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Abstract
Consider words of length n. The set of all periods of a word of length n is a subset of {0, 1, 2, . . . , n−1}.
However, any subset of {0, 1, 2, . . . , n − 1} is not necessarily a valid set of periods. In a seminal paper
in 1981, Guibas and Odlyzko proposed to encode the set of periods of a word into an n long binary
string, called an autocorrelation, where a one at position i denotes the period i. They considered
the question of recognizing a valid period set, and also studied the number of valid period sets
for strings of length n, denoted κn. They conjectured that ln(κn) asymptotically converges to a
constant times ln2(n). Although improved lower bounds for ln(κn)/ ln2(n) were proposed in 2001,
the question of a tight upper bound has remained open since Guibas and Odlyzko’s paper. Here, we
exhibit an upper bound for this fraction, which implies its convergence and closes this longstanding
conjecture. Moreover, we extend our result to find similar bounds for the number of correlations: a
generalization of autocorrelations which encodes the overlaps between two strings.
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1 Introduction

A linear word can overlap itself if one of its prefixes is equal to one of its suffixes. The
corresponding prefix (or suffix) is called a border and the shift needed to match the prefix
to the suffix is called a period. The dual notions of period and border are critical concepts
in word combinatorics: important definitions such as periodic and primitive words, or the
normal form of a word rely on them. These concepts play a role in key results of the field like
the Critical Factorization Theorem [14]. In computer science, in the field of string algorithms
(a.k.a. stringology), pattern matching algorithms heavily exploit borders/periods to optimize
the search of occurrences of a word in a text [21]. For clarity, note that the terms word and
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100:2 Convergence of the Number of Period Sets in Strings

string both mean a sequence of letters taken from an alphabet. These notions also play a
role in statistics. The set of periods of a word controls how two occurrences of the same word
can overlap in a text. Hence, the set of periods (or autocorrelation) is a key variable to study
the statistics of word occurrences in random texts (waiting time, distance between successive
occurrences, etc.) [19]. The notion of autocorrelation has been extended to describe how two
distinct words can have overlapping occurrences in the same text. This has been used for
instance to study the number of missing words in random texts [16] or to design procedures
for testing pseudo-random number generators [15].

An autocorrelation is a binary vector representing the set of periods of a word. The
concept of autocorrelation was introduced by Guibas and Odlyzko in [10]. They gave a
characterization of autocorrelations and proved the following bounds on κn - the cardinality
of the set Γn of autocorrelations of words of length n.

1
2 ln(2) + o(1) ≤ ln(κn)

ln2(n)
≤ 1

2 ln(3/2) + o(1)

They conjectured that ln(κn) is asymptotic to a constant times ln2(n). Rivals and Rah-
mann [18], later on studied the combinatorial structure of the set of autocorrelations Γn, and
improved the lower bound on κn as follows:

ln(κn)
ln2(n)

≥ 1
2 ln(2)

(
1 − ln(ln(n))

ln(n)

)2
+ 0.4139

ln(n) − 1.47123 ln(ln(n))
ln2(n)

+ O

(
1

ln2(n)

)
.

However, to date, no one has focused on improving the upper bound on κn. In this work, we
apply the notion of irreducible period sets introduced by Rivals and Rahmann [17, 18] to
prove that

ln(κn)
ln2(n)

≤ 1
2 ln(2) + 3

2 ln(n) ∀n ∈ N≥2.

Together with known asymptotic lower bounds [18], we find that

ln κn

ln2(n)
→ 1

2 ln(2) as n → ∞,

thus resolving the conjecture of Guibas and Odlyzko.
In their paper about autocorrelations [10], Guibas and Odlyzko also introduced the

notion of correlation between words. For two words u and v, the correlation of u over v is a
binary vector indicating all overlaps between suffixes of u and prefixes of v. In particular,
an autocorrelation is the correlation of a word with itself. We show that the number
of correlations between two words of length n, denoted by δn, has the same asymptotic
convergence behaviour as the number of autocorrelations of words of length n, that is

ln δn

ln2(n)
→ 1

2 ln(2) as n → ∞.

1.1 Related works
Apart from previously cited articles that deal with the combinatorics of period sets, some
related works exist in the literature.

For instance, the question of the average period of a random word has been investigated
in [13]. Clearly, the number of periods of a word of length n lies between one and n. A recent
work exhibits an upper bound on the number of periods of a word as a function of its initial
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critical exponent – a characteristic of the word related to its degree of periodicity [9], but this
has not been used to bound the number of period sets. Last, the combinatorics of period sets
has also been investigated in depth for a generalization of the notion of words, called partial
words [6]. In partial words, some positions may contain a don’t care symbol, which removes
some constraints of equality between positions. To study the combinatorics of period sets,
Blanchet-Sadri et al. defined weak and strong periods, and proved several important theorems
[4], including lower and upper bounds on the number of binary and ternary autocorrelations
[6, 5]. However, the cardinality of the family of period sets differs between normal words
and partial words, and a tight upper bound for normal words cannot be deduced from that
for partial words. Several works investigate sets of words with constraints (either absence
or presence) on their mutual overlaps: mutually bordered (overlapping) pairs of words are
studied in [8], while methods for constructing a set of mutually unbordered words (also called
cross-bifix-free words) are provided in [3, 1, 2].

2 Preliminaries

A string u = u[0 . . n − 1] ∈ Σn is a sequence of n letters over a finite alphabet Σ. For any
0 ≤ i ≤ j ≤ n − 1, we denote the substring starting at position i and ending at position j

with u[i . . j]. In particular, u[0 . . j] denotes a prefix and u[i . . n−1] a suffix of u. Throughout
this paper, all our strings and vectors will be zero-indexed.

2.1 Periodicity
In this subsection, we define the concepts of period, period set, basic period, and autocorrel-
ation, and then review some useful results. For the sake of self-containment, we provide in
Appendix A the proofs for all lemmas of this subsection.

▶ Definition 1 (Period). String u = u[0 . . n − 1] has a period p ∈ {1, . . . , n − 1} if and only if
for any 0 ≤ i, j ≤ n − 1 such that i ≡ j mod p, we have u[i] = u[j]. Moreover, we consider
that p = 0 is a period of any string of length n.

An equivalent definition is the following.

▶ Definition 2 (Period). The string u = u[0 . . n − 1] has period p ∈ {0, 1, . . . , n − 1} if and
only if u[0 . . n − p − 1] = u[p . . n − 1], i.e. for all 0 ≤ i ≤ n − p − 1, we have u[i] = u[i + p].

The smallest non-zero period of u is called its basic period. The period set of a string u is
the set of all its periods and is denoted by P (u). We will now list some useful properties
about periods, which we will need later on. Their proofs can be found in [10, 14] and in
Appendix A.

▶ Lemma 3. Let p be a period of u ∈ Σn and k ∈ Z≥0 such that kp < n. Then kp is also a
period of u.

▶ Lemma 4. Let p be a period of u ∈ Σn and q a period of the suffix w = u[p . . n − 1].
Then (p + q) is a period of u. Moreover, (p + kq) is also a period of u for all k ∈ Z≥0 with
p + kq < n.

▶ Lemma 5. Let p, q be periods of u ∈ Σn with 0 ≤ q ≤ p. Then the prefix and the suffix of
length (n − q) have the period (p − q).

▶ Lemma 6. Suppose p is a period of u ∈ Σn and there exists a substring v of u of length at
least p and with period r, where r|p. Then r is also a period of u.

ICALP 2023



100:4 Convergence of the Number of Period Sets in Strings

Table 1 This table illustrates the set of period and the autocorrelation of the word u = abbaabba
of length 8. A first copy of the word u is shown on the second line. Another copy of u is displayed
on (each) line (3 + i) shifted by i positions to the right, with i going from 0 to 7. If the suffix of the
copy of u matches the prefix of the first copy u on line 2, then i is a period, and both the line and
the corresponding position/shift (on the first line) are colored in blue. The last column contains the
autocorrelation of u, with 1 bits corresponding to periods colored in blue.

pos. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
u a b b a a b b a - - - - - - - s

u a b b a a b b a - - - - - - - 1
- a b b a a b b a - - - - - - 0
- - a b b a a b b a - - - - - 0
- - - a b b a a b b a - - - - 0
- - - - a b b a a b b a - - - 1
- - - - - a b b a a b b a - - 0
- - - - - - a b b a a b b a - 0
- - - - - - - a b b a a b b a 1

We will also use the famous Fine and Wilf theorem [7], a.k.a. the periodicity lemma, for
which a short proof was provided by Halava and colleagues [12].

▶ Theorem 7 (Fine and Wilf). Let p, q be periods of u ∈ Σn. If n ≥ p + q − gcd(p, q), then
gcd(p, q) is a period of u.

2.2 Autocorrelation
We now give a formal definition of an autocorrelation.

▶ Definition 8 (Autocorrelation). For every string u ∈ Σn, its autocorrelation is the string
s ∈ {0, 1}n such that

s[i] =
{

1 if i is a period of u

0 otherwise
∀i ∈ {0, . . . , n − 1}.

To illustrate this concept, consider the following example (detailed in Table 1).

▶ Example 9. We consider the word u = abbaabba of length 8. Its period set is P (u) =
{0, 4, 7}, its basic period is 4 and its autocorrelation is s = 10001001. See Table 1.

Guibas and Odlyzko [10] show that any alphabet of size at least two will give rise to
the same set of correlations (Corollary 5.1). Autocorrelations have many other useful
properties [10, 18]. The most significant one for our work is the following.

▶ Lemma 10 (Lemma 3.1 [10] and Theorem 1.3 [18]). If s ∈ {0, 1}n is an autocorrelation
and s[i] = 1, then s[i . . n − 1] is the autocorrelation of u[i . . n − 1]

Proof. Note that s[i] = 1 means: i is a period of u. Suppose s[i + j] = 1. Then i + j is a
period of u. Thus u[i . . n − 1] has period (i + j) − i = j by Lemma 5. Conversely, suppose
u[i . . n − 1] has period (i + j) − i = j. Then i + j is a period of u by Lemma 4. Thus
s[i + j] = 1. Combining these results, we find that s[i + j] = 1 if and only of j is a period of
u[i . . n − 1], and equivalently s[i . . n − 1] is the autocorrelation of u[i . . n − 1]. ◀
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2.3 Irreducible Period Set
To prove the upper bound on the number of autocorrelations, we use the notion of irreducible
period sets as introduced by Rivals and Rahmann [18]. An irreducible period set is the
minimum subset of a period set that determines the period set using the Forward Propagation
Rule. Before formally introducing the irreducible period set, we will first explain what forward
propagation is.

▶ Lemma 11 (Forward Propagation Rule). Let p ≤ q be periods of a string u of length n and
let k ∈ Z≥0 such that p + k(q − p) < n. Then p + k(q − p) is a period of u[0 . . n − 1].

Proof. It follows from Lemma 5 that u[p . . n − 1] has period (q − p). Applying Lemma 4 we
find that u[0 . . n − 1] has period p + k(q − p) for all k ∈ Z≥0. ◀

The forward closure FCn(S) of a set S ⊆ {0, . . . , n−1} (not necessarily a period set, typically
a subset of one) is the closure of S under the forward propagation rule.

▶ Definition 12 (Forward Closure). Let S ⊆ {0, . . . , n − 1}. Its forward closure FCn(S) is
the minimum superset of S such that for any p, q ∈ FCn(S) and k ≥ 0 with p ≤ q and
p + k(q − p) < n, we have

p + k(q − p) ∈ FCn(S).

We can now define the irreducible period set.

▶ Definition 13 (Irreducible Period Set). Let P be the period set of a string u ∈ Σn. An
irreducible period set of P is a minimal subset R(P ) ⊆ P with forward closure P .

Observe that there exists an irreducible period set for any period set P , because FCn(P ) = P

by the forward propagation rule. We will now give a useful characterization of an irreducible
period set as the set of periods which are not in the forward closure of the set of all smaller
periods. Consequently, every period set has exactly one irreducible period set, whose elements
we will call irreducible periods.

Recall that for a given length n, we denote the set of all period sets by Γn. Formally
stated Γn is defined as:

Γn = {S ⊆ {0, 1, . . . , n − 1} : ∃u ∈ Σn such that P (u) = S}.

As in [18], for a given length n, we denote the set of all irreducible period sets by Λn:

Λn = {T ⊆ {0, 1, . . . , n − 1} : ∃u ∈ Σn such that R(P (u)) = T}.

The bijective relation between period sets and irreducible period sets implies that |Γn| = |Λn|.

▶ Lemma 14. Let P be the period set of a string u ∈ Σn and R(P ) an irreducible period set
of P . Then

R(P ) = {q ∈ P | q ̸∈ FCn(P ∩ [0, q − 1])} .

Proof. Let p ∈ P . We will prove the two alternative cases separately:
(a) p ̸∈ {q ∈ P | q ̸∈ FCn(P ∩ [0, q − 1])} =⇒ p ̸∈ R(P ) and
(b) p ∈ {q ∈ P | q ̸∈ FCn(P ∩ [0, q − 1])} =⇒ p ∈ R(P ).

ICALP 2023



100:6 Convergence of the Number of Period Sets in Strings

(a) Suppose p ̸∈ {q ∈ P | q ̸∈ FCn(P ∩ [0, q − 1])}, or equivalently p ∈ FCn(P ∩ [0, p − 1]).
Then

p ∈ FCn(P ∩ [0, p − 1]) = FCn(FCn(R(P )) ∩ [0, p − 1])
⊆ FCn(FCn(R(P ) ∩ [0, p − 1]))
= FCn(R(P ) ∩ [0, p − 1])
⊆ FCn(R(P ) \ {p}).

It follows that FCn(R(P ) \ {p}) = FCn(R(P )). By minimality of irreducible period sets,
we have p ̸∈ R(P ).

(b) Suppose on the other hand that p ̸∈ FCn(P ∩ [0, p − 1]). Then p ̸∈ FCn(P \ {p}) either.
As

FCn(P \ {p}) ⊇ FCn(R(P ) \ {p}),

then p ̸∈ FCn(R(P ) \ {p}). However, as p ∈ P and P = FCn(R(P )), it follows that
p ∈ R(P ). ◀

3 Asymptotic convergence of κn

In this section, we present a new upper bound on κn, the number of distinct autocorrelations
of strings of length n. Moreover, we shall prove that ln(κn) asymptotically converges to
c · ln2(n), where c = 1

2 ln(2) .

▶ Theorem 15 (Upper bound on κn). For all n ∈ N≥2 we have

ln(κn)
ln2(n)

≤ 1
2 ln(2) + 3

2 ln(n) .

Proof. To prove this theorem, we need several lemmas.

▶ Lemma 16. Let u ∈ Σn with autocorrelation s, period set P , and irreducible period
set R(P ) = {0 = a0 < . . . < ai < . . . < ak < n}. Then for all 0 ≤ i ≤ k, there exists
qi ∈ {1, . . . , n − ai} such that
1. qi ≤ n/2i, and
2. ai + qi = n or ai + qi is in the forward closure of {a0, . . . , ai}.

Proof. We will prove this by induction.

Basis. By picking q0 = n ∈ {1, . . . , n − a0}, we satisfy both q0 ≤ n/20 and a0 + q0 = n.

Hypothesis. For some 0 ≤ i < k, there exists a qi ∈ {1, . . . , n − ai} such that
1. qi ≤ n/2i, and
2. ai + qi = n or ai + qi is in the forward closure of {a0, . . . , ai}.

Step. We first note that if n − ai+1 ≤ n/2i+1, then we can pick qi+1 = n − ai+1. Suppose
on the other hand that n − ai+1 > n/2i+1. We distinguish two cases.

If ai + qi = n, then

ai+1 − ai = (n − ai) − (n − ai+1)
< n/2i − n/2i+1

= n/2i+1

< n − ai+1.

Thus, we can pick qi+1 = ai+1 − ai ∈ {1, . . . , n − ai+1}, since
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1. it satisfies qi+1 ≤ n/2i+1 and
2. ai+1 + qi+1 = ai + 2(ai+1 − ai) is in the forward closure of {a0, . . . , ai+1}.
If ai + qi is in the forward closure of {a0, . . . , ai}, then

ai + λqi = ai + λ(ai + qi − ai)

is in the forward closure of {a0, . . . , ai} for all integers 0 ≤ λ ≤ (n − 1 − ai)/qi. Since ai+1
is an irreducible period, there must exist an integer λ0 ∈ [0, (n − 1 − ai)/qi] such that

ai + λ0qi < ai+1 < ai + (λ0 + 1)qi.

In other words, ai+1 is comprised between two successive, non-irreducible periods gener-
ated from ai and qi using the FPR (or n ≤ ai + (λ0 + 1)qi). We pick

qi+1 = min(ai+1 − (ai + λ0qi), (ai + (λ0 + 1)qi) − ai+1, n − ai+1)

and note that

qi+1 ≤ ai+1 − (ai + λ0qi) + (ai + (λ0 + 1)qi) − ai+1

2
= qi/2
≤ n/2i+1.

It follows that ai+1 + qi+1 < n. Consequently, either ai+1 + qi+1 = (ai + λ0qi) + 2(ai+1 −
(ai + λ0qi)) or ai+1 + qi+1 = ai + (λ0 + 1)(ai + qi − ai). Hence, ai+1 + qi+1 is in the
forward closure of {a0, . . . , ai+1}. Therefore qi+1 has all desired properties.

Conclusion. For all 0 ≤ i ≤ k, there exists qi ∈ {1, . . . , n − ai} such that
1. qi ≤ n/2i, and
2. ai + qi = n or ai + qi is in the forward closure of {a0, . . . , ai}. ◀

▶ Lemma 17. Let R(P ) = {0 = a0 < a1 < . . . < ak} be the irreducible period set of a string
of length n. Then k ≤ log2(n).

Proof. It follows from the Lemma 16 that there exists an integer qk ∈ {1, . . . , n − ak} such
that n/2k ≥ qk. Hence k ≤ log2(n). ◀

To count the number of irreducible period sets, we count the number of possibilities for
each ai with 1 ≤ i ≤ k. We know that a0 = 0 is fixed. The other ai take values in the set
{1, . . . , n − 1}.

▶ Lemma 18. Let 0 ≤ i ≤ k − 1. Then ai+1 can take at most 21−in − 1 possible values given
a0, . . . , ai.

Proof. Let qi be defined as in Lemma 16. We distinguish 3 cases:
1. If ai+1 ≤ ai + qi, there are at most qi − 1 ≤ n/2i − 1 possible values for ai+1 (note that

ai+1 ̸= ai + qi, because ai+1 cannot be in the forward closure of {a0, . . . , ai}, nor can it
be equal to n).

2. If ai+1 ≥ n − qi, there are at most qi ≤ n/2i possible values for ai+1.
3. In the remaining case, ai+1 ∈ [ai + qi + 1, n − qi − 1].

ICALP 2023



100:8 Convergence of the Number of Period Sets in Strings

Let us first show that case 3 is impossible. For the sake of contradiction, assume we are in
case 3. Since ai + qi < n, we know that ai + qi is in the forward closure of {a0, . . . , ai} (by
property 2 from Lemma 16). Hence qi is a period of u[ai . . n − 1]. Moreover ai+1 − ai is also
a period of u[ai . . n − 1]. By the Fine and Wilf theorem, it follows that
(a) either n − ai < qi + (ai+1 − ai) − gcd(qi, ai+1 − ai)
(b) or gcd(qi, ai+1 − ai) is a period of u[ai . . n − 1].
We are not in subcase (a) since by hypothesis ai+1 ≤ n−qi −1. Suppose we are in subcase (b).
Note that ai + gcd(qi, ai+1 − ai) ≤ ai + qi < ai+1 and that ai+1 is in the forward propagation
of {a0, . . . , ai, ai + gcd(qi, ai+1 − ai)}. It follows that ai+1 is not an irreducible period, which
is a contradiction. Therefore both subcases (a) and (b) are impossible.

Summing over cases 1 and 2 (since case 3 is impossible), we conclude that, given a0, . . . , ai,
there are at most

(n/2i − 1) + n/2i + 0 = 21−in − 1

possibilities for ai+1. ◀

Note that the bound of Lemma 18 is not tight: indeed, there are n − 1 possible values for a1,
while the lemma gives an upper bound of 2n − 1. However, this bound suffices to prove our
asymptotic result. Since an autocorrelation is uniquely defined by its irreducible period set,
it suffices to count the possible such sets {a0, . . . , ak} for all possible values of k. Recall that
a0 is fixed at 0 and that k ≤ log2(n) by Lemma 17. We thus derive a bound on the total
number of autocorrelations by taking the product of all possibilities for ai+1 with i going
from 0 to k − 1 and sum this over all integers k from 1 to ⌊log2(n)⌋, as follows:

κn = |Γn| = |Λn| ≤
⌊log2(n)⌋∑

k=1

k−1∏
i=0

(
21−in − 1

)
≤

⌊log2(n)⌋∑
k=1

((
22−kn − 1

) k−2∏
i=0

21−in

)
.

Writing 22−kn
∏k−2

i=0 21−in and
∏k−2

i=0 21−in in exponential form, we get

κn ≤
⌊log2(n)⌋∑

k=1

(
exp

(
−k(k − 3) ln(2)

2 + k ln(n)
)

− exp
(

−(k − 1)(k − 4) ln(2)
2 + (k − 1) ln(n)

))
.

Observe that this is a telescoping sum, so all but two terms cancel out.

κn ≤ exp
(

−⌊log2(n)⌋(⌊log2(n)⌋ − 3) ln(2)
2 + ⌊log2(n)⌋ ln(n)

)
− 1

Since d
dk

(
−k(k−3) ln(2)

2 + k ln(n)
)

= (−2k+3) ln(2)
2 + ln(n) is positive for all k ≤ log2(n), we

have

κn < exp
(

ln(n)(3 ln(2) − ln(n))
2 ln(2) + ln2(n)

ln(2)

)
= exp

(
3 ln(n)

2 + ln2(n)
2 ln(2)

)
.
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Taking the natural logarithm of both sides and dividing by ln2(n), we get that

ln(κn)
ln2(n)

≤ 1
2 ln(2) + 3

2 ln(n) ,

thereby proving Theorem 15. ◀

▶ Corollary 19 (Asymptotic Convergence of κn). Let κn be the number of autocorrelations of
length n. Then

ln κn

ln2(n)
→ 1

2 ln(2) as n → ∞.

Proof. It follows from Theorem 15 that for n ∈ N≥2

ln(κn)
ln2(n)

≤ 1
2 ln(2) + 3

2 ln(n) = 1
2 ln(2) + o(1).

The lower bound for κn from Theorem 5.1 in [18] indicates that asymptotically

ln(κn)
ln2(n)

≥ 1
2 ln(2)

(
1 − ln(ln(n))

ln(n)

)2
+ 0.4139

ln(n) − 1.47123 ln(ln(n))
ln2(n)

+ O

(
1

ln2(n)

)
= 1

2 ln(2) − O

(
ln(ln(n))

ln(n)

)
.

Combining this lower bound with our upper bound, we obtain

1
2 ln(2) − O

(
ln ln n

ln n

)
≤ ln κn

ln2(n)
≤ 1

2 ln(2) + o(1).

Using the classic sandwich theorem, we conclude that

ln κn

ln2(n)
→ 1

2 ln(2) as n → ∞

thereby proving the conjecture by Guibas and Odlyzko. ◀

The known values of κn are recorded in entry A005434 (see https://oeis.org/A005434)
of the On-Line Encyclopedia of Integer Sequences [20]. Because the enumeration of Γn takes
exponential time, the list of κn values is limited to a few hundred. In Figure 1, we compare
the values of κn with the so-called Fröberg lower bound from [18], the upper bound of Guibas
and Odlyzko [10], and our new upper bound. The figure illustrates the improvement brought
by the new upper bound compared to that given by Guibas and Odlyzko [10]. At n = 500,
the lower bound, our new upper bound and the values of κn clearly differ, meaning the
sequences are far from convergence at n = 500.

4 Correlation

In this section, we show that the number of correlations between two strings of length n has
the same asymptotic convergence behaviour as the number of autocorrelations of strings of
length n.

In [11], Guibas and Odlyzko introduced the notion of correlation of two strings: it encodes
the offset of possible overlaps between these two strings. In [10], the same authors investigate
the self-overlaps of a string, which is then encoded in an autocorrelation. Before we start, let
us define precisely the notion of correlation (which is illustrated in Table 2).

ICALP 2023
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Figure 1 The true values of ln kn/ ln2(n) for n ≤ 500 are compared to: the upper bound of
Guibas & Odlyzko (G&O upper bound) [10], the Fröberg lower bound (R&R lower bound) [18], and
our upper bound. Our upper bound seems not so tight: the reason is that n is small, as ln 500 ≈ 6.2.

Table 2 The correlation of word u = aabbaa over word v = baabaa (both of length 6) is
t = 000100. This table is organized as Table 1 – see the corresponding caption for details.

pos. 0 1 2 3 4 5 6 7 8 9 10
u a a b b a a - - - - - t

v b a a b a a - - - - 0
- b a a b a a - - - - 0
- - b a a b a a - - - 0
- - - b a a b a a - - 1
- - - - b a a b a a - 0
- - - - - b a a b a a 0

▶ Definition 20 (Correlation). For every pair of strings (u, v) ∈ Σn × Σm, the correlation of
u over v is the vector t ∈ {0, 1}n such that for all k ∈ {0, . . . , n − 1}

t[k] =


1 if u[i] = v[j] for all i ∈ {0, . . . , n − 1}, j ∈ {0, . . . , m − 1}

with i = j + k,

0 otherwise.

Intuitively, we can find correlations as follows. For each index i ∈ {0, . . . , n − 1} we write
v below u starting under the ith character of u. Then the ith element of the correlation is
1, if all pairs of characters that are directly above each other match, and 0 otherwise. See
Table 2 for an example.

Observe, that if v ∈ Σm is longer than u ∈ Σn, then the correlation of u over v equals the
correlation of u over v[0 . . n − 1]. Conversely, any binary vector t ∈ {0, 1}n is the correlation
of u = t ∈ {0, 1}n over v = 1 ∈ {0, 1}1. Therefore we will restrict ourselves to the interesting
case where both strings have the same length.
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Let ∆n be the set of all correlations between two strings of the same length n and let δn

be the cardinality of ∆n. We can characterize ∆n as follows.

▶ Lemma 21. The set of correlations of length n is of the form

∆n =
{

0(n−j)sj | sj ∈ Γj , j ∈ [0, n]
}

,

where Γj is the set of autocorrelations of length j.

Proof. Let t = 0(n−j)sj with sj the autocorrelation of some string w of length j with
0 ≤ j ≤ n. Without loss of generality, w does not start with the letter a. Let u = a(n−j)w

and v = wb(n−j). Observe that the correlation of u over v is precisely 0(n−j)sj = t. Therefore{
0(n−j)sj | sj ∈ Γj , j ∈ [0, n]

}
⊆ ∆n.

Conversely, let u, v ∈ Σn and let t′ be the correlation of u over v. We can write t′ in
the form 0(n−j)sj , where sj is a binary string starting with 1 (or is empty). If sj is the
empty string, then it is the only autocorrelation of length 0. Otherwise, there is a 1 at
position n − j, which indicates that u[n − j . . n − 1] = v[0 . . j − 1]. Moreover, sj is the
correlation of u[n − j . . n − 1] over v. It follows that sj is exactly the autocorrelation of
u[n − j . . n − 1] = v[0 . . j − 1]. Therefore

∆n ⊆
{

0(n−j)sj | sj ∈ Γj , j ∈ [0, n]
}

. ◀

In the above characterization, we consider strings over a finite alphabet and found that a
correlation depends on some autocorrelation. As it is known that Γn is independent of the
alphabet size (provided |Σ| > 1), the reader may wonder whether the number of correlations
depends on it. In Appendix B, we show that the set of correlations for equally long strings is
independent of the alphabet size, provided that Σ is not unary.

Now we have characterized ∆n, we can easily deduce its cardinality.

▶ Lemma 22. Let κn be the number of autocorrelations of length n and δn the number of
correlations between two strings of length n. Then

δn =
n∑

j=0
κj .

Proof. Since autocorrelations do not start with a zero, no two strings of the form 0(n−j)sj

with sj ∈ Γj and j ∈ [0, n] are the same. Therefore

δn = |∆n| =
∣∣∣{0(n−j)sj | sj ∈ Γj , j ∈ [0, n]

}∣∣∣ =
n∑

j=0
|Γj | =

n∑
j=0

κj . ◀

▶ Theorem 23 (Asymptotic Convergence of δn). Let δn be the number of correlations between
two strings of length n. Then

ln δn

ln2(n)
→ 1

2 ln(2) as n → ∞.

Proof. From Lemma 18 we know that for all n ∈ N≥2

ln(κn) ≤ ln2(n)
2 ln(2) + 3 ln(n)

2 .
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It follows that for all n ∈ N≥2 we have

ln(δn)
ln2(n)

= ln
(

n∑
i=0

κn

)
/ ln2(n)

≤ ln
(

2 + (n − 1) exp
(

ln2(n)
2 ln(2) + 3 ln(n)

2

))
/ ln2(n)

≤
(

ln2(n)
2 ln(2) + 3 ln(n)

2 + ln(n)
)

/ ln2(n)

= 1
2 ln(2) + o(1) as n → ∞.

Conversely, using the fact that δn ≥ κn, we find

ln δn

ln2(n)
≥ ln κn

ln2(n)
= 1

2 ln(2) + o(1) as n → ∞.

Again, by the sandwich theorem we conclude

ln δn

ln2(n)
→ 1

2 ln(2) as n → ∞. ◀
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A Omitted proofs

▶ Lemma 3. Let p be a period of u ∈ Σn and k ∈ Z≥0 such that kp < n. Then kp is also a
period of u.

Proof. If p = 0 or k = 0, the statement trivially holds. Suppose p ∈ {1, . . . , n − 1} and k > 0.
If i, j ∈ {0, . . . , n − 1} such that i ≡ j mod kp, then we also have i ≡ j mod p, and hence
u[i] = u[j] by Definition 1. This shows kp is a period of u by Definition 1. ◀

▶ Lemma 4. Let p be a period of u ∈ Σn and q a period of the suffix w = u[p . . n − 1]. Then
p + q is a period of u. Moreover, p + kq is also a period of u for all k ∈ Z≥0 with p + kq < n.

Proof. By Definition 2 of period, the fact that p is a period of u implies u[0 . . n − p − 1] =
u[p . . n − 1], while q is a period of w implies w[0 . . n − p − q − 1] = w[q . . n − p − 1]. As w is
the suffix of u starting at position p, we can combine the above results to find that

u[0 . . n − p − q − 1] = u[p . . n − q − 1] = w[0 . . n − p − q − 1]
= w[q . . n − p − 1] = u[p + q . . n − 1],

which indicates that p + q is a period of u. Moreover, if p + iq is a period of u for some
i ∈ N, then we can similarly show that p + (i + 1)q is also a period of u if p + (i + 1)q < n.
It follows by induction that p + kq is a period of u for all k ∈ N with p + kq < n. The case
k = 0 is trivial. ◀
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▶ Lemma 5. Let p, q be periods of u ∈ Σn with 0 ≤ q ≤ p. Then the prefix and the suffix of
length n − q have the period p − q.

Proof. Since p, q be periods of u ∈ Σn with 0 ≤ q ≤ p, we have

u[0 . . n − p − 1] = u[p . . n − 1] (by periodicity p)
= u[p − q . . n − q − 1] (by periodicity q).

It follows that u[0 . . n − q − 1] has period p − q. Similarly the suffix of u of length (n − q)
also has period p − q. ◀

▶ Lemma 6. Suppose p is a period of u ∈ Σn and there exists a substring v of u of length at
least p and with period r, where r|p. Then r is also a period of u.

Proof. If p = 0, then r = 0 and the lemma trivially holds.
Otherwise p is non-zero. Let i, j ∈ [0, n − 1] with i ≡ j mod r. We can write v = u[h . . k]

with 0 ≤ h < k ≤ n−1. Since v has length at least p, there exist i′, j′ ∈ [h, k] such that i ≡ i′

mod p and j ≡ j′ mod p. By Definition 1 of period, we have u[i] = u[i′] and u[j] = u[j′].
Note that i′ ≡ i ≡ j ≡ j′ mod r, because r | p. Applying Definition 1 again, we obtain
u[i′] = u[j′]. It follows that u[i] = u[i′] = u[j′] = u[j]. Therefore r is a period of u. ◀

B Independence of alphabet

Guibas and Odlyzko showed that for every autocorrelation, there exists a string over a binary
alphabet with that autocorrelation [10]. A nice alternative constructive proof appears in [12].
We will now show that the same holds for arbitrary correlations of equally long strings.

▶ Corollary 24. For any t ∈ ∆n, there exist u, v ∈ {a, b}n such that the correlation of u over
v is t.

Proof. Let t be the correlation of u′ over v′ with u′, v′ ∈ Σn. By Lemma 21, we can write
t = 0(n−j)sj , where sj ∈ {0, 1}j is the autocorrelation of u′[n − j . . n − 1] = v′[0 . . j − 1].
By the result of Guibas and Odlyzko, we know that there also exists some binary string
w ∈ {a, b}j with the same autocorrelation. Without loss of generality, we can assume that w

starts with b. It follows that the constructed strings u = a(n−j)w and v = wb(n−j), which
have a correlation of t by the proof of Lemma 21, use the same binary alphabet. ◀

We conclude that the number of correlations between strings of equal length is alphabet-
independent (i.e. every alphabet of size at least 2 gives rise to the same set of correlations).

▶ Remark 25. Such a binary string w can be constructed from u′[n − j . . n − 1] in linear time
using the algorithm of Halava, Harju and Ilie [12]. Therefore u and v can also be constructed
in linear time given u′ and v′.
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