}
is smallest possible.

So we must find the smallest value of λ for which there exist t, µ satisfying the system

λ ≥ |tµ2 + µ|, λ ≥ |tµn + µ|, λ ≥ |µ− n
2 |.

First, note that taking µ := n
4 + nµ2

4µn
, t := −n

2µn
and λ := n

4 (1− µ2

µn
) is feasible for the above system

(since tµ2 + µ = λ, tµn + µ = µ − n
2 = −λ), which shows h̃(G) ≤ n

4 (1 − µ2

µn
). We now show

the reverse inequality. Assume λ, t, µ satisfy the above system. The conditions λ ≥ −tµn − µ
and λ ≥ tµ2 + µ together give λ ≥ 1

2(µ2 − µn)t, and the conditions λ ≥ tµ2 + µ and λ ≥ −µ + n
2

give λ ≥ µ2

2 t + n
4 . Therefore, h̃(G) is at least the smallest value of λ for which there exists t

such that λ ≥ max{1
2(µ2 − µn)t, µ2

2 t + n
4 }. Now observe that this maximum is minimized at the

intersection point, where t = − n
2µn

(since µ2 − µn ≤ 0 and µ2 ≥ 0). This gives the desired relation

h̃(G) ≥ 1
2(µ2 − µn)

(
n
−2µn

)
= n

4 (1− µ2

µn
), which concludes the proof.
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An interesting feature of the closed-form bound 1
2ϕH(G) = n

4

(
1 − µ2

µn

)
in Proposition 4.8 is

that it is valid without any regularity assumption on the graph G.

Assume now G is r-regular, still arbitrary (not necessarily bipartite) on n nodes. Then its
adjacency matrix AG satisfies AG = rI − LG and thus its eigenvalues are λi = r − µi for i ∈ [n],
with λ1 = r ≥ λ2 ≥ . . . ≥ λn. Therefore, for any r-regular graph G, we have

h1(B0(G)) ≤ 1

2
ϕH(G) =

n

4

(
1− µ2

µn

)
=
n

4

λ2 − λn
r − λn

. (60)

As shown in Proposition 4.8, equality h1(B0(G)) = 1
2ϕH(G) holds if G is vertex- and edge-transitive.

Since the extended bipartite double graph B0(G) is (r + 1)-regular, one can also upper bound
h1(B0(G)) by the parameter ĥ(B0(G)) (as defined in Proposition 1.3). By Lemma 4.1 the second
largest eigenvalue of the adjacency matrix of B0(G) equals max{λ2 + 1,−λn − 1}, and thus

h1(B0(G)) ≤ ĥ(B0(G)) =
n

2

max{λ2 + 1,−λn − 1}
max{λ2 + 1,−λn − 1}+ r + 1

. (61)

Next we compare the upper bounds in (60) and (61).

Proposition 4.9. Let G be an r-regular graph. Then we have 1
2ϕH(G) ≤ ĥ(B0(G)), with equality

if and only if λ2 = r or λ2 + λn + 2 = 0.

Proof. Set µ := max{λ2 + 1,−λn − 1} and note that 1
2ϕH(G) ≤ ĥ(B0(G)) is equivalent to ψ :=

µ(λ2 + λn − 2r) + (r + 1)(λ2 − λn) ≤ 0. If λ2 + λn + 2 ≥ 0 then µ = λ2 + 1 and we have
ψ = (λ2 − r)(λ2 + λn + 2) ≤ 0. Otherwise, λ2 + λn + 2 ≤ 0, µ = −λn − 1 and we have ψ =
(r − λ2)(λ2 + λn + 2) ≤ 0.

So Haemers’ bound ϕH(G) improves on the bound ĥ(B0(G)) for any regular graph G. On
the other hand, also the reverse situation may occur, where the parameter ĥ improves on Haemers’
bound ϕH . For this consider a bipartite graph G = (V1 ∪ V2, E). As observed in (7), we have

gbc(G) = g(G
b
), where G

b
= (V1 ∪ V2, (V1 × V2) \ E) is the bipartite complement of G. Hence we

have the inequalities

1

2

√
gbc(G) =

1

2

√
g(G

b
) ≤ h1(G

b
) ≤ ĥ(G

b
),

1

2

√
gbc(G) =

1

2

√
g(B0(G)) ≤ h1(B0(G)) ≤ 1

2
ϕH(G),

(62)

where we assume that G is regular when considering the parameters ĥ(G
b
) and ϕH(G). Next we

show that h1(B0(G)) = h1(G
b
) and that ĥ(G

b
) ≤ 1

2ϕH(G).

Proposition 4.10. Let G be a bipartite graph. Then we have h1(B0(G)) = h1(G
b
). Moreover, if

G is r-regular, n := |V1| = |V2| and λ2 denotes the second largest eigenvalue of AG, then we have

ĥ(G
b
) =

n

2

λ2

λ2 + n− r
≤ 1

2
ϕH(G) =

n

2

λ2 + r

2n− r + λ2
, (63)

with strict inequality precisely when λ2 < r < n, i.e., when G is connected and G 6= Kn,n.
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Proof. First we prove h1(B0(G)) = h1(G
b
). For this we use the formulation (33) for the parameter

h1(·). Recall the definition (26) of the matrix C ∈ S |V | for the bipartition V = V1 ∪ V2, and let
C̃ ∈ S |V |+|V ′| denote the analogous matrix corresponding now to the bipartition V ∪ V ′, where
V = V1 ∪ V2 and V ′ = V ′1 ∪ V ′2 is a disjoint copy of V . The matrices C̃ and AB0(G) have the

form C̃ = 1
2

(
0 J J 0
J 0 0 J
J 0 0 J
0 J J 0

)
and AB0(G) =

(
0 A(G

b
) I 0

A(G
b
) 0 0 I

I 0 0 A(G
b
)

0 I A(G
b
) 0

)
with respect to the partition

V1 ∪ V ′2 ∪ V ′1 ∪ V2 (taken in that order), setting A(G
b
) := A

G
b for easier notation. If X ∈ S |V |

is optimal for h1(G
b
), then Y := 1

2

(
X 0
0 X

)
is feasible for h1(B0(G)) with 〈C̃, Y 〉 = 〈C,X〉, which

shows h1(B0(G)) ≥ h1(G
b
). Conversely, assume Y ∈ S |V |+|V ′| is optimal for h1(B0(G)). Let

X (resp., X ′) denote the principal submatrix of Y indexed by V1 ∪ V ′2 (resp., V ′1 ∪ V2). Then

X/Tr(X) and X ′/Tr(X ′) are both feasible for h1(G
b
), which implies h1(G

b
) · Tr(X) ≥ 〈C,X〉

and h1(G
b
) · Tr(X ′) ≥ 〈C,X ′〉. Summing up and using Tr(X) + Tr(X ′) = Tr(Y ) = 1, we get

h1(G
b
) ≥ 〈C,X〉+ 〈C,X ′〉 = 〈C̃, Y 〉 = h1(B0(G)).

Assume now G is bipartite r-regular, λ2 = λ2(AG) and n := |V1| = |V2|; we show (63). First

we compute the parameter ĥ(G
b
). For this note that G

b
is (n−r)-regular. Moreover, if MG denotes

the incidence matrix of G, then the incidence matrix of G
b

is J−MG, whose second largest singular
value is equal to the second largest singular value of MG and thus to λ2. Hence, using relation (47),

we obtain ĥ(G
b
) = n

2
λ2

n−r+λ2
, as desired. Next we compute the parameter ϕH(G). For this note

that G is (2n − 1 − r)-regular, the second largest eigenvalue of AG is −1 − λmin(AG) = r − 1 and
its smallest eigenvalue is −1 − λ2(AG) = −1 − λ2. In view of (60) we get ϕH(G) = n r+λ2

2n−r+λ2
, as

desired. One can then easily check that the inequality in (63) is equivalent to (r − λ2)(n− r) ≥ 0,
which holds since λ2 ≤ r ≤ n. Hence the inequality in (63) is strict precisely when λ2 < r < n, i.e.,
when G is connected and G 6= Kn,n.

We summarize the various bounds obtained above for the parameter gbc(G) when G is an
arbitrary r-regular graph (Figure 3a) and when G is bipartite r-regular (Figure 3b). As before
let λ1 = r ≥ λ2 ≥ . . . ≥ λn denote the eigenvalues of AG. Then G is (n − 1 − r)-regular, with
λ2(AG) = −1− λn and λn(AG) = −1− λ2.

1

2

√
gbc(G) ≤

with equality if G is vertex-
and edge-transitive

Prop. 4.8︷ ︸︸ ︷
h1(B0(G)) ≤ 1

2ϕH(G) ≤ ĥ(B0(G))︸ ︷︷ ︸
with equality if and only if
λn = r − n or λ2 + λn = 0

Prop. 4.9

(a) Bounds on gbc(G) for G r-regular

1

2

√
gbc(G) ≤ h1(B0(G)) = h1(G

b
)︸ ︷︷ ︸

Prop. 4.10

≤

with equality if and only if
λ2 = r or r = n

Prop 4.10︷ ︸︸ ︷
ĥ(G

b
) ≤ 1

2ϕH(G) ≤ ĥ(B0(G))︸ ︷︷ ︸
with equality if and only if
λn = r − n or λ2 + λn = 0

Prop. 4.9

(b) Bounds on gbc(G) for G bipartite r-regular

Figure 3: Bounds on gbc(G); recall h1(B0(G)) ≤ ĥ(B0(G)), with equality if B0(G) is edge-transitive
(Proposition 4.2).

5 Examples

We now illustrate the behaviour of the various parameters discussed above on some classes of
regular graphs. Recall the definition of the matrix MG in Lemma 4.1.
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5.1 The perfect matching

For n ≥ 2, let G be a perfect matching on 2n vertices. Then MG = I, r = 1, λ2 = 1, and G is
vertex- and edge-transitive. Using Proposition 1.3 we obtain

h1(G) = ĥ(G) =
n

2

λ2

r + λ2
=
n

4
and g1(G) = ĝ(G) =

n2

4
.

We have g(G) = bn/2cdn/2e and h(G) = 1
nbn/2cdn/2e (obtained by maximizing ab and ab

a+b with

a, b ≥ 0 integers and a+ b ≤ n). Hence, h1(G) = 1
2

√
g1(G) and h1(G), g1(G) give tight bounds for

h(G), g(G) (with equality for n even and up to rounding for n odd).

5.2 The complete bipartite graph Kn,n minus a perfect matching

For n ≥ 2, let G be the complete bipartite graph Kn,n with a deleted perfect matching (also
known as the crown graph on 2n vertices). Then G is vertex- and edge-transitive, (n− 1)-regular,
MG = Jn − In, and λ2 = 1. We have h(G) = 1

2 and g(G) = 1. Using Proposition 1.3 we obtain

h1(G) = ĥ(G) =
n

2

λ2

r + λ2
=

1

2
, and g1(G) = ĝ(G) =

{
n2

8(n−2) n ≥ 4,

1 n ≤ 4.

Hence the bound h1(G) is tight for both h(G) and 1
2

√
g(G), while the ratio g1(G)/g(G) grows

linearly in n. Note that h1(G) < 1
2

√
g1(G) for n ≥ 5, which gives an example with strict separation

between the parameters h1 and 1
2

√
g1 (and thus ĥ and 1

2

√
ĝ). In view of (62), the parameter gbc(G)

is upper bounded by 4ĥ(G
b
)2 and by ϕH(G)2. Note that 4ĥ(G

b
)2 = 4(n4 )2 = n2

4 , which improves

on Haemers’ bound ϕH(G)2 = ( n2

n+2)2 for n ≥ 3. This thus gives a class of graphs for which strict
inequality holds in (63).

5.3 The cycle graph Cn

Let G be the cycle Cn on n ≥ 3 vertices, which is vertex- and edge-transitive, and 2-regular. The
eigenvalues of the adjacency matrix ACn are 2 cos(2πj/n) where j = 0, . . . , n − 1 (see, e.g., [3]),
so λ2(ACn) = 2 cos(2π/n), and λn(ACn) = −2 if n is even, λn(ACn) = −2 cos(π/n) if n is odd.

First we compute the parameters for the extended bipartite double graph B0(Cn). Using
Proposition 4.8 and relations (60), (61), we get

h1(B0(Cn)) =
1

2
ϕH(Cn) =

{
n
4 cos(π/n)2 if n even,
n
4 (2 cos(π/n)− 1) if n odd,

ĥ(B0(Cn)) =
n

4

2 cos(2π/n) + 1

cos(2π/n) + 2
.

Hence we have h1(B0(Cn)) = ĥ(B0(Cn))(= 0) for n = 3 (in which case B0(C3) = K3,3), and strict

inequality h1(B0(Cn)) < ĥ(B0(Cn)) for n ≥ 4 (as expected from Proposition 4.9). Note also that
B0(Cn) is not edge-transitive if n ≥ 4. One can also show that

h(B0(Cn)) =

{
1
4(n− 2) if n even,
(n−1)(n−3)

4(n−2) if n odd,
g(B0(Cn)) =

{
1
4(n− 2)2 if n even,
1
4(n− 1)(n− 3) if n odd.

So h(B0(Cn)) ≤ 1
2

√
g(B0(Cn)), with equality for n even. Moreover, the ratio ĥ(B0(Cn))/h(B0(Cn))

tends to 1 as n → ∞, so the bound ĥ(B0(Cn)) (and thus h1(B0(Cn)) too) is asymptotically tight
for h(B0(Cn)) and 1

2

√
g(B0(Cn)).
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For n even the graph G = Cn is bipartite. Then we have

h(Cn) ≤ h1(Cn) = ĥ(Cn) =
n

4

λ2

λ2 + r
=
n

4

cos(2π/n)

cos(2π/n) + 1
≤ α(Cn)

4
=
n

8
.

So h1(Cn) = Θ(n/8) = Θ(α(Cn)/4). Moreover, one can construct a bipartite biindependent pair
(A,B) showing h(Cn) = Θ(n/8) (see also [5]). Namely, for n ≡ 0 (mod 4), set A = {1, 3, . . . , n2−1},
B = {n2 + 2, n2 + 4, . . . , n − 2} with |A| = n

4 , |B| = n
4 − 1, and, for n ≡ 2 (mod 4), set A =

{1, 3, . . . , n2 − 2}, B = {n2 + 1, n2 + 3, . . . , n− 2} with |A| = |B| = n−2
4 .

5.4 The hypercube graph Qr

The hypercube graph Qr is the bipartite graph with vertex set V = {0, 1}r, where two vertices are
adjacent when their Hamming distance is 1. So the bipartition is V = V1 ∪ V2, where V1 (resp.,
V2) consists of all x ∈ V with an even (resp., odd) Hamming weight |x|. The graph Qr is vertex-
and edge-transitive, and r-regular. The eigenvalues of AQr are r − 2k for k = 0, . . . , r, where the
eigenvalue r− 2k has multiplicity

(
r
k

)
. So λ2(AQr) = r− 2. Thus the parameter h1(Qr) is given by

h1(Qr) = ĥ(Qr) = 2r−3 r − 2

r − 1
.

One can show that limr→∞ h1(Qr)/h(Qr) = 1. For this, we will show that h(Qr) ≥ a(r−1)
4 , where

the sequence (a(r))r≥0 is defined recursively by

a(2r) := 22r −
(

2r

r

)
, a(2r + 1) := 2 · a(2r) if r ≥ 1, and a(0) = 0. (64)

Using the fact that
(

2r
r

)
∼ 22r
√
πr

one obtains a(r − 1) ∼ 2r−1 and h(Qr) ≥ 2r−3(1 − c/
√
r) (for

some constant c > 0) and thus h1(Qr)/h(Qr) tends to 1 as r →∞. Note that the bound h(Qr) ≤
α(Qr)/4 = 2r−1/4 = 2r−3 from Lemma 1.1 is slightly weaker than h(Qr) ≤ h1(Qr), but already

strong enough to exhibit h(Qr) ∼ 2r−3 (when combined with the lower bound h(Qr) ≥ a(r−1)
4 ).

We now show that h(Qr) ≥ a(r−1)
4 . For this, it is useful to observe that the graph Qr is

isomorphic to B0(Qr−1), the extended bipartite double of Qr−1 (the bipartition of Qr provides the
bipartition of B0(Qr−1) by simply deleting the last coordinate in all vertices of Qr). Thus we have
h(Qr) = h(B0(Qr−1)) = hbi(Qr−1), where the last equality follows from (5). Hence, instead of
searching for bipartite biindependent pairs in Qr we may as well search for (general) biindependent
pairs in Qr−1, which is a simpler task. We show that hbi(Qr) ≥ 1

4a(r) for all r ≥ 1. First consider
the case of Q2r. Define the sets

L := {x ∈ {0, 1}2r : |x| ≤ r − 1}, U := {x ∈ {0, 1}2r : |x| ≥ r + 1}.

Then, (L,U) is a (balanced) biindependent pair in Q2r, with |L| = |U | = 1
2

(
22r −

(
2r
r

))
= 1

2a(2r),
which implies hbi(Qr) ≥ 1

4a(2r). Consider now the case of Q2r+1. Define L′ := L × {0, 1} and
U ′ := U × {0, 1} ⊆ {0, 1}2r+1. Then the pair (L′, U ′) is (balanced) biindependent in Q2r+1, with
|L′| = |U ′| = a(2r) = 1

2a(2r + 1), which implies hbi(Q2r+1) ≥ 1
4a(2r + 1).

The above construction can be used to show that αbal(Qr) ≥ a(r − 1) for all r ≥ 1. For this,
given A ⊆ {0, 1}r, define the following subsets of {0, 1}r+1 obtained by adding a parity bit,

Aeven := {(x, |x| mod 2) : x ∈ A} ⊆ {0, 1}r+1, Aodd := {(x, |x|+ 1 mod 2) : x ∈ A} ⊆ {0, 1}r+1.
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Applying this to the above sets L,U ⊆ {0, 1}2r, we obtain Leven, Uodd ⊆ {0, 1}2r+1 such that
(Leven, Uodd) is balanced bipartite biindependent in Q2r+1 with |Leven| = |Uodd| = |L| = a(2r)/2,
which implies αbal(Q2r+1) ≥ a(2r). Similarly, using the sets L′, U ′ ⊆ {0, 1}2r+1, we obtain
L′even, U

′
odd ⊆ {0, 1}2r+2 that provide a balanced bipartite biindependent pair inQ2r+2 with |L′even| =

|U ′odd| = |L′| = a(2r + 1)/2, which implies αbal(Q2r+2) ≥ a(2r + 1).

Conjecture 5.1. We conjecture that equality αbal(Qr) = a(r − 1) holds for all r ≥ 1.

We have verified numerically that Conjecture 5.1 indeed holds for any r ≤ 13. For r ≤ 8 this
can be verified using an integer programming solver (like Gurobi [19]). For larger values r ≤ 13
we show this in an indirect manner. We consider the semidefinite upper bound on αbal(Qr) that
is obtained from the Lasserre relaxation of order 2. After applying a symmetry reduction (as done
in [16, 31]), we solve the resulting semidefinite program numerically and obtain an upper bound
that coincides with a(r − 1) for r ≤ 13. In addition, αbal(Qr)/a(r − 1) → 1 as r → ∞ since
αbal(Qr) ≤ α(Qr) = 2r−1 and a(r − 1) ∼ 2r−1.

Observe that αbal(Qr+1) ≥ 2 ·αbal(Qr). For this, for x ∈ {0, 1}r let x′ ∈ {0, 1}r be obtained by
switching the last bit of x, so that the weights of x, x′ have distinct parities and, for a set A ⊆ {0, 1}r
and b ∈ {0, 1}, define Ab := {(x, b) : x ∈ A} ⊆ {0, 1}r+1. The claim now follows from the fact that
if (A,B) is a balanced bipartite biindependent pair in Qr, then the pair (B1 ∪ B′0, A1 ∪ A′0) is
balanced bipartite biindependent in Qr+1 with size 2|A ∪B|. Hence, the above conjecture implies
equality αbal(Qr+1) = 2 · αbal(Qr) for r odd.

Interestingly, the sequence a(r) in (64) corresponds to the sequence A307768 in OEIS [36],
which counts the number of heads-or-tails games of length r during which at some point there
are as many heads as tails. It is also related to several other well-known combinatorial counting
problems; see, e.g., [10] or [11, Chapter III] for an overview. It is interesting to understand the
exact relationship of this sequence with the parameter αbal(Qr).

6 Lasserre bounds for the balanced parameters

In this section we turn our attention to the “balanced” parameters αbal(G), gbal(G) and hbal(G)
that are obtained by restricting the optimization to balanced bipartite biindependent pairs in the
definition of α(G), g(G) and h(G). Recall from (3) that 1

4αbal(G) = 1
2

√
gbal(G) = hbal(G). Since

these are NP-hard parameters one is interested in finding efficient bounds for them, strengthening
those for the original parameters g(G) and h(G).

Let G = (V = V1 ∪ V2, E) be a bipartite graph. Following the approach in Section 3.1, each
of the parameters αbal(G), gbal(G) and hbal(G) has a natural polynomial optimization formulation,
which offers the starting point to define several hierarchies of semidefinite relaxations. For this
define the vector f := χV1 − χV2 . Let IG,bal denote the ideal in R[x] that is generated by the ideal
IG (itself generated by x2

i − xi for i ∈ V and xixj for {i, j} ∈ E) and the polynomial fTx. For an
integer t let IG,bal,t denote its truncation at degree t, where all summands are restricted to have
degree at most t. Then the formulation for αbal(G) follows by replacing the ideal IG (resp., IG,2α(G))
by the ideal IG,bal (resp., IG,bal,2α(G)) in (19) (resp., (20)). Similarly, gbal(G) (resp., hbal(G)) is

obtained by adding the “balancing” constraint fTx = 0 to the program (27) defining g(G) (resp.,
to the program (28) defining h(G)). Now each of these polynomial optimization formulations can
be used to define a Lasserre-type hierarchy. In this way one obtains the hierarchies lasbal,r(G),
gbal,r(G), and hbal,r(G) for r ∈ N that converge to αbal(G), gbal(G), and hbal(G), respectively, after
r ≥ α(G) steps. They are obtained, respectively, from the programs (22) (defining lasr(G)), (29)
(defining gr(G)), and (30) (defining hr(G)) by replacing the truncated ideal IG,2r by its balanced
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analog IG,bal,2r; that is,

lasbal,r(G) = min
{
λ : λ− xTx ∈ Σ2 + IG,bal,2r

}
,

gbal,r(G) = min
{
λ : λ− xTCx ∈ Σ2 + IG,bal,2r

}
,

hbal,r = min
{
λ : xT(λI − C)x ∈ Σ2 + IG,bal,2r

}
.

We will now focus on the Lasserre bounds of order r = 1. We will give explicit semidefinite
formulations and show relationships between the various parameters. The parameter lasbal,1(G) is
the analog of las1(G) = ϑ(G) obtained by adding a balancing constraint to program (23). However,
adding a balancing constraint to the formulation of ϑ(G) in (24) leads to another parameter ϑbal(G)
that is in general weaker than lasbal,1(G). The parameters gbal,1(G) and hbal,1(G) are obtained by
adding a balancing constraint to the respective programs defining g1(G) and h1(G). Moreover, they
can be shown to be nested between lasbal,1(G) and ϑbal(G), see Proposition 6.4 below. For bipartite
regular graphs we will investigate some natural symmetric variations of these parameters, with the
hope of obtaining a new closed-form parameter strengthening ĥ(G). However, as we will show,
it turns out that in all cases one recovers the parameter ĥ(G), see Propositions 6.7 and 6.8. So
the refined formulations taking into account the balancing constraints do not yet lead to stronger
eigenvalue bounds for the parameter αbal(·).

6.1 The Lasserre bounds of order r = 1 for the balanced parameters

We begin with semidefinite reformulations for the parameter lasbal,1(G).

Lemma 6.1. For any bipartite graph G = (V,E) we have

lasbal,1(G) = max
X∈S|V |

{
〈I,X〉 :

(
1 diag(X)T

diag(X) X

)
� 0, Xij = 0 if {i, j} ∈ E, 〈ffT, X〉 = 0

}
,

(65)

= min
Z∈S|V |,u∈R|V |,s∈R

{
λ :

(
λ −uT/2
−u/2 Diag(u)− I + Z + sffT

)
� 0, Z ∈ SG

}
. (66)

Proof. As in Section 3.2 the proof uses Lemma 3.2. By definition, lasbal,1(G) is the smallest scalar
λ for which λ− xTIx ∈ Σ2 + IG,bal,2, i.e., λ− xTIx− (a0 + aTx)fTx ∈ Σ2 + IG,2 for some a0 ∈ R,

a ∈ Rn. Thus lasbal,1(G) is the smallest λ such that [x]T1
(
Q −

(
λ a0f

T/2

a0f/2 −I + afT+faT

2

))
[x]1 ∈ IG,2 for

some a0 ∈ R, a ∈ Rn. Applying Lemma 3.2 we arrive at the program

lasbal,1(G) = min
Z∈S|V |,u,a∈R|V |,a0∈R

{
λ :

(
λ 1

2(−u+ a0f)T

1
2(−u+ a0f) Diag(u)− I + Z + afT+faT

2

)
� 0, Z ∈ SG

}
.

Now we take the dual of this semidefinite program. We also apply some simplifications, such
as observing that Xf = 0 is equivalent to 〈ffT, X〉 = 0 when X � 0, which in turn implies

fTdiag(X) = 0 when
(

1 diag(X)T

diag(X) X

)
� 0. In this way we arrive at the program (65). Taking the

dual of (65) gives the (simplified) program (66). Note that strong duality holds since program (66)

is strictly feasible (e.g., take s = 0, Z = 0, u = µe with µ > 1, and λ > n
4
µ2

µ−1).

Hence program (65) is the analog of program (23) defining las1(G) = ϑ(G) to which we add
the balancing condition 〈ffT, X〉 = 0. Next we consider the analog of program (24) to which we
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add the balancing conditions 〈ffT, X〉 = 0 and fTdiag(X) = 0, giving the parameter

ϑbal(G) := max
X∈S|V |

{
〈J,X〉 :X � 0, Tr(X) = 1, Xij = 0 if {i, j} ∈ E,

〈ffT, X〉 = 0, 〈Diag(f), X〉 = 0
}
,

(67)

= min
Z∈S|V |,λ,s,v∈R

{
λ : λI − J + Z + vDiag(f) + sffT � 0, Z ∈ SG

}
, (68)

where the second formulation (68) follows by taking the dual of (67) (and observing that (68) is
strictly feasible). We will see in Proposition 6.4 below that ϑbal(G) provides a weaker bound for
αbal(G) than lasbal,1(G).

We now consider the parameter gbal,1(G). By definition, gbal,1(G) is the smallest scalar λ
for which λ − xTCx ∈ Σ2 + IG,bal,2. Comparing with the definition of lasbal,1(G) we see that it
suffices to exchange the matrices C and I to get the semidefinite formulations of gbal,1(G) in the
next lemma (recall also Remark 3.5).

Lemma 6.2. For any bipartite graph G = (V,E) we have

gbal,1(G) = max
X∈S|V |

{
〈C,X〉 :

(
1 diag(X)T

diag(X) X

)
� 0, Xij = 0 if {i, j} ∈ E, 〈ffT, X〉 = 0

}
,

(69)

= min
λ,s∈R,u∈R|V |,Z∈S|V |

{
λ :

(
λ −uT/2
−u/2 Diag(u)− C + Z + sffT

)
� 0, Z ∈ SG

}
. (70)

Finally we give semidefinite formulations for the parameter hbal,1(G).

Lemma 6.3. Let G = (V,E) be a bipartite graph. Then we have

hbal,1(G) = max
X∈S|V |

{〈C,X〉 : X � 0, Tr(X) = 1, Xij = 0 if {i, j} ∈ E,

〈ffT, X〉 = 0, 〈Diag(f), X〉 = 0},
(71)

hbal,1(G) = min
λ,v,s∈R,Z∈S|V |

{λ : λI − C + Z + vDiag(f) + sffT � 0, Z ∈ SG}. (72)

Proof. The argument is similar to the one used to show Lemma 6.1. Namely, one starts with the
definition of hbal,1(G) as the smallest λ for which xT(λI − C)x ∈ Σ2 + IG,bal,2. Using Lemma 3.2
one arrives at a semidefinite program whose dual can be shown (after some simplifications) to take
the form (71). Then one takes the dual of program (71), which has the form (72).

We now compare the parameters lasbal,1(G), ϑbal(G), gbal,1(G) and hbal,1(G).

Proposition 6.4. For any bipartite graph G, we have the inequalities

1

4
lasbal,1(G) ≤ 1

2

√
gbal,1(G) ≤ hbal,1(G) =

1

4
ϑbal(G).

Moreover, we have 1
2

√
gbal,1(G) = 1

4ϑbal(G) ⇐⇒ lasbal,1(G) = ϑbal(G).
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Proof. The equality ϑbal(G) = 4hbal,1(G) follows from the fact that the programs (67) (defining
ϑbal(G)) and (71) (defining hbal,1(G)) differ only in their objective functions that are, respectively,
〈J,X〉 and 〈C,X〉, combined with the identity J − 4C = ffT.

The inequality lasbal,1(G) ≤ ϑbal(G) follows using the formulations (65) and (67) and a classic
argument (repeated for convenience). If X is optimal for (65) with x := diag(X), then X−xxT � 0,
fTx = 0, Tr(X) = eTx, so X/Tr(X) = X/eTx is feasible for (67) and thus we have ϑbal(G) ≥

1
eTx
〈J,X〉 ≥ 1

eTx
〈J, xxT〉 = eTx = lasbal,1(G).

For the inequality lasbal,1(G)2 ≤ 4 · gbal,1(G), pick an optimal solution X for (65) with x :=
diag(X), so that X − xxT � 0, and use again the fact that 4C = J − ffT. Then we have
4 · gbal,1(G) ≥ 〈4C,X〉 = 〈J,X〉 ≥ 〈J, xxT〉 = (eTx)2 = 〈I,X〉2 = lasbal,1(G)2.

We now show the inequality 4 · gbal,1(G) ≤ ϑbal(G)2. For this let X be optimal for program
(69) defining gbal,1(G). Then X is feasible for (65) and thus lasbal,1(G) ≥ Tr(X). In addition,
X/Tr(X) is feasible for (67) and thus ϑbal(G) ≥ 1

Tr(X)〈J,X〉. Using 4C = J − ffT, we obtain

4 · gbal,1(G) = 〈4C,X〉 = 〈J,X〉 = Tr(X) · 〈J,X/Tr(X)〉 ≤ lasbal,1(G) · ϑbal(G) ≤ ϑbal(G)2. Finally,
this argument also shows that equality 4 · gbal,1(G) = ϑbal(G)2 implies lasbal,1(G) = ϑbal(G), which
concludes the proof.

Quite surprisingly, while we had the inequality h1(G) ≤ 1
2

√
g1(G) (recall Proposition 1.2), we

now have the reverse inequality 1
2

√
gbal,1(G) ≤ hbal,1(G) for the balanced analogs. We next give

an example where this inequality is strict.

Example 6.5. Let G be the bipartite graph from Figure 2. One can check that hbal,1(G) = 2/3,
gbal,1(G) = 4/3 and lasbal,1(G) = 9/4, which shows that the strict inequalities 1

4 lasbal,1(G) <
1
2

√
gbal,1(G) < hbal,1(G) hold. To see this consider the matrices

X1 = 1
12


1 1 0 2
1 5 2 4
0 2 1 1
2 4 1 5

 , X2 = 1
9


3 1 0 4
1 7 4 4
0 4 3 1
4 4 1 7

 , X3 = 1
32


12 3 0 15
3 24 15 12
0 15 12 3
15 12 3 24

 .

Then, X1 is feasible for (71) with 〈C,X1〉 = 2/3, X2 is feasible for (69) with 〈C,X2〉 = 4/3, and
X3 is feasible for (65) with 〈I,X3〉 = 9/4. One can check optimality of these solutions for the
respective programs (for this, use the constraint 〈ffT, X〉 = 0 to reduce the semidefinite program
to an equivalent semidefinite program involving smaller matrices, and then construct a solution of
the dual program with the same objective value).

6.2 Symmetric versions of the parameters lasbal,1(G), ϑbal(G) and gbal,1(G)

Here we address the question whether it is possible to obtain closed-form eigenvalue-based upper
bounds for αbal(G) that improve on the spectral parameter ĥ(G) from (47). For this a natural
approach is to restrict the optimization in the programs (66), (68), (70) to matrices Z = tAG
for some t ∈ R and, for (66) and (70), to vectors u = µe for some µ ∈ R. Moreover, we add a
term vDiag(f) to the matrix involved in (66) and (70), which amounts to adding the redundant
constraint 〈Diag(f), X〉 = 0 to the programs (65) and (69). The motivation for this is to get
possibly sharper bounds. In addition, the bounds obtained in this way are easier to compare (see
Proposition 6.6). However, as we will show in Proposition 6.7, these additional constraints will
turn out to be redundant for bipartite regular graphs.
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So we consider the parameters

l̂asbal(G) := min
λ,µ,t,s,v∈R

{λ :

(
λ −µeT/2

−µe/2 (µ− 1)I + tAG + sffT + vDiag(f)

)
� 0}, (73)

= max
X∈SV ,x∈RV

{
〈I,X〉 :

(
1 xT

x X

)
� 0,Tr(X) = eTx, 〈AG, X〉 = 0, 〈ffT, X〉 = 0, 〈Diag(f), X〉 = 0

}
,

(74)

ϑ̂bal(G) := min
λ,t,v,s∈R

{λ : λI − J + tAG + vDiag(f) + sffT � 0}, (75)

= max{〈J,X〉 : X � 0, Tr(X) = 1, 〈AG, X〉 = 0, 〈ffT, X〉 = 0, 〈Diag(f), X〉 = 0}, (76)

ĝbal(G) := min
λ,µ,t,s,v∈R

{
λ :

(
λ −µeT/2

−µe/2 µI − C + tAG + sffT + vDiag(f)

)
� 0
}
, (77)

= max
X∈SV ,x∈RV

{
〈C,X〉 :

(
1 xT

x X

)
� 0,Tr(X) = eTx, 〈X,AG〉 = 0, 〈ffT, X〉 = 0, 〈Diag(f), X〉 = 0

}
.

(78)

(Since each of the programs (73), (75), (77) is strictly feasible, strong duality holds as claimed
above.) We begin with comparing the above parameters and show the analog of Proposition 6.4.

Proposition 6.6. For any bipartite graph G, we have

1

4
l̂asbal(G) ≤ 1

2

√
ĝbal(G) ≤ 1

4
ϑ̂bal(G).

Proof. We use the formulations (74), (76), (78) for the parameters l̂asbal(G), ϑ̂bal(G), ĝbal(G),
respectively. Then the inequalities follow in the same way as in the proof of Proposition 6.4.

Next we compute the parameter ϑ̂bal(G) and show its relation to ĥ(G).

Proposition 6.7. Assume G = (V1 ∪ V2, E) is bipartite r-regular, set n := |V1| = |V2| and let λ2

denote the second largest eigenvalue of AG. Then we have ϑ̂bal(G) = 2nλ2
r+λ2

= 4 · ĥ(G).

We delay the proof, which is a bit technical, to Appendix D. As the proof will show, the program
(75) defining ϑ̂bal(G) admits an optimal solution with v = 0. Hence, when G is bipartite regular,
the constraint 〈Diag(f), X〉 = 0 is redundant in program (75) and one can set v = 0 in program

(75), and the same observation applies to the programs defining ĝbal(G) and l̂asbal(G).

We can now compute the parameters l̂asbal(G) and ĝbal(G) and show their relation to ĥ(G).

Proposition 6.8. For any regular bipartite graph G we have

1

4
l̂asbal(G) =

1

2

√
ĝbal(G) =

1

4
ϑbal(G) = ĥ(G).

Proof. Assume G is bipartite regular and set n := |V1| = |V2|. If G is complete bipartite, then

αbal(G) = 0 and, using (76) and Proposition 6.6, one can check that ϑ̂bal(G) = 0, so the result
holds. We now assume that G is not complete bipartite. In view of Propositions 6.6 and 6.7 it

suffices to show l̂asbal(G) ≥ ϑ̂bal(G). Assume that (λ, µ, t, s, v) is feasible for the program (73)

defining l̂asbal(G), we construct a feasible solution for the program (75) defining ϑ̂bal(G) with the
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same objective value λ. Call Q ∈ S1+|V1|+|V2| the matrix appearing in program (73). By taking a
Schur complement with respect to its upper left corner entry λ, we obtain

λ((µ− 1)I + tAG + sffT + vDiag(f))− µ2

4 J � 0.

We now claim that µ > 1. For this observe that the submatrices of Q indexed by V1 and V2 read
(µ − 1)In + sJn ± vIn. Since they are both positive semidefinite this implies (µ − 1)In + sJn � 0
and thus µ ≥ 1. Assume that µ = 1. Then the conditions sJn ± vIn � 0 imply v = 0. Let i ∈ V1

and j ∈ V2 that are not adjacent (they exist since G 6= Kn,n). Then the principal submatrix of

Q indexed by {0, i, j} takes the form
(

λ −1/2 −1/2
−1/2 s −s
−1/2 −s s

)
and it must be positive semidefinite, so we

reach a contradiction. Hence we have µ > 1. Thus we can scale the above matrix and obtain

λI +
λt

µ− 1
AG +

λs

µ− 1
ffT +

λv

µ− 1
Diag(f)− µ2

4(µ− 1)
J � 0.

Note that µ2

4(µ−1) − 1 = (µ−2)2

4(µ−1) ≥ 0 and add ( µ2

4(µ−1) − 1)J � 0 to the above matrix. So we obtain

λI +
λt

µ− 1
AG +

λs

µ− 1
ffT +

λv

µ− 1
Diag(f)− J � 0,

which gives a feasible solution to the formulation (75) of ϑ̂bal(G) and thus shows ϑ̂bal(G) ≤ λ =

l̂asbal(G).

Remark 6.9. One idea for trying to get a stronger closed-form bound for αbal(G) could be to
consider a possibly weaker symmetrization of the parameter lasbal,1(G), where we now allow a
vector u taking distinct values for nodes in V1 and in V2 instead of restricting to u = µe for some

µ ∈ R. So we consider the following variation l̃asbal(G) of the parameter l̂asbal(G), defined by

min
λ,µ1,µ2,t,s,v∈R

{
λ :

(
λ −uT/2
−u/2 Diag(u)− I + tAG + sffT + vDiag(f)

)
� 0, u = µ1χ

V1 + µ2χ
V2

}
.

(79)

By its definition, the parameter l̃asbal(G) lower bounds l̂asbal(G), for which the optimization is
restricted to the case µ1 = µ2. Nevertheless it turns out that the two parameters are in fact equal.
To see this let us use the dual semidefinite program of (79), which reads

l̃asbal(G) = max
{
〈I,X〉 :

(
1 xT

x X

)
� 0, 〈AG, X〉 = 0, 〈ffT, X〉 = 0,

〈Diag(f), X〉 = 0, 〈Diag(χVk), X〉 = xTχVk for k = 1, 2
}
.

(80)

Assume (x,X) is optimal for the program (74) defining l̂asbal(G). In order to show that (x,X) is
feasible for (80) we only need to check that 〈Diag(χVk), X〉 = xTχVk for k = 1, 2. For this note
that feasibility for (74) implies xTf = 0 and thus xTχV1 = xTχV2. Moreover 〈Diag(f), X〉 = 0
gives 〈Diag(χV1), X〉 = 〈Diag(χV2), X〉 and Tr(X) = eTx gives 〈Diag(χV1), X〉 + 〈Diag(χV2), X〉 =
xTχV1 + xTχV2. Combining these facts we get the desired identities 〈Diag(χVk), X〉 = xTχVk for

k = 1, 2. This shows l̂asbal(G) ≤ l̃asbal(G) and thus equality l̂asbal(G) = l̃asbal(G) holds.
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7 Concluding remarks

In this paper we investigate the parameters g(G), h(G), αbal(G) (and other related parameters)
dealing with (balanced) bipartite biindependent pairs in a bipartite graph G. We show that de-
ciding whether αbal(G) = α(G) is an NP-complete problem and that this implies NP-hardness of
the parameters αbal(G), h(G), g(G). We offer a systematic study of the basic semidefinite bounds
that are obtained at the first level of sums-of-squares (Lasserre) hierarchies. In particular, we intro-
duce the semidefinite bounds h1(G), g1(G) (for g(G), h(G)), and lasbal,1(G), ϑbal(G) (for αbal(G)).
These semidefinite bounds can be seen as natural variations of the celebrated theta number ϑ(G)
of Lovász [32], allowing a quadratic objective (for h1(G), g1(G)) or adding a balancing constraint
(for lasbal,1(G), ϑbal(G)). However, while ϑ(G) = α(G) when G is bipartite, the parameters h1(G),
g1(G), lasbal,1(G), ϑbal(G) give only upper bounds for the respective combinatorial graph parame-
ters. An interesting fact is that h1(G) in fact provides a better bound for g(G) than g1(G) (recall
Proposition 1.2). Another interesting fact is that lasbal,1(G) ≤ ϑbal(G) and that the inequality may
be strict, while the unbalanced analogs both coincide with ϑ(G) (recall Proposition 6.4 and relation
(25)). We also show that deciding whether h(G) = h1(G) is an NP-hard problem. An object of
further study will be to investigate the numerical behaviour of the various bounds introduced in
this paper.

When G is an r-regular bipartite graph, we give closed-form eigenvalue-based bounds that
are obtained by restricting to symmetric solutions in the definitions of h1(G), g1(G), lasbal,1(G),

and ϑbal(G). In this way we obtain the parameter ĥ(G) = n
2

λ2
r+λ2

, where λ2 is the second largest

eigenvalue of AG and G has n vertices on each side of its bipartition. Then h(G) ≤ h1(G) ≤ ĥ(G)
holds and it turns out that ĥ(G) provides a better bound for g(G) than its corresponding eigenvalue
bound ĝ(G). Moreover, only edge-transitivity is required to show equality h1(G) = ĥ(G), while one
needs vertex- and edge-transitivity to show g1(G) = ĝ(G). Bipartite regular graphs that are edge-
transitive but not vertex-transitive are known as semi-symmetric graphs; the smallest such graph,
constructed by Folkman [14], is 4-regular with 20 vertices. We show that the natural eigenvalue
bounds corresponding to the various semidefinite relaxations of αbal(G) all coincide (up to simple
transformation) with the parameter ĥ(G), and that the same holds for a natural strengthening of
h1(G) (recall Proposition 4.4). Hence, finding a stronger closed-form bound for αbal(G) that is able
to take advantage of the restriction to balanced independent sets remains an open problem.

So we see in this paper an application of the second largest eigenvalue λ2 to the study of
parameters involving (balanced) independent sets in bipartite graphs. The second largest eigen-
value λ2 has been widely studied and has well-known applications to various graph properties. For
instance, there is a classical upper bound on λ2 for any r-regular graph in terms of r and its diame-
ter [35], and large r-regular graphs with small second eigenvalue are shown to be Hamiltonian [28].
A notable application of λ2 is for bounding the edge expansion (or isoperimetric number), some-
times denoted hG, and defined as the minimum value of E(S, V \S)/|S| taken over all S ⊆ V with
1 ≤ |S| ≤ |V |/2. Namely, if G is r-regular, then (r − λ2)/2 ≤ hG ≤

√
r2 − λ2

2 (see [33]). We refer,
e.g., to [6, 3] and further references therein for more information.

Among other examples we have considered the hypercube G = Qr on {0, 1}r. We show that
αbal(Qr) ≥ a(r − 1) for all r ≥ 1, where a(r) is as defined in (64). Computational experiments
suggest that this is the exact value. Showing αbal(Qr) = a(r − 1) for all r is an interesting open
problem that would offer a new link from balanced biindependent sets to other combinatorial
counting problems such as the number of r-steps random walks on a line starting from the origin
and returning to it at least once.
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[1] N. Alon, R.A. Duke, H. Lefmann, V. Rödl, R. Yuster. The algorithmic aspects of the regularity
lemma. Journal of Algorithms, 16:80–109, 1994.

[2] A.A. Al-Yamani, S. Ramsundar, D.K. Pradhan. A defect tolerance scheme for nanotechnology
circuits. IEEE Transactions on Circuits and Systems I: Regular papers, 54(11):2402–2409,
2007.

[3] A.E. Brouwer and W.H. Haemers. Spectra of Graphs. Springer, 2017.
[4] J. Chen and I.A. Kanj. Constrained minimum vertex cover in bipartite graphs: complexity

and parametrized algorithms. Journal of Computer and System Sciences, 67:833–847, 2003.
[5] L. Chen, C. Liu, R. Zhou, J. Xu, J. Li. Efficient exact algorithms for maximum balanced bi-

clique search in bipartite graphs. SIGMOD ’21, June 20-25, 2021. Research Data Management
Track Paper.
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A Application to product-free sets in finite groups

Let Γ be a finite group. A subset A ⊆ Γ is called product-free if uv 6∈ A for all u, v ∈ A. A problem
of interest is to find the maximum cardinality of a product-free set in Γ; see, e.g., Kedlaya [26],
Gowers [17] for background and an overview of results on this problem. As in [26] let β(Γ) denote
the maximum density |A|/|Γ| of a product-free set A ⊆ Γ. Clearly, β(Γ) ≤ 1/2 (since, for any
x ∈ A, the sets A and xA are disjoint subsets of Γ). It is known that any finite abelian group
satisfies 1/7 ≤ β(Γ) ≤ 1/2. Moreover any finite group satisfies β(Γ) = Ω(1/n3/14) and the question
arose whether β(Γ) = Ω(1/nε) for all ε > 0. Gowers [17] answered in the negative by showing that
β(PSL2(q)) = O(1/n1/9) (see Example A.4 below).

As a crucial ingredient in his proof (which applies in fact to a more general setting) Gowers [17]
introduces an upper bound on the product-free set density of Γ in terms of the second eigenvalue of
an associated bipartite Cayley graph. We follow the exposition by Kedlaya [26] and Vallentin [41],
which relies on using (a variation of) the parameter ĥ applied to this bipartite Caley graph.

Let us fix a product-free set A ⊆ Γ and define the bipartite Cayley graph GΓ,A = (V1∪V2, E),
where V1, V2 are two disjoint copies of Γ, where u ∈ V1, v ∈ V2 are adjacent in GΓ,A if uv ∈ A. Note
that the graph GΓ,A is |A|-regular. Let Ak denote the copy of A within the set Vk for k = 1, 2.
Then, by construction, (A1, A2) is a biindependent pair in GΓ,A since A is product-free.

The next result relates the size of |A| to the second largest eigenvalue of the adjacency matrix of
GΓ,A. It is essentially based on [17, Lemma 3.2], [26, Lemma 5.3] (and Vallentin’s presentation [41]).

Lemma A.1. Let Γ be a finite group, n := |Γ|, and let k denote the minimum dimension of a
non-trivial representation of Γ. Let A ⊆ Γ be a product-free set and let λ2 denote the second largest
eigenvalue of the adjacency matrix of the bipartite Cayley graph GΓ,A. Then we have

λ2 ≤
√
|A|(n− |A|)

k
. (81)

Proof. Set G := GΓ,A and write its adjacency matrix as in (46). By Lemma 4.1, λ2
2 is the second

largest eigenvalue of MGM
T
G; let k2 denote its multiplicity. Since G is |A|-regular, G has n|A| edges

and thus Tr(MGM
T
G) = n|A|. On the other hand, by considering the spectral decomposition of

MGM
T
G, we obtain Tr(MGM

T
G) ≥ |A|2+λ2

2k2. By combining both facts we deduce n|A| ≥ |A|2+λ2
2k2

and thus λ2 ≤
√
|A|(n− |A|)/k2.

We now show that k2 ≥ k, which, combined with the above inequality for λ2, gives the desired
inequality (81). For this let W denote the eigenspace of MGM

T
G corresponding to the eigenvalue

λ2
2, so that W has dimension k2. One can easily check that

W = {x ∈ RV1 : xTe = 0, xTMGM
T
Gx = λ2

2‖x‖2}.

We show that W is invariant under some non-trivial action of Γ. For this, consider the action of
Γ on the space RV1 defined by right multiplication; that is, for γ ∈ Γ and x = (xu)u∈Γ, define
xγ := (xuγ)u∈Γ. We claim that (MT

Gx
γ)v = (MT

Gx)γ−1v for any v ∈ Γ. Indeed,

(MT
Gx

γ)v =
∑
u∈Γ

MG(u, v)xγu =
∑

u∈Γ:uv∈A
xuγ =

∑
w∈Γ:wγ−1v∈A

xw =
∑
w∈Γ

MG(w, γ−1v)xw = (MT
Gx)γ−1v.
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From this follows that xTMGM
T
Gx = (xγ)TMGM

T
Gx

γ and eTx = eTxγ . Hence x ∈ W implies
xγ ∈ W and thus the space W is invariant under this action of Γ. This action is non-trivial since
a nonzero vector x ∈ W is not a multiple of the all-ones vector and thus xγ 6= x for some γ ∈ Γ.
Therefore, we can conclude that k2 = dimW ≥ k and the proof is complete.

We can now show the following bound on the product-free set density, which is essentially
Theorem 3.3 of Gowers [17] (see Remark A.3 below).

Theorem A.2. Let Γ be a finite group and let k denote the minimum dimension of a non-trivial
representation of Γ. If A is a product-free set in Γ, then we have |A| ≤ |Γ|

1+k1/3 .

Proof. Since (A1, A2) is a bipartite biindependent pair in GΓ,A, we have |A|2 ≤ h(GΓ,A) and thus
|A|
2 ≤ ĥ(GΓ,A) = n

2
λ2

|A|+λ2
, which implies |A|2 ≤ λ2(n−|A|) ≤ (n−|A|)

√
|A|(n− |A|)/k, using (81).

This implies
( |A|
n−|A|

)3/2 ≤ 1
k1/2 and thus |A| ≤ n

1+k1/3 as desired.

Remark A.3. The upper estimates in (81) and Theorem A.2 offer a slight sharpening of the known
results. Indeed Gowers shows λ2 := λ2(AGΓ,A

) ≤
√
n|A|/k (Lemma 3.2 in [17]), a bound that is

a bit weaker than the one in (81), which he then uses to show |A| ≤ n
k1/3 (Theorem 3.3 in [17]).

Vallentin [41] uses his eigenvalue bound to conclude |A|2 ≤ h(GΓ,A) ≤ n
|A|λ2 ≤ n

|A|
√
n|A|/k, and

thus |A| ≤ 22/3 n
k1/3 . Our slightly sharper estimate |A| ≤ n

1+k1/3 follows using the sharper bound in

(81) and the sharper eigenvalue bound h(GΓ,A) ≤ ĥ(GΓ,A) = n
2

λ2
|A|+λ2

.

One recovers the known bound β(Γ) ≤ 1/2 using Theorem A.2. This bound is tight, for
instance, when Γ is the symmetric group Sn (in which case k = 1, since the sign representation is
a non-trivial representation of dimension 1). Since the set Sn \ An consisting of all permutations
with an odd sign is product-free with size n!/2, one gets β(Sn) ≥ 1/2 and thus the bound is tight:
β(Sn) = 1/2. By contrast it has been a long standing open problem to determine the product-free
density of the alternating group An; it was shown recently in [27] that β(An) = Θ(1/

√
n).

Example A.4 (Gowers [17]). Consider the group Γ = PSL2(q), which is the group of all 2 × 2-
matrices over Fq with determinant 1, quotiented by the subgroup {I,−I}. As Gowers notes, it
is one of the simplest infinite families of finite simple groups (i.e., nontrivial groups whose only
normal subgroups are the trivial group and the group itself). It is natural to consider simple finite
groups, because any product-free subset in a quotient of a finite group lifts to a product-free subset
in the group itself.

The order of PSL2(q) is n = q(q2−1)/2. Frobenius proved that every non-trivial representation
of PSL2(q) has dimension at least k = (q − 1)/2, which is at least n1/3/4. Applying Theorem A.2
one obtains that the maximum size of a product-free subset in Γ is at most 41/3n8/9 and thus
β(PSL2(q)) = O(1/n1/9).

B Proof of Lemma 4.3

We use the fact that
(

1 xT

x X

)
� 0 ⇐⇒ X − xxT � 0.

The “only if” part in Lemma 4.3 is easy: if X − xxT � 0 and eTx = 1, then 〈J,X〉 ≥ eTxxTe = 1.
We now show the “if part”. So, assume X ∈ Sn satisfies X � 0, Tr(X) = 1 and 〈J,X〉 ≥ 1;
we construct x ∈ Rn such that eTx = 1 and X − xxT � 0. For this, consider the spectral
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decomposition X =
∑n

i=1 βiuiu
T
i , where the ui’s form an orthonormal basis of eigenvectors, βi ≥ 0,

and
∑n

i=1 βi = Tr(X) = 1. Define the vectors

a := (
√
βi · eTui)ni=1 and x :=

n∑
i=1

βi · eTui
‖a‖2

ui.

Then, we have ‖a‖2 =
∑n

i=1 βi(e
Tui)

2 = 〈J,X〉 ≥ 1 and eTx = 1. We now show X − xxT � 0. For
this let z ∈ Rn be any vector; we show that zT(X − xxT)z ≥ 0. Indeed we have

zT(X − xxT)z = zTXz − (zTx)2 =
n∑
i=1

βi(z
Tui)

2 − 1

‖a‖4
( n∑
i=1

βi · eTui · zTui
)2

=
n∑
i=1

βi(z
Tui)

2 − 1

‖a‖4
( n∑
i=1

√
βi(e

Tui) ·
√
βi(z

Tui)
)2

≥
n∑
i=1

βi(z
Tui)

2 − 1

‖a‖4
( n∑
i=1

βi(e
Tui)

2
)( n∑

i=1

βi(z
Tui)

2
)

=
n∑
i=1

βi(z
Tui)

2
(

1− 1

‖a‖2
)
≥ 0,

using Cauchy-Schwartz inequality for the first inequality and ‖a‖ ≥ 1 for the last one.

C Proof of Proposition 4.5

Here we show the result of Proposition 4.5. As starting point we use the formulation of g1(G)
from (34), where we restrict the optimization to matrices Z of the form Z = tAG for some scalar
t ∈ R, and to vectors u of the form u = µe for some µ ∈ R. Note that when G is vertex- and edge-
transitive this restriction can be made without loss of generality. Then we consider the equivalent
reformulation obtained by taking the Schur complement with respect to the upper left corner λ of
the matrix in (34). So we aim to compute the optimum value of the program

ĝ(G) := min
λ,µ,t∈R

{
λ | λ(µI − C + tAG)− µ2

4 J � 0, λ ≥ 0
}
, (82)

which upper bounds g1(G) and is equal to it when G is vertex- and edge-transitive; we will show
that this optimum value has the form claimed in Proposition 4.5. For this we need to express the

condition that the eigenvalues of the matrix λ(µI−C+tAG)− µ2

4 J are nonnegative. By considering
the eigenvalue of this matrix for the all-ones vector we get the condition

λ(µ− n

2
+ tr)− µ2

2
n ≥ 0. (83)

In addition to this we need to ensure that µI −C + tAG � 0. Note that the matrix A := tAG −C
has the block-form (10), with M := tMG− 1

2Jn. We have MMT = t2MGM
T
G +(n/4− tr)Jn. Hence

the eigenvalue of MMT at the all-ones vector is equal to t2r2 + n(n/4− tr) = (tr − n/2)2 and its
second largest eigenvalue is t2λ2(MGM

T
G) = t2λ2

2. Therefore, we obtain that

µI − C + tAG � 0⇐⇒ µ ≥ |tr − n/2| and µ ≥ |tλ2| = |t|λ2. (84)
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Again we assume G is not complete bipartite and thus λ > 0. Then it follows from (83) that
µ− n

2 + tr ≥ 0 and, combined with (84), we must have µ− n
2 + tr > 0. Set

µ(t) := max{|tr − n/2|, |t|λ2}. (85)

Then we can conclude that ĝ1(G) can be reformulated as

ĝ(G) = min
µ,t∈R

{
F (µ) :=

n

2

µ2

µ+ tr − n/2
: µ+ tr − n/2 > 0, µ ≥ µ(t)

}
. (86)

Our task is now to compute the minimum value of the above program (86). It is useful to see the

behaviour of the function F (µ). For this observe that its derivative is F ′(µ) = n
2
µ2−µ(n−2tr)
(µ+tr−n/2)2 . Hence

F ′(µ) ≤ 0 (and thus F (µ) is monotone nonincreasing) when µ lies between 0 and n − 2tr, and
F ′(µ) ≥ 0 (and thus F (µ) is monotone nondecreasing) when µ lies outside the interval [0, n− 2tr]
or [n− 2tr, 0] (depending on the sign of n− 2tr). Note also that F (µ) has a vertical asymptote at
µ = n/2− tr (at which its denominator vanishes).

According to (86) we need to discuss according to the value of µ(t) in (85). So we partition
the range of values taken by t into R = T1 ∪ T2 ∪ T3, where we set

T1 := {t ∈ R : tr − n/2 ≥ 0}, T2 := {t ∈ R : tr − n/2 < 0, t ≥ 0}, T3 := {t ∈ R : t < 0}.

Then, for ` ∈ {1, 2, 3} and for t ∈ T`, set

F`(t) := min
µ
{F (µ) : µ+ tr − n/2 > 0, µ ≥ µ(t)

}
,

so that we have
ĝ(G) = min

`∈{1,2,3}
min
t∈T`

F`(t). (87)

We thus need to compute the value of mint∈T` F`(t) for each ` = 1, 2, 3. So we distinguish the three
cases ` = 1, 2, 3.

Case 1: ` = 1. Assume t ∈ T1. Then, t > 0 and µ(t) = max{tr − n/2, tλ2}. Then we have

F1(t) = min
µ
{F (µ) : µ ≥ µ(t)} = F (µ(t)),

where the last equality follows since the function F (µ) is monotone nondecreasing on [0,∞). We
have two cases.

• Either tr − n/2 ≥ tλ2, which implies µ(t) = tr − n/2 and thus F1(t) = F (tr − n/2) =
n
4 (tr − n/2). Note that in this case we have r > λ2. Then we obtain

min
t∈T1

{F1(t) : tr − n/2 ≥ tλ2} = min
{n

4
(tr − n/2) : t ≥ n

2(r − λ2)

}
=
n2

8

λ2

r − λ2
. (88)

• Or tr − n/2 ≤ tλ2, so that t ≤ n
2(r−λ2) if λ2 < r, and µ(t) = tλ2. Then we have

min
t∈T1

{F1(t) : tr − n/2 ≤ tλ2} = min
{
F (tλ2) =

n

2

t2λ2
2

t(λ2 + r)− n/2
:
n

2r
≤ t ≤ n

2(r − λ2)

}
,

setting n
2(r−λ2) = ∞ if r = λ2. Consider the function ψ(t) := F (tλ2), whose derivative is

ψ′(t) =
nλ2

2
2

t(t(λ2+r)−n)
(t(λ2+r)−n/2)2 . Note that n

2(λ2+r) ≤
n
2r ≤

n
λ2+r , where n

2(λ2+r) is an aymptote of
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ψ(t) (as it is a zero of its denominator). We also need to compare the relative positions of
n

λ2+r (zero of ψ′(t)) and n
2(r−λ2) (upper bound of the range for t); note that n

λ2+r ≤
n

2(r−λ2)

if and only if r ≤ 3λ2. We can now compute the minimum value taken by the function ψ(t)

for n
2r ≤ t ≤ n

2(r−λ2) . When r ≤ 3λ2 it is attained at n
λ2+r with value ψ( n

λ2+r ) =
n2λ2

2
(λ2+r)2 and

when r ≥ 3λ2 (so that λ2 < r) it is attained at n
2(r−λ2) with value ψ( n

2(r−λ2)) = n2λ2
8(r−λ2) . In

summary we have shown that

min
t∈T1

{F1(t) : tr − n/2 ≤ tλ2} =
n2λ2

2

(λ2 + r)2
if r ≤ 3λ2, (89)

=
n2λ2

8(r − λ2)
if r ≥ 3λ2. (90)

We can now compute mint∈T1 F1(t) by comparing (88) and (89), (90). We obtain:

min
t∈T1

F1(t) = min
{n2

8

λ2

r − λ2
,

n2λ2
2

(λ2 + r)2

}
=

n2λ2
2

(λ2 + r)2
if r ≤ 3λ2, (91)

min
t∈T1

F1(t) =
n2

8

λ2

r − λ2
if r ≥ 3λ2. (92)

Case 2: ` = 2. Assume t ∈ T2, then tr−n/2 ≤ 0 and t ≥ 0. In this case µ(t) = max{n/2−tr, tλ2}.
We now have 0 ≤ n/2− tr ≤ µ(t). Moreover, one can verify that

F2(t) = min
µ≥µ(t)

F (µ) = F (n− 2tr) if µ(t) ≤ n− 2tr, (93)

= F (µ(t)) ≥ F (n− 2tr) if µ(t) ≥ n− 2tr. (94)

Hence, the minimum value of F2(t) for t ∈ T2 is equal to F (n−2tr) = n(n−2tr), which is obtained
when µ(t) ≤ n − 2tr. We now proceed to compute the minimum value taken by F (n − 2tr) for
t ∈ T2 and µ(t) ≤ n− 2tr. For this we distinguish two cases depending on the value of µ(t).

• Either n/2− tr ≥ tλ2, i.e., t ≤ n
2(r+λ2) and thus µ(t) = n/2− tr ≤ n− 2tr. Then we have

min
t∈T2

{
F2(t) : t ≤ n

2(r + λ2)

}
= min

{
n(n− 2tr) : 0 ≤ t ≤ n

2(r + λ2)

}
=

n2λ2

r + λ2
. (95)

• Or n/2 − tr ≤ tλ2, i.e., t ≥ n
2(r+λ2) and thus µ(t) = tλ2. Then µ(t) = tλ2 ≤ n − 2tr is

equivalent to t ≤ n
λ2+2r (≤ n

2r ). Then we have

min
t∈T2

{
F2(t) :

n

2(r + λ2)
≤ t ≤ n

λ2 + 2r

}
= min

{
n(n− 2tr) :

n

2(r + λ2)
≤ t ≤ n

λ2 + 2r

}
(96)

=
n2λ2

λ2 + 2r
. (97)

Comparing the values in (95) and (97) we obtain that

min
t∈T2

F2(t) =
n2λ2

λ2 + 2r
. (98)
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Case 3: ` = 3. Assume t ∈ T3, i.e., t < 0, and thus tr− n/2 < 0 and µ(t) = max{n/2− tr,−tλ2}.
Then F3(t) = minµ≥µ(t) F (µ) (since µ+ tr−n/2 > 0). If −tλ2 ≤ n/2− tr then µ(t) = n/2− tr and
we find that F3(t) = F (n− 2tr). Else, if −tλ2 ≤ n/2− tr then µ(t) = −tλ2 ≤ n− 2tr and we have
again F3(t) = F (n− 2tr). Hence F3(t) = F (n− 2tr) = n(n− 2tr) for all t ∈ T3. Then we have

min
t∈T3

F3(t) = min{n(n− 2tr) : t < 0} = n2. (99)

We can now finally compute the value of ĝ(G) as defined in (87) based on relations (91)-(92), (98)

and (99). Note that n2 ≥ n2λ2
λ2+2r ,

n2λ2
2

(λ2+r)2 ≤ n2λ2
λ2+2r , and n2λ2

λ2+2r ≥
n2

8
λ2
r−λ2

if r ≥ 3λ2. Based on this

we obtain

ĝ(G) =

{
n2λ2

2
(λ2+r)2 if r ≤ 3λ2,
n2λ2

8(r−λ2) if r ≥ 3λ2,

which is the desired result.

D Proof of Proposition 6.7

We give here the proof of Proposition 6.7. For this let P := λI − J + tAG + vDiag(f) + sffT

denote the matrix appearing in program (75). We need to find the smallest λ for which there exist
t, v, s ∈ R such that P � 0. Note that AGe = re, (Diagf)e = f , ffTe = 0, Je = 2ne, AGf = −rf ,
(Diagf)f = e, ffTf = 2nf , and Jf = 0. Hence P leaves the subspaces 〈e, f〉 and 〈e, f〉⊥ invariant.
Let u be an eigenvector of P for eigenvalue τ , and write u = x+ y with x ∈ 〈e, f〉 and y ∈ 〈e, f〉⊥.
Then Px+ Py = τx+ τy, so Px− τx = τy − Py. The left-hand side is contained in 〈e, f〉, while
the right-hand side is contained in 〈e, f〉⊥, so both sides of the equality are 0. So τ is an eigenvalue
corresponding to x (if x 6= 0) and also corresponding to y (if y 6= 0). Hence

P � 0 ⇐⇒

{
xTPx ≥ 0 for all x ∈ 〈e, f〉,
yTPy ≥ 0 for all y ∈ 〈e, f〉⊥.

We now characterize when xTPx ≥ 0 for all x ∈ 〈e, f〉, and when yTPy ≥ 0 for all y ∈ 〈e, f〉⊥.

(i) Let x ∈ 〈e, f〉 and write x = ae+ bf with a, b ∈ R. Then

Px = a(λe+ tre+ vf − 2ne) + b(λf − trf + ve+ 2nsf)

= (a(λ+ tr − 2n) + bv) e+ (av + b(λ− tr + 2ns)) f,

so xTPx = 2na (a(λ+ tr − 2n) + bv) e+ 2nb (av + b(λ− tr + 2ns)) f . Hence

xTPx ≥ 0 ∀x ∈ 〈e, f〉 ⇐⇒ a2(λ+ tr − 2n) + 2abv + b2(λ− tr + 2ns) ≥ 0 ∀a, b ∈ R

⇐⇒

{
v2 ≤ (λ+ tr − 2n)(λ− tr + 2ns),

λ+ tr − 2n ≥ 0.
(100)

Here the first equivalence follows by rearranging terms in xTPx, and the second one by consid-
ering the expression in a and b as a quadratic equation in a and computing the discriminant.

(ii) Assume that y = (c d)T ∈ 〈e, f〉⊥ is an eigenvector of P for eigenvalue τ , where c, d ∈ Rn.
Then, cTe = dTe = 0. Using the block-form of P we obtain

Py =

(
λc+ tMGd+ vc
λd+ tMT

Gc− vd

)
= τ

(
c
d

)
.
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So (τ−λ−v)c = tMGd and (τ−λ+v)d = tMT
Gc. It follows that t2MT

GMGd = (τ−λ−v)tMT
Gc =

(τ − λ− v)(τ − λ+ v)d = ((τ − λ)2− v2)d. Similarly, t2MGM
T
Gc = ((τ − λ)2− v2)c. As c 6= 0

or d 6= 0, we have that (τ−λ)2−v2

t2
is an eigenvalue of MT

GMG (if t 6= 0), which is distinct from
its eigenvalue r2 for eigenvector e, as eTc = eTd = 0. So

(τ − λ)2 − v2 = t2λi(M
T
GMG) (i ≥ 2),

and thus τ = λ±
√
v2 + t2λi(MT

GMG) (i ≥ 2).

We need to ensure τ ≥ 0. Hence we obtain the condition

λ ≥
√
v2 + t2λ2(MT

GMG) =
√
v2 + t2λ2

2.

Note this also holds if t = 0.

Summarizing, we obtain that ϑ̂bal(G) is the smallest λ such that there exist t, s, v ∈ R satisfying
v2 ≤ (λ+ tr − 2n)(λ− tr + 2ns),

λ+ tr − 2n ≥ 0,

λ ≥
√
v2 + t2λ2

2.

Without loss of generality we may set v = 0, since if (λ, t, s, v) is feasible, then also (λ, t, s, v = 0)

is feasible. Hence ϑ̂bal(G) is the minimum λ such that there exist t, s ∈ R satisfying
λ+ tr − 2n ≥ 0,

λ− tr + 2ns ≥ 0,

λ ≥ |t|λ2.

Now we may eliminate the second equation, as we can choose s such that λ − tr + 2ns = 0.
So ϑ̂bal(G) is the minimum λ such that there exists t ∈ R satisfying{

λ+ tr − 2n ≥ 0,

λ ≥ |t|λ2.

This implies λ ≥ 2n−tr and λ ≥ tλ2. Hence λ is above the point of intersection, where 2n−tr = tλ2,
i.e., t = 2n

λ2+r , which implies λ ≥ tλ2 = 2nλ2
λ2+r . Setting t = 2n

λ2+r and λ = λ2t is feasible, so the

optimum λ is 2nλ2
λ2+r , which completes the proof of Proposition 6.7.

Let us point out that it follows from the above proof that one may set v = 0 in the program
(75) defining ϑbal(G); this observation was mentioned just after Proposition 6.7.

43


	1 Introduction
	2 Complexity results
	3 Semidefinite approximations for the parameters g(G) and h(G)
	3.1 Polynomial optimization formulations and bounds
	3.2 Semidefinite formulations for the Lasserre bounds h1(G) and g1(G)
	3.3 Comparison of the Lasserre bounds h1(G) and g1(G)

	4 Eigenvalue bounds for the parameters g(G) and h(G)
	4.1 An eigenvalue-based upper bound hhat(G) for h(G)
	4.2 An eigenvalue-based upper bound ghat(G) for g(G)
	4.3 Links to some other eigenvalue bounds
	4.3.1 Linking the parameter hhat(B(G)) to Hoffman's bound for alpha(G)
	4.3.2 Linking the parameter h1(B0(G)) to Haemers' spectral bound phi(G)
	4.3.3 Linking h1(B0(G)) to Haemers' spectral bounds phi'(G) and phiH(G)


	5 Examples
	5.1 The perfect matching
	5.2 The complete bipartite graph Kn,n minus a perfect matching
	5.3 The cycle graph Cn
	5.4 The hypercube graph Qr

	6 Lasserre bounds for the balanced parameters
	6.1 The Lasserre bounds of order r=1 for the balanced parameters
	6.2 Symmetric versions of the parameters lasbal1(G), thetabal(G) and gbal1(G)

	7 Concluding remarks
	A Application to product-free sets in finite groups
	B Proof of Lemma 4.3
	C Proof of Proposition 4.5
	D Proof of Proposition 6.7

