
https://doi.org/10.1007/s00145-023-09475-1
J Cryptol (2023) 36:35

Research Article

A Theoretical Framework for the Analysis of Physical
Unclonable Function Interfaces and Its Relation to the

Random Oracle Model∗

Marten van Dijk
CWI, Amsterdam, The Netherlands

Department of Computer Science, Vrije Universiteit van Amsterdam, Amsterdam, The Netherlands
Electrical and Computer Engineering Department, University of Connecticut, Storrs, CT, USA

marten.van.dijk@cwi.nl

Chenglu Jin
CWI, Amsterdam, The Netherlands

chenglu.jin@cwi.nl

Communicated by Svetla Nikova.

Received 22 November 2022 / Revised 30 June 2023 / Accepted 30 June 2023

Abstract. Analysis of advanced physical unclonable function (PUF) applications and
protocols relies on assuming that a PUF behaves like a random oracle; that is, upon
receiving a challenge, a uniform random response with replacement is selected, mea-
surement noise is added, and the resulting response is returned. In order to justify such
an assumption, we need to rely on digital interface computation that to some extent re-
mains confidential—otherwise, information about PUF challenge–response pairs leak
with which the adversary can train a prediction model for the PUF. We introduce a the-
oretical framework that allows the adversary to have a prediction model (with a typical
accuracy of 75% for predicting response bits for state-of-the-art silicon PUF designs).
We do not require any confidential digital computing or digital secrets, while we can
still prove rigorous statements about the bit security of a system that interfaces with the
PUF. In particular, we prove the bit security of a PUF-based random oracle construction;
this merges the PUF framework with fuzzy extractors.

Keywords. Physical unclonable function (PUF), Fuzzy extractor, Random oracle,
Trusted computing base (TCB), PUF interfaces.

1. Introduction

A physical unclonable function (PUF) is a device that takes a challenge as input and mea-
sures a corresponding response bit as output [1,2]. Responses depend on manufacturing
variations in the PUF that are practically unclonable with currently existing technology.

∗This paper was reviewed by Frederik Armknecht.

© The Author(s) 2023

0123456789().: V,-vol

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-023-09475-1&domain=pdf

 35 Page 2 of 64 M. van Dijk, C. Jin

Nevertheless, a PUF’s behavior may be modeled by training a prediction model based on
a set of challenge–response pairs (CRPs). For this reason, a PUF design can be broken
if an attacker achieves a significant accuracy of a trained prediction model.1

Since physical unclonable functions have been introduced as a security primitive [1,2],
a variety of applications have been proposed [5–7], including many advanced crypto-
graphic protocols, e.g., key agreement, oblivious transfer, and bit commitment [8–10].
The security analysis of these advanced applications and protocols2 relies on assuming
that a PUF behaves like a random oracle; upon receiving a challenge, a uniform random
response with replacement is selected, measurement noise is added, and the resulting
response is returned. This assumption turns out to be too strong because (1) in practical
implementations, the PUF returns biased response bits, and (2) classical ML and ad-
vanced ML attacks [11–17] demonstrate that a prediction model for response bits with
accuracy typically up to 75% can be trained and this defeats the random oracle assump-
tion. For example, FPGA implementations of the interpose PUF in [18] showed that the
bias of individual Arbiter PUFs ranges from 50.2% to 61.6%. The highest prediction
accuracy on interpose PUF entities under the best-known attacks by then was around
75% given 200,000 training challenge–response pairs. Although a follow-up work [16]
proposed an attack that can improve the prediction accuracy on iPUF by means of an
iterative approach, the prediction accuracy of the first iteration is still not higher than
75%.

To counter the response bit bias problem, the literature introduces a PUF interface
that implements a fuzzy extractor (FE) [19–23]. Upon sufficient min-entropy in response
vectors, random (unbiased) bit strings can be extracted using a FE. To counter the accurate
training of a prediction model by the attacker, we eliminate access to challenge–response
pairs by the attacker. In other words, we have a trusted computing base (TCB) that
implements the PUF together with a FE interface isolated from the attacker—it assumes
that the interface computes in a confidential digital computing environment (confidential
TCB).

The above solution is satisfactory if we use a weak PUF that only has a few CRPs
for masking/obfuscating a secret key based on a single response vector. (We want to
re-measure responses whenever we want access to the de-obfuscated key—for this, we
already need a confidential TCB.) The FE generates and publishes so-called helper in-
formation p, which is needed to extract a random bit string from the measured response
vector with which the secret is masked. This helper information does leak some infor-
mation about the response vector—after all, we use FE because the response vector does
not have full min-entropy (i.e., it is not uniformly distributed over bit vectors). If we
only publish one or a couple of p, then it is realistic to assume that this does not help
the adversary gain sufficient information about challenge–response pairs for training an
accurate prediction model.

1Public PUFs [3] and SIMPL systems [4] which base their security on the time differences between
physical execution and model simulation is out of the scope of the paper and is not captured by our definitional
framework and analysis. They do not provide similar security properties as conventional PUFs, so they should
be treated as different types of security primitives.

2PUF identification and authentication only rely on hypothesis testing based on comparing collected CRPs
with re-measured CRPs.

A Theoretical Framework for the Analysis Page 3 of 64 35

On the other hand, if, for other applications, a strong PUF is used with an ‘expo-
nentially large’ challenge space, then many helper data p is published, and in theory,
this can help the adversary in gathering statistical information about CRPs and train a
prediction model (even though, in practice, we have no idea how to accomplish this).
The strong PUF with FE interface still needs the confidential TCB in order to make it
impossible for the adversary to observe processed CRPs directly. (Otherwise, just based
on these observed CRPs, a prediction model can be trained.)

We notice that the computational FE based on the LPN problem in [24,25] also
publishes helper data, but here it can be proven that this data does not reveal underlying
information about CRPs.3 (In fact, the computational FE is used to implement a random
oracle based on a weak PUF with just one response vector.) But also here, the LPN
interface is in a confidential TCB. (Its digital computation is not allowed to be observed
by the adversary.)

This paper introduces a new framework for rigorously reasoning about the security of
PUF interfaces. We get rid of the confidential TCB and allow the adversary access to a
training set of challenge–response pairs. Only the way how these pairs can be adaptively
selected is restricted. We take a pre-challenge as input to a cryptographic hash function
to generate a challenge for the PUF4; this is the only way the PUF may get accessed by
both legitimate users and adversaries, and no confidential digital computing is required.
We construct and analyze the bit security of a PUF-based random oracle as a main
example/demonstration of our theoretical framework.

Our main motivation for getting rid of the confidential TCB of a PUF interface is, first
of all, of a more philosophical nature: In a more general context, we have an overarching
system that queries a PUF and wants to base its security guarantees on (random) bit
strings extracted from the PUF’s responses. Some form of confidential computing of
the system’s functionality is required as its security guarantees will generally depend
on keeping the PUF derived bit strings confidential. Since calling a bit-string a ‘secret
key’ does not actually make it secret [26], such a system generally implements key
renewal strategies for which the PUF is queried again. Here, the system relies on using
the PUF with an interface to again generate fresh secret bit strings even though previous
digital secrets have been leaked to the adversary. If the PUF interface itself relies on
confidential digital computation in order to be able to keep on generating fresh secret
bit strings, then the adversary will recognize the PUF interface as a weak link and an
attractive point of attack. Rather than defending the confidentiality of computing of the
PUF interface by means of a hardware design that isolates the PUF with the interface
from the adversary so that no point of attack exists, is it possible to minimize the TCB
and not require any form of confidential digital computing in the PUF interface and as
a consequence not require any secret digital keys or digital information that needs to be
kept secret from the adversary? This question of minimizing the TCB by instead relying

3Also, the LPN construction does not suffer a min-entropy loss due to the leftover hash lemma as in FE.
4We assume the hash function interface cannot be circumvented by the adversaries, and the hash function

is correctly computed on pre-challenges. Note that this assumption is much weaker than the assumption of
having any confidential TCB, as any information in the hash function interface is public. Also, it is not very hard
to guarantee the integrity of the hash function interface in practice; we just need to implement it in hardware
circuitry as long as the adversaries do not tamper with the circuitry or inject faults in the computation, which
is usually costly and requires extensive physical access.

 35 Page 4 of 64 M. van Dijk, C. Jin

on certain computational hardness assumptions is at the heart of security research. This
paper shows that this can be done (at least in theory) for a PUF interface that corrects
measurement errors and extracts random bit strings. In order to accomplish this, we need
to build a new theoretical framework (language) for capturing the exact computational
assumptions that replace the assumption of a confidential TCB.

In future work, we will show how verifiable computing can be based on such a PUF
interface (a first blueprint toward this goal is given in [27]): Here, a client outsources
computing to a single compute node. (We do not consider outsourcing computing over
multiple compute nodes in order to implement a Byzantine fault-tolerant scheme which
allows a third of the used compute nodes to be adversarial.) Suppose that the compute
node can be trusted to execute the compute job inside an environment that is protected
from having an adversary tamper with its computing flow. That is, the adversary cannot
violate the specified or expected behavior of the compute job. Even if the final computed
result is correct, it needs to be communicated back to the client. This means that the
compute node must engage in a remote attestation protocol with the client and be able
to sign the computed result using a secret digital key. In [28], a one-time session key-
based signature scheme (coined OTS-SKE) is presented, which in combination with
our proposed PUF-based random oracle (used for masking all session keys) can offer
remote attestation with the following property: Even of all but one session signing key is
leaked, then a signature for the session of which the session key is not leaked cannot be
impersonated, and other new signatures for older sessions can also not be impersonated.
(The latter property is tricky and requires the features of the OTS-SKE scheme.) Based on
the theory presented in this paper, we can show that to accomplish this security guarantee,
no confidential TCB is needed for the PUF interface or signing. (Signing uses a session
key extracted from memory whose content is masked by our PUF-based random oracle.)
This shows that remote attestation, and by extension, verifiable computing, does not need
to rely on confidential digital computing in that previous session keys and other digital
information leaked to the adversary cannot be used to impersonate a signature in the
current session or impersonate new signatures for older (observed) sessions. This will
show for the first time how PUFs can be used to bootstrap such verifiable computation
without confidential TCB.

The main problem that we solve is how to connect security definitions for PUFs to
(computational) hardness problems on which PUF interfaces (such as FE) are based.
Our framework aims at strong PUFs with an ‘exponentially large’ challenge space.

• We define a PUF device in Sect. 3 followed by an extended PUF interface GetRe-
sponse that first applies a cryptographic hash to a pre-challenge. We introduce the
concept of (canonical) system-induced CRP distribution, where a system interfaces
with the PUF and only uses CRPs of its ‘liking,’ i.e., have a ‘nice distribution.’

• We define reliability and bias with respect to system-induced CRP distributions
in Sect. 4. Conditioned on previously collected CRPs, the bias of a new CRP may
change due to correlation. We characterize the amount of change by εcorbias and
show how εcorbias gets amplified due to post-processing of CRPs (Lemma 6).

• In Sect. 5, we show an interface that improves reliability by using repeated measure-
ments, and we analyze εcorbias of the resulting system-induced CRP distribution.
Similarly, in Sect. 6, we show an interface based on the von Neumann extractor

A Theoretical Framework for the Analysis Page 5 of 64 35

for reducing bias [29]. We show how resulting response bits behave as unbiased
uniformly drawn bits in Lemma 11 and, as a consequence, explain a condition in
(5) which allows us to replace the von Neumann system-induced CRP distribution
by a ‘uniform’ one in a future reduction proof.

• We define PUF security with correlated CRPs in Sect. 7 and define the adversar-
ial AU -model, which does not require a confidential TCB (i.e., we do not require
any confidential digital computing or digital secrets), and only requires the adver-
sary to access the PUF through GetResponse. We prove the ‘Ber transformation
lemma’ (Lemma 14) which states that a (prediction) error-reducing oracle can be
constructed, leading to error bits that are statistically independent and Bernoulli
distributed. The bit error rate is essentially equal to one minus the accuracy of the
best prediction model the adversary can construct (based on limited resources, the
number of collected CRPs, and run time).

• Section 8 defines system security where the system interface has access to the PUF.
We define a separation game and argue this is, at most, an exponential factor more
difficult than the original system security game. We provide a number of definitions
of properties of the underlying hardness problem. These definitions lead to the ‘PUF
separation theorem’ in the AU -model (Theorem 22) where PUF assumptions and
mathematical hardness assumptions are separated, still leading to a bit security of
the overall system. We discuss a range of weaker adversarial models Ax ⊆ AU in
Sect. 9.

• In order to merge the concept of fuzzy extractors with our framework, we intro-
duce ‘suitable’ codes and discuss and prove properties about their related residual
min-entropy in Sect. 10. This is used in Sect. 11 to construct a PUF-based random
oracle (PRO). We characterize failure probabilities and analyze the security using
Theorem 22. In order to prove some of the needed properties of the underlying
hardness problem, we show how the von Neumann system-induced distribution
can be replaced by a uniform one, how the Ber transformation lemma can be used
to construct a problem instance without needing access to the PUF, and how the
hardness of the resulting problem is related to residual min-entropy (as in secure
sketches but now related to Bernoulli noise). This results in the final ‘PUF-based
random oracle theorem’ in the AU -model (Theorem 28).

The final PRO primitive justifies how a PUF can be used to simulate a random oracle,
as explained at the start of the introduction, even in the presence of an adversary who is
able to achieve a typical accuracy of a prediction model of 75%, and even if no confiden-
tial TCB (i.e., no confidential digital computing and no digital secrets) is assumed. The
latter allows PRO to execute in the presence of an adversary who can observe all digital
computation and digital secrets. PRO only requires PUF access control through GetRe-
sponse. Our results can be easily plugged into the analysis of PUF-based protocols, like
key exchange [8], oblivious transfer [8,9], bit commitment [30], and multi-party com-
putation [31], where PUFs are all assumed to be random oracles. The presented work
closes a major gap in the current PUF literature (Table 1).

 35 Page 6 of 64 M. van Dijk, C. Jin

Table 1. Index of all definitions, lemmas, and theorems.

PUF—Intrinsic properties
Definition 1 CRPs and hardware unclonability of PUFs
Definition 2 System-induced CRP distributions
Definition 3 PUF reliability
Definition 4 PUF bias
Definition 5 PUF correlation (εcorbias), which can be assumed to be exponentially

small for Arbiter-based PUF designs
Lemmas 6, 7, 8 Effect of composition of system-induced CRP distributions on correlation
Lemmas 9, 10 Characterization of bias and the improved reliability as a result of majority

voting
Lemma 11 Characterization of the reduced bias as a result of applying the von

Neumann trick
Figure 1 Diagram relating all concepts
PUF—security
Definition 12 PUF security game with correlations inspired by [32]
Definition 13 Adversarial model
Lemma 14, 15 Ber transformation lemma
System security
Definition 16 System security game where the system interfaces with and queries a PUF
Definition 17 Separation game where the adversary first predicts responses and next

solves the system’s instance of a computational hard problem
Definitions 18, 19, 20, 21 Error-based reduction; Bit security; Error-based equivalent; Effect of an

error-reducing oracle
Theorem 22 PUF separation theorem
Figure 2 Diagram explaining the flow of the security reduction leading to the PUF

separation theorem
PUF-based Random Oracle (PRO)
Definitions 23, 24 Secure sketch; Suitable codes
Lemma 25, 26 Upper bound on the residual min-entropy
Definition 27 PRO correctness and bit security
Theorem 28, Lemma 29 Construction

2. Related Work

Existing PUF definitional frameworks. Since the introduction of PUFs, many attempts
have been made to formally define PUFs. Most of the existing PUF definitional frame-
works oversimplified the reality and omitted the fact that real PUFs produce errors in their
responses due to environmental/measurement noises [32–34]. Rührmair et al. [33] first
partitioned PUFs into weak PUFs and strong PUFs based on the sizes of their challenge
spaces, and then, they defined strong PUFs as physical random functions that produce
perfectly reliable outcomes and cannot be physically or mathematically cloned within a
certain amount of time given to the adversary. Jin et al. [32,34] extended the framework
to include stateful erasable PUFs and stateful programmable access-controlled PUFs,
where the stateful PUFs can keep an internal state and alter CRPs based on its internal
state and certain policies. However, in the above definitions, PUFs are always assumed
to be noise-free with help from some error-correcting mechanisms. Our framework takes

A Theoretical Framework for the Analysis Page 7 of 64 35

noises into account and precisely discusses how the noises/biases will affect the security
of the PUFs.

Noisy PUF behaviors are modeled in [8,35,36]. Brzuska et al. defined PUFs as a noisy
random function whose error rate for any given challenge–response pair is within a noise
bound [8]. However, the definition did not capture the bias presented in PUF responses.
Armknecht et al. briefly discussed a PUF definition in [35] and further extended it
in [36]. The definitions in [35] and [36] captured both physical properties and algorithmic
properties of PUFs, including the reliability of PUFs. However, the definitions also
oversimplified the reality and assumed no bias or correlations in PUF responses.

Fuzzy extractors. Fuzzy extractors are used to extract a reliable and uniformly dis-
tributed output from a noisy and biased output, e.g., biometrics [19] and PUF re-
sponses [20,21,23]. All existing fuzzy extractor studies focus on improving their ca-
pability of error correction and the min-entropy left in the final output of the fuzzy
extractors, assuming the distribution/bias of the PUF responses are known to the adver-
sary and that there is no or only spatial correlation between responses. These assumptions
effectively constrained the fuzzy extractor theory to be applied to only weak PUFs rigor-
ously. In our work, we consider a much stronger adversary who has a prediction model
with a meaningful prediction accuracy, e.g., 75% accuracy of a one-bit PUF output. This
is a realistic issue for strong PUFs under modeling attacks; even though some strong
PUFs are claimed to be secure against certain attacks, the adversary can still build a
prediction model of the PUF with a meaningful accuracy better than random guessing
using the concerned attacks [11,18]. Our work effectively closes the gap and provides a
solid foundation for using fuzzy extractors on strong PUFs securely.

Existence of strong PUFs. In this work, we are mainly interested in conventional strong
PUFs whose challenge space is exponentially large with respect to the physical size of
the PUFs [33]. However, if one wants to use a weak PUF in our interface, one needs
to assume a confidential computing environment, where no leakage is allowed directly
from the weak PUF to the adversary. This security assumption is not ideal when we want
to eliminate (or minimize) the confidential computing environment for stronger security.

Given the recent development in the lightweight strong PUF area, the existence of
strong PUFs may be deemed unclear. For example, XOR Arbiter PUFs [6] have been
considered as a standard lightweight strong PUF design, until they were broken by
reliability-based attacks [15]. The introduction of interpose PUF (iPUF) showed new
hope for realizing a practical lightweight strong PUF that is secure against both classical
modeling attacks and reliability-based attacks [18]. However, the security of iPUFs has
been proven to be weaker than the authors originally thought in novel attacks [16,17,37].
Although the existence of a secure lightweight strong PUF design is still unclear, our
framework is still needed as soon as (just like in designs for symmetric key encryption) a
strong PUF design survives for a significant number of years. Indeed, strong PUF design
is still an active research area and many new designs show great potential in defending
against known attacks [38].

We notice that Sect. 9 describes a taxonomy of various adversarial models. One set-
ting is about a system executing a series of ‘sessions’ where the adversary observes all
but one session and where the security guarantee is about the unobserved session. This
fits the remote attestation protocol example explained in the introduction where a re-

 35 Page 8 of 64 M. van Dijk, C. Jin

mote adversary can obtain a footprint observing digital computation and digitally stored
values. Proper implementation will not allow the adversary to enforce repeated measure-
ments and therefore the adversary cannot obtain reliability information. This adversarial
model, denoted by AN R in Sect. 9, restricts the adversary to ‘classical’ CRP-based ML
attacks rather than ‘advanced’ challenge–reliability pair-based ML attacks. This allows
us to still be able to use the XOR Arbiter PUF design in the remote attestation example.
However, as discussed in Sect. 9, the amount of training data dictates the effectiveness
of the used ML attack and in the remote attestation setting this forces the use of a XOR
Arbiter PUF with a number of Arbiter PUFs that degrades reliability too much. It is
clear that different adversarial models allow different types of strong PUF designs, and
there is the ongoing research question of finding strong PUF designs with better security
reliability trade-offs.

3. Physical Unclonable Functions

In this section, we formally define a PUF and introduce an extended PUF functionality
(which is a PUF with a small interface). In the next sections, we define reliability, bias,
and security.

Definition 1. (Physical Unclonable Functions [32]) A PUF P is a physical system
that can be stimulated with so-called challenges ci from a challenge set CP = {0, 1}λ,
upon which it reacts by producing corresponding responses ri from a response set
RP ⊆ {0, 1}m . Each response ri shall depend on the applied challenge, but also on
manufacturing variations in P that are practically unclonable with currently existing
technology. The tuples (ci , ri) are called the challenge–response pairs (CRPs) of P . We
often refer to λ as the security parameter of the PUF. �

This definition explicitly mentions that a hardware copy or clone of a PUF P can-
not be manufactured due to uncontrollable manufacturing variations which provide the
randomness from which responses are extracted. This leaves in question whether, rather
than hardware cloning P , a software simulator, which sufficiently accurately predicts
responses, can be constructed and learned. Here, we assume that the adversary has ac-
cess to P and can use P as an oracle to query a list of challenge–response pairs which
are used to train a simulator in the form of a machine learning model which predicts
responses given input challenges.

The querying ofP can be adaptive and this can possibly be exploited by the adversary.
For example, comparing responses of neighboring challenges that have a small Hamming
distance may reveal detailed information about small subsets of manufacturing variations
in the PUF design. In order to eliminate this possibility in practice, we process challenges
by applying a one-way function before giving it as input to the PUF circuitry where the
manufacturing variations are used to extract response bits. This leads to the extended
PUF discussed next.

Extended PUF. We consider an extended PUF design, called GetResponse in Algo-
rithm 1, which first applies a cryptographic hash function (which implies one-wayness,

A Theoretical Framework for the Analysis Page 9 of 64 35

see Appendix A) to an input cpre which we call a pre-challenge. The output of the hash
function serves as the input challenge c to a PUF P . The extended PUF functionality
returns P’s response. The input–output pair (cpre, r) of GetResponse can be used to
compute a CRP

(c = Hash(cpre), r).

The extended PUF design describes a small PUF interface that cannot be circumvented
by the adversary; we assume the interface is immutable with respect to the adversary;
hence, the adversary cannot freely choose the processed challenges that are input to
P . It can observe all intermediate digital computations of the PUF interface and see
(or compute itself) the processed challenges that lead to CRPs for training a machine
learning model.

The adversary cannot exert ‘fine-grained’ control over the output of the hash function.
Therefore, from a practical perspective, the adversary cannot adaptively choose chal-
lenges whose hashes are designed to be equal or even close in Hamming distance. This
property is not formally implied by requiring the hash to be collision-resistant, but it is
used in related literature like Controlled PUFs [39]. We will formalize the security of
GetResponse (a combination of Hash and PUF P) as a whole in later sections—and
argue that from a practical perspective, the best-known methods for predicting a silicon
PUF’s behavior is by using machine learning techniques based on CRPs that were gen-
erated without searching for pre-challenges that lead to hash evaluations that are close5

in Hamming distance, but just use randomly6 chosen pre-challenges that lead to random
challenges.

Algorithm 1 Extended PUF interface
1: procedure GetResponse(cpre)
2: c = Hash(cpre)

3: r ← P(c)
4: return r
5: end procedure

CRP distributions from the legitimate user/system perspective. We will analyze the
security of a system that calls PUFP through GetResponse. We will assume that such a
system will always callGetResponse for either (1) a new true random pre-challenge cpre
or (2) a previously selected pre-challenge cpre. (This yields multiple measurements of the
same response bit and, as we will explain, can be used to enhance reliability.) Selecting
new pre-challenges according to a uniform distribution turns out to be important in our

5We can enforce a large Hamming distance between challenges if we encode Hash(cpre) into a code word
c by using a binary error-correcting code with large enough minimum Hamming distance. Code word c serves
as the challenge for PUF P .

6We can enforce this strategy by simply modeling Hash as a hash function in the random oracle model.
But we wish to avoid such a strong assumption since it is generally not true in theory (even though it is usually
considered true in practice).

 35 Page 10 of 64 M. van Dijk, C. Jin

security analysis (for proving a reduction step). For this reason we define the canonical
distribution of GetResponse that corresponds to a system calling GetResponse for
new true random pre-challenges:

Definition 2. (System-induced canonical CRP distribution) By Y∗ we define the dis-
tribution of CRPs generated by GetResponse when called by a system S for new
pre-challenges:

Pr((c, r) ← Y∗) = Pr(c ← Y)Pr(r ← P(c) | c).

We call Y∗ the system-induced canonical CRP distribution and Y the system-induced
canonical challenge distribution. �

We notice that Y describes the distribution of challenges as a result of applying
Hash to pre-challenges that are generated by system S according to some probabilistic
algorithm. In practice we consider systems S that either call GetResponse for new
pre-challenges cpre that are uniform random or repeat GetResponse for a previously
selected pre-challenge. In this context Y is the distribution of the output of Hash over
uniform distributed input.

In practice, a system S does not want to generate a true random pre-challenge for
every new GetResponse call. Instead, pre-challenges will be generated in batches using
a formula of the kind

cpre,u = Hash(seed‖u), (1)

where seed is a true random bit string and u is simply an nu-bit index representing some
integer in {0, . . . , 2nu − 1}. Since different batches of pre-challenges use their own truly
random seed, these batches are statistically independent. Within a batch, since Hash is
collision-resistant and therefore one-way, we may assume in practice that the different
cpre,u are ‘independent’ and ‘random.’ The set of corresponding challenges generated
by GetResponse,

{Hash(cpre,u)}2nu −1
u=0 ,

defines some ‘distribution’ Y .
We notice that from a cryptographic perspective it is possible to provide a solid

provable pre-challenge generation scheme that leads to uniform Y . A cryptographically
secure solution is to use a pseudorandom generator (PRG) based on, e.g., the subset iterate
construction using a hash from a hash function family that has cryptographic hashes
[40]. Based on a true random bit string seed, PRG(seed) can be efficiently computed
and the resulting bit sequence can be split into a sequence of 2nu pre-challenges. The
resulting distribution of challenges is computationally indistinguishable from a uniform
distribution over {0, 1}λ with respect to some security parameter and related advantage.
By choosing appropriate parameters, the resulting distribution over challenges is ε-close
in statistical distance to the uniform distribution for some ε exponentially small in the
security parameter. By using the method in [41] we can replace the resulting distribution

A Theoretical Framework for the Analysis Page 11 of 64 35

over challenges by the uniform distribution in our security analysis of the system’s
security guarantee.7

We do not detail the PRG construction here but simply assume that in practice the
Hash-based solution uses a Hash chosen according to international accepted standard
already yields a system-induced canonical challenge distribution Y at least somewhat
close (will be detailed later) to a uniform distribution over {0, 1}λ (in the context of,
e.g., the statistical distance). For ease readability, the reader may interpret next lemmas
and theory by simply assuming that Y is the uniform distribution over the challenge
space {0, 1}λ, i.e., Pr(c ← Y) = 1/2λ for CP = {0, 1}λ. Nevertheless, we stress that
Definition 2 is sufficiently general to capture arbitrary Y . We will see that the security
analysis of our main theorems will not explicitly depend on Y and hold for a wide range
of Y—not just the uniform distribution. In Definition 5 we treat the intrinsic correlation
among CRPs generated by GetResponse as a combination of Hash and PUF P for
system-induced challenge distributions.

Our framework in the remainder of the paper is formulated for general system-induced
canonical challenge distributions Y . We notice that a system S may use the system-
induced canonical distribution Y∗ over CRPs, to extract another distribution over CRPs.
In the setting above, corresponding to each batch, system S may decide to only use a
subset of challenges generated by GetResponse,

{Hash(cpre,u)}u∈U ,

for some U ⊆ {0, . . . , 2nu − 1}. For example, by using repeated measurements, only
‘reliable’ CRPs corresponding to the challenges indexed by U are selected. This will
correspond to another (non-canonical) system-induced distribution over CRPs since
r ← P(c) for reliable challenges c is less vulnerable to measurement noise, hence, most
of the time the same response r is output by P(c). For this reason, the next definitions
will be for arbitrary CRP distributionsY∗ and we always say system-induced distribution
to indicate that in our context the definitions are from the system’s perspective, i.e., from
how the system uses GetResponse (and not how the adversary uses GetResponse to
find an accurate prediction model for PUF P).

Intrinsic PUF properties. With respect to system-induced probability distributions, we
define in Sect. 4 intrinsic PUF properties: reliability, bias, and correlation as depicted in
Fig. 1. In Sect. 5, we analyze how majority voting can improve reliability, that is, majority
voting creates a system-induced CRP distribution Y∗ which corresponds to a higher
reliability EY∗ [pc]. In Sect. 6, we analyze how by adding the von Neumann trick we
reduce bias, that is, the von Neumann trick creates a system-induced CRP distributionY∗
which corresponds to a bias qY∗

r that is closer to the uniform distribution over r ∈ RP .
The reason for the resulting distribution to not be exactly the same as the uniform
distribution is because of correlation among CRP pairs produced by GetResponse. In
Arbiter PUF-based designs, the probability that the responses of such CRPs correlate
depends on whether the corresponding challenges are close in Hamming distance for

7Notice that the PRG-based solution is more computational intensive compared to the simpler Hash-
based solution since reconstructing Hash(cpre,u) needs reconstruction of the whole PRG sequence up to and
including cpre,u .

 35 Page 12 of 64 M. van Dijk, C. Jin

Fig. 1. Intrinsic PUF properties.

the system-induced CRP distribution. Since we use distributions that choose random
pre-challenges, we will argue that the probability of having a close Hamming distance
is exponentially small in λ. We will use this to show that the bias gets statistically close
to uniform. We can prove that the distribution of vectors of response bits are close to
uniform in the sense that εcorbias is exponentially small in κ if λ = �(κ). In our security
proof for the PUF-based random oracle construction we can use this to replace the
actual distribution of vectors of response bits (that may not exactly come from a uniform
distribution) by the uniform distribution. This will allow us to properly complete the
security proof and show κ-bit security of the PRO construction.

4. Reliability and Bias

Reliability. The GetResponse interface does not fully eliminate an adaptive attack.
Even though we argued that the adversary cannot adaptively choose distinct challenges
whose hashes are designed to fit a priori defined properties, the adversary can still repeat
the same challenge. Since PUF P is a physical device, it suffers from measurement
noise (due to temperature and voltage variations, and aging). This means that repeating
the same input challenge to P (the most basic form of an adaptive attack) can result in
different response bits. This allows an adversary to measure the ‘reliability’ according
to the next definition and construct challenge–reliability pairs rather than challenge–
response pairs. Since the reliability of a response bit teaches more information compared
to a single sample of a response bit, this can lead to more advanced and more efficient
machine learning of a PUF simulator. So, reliability information helps the adversary.

Definition 3. (PUF Reliability) Due to measurement noise, the responses to the same
challenge may not always be the same. We define the failure probability pc of PUF P
with respect to a challenge c ∈ CP as

pc = Pr(r �= r ′, r ← P(c), r ′ ← P(c)),

A Theoretical Framework for the Analysis Page 13 of 64 35

where r, r ′ ∈ RP and the probability is over measurement noise.
From the legitimate user/system perspective, we define the reliability ofP with respect

to c as 1 − pc. Let Y be a system-induced challenge distribution. The overall reliability
of P with respect to Y is defined as 1 − δ with δ = EY [pc] where the expectation is
over c ← Y . �

In Arbiter PUF [2] like designs such as the iPUF [18] or XOR Arbiter PUF [6], two
stimuli race against each other following complementary paths indicated by a challenge
c. Which stimulus arrives first determines the response bit r ∈ {0, 1}. The difference in
arrival times of the stimuli is modeled as a difference in aggregated delays that charac-
terize each of the two paths. Without measurement noise, this is a deterministic function.
With measurement noise, the arrival times may vary, and as a result, the response bit
flips. Let pc be the probability that the response bit flips due to measurement noise, given
a selected challenge c. Different challenges indicate different complementary paths over
which stimuli race against each other. And for this reason, the pc are generally different
for different c. If we assume that challenge c is selected uniformly from the challenge
space, denoted by {0, 1}λ, then this gives rise to a distribution of pc with respect to the
uniform distribution of c over the challenge space {0, 1}λ. So, if r is a first measurement,
r ′ a second measurement, and e = r + r ′ (XOR operation) represents the error between
the two, then the probability r �= r ′ is equal to

δ = Pr[e = 1] = 1

2λ

∑

c∈{0,1}λ
pc = EY [pc], (2)

where the probability is over uniformly selected c, which defines distribution Y (in this
example). We denote this probability by δ and assume δ ≤ 1/2. In practice, we have
δ ≤ 10%. (In general, temperature variations, voltage variations, and aging keep δ below
10% [42].)
Bias. In practice, PUF produces biased responses, due to systematic design (architec-
tural) biases [43,44] or manufactured biases [45]. This leads to system-induced distri-
butions over CRPs that experience bias. The next definition formalizes this concept.

Definition 4. (PUF Bias) Let Y∗ be a system-induced distribution over challenge–
response pairs CP × RP defined as a ppt algorithm with oracle access to PUF P . We
may project Y∗ to a distribution Y over the challenge space CP by defining

Pr(c ← Y) =
∑

r∈RP

Pr((c, r) ← Y∗).

We define bias qY∗
r of PUF P with respect to a response r ∈ RP as

qY∗
r =

∑

c∈CP

Pr((c, r) ← Y∗),

where the probability is over measurement noise and c ← Y . We may also introduce
the knowledge of side information in the form of other known CRPs that affects the bias

 35 Page 14 of 64 M. van Dijk, C. Jin

(because it is correlated with Y and Y∗):

qY∗
r (side) =

∑

c∈CP

Pr((c, r) ← Y∗ | side).

The bias of P with respect to Y and side information side is defined as

qY (side) = max
r∈RP

qY
r (side).

By qY , we denote the bias for empty side information side. �

From a legitimate user/system’s perspective, we want high overall reliability and a bias
close to 1/|RP | such that responses (corresponding to c ← Y) used by the system have
the most information content. Notice that if the bias is close to 1, then the PUF always
generates the same response regardless of the input challenge. Hence, the PUF becomes
predictable. In order to use a PUF for the purpose of identification, authentication, key
masking, etc., it needs to be unpredictable, that is, a bias sufficiently close to 1/|RP |.
Correlation. In order to model correlation among CRPs, we need a definition that takes a
distribution over multiple challenges into account and considers the correlation between
their responses. As an example in Sect. 5, this allows us to reason about how the bias is
affected if one uses only ‘reliable’ CRPs where reliable CRPs are extracted by a (simple)
interface with access to GetResponse.

Definition 5. (PUF Correlation) Let ϒP be a set of system-induced distributions over
challenge–response pairs. Let λ be the security parameter of PUF P , that is, CP =
{0, 1}λ. Suppose that there exists an εcorbias ≥ 0 such that for all d ≥ 1 with d =
poly(λ), for all distributions Y∗

(j) ∈ ϒP , 0 ≤ j ≤ d − 1, over challenge–response pairs
CP × RP , for all h ∈ {0, . . . , d − 1},

∣∣∣∣q
Y∗

(h)
r

(
{(c j , r j) ← Y∗

(j)}d−1
j=0,�=h

)
− q

Y∗
(h)

r

∣∣∣∣ ≤ εcorbias · q
Y∗

(h)
r ,

where {(c j , r j) ← Y∗
(j)}d−1

j=0,�=h reflects knowledge of explicit CRP values drawn from
the other distributions Y∗

(j), j �= h. Then we say that PUF P has correlation bias at most

εcorbias over the set of distributions ϒP . �

In this definition, we talk about using the PUF from a legitimate user’s perspective.
Here, a system may want to query the PUF multiple (d) times and want to use the out-
putted response to, e.g., extract some keys. It is important to know whether the outputted
response bits are correlated or whether they can be assumed more or less statistically
independent. The latter is often assumed even if, e.g., only ‘reliable challenge–response
pairs’ are used by the system (corresponding to a specific distribution Y∗).

The definition given above does not yet model security; that is, there is no adversarial
algorithm trying to use ‘intelligence’ to predict responses. This will be discussed in
Sect. 7. Here, we model the amount of correlation among CRPs due to the intrinsic

A Theoretical Framework for the Analysis Page 15 of 64 35

properties of the PUF itself. Consider the case where two CRPs are independently chosen
according to the canonical system-inducedY∗, that is, (c0, r0) ← Y∗ and (c1, r1) ← Y∗
where Y is the distribution of the output of Hash over uniform pre-challenges. It is well
known that Arbiter PUF-based designs produce response bits that can be considered
statistically independent for challenges that have sufficiently large Hamming distance
between one another. That is, if c0 and c1 happen to be close in Hamming distance, then
values r0 and r1 are correlated. If the Hamming distance between c0 and c1 is large, then
r0 and r1 behave as statistically independent variables. Challenges c0 ← Y and c1 ← Y
are chosen close to uniform from CP = {0, 1}λ (see our previous discussion) and here
we make this more precise: For large λ, a perfect uniform distribution generally leads
to challenges c0 and c1 that have large Hamming distance and only with probability
exponentially small in λ the challenges are close enough in Hamming distance to lead to
observable correlation among their responses r0 and r1. Here, we assume that system-
induced canonical challenge distribution Y is close enough to the uniform distribution
in that it also has the property of an exponentially small probability in λ of generating
two challenges c0 and c1 close enough in Hamming distance leading to observable
correlation among their responses r0 and r1. We can extend this argument to d CRPs if
d = poly(λ). Therefore, we may assume that

εcorbias decreases in parameter λ and is exponentially
small in λ for ϒP = {Y∗} whereY∗ is the system-induced
canonical CRP distribution.

The next sections will show that non-canonical system-induced CRP distributions
(used in this paper) have an εcorbias that scales ‘linearly’ with the exponentially small
εcorbias for the canonical system-induced CRP distribution. This allows us to conclude
that εcorbias is exponentially small for the whole set ϒP of system-induced CRP distri-
butions (used in this paper).

Before diving into properties that can be proved based on our definitions so far, let us
discuss an example of a set ϒP of system-induced distributions over challenge–response
pairs. Since we assume that system S can only access the PUF through GetResponse,
this means that S can only query PUF P by challenges drawn from a canonical system-
induced distribution Y with replacement. That is, S can repeatedly ask the PUF for
responses for the same challenge c. And whenever the PUF is queried for a new chal-
lenge, then this challenge must be chosen according to Y . This induces certain types of
distributions over the challenge space: If S asks for a response of the same challenge c
exactly h times and observes for some i ≤ h/2 that h − i have the same response bit r
and the other i response bits are the complement r +1 (xor), then it is as if the challenge
c with response r is drawn from a distribution over the challenge space CP = {0, 1}λ
which causes either i or h − i measurement errors (each with probability pc). In other
words, c ← Yh,i with

Pr(c ← Yh,i) =
(h

i

)
(ph−i

c (1 − pc)
i + pi

c(1 − pc)
h−i) · Pr(c ← Y)

∑
c′∈{0,1}λ

(h
i

)
(ph−i

c′ (1 − pc′)i + pi
c′(1 − pc′)h−i) · Pr(c′ ← Y)

.

System S cannot a priori decide to choose c ← Yh,i , but after its repeated measure-
ments, it will turn out that c ← Yh,i for some h and i that match observation. We may

 35 Page 16 of 64 M. van Dijk, C. Jin

define the response of c to be the majority vote of the observed responses. (Or if there
is no majority, 0 or 1 is selected as response with probability 1/2.) Denote this majority
vote by r . Then, this process defines (c, r) ← Y∗

h,i . System S draws Y∗
h,i from the set

ϒP = {Y∗
h′,i ′ }h′≥1,0≤i ′≤h′/2

according to a probabilistic process. Our security game SecGameSys of Definition 16
gives the adversary the exact knowledge of which Y∗

(j) ∈ ϒP was selected.
The next lemma shows how Definition 5 can be used to analyze εcorbias for more

general distributions. It is rather general, and we will provide proof in small steps,
which themselves gain an understanding of how to use the lemma.

Lemma 6. Suppose that PUF P has correlation bias at most εcorbias over a set of
system-induced distributions ϒP and let λ be the security parameter of P . Consider
products Ȳ∗

(i) = Y∗
(i,0) × . . . ×Y∗

(i,d−1) with {Y∗
(i, j)} ⊆ ϒP and d = poly(λ). Let X be

a distribution statistically independent of all Ȳ∗
(i). For each i , define a new distribution

(ĉi , r̂i) ← Ŷ∗
(i) over the CRP space represented by some polynomial algorithm that

takes a drawing (c̄i , r̄i) ← Ȳ∗
(i) and a drawing x ← X as input. Let side be a random

variable statistically independent of x ← X such that

(r̄h, {(c̄i , r̄i)}d̂−1
i=0,�=h) → {(c̄i , r̄i)}d̂−1

i=0,�=h → {(ĉi , r̂i)}d̂−1
i=0,�=h → side

is a Markov chain with d̂ = poly(λ). Then, for all r̂ , q
Ŷ∗

(h)

r̂ (side) satisfies8

∣∣∣∣q
Ŷ∗

(h)

r̂ (side) − q
Ŷ∗

(h)

r̂

∣∣∣∣ ≤ ((1 + εcorbias)
d − 1) · q

Ŷ∗
(h)

r̂ .

�

Definition 5 about the correlation among CRPs is sound in that we can prove nat-
ural properties. First, rather than conditioning on knowledge of explicit CRP values
{(c j , r j)}d−1

j=0,�=h , we may have partial knowledge about the CRP values in the form of

a random variable side which is correlated to {(c j , r j)}d−1
j=0,�=h but independent from

(ch, rh) given {(c j , r j)}d−1
j=0,�=h , and we expect to still have the same εcorbias. Second, we

may define response vectors of multiple bits by callingGetResponsemultiple times; we
also want to know the bias of such response vectors, which we expect to be the product
of the biases of each of the response bits separately corrected with εcorbias. Third, we
may define a new distribution that post-processes random drawings from distributions
in ϒP and we want to characterize the resulting εcorbias.

8It is possible to refine Lemma 6 and make d itself a random variable depending on drawings from
distributions in ϒP .

A Theoretical Framework for the Analysis Page 17 of 64 35

Lemma 7. Suppose that PUF P has correlation bias at most εcorbias over a set of
system-induced distributions ϒP and let λ be the security parameter ofP . Let (c j , r j) ←
Y∗

(j) ∈ ϒP be random variables9 and let side be a random variable such that

(rh, {(c j , r j)}d−1
j=0,�=h) → {(c j , r j)}d−1

j=0,�=h → side

is a Markov chain with d = poly(λ). Then, in Definition 5 we have for all r ,

∣∣∣∣q
Y∗

(h)
r (side) − q

Y∗
(h)

r

∣∣∣∣ ≤ εcorbias · q
Y∗

(h)
r .

�

Proof of Lemma 7. Let r represent the random variable (·, r) ← Y∗
(h), that is, Pr(r) =

∑
c∈CP Pr((c, r) ← Y∗

(h)). Let y be the random variable y = {(c j , r j)}d−1
j=0,�=h ←

Y∗
(0) × . . . × Y∗

(h−1) × Y∗
(h+1) × . . . × Y∗

(d−1). We have (r, y) → y → side. By
Definition 5 we have Pr(r |y) = Pr(r) · (1 ± εcorbias). We use these properties to derive

Pr(r | side) = Pr(r, side)

Pr(side)
=

∑
y Pr(r, y, side)

∑
y Pr(y, side)

=
∑

y Pr(y)Pr(r |y)Pr(side|r, y)
∑

y Pr(y, side)

=
∑

y Pr(y)Pr(r)(1 ± εcorbias)Pr(side|y)
∑

y Pr(y, side)

=
∑

y Pr(y, side)Pr(r)(1 ± εcorbias)∑
y Pr(y, side)

= Pr(r)(1 ± εcorbias).

Notice that the lemma follows from q
Y∗

(h)
r (side) = Pr(r |side) and q

Y∗
(h)

r = Pr(r). �

The next lemma generalizes Lemma 7 to system-induced distributions over vectors
of CRPs:

Lemma 8. Suppose that PUF P has correlation bias at most εcorbias over a set of
system-induced distributions ϒP and let λ be the security parameter of P . Consider
the product Ȳ∗

(i) = Y∗
(i,0) × . . . × Y∗

(i,d−1) with {Y∗
(i, j)} ⊆ ϒP and d = poly(λ)

which outputs a vector of challenges c̄i = (ci,0, . . . , ci,d−1) and a vector of responses
r̄i = (ri,0, . . . , ri,d−1). Let side be a random variable such that

(r̄h, {(c̄i , r̄i)}d̂−1
i=0,�=h) → {(c̄i , r̄i)}d̂−1

i=0,�=h → side

9By abuse of notation we mean by Pr((c, r)) the probability that the random variables represented by
(c, r) realize the values (c, r).

 35 Page 18 of 64 M. van Dijk, C. Jin

is a Markov chain with d̂ = poly(λ). Then, q
Ȳ∗

(h)

r̄ (side) with r̄ = (r0, . . . , rd−1) satisfies

∣∣∣∣∣∣
q
Ȳ∗

(h)

r̄ (side) −
d−1∏

j=0

q
Y∗

(h, j)
r j

∣∣∣∣∣∣
≤ ((1 + εcorbias)

d − 1) ·
d−1∏

j=0

q
Y∗

(h, j)
r j .

�

Proof of Lemma 8. The proof of the lemma follows by generalizing the following ar-
gument: For d = 2, we have r̄i = (r0, r1), and by Lemma 7 we have

q
Y∗

(h,0)
×Y∗

(h,1)

r̄ (side)

=
∑

c0,c1∈CP

Pr((c0, r0) ← Y∗
(h,0), (c1, r1) ← Y∗

(h,1) | side)

=
∑

c0∈CP

Pr((c0, r0) ← Y∗
(h,0) | side)

·
∑

c1∈CP

Pr((c1, r1) ← Y∗
(h,1) | (c0, r0), side)

=
∑

c0∈CP

Pr((c0, r0) ← Y∗
(h,0) | side) · q

Y∗
(h,1)

r1 (1 ± εcorbias)

= q
Y∗

(h,0)
r0 (1 ± εcorbias) · q

Y∗
(h,1)

r1 (1 ± εcorbias).

Generalizing this argument to d > 2 yields

q
Ȳ∗

(h)

r̄ (side) =
d−1∏

j=0

q
Y∗

(h, j)
r j · (1 ± εcorbias)

d .

The lemma follows from

1 − (1 − εcorbias)
d ≤ (1 + εcorbias)

d − 1.

�

Lemma 6 generalizes the previous lemma to system-induced distributions over post-
processed vectors of CRPs:

Proof of Lemma 6. We may characterize Pr(r̂ ← Ŷ∗
(h)) as a distribution

Pr(r̂ ← G(rh,0, . . . , rh,d−1, x), {rh, j ← Y∗
(h, j)}d−1

j=0, x ← X),

where G is a polynomial time algorithm that represents distribution Ŷ∗
(h). In a way G

defines a set of tuples (rh,0, . . . , rh,d−1, x) that lead to outputting r̂ . (G is not probabilistic,

A Theoretical Framework for the Analysis Page 19 of 64 35

and it uses randomness x in a deterministic way.) Let G(x, r̂) be the set of response
bit vectors (rh,0, . . . , rh,d−1) for which G together with input x outputs r̂ . Let px =
Pr(x ← X). Then, by using the statistical independence of x and by using the notation
of Lemma 8,

q
Ŷ∗

(h)

r̂ (side)

= Pr(r̂ ← Ŷ∗
(h) | side)

= Pr
(

(rh,0, . . . , rh,d−1) ∈ G(x, r̂),

{rh, j ← Y∗
(h, j)}d−1

j=0, x ← X | side

)

=
∑

x

px · Pr
(

(rh,0, . . . , rh,d−1) ∈ G(x, r̂),

{rh, j ← Y∗
(h, j)}d−1

j=0
| x,

side

)

=
∑

x

px · Pr
(

r̄h ∈ G(x, r̂),

r̄h ← Ȳ∗
(h)

| x,

side

)

=
∑

x

px ·
∑

r̄∈G(x,r̂)

Pr
(

r̄ ← Ȳ∗
(h) | side

)

=
∑

x

px ·
∑

r̄∈G(x,r̂)

q
Ȳ∗

(h)

r̄ (side).

This derivation holds for side and also for the special case where side is empty. By
using Lemma 8, this shows that

∣∣∣∣q
Ŷ∗

(h)

r̂ (side) − q
Ŷ∗

(h)

r̂

∣∣∣∣

≤
∑

x

px ·
∑

r̄∈G(x,r̂)

|qȲ∗
(h)

r̄ (side) − q
Ȳ∗

(h)

r̄ |

≤ ((1 + εcorbias)
d − 1) ·

∑

x

px ·
∑

r̄∈G(x,r̂)

q
Ȳ∗

(h)

r̄

= ((1 + εcorbias)
d − 1) · q

Ŷ∗
(h)

r̂ .

�

5. Improving Reliability

In Algorithm 2, we present a simple interface that improves reliability. The interface
changes a uniform selection from challenges to a selection among challenges that lead
to ‘reliable responses.’

For h > 1, GetReliableCRPh reduces probability δ = EY [pc] as defined in Defini-
tion 3. The same measurement r j = GetResponse(cpre) is repeated h times, and only if

 35 Page 20 of 64 M. van Dijk, C. Jin

Algorithm 2 Get reliable CRPs
1: procedure GetReliableCRPh
2: Found =false
3: while Found =false do
4: cpre ←R CP
5: for j ∈ {1, . . . , h} do
6: r j = GetResponse(cpre)

7: end for
8: if all r j are equal then
9: c = Hash(cpre); r = r1
10: Found =true
11: end if
12: end while
13: return (cpre, r)

14: end procedure

all measured responses are equal, the agreed upon response r is returned. The probability
that all h measurements agree is equal to ph

c + (1 − pc)
h where c = Hash(cpre). This

shows that the while loop will take (EY [ph
c + (1 − pc)

h])−1 iterations in expectation
over the canonical system distribution c ← Y . For sufficiently small h, this is a small
enough number, and the GetReliableCRPh interface can be used in practice.

In order to avoid using a True Random Number Generator (TRNG) for selecting
cpre ←R CP = {0, 1}λ, we will generate a sequence of pre-challenges cpre,a as defined
in (1) (for u = a), where a is the iteration count of the while loop. In order to do this, we
need to know how to a priori represent a, i.e., we select a fixed na-bit representation of a
for use in (1). This limits GetReliableCRPh to at most 2na loop iterations. As argued
above, we may choose na small and still have a low failing probability (the probability
that no reliable CRP is found after 2na loop iterations).

Seed seed in (1) can be given as input to GetReliableCRPh and selected at random
by the system calling GetReliableCRPh . Since the cryptographic hash function is
collision-resistant and one-way, an adversary who observes the outputted cpre cannot
extract seed and a. However, knowledge about seed and a would in addition teach the
adversary a − 1 unreliable CRPs corresponding to cpre,u , 0 ≤ u ≤ a − 1. If this needs
to be avoided (in order to limit the adversary in applicable attack techniques), then the
legitimate user/system should discard seed as soon as GetReliableCRP()h(seed) has
been called. (Otherwise seed can be leaked to an adversary, and the adversary can extract
a from seed and cpre = Hash(seed‖a) by using repeated hash evaluations.)

The outputted r corresponds to a reliable challenge c, that is, a challenge that has
demonstrated to give rise to repeated consistent measurements of the response. This
means that such challenges lead to increased reliability: If GetResponse(cpre) measures
a response r ′ for c = Hash(cpre) at a later time, then with probability pc we have r �= r ′
(i.e., e = 1). However, for h > 1, the challenges are picked from the ‘subset of reliable
challenges’; that is, c is selected with probability

Pr(c ← Yh) = (ph
c + (1 − pc)

h) · Pr(c ← Y)
∑

c′∈{0,1}λ(ph
c′ + (1 − pc′)h) · Pr(c′ ← Y)

,

A Theoretical Framework for the Analysis Page 21 of 64 35

which defines a new distribution Yh , where Y1 = Y denotes the canonical system-
induced distribution. This implies:

Lemma 9. Let Y∗
h be the system-induced distribution that generates CRPs according

to GetReliableCRPh. Then, the overall reliability with respect to Yh is equal to 1 − δh

with

δh = EYh [pc] = EY1 [ph+1
c] + EY1 [(1 − pc)

h pc]
EY1 [ph

c] + EY1[(1 − pc)h] . (3)

�

δh reduces the original δ1 = δ since the smaller pc are counted more in the sum
because of the larger (1− pc)

h term. δ1 = δ has a typical value of 10% [42], and we may
assume that for relatively small h, GetReliableCRPh achieves a couple percentage
points smaller δh [45].

Our argument shows how the legitimate user may want to use an interface that selects
reliable CRPs. The adversary can still use the GetResponse interface, which covers the
whole CRP space uniformly with respect to Y1 = Y . The task of the adversary is to use
access to GetResponse (possibly emulating GetReliableCRPh) to learn a model with
which she/he can predict the reliable response used by the legitimate user.

The new distribution Y∗
h yields a new bias qY∗

h . From a mathematics perspective, we
cannot conclude qY∗

h = qY∗
for Y∗ = Y∗

1 . However, in practice, there is no reason to
assume that reliable challenges according to Y∗

h will have a different bias.

Lemma 10. Let Y∗
h be the system-induced distribution that generates CRPs according

to GetReliableCRPh where the while loop iterates at most 2na times. (And a failure
is returned if no reliable CRP is found after 2na iterations.) Suppose that PUF P has
correlation bias at most εcorbias over distribution Y∗

1 . Then, P has correlation bias at
most

εcorbias,h = (1 + εcorbias)
h·2na − 1

= h2na εcorbias + O((h2na εcorbias)
2)

over distribution Y∗
h . �

The proof follows from Lemma 6 by noting that GetReliableCRPh uses at most
2na iterations and within each iteration Y∗

1 = Y∗ corresponding to GetResponse is
sampled h times. As discussed before, we expect εcorbias = negl(λ) where λ is the
security parameter of PUF P . Then, for 2na = poly(λ), we also have a correlation bias
negl(λ) over distribution Y∗

h .

 35 Page 22 of 64 M. van Dijk, C. Jin

Algorithm 3 Creating CRPs with reduced bias
1: procedure Neumann-GetReliableCRPh
2: Found =false
3: while Found =false do
4: (cpre, r) ←GetReliableCRPh
5: (c′

pre, r ′) ←GetReliableCRPh

6: if r �= r ′ then Found =true
7: end if
8: end while
9: return (cpre, r)

10: end procedure

6. Reducing Bias

In order to reduce bias significantly, we can use the von Neumann trick which we also
use in TRNG designs [29]. Algorithm 3 lists the pseudocode of a simple von Neu-
mann interface where we use GetReliableCRPh twice in each while loop iteration
until the two responses r and r ′ are different. We only output the first generated pre-
challenge–response pair. The second application of GetReliableCRPh is used to sim-
ulate a probability distribution of a coin that tells the algorithm when to accept the first
generated pre-challenge–response pair. Given the first generated pre-challenge–response
pair (cpre, r), the algorithm accepts and outputs this pair only if the second generated
pre-challenge–response pair is of the form (c′

pre, r ′ = r + 1). The probability that this
happens is equal to

∑

c′∈CP

Pr((c′, r + 1) ← Y∗
h | (c, r)), (4)

where Y∗
h is the system-induced distribution of challenge–response pairs generated by

GetReliableCRPh (here, c′ = Hash(c′
pre) and c = Hash(cpre) are selected according

to distribution Yh , and (c, r) ← Y∗
h). The probability that (c, r) is generated in the first

pre-challenge–response pair is equal to Pr((c, r) ← Y∗
h). Together with (4), this can be

used to characterize Y∗
neu,h , the probability that Neumann-GetReliableCRPh leads

to CRP (c, r).
In Neumann-GetReliableCRPh , we will use an iteration count b for the while

loop, an index i ∈ {0, 1} for cpre and c′
pre in a loop iteration, and an iteration count a

for the while loop in GetReliableCRPh . This allows us to use a seed seed as input
and generate a sequence of pre-challenges Hash(seed‖a‖i‖b) as in (1). The proof of
the lemma below is presented at the end of this section.

Lemma 11. (Bias von Neumann Trick) Let (Y∗
neu,h)×d denote the system-induced

distribution that generates challenge response vectors c = (c0, . . . , cd−1) and r =
(r0, . . . , rd−1) according to Neumann-GetReliableCRPh where the while loop is at
most called 2nb times. Suppose that PUF P has correlation bias at most εcorbias over a

A Theoretical Framework for the Analysis Page 23 of 64 35

canonical system-induced distribution Y∗. Then,

∣∣∣∣q
(Y∗

neu,h)×d

r − 2−d
∣∣∣∣ ≤ dh2na+1−d(1 + 2nb)εcorbias + O((dh2na+nb+1εcorbias)

22−d)

and

q
Y∗
neu,h

r ≤ 1

2
+ h2na εcorbias + O((h2na εcorbias)

2).

Finally, sinceNeumann-GetReliableCRPh outputs reliable CRPs, Lemma 9 shows
that the overall reliability with respect to Yneu,h is equal to 1 − δh with δh = EYh [pc]
defined by (3). �

An interesting notion is the so-called Hellinger distance between distribution q
(Y∗

neu,h)×d

r
over response vectors in {0, 1}d and the uniform distribution over {0, 1}d , see [41]. Ap-
plication of Lemma 11 shows that this is bounded by

√√√√1 −
∑

r∈{0,1}d

√
q

(Y∗
neu,h)×d

r · 2−d

≤
√

1 −
∑

r∈{0,1}d

2−d
√

1 − dh2na+1(1 + 2nb)εcorbias

=
√

1 −
√

1 − dh2na+1(1 + 2nb)εcorbias

≤
√

dh2na+1(1 + 2nb)εcorbias,

if the latter is ≤ 1. In Sect. 11, we will want to have this Hellinger distance at most
2−(κ+5.946)/2, where κ represents the number of secure bits extracted from the PUF,
and apply the theory of [41]; we will use this to show that we can replace distribution

q
(Y∗

neu,h)×d

r by the uniform distribution in our setting. This translates to the condition

εcorbias ≤ 2−(κ+5.946)

dh2na+1(1 + 2nb)
. (5)

As a final remark, we notice that the adversary can still use the biased responses from
GetResponse to train a machine learning model for predicting responses. The von
Neumann trick only helps the legitimate user/system to get close to uniformly generated
response bits.

Proof of Lemma 11. See Lemma 10, according to Definition 5, probability (4) is equal
to qYh

r+1 · (1 ± εcorbias,h). The probability that r is generated in the first pre-challenge–

response pair is equal to
∑

c∈CP
Pr((c, r) ← Y∗

h) = qYh
r . We conclude that the proba-

 35 Page 24 of 64 M. van Dijk, C. Jin

bility of an iteration producing the final output r is equal to

qYh
r qYh

r+1 · (1 ± εcorbias,h). (6)

This is the same for r = 0 and r = 1. The probability that an iteration is not yet producing
the final output is therefore equal to 1 − 2qYh

0 qYh
1 (1 ± εcorbias,h). This teaches that it

takes the while loop at most (1 − 2qYh
0 qYh

1 (1 + εcorbias,h))−1 iterations in expectation
to finish.

Let Y∗
neu,h indicate the distribution of a single CRP outputted by Neumann-

GetReliableCRPh . From (6), we infer

∑

c∈CP

Pr((c, r) ← Y∗
neu,h)

= qYh
r qYh

r+1(1 ± εcorbias,h)

qYh
r qYh

r+1(1 ± εcorbias,h) + qYh
r+1qYh

r (1 ± εcorbias,h)

= 1

2

1 ± εcorbias,h

1 ± εcorbias,h
= 1

2
· (1 ± 2εcorbias,h/(1 − εcorbias,h)).

This shows how the von Neumann trick reduces the bias qYh down to only εcorbias,h/(1−
εcorbias,h) above 1/2. This trick helps the legitimate user/system generate close to un-
biased bits.

Our derivation above proves

q
Y∗
neu,h

r ≤ 1

2
+ εcorbias,h

1 − εcorbias,h

= 1

2
+ h2na εcorbias + O((h2na εcorbias)

2).

Neumann-GetReliableCRPh has at most 2nb loop iterations where in each iteration
GetReliableCRPh is called twice. Applying Lemma 6 (see also the resemblance to
Lemma 10) teaches us that the correlation bias over distribution Y∗

neu,h is at most

εcorbiasneu,h = (1 + εcorbias,h)2·2nb − 1

= 2nb+1εcorbias,h + O((2nb+1εcorbias,h)2)

= h2na+nb+1εcorbias + O((h2na+nb+1εcorbias)
2)

Let c = (c0, . . . , cd−1) and r = (r0, . . . , rd−1) be vectors of challenges and responses
generated by Neumann-GetReliableCRPh . Let (Y∗

neu,h)×d denote the distribution
that generates such challenge response vectors. By the triangle inequality,

∣∣∣∣q
(Y∗

neu,h)×d

r − 2−d
∣∣∣∣ ≤

∣∣∣∣∣∣
q

(Y∗
neu,h)×d

r −
d−1∏

j=0

q
Y∗
neu

r j

∣∣∣∣∣∣
+

∣∣∣∣∣∣

d−1∏

j=0

q
Y∗
neu

r j − 2−d

∣∣∣∣∣∣
.

A Theoretical Framework for the Analysis Page 25 of 64 35

By Lemma 8,

∣∣∣∣∣∣
q

(Y∗
neu,h)×d

r −
d−1∏

j=0

q
Y∗
neu

r j

∣∣∣∣∣∣

≤ ((1 + εcorbiasneu,h)d − 1) ·
d−1∏

j=0

q
Y∗
neu

r j

≤ ((1 + εcorbiasneu,h)d − 1) ·
(

1

2
+ εcorbias,h

1 − εcorbias,h

)d

= (dεcorbiasneu,h + O((dεcorbiasneu,h)2))

·2−d(1 + O(dεcorbias,h))

= (dh2na+nb+1εcorbias + O((dh2na+nb+1εcorbias)
2))

·2−d(1 + O(dh2na εcorbias))

≤ dh2na+nb+1−dεcorbias + O((dh2na+nb+1εcorbias)
22−d).

Our previous analysis proves

∣∣∣∣∣∣

d−1∏

j=0

q
Y∗
neu

r j − 2−d

∣∣∣∣∣∣

≤
(

1

2
+ εcorbias,h

1 − εcorbias,h

)d

− 2−d

=
((

1 + 2
εcorbias,h

1 − εcorbias,h

)d

− 1

)
· 2−d

= 2dεcorbias,h2−d + O((2dεcorbias,h)22−d)

= dh2na+1−dεcorbias + O((dh2na+1εcorbias)
22−d).

Combining derivations proves Lemma 11. �

7. PUF Security

The following definition inspired by [32] defines the hardness of being able to software
clone a PUF, i.e., the hardness of training an adversarial algorithm with oracle access to
the PUF such that it can reliably predict responses for new randomly chosen challenges.
Here, we only consider adversaries who can learn/observe digital information.

Definition 12. (PUF Security with Correlated CRPs (inspired by [32])) We define a
security game SecGamePUFCor(P, ϒP ,A, k, t) for PUF P , where ϒP is a set of
system-induced distributions Y∗ over challenge–response pairs in CP × RP (each Y∗ is

 35 Page 26 of 64 M. van Dijk, C. Jin

represented as a ppt algorithm with oracle access to P), A is a ppt poly(t) algorithm,10

and k represents the number of queries to P by A:

1. For j = 1, . . . , k, A adaptively selects a challenge ĉ j ∈ CP and receives11

r̂ j ← P(ĉ j). Note that A is not able to get more responses beyond r̂1, . . . , r̂k , due
to the hardware unclonability of PUF P .

2. For 0 ≤ j ≤ d − 1, let CRPs (c j , r j) ← Y∗
(j) for distributions selected from ϒP .

A is given set D = {(c j ,Y∗
(j))}.

3. A outputs guesses {r ′
j }d−1

j=0, and selects an index 0 ≤ h ≤ d − 1. Notice that A
knows distributions Y∗

(j); that is, A knows the ppt algorithm which simulates Y∗
(j)

with oracle access to P . Even though A has no access to P in this step, A can
make use of the knowledge that c j ← Y(j) (where Y(j) is the projection of Y∗

(j)
on the challenge space).

A ‘wins’ the game if r ′
h = rh . Notice that the XOR value r ′

j +r j is equal to the prediction
error of the guess r ′

j outputted by A. We want to model how the probability of winning
is conditioned on prediction errors, in other words, how are prediction errors for j �= h
correlated with not making a prediction error for h (i.e., r ′

h = rh).
P is called a (k, t, εcorpred)-secure PUF for correlations with respect to A and set

of distributions ϒP if A has an εcorpred advantage in predicting (any) rh : Let λ be the
security parameter of PUF P . For all d = poly(λ), advantage

AdvPUFCorA

= Pr
(

r ′
h = rh | {r ′

j + r j }d−1
j=0,�=h

)
− qY∗

(h)

≤ εcorpred,

where εcorpred represents the security,12 and qY∗
(h) is the bias with respect to Y∗

(h) of
P . The probabilities are taken over (c j , r j) ← Y∗

(j), over measurement noise, and over
all random procedures that A employs in the security game. A’s advantage defines the
software unclonability of PUF P when P’s responses for challenges from distribution
Y(j) need to be predicted. �

Notice that the security game captures the scenario where the adversary has access
to the PUF and uses this time to gather CRPs with which a machine learning model is
trained. At a later moment access to the PUF is lost and the adversary uses its machine
learning model to predict responses in order to impersonate the PUF or learn sensitive
information whose confidentiality depends on private PUF responses. The predictive
advantage εcorpred mainly depends on the amount of training data represented by k. The

10The cumulative number T of computational steps needed by A to play the security game (T represents
the running time of A) is T = poly(t).

11Additional side-channel leakage of the PUF itself can be modeled by having P(c j) output side j in
addition to response r j . However, we do not consider this type of attack in our adversarial model where the
adversary can only learn digitally processed information.

12A larger challenge size λ generally corresponds to lower εcorpred. From this perspective, λ can be
considered a security parameter of PUF P .

A Theoretical Framework for the Analysis Page 27 of 64 35

amount of computing time for training the ‘best’ model is a less important resource.
For this reason, we do not specify an explicit bound on the running time T of adversary
A in our definition, other than it being poly(t) large enough for covering all practical
adversaries.
Soundness. The special case d = 1 defines advantage

Pr(r ′
0 = r0) − qY∗

(0) . (7)

This advantage does not take into account the additional advantage of correlations among
different responses corresponding to randomly chosen challenges.

Our definition of εcorpred is sound in that we can always realize εcorpred = 0 by
defining the following simple adversary: The adversary always outputs the response

r that maximizes q
Y∗

(0)
r , that is, q

Y∗
(0)

r = qY∗
(0) . Then, Pr(r ′

0 = r0) = Pr(r = r0) =
∑

c0∈CP Pr((c0, r0) ← Y∗, r0 = r) = q
Y∗

(0)
r = qY∗

(0) in (7). This achieves13 εcorpred =
0.

Adversary AU . For both the legitimate user as well as the adversary, we consider the
hash-based interface GetResponse as the sole means for accessing PUF P:

In order to access PUFP , the adversary cannot circumvent
GetResponse; in addition GetResponse is immutable
with respect to the adversary.

This assumption can be realized by means of ‘hardware isolation’ where PUF P is only
accessible through the hardware interface defined by GetResponse. For example, in a
secure processor architecture like Intel SGX [46] this access control14 can be imple-
mented by micro code which represents GetResponse and only allows access to the
PUF by this micro-code.

Given that adversary A can only access P through the GetResponse interface in
step 1, we essentially restrict A’s adaptive strategy by forcing access to P through the
cryptographic hash Hash. We will denote this type of adversary by AU . Notice that
because of the hash function, it is not clear how the adversary can search for good
challenges that help best in training an accurate prediction model. The current state-
of-the-art analysis seems to indicate that the adversary may simply consider the hash
function as an obstacle limiting selection of challenges c j ∈ CP according to a uniform
distribution (just like the canonical system-induced distribution) with the possibility to
repeat challenges.

Definition 13. An adversarial model for a PUF P defines how adversarial ppt algo-
rithms A can have access to P . By Ax -model for P , we denote a specific adversarial
model where superscript x is a commonly understood abbreviation/name of the access
restrictions to P imposed on adversaries A that are within the Ax -model.

13We notice that the security game captures εcorbias: See Definition 5 and Lemma 7, the intrinsic correlation

present in the PUF can contribute at most εcorbias · q
Y∗

(h) to εcorpred.
14Notice that this should not be confused with access control used by interactive protocols where users

provide credentials and passwords. We mean that the hardware itself restricts under what circumstances
resources and hardware modules can be accessed.

 35 Page 28 of 64 M. van Dijk, C. Jin

Adversarial ppt algorithms A within the AU -model for P cannot circumvent GetRe-
sponse in order to access P . (This includes the implicit assumption that GetResponse
is immutable with respect to the adversary.)

We write Ax ⊆ AU to mean that the Ax -model is weaker than the AU -model, i.e.,
when compared to the AU -model, the Ax -model imposes more restrictions on how
adversaries can access P . �

In practice AU is powerful enough to train a machine learning model for P with
a typical accurate prediction probability at most 75% (as in the iPUF paper [18]) for
practical values of k (the amount of training data) and any practical run time T . This
means that εcorpred is at most 25% in the worst case. Notice that this is quite different
from the intrinsic PUF correlation modeled by εcorbias. Given such a large εcorpred in
practice, we need to be careful when designing a secure system that relies on a PUF.

We refer to Sect. 9 for an extensive discussion on weaker adversarial models Ax ⊆
AU . In particular, we discuss an adversarial model which allows an XOR Arbiter PUF
in a system that only queries each challenge at most once in an initialization mode and at
most once in normal operation; the adversary turns out to be restricted to classical non-
reliability-based ML attacks and the XOR Arbiter PUF is able to sufficiently withstand
classical ML attacks for training based on reasonably sized CRP sets. Also here, we do
not assume a confidential TCB for the PUF interface.

Ber Transformation Lemma.We are ready to define a special oracleO with knowledge
of all prediction errors e j = r ′

j + r j , 0 ≤ j ≤ d − 1, and who uses this knowledge to
correct errors e j = 1 as follows:

Lemma 14. (Ber transformation lemma) Let P be a (k, t, εcorpred)-secure PUF for
correlations with respect to A and set of system-induced distributions ϒP . Let us con-
sider SecGamePUFCor(P, ϒP ,A, k, t) where A outputs predictions {r ′

j }d−1
j=0 of re-

sponses {r j }d−1
j=0 corresponding to distributions Y∗

(j) ∈ ϒP . Then, there exists an oracle

O which takes predictions {r ′
j }d−1

j=0 as input and outputs partially corrected predictions

{r" j }d−1
j=0 such that

• if r ′
j is without error, then also r" j is without error, that is, r" j = r j and

• each r" j = r j + ê j where ê j cannot be distinguished from a Bernoulli distribution

Ber(1 − (qY∗
(j) + εcorpred))

with all ê j statistically independent.

�

The Ber transformation lemma is the main tool for proving our main theorem on the
hardness of solving problem instances related to system security guarantees for a system
with oracle access to P .

Proof of Lemma 14. By using the same proof technique that shows Lemma 7, we can
prove the next lemma. �

A Theoretical Framework for the Analysis Page 29 of 64 35

Lemma 15. Let P be (k, t, εcorpred)-secure for correlations. Then,

Pr
(
r ′

h = rh | side
) − qY∗

(h) ≤ εcorpred

for any random variable side such that

{r ′
j + r j }d−1

j=0 → {r ′
j + r j }d−1

j=0,�=h → side

is a Markov chain. �

This lemma shows that the advantage holds for all side information side that correlates
with {e j }d−1

j=1,�=h but is statistically independent of eh given {e j }d−1
j=1,�=h , where e j =

r j + r ′
j for j �= h are the prediction/guess errors (addition here is XOR): The adversary

can select its own challenges and request corresponding measurements of responses in
step 1 of the game in order to train a prediction model. A priori the adversary cannot
indicate a predicate (in the form of side information) of its own choice that should be
satisfied by the measured responses in step 2 and corresponding prediction errors in step
3. So, one cannot merge in step 1 the conditional knowledge of such a predicate (side).

The security game states that guess r ′
h for challenge ch cannot be improved by adver-

sary A beyond advantage εcorpred even if a combination of challenges (excluding ch) is
known that corresponds to a joint statistical distribution of responses that satisfies a cer-
tain specified relation (or predicate), coded by side, with respect to guesses/predictions
of these responses by A.

We are ready to define a special oracle O with knowledge of all errors e j = r ′
j + r j ,

0 ≤ j ≤ d − 1, and who uses this knowledge to correct errors e j = 1 as follows:
Suppose e j for 0 ≤ j ≤ h − 1 have already been corrected to e j + cor j using the next
randomized process implemented by O. The oracle considers

sideh = {e j + cor j }h−1
j=0

(sideh is empty for h = 0) and computes

τh = qY∗
(h) + εcorpred ≤ 1

and15

αh = Pr(eh = 0 | sideh).

O uses τh and αh to define

bh = max{0, (τh − αh)/(1 − αh)} ∈ [0, 1].

Oracle O computes

15Here, we mean random variable eh takes on value 0, while in sideh we mean that the random variable
corresponding to e j + cor j takes on the values e j + cor j .

 35 Page 30 of 64 M. van Dijk, C. Jin

• corh = 0 if eh = 0, or
• corh ← Ber(bh) if eh = 1, that is,

Pr(corh = 1 | eh = 1) = bh .

The corrected error vector {e j + cor j }d−1
j=0 has the property that only errors eh = 1 are

corrected (with probability bh) and no new errors that did not exist before are introduced.
Notice that this correction procedure has the property (eh, sideh) → corh . In par-

ticular, (eh−1, sideh−1) → corh−1 for h ≥ 1. Hence, for h ≥ 1 we have the Markov
chain

sideh = (eh−1 + corh−1, sideh−1)

← (eh−1, corh−1, sideh−1) ← (eh−1, sideh−1)

and, by using induction in h, we have

sideh ← (eh−1, sideh−1)

← (eh−1, eh−2, sideh−2) ← . . . ← {e j }h−1
j=0.

This shows that Lemma 15 applies and we conclude αh ≤ τh , hence,

bh = (τh − αh)/(1 − αh).

Now, we are ready to derive

Pr({e j + cor j }d−1
j=0)

=
d−1∏

h=0

Pr(eh + corh | {e j + cor j }h−1
j=0)

=
d−1∏

h=0

Pr(eh + corh | sideh)

with

Pr(eh + corh = 0 | sideh)

= Pr(eh = 0 | sideh)Pr(eh + corh = 0 | sideh, eh = 0)

+Pr(eh = 1 | sideh)Pr(eh + corh = 0 | sideh, eh = 1),

where

Pr(eh = 0 | sideh) = αh,

Pr(eh = 1 | sideh) = 1 − αh,

Pr(eh + corh = 0 | sideh, eh = 0)

A Theoretical Framework for the Analysis Page 31 of 64 35

= Pr(corh = 0 | sideh, eh = 0)

= Pr(corh = 0 | eh = 0) = 1, and

Pr(eh + corh = 0 | sideh, eh = 1)

= Pr(corh = 1 | sideh, eh = 1)

= Pr(corh = 1 | eh = 1) = bh .

Combining all equations yields

Pr(eh + corh = 0 | sideh) = αh + (1 − αh)bh = τh

and, for the partially corrected errors ê j = e j + cor j ,

Pr({ê j }d−1
j=0) =

d−1∏

j=0

τ
1−ê j
j (1 − τ j)

ê j .

This shows that {ê j }d−1
j=0 cannot be distinguished from a distribution where ê j ←

Ber(1 − τ j) and the ê j are statistically independent from one another. This proves
the Ber transformation Lemma 14.

8. Interface Security

Imagine a system S with oracle access to a PUF P . Suppose that proving a security
guarantee of S entails proving the hardness of solving an instance of some class of
problems. Explicitly, we want to prove that any problem instance generated by some
problem distribution Q is hard. The difficulty of showing this hardness comes from
the fact that system S has oracle access to P; hence, also Q uses P to generate the
parameters of a problem instance that corresponds to the security guarantee of S. We
denote this by QP .

Figure 2 outlines our approach: We first define a system security game (referred to as
the original game) where the adversary receives a problem instance g, which represen-
tation is a function of response bits {r j }, and the adversary receives the corresponding
challenges {c j } and the system-induced challenge distributions from which these are
selected. Next we separate the prediction of response bits from the problem instance:
We mean that the adversary can first create a prediction model of the PUF with which
it predicts response bits {r ′

j } based on {c j } and their system-induced challenge distribu-
tions. Second, the adversary discards the challenges and their distributions and considers
the problem instance g({r j }) with the predicted {r ′

j }. We will argue that the 2αλ sep-
aration factor between the original and separated game is a mild assumption. And we
will show in our final PUF separation theorem that the adversarial winning probability
of the original game is still exponentially small in λ. The new problem instance g({r j })
with the predicted {r ′

j } can be reduced to a new formulation where the new problem
instance g′ is only a function of the prediction errors {r j + r ′

j }. (Addition is XOR.) For
our PRO primitive, we will prove that there is only a poly(λ) reduction factor. Now, we

 35 Page 32 of 64 M. van Dijk, C. Jin

Fig. 2. Security reduction to a computational hard problem.

can use the Ber transformation lemma and obtain a computational hardness problem QB

from which the PUF is completely separated out. What remains is a pure mathematical
description which can now be properly analyzed. QB replaces {r j +r ′

j } by bits produced
by a Bernoulli distribution with parameter τ . This is related to the PUF security game
which achieves a prediction accuracy 1 − τ . Now, we see how the hardness of QB is
affected by the security of the PUF.

Definition 16. (System Security) Let QP be a ppt algorithm with oracle access to a
PUF P that generates ‘problem instances.’ Let Ver(q, s) be an algorithm that takes a
problem q ← QP and a solution s as input and outputs whether s is a correct solution
to q.

We define SecGameSys(Q,P, ϒP ,A, k, T), where ϒP is a set of system-induced
distributions Y∗ over challenge–response pairs in CP × RP (each Y∗ is represented as
a ppt algorithm with oracle access to P), A is a ppt algorithm, k represents the number
of queries to P by A, and T indicates the cumulative number of computational steps
needed by A to play the security game:

1. For j = 1, . . . , k, A adaptively selects a challenge ĉ j ∈ CP and receives r̂ j ←
P(ĉ j). (This is step 1 of security game SecGamePUF.)

2. A problem instance g ← QP is generated. Let {r0, . . . , rd−1} be the responses on
which g depends. Let {c0, . . . , cd−1} be the set of distinct challenges queried to P
by Q that correspond to {r0, . . . , rd−1}.
Let Y∗

(j) ∈ ϒP be the distributions implemented by Q for generating CRPs
(c j , r j) ← Y∗

(j).
3. A is given set D = {(c j ,Y∗

(j))}; here, Y∗
(j) indicates the ppt algorithm that uses

oracle access to P which Q uses to draw challenges c j and collect a corresponding
response. A also receives problem instance g (which parameters depend on the
CRPs collected by Q) and computes a solution s.

A Theoretical Framework for the Analysis Page 33 of 64 35

A ‘wins’ the game if Ver(g, s) returns true.
QP is called (k, T, εwin)-system secure with respect to A and set of probability dis-

tributions ϒP if the probability of winning is at most

Pr(true ← Ver(g, s)) ≤ εwin.

�

Even though the adversary may have εcorpred up to 25% in SecGamePUFCor, we
want εwin to be exponentially small in some security parameter that defines Q.

Separating the PUF. On the one hand, we want Q to generate instances of a hard
problem if P cannot be simulated by an adversary in probabilistic polynomial time.
On the other hand, this requires us to show that such a simulation cannot be accurate
enough even given the generated problem instance by QP . But this may reveal through
the generated problem instance information about the responses generated by P that
was used by Q, and as a result prediction of these responses can be more accurate.

We have cyclic reasoning: In a sense, we want to assume that the problem instance
itself is hard so that it cannot be used in the prediction of the used responses in the
formulation of the problem instance. And if this is true, then the adversary can discard
the problem instance when predicting the used responses, which leads to a εcorpred. This
can in turn be used to prove that the problem instance of Q is indeed hard to begin
with. To break this cyclic reasoning, we need a separability assumption as defined below
where we reformulate the steps of SecGameSys in an equivalent new way and a slightly
modified ‘separated’ way as follows:

Definition 17. (Separation Game) We reformulate SecGameSys(Q,P, ϒP ,A, k, T)

by splitting A in two algorithms A0 and A1 where A0 is in charge of step 1 and step 3
is split into

• A0 is given set D and problem g and outputs a prediction {r ′
j } of the responses {r j }

measured in step 2 by Q.
• A1 is given set D, problem g, and {r ′

j } and computes a solution s of g.

Let Ax -model be some adversarial model for P . Clearly, A1 can play the role of the
original A all by itself; hence, the probability of winning is still (equivalently) at most
εwin if QP is (k, T, εwin)-system secure with respect to all A = (A0,A1) in the Ax -
model and set of probability distributions ϒP .

The separated game SecGameSysSep(Q,P, ϒP ,A, k, T) for a pair A = (A0,A1)

is defined as the game above where

• A0 does not have access to problem g, and
• A1 does not have access to set D.

Let εwinsep be an upper bound on the probability of winning SecGameSysSep over all
A = (A0,A1) within the Ax -model.

If there exists a constant csep such that

εwin ≤ csep · εwinsep,

 35 Page 34 of 64 M. van Dijk, C. Jin

then we call QP csep-separable within the Ax -model. �

Our ultimate goal is to separate PUF P out of the equation, that is, we want to reduce
QP to QB where B is some predefined probability distribution over CRPs. This allows
us to consider the hardness of QB which is a purely mathematical problem that does not
involve a concrete physical device.

Let λ be a security parameter related to the class of problems QB. We will see that
in order to prove αλ-bit security of QP it suffices to have csep = O(2(1−α)·λ). Hence,
csep can be as large as exponential in λ. Notice that csep measures the multiplication
factor increase in winning the system security game compared to winning the ‘separated’
system security game. As we have no idea how to design an adversarial strategy that
combines all information (CRP pairs and problem instance g) in a more intelligent way
than what is proposed in the separation game, it is unlikely that an attacker will be able
to realize a multiplicative factor gain that is exponential in λ. Setting csep = 2λ/2 in the
worst case seems large enough.

Hardness of Q. In order to separate the problem of predicting P from solving problems
g ← QP , we introduce the next definition. It defines under what circumstances solving
g, given predictions of responses from P that were sampled by QP to formulate g, is
equivalent to solving a similar problem as a function of only the prediction errors.

This is a reasonable assumption since in practice the system that measures responses
of the PUF will, for example, use these to mask a key or store it as secret information
for later use in an authentication or identification protocol. When demasking the key
or when the identity of a PUF is verified, the PUF is measured a second time. The
difference between the first and the second measurements should have a small number
of measurement errors allowing demasking and identity verification. The adversary
cannot measure the PUF a second time but tries to predict/estimate the used responses.
Its success in demasking and extracting the key or impersonating the identity of the PUF
depends on the number of prediction errors. This is exactly what we formalize in the
next definitions.

Definition 18. (Error-based reduction) In step 4 of SecGameSep adversary A1 solves
problem instance g ← QP given guesses {r ′

j }d−1
j=0 of the responses {r j }d−1

j=0 queried by

Q to P in order to generate g. In this sense, g can be thought of as a function of {r j }d−1
j=0,

denoted by

g({r j }d−1
j=0),

and A1 can be thought of as solving an extended problem instance

gext = (g({r j }d−1
j=0), {r ′

j }d−1
j=0).

Let R be the distribution that generates the vector pair ({r j }d−1
j=0, {r ′

j }d−1
j=0). We define

QR as the distribution that generates problems gext .

A Theoretical Framework for the Analysis Page 35 of 64 35

Suppose that there exists another formulation of a problem instance g′ such that
solving gext can be reduced to solving

g′({r ′
j + r j }d−1

j=0),

where g′ has no other dependency on {r ′
j }d−1

j=0 or {r j }d−1
j=0 except through the ‘errors’

{e j = r ′
j + r j }d−1

j=0. That is,

• there exists a ppt algorithm s ← Tran(s′, {r ′
j }d−1

j=0) and an algorithm VerE(g′, s′)
which returns true if and only if Ver(g,Tran(s′, {r ′

j }d−1
j=0)) returns true.

If the above property holds, then we call g′ an error-based reduction of g. Let E be
the distribution that generates the error vector {e j = r ′

j + r j }d−1
j=0. We define QE as

the distribution that generates problems g′ (by replaying SecGameSep as explained
above). We call QE with (Trans,VerE) the error-based reduction of QR with Ver in
SecGameSep. If such QE exists, then we say that QR has an error-based reduction. �

Reasoning about the hardness of Q̂ = QE for a known representation of an error vec-
tor distribution E is a purely mathematical problem that does not depend on a concrete
physical PUF device P—we have not yet accomplished this as the error vector distribu-
tion is implicitly defined by the exact functioning of P . The next definition formalizes
the hardness of Q̂ = QE or Q̂ = QR.

Definition 19. (Mathematical hardness assumption for Q̂) Define HardnessQError
(Q̂,VerH,A, T) as a game where A is a ppt algorithm that takes a problem instance
ĝ ← Q̂ as input and runs at most T computational steps after which it outputs a guess ŝ.
Adversary A wins the game if VerH(ĝ, ŝ) returns true, that is, ŝ is a solution of problem
ĝ. We call Q̂ (T, εhard)-hard if the probability of winning HardnessQError is at most
εhard.

We may consider εhard to be a function of T . If for all T ,

εhard(T) ≤ T · 2−λ,

then we say that Q̂ is λ-bit secure. �

In HardnessQErrorA plays the role of A1 in SecGameSep without access to set D.
In other words, A only knows that parameters have been generated using distributions
R and E , respectively. A does not know to which challenges these correspond to and as
a consequence does not know a distribution R or E conditioned on the used challenges,
which could have given A more information for finding a solution ŝ. In SecGameSep,
we model the increased probability of winning, if such knowledge were available, by
the multiplicative factor csep.

We next define how the bit securities of Q̂ = QE and Q̂ = QR are related.

 35 Page 36 of 64 M. van Dijk, C. Jin

Definition 20. (Error-based equivalent of QP) Let QE be an error-based reduction of
QR. We say QE is an error-based equivalent of QR up to factor eequiv if

[QE is κ-bit secure] ⇒ [QR is (κ − eequiv)-bit secure].

In the remainder of the paper, rather than referring to R, we say QE is an error-based
equivalent of QP up to factor eequiv and if such QE exists, then we say that QP has an
error-based equivalent up to factor eequiv. �

The next definition defines what it means when problems QE become easier to solve
if some of the errors produced by E are corrected.

Definition 21. (Q in the presence of an error-reducing oracle) Let E be a distribution
that generates error vector {e j }d−1

j=0. Let O be an oracle that takes as input an error

vector {e j }d−1
j=0 and corrects some of the errors e j = 1 by computing a new error vector

{ê j }d−1
j=0 with ê j = 0 if e j = 0 is already without error, and ê j ∈ {0, 1} if e j = 1.

(Depending on O’s strategy this may correct the error to ê j = 0.) We call such oracle
O an error-reducing oracle.

We say that QO◦E is easier to solve than QE if

[QO◦E is κ-bit secure] ⇒ [QE is κ-bit secure].

If QO◦E is easier to solve than QE for all error-reducing oracles O, then we say that QE

becomes simpler in the presence of an error-reducing oracle. �

This assumption seems to be a natural one since fewer prediction errors for the adver-
sary should make it easier for the adversary to, for example, demask a key or impersonate
a PUF. The above framework for reasoning about the hardness of QP will allow us to
prove precise security guarantees. Our framework allows the following main separation
theorem, which we apply in the next section (where we prove the validity of some of
the conditions in the theorem):

Theorem 22. (PUF separation theorem) Consider the following setting:

• Let Ax -model be some adversarial model with Ax ⊆ AU .
• Suppose that P is a (k, t, εcorpred)-secure PUF for correlations with respect to all
A that are within the Ax -model and with respect to a set of system-induced CRP
distributions ϒP . Let qϒ = supY∗∈ϒ qY∗

and define τ = 1 − (qϒ + εcorpred).
• Define B to be the distribution that generates statistically independent errors ê j ←

Ber(τ). Assume that QB is λ-bit secure.
• Assume that QP has an error-based equivalent QE up to factor eequiv = O(log2 λ).

And assume that QE becomes simpler in the presence of an error-reducing oracle.
• Assume that QP is csep-separable within the Ax -model with csep = 2αλ for some

α ∈ [0, 1).

A Theoretical Framework for the Analysis Page 37 of 64 35

Then, for T = poly(t), QP is (k, T, εwin)-system secure with respect to all A within
the Ax -model and set of system-induced distributions ϒP with

εwin ≤ csep · T 2eequiv2−λ,

which is negl(λ). �

Interpretation.The list of assumptions made by the separation theorem starts by assum-
ing an adversarial model that is at least restricted by AU meaning that the PUF must be
accessed through the GetResponse functionality. There may be further restrictions for
the adversary. We further assume that P is a secure PUF for correlations; see our earlier
discussion, an adversary who uses ML for constructing a response prediction model for
the interpose PUF generally will see prediction errors with probability τ ≤ 25%. This
covers the best-known methods for creating a prediction model. The theorem shows how
such a large τ can still lead to a secure scheme.

For the scheme, we assume an underlying hardness problem Q that uses responses as
input. In practice, the legitimate user re-measures responses and is able to perform some
‘decoding’ operation which mathematically means that the re-measured responses can
be xored with the responses in the instance of the hardness problem. This will naturally
transform the problem into an equivalent one that only depends on the measurement
errors. The adversary can do the same for its predicted responses and his problem will
become equivalent to one that only depends on prediction errors (predicted responses can
be discarded if the actual responses are nearly uniform, e.g., due to the application of the
von Neumann trick). Section 11 demonstrates our main example. Generally, the smaller
the expected number of errors, the more efficient algorithms for finding solutions become.
From this perspective, it is natural to assume that the equivalent problem becomes simpler
in the presence of an error-reducing oracle.

The assumption that states that QP is separable simply stems from the observation
that known attacks and their analysis in the literature always perform or assume this
two-step attack approach where first PUF responses are predicted (separate from the
actual problem instance), after which the problem instance is solved using the predicted
responses. By only requiring a large csep = 2αλ, this assumption is likely satisfied.

All of the above reduces the analysis of the system’s security to a mathematical
problem: By proving that QB is hard, we can use the theorem to show that QP is system
secure. Here, we generally assume T = poly(λ).
Security protocols that use PUFs. SecGameSys models a general system S whose
security guarantee reduces to the hardness of some problem statement QP . Here, S does
not need to be limited to the non-interactive setting. S can be an interactive protocol
between colluding or non-colluding participants that each own or transmit PUFs from
one party to another. When using multiple PUFs, we need to generalize oracle access
to multiple PUFs in SecGameSys. When modeling multiple participants in a protocol,
S replays protocol executions. Typically, different hardness problems QP model the
different honest-but-curious or malicious parties. And oracle access to an underlying PUF
P by such a hardness problem may be further constrained by the protocol implemented by
S. This would imply that in our game(s) adversary AU is further restricted by assuming
a larger trusted computing base (TCB) for the PUF interface; the TCB implements some

 35 Page 38 of 64 M. van Dijk, C. Jin

extended immutable interface (with or without including confidential processing) which
restricts the adversary in its access to CRPs (ĉi , r̂i) (in step 1 of SecGameSys).

Proof of Theorem 22. Suppose that QP is (k, T, εwin)-system secure with respect to
all A within the Ax -model and set of distributions ϒP . We first apply Definition 17
which states that

εwin ≤ csep · εwinsep (8)

where εwinsep is an upper bound on the probability of winning SecGameSysSep
(Q,P, ϒP ,A, k, T) over all A = (A0,A1) within the Ax -model.

In separation game SecGameSysSep adversary A0 disregards the knowledge of the
problem instance g ← QP . This means thatA0 plays the steps ofSecGamePUFCor(P,

ϒP ,A0, k, T), see Definition 12. The goal of A0 is to provide estimates {r ′
j } which are

most useful for A1.
In separation game SecGameSysSep adversary A1 disregards knowledge D and

solves problem instance g as a function of {r j } with knowledge of estimates {r ′
j }. This

is equivalent to solving the extended problem gext from QR, see Definition 18. The
theorem states that QP has an error-based equivalent QE up to factor eequiv, where, see
Definition 18, E is the distribution that generates error vector {e j = r ′

j + r j }. According

to Definition 20, if QE is λ′-bit secure, then QR is (λ′ − eequiv)-bit secure. That is,
adversary A1 wins SecGameSysSep with probability at most

εwinsep ≤ T 2−(λ′−eequiv). (9)

See Definition 21, since QE is assumed to become simpler in the presence of an error-
reducing oracle, A0 will help A1 in achieving the largest upper bound on the winning
probability in (9) by minimizing the number of prediction errors. We conclude that A0
plays SecGamePUFCor where A0’s goal is to maximize AdvPUFCorA0

.
The theorem states that P is a (k, t, εcorpred)-secure PUF for correlations with respect

to A0 (which is within the Ax -model) and with respect to a set of CRP distributions ϒP .
(Notice that T = poly(t) and indeed εcorpred applies to A0 which runs at most T accu-
mulative computation steps.) Now, we apply the Ber transformation lemma (Lemma 14):
There exists an error-reducing oracle O, see Definition 21, with the additional property
that O ◦E outputs an error vector {ê j } where each entry ê j cannot be distinguished from

a Bernoulli distribution Ber(1− (qY∗
(j) + εcorpred)) with all ê j statistically independent.

This in turn implies the existence of an error-reducing oracle O which reduces errors
even more, such that O ◦ E outputs an error vector {ê j } where each entry ê j cannot be
distinguished from a Bernoulli distribution Ber(τ) (where τ is defined in the theorem
statement) and all ê j statistically independent. We have QO◦E = QB.

The theorem assumes that QB is λ-bit secure, see Definition 19. Since QE is assumed
to become simpler in the presence of an error-reducing oracle, if QO◦E = QB is λ-bit
secure, then QE is λ-bit secure, see Definition 21. This means that we can substitute
λ′ = λ in (9). Together with (8), eequiv = O(log λ), and csep = 2αλ for some α < 1,
the theorem follows. �

A Theoretical Framework for the Analysis Page 39 of 64 35

9. Adversarial PUF Models

We have already provided a detailed discussion on the AU -model (representing adver-
saries who cannot circumvent GetResponse for accessing PUF P). In this section, we
discuss other more restricted adversarial models, explain the role of k in our security
games, and compare Definition 12 with that of [32].

Adversary AN . This adversary has no access to the PUF at all and cannot learn any
CRPs in step 1 of SecGamePUFCor or SecGameSys; we have k = 0. In particular,
this means that its best strategy is predicting response bits according to the bias of the
PUF, that is, εcorpred = 0.

For example, in the LPN-PUF [24,25], a PUF with only one CRP16 is used, and the
corresponding response is assumed to remain private with respect to an adversary. The
whole LPN-PUF interface is assumed to be in a TCB while powered on. In power-off
mode, the LPN-PUF interface circuitry can be observed, and this allows the adversary
to learn fused-in keys. The LPN-PUF solves this problem by not depending on fused-in
keys.

A second example is a simple masked memory which essentially obfuscates one single
key key by using hardware circuitry that has (1) a pre-challenge fused in with which
a vector r of response bits corresponding to a sequence of different challenges can be
queried from a PUF, and (2) has fused in the vector key + r from which key can be
extracted given17 r . In this setting, the TCB disallows the adversary to observe r when
the key masking interface is powered on. When powered off, the adversary can read the
fused-in challenges and key + r . This is the same model as for the LPN-PUF (with the
difference that the LPN-PUF can generate many input–output pairs).

AdversaryAN R . If we disallow repeated measurements in step 1 of SecGamePUFCor
or SecGameSys, then we have adversary AN R ⊆ AU . Here, we assume that whenever
the adversary is present, it cannot freely query PUF P , and it can only query or observe
queries of CRPs that are new to the adversary; they have distinct challenges, and hence,
challenges and CRPs are not repeated in the adversary’s observation.

The imposed restriction on the adversary may be due to a system implementation
that has a secure initialization phase where we assume no presence of an adversary at
all and a normal mode of operation that never repeats queries to the PUF and which
resulting CRPs can be observed by the adversary. Here, we make the adversary weaker
since rather than being able to freely call GetResponse, only the digital computations
(including CRPs) of past normal mode operation can be observed by the adversary.
This restriction can be enforced by hardware isolation mechanisms for access control18

where, for example, only the system ‘enclave’ is allowed access to GetResponse.
Such a system may execute a series of ‘sessions’ and the considered adversary may

observe all but one session. The security guarantee is about the unobserved session
for which we want to prove that the adversary cannot impersonate the session or extract
sensitive information from the session. All the other observed sessions give the adversary

16The used PUF is a ring oscillator PUF which can be used to measure the same response again and again.
17Circuitry for correcting measurement noise may also be included.
18Not for implementing confidential computing.

 35 Page 40 of 64 M. van Dijk, C. Jin

a number of CRPs with non-repeating challenges (in step 1 of SecGamePUFCor or
SecGameSys). We find ourselves in the AN R model. To guarantee this model, normal
operation of the system may include a mechanism for checking whether challenges have
not yet been queried in normal operation before. This can be done by using a Merkle
tree like the logical erasable PUF interface of [32].

The weakerAN R can only learn challenge–response pairs but cannot learn challenge–
reliability pairs for which a response for a challenge needs to be repeatedly measured.
This means that the adversary can only use classical machine learning to train a prediction
model for the PUF. This reduces εcorpred. In fact, silicon PUF designs, such as the
XOR Arbiter PUF, that may have εcorpred closer to 40–50% (i.e., the adversary has very
accurate predictions) for advanced (reliability-based) machine learning, can have a much
lower εcorpred around 25% for classical machine learning. We conclude that the XOR
Arbiter PUF can possibly be used in the AN R model, while we may consider it broken
in the AU model.

If we are allowed to use the XOR Arbiter PUF, then we prefer this design over the
iPUF since it has a smaller area size and is more reliable, but more importantly, we
prefer the XOR Arbiter PUF for the following reason: AU corresponds to an adversary
who can use CRPs for repeated challenges. This means that advanced ML attacks based
on challenge–reliability pairs can be utilized. In this context, the current state-of-the-art
strong silicon PUF design is the Interpose PUF (iPUF)[18]. The iPUF is a combination
of two XOR Arbiter PUFs that are connected through a kind of forwarding mechanism
(where the response bit of the ‘top’ XOR Arbiter PUF is inserted in the middle of
the challenge for the ‘lower’ XOR Arbiter PUF). The iPUF has seen recent ML-based
attacks [16,17,37] and calls the existence of a strong PUF into question. Even though
the published attacks still seem to leave concrete parameter settings for which the iPUF
attacks have not yet been demonstrated, it remains an open problem for how long such
settings remain secure. (And parameter settings cannot be chosen too ‘large’ as this hurts
the reliability of the iPUF.) It may very well be that the iPUF design itself will need to
be adapted by replacing Arbiter PUFs with Feed Forward Arbiter PUFs together with
an extended new ML-based security analysis. For this reason, rather than assuming the
security of the iPUF will not be broken, i.e., AdvPUFCorAR ≤ εcorpred ≈ 25% for the iPUF
in Definition 12 for all practical parameter settings, we assume theAN R model where we
can rely on the XOR Arbiter PUF. The security under classical machine learning attacks
of the XOR Arbiter PUF has been well studied. The state-of-the-art work is in [37],
which we discuss in more detail at the end of this section when talking about the role of
k.

Notice that in an XOR Arbiter PUF design with λ = 64 challenge bits per Arbiter
PUF and say x = 10 Arbiter PUFs in total, we can use a pre-challenge as input to a
hash function or PRG that outputs the concatenation of x different challenges for each
of the x Arbiter PUFs. This means that the Hamming distance argument for εcorbias in
Sect. 3 is over xλ = 640 bits, and we expect εcorbias to be exponentially small in xλ

even though we only use challenges of size λ for the individual Arbiter PUFs. We notice
that the XOR Arbiter PUF and iPUF are defined by copying the same challenge to the
different component Arbiter PUFs. We strongly suggest using a hash function or PRG
as described in Sect. 3 in order to compute different challenges for each of the Arbiter

A Theoretical Framework for the Analysis Page 41 of 64 35

PUFs as this will allow us to argue a ‘negligibly’ small εcorbias for practical parameter
settings.19

As a final remark, suppose that only GetResponse is in the TCB together with a
Merkle tree interface used for checking that challenges have not yet been queried in
normal operation before. The secure initialization phase produces reliable CRPs based
on GetReliableCRPh that will be consumed in normal operation in the presence of an
adversary, who, if h > 1 and if GetReliableCRPh is implemented using a seed which
is published by the system (we describe such an example in Sect. 11, see (12)), can ex-
tract information about repeated response measurements. (The adversary can reconstruct
challenges that were found not to produce reliable responses as well as observe the used
reliable challenge; this allows a form of advanced ML that uses reliability information.)
Therefore, in the AN R model the initialization phase can only use GetReliableCRPh

for h = 1.

Adversary AR−x . In the AU -model adversaries can repeat measurements of CRPs as
they wish.AR−x defines a slight restriction where the number of repeated measurements
is controlled/restricted to x . Again, this can be implemented by using an authenticated
search tree, very much like the programmable access-controlled PUF interface of [32].

For example, we may consider a system with an initialization phase and normal
operation as discussed above, where we now allow the adversary to also be sometimes
present to and observe the digital computations done in the initialization phase. (We still
want to prove a security guarantee for normal system operation based on CRPs generated
during the initialization phase when no adversary was present.) If the initialization phase
is such that CRPs are only measured at most once during initialization, then in total,
the adversary may obtain two measurements for each challenge: One coming from the
initialization phase and the other coming from normal operation. In this example, we
have x = 2. This provides only limited reliability information to the adversary, and it is
an open problem whether εcorpred remains around 25% (or slightly higher) for the XOR
Arbiter PUF.

If we use GetReliableCRPh in initialization mode and if we do not assume its
computations are confidential, then x = h + 1 reflecting h measurements in GetRe-
liableCRPh during the initialization phase and one repeated measurement using Ge-
tResponse during normal operation. (If in normal mode a measurement is repeated as
in GetReliableCRPh′ in order to use the majority vote, which is more reliable, then
x = h + h′.)

Role of k. Our definitions explicitly include the parameter k in the first steps of our
security games. It indicates the maximum number of responses an adversary is allowed
to measure. Upper bound k is of crucial importance as this indicates the amount of CRPs
an adversary can use to build a prediction model.

For example, when using ML to train a prediction model for a silicon PUF, then the
amount of training data indicates the accuracy of the resulting prediction model. That is,
the more training data (the larger k), the higher the prediction advantage AdvPUFCorA and
the higher εcorpred as a result. Parameter k indicates how often the adversary can have

19This will also likely slow down or make classical and advanced ML attacks on the XOR Arbiter PUF or
iPUF more difficult.

 35 Page 42 of 64 M. van Dijk, C. Jin

access to the PUF. See [11,18,37,47] for studies on the trade-off between the amount
of training data and prediction accuracy.

The most effective implemented attack20 on the iPUF turns out to be a classical
ML attack [37] (by combining the multilayer perceptron attack [48] with the splitting
attack [16]). This is in line with the original iPUF security analysis, where it was shown
that state-of-the-art reliability-based attacks at that moment could not be applied, and
therefore the security of the iPUF is reduced to the best-known classical ML attack
on the XOR Arbiter PUF. In [37], it is shown that the 9,10,11-XOR Arbiter PUFs can
be learned with 98% accuracy by using 45 M, 119 M, and 325 M CRPs, respectively.
This leads to breaking the (11,11)-iPUF using 2 · 325 = 750M CRPs. Extrapolating
shows that to accurately learn a (20,20)-iPUF, one needs roughly 1 week CRP data
collection at 1MHz CRP frequency for a total of about 605B CRPs. As an example,
suppose that a system implements and uses the initialization and normal operation for
at most 150B CRPs in a 10-year time frame (e.g., a system uses GetOutput-RO of
our PRO construction for the concrete parameters setting in Sect. 11 every two minutes
for 10 years). Then, if the legitimate user plans to query the iPUF at most twice (for
initialization and normal operation) for 150B CRPs, then additional access control can
be added in order to limit the querying of the iPUF to 300B CRPs (after which it locks).
This means that the attacker can only collect a smaller portion of the needed 605B CRPs
for 98% accuracy, hence, the prediction accuracy can be significantly lower. This fits
our framework.

However, due to the many component Arbiter PUFs, the (20,20)-iPUF will suffer
overall reliability. Formula (26) in [18] shows that the measurement noise rate of the
(20,20)-iPUF is equal to β20 + β20

2 (1 − 2β20) = 3
2β20 − β2

20 where β20 = (1 − (1 −
2β)20)/2 with β the noise rate of a single Arbiter PUF. If we want to achieve a 10%
noise rate for the (20,20)-iPUF, then we need to be able to implement very reliable
Arbiter PUFs with measurement noise rate β = 0.36%. This is an engineering problem
that needs to be solved unless a new follow-up PUF design avoids the XOR operation
(which amplifies measurement noise) and, as a result, is much more reliable by design.

In the AN R model, we saw that we could use a 20-XOR Arbiter PUF. This has a
reliability equal to β20 = 6.7%. If we only need to achieve β20 = 10%, then the required
β can be increased to 0.55%, still an engineering problem. If we only restrict ourselves
to the AN R model, which only allows classical ML attacks, then the multiplexer-based
Arbiter PUF composition of [49] and its follow-up work is of interest. In this design,
the security is claimed not to decrease while the reliability only corresponds to that of a
single Arbiter PUF. This means that our framework with the PUF-based random oracle
primitive of Sect. 11 can be applied in practice for the AN R model for the (very) large k

20The reliability-based attack presented in [17] needs careful iterative tuning of parameters and objectives
in order to be able to converge to a component Arbiter PUF that has low reliability information leakage at
the output (of the iPUF), in particular, the Arbiter PUFs in the upper layer of the iPUF which determine the
interpose bit value. The iPUF design relies on a reliability attack to almost never converge to an Arbiter PUF
that has low reliability information leakage compared with other Arbiter PUFs (in the lower layer of the iPUF).
[17] shows the potential of breaking the iPUF with a reliability-based attack. As it seems to require a lot of
manual parameter tuning, it depends on some luck in having a successful attack. It is also unclear how the
attack scales to larger parameters, e.g., the (11,11)-iPUF discussed here. The feasibility of this has not yet
been demonstrated.

A Theoretical Framework for the Analysis Page 43 of 64 35

used in this example. We notice that if the adversary can be restricted to much smaller
k, then the (well-studied) XOR Arbiter PUF is still useful.

As another example, when using a so-called weak PUF with one CRP, we assume the
adversary cannot access the PUF at all, and we are in the AN -model. For a weak PUF
that has a ‘polynomial’ number of CRPs that can possibly be read out one by one, we
may explicitly mention the number k of CRPs an adversary is able to query. In practice,
this may be established by introducing a throttling time added to each PUF measurement
in normal operation; assuming an adversary can at most have access to the PUF for a
small amount of time implies a small enough k. Another option is to implement a logical
erasable PUF like interface that uses an authenticated search tree to keep track of how
many times a challenge has been queried.

Since, for weak PUFs, we are in the AN -model or have restricted access by the
adversary to a small k (lots smaller than the number of CRPs of the weak PUF), a
crypto protocol or primitive that relies on the weak PUF must make use of the fact that
the adversary can gather such little knowledge about CRPs that no accurate prediction
model can be constructed at all.21 That is, we assume εcorpred is much closer to a couple
of percentage points (rather than 25% for Arbiter PUF-based designs where machine
learning can be used to train on a large number of CRPs).

Comparison to [32]. The security definition of [32] merges steps 1 and 2 of
SecGamePUFCor of Definition 12 in multiple rounds. In our definition, this is equiv-
alent to having d rounds, where each round i implements part of step 1 for an adaptive
selection of ki challenges and at the end generates (ci , ri) ← Y∗

(i) of step 2 and gives
(ci ,Y∗

(i)) to the adversary. Each step 1 of a round is restricted in that the adversary may
not query P(ci) for any i . At the end of step 3, the adversary picks one of the ch and
predicts the corresponding response. In our AU model, we may combine all the rounds
together into a single step 1 and single step 2 as is done in our definition: Due to the
statistically independent selection of new challenges by AU in step 1 of each round, AU

cannot use the received information (challenges ci) in step 2 of each round for improving
an adaptive strategy for querying the PUF in step 1 for subsequent rounds. Since the
adversary is in this way limited in its adaptive strategy, the steps of each round may as
well be reordered by bundling all steps 1 into one step 1 as in SecGamePUFCor and
bundling all steps 2 into one step 2. This gives the exact formulation of SecGamePUF
(with the caveat that the definition in [32] does explicitly talk about information gained
from physical side channels, which we do not explicitly cover). Rigorous modeling of
how challenge–response pairs (c j , r j) are distributed according to some Y∗

(j) due to how
a system interfaces with the PUF lacks in [32]. Also, the correlation among CRPs is not
explicitly considered. The definition in [32] corresponds to using empty side information
side in Lemma 15.

21A weak PUF which can (partially) reconfigure its polynomial sized CRP space at regular intervals can
possibly allow a larger k like a strong PUF.

 35 Page 44 of 64 M. van Dijk, C. Jin

10. Secure Sketches and Suitable Codes

By adding an appropriate interface between a PUF and the system using the PUF, PUFs
can be used by the system to extract random secret bit strings. The interface is designed
to correct measurement errors and, at the same time, amplify the privacy of the corrected
responses with respect to adversaries. The main tool for accomplishing this goal is called
a secure sketch [19]:

Definition 23. A sketch is a pair (SSGen,SSRep) of efficient ppt algorithms. For
x ← X , p ← SSGen(x) computes helper data p ∈ P . We assume x ∈ {0, 1}n . Let x̃
be a noisy measurement of x , i.e., x̃ = x + e for some error vector e ← M. On input
x̃ and p, x̂ ← SSRep(x̃, p) computes an error corrected version of x . We have the
following properties:

• Correctness: If the Hamming weight of error vector e is wt(e) ≤ t , then x̂ = x is
correctly reconstructed. If the Hamming weight of e is wt(e) > t , no guarantee can
be made; hence, the failure probability is at most Pr(wt(e) > t) where e ← M
and M is a probability distribution representing measurement noise.

• Security: The sketch is L-secure if the min-entropy loss

H∞(x) − H̃∞(x | p) ≤ L .

Here,

H∞(x) = − log2 max
x

Pr(x ← X), and

H̃∞(x | p) = − log2 Ep[max
x

Pr(x | p)], (10)

where x and p are jointly distributed according to x ← X and p ← SSGen(x).
H̃∞(x | p) is called the residual min-entropy.

�

A secure sketch can be used to construct a fuzzy extractor that outputs a string that
is nearly uniform and can therefore be used as a secret key. The main idea is to use
a so-called (strong) randomness extractor to output a nearly uniform string on input x
from the secure sketch. Universal hash functions lead to good randomness extractors
but add a significant min-entropy loss (due to the leftover hash lemma). By using a
cryptographic hash function in the random oracle model, which we (initially) do in this
paper (for simplicity), the added min-entropy loss is zero. The hash function reduces the
reconstructed x̂ down to the number of bits given by (10).

The code-offset secure sketch [19] uses a binary code C with decoding algorithm
Dec (e.g., a BCH code or the more recent Polar code achieves small decoding failure
probability in practice [50]). It defines

• p ← SSGen(x) as p = x + w for a uniformly random code word w ∈ C , and

A Theoretical Framework for the Analysis Page 45 of 64 35

• x̂ ← SSRep(x̃, p) as x̂ = p + Dec(x̃ + p). Here, x̃ + p = x̃ + x + w = e + w

and decoding e + w returns w if wt(e) is small enough. If w is returned, then
x̂ = p + w = x .

The failure probability of the sketch is equal to the decoding failure probability of the
decoding algorithm for code C under noise e ← M.

We want to apply the concept of fuzzy extractors to our framework. In order to do
this, we need to work with a slightly more general definition of secure sketches. The
code-offset secure sketch construction can be combined with a PUF if we require a code
C with the properties listed in the next definition. These properties will allow us to prove
a stronger security guarantee than what is offered by a secure sketch. A secure sketch
only assumes that the adversary knows the helper data p, while in our case, the adversary
can also predict responses that were used by the sketch in the first place.

Definition 24. (Suitable Codes) Let C be a set of M binary code words of length n,
i.e., C ⊆ {0, 1}n and |C | = M . Let Dec be a decoding algorithm for C .

We define the decoding failure probability of C with respect to measurement noise
M as

ρ = Pr(w �= Dec(w + e), w ←R C, e ← M).

We define the residual min-entropy of C with respect to B as

κ = H̃∞(e | p) = − log2 Ep[max
e

Pr(e | p)],

where e and p are jointly distributed according to e ← B, p = w + e with w ←R C .
We define the min-entropy loss of C due to coset imbalance with respect to B and

subset size T as θ = log2(1 + θ ′) for

θ ′ = max
l∈{0,1}n

max
T ⊆C+l,|T |=T

Pr(e ∈ T)

Pr(e ∈ C + l) − Pr(e ∈ T)
,

where e ← B; θ is a function of subset size T . �

For the PUF-based random oracle construction in Sect. 11, we assume that the decod-
ing failure probability ρ of C with respect to measurement noise M can be sufficiently
accurately simulated (for practical purposes) by modeling M as a Ber(δh) Bernoulli
distribution with δh defined in (3) that generates error vectors e ← Ber(δh) where each
error entry has probability δh to be equal to 1. This makes the decoding failure probability
ρ a function of δh .

Also, in our security analysis, the PUF-based random oracle construction, B will be
defined as a Ber(τ) Bernoulli distribution that generates error vectors e ← B where
each error entry has probability τ > δ to be equal to 1. Hence, the residual min-entropy
κ is a function of τ . Below we prove a lower bound on the residual min-entropy for a
binary linear code and distribution Ber(τ).

 35 Page 46 of 64 M. van Dijk, C. Jin

Lower bound on the residual min-entropy. Consider a [n, k] binary linear code C . For
each x ∈ {0, 1}n , the set x +C defines a coset of C . Let l ∈ x +C be of minimal weight;
we call this the coset leader. Let L be the set of all coset leaders. Since C is linear, we
can write C + L = {0, 1}n . Hence, we can write p = c + l for c ∈ C and l ∈ L in a
unique way. For T ⊆ {0, 1}n with cardinality |T | = T , this allows us to derive

Ep[max
e

Pr(e | p, e �∈ T)]

=
∑

p

Pr(p)

[
max
e �∈T

Pr(e, p)

Pr(p, e �∈ T)

]

≤
∑

p

Pr(p)

Pr(p, e �∈ T)
[max

e
Pr(e, p)]

=
∑

c∈C

∑

l∈L

Pr(p = c + l)

Pr(p = c + l, e �∈ T)
[max

e
Pr(e, p = c + l)]

=
∑

c∈C

∑

l∈L

Pr(p = c + l)

Pr(p = c + l, e �∈ T)
Pr(e = l, p = c + l)

=
∑

c∈C

∑

l∈L

Pr(e ∈ C + l)/2k

Pr(e ∈ C + l, e �∈ T)/2k
Pr(e = l, c)

=
∑

l∈L

Pr(e ∈ C + l)

Pr(e ∈ C + l, e �∈ T)
Pr(e = l).

By assuming a min-entropy loss of θ = log2(1 + θ ′) of C due to coset imbalance with
respect to Ber(τ) and subset size T , we have

max
T

Pr(e ∈ C + l)

Pr(e ∈ C + l, e �∈ T)

≤ max
T ⊆C+l

Pr(e ∈ C + l)

Pr(e ∈ C + l, e �∈ T)

= max
T ⊆C+l

Pr(e ∈ C + l)

Pr(e ∈ C + l) − Pr(e ∈ T)

= 1 + max
T ⊆C+l

Pr(e ∈ T)

Pr(e ∈ C + l) − Pr(e ∈ T)

≤ 1 + θ ′ = 2θ .

This allows us to continue the previous derivation and obtain

Ep[max
e

Pr(e | p, e �∈ T)]
≤

∑

l∈L

2θ · Pr(e = l)

= 2θ · Pr(e ∈ L).

A Theoretical Framework for the Analysis Page 47 of 64 35

We notice that, for T equal to the empty set, we have equalities in the derivations
above for θ = 0. This proves

H̃∞(e | p, e �∈ T) ≥ −θ + H̃∞(e | p), and

H̃∞(e | p) = − log2 Pr(e ∈ L).

Notice that the cardinality |L| = 2n−k and for r/n ≤ 1/2,

2h(r/n)n

√
2n

≤ 2h(r/n)n

√
8r(1 − r/n)

≤
r∑

i=0

(
n

i

)
≤ 2h(r/n)n,

where h(.) is the binary entropy function. By choosing

h(r/n) = 1 − (k − log2

√
2n)/n,

we have that L covers at most as many vectors as the Hamming sphere around the all-zero
vector of radius r . In truth, L represents a Voronoi region and may not be spherical in
shape; nevertheless, for upper bounding Pr(e ∈ L), this is a reasonable approximation
(in order to get an idea of how to set parameters). By morphing the actual Voronoi
region L into a sphere, we exchange less likely error probabilities by more likely error
probabilities. For r/n < τ < 1/2, this implies

Pr(e ∈ L) ≤
r∑

i=0

(
n

i

)
τ i (1 − τ)n−i

≤ e−n(τ−r/n)2·(1−2τ)−1 ln((1−τ)/τ)

≤ e−2n(τ−r/n)2
,

where the right-hand side upper bounds follows from Hoeffding’s inequality.22 We have

H̃∞(e | p) ≥ − log2 e−2n(τ−r/n)2

= 2n(τ − r/n)2/ ln 2

= 2n(τ − h−1(1 − (k − log2

√
2n)/n))2/ ln 2.

In order to have a small enough decoding failure probability, we cannot exceed the
capacity of the Bernoulli distribution with bit error rate δ, i.e., we must have k ≤

22Hoeffding [51] proved a stronger upper bound: The binomial sum is upper bounded by

(
τ

r/n

)(r/n)n (
1 − τ

1 − r/n

)(1−r/n)n

≤ 2−n(h(τ)−h(r/n)−(τ−r/n) log2((1−τ)/τ))

≤ e−n(τ−r/n)2·(1−2τ)−1 ln((1−τ)/τ),

where h(.) is the binary entropy function.

 35 Page 48 of 64 M. van Dijk, C. Jin

(1 − h(δ))n. Let

k = (1 − h(δ′))n + log2

√
2n with δ < δ′ ≤ τ.

This yields the following lemma.

Lemma 25. Let C be a binary linear [n, k] code. Suppose that dimension k = (1 −
h(δ′))n + log2

√
2n, where h(.) is the binary entropy function. Let B be the Bernoulli

distribution with bit error rate 1/2 > τ ≥ δ′. Then, the residual min-entropy of C with
respect to e ← B has lower bound

H̃∞(e | p) ≥ (τ − δ′)2n · 1

1 − 2τ
log2

(
1 − τ

τ

)

≥ 2

ln 2
(τ − δ′)2n.

Suppose that C has a min-entropy loss of θ due to coset imbalance with respect to B
and subset size T = |T |. Then,

H̃∞(e | p, e �∈ T) ≥ −θ + H̃∞(e | p).

�

Coarse upper bound on the min-entropy loss due to coset imbalance. By the triangle
inequality, we have wt (c + l) ≤ wt (c) + wt (l). This allows us to derive

Pr(e ∈ C + l) =
∑

c∈C

τwt (c+l)(1 − τ)n−wt (c+l)

≥ τwt (l)(1 − τ)n−wt (l) ·
∑

c∈C

(
τ

1 − τ
)wt (c).

Since l is the coset leader in C + l, if T ⊆ C + l, then

Pr(e ∈ T) ≤ T · τwt (l)(1 − τ)n−wt (l).

We define the weight enumerator of code C as the polynomial

W (x) =
∑

c∈C

xwt (c).

This proves

Pr(e ∈ T)

Pr(e ∈ C + l)
≤ T

W (τ
1−τ

)
.

A Theoretical Framework for the Analysis Page 49 of 64 35

From this, we conclude

Pr(e ∈ C + l)

Pr(e ∈ C + l) − Pr(e ∈ T)
≤ 1

1 − T
W (τ

1−τ
)

for all l with T ⊆ C + l. This proves

1 + θ ′ ≤ 1

1 − T/W (τ
1−τ

)
.

Let us assume that C looks like a Binomial distribution. That is, for small x , the weight
enumerator of code C is approximately a scaled version of the polynomial corresponding
to the whole space C = {0, 1}n ,

W (x) ≈ 1

2n−k

n∑

i=0

(
n

i

)
xi .

Assume, therefore, that there exists a constant γ such that

W (x) ≥ γ

2n−k

n∑

i=0

(
n

i

)
xi .

This assumption gives

W

(
τ

1 − τ

)
≥ γ

2n−k

(
1 + τ

1 − τ

)n

= γ 2−n log2(1−τ)−(n−k).

For k = (1 − h(δ′))n + log2

√
2n, we have

1 + θ ′ ≤ 1

1 − γ −1T · 2−(− log2(1−τ)−h(δ′))n−log2
√

2n
.

For δ′ = 0.074 and τ = 0.25, this yields

1 + θ ′ ≤ 1/(1 − γ −1T · 2−0.0344·n−log2
√

2n).

For n = 213, we have that if T ≤ γ · 20.0344·n+7−1 = γ · 2287.5, then 1 + θ ′ ≤ 2; hence,
θ ≤ 1. This holds for T ≤ 2κ and γ ≈ 2−31.5 for κ = 256.

Lemma 26. Let C be a binary linear [n, k] code. Suppose that dimension k = (1 −
h(δ′))n + log2

√
2n, where h(.) is the binary entropy function. Let B be the Bernoulli

distribution with bit error rate 1/2 > τ ≥ δ′. Suppose that the weight enumerator

 35 Page 50 of 64 M. van Dijk, C. Jin

polynomial W (x) of C behaves like a scaled version of the Binomial distribution

W (x) ≥ γ

2n−k

n∑

i=0

(
n

i

)
xi

for some constant γ . Then, for

T ≤ γ · 2(− log2(1−τ)−h(δ′))n+(log2
√

2n)−1,

the min-entropy loss of C due to coset imbalance with respect to B and subset size T is
at most θ ≤ 1. �

Secrecy capacity.We notice that a polar code can be used to achieve the so-called secrecy
capacity of the wire-tap channel asymptotically [52]. Here, the legitimate user receives
messages over the main channel, which produces noise according toM (in our notation).
The adversary receives the same messages over a wire-tap channel which adds noise
fromB (in our notation). Since δ < τ , the secrecy capacity is equal to h(τ)−h(δ), where
h(.) is the binary entropy function. This means that messages of length (h(τ)− h(δ)) ·n
bits can be encoded in n-bit polar code words such that the legitimate receiver can
reconstruct the message bits after receiving the noisy message over the main channel,
and the adversary receives a noisy version of the message which has close to zero mutual
(Shannon) information with the reconstructed message. In our definition, we work with
min-entropy as this has shown to model the best possible prediction of adversaries. (For
more understanding, see the literature on fuzzy extractors and secure sketches.)

11. PUF-Based Random Oracle

As a powerful example of the application of our theoretical framework, we want to
realize a PUF-based random oracle (PRO) as defined next. The PRO primitive has be-
sidesGetResponse two other algorithms:GetIO generates input–output pairs (aux, s),
where the output s represents a random bit string about which the adversary can only
learn negligible information given knowledge of the input aux and a prediction model
of the underlying PUF—the security is defined within the language of our framework.
GetOutput takes the input aux of a pair and is able to reconstruct the output s by
calling GetResponse. Correctness defines the failure probabilities of both algorithms
and defines that GetOutput correctly recovers the secret random bit string s if it does
not fail.

In essence, the PRO primitive behaves exactly like a PUF, but now without significant
measurement noise (we have small failure probabilities) and without the adversary being
able to model the output of the PRO primitive, so, no prediction model with significant
accuracy. So, both the reliability and software unclonability properties of the PUF are
amplified.

The PRO primitive itself is useful in larger systems/protocols that use PUFs as a basis
for their security. In fact, other systems/protocols often assume an idealized picture where

A Theoretical Framework for the Analysis Page 51 of 64 35

the PUF is equated to pseudorandom function. The PRO primitive, which is based on the
realistic assumption that an adversary has a software model of the underlying PUF with
significant accuracy, provides justification to the security of these systems/protocols.

Definition 27. (PUF-based Random Oracle (PRO)) We define a PUF-based random
oracle as a triple

PRO = (GetResponse,GetIO,GetOutput)

with the following properties

• Functionality.Algorithms (GetIO,GetOutput) have access to a PUFP through
GetResponse; let ϒP be the set of corresponding system-induced distributions
over CRPs of P . Upon input seed, GetIO either generates a pair
(aux, s) ← GetIO(seed) or fails. Upon input aux, GetOutput either gener-
ates ŝ ← GetOutput(aux) or fails.

• Correctness. We call (Fio-ro, Fout-ro) a pair of failure probabilities for PRO if

– the probability GetIO(seed) fails over a random uniformly chosen seed is at
most Fio-ro,

– the probability that GetOutput(aux) fails over (aux, ·) ← GetIO(seed) is
at most Fout-ro, and

– if (aux, s) ← GetIO(seed) and ŝ ← GetOutput(aux) (both do not fail),
then ŝ = s with probability at least 1 − negl(κ), where κ represents the bit
security defined next.

• Security. Let QP output problem instances aux by calling (aux, s) ← GetIO-
ROh ; the associated problem for an adversary A is to guess the correct solution s
(when GetIO-ROh does not fail) by playing SecGameSys(Q,P, ϒP ,A, k, T),
where ϒP is the set of system-induced CRP distributions used by PRO. Suppose
that the probability that the adversary wins is at most εwin(k, T) as a function of
k (number of PUF queries by A) and T (run time of A). We say that PRO has
κ-bit security for k PUF queries with respect to A with run time poly(t) if, for
T = poly(t),

εwin ≤ T 2−κ .

�

In the introduction, we sketched (for future work) how PRO can be used in combination
with an OTS-SKE signature scheme to construct a remote attestation (RA) protocol
which does not rely on confidential digital computing. The failure probabilities of PRO
will directly translate into failure of the RA protocol. Typical probabilities of 0.001 or
0.0001 will require the remote verifier to repeat the RA protocol once every 1000 of
10.000 times, acceptable in practice.

Algorithms 4 and 5 code the interface of an PRO primitive based on a PUF P . To get
an input–output pair, algorithm 4 calls GetResponse multiple times through GetReli-
ableCRPh which is, in turn, called multiple times in Neumann-GetReliableCRPh .

 35 Page 52 of 64 M. van Dijk, C. Jin

This leads to a pre-challenge vector cprevec of λn bits. (We will discuss how to compress
this in the next remark.)

We follow the code-offset sketch construction [19] based on a suitable code, see
Definition 24, to compute helper data p, and we hash the corresponding response vector
rvec down to κ bits, where κ is the residual min-entropy of code C with respect to an
appropriate Bernoulli distribution (discussed later).

To get an output from an input, algorithm 5 first calls GetResponse multiple times to
get an estimate r̃vec of rvec. We use the code-offset sketch construction to first decode
p + r̃vec to a code word w̃ which is then used to recover r̂vec. The result is hashed down
to ŝ. The failure probability Pr(ŝ �= s) = Pr(r̂vec �= rvec) = Pr(ŵ �= w) is equal to
the decoding failure probability ρ of C with respect to a distribution M representing
measurement noise: Since only reliable CRPs from GetReliableCRPh are used, we
may assume that M behaves like Ber(δh) and ρ(δh) is a function of δh .

The PRO interface represented by GetIO-ROh and GetOutput-RO should have a
small (decoding) failure probability ρ for typical PUF measurement noise and should
produce a secret s that has κ bits, where κ is at least the security parameter (bit security)
of the system using secret s (as a result of interfacing with RO).

In Algorithms 4 and 5, we use a hash Hashκ which extracts a random κ-bit string s
from an n-bit response vector. For simplicity, we assume Hashκ in the random oracle
model, but note that this can be replaced by a strong randomness extractor based on a
universal family of hash functions [53], see our security analysis below.

Algorithm 4 Generating PRO input–output pairs
1: procedure GetIO-ROh
2: for j ∈ {0, . . . , n − 1} do
3: (cpre, j , r j) ←Neumann-GetReliableCRPh
4: end for
5: cprevec = {cpre, j }n−1

j=0; rvec = {r j }n−1
j=0

6: w ←R C ; p = rvec + w

7: s = Hashκ (rvec)
8: return ((cprevec, p), s)
9: end procedure

Algorithm 5 Recovering PRO output from input
1: procedure GetOutput-RO(cprevec, p)

2: {cpre, j }n−1
j=0 = cprevec

3: for j ∈ {0, . . . , n − 1} do
4: r̃ j ←GetResponse(cpre, j)
5: end for
6: r̃vec = {r̃ j }n−1

j=0
7: w̃ ← Dec(p + r̃vec); r̂vec = p + w̃; ŝ = Hashκ (r̂vec)
8: return ŝ
9: end procedure

A Theoretical Framework for the Analysis Page 53 of 64 35

Pre-challenge vector compression. We discussed how GetReliableCRPh can use
a random input seed which which pre-challenges are computed. We argued that this
avoids the use of a TRNG. Here, we may also extend GetIO-ROh with an input seed
as a goal to not only avoid the use of a TRNG in the underlying calls to GetReli-
ableCRPh but also to provide a compressed representation of the generated vector of
pre-challenges cprevec. The main idea is to keep the loop count number j for the loop that
calls Neumann-GetReliableCRPh , the loop count number b for the loop that defines
Neumann-GetReliableCRPh , the index i = 0 or i = 1 for the two calls to GetReli-
ableCRPh in a single loop in Neumann-GetReliableCRPh , and a loop count number
a in GetReliableCRPh . In GetReliableCRPh , we call GetResponse(cpre) for

cpre = Hash(seed‖a‖i‖b‖ j). (11)

We remember the loop counts a and b for each j of the associated cpre =
Hash(seed‖a‖0‖b‖ j) returned by Neumann-GetReliableCRPh in GetIO-ROh . We
denote these loop counts by a j and b j . The sequence of pre-challenges returned by
GetIO-ROh are now defined by

cpre, j = Hash(seed‖a j‖0‖b j‖ j).

Hence, rather than storing cprevec, we store

(seed, {(a j , b j)}n
j=1). (12)

Notice that we can also use seed as input to a hash function for selecting a random code
word w ←R C ; also, here, we can avoid using a TRNG.

In order to avoid collisions in the hash function, we need all a j to be of fixed length/size,
say na bits, and all b j to be of fixed size, say nb bits. This means that the respective
loops may run out before a ‘good’ pre-challenge is found, and this leads to a failure
probability for GetIO-ROh . We will analyze this in the next theorem. As a remark, we
note that we have compressed the λn bits of cprevec down to (na + nb) · n bits.
Failure detection. We notice that GetIO-RO may also output another hash Hash′(s) of
s.GetOutput-RO can use this hash of s to verify against the same hash of ŝ. This allows
it to detect whether there is a failure to produce ŝ = s. If detected, then GetOutput-RO
outputs a fail.

Theorem 28. (PUF-based Random Oracle theorem) GetResponse with GetIO-RO
and GetOutput-RO of Algorithms 4 and 5 with pre-challenge vector compression and
a collision-resistant hash Hash′ with security parameter23 κ for failure detection define
a PUF-based random oracle PRO:

• With respect to security,

23See Definition 30.

 35 Page 54 of 64 M. van Dijk, C. Jin

– Suppose that P has challenge space CP = {0, 1}λ with correlation bias at
most

εcorbias ≤ 2−(κ+5.946)

nh2na+1(1 + 2nb)
.

over the canonical system-induced CRP distribution Y∗
1 , where n is the length

of the code words in C and λ = �(κ).
– Let Ax be an adversarial model with Ax ⊆ AU .
– Suppose that P is a (k, t, εcorpred)-secure PUF for correlations with respect

to A that are within the Ax -model and with respect to system-induced CRP
distribution Y∗

neu,h. Define

τ = 1/2 − (h2na εcorbias + εcorpred)

and let B be the distribution that generates statistically independent errors
ê j ← Ber(τ).

– Assume that QP is csep-separable within the Ax -model for csep = 2κ−5.946.
– Suppose that C is a binary linear code and has a min-entropy loss of at most

θ due to coset imbalance with respect to B and subset size 2κ . (For θ to be a
small constant, this requires the dimension of C to be �(κ).) Suppose that the
residual min-entropy of C with respect to B is at least 2κ + θ .

Then, for T = poly(t) we have QP is (k, T, εwin)-system secure with respect to
all A within the Ax -model for system-induced distribution Y∗

neu,h for

εwin ≤ T 2−κ .

We may replace hash Hashκ in the random oracle model by a strong randomness
extractor; this requires csep = 2κ−10.892 and residual min-entropy at least 3κ +
θ + 10.892 (an additional min-entropy loss due to the leftover hash lemma).

– With respect to correctness, we have a pair of failure probabilities (Fio-ro,h, Fout-ro,h)

defined by

Frel,h = (1 − EY1 [ph
c + (1 − pc)

h])2na
,

Fneu,h ≤ (1 − 2qYh
0 qYh

1 · (1 − h2na εcorbias)(1 − 2Frel,h) + 2Frel,h)2nb
,

Fio-ro,h ≤ n · Fneu,h,

Fout-ro,h ≈ ρ(δh).

�

Interpretation—A TCB without confidential digital computing or digital secrets.
Assuming that current-state-of-the-art advanced ML attacks on the iPUF train predic-
tion models with accuracy at most a concrete number of percentage points less than
100%, then concrete parameter settings exist for meeting the conditions of Theorem 28

A Theoretical Framework for the Analysis Page 55 of 64 35

with Ax = AU . (An example is given below.) The parameter setting gives rise to a
more efficient PUF-based random oracle PRO (in computation and number of calls to
GetResponse) if the prediction accuracy is lower (e.g., more in the range of 75%).

The adversarial AU -model is very strong: The TCB does not include any confiden-
tial digital computing or digital secrets. For example, using a fuzzy extractor (that is,
a combination of a secure sketch with a randomness extractor) without considering the
adversarial capability of being able to train a prediction model for the underlying PUF
means that no CRPs should be revealed to the adversary—the very weak AN -model.
This means that the fuzzy extraction computation must be done in a confidential com-
puting environment, e.g., implemented by specialized isolated hardware or a general
purpose secure processor architecture. But even in this weak model, helper data can
reveal information about the bits in the response vector; after all, we only require a
residual min-entropy of a much smaller number of bits compared to the length of the
vector out of which a secret bit string is extracted. And information about response bits
may allow an adversary to train some sort of prediction model—at least in theory, this
may be possible24 (although we do not know how to do this in practice). Our framework
clarifies the situation. Our analysis shows that a PUF-based random oracle can be con-
structed and implemented, and without a TCB that requires some form of confidential
digital computing.

We notice that we may use hardware isolation to further restrict access to the PUF. For
example, the PRO primitive may execute in its own ‘enclave’ and allow only the PRO
enclave access toGetResponse. ThePRO enclave may use an authenticated search tree
approach like the one for programmable erasable PUFs in [32] to limit theGetResponse
usage per challenge. This enforces the AR−x -model (with x at least h +1). Other system
applications may connect to the PRO-primitive through local attestation (which can be
made secret-free by using Sanctum’s approach that implements a physically isolated
channel between enclaves using the concept of mailboxes [54]).

The AR-model (AR = AR−1) can only be realized if h = 1 and GetIO-ROh com-
putations cannot be observed. This either assumes PRO is part of a system enclave
where adversaries can only be present during ‘normal operation’ (during which only
GetOutput-RO is called) or we have a TCB that computes GetIO-RO1 in a confiden-
tial executing environment.
Concrete parameter setting. The various conditions of Theorem 28 are realistic: We
already discussed why εcorbias is expected to be negl(λ) for Y1 close to the uniform
distribution. (And for this reason we assume λ = �(κ) so that the upper bound (5)
on εcorbias can hold.) We are in the AU model where the adversary has access to Ge-
tResponse. (And may have additional access restrictions.) We expect τ ≥ 25% for
reasonable training data set sizes k and large t ; hence, the condition T = poly(t) just
translates into assuming feasible computing times for a real adversary in practice. The
separability assumption states in this context that we do not know how to find a much
more efficient method that learns how to predict the response vector r ′

vec from training
data together with the helper data aux. (The winning probability cannot be improved
beyond an exponentially large multiplicative factor of order 2κ .)

24The computational fuzzy extractor, called LPN-PUF, does show that its published helper data cannot be
used to extract underlying response information. But it still needs confidential computing in its TCB.

 35 Page 56 of 64 M. van Dijk, C. Jin

Let us consider δ = 0.1 and τ = 0.25 with 2qY1
0 qY1

1 ≈ 2 · 0.55 · 0.45 = 0.495.
Suppose that a small value for h, say h = 4, pushes δ down to δh = 0.06, a few
percentage points less.

Suppose that qYh
r ≈ qY1

r , then 2qYh
0 qYh

1 ≈ 0.495. By choosing na = log κ and
nb = log κ and by aiming for κ = 256, we achieve a small failure probability Fio-ro,h
(exponentially small in κ).

Let δ′ = 0.074. We choose a polar code of length n = 213 and dimension k =
(1−h(δ′))n + log2

√
2n = 0.619 ·n +7 = 5080. The polar code is known for achieving

capacity (1 − h(δ))n = 0.673 · n for large n. In our case, 0.673 · n = 5509 � 5080
and we can expect that the decoding failure probability ρ(δh) is small; hence, Fout-ro,h

is small.25

Notice that k is 20 times larger than κ = 256 making θ ≤ 1 a realistic assumption on
the min-entropy loss due to coset imbalance. (The size of a coset is about 220·κ , where
T = poly(t) � 2κ .) If the weight enumerator polynomial of C looks like a scaled
version of the Binomial distribution (i.e., C looks like a random code), then a coarse
upper bound follows from Lemma 26 with T ≤ γ · 2287.5; hence, γ ≈ 2−31.5 allows
T ≤ 2κ with θ = 1.

We use a strong randomness extractor, and this requires a residual min-entropy of at
least 3κ + θ + 10.982 = 3κ + 11.982. We apply the best lower bound on the residual
min-entropy of Lemma 25 and obtain 804.4. This restricts κ to ≤ 264, and we can indeed
realize κ = 256.

By substituting na = nb = log κ = 8, we require εcorbias ≤ 2−(κ+5.946)/(2nhκ(1 +
κ)) ≈ 2−294. We may assume that each component Arbiter PUF in, e.g., the iPUF design
gets its own challenge of 64 bits generated out of a pre-challenge by means of a PRG
or hash-based scheme. By using multiple numbers a ≥ 5 of component Arbiter PUFs,
we have 64 · a ≥ 294 and our earlier argument holds and it is reasonable to assume that
εcorbias is indeed small enough and satisfies the condition.

Proof of Theorem 28: Correctness. See Definition 3, the probability that all h measure-
ments for a c = Hash(cpre) in GetReliableCRPh agree is equal to ph

c + (1 − pc)
h .

Since we assume Hash in the random oracle model with respect to Y1 (corresponding
to GetResponse), the different challenges c = Hash(cpre) for cpre defined by (11) for
0 ≤ j ≤ n − 1, 0 ≤ a ≤ 2na − 1, 0 ≤ b ≤ 2nb − 1, and i ∈ {0, 1} are randomly
drawn from Y1. This shows that each while loop in GetReliableCRPh called during
the execution of GetIO-ROh will take (EY1 [ph

c + (1 − pc)
h])−1 iterations in expecta-

tion. For small h, this is a small number, and for this reason, we can set na to a small
number. If GetReliableCRPh cannot find a reliable CRP after 2na loop iterations, then
GetReliableCRPh fails. This leads to failing probability

Frel,h = (1 − EY1[ph
c + (1 − pc)

h])2na
, (13)

which we can design to be very small for na large enough. (Notice that Frel,1 = 0.)

25Precise simulation for a polar code is beyond the scope of this paper; this parameter setting only serves
as an example since polar codes only achieve capacity for large n, and a realistic parameter setting may need
a larger n in order to achieve small ρ(δh).

A Theoretical Framework for the Analysis Page 57 of 64 35

Our analysis of Neumann-GetReliableCRPh shows in (6) that, conditioned on Ge-
tReliableCRPh not failing, the probability that an iteration inNeumann-GetReliableCRPh

produces a final output is equal to

2qYh
0 qYh

1 · (1 ± εcorbias,h),

where εcorbias,h ≈ h2na εcorbias. Hence, the failing probability of
Neumann-GetReliableCRPh not being able to find distinct responses r0 �= r1 (that
lead to the final output) in 2nb loop iterations is equal to

Fneu,h (14)

=
(

(1 − 2qYh
0 qYh

1 · (1 ± εcorbias,h))(1 − Frel,h)2

+(1 − (1 − Frel,h)2)

)2nb

≤ (1 − 2qYh
0 qYh

1 · (1 − εcorbias,h)(1 − 2Frel,h) + 2Frel,h)2nb
,

which can be made small for large enough nb.
This leads in turn to the failing probability Fio-ro,h of GetIO-ROh . Since GetIO-ROh

does not fail only if none of the n calls to Neumann-GetReliableCRPh fail, we have

Fio-ro,h = 1 − (1 − Fneu,h)n ≤ n · Fneu,h . (15)

For appropriately chosen na and nb in relation to n, this can be made small in practice.
We already discussed the failure probability Fout-ro,h of GetOutput-RO which is

equal to the decoding failure probability ρ of C with respect to distribution M repre-
senting measurement noise. We may assume that ρ is approximately equal to the failure
probability of C with respect to distribution Ber(δh):

Fout-ro,h ≈ ρ(δh), (16)

where δh indicates the dependency of ρ on δh for the Bernoulli distribution.
Larger h for a given code C implies smaller Fout-ro,h . One needs to design a good

combination of h with a suitable code C such that Fout-ro,h is small enough and the
residual min-entropy κ is large enough26 for generating secrets. �

Proof of Theorem 28: Security. We notice that HardnessQError fits the definition of
a security game, see [41]: ‘An n-bit security game is a game played by an adversary
interacting with a challenger. At the beginning of the game, the challenger chooses a
uniformly random secret x ∈ {0, 1}n , represented by the random variable X . At the end
of the game, the adversary outputs some value v, represented by the random variable V .
The goal of the adversary is to output v such that R(x, v) = 1, where R is a Boolean
function. The adversary may output a special symbol ⊥ such that R(x,⊥) = 0 for any
x . During the game, the adversary or challenger may obtain a sample from a distribution

26Even if κ is small, we can use code C multiple, say m, times to scale κ up to mκ . This does mean that
Fout-ro,h will be multiplied with m as well.

 35 Page 58 of 64 M. van Dijk, C. Jin

Q. The success probability of the adversary is Pr(R(X, V) = 1, V �= ⊥), where
the probability is taken over the randomness of the entire security game, including the
randomness of the adversary.’ In our case, the challenger obtains a sample ĝ ← Q̂
(the role of X) and the adversary guesses ŝ �= ⊥ (the role of V) given ĝ. The success
probability of the adversary is Pr(VerH(ĝ, ŝ)) ≤ εhard (VerH plays the role of R). (The
⊥ symbol can capture the special case in which Q̂ fails to produce a proper problem
instance ĝ or the adversary declares a failure of the attack.) The definition of bit security
is consistent with the so-called bit security for a primitive based on a security game.

Q̂ may query some probability distribution (other than the E or R mentioned above).

For example, Q̂ may query q
(Y∗

neu,h)×d

r as a distribution over response vectors r of length
d. Now, we can apply Theorem 1 in [41] together with (5) and noting that the derivation

of Lemma 11 proves that q
(Y∗

neu,h)×d

r and the uniform distribution U over {0, 1}d form a
so-called 2−(κ+5.946)/2-Hellinger close pair:

Lemma 29. Let Q̂ with query access to the uniform distribution U over {0, 1}d be
(κ + 5.946)-bit secure. Suppose that PUF P has correlation bias at most εcorbias over

the distribution Y∗
1 of CRPs generated by GetResponse. Consider q

(Y∗
neu,h)×d

r with na

and nb satisfying (5). Then, Q̂ with query access to q
(Y∗

neu,h)×d

r is κ-bit secure. �

In our security proof, we will see how QE also queries a uniform distribution U and

how QR can be seen as querying q
(Y∗

neu,h)×d

r instead.
See Definition 18, in order to win QR, adversary A1 needs to guess the correct

extracted secret s given knowledge of aux = (cprevec, p), where p = rvec + w with
w ←R C , and given a predicted response vector r ′

vec. Since s is a result of a hash
evaluation in the random oracle model, the adversary either needs to guess the correct
rvec (by computing/solving information about rvec) or guess s according to a uniform
distribution. (And verify against the hash of s used for detecting failures.) The latter has
a success probability of q2−κ , where q ≤ T is the total number of guesses and T is
the running time of the adversary. (Hence, the adversary can at most guess and verify T
values for s.)

The remaining time T − q can be used for computing information about rvec. Since
s is a result of the random oracle model, the adversary can at best use s in combination
with its hash for detecting failures to exclude at most T vector values rvec. (If there
is a successful attempt, then this is covered by the q2−κ probability above.) In other
words, knowledge about the hash of s translates in the best case to knowing a set T of
cardinality |T | = T for which rvec /∈ T . This is used in the next derivation (instead of
knowledge of the hash of s).

Let evec = r ′
vec + rvec. We derive

Pr(rvec | cprevec, rvec + w, r ′
vec, rvec �∈ T)

= Pr(rvec | cprevec, rvec + w, rvec + evec, rvec �∈ T)

= Pr(evec | cprevec, rvec + w, rvec + evec, rvec �∈ T)

= Pr(evec | cprevec, evec + w, rvec + evec, rvec �∈ T).

A Theoretical Framework for the Analysis Page 59 of 64 35

We may equivalently cast problem instances of QR as the task to guess the correct
evec given cprevec, evec + w, rvec + evec, and rvec �∈ T . In order to create such a
problem instance, QR can be simulated by (1) querying rvec = r according to probability

q
(Y∗

neu,h)×n

r conditioned on r �∈ T , where n is the length of the response vector, and
(2) querying evec according to distribution E as defined in Definition 18. (And draw
w ←R C .)

Now, consider QR
u where distribution q

(Y∗
neu,h)×n

r is replaced by the uniform distri-
bution U . By Lemma 29 for d = n and the assumed upper bound on εcorbias, if QR

u is
(κ ′ + 5.946)-bit secure, then QR is κ ′-bit secure. Let T ′ = {(rvec + evec) + r | r ∈ T }.
Notice that for QR

u ,

Pr(evec | cprevec, evec + w, rvec + evec, rvec �∈ T)

= Pr(evec | cprevec, evec + w, evec �∈ T ′)
= Pr(evec | evec + w, evec �∈ T ′).

In other words, given evec + w and evec �∈ T ′, the adversary needs to guess evec. We
redefine this problem as QE and conclude that QE is an error-based equivalent of QR

up to factor eequiv = 5.946, see Definition 18. Also, clearly, QE becomes simpler in the
presence of an error-reducing oracle. These properties satisfy one of the conditions of
Theorem 22.

Lemma 11 shows that q
Y∗
neu,h

r ≤ 1
2 + h2na εcorbias + O((h2na εcorbias)

2); hence, τ has
the same form as the one defined in Theorem 22.

For B = Ber(τ), we define QB as a distribution that generates problem instances
where the adversary needs to guess evec given evec + w, evec �∈ T ′, and evec ← B.

The residual min-entropy of code C with respect to B is assumed to be 2κ + θ bits.
The min-entropy loss of C due to coset imbalance with respect to B and subset size T
is at most θ . By Lemma 25, we have

H̃∞(e | p, e �∈ T) ≥ −θ + H̃∞(e | p) ≥ 2κ,

where e and p are jointly distributed according to e ← B, p = w + e with w ←R C .
We may conclude that QB is 2κ-bit secure. (Notice that this means that we use κ ′ = 2κ

for λ in Theorem 22.)
We satisfy all conditions of Theorem 22 and conclude that for running time T − q,

the probability of winning

εwin ≤ csep · (T − q)25.9462−2κ = (T − q)2−κ .

Adding the guessing probability q2−κ proves the security property for Hashκ in the
random oracle model.

Proof of Theorem 28: Strong randomness extractor. The construction depends on the
hash function Hashκ used for extracting secret s in GetIO-ROh and GetOutputh .
Hashκ can be replaced by a strong randomness extractor, and this eliminates assuming
Hashκ in the random oracle model.

 35 Page 60 of 64 M. van Dijk, C. Jin

The main idea is to use a universal family H of hash functions ∈ {0, 1}n → {0, 1}m of
size |H| = 2d . Universal means that for all x, x ′ ∈ {0, 1}n with x �= x ′, the probability
that H(x) = H(x ′) is at most 2−m where the probability is taken over uniform random
H ∈ H. The randomness extractor is defined as Ext(x, H) = H(x). If m = k +
1 − 2 log(1/ε), then Ext is a (k, ε)-Hellinger extractor according to the leftover hash
Lemma for Hellinger, see Theorem 3 in [41]. This means that for every random variable
X over {0, 1}n with min-entropy at least k, it holds that the Hellinger distance between
distribution (Ext(X, Ud), Ud) and Um+d is at most ε. Here, Ud is the random variable
representing a uniform drawing from {0, 1}d indicating the used hash function H ∈ H
and Um+d can be regarded as an (m + d)-bit output of a function evaluated in X that
cannot be distinguished from a random oracle; hence, Um+d draws uniform (m + d)-
bit strings. In GetIO-ROh , we select H ←R H (this can also be given as input to
GetIO-ROh together with seed as discussed earlier in this section) and evaluate s =
Ext(rvec, H) = H(rvec) instead of s = Hashκ(rvec) and return ((cprevec, p, H), s).
GetOutput-RO receives the additional input H and computes ŝ = H(r̂vec). By setting
ε = 2−(κ"+5.946)/2, we require m = k − κ" − 4.946, i.e., k = m + κ" + 4.946. We want
to output m = κ random bits (coded in s); hence, k = κ" + κ + 4.946. This means that
we require a residual min-entropy of C with respect to B of at least k.

By setting ε = 2−(κ"+5.946)/2, we may conclude from Theorem 1 in [41] that if ourRO
construction with distribution (Ext(X, Ud), Ud) replaced by Um+d leads to a QR which
is (κ" + 5.946)-bit secure, then QR with randomness extractor Ext is κ"-bit secure.
In our proof above, this implies that QR with randomness extractor has error-based
equivalent QE up to a factor eequiv = 2 · 5.946; we now apply Theorem 1 in [41] twice
and set κ" = κ ′ + 5.946 in the proof of our security lemma. We compensate for this by
requiring csep = 2κ−2·5.946. Also, notice that in the proof of our security lemma, we set
κ ′ = 2κ + θ ; hence, the residual min-entropy of C with respect to B must be at least
k = κ" + κ + 4.946 = κ ′ + κ + 10.892 = 3κ + θ + 10.892 (rather than 2κ + θ in our
security lemma for Hashκ in the random oracle model). This shows how the leftover
hash lemma introduces an extra (significant) min-entropy loss. �

12. Conclusion

In the literature, we have seen how a FE interface on top of a weak PUF uses CRPs
for obfuscating a single key; this requires confidential computing. Computational FE
based on the LPN problem still requires confidential computing but can extract many
random bit strings out of a weak PUF. We may also apply FE to a strong PUF in order to
generate many random bit strings; besides that this again requires and uses confidential
computing, also the generated helper data can in theory be used to learn information
about CRPs for training a prediction model—no rigorous security analysis capturing
this attack possibility exists. Our framework allows rigorous security proofs for PUF
interfaces. In particular, the PRO design leads to a random oracle with a small failure
probability for which the bit security is precisely characterized. PRO does not rely on
any confidential digital computing or digital secrets, and the adversary is allowed to train
and use a PUF prediction model with accuracy typically up to 75%. This closes a major
gap in PUF literature. Our framework, lemmas, and theorems can be used to analyze the

A Theoretical Framework for the Analysis Page 61 of 64 35

security of other PUF interfaces as well and motivate the search for strong PUF designs
with better security reliability trade-offs for various adversarial models.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Cryptographic hash function

Definition 30. (Cryptographic Hash Functions) A cryptographic hash function y = Hash(x)with a security
parameter λ is a cryptographic primitive that takes as input a message x ∈ {0, 1}lx and generates (in poly(lx)

time) a digest y ∈ {0, 1}ly , where lx ≥ ly . A family of cryptographic hash functions with parameters lx and
ly is a set of cryptographic hash functions {Hashs (x)}s∈{0,1}lx , where s plays the role of ‘seed.’ The family
of cryptographic hash functions is secure if lx = O(λ) and satisfies the following three properties:

1. Pre-image Resistance. Given y = Hashs (x) : x ←R {0, 1}lx , s ←R {0, 1}lx , the probability
AdvHashPre that there exists a ppt adversary A(1lx , s) who can output x ′ ∈ {0, 1}lx : y = Hashs (x ′)
is negligible in λ. A pre-image-resistant hash function is also called a one-way function.

2. Second-Pre-imageResistance.Given x ←R {0, 1}lx and s ←R {0, 1}lx , the probabilityAdvHashSec

that there exists a ppt adversary A(1lx , s) who can output x ′ ∈ {0, 1}lx : Hashs (x) = Hashs (x ′), x �=
x ′ is negligible in λ.

3. Collision Resistance. Given the hash function Hashs () : s ←R {0, 1}lx , the probability AdvHashCol

that there exists a ppt adversaryA(1lx , s)who can output x, x ′ ∈ {0, 1}lx : Hashs (x) = Hashs (x ′), x �=
x ′ is negligible in λ.

Based on [55], we know

AdvHashPre ≤ 2AdvHashSec + 2ly−lx

≤ 2AdvHashCol + 2ly−lx .

�

Definition 31. (Hash Function in the Random Oracle Model) We define a random oracle with respect to the
uniform distribution over {0, 1}ly as a function RO(x) that takes as input a message x ∈ {0, 1}lx and outputs
a message y that is uniformly selected from {0, 1}ly with replacement (meaning that if an input x is queried
twice, then RO returns the same output value y for both queries)—let R(lx , ly) be the set of all such random
oracle functions.
We may define a hash function in the random oracle model as follows:

HashRO(·)(x) = RO(x).

This defines the standard random oracle model, and this definition of the hash function satisfiesAdvHashCol ≤
T 2/2lx where T = poly(lx) is the number of queries by adversary A(1lx) to HashRO(·)(x) = RO(x) [56].
If we consider a family of hash functions with parameters lx = O(λ) and ly in the random oracle model, then
we have the property that for all ppt distinguishers D the following distinguishing advantage is negligible in
lx :

∣∣∣∣∣
Prs←R {0,1}lx (DHashs (·)(1lx) = 1)

−PrRO←RR(lx ,ly)(DRO(·)(1lx) = 1)

∣∣∣∣∣ .
�

http://creativecommons.org/licenses/by/4.0/

 35 Page 62 of 64 M. van Dijk, C. Jin

References

[1] R. Pappu, B. Recht, J. Taylor, N. Gershenfeld, Physical one-way functions. Science 297(5589), 2026–
2030 (2002)

[2] B. Gassend, D. Clarke, M. Van Dijk, S. Devadas, Silicon physical random functions, in Proceedings of
the 9th ACM Conference on Computer and Communications Security (2002), pp. 148–160

[3] M. Potkonjak, V. Goudar, Public physical unclonable functions. Proceedings of the IEEE 102(8), 1142–
1156 (2014)

[4] U. Rührmair, Q. Chen, M. Stutzmann, P. Lugli, U. Schlichtmann, G. Csaba, Towards electrical, integrated
implementations of simpl systems, in IFIP International Workshop on Information Security Theory and
Practices (Springer, 2010), pp. 277–292

[5] D. Lim, J.W. Lee, B. Gassend, G.E. Suh, M. Van Dijk, S. Devadas, Extracting secret keys from integrated
circuits. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 13(10), 1200–1205 (2005)

[6] G.E. Suh, S. Devadas, Physical unclonable functions for device authentication and secret key generation,
in 2007 44th ACM/IEEE Design Automation Conference (IEEE, 2007), pp. 9–14

[7] J.W. Lee, D. Lim, B. Gassend, G.E. Suh, M. Van Dijk, S. Devadas, A technique to build a secret key
in integrated circuits for identification and authentication applications, in 2004 Symposium on VLSI
Circuits. Digest of Technical Papers (IEEE Cat. No. 04CH37525) (IEEE, 2004), pp. 176–179

[8] C. Brzuska, M. Fischlin, H. Schröder, S. Katzenbeisser, Physically uncloneable functions in the universal
composition framework, in Annual Cryptology Conference (Springer, 2011), pp. 51–70

[9] U. Rührmair, Oblivious transfer based on physical unclonable functions, in International Conference on
Trust and Trustworthy Computing (Springer, 2010), pp. 430–440

[10] R. Ostrovsky, A. Scafuro, I. Visconti, A. Wadia, Universally composable secure computation with
(malicious) physically uncloneable functions, in Annual International Conference on the Theory and
Applications of Cryptographic Techniques (Springer, 2013), pp. 702–718

[11] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, J. Schmidhuber, Modeling attacks on physical
unclonable functions, in Proceedings of the 17th ACM Conference on Computer and Communications
Security (2010), pp. 237–249

[12] U. Rührmair, J. Sölter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova, G. Dror, J. Schmidhuber, W.
Burleson, S. Devadas, Puf modeling attacks on simulated and silicon data. IEEE transactions on infor-
mation forensics and security 8(11), 1876–1891 (2013)

[13] U. Rührmair, X. Xu, J. Sölter, A. Mahmoud, M. Majzoobi, F. Koushanfar, W. Burleson, Efficient power
and timing side channels for physical unclonable functions, in International Workshop on Cryptographic
Hardware and Embedded Systems (Springer, 2014), pp. 476–492

[14] F. Ganji, S. Tajik, F. Fäßler, J.-P. Seifert, Strong machine learning attack against pufs with no mathematical
model, in International Conference on Cryptographic Hardware and Embedded Systems (Springer,
2016), pp. 391–411

[15] G.T. Becker, The gap between promise and reality: On the insecurity of xor arbiter pufs, in International
Workshop on Cryptographic Hardware and Embedded Systems (Springer, 2015), pp. 535–555

[16] N. Wisiol, C. Mühl, N. Pirnay, P.H. Nguyen, M. Margraf, J.-P. Seifert, M. van Dijk, U. Rührmair, Splitting
the interpose puf: A novel modeling attack strategy. IACR Transactions on Cryptographic Hardware
and Embedded Systems 97–120 (2020)

[17] J. Tobisch, A. Aghaie, G.T. Becker, Combining optimization objectives: New modeling attacks on strong
pufs. IACR Transactions on Cryptographic Hardware and Embedded Systems 357–389 (2021)

[18] P.H. Nguyen, D.P. Sahoo, C. Jin, K. Mahmood, U. Rührmair, M. van Dijk, The interpose puf: Secure puf
design against state-of-the-art machine learning attacks. IACR Transactions on Cryptographic Hardware
and Embedded Systems 243–290 (2019)

[19] Y. Dodis, L. Reyzin, A. Smith, Fuzzy extractors: How to generate strong keys from biometrics and other
noisy data, in International Conference on the Theory and Applications of Cryptographic Techniques
(Springer, 2004), pp. 523–540

[20] H. Kang, Y. Hori, T. Katashita, M. Hagiwara, K. Iwamura, Cryptographie key generation from puf
data using efficient fuzzy extractors, in 16th International Conference on Advanced Communication
Technology (IEEE, 2014), pp. 23–26

A Theoretical Framework for the Analysis Page 63 of 64 35

[21] J. Delvaux, D. Gu, I. Verbauwhede, M. Hiller, M.-D.M. Yu, Efficient fuzzy extraction of puf-induced se-
crets: Theory and applications, in International Conference on Cryptographic Hardware and Embedded
Systems (Springer, 2016), pp. 412–431

[22] B. Fuller, X. Meng, L. Reyzin, Computational fuzzy extractors. Information and Computation 275,
104602 (2020)

[23] R. Ueno, K. Kazumori, N. Homma, Rejection sampling schemes for extracting uniform distribution from
biased pufs. IACR Transactions on Cryptographic Hardware and Embedded Systems 86–128 (2020)

[24] C. Herder, L. Ren, M. Van Dijk, M. Yu, S. Devadas, Trapdoor computational fuzzy extractors and stateless
cryptographically-secure physical unclonable functions. IEEE Transactions on Dependable and Secure
Computing 14(1), 65–82 (2016)

[25] C. Jin, C. Herder, L. Ren, P.H. Nguyen, B. Fuller, S. Devadas, M. Van Dijk, Fpga implementation of a
cryptographically-secure puf based on learning parity with noise. Cryptography 1(3), 23 (2017)

[26] R. Rivest, Illegitimi non carborundum. Invited keynote talk given at CRYPTO (2011)
[27] M. van Dijk, D. Gurevin, C. Jin, O. Khan, P.H. Nguyen, Autonomous secure remote attestation even

when all used and to be used digital keys leak. Cryptology ePrint Archive (2021)
[28] D. Gurevin, C. Jin, P.H. Nguyen, O. Khan, M. van Dijk, Secure remote attestation with strong key insu-

lation guarantees. IEEE Transactions on Computers (2023). https://doi.org/10.1109/TC.2023.3290870
[29] J. Von Neumann, 13. various techniques used in connection with random digits. Appl. Math Ser 12(36-

38), 3 (1951)
[30] I. Damgård, A. Scafuro, Unconditionally secure and universally composable commitments from physical

assumptions, in International Conference on the Theory and Application of Cryptology and Information
Security (Springer, 2013), pp. 100–119

[31] S. Badrinarayanan, D. Khurana, R. Ostrovsky, I. Visconti, Unconditional uc-secure computation with
(stronger-malicious) pufs, in Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques (Springer, 2017), pp. 382–411

[32] C. Jin, W. Burleson, M. van Dijk, U. Rührmair, Programmable access-controlled and generic erasable
puf design and its applications. Journal of Cryptographic Engineering 12, 413–432 (2022)

[33] U. Rührmair, J. Sölter, F. Sehnke, On the foundations of physical unclonable functions. Cryptology
ePrint Archive (2009)

[34] C. Jin, W. Burleson, M. van Dijk, U. Rührmair, Erasable pufs: Formal treatment and generic design, in
Proceedings of the 4th ACM Workshop on Attacks and Solutions in Hardware Security (2020), pp. 21–33

[35] F. Armknecht, R. Maes, A.-R. Sadeghi, B. Sunar, P. Tuyls, Memory leakage-resilient encryption based
on physically unclonable functions, in Sadeghi, A.-R., Naccache, D. (eds.) Towards Hardware-Intrinsic
Security (Springer, New York, NY, 2010), pp. 135–164

[36] F. Armknecht, R. Maes, A.-R. Sadeghi, F.-X. Standaert, C. Wachsmann, A formalization of the security
features of physical functions, in 2011 IEEE Symposium on Security and Privacy (IEEE, 2011), pp.
397–412

[37] N. Wisiol, B. Thapaliya, K.T. Mursi, J.-P. Seifert, Y. Zhuang, Neural network modeling attacks on
arbiter-puf-based designs. IEEE Transactions on Information Forensics and Security (2022)

[38] N. Wisiol, Towards attack resilient arbiter puf-based strong pufs. Cryptology ePrint Archive (2021)
[39] B. Gassend, M.V. Dijk, D. Clarke, E. Torlak, S. Devadas, P. Tuyls, Controlled physical random functions

and applications. ACM Transactions on Information and System Security (TISSEC) 10(4), 1–22 (2008)
[40] A. Boldyreva, V. Kumar, A new pseudorandom generator from collision-resistant hash functions, in

Cryptographers’ Track at the RSA Conference (Springer, 2012), pp. 187–202
[41] K. Yasunaga, Replacing probability distributions in security games via hellinger distance. In: 2nd Con-

ference on Information-Theoretic Cryptography (ITC 2021) (2021). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik

[42] C. Herder, M.-D. Yu, F. Koushanfar, S. Devadas, Physical unclonable functions and applications: A
tutorial. Proceedings of the IEEE 102(8), 1126–1141 (2014)

[43] N. Wisiol, N. Pirnay, Short paper: Xor arbiter pufs have systematic response bias, in International
Conference on Financial Cryptography and Data Security (Springer, 2020), pp. 50–57

[44] D.P. Sahoo, P.H. Nguyen, R.S. Chakraborty, D. Mukhopadhya, On the architectural analysis of arbiter
delay puf variants. Cryptology ePrint Archive (2016)

https://doi.org/10.1109/TC.2023.3290870

 35 Page 64 of 64 M. van Dijk, C. Jin

[45] C. Zhou, K.K. Parhi, C.H. Kim, Secure and reliable xor arbiter puf design: An experimental study
based on 1 trillion challenge response pair measurements, in Proceedings of the 54th Annual Design
Automation Conference 2017 (2017), pp. 1–6

[46] V. Costan, S. Devadas, Intel sgx explained. IACR Cryptol. ePrint Arch. 2016, 86 (2016)
[47] J. Tobisch, G.T. Becker, On the scaling of machine learning attacks on pufs with application to noise

bifurcation. in International Workshop on Radio Frequency Identification: Security and Privacy Issues
(Springer, 2015), pp. 17–31

[48] K.T. Mursi, Y. Zhuang, M.S. Alkatheiri, A.O. Aseeri, Extensive examination of xor arbiter pufs as secu-
rity primitives for resource-constrained iot devices, in 2019 17th International Conference on Privacy,
Security and Trust (PST) (IEEE, 2019), pp. 1–9

[49] D.P. Sahoo, D. Mukhopadhyay, R.S. Chakraborty, P.H. Nguyen, A multiplexer-based arbiter puf compo-
sition with enhanced reliability and security. IEEE Transactions on Computers 67(3), 403–417 (2017)

[50] E. Arikan, E. Telatar, On the rate of channel polarization, in 2009 IEEE International Symposium on
Information Theory (IEEE, 2009), pp. 1493–1495

[51] W. Hoeffding, Probability inequalities for sums of bounded random variables, in Fisher, N.I., Sen, P.K.
(eds.) The Collected Works of Wassily Hoeffding (Springer, Berlin, Heidelberg, 1994), pp. 409–426

[52] H. Mahdavifar, A. Vardy, Achieving the secrecy capacity of wiretap channels using polar codes. IEEE
Transactions on Information Theory 57(10), 6428–6443 (2011)

[53] D. Micciancio, M. Walter, On the bit security of cryptographic primitives, in Annual International
Conference on the Theory and Applications of Cryptographic Techniques (Springer, 2018), pp. 3–28

[54] V. Costan, I. Lebedev, S. Devadas, Sanctum: Minimal hardware extensions for strong software isolation,
in 25th USENIX Security Symposium (USENIX Security 16) (2016), pp. 857–874

[55] P. Rogaway, T. Shrimpton, Cryptographic hash-function basics: Definitions, implications, and sepa-
rations for preimage resistance, second-preimage resistance, and collision resistance, in International
Workshop on Fast Software Encryption (Springer, 2004) , pp. 371–388

[56] R. Canetti, O. Goldreich, S. Halevi, The random oracle methodology, revisited. Journal of the ACM
(JACM) 51(4), 557–594 (2004)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	A Theoretical Framework for the Analysis of Physical Unclonable Function Interfaces and Its Relation to the Random Oracle Model
	1. Introduction
	2. Related Work
	3. Physical Unclonable Functions
	4. Reliability and Bias
	5. Improving Reliability
	6. Reducing Bias
	7. PUF Security
	8. Interface Security
	9. Adversarial PUF Models
	10. Secure Sketches and Suitable Codes
	11. PUF-Based Random Oracle
	12. Conclusion
	References

