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Abstract
In many machine learning applications, the labeling of datasets is done by human experts, which is usually time-consuming
in cases of large data sets. This raises the need for methods to make optimal use of the human expert by selecting model
instances for which the expert opinion is of most added value. This paper introduces the problem of active pairwise distance
learning (APDL), where the goal is to actively learn the pairwise distances between all instances. Any distance function can
be used, which means that APDL techniques can e.g., be used to determine likeness between faces or similarities between
users for recommender systems. Starting with an unlabeled dataset, each round an expert determines the distance between
one pair of instances. Thus, there is an important choice to make each round: ‘Which combination of instances is presented
to the expert?’ The objective is to accurately predict all pairwise distances, while minimizing the usage of the expert. In
this research, we establish upper and lower bound approximations (including an update rule) for the pairwise distances and
evaluate many domain-independent query strategies. The observations from the experiments are therefore general, and the
selection strategies are ideal candidates to function as baseline in future research. We show that using the criterion max
degree consistently ranks amongst the best strategies. By using this criterion, the pairwise distances of a new dataset can be
labeled much more efficiently.

Keywords Active learning · Labeling · Pairwise distance · Optimal strategy · Human expert

1 Introduction

A dataset plays a critical part when solving a practical
problem using machine learning (ML). Often, the goal is
to predict some target variable using measured features
of other variables. When gathering the data, it would be
ideal if the target variable could be measured. For example,
consider the task of forecasting the outside temperature
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using multiple other measurements, such as atmospheric
pressure, wind speed and humidity. In this case, the label
(temperature) can be determined efficiently. In other cases,
the labels are not as easily acquired. For example, to predict
if a face is visible in a photograph requires human expertise
at some point to label a dataset. In such cases, human
involvement is sometimes necessary, especially when a
model is trained to replicate human knowledge or skills.

Labeling using a human expert is a time-consuming and
costly undertaking. Therefore, efforts should be focused
on maximizing the usefulness of the expert when it is too
expensive to label everything. Typical questions are: ‘How
should the expert be deployed?’ and ‘Which samples should
be labeled?’ These questions are all part of the research
field called active learning (AL) [1]. It is a subfield of ML
dedicated to achieving the best prediction performance with
as few labels as possible. To this end, a human expert can
be queried about an instance each round. The expert then
determines a label for this instance, which in turn can be
used to update a prediction model and determine the next
query. This cycle continues for a fixed number of rounds or
until some other stopping criterion is met [2–4].
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AL is useful in situations where simply labeling all
data instances is too expensive. For example, suppose we
want to label a dataset with many facial images and we
are interested in learning the similarity/likeness between
each combination of faces. If there are M ∈ N>0 faces,

then there are already

(
M

2

)
= M · (M − 1)/2 pairwise

combinations. To label all pairwise similarities of 1,000
faces would thus already require 499,500 comparisons. For
large datasets, this quickly becomes too costly to label
(either time or money wise), which is why AL techniques
have been developed.

A critical aspect in AL is the selection algorithm (the
so-called query function) that determines which samples
should be given to the expert. The selection algorithm can
be either pre-trained using other datasets (transfer learning
[5, 6]), or it can be adjusted on-the-fly. AL techniques
(almost always) use feature values to improve the query
function, which is commonly some supervised learning
method (e.g., a neural network). Yoo et al. [7] attached a
module to a target network to predict the target losses for
unlabeled data. Klein et al. [8] measured anomaly scores of
feature values as guidance for the query function. Another
common selection criterion is some kind of uncertainty
sampling [9], whereby a prediction model is trained using
the labeled data, and applied on the feature values of the
unlabeled data. Uncertain predictions are then queried to
the expert.

In this paper, we investigate an unexplored area within
AL, that we call active pairwise distance learning (APDL).
The objective in APDL is to actively learn the pairwise dis-
tances between all instances. Any distance function can be
used, which means that APDL techniques can e.g., be used
to determine likeness between faces or similarities between
users for recommender systems. Furthermore, APDL meth-
ods can also be used in kinship recognition, deep fake
detection, anomaly detection, dissimilarity sampling, and
(pairwise) clustering. Studying APDL is therefore valuable
for many research areas. It is important to emphasize that,
we will not make any assumptions in this research about
the relevance of the feature values to these distances (see
Section 2.2 for more details), which makes our results
highly generic and hence useful in many application areas.

The contribution of this research is three-fold. First,
we introduce APDL, the problem of actively learning
the pairwise distances between all instances. Second, we
establish upper and lower bound approximations for the
pairwise distances, and an update rule for these bounds.
Third, we identify the best generic (domain-independent)
baseline strategies for practical applications. This research
can be seen as a pioneering contribution to the field of
AL, which is expected to raise many follow-up studies in
future research.

The remainder of this paper is organized as follows.
In Section 2, we formally introduce APDL and discuss
why no assumptions are made about the feature values.
Consequently, we argue that techniques from unsupervised
learning, semi-supervised learning and reinforcement learn-
ing are not applicable without these assumptions. Related
research is discussed in Section 3. Section 4 defines nota-
tion for the selection strategies. Furthermore, it is dis-
cussed how each additional pairwise distance will update
the upper and lower approximation bounds for all pairwise
distances. A variety of selection strategies and selection cri-
teria are defined in Section 5. Next, the experimental setup is
addressed in Section 6. The experiments evaluate the selec-
tion strategies on multiple datasets to find the best perform-
ing strategy. The results of the experiments are discussed in
Section 7. Section 9 gives an extensive overview of possi-
ble future research opportunities and addresses limitations
of the results presented in this paper. Finally, Section 10
summarizes the findings.

2 Active pairwise distance learning

2.1 Definition of APDL

To start, we formally define active pairwise distance
learning (APDL). Starting with an unlabeled dataset
consisting of M instances, the objective of APDL is to learn
as much as possible about the distance between each pair
of instances in T ∈ N>0 rounds. Each round, an expert
can be queried to label exactly one pairwise distance. After
T rounds, a final prediction is made about all pairwise
distances. Given a pre-determined loss function L, the
goal is to minimize the loss between the actual pairwise
distance matrix Dtrue and the predicted pairwise distance
matrix Dpred. Thus, the target of any APDL algorithm is to
minimize L

(
Dpred,Dtrue

)
. In general, there are two critical

components in APDL: (I) ‘Which pair is queried each
round?’ and (II) ‘How to use this information to make the
best prediction?’ The first question is the main focus of this
research. The general approach of an APDL algorithm can
be seen in Algorithm 1.

Algorithm 1 General APDL algorithm.
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2.2 No relevancy assumption

An important assumption that we make in this research is
that no assumptions are made about the relevance of the
feature values to the actual distance. As a consequence,
only techniques that do not use the feature values are
considered. Note that having similar feature values does
not necessarily mean that the underlying distance between
two instances is small. Insufficient features could mean that
instances appear close, but are actually far apart. Having
too many features could also be troublesome for measuring
similarity, as instances in a high-dimensional space are often
far away (due to the infamous curse of dimensionality).
Furthermore, sufficient labeled data is required to accurately
extract information from the feature values in order to make
good predictions. Especially for high-dimensional data and
complex prediction models, more labeled data is necessary
to properly train the prediction model. Gal et al. [10] even
identified the lack of scalability to high-dimensional data as
one of the major remaining challenges for AL. However, in
practice sufficient labeled data is not always available. In
addition, a recent survey [11] stated that “research remains
in its infancy at present, and there is still a long way to go
in the future.” A badly trained prediction model could steer
the query selection in the wrong direction.

Without making any assumption about the relevancy of
the feature values to the pairwise distance makes most
known techniques from unsupervised, semi-supervised and
active learning inappropriate. Chapelle et al. [12] identify
in which cases semi-supervised learning is suitable. They
determine the following three assumptions in order to apply
semi-supervised learning techniques:

Smoothness assumption: “If two points x1, x2 in a
high-density region are close, then so should be the
corresponding outputs y1, y2.”

Cluster assumption: “If points are in the same cluster,
they are likely to be of the same class.”

Manifold assumption: “The (high-dimensional) data lie
(roughly) on a low-dimensional manifold.”

The smoothness and cluster assumption do not have to hold
when the underlying distance metric (responsible for the
actual labels) is very different from the metric that is used
to measure if two points are close and if they belong to the
same cluster. Consider for example determining if cars are
similar using images. If the distance between two images
is measured by comparing them pixel-by-pixel, it is highly
likely that only the color of the car determines if two cars
are similar (or even the background). Therefore, this is not
a good approach.

The manifold assumption is important to combat the
well-known curse of dimensionality problem. Without this
assumption, a lot of data is necessary to learn the underlying

distribution from the feature values. In such a situation, it
might be better to make no assumptions than being steered
in the wrong direction due to a lack of labeled data.

Techniques from reinforcement learning [13] have
similar problems, when feature values are used. Given a
specific dataset, the same action (i.e., querying the expert
about a certain pair) is not repeated. Furthermore, no state
is revisited and the state space can be really large. Thus,
some mapping must be learned from the feature values.
This inherently has the same assumption problems as
discussed before.

When not to make relevancy assumption We identify six
situations where it could be useful to make no assumptions
about the relevancy of the feature values to the pairwise
distance: (I) when there is not yet enough labeled data for
supervised techniques; (II) when the underlying metric is
unknown and could be too complex to predict using the
given features; (III) when the features are not sufficient
(IV) when there are too many features; (V) when the model
should work across multiple domains; (VI) as baseline to
evaluate techniques that do use feature values.

To elaborate on situation (VI), whenever for example a
semi-supervised technique is developed, it should perform
better than any method that does not use the feature values.
Therefore, not using the feature values can be used to
benchmark methods that do use feature values.

Advantages of not using feature values Not using feature
values has its benefits. We list five advantages: (I) the
dimensionality of data is irrelevant; (II) the quality of
feature values is unimportant; (III) no hyper-parameter
tuning based on feature values is needed; (IV) conclusions
are not dependent on the application domain; (V) resulting
baselines are ideal to be used as benchmark. As this research
constitutes the first step in APDL, these are the reasons why
we decide to only investigate selection strategies that do not
use feature values.

3 Related research

To the best of our knowledge, APDL is a new research area
within AL. However, there are related papers, which we will
outline below.

APDL is not the same as learning pairwise preferences
[14], where the goal is to make a ranking based on pairwise
comparisons. In these pairwise comparisons, it is decided
which sample is more preferable, which is a binary choice.
A might be preferred over B, but it is not labeled by how
much, which is an important distinction. Furthermore, the
focus lies more on determining a good ranking function, not
necessarily determining which samples should be labeled in
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order to gain the most information. However, it is closely
related and (non-binary) preference / desirability could also
be used as a distance metric within APDL.

Dasarathy et al. [15] investigate binary label prediction
on a graph. A non-parametric algorithm is developed to
actively learn to predict binary labels in a graph. The
objective for APDL is to learn all pairwise distances, thus
the graph would be fully connected. The main difference
with our research is that binary labels are assumed in [15],
whereas we assume that the labels are generated by a
distance metric. On the one hand, it makes the problem
easier, as structure is added to the labels, because properties
of a distance metric need to be satisfied. On the other hand,
a label can now be real-valued and not only binary, which
makes prediction much harder.

Actively learning pairwise similarities has also been
studied for hierarchical clusterings [16]. The goal is to
infer the hierarchical clustering using as few similarities
as possible. These similarities are not necessarily from a
distance metric, as e.g., the Pearson correlation is used
in [16]. The performance is assessed by evaluating the
constructed tree structures. This makes APDL different, as
the objective is to predict all pairwise distances, not to
identify the correct tree structure.

APDL is also closely related to similarity learning and
metric learning [17–19]. These are supervised ML areas,
where the goal is to learn from a labeled dataset a similarity
function and a metric, respectively. The task of face
verification is a practical example of these research areas.
In [20], the triplet loss is used to learn a distance function
from 0/1-labels to compare faces. The main difference with
APDL is that similarity and metric learning require a labeled
dataset in order to determine a generalized function that can
be used for new samples. The objective in APDL is to gather
as much distance-based information as possible about a
fixed dataset, when there is yet no information about the
labels. APDL is thus not concerned about finding a general
function for samples outside the given dataset. APDL could
be used to build the dataset that is later used by techniques
from similarity learning and metric learning.

Metric learning has also been researched in an AL
setting. Yang et al. [21] developed a Bayesian framework to
actively learn a distance metric by selecting the unlabeled
pairs with the greatest uncertainty in predicting whether
the pair is in the same equivalence class or not. Kumaran
et al. [22] actively learned a distance metric to identify
outlier and boundary points per class, which are then given
to the expert. Even more selection strategies are explored
in [23]. Pasolli et al. [24] used an actively learned metric
to reduce the dimensionality of hyperspectral images and
to select uncertain samples. Again, the goal in active
metric learning is to get a model to accurately predict if
two samples belong to the same class, not to determine

an accurate prediction for pairwise distances. This makes
APDL a fundamentally different problem.

4 Definitions and bounds

First, we introduce some notation that is necessary to
discuss selection strategies. As seen in Algorithm 1, in
round t a pair of indices ζt := (i, j) is chosen from M

indices and a corresponding distance d(i, j) between these
indices is obtained from the expert. Although it is possible
to disregard previous requests to the expert, it is obvious that
previous results should be taken into account when selecting
the next pair of indices. If only to avoid asking the expert
the same pair twice. Therefore, we introduce the notion
of history.

Definition 1 (History) Name Ht = {((i, j), d(i, j)) : ζτ =
(i, j)}τ=1,...,t the history of all chosen pairs of indices and
their corresponding labeled distance up to and including
round t . Furthermore, define H0 := ∅ × ∅.

Next, we will define what a selection strategy is. A
selection strategy for T rounds consists of T functions
that successively determine which pair of indices is chosen
based on the given history.

Definition 2 (Selection strategy) We call σ a selection
strategy if for each t ∈ {1, . . . , T } it holds that σt : Ht−1 �→
ζt ∈ {1, . . . , M}2 and σ = {σt }t=1,...,T .

4.1 Expert distancemetric

After the selection strategy determines which pair of indices
is chosen, the expert determines the distance between them.
An important and strong assumption we make, is that the
expert makes no mistakes and that the distances originate
from an underlying metric d : {1, . . . , M}2 → [0, dmax],
where dmax ∈ R>0 is the maximum possible distance
between two samples. In most instances, dmax can be
estimated or determined. However, when the maximum
distance cannot be bounded from above, consider dmax to
be infinite. In our experiments, the underlying distance
metric is the Euclidean distance between two samples
and the expert simply returns the correct Euclidean
distance.

4.2 Approximation bounds

To approximate the true distance between each pair of
indices, we can make use of the fact that the underlying
distance function d is a metric, to find upper and lower
bounds. Each metric satisfies, by definition, the triangle
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inequality and the subsequent reverse triangle inequality.
Denote the upper and lower bound of (i, j) in round t

as Dupp
t (i, j) and Dlow

t (i, j), respectively. The metric d

is symmetric (i.e., d(x, y) = d(y, x)), thus we enforce
the upper and lower bounds to be symmetric as well.
Therefore, it must always hold that Dupp

t (i, j) = Dupp
t (j, i)

and Dlow
t (i, j) = Dlow

t (j, i). We will now discuss how
triangle inequalities can be used to update the upper and
lower bounds each time a new distance is obtained from
the expert.

Initialization In the first round, there is no distance
information yet. However, as d is a metric, it must hold that
d(i, i) = 0 for each i ∈ {1, . . . , M}. Furthermore, using the
range of d , the upper and lower bounds are initialized as:

Dupp
1 (i, j) =

{
0 if i = j,

dmax else.

Dlow
1 (i, j) = 0.

Triangle inequality The triangle inequality states that
for all a, b, c ∈ {1, . . . , M} it must hold that
d(a, c) ≤ d(a, b) + d(b, c) . Expanding on this, for every
round t it follows that

d(a, c) ≤ d(a, b) + d(b, c) ≤ Dupp
t (a, b) + Dupp

t (b, c).

In other words, Dupp
t (a, b) + Dupp

t (b, c) is an upper bound
for d(a, c). Therefore, it must hold that

Dupp
t (a, c) ≤ min

{
dmax,Dupp

t (a, b) + Dupp
t (b, c)

}
. (1)

Reverse triangle inequality The reverse triangle inequal-
ity states that |d(a, b) − d(b, c)| ≤ d(a, c) for all
a, b, c ∈ {1, . . . , M}. Now note that

|d(a, b) − d(b, c)| ≥ Dlow
t (a, b) − Dupp

t (b, c),

|d(a, b) − d(b, c)| ≥ Dlow
t (b, c) − Dupp

t (a, b).

Therefore, this gives a lower bound for (a, c). Thus,

Dlow
t (a, c) ≥ max

{
0,Dlow

t (a, b) − Dupp
t (b, c),Dlow

t (b, c) − Dupp
t (a, b)

}
.

(2)

Update rules In round t , we first set Dlow
t+1 := Dlow

t ,

Dupp
t+1 := Dupp

t . After the new distance d(i, j) is given
by the expert, the upper and lower bound collapse to
d(i, j), as it is assumed that the expert makes no mistakes.
Thus,

Dlow
t+1(i, j) := d(i, j) =: Dupp

t+1(i, j), (U1)

Dlow
t+1(j, i) := d(i, j) =: Dupp

t+1(j, i).

This newly acquired information can have an effect on
other bounds as well. For all k ∈ {1, . . . , M} (1) now gives
the following update rules:

Dupp
t+1(i, k) := min

{
dmax,Dupp

t+1(i, j) + Dupp
t+1(j, k)

}
,

Dupp
t+1(j, k) := min

{
dmax,Dupp

t+1(i, j) + Dupp
t+1(i, k)

}
, (U2)

Dupp
t+1(k, i) := Dupp

t+1(i, k),

Dupp
t+1(k, j) := Dupp

t+1(j, k).

Note that this can lead to multiple updates, as Dupp
t+1(i, k)

is updated in the first line and used in the second, whereas
Dupp

t+1(j, k) is used in the first and updated in the second.
For each bound that is now tighter than before, the same
procedure should be repeated. Note that the order of the
updates does not influence the end result as long as the effect
of every tighter bound is evaluated.

Thereafter, lower bounds can be updated using (2). For
all k ∈ {1, . . . , M}, the updates are as follows:

Dlow
t+1(i, k) := max

{
0,Dlow

t+1(i, j) − Dupp
t+1(j, k),Dlow

t+1(j, k) − Dupp
t+1(i, j)

}
,

Dlow
t+1(j, k) := max

{
0,Dlow

t+1(i, j) − Dupp
t+1(i, k),Dlow

t+1(i, k) − Dupp
t+1(i, j)

}
,

Dlow
t+1(k, i) := Dlow

t+1(i, k), (U3)

Dlow
t+1(k, j) := Dlow

t+1(j, k).

Again, this can lead to multiple updates, similar to the upper
bound updates. However, it is important to note that a new
upper bound can lead to a new lower bound, but not vice
versa. When an upper bound changes (e.g., Dupp

t+1(x, y)),
Update rules (U2) and (U3) should be evaluated (replacing
(i, j) with (x, y)). Whenever a lower bound changes (e.g.,
Dlow

t+1(x, y)), only Update rules (U3) needs to be checked.
The entire update procedure is summarized in Algorithm
2, that should be applied each time a new distance label is
obtained from the expert.

5 Strategies

In this section, we discuss the selection strategies that
will be evaluated. As the APDL problem is new, we will
investigate relatively straightforward strategies based on
naturally arising criteria to determine the baseline strategies
for future research. Without previous literature, there is yet
no evidence which strategies should perform well. However,
we can argue e.g., that selecting indices, where the upper
and lower bound are already close, is not a good idea.
Thus, sometimes we investigate a strategy that maximizes
a criterion, without looking into a strategy that minimizes
the same criterion, or vice versa. On top of the general
definition of a strategy (see Definition 2), it is necessary to
introduce some concepts and definitions that are used by
certain selection strategies.
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Algorithm 2 Update upper and lower bounds.

A selection strategy σ consists of functions σt for
t ∈ {1, . . . , T } (see Definition 2). For all strategies that will
be used, it holds that the same selection criterion is used for
each σt . In other words, the strategy does not change for
different rounds.

It is possible that multiple samples satisfy some selection
criterion (for example, the least chosen strategy). If more
than one sample is optimal for the selection criterion,
a selection between these samples is made uniformly at
random. The following notation is used for this.

Definition 3 (Drawn uniformly from set) Let U(A) denote
the uniform distribution over a finite non-empty set A. Thus,

when X ∼ U(A) it must hold that P(X = a) = 1
|A| for each

a ∈ A.

Degree

It is also useful to track how often each index is chosen.
Note that the problem can be visualized by a graph. Each
sample is a vertex, and an edge is drawn between a pair of
vertices, whenever the expert labels the distance between
these pairs. How often each index is chosen is identical to
the degree (from graph theory) of the corresponding vertex.
Let degt (k) denote the degree of sample k in round t . This
can be determined by

degt (k) = |{ζτ = (i, j) : i = k ∨ j = k}τ=1,...,t−1|.

Predicted distance

Let Dpred
t (i, j) be the predicted distance between samples i

and j in round t . We will later show (in Definition 4 below)
how the distance is actually predicted. Strategies can use
these predictions in a selection criterion.

Different kinds of strategies

Next, we divide the selection strategies into two groups,
namely simultaneous and sequential strategies. Behind a
simultaneous strategy, there is a singular selection criterion
that determines which pair of indices is selected in round t

out of all possible remaining pairs in

It := {
(i, j) ∈ {1, . . . , M}2 : (Hτ−1) /∈ {(i, j), (j, i)}

for all τ ∈ {1, . . . , t − 1}}.

For a sequential strategy, the indices are chosen one after
the other by two (possibly different) selection criteria. To
this end, if σt (Ht−1) = (i, j), let σt (Ht−1)1 := i and
let σt (Ht−1)2 := j denote the first and second index
respectively. σt (Ht−1)1 is chosen from the remaining first
indices, thus from

Iuniq
1,t := {i : ∃(i, ·) ∈ It }.

Whenever the first index is chosen, the remaining second
indices reduce, as it is limited by the first chosen index
σt (Ht−1)1. The second index is chosen from

(σt (Ht−1)1)
uniq := {j : ∃(σt (Ht−1)1, j) ∈ It }.

5.1 Simultaneous strategies

First, we will discuss the simultaneous strategies, where
both indices are chosen at the same time.
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5.1.1 Random pair

Select a pair uniformly at random out of the remaining pairs.

Criterion 1 (Random pair)

σt (Ht−1) ∼ U(It ). (3)

5.1.2 Max bound gap

Select a pair uniformly at random out of the remaining pairs
with the largest difference between the upper and lower
bound of the predicted distance.

Criterion 2 (Max bound gap)

σt (Ht−1) ∼ U
(

arg max
(i,j)∈It

{
Dupp

t t (i, j) − Dlow
t t (i, j)

})
.

(4)

5.1.3 Max combined total bound gap

First, determine for each sample the bound gap with all other
samples and sum these into a combined bound gap. Then,
select a pair uniformly at random out of the remaining pairs
with the largest sum of combined bound gaps.

Criterion 3 (Max combined total bound gap)

σt (Ht−1) ∼ U
(

arg max
(i,j)∈It

{ M∑
k=1

(
Dupp

t (i, k) − Dlow
t (i, k)

+ Dupp
t (j, k) − Dlow

t (j, k)
)})

. (5)

5.1.4 Max/min total degree

First, determine for each sample the degree, see Section 5.
Then, select a pair uniformly at random out of all
remaining pairs where the sum of the individual degrees is
maximized/minimized.

Criterion 4 (Max total degree)

σt (Ht−1) ∼ U
(

arg max
(i,j)∈It

{
degt (i) + degt (j)

})
. (6)

Criterion 5 (Min total degree)

σt (Ht−1) ∼ U
(

arg min
(i,j)∈It

{
degt (i) + degt (j)

})
. (7)

5.2 Sequential strategies

Next, we will discuss the sequential strategies, where the
second index is chosen after the first.

5.2.1 Random index

Draw uniformly at random an index out of the unique set of
possible remaining indices.

Criterion 6 (Random index)

σt (Ht−1)1 ∼ U
(
Iuniq.

1,t

)
, (8)

σt (Ht−1)2 ∼ U
(
(It |σt (Ht−1)1)

uniq.
)

. (9)

Note that choosing the first and second index using random
index is not equivalent to using the random pair strategy, as
random index uses the unique indices, where random pair
does not.

5.2.2 Linked

This strategy can only be applied for the first index. Use
the second index of the previous round as the first index
of this round, unless there are no remaining pairs with this
index. In this case and in the first round, choose the first
index uniformly at random from the unique first indices,
equivalent to the random index strategy, see (8).

Criterion 7 (Linked)

σt (Ht−1)1 ∼
{
U (σt−1(Ht−2)2) if t > 1 and σt−1(Ht−2)2 ∈ Iuniq.

1,t ,

U
(
Iuniq.

1,t

)
else.

(10)

5.2.3 Max/min degree

Choose uniformly at random an index with maximum
degree (see Section 5) out of the unique set of possible
remaining indices.

Criterion 8 (Max degree)

σt (Ht−1)1 ∼ U

⎛
⎝arg max

i∈Iuniq.
1,t

{
degt (i)

}⎞⎠ , (11)

σt (Ht−1)2 ∼ U
(

arg max
j∈(It |σt (Ht−1)1)

uniq.

{
degt (j)

})
. (12)
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Criterion 9 (Min degree)

σt (Ht−1)1 ∼ U

⎛
⎝arg min

i∈Iuniq.
1,t

{
degt (i)

}⎞⎠ , (13)

σt (Ht−1)2 ∼ U
(

arg min
j∈(It |σt (Ht−1)1)

uniq.

{
degt (j)

})
. (14)

5.2.4 Max total bound gap

First, determine for each sample the bound gap with all
other samples and sum these into a combined bound gap.
Then, choose uniformly at random an index with maximum
combined bound gap.

Criterion 10 (Max total bound gap)

σt (Ht−1)1 ∼ U

⎛
⎝arg max

i∈Iuniq.
1,t

{
M∑

k=1

(
Dupp

t (i, k) − Dlow
t (i, k)

)}⎞
⎠ , (15)

σt (Ht−1)2 ∼ U
(

arg max
j∈(It |σt (Ht−1)1)uniq.

{
M∑

k=1

(
Dupp

t (j, k) − Dlow
t (j, k)

)})
.

(16)

5.2.5 Max previous expected distance

In the first round, this strategy simplifies to the random
index strategy (Section 5.2.1). Thereafter, choose uniformly
at random an index out of the unique set of the possible
remaining indices, such that the predicted distance to the
indices of the previous round is maximized.

Criterion 11 (Max previous expected distance)

(17)

(18)

5.2.6 Max/min/median expected distance

This strategy can only be applied for the second index.
Select uniformly at random an index out of the unique
set of remaining possible indices that belong to the
maximum/minimum/median of the predicted distance (see
Section 6.4) to the first index.

Criterion 12 (Max expected distance)

σt (Ht−1)2 ∼ U
(

arg max
j∈(It |σt (Ht−1)1)uniq.

{
Dpred

t (σt (Ht−1)1, j)
})

. (19)

Criterion 13 (Min expected distance)

σt (Ht−1)2 ∼ U
(

arg min
j∈(It |σt (Ht−1)1)uniq.

{
Dpred

t (σt (Ht−1)1, j)
})

. (20)

Criterion 14 (Median expected distance)

σt (Ht−1)2 ∼ U
(

arg median
j∈(It |σt (Ht−1)1)uniq.

{
Dpred

t (σt (Ht−1)1, j)
})

. (21)

6 Experimental setup

6.1 Strategies

The goal of the experiments is to find which strategies
perform well for which dataset. In Section 5, all used criteria
are explained and defined. With simultaneous strategies,
an index pair (i, j) is chosen at once. With sequential
strategies, a separate decision is made for the first and
second index sequentially. For example, one strategy uses
Criterion 8 (max degree) to select the first index, and
Criterion 9 (min degree) for the second index. In total,
this leads to 5 (simultaneous) + 6 · 8 (sequential) = 53
different strategies (see Table 1). Furthermore, all strategies
are stochastic. Therefore, each strategy is repeated ten times
for each dataset. Thereafter, results are averaged to reduce
stochastic outliers. It is desirable that a strategy performs
generally well, not only coincidentally.

6.2 Data

To evaluate the performance of different strategies, fourteen
two-dimensional datasets are used. To reduce computational
time, the maximum allowed size of a dataset is 1,000
samples. Whenever a dataset is larger, a subset of 1,000
samples is drawn uniformly at random. The coordinates are
scaled (min-max) for each dataset to be within [0, 1]2. The
following datasets are used, where the number of samples
is denoted in round brackets: S1 (1,000), S2 (1,000), S3
(1,000), S4 (1,000) [25], Unbalance (1,000) [26], Birch2-1
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Table 1 Average performance: for each dataset and repetition, the
prediction error of a strategy is averaged in rounds i · MMST with i ∈
{1, . . . , 10}. The ranking (by column) of each average prediction error

is noted in brackets. Coloring of each column is done linearly between
the worst and baseline (random pair) score and linearly between the
baseline (random pair) and the best score

(1,000) [27], Aggregation (788) [28], Compound (399) [29],
Pathbased (300), Spiral (312) [30], D31 (1,000), R15 (600)
[31], Jain (373) [32], Flame (240) [33]. All these datasets
are used as clustering benchmarks [34]. A visualizathon of

these datasets can be seen in Fig. 1. The Euclidean distance
is used as underlying distance metric for each dataset.

Observe that these datasets are all two-dimensional. In
other words, they have two features. Note that this is not
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(a) S1 (b) S2 (c) S3

(d) S4 (e) Aggregation (f) Compound

(g) Pathbased (h) Spiral (i) D31

(j) R15 (k) Jain (l) Flame

(m) Birch2-1 (n) Unbalance

Fig. 1 Visualization datasets: Each two-dimensional dataset that is used to test different strategies.

a shortcoming for this experiment, as it is assumed that
features are not relevant for the APDL techniques (see
Section 2.2 above). As long as the calculated pairwise

distances remain the same, these datasets could have any
dimension. Two-dimensional datasets were chosen, because
they can be visualized easily.



Active pairwise distance learning for efficient labeling...

6.3 Number of rounds

The number of samples M is dependent on the dataset.
Especially for increasingly large datasets, it is undesirable to

keep on labeling until all labels are given. Namely,

(
M

2

)
=

M · (M − 1)/2 pairwise combinations can be made in total.
If e.g., ten percent of the combinations should be labeled,
the total number of rounds T grows exponentially in the
number of samples. This gives much more opportunities to
determine good upper and lower bound approximations for
a large dataset compared to a small dataset. Therefore, we
decide to choose the total number of rounds for a dataset in
a linear-growing fashion. A minimum spanning tree (MST)
in graph theory is a subset of edges in an undirected graph,
such that all vertices are connected without any cycles. In
total, M−1 edges are necessary to make an MST for a graph
with M vertices. For each M − 1 labels given by the expert,
a minimum spanning tree could have been formed. Now, let
MMST := M −1 and define the total number of rounds T as
10 · MMST . This reflects a scenario where it is not possible
to determine many labels, which will often be the case
in practice.

6.4 Performance evaluation of strategies

In order to compare the different strategies, it is important to
discuss how the performance of the strategies is evaluated.
Each strategy is applied ten times on each dataset. Each
round a prediction is made by averaging the upper and
lower bound.

Definition 4 (Predicted distance matrix) Let Dpred
t be the

predicted distance matrix in round t , such that

Dpred
t (i, j) :=

(
Dupp

t (i, j) + Dlow
t (i, j)

)
/2.

Note that if (i, j) was labeled by the expert, it holds that

Dpred
t (i, j) =

(
Dupp

t (i, j) + Dlow
t (i, j)

)
/2 = (d(i, j) + d(i, j)) /2

= d(i, j).

Definition 5 (True distance matrix) Let Dtrue be the true
distance matrix.

The prediction error between the predicted distance
matrix Dpred

t and the true distance matrix Dtrue can now
be calculated. To compare these two matrices, the mean
squared error is used. This leads to the following definition.

Definition 6 (Prediction error) The error εt in round t is
determined as

εt = 1

M2

M∑
i=1

M∑
j=1

(
Dtrue(i, j) − Dpred

t (i, j)
)2

.

After collecting all prediction error results, three
approaches are undertaken to compare the performance of
each strategy: (I) average performance, (II) Borda count;
(III) area under the curve (AUC). Each approach will now
be explained.

6.4.1 Average performance

To average the prediction error results over different
datasets, the error is determined at predefined rounds,
specific for each dataset. As discussed in Section 6.3, the
total number of rounds is dependent on the size of the
dataset. Thus, in round i · MMST with i ∈ {1, . . . , 10}, the
prediction error is determined. Averaging the results for a
fixed i produces the final score. Summarizing, all prediction
errors of a single strategy at predefined rounds are averaged
for all ten repetitions and all fourteen datasets.

6.4.2 Borda count

A drawback of the previous approach is that certain datasets
might be harder to predict correctly, making these datasets
influence the average performance heavily, as the prediction
error is relatively large, and all datasets are weighted
equally. Thus, Borda count [35] (a voting method) is used
to rank the prediction error of each strategy in the following
way. First, order all strategies based on the prediction error
for each dataset and repetition. The strategy with the highest
prediction error gets 1 point. The second worst gets 2 points.
The third highest gets 3 points and so on. This is done for
each dataset and repetition in the predefined rounds {i ·
MMST }i=1,...,10. The final Borda count results are obtained
by averaging over all datasets and repetitions for a fixed
round. A higher score indicates better performance, and
the maximum possible score is equal to the total number
of strategies.

6.4.3 Area under the curve

Instead of comparing the results at specified iterations, it
is also possible to evaluate the performance of a strategy
by measuring the so-called area under the curve (AUC) for
each iteration using the trapezoidal rule. For each strategy,
dataset and repetition, the area under the prediction error
is measured up to and including the maximum number of
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Fig. 2 Example AUC: Each round the prediction error is measured.
The AUC of the prediction error is then determined by using the
trapezoidal rule (22), which adds the area of the golden rectangles.
Note that this is exactly equal to the blue area under the prediction
error curve

rounds (10·MMST ). As the rounds are equally spaced, AUC
reduces to
10·MMST −1∑

t=2

εt + ε1 + ε10·MMST

2
. (22)

Note that the AUC is not necessarily bounded by [0,1].
By averaging over the repetitions, an average AUC score
can be derived for each strategy and dataset. A lower score
indicates better performance, as the prediction error must
be minimized and the sooner this is achieved the better. A
fictitious example of how the AUC is measured can be seen
in Fig. 2.

7 Results

Following the experimental setup from Section 6, all
53 strategies outlined in Section 5 are evaluated on
fourteen different datasets (see Section 6.2). The results are
summarized into three tables: Section 1 gives the average
prediction error results (Section 6.4.1); Table 2 shows the
average Borda count score for each strategy (Section 6.4.2);
Table 3 displays the area under the curve results for
each strategy and dataset (Section 6.4.3). These tables all
provide a different angle on the performance of the selection
strategies.

Next, we will discuss the most important observations
backed by evidence from Tables 1, 2 and 3.

Observation 1 There are better strategies than simply
choosing a random pair.

Evidence: The best rank random pair achieves is 13th in
Table 3 on the dataset Unbalance. Often it ranks around the
mid-twenties in Tables 1, 2 and 3. This means that there are
(many) strategies that perform better than random pair.

Observation 2 Max total bound gap / max degree is the
best strategy for earlier rounds.

Evidence: The ranked scores of strategy max total bound
gap / max degree are highlighted in Table 4. For rounds
2 · MMST up to 7 · MMST , the strategy ranks the best
out of all evaluated strategies. When one has really limited
labeling capabilities, this strategy performs very well across
all datasets. It always has the best AUC score out of all
tested strategies, except for the dataset Unbalance (see
Table 3).

Observation 3 Max degree is generally a good criterion,
especially in the earlier rounds.

Evidence: In Tables 1, 2 and 3 a lot of green cells belong
to a strategy with max degree. This means that it performs
close to or equal to the best performance. Thus, it is a good
strategy to choose at least one of the indices based on max
degree. Especially in the earlier rounds. In round 3 · MMST ,
strategies with max degree rank in Table 1: (10th, 07th, 04th,
06th, 02nd, 05th, 13th, 09th, 12th, 11th, 03rd, 01st, 14th). Thus,
the entire top 14 is filled by strategies with max degree
except for the eight place, which is obtained by max total
degree. This criterion is thus highly effective in the earlier
rounds.

Observation 4 Min exp. distance and median exp. distance
are bad criteria.

Evidence: Both min exp. distance and median exp. distance
perform terrible. After 10 · MMST , strategies with min exp.
distance and with median exp. distance are ranked (23rd,
49th, 53rd, 51st, 50th, 52nd) and (16th, 48th, 41st, 47th,
46th, 42nd), respectively in Table 1. Only combining with
max degree can save the performance. Min exp. distance
is for all other combinations colored red in Tables 1, 2
and 3, which means that it is (or close to) the worst
performance.

Observation 5 Although the prediction is directly depen-
dent on the bound gap, max bound gap is only a good
strategy after > 7 · MMST rounds.

Evidence: The ranked scores of strategy max bound gap are
highlighted in Table 5. In the early rounds (up to 4 ·MMST ),
this strategy performs even worse than random pair.
After that, it quickly becomes one of the best performing
strategies, even ranking first in the later rounds. Due to the
slow start, the AUC scores are remarkably mediocre, see
Table 3.

Observation 6 Max exp. distance is a late bloomer.

Evidence: Whilst min exp. distance and median exp.
distance perform bad, max exp. distance gets increasingly
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Table 2 Borda count: for each dataset and repetition, Borda count
is used to rank the prediction error of the strategies and averaged in
rounds i · MMST with i ∈ {1, . . . , 10}. The ranking (by column) of

each Borda count score is noted in brackets. Coloring of each column
is done linearly between the worst and baseline (random pair) score
and linearly between the baseline (random pair) and the best score
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Table 3 AUC: for each repetition, the area under the curve (AUC) of
the prediction error for a strategy is measured and averaged in rounds
i · MMST with i ∈ {1, . . . , 10}. The ranking (by column) of each

AUC score is noted in brackets. Coloring of each column is done lin-
early between the worst and baseline (random pair) score and linearly
between the baseline (random pair) and the best score

better. Comparing the ranks in Table 1 in round 5 · MMST

with round 10 · MMST gives:

(
04th 14th 15th 18th 21st 13th

)
↓ ↓ ↓ ↓ ↓ ↓(
11th 03rd 07th 02nd 05th 04th

)

Only max degree / max exp. distance loses terrain. After
round 10 ·MMST , the top 7 contains five strategies with max
exp. distance, which is noteworthy.

Observation 7 Performance is relatively robust across
datasets (AUC scores).

Table 4 Highlighted ranks: the ranks of the strategy max total bound gap / max degree from Tables 1 and 2

1 MMST 2 MMST 3 MMST 4 MMST 5 MMST 6 MMST 7 MMST 8 MMST 9 MMST 10 MMST

Average performance 06 01 01 01 01 01 01 08 08 08

Borda count 09 01 01 01 01 01 02 08 08 08
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Table 5 Highlighted ranks: the ranks of the strategy max bound gap from Tables 1 and 2

1 MMST 2 MMST 3 MMST 4 MMST 5 MMST 6 MMST 7 MMST 8 MMST 9 MMST 10 MMST

Average performance 25 26 22 19 18 17 10 02 01 01

Borda count 23 23 22 23 17 15 05 01 01 01

Evidence: In Table 3, every strategy has approximately the
same color across datasets. This means that the relative
performance is not very dependent on the dataset. However,
Unbalance gives the most deviant results. This implies
that the balancedness of the dataset could influence the
performance of a strategy.

8 Real world experiment

In order to test if the observations also hold for real world
datasets, we also evaluate the strategies on the cifar10 [36]
and mnist [37] datasets. These datasets consist of images
of ten different categories. To limit memory space and
running time, we only take the first 1,000 samples of the
training set for each dataset. The distance between two
images is determined by the Euclidean norm, which was
also used in the previous experiments. The results can be
found in Table 6, where the average performance is given
(see Section 6.4.1).

Next, we discuss (using Table 6) if the observations from
Section 7 also hold for these real world datasets. Still,
there are many better strategies than simply choosing a
random pair (Observation 1). Max total bound gap / max
degree also remains the best strategy for earlier rounds
(Observation 2), but now the performance falls off after
2 · MMST rounds. Max degree is generally a good criterion
(Observation 3). The best strategies often use this criterion.
Min exp. distance and median exp. distance are still bad
criteria (Observation 4). But now, max bound gap is not a
good strategy even after > 7 · MMST rounds (Observation
5). After 10 · MMST rounds, it ranks 30th, whilst simply
selecting a random pair ranks 20th. Perhaps, this strategy
needs even more rounds to become good. Max exp. distance
is also not longer a late bloomer (Observation 6), as multiple
strategies with this criterion rank higher after 10 · MMST

rounds, then after 5 · MMST rounds. Furthermore, it ranks
worse after 10 · MMST rounds compared with the previous
experiment. Perhaps, this strategy also needs more rounds
to start blooming. We believe that the difference could
be explained by the dimensionality of the datasets. The
cifar10 and mnist dataset have a higher dimensionality
(32 × 32 × 3) and (28 × 28), respectively. It is well-known
that in higher dimensional space, most points will be far
away. Therefore, dimensionality could play a role in the
distribution of pairwise distances. This in turn, could have
an effect on some strategies such as max bound gap and max

exp. distance, which is why we believe that these strategies
may need more time to start performing well on these
datasets. The AUC performance remains relatively stable
for these datasets (Observation 7).

In general, most previous observations still hold for these
real world datasets. Only some strategies that previously
performed well in the later rounds, did not start improving
as well on these datasets. It could be that more rounds
are necessary.

8.1 Performancemax degree

An important observation from both Section 7 and Table 6,
is that max degree is a good criterion. The best performing
methods often include this criterion. We briefly want to
discuss why we believe that choosing a sample that has
been already chosen often (max degree) is beneficial. In
order to predict the actual distance, a lower and upper bound
is established using the triangle inequality (Section 4.2).
When the distance is labeled between i and j , the triangle
inequality can be used to derive information about the
distances between i and k if the distance between j

and k is known. Therefore, labeling a sample with the
highest degree, gives a lot of possible triangle inequality
combinations that can be made, which could provide much
information. This is why we believe that this criterion
performs really well.

9 Discussion and future research

This research can be viewed as a pioneering contribution
and is a significant first step in APDL. Below we elaborate
on both the shortcomings of the approach proposed, and the
related challenges for further research.

Perfect expert It is assumed that the expert does not
make any mistake in determining the distance between two
instances. This is a common, yet unreasonably optimistic,
assumption in AL research. Settles [38] states that “we
have often assumed that there is a single infallible annotator
whose labels can be trusted” and views this assumption as
one of the six practical challenges for AL. How to deal with
a noisy expert remains a critical research problem. A way
of mitigating the mistakes of the expert in APDL is to allow
some ε-boundary around the labels and incorporating this
into the approximation bounds. Still, there are many more
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Table 6 Average performance (cifar10 & mnist): for each dataset
(cifar10 & mnist) and repetition, the prediction error of a strategy is
averaged in rounds i · MMST with i ∈ {1, . . . , 10}. The ranking (by
column) of each average prediction error is noted in brackets. Coloring

of each column is done linearly between the worst and baseline (ran-
dom pair) score and linearly between the baseline (random pair) and
the best score

ways to deal with an imperfect expert, which should be
investigated. Using properties of a metric, mistakes can be
spotted and reevaluated.

Underlying distance metric In all experiments, the
Euclidean distance was used as underlying distance met-
ric. This might affect the conclusions that were drawn, as
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alternative distance metrics might be favorable for different
strategies. In future research, this could be investigated by
changing the underlying distance metric and evaluating if
the same strategies are always performing the best.

Complex strategies In our research, we have examined
many selection algorithms based on straightforward criteria.
Newer and more complex strategies could be developed,
reducing the prediction error even more. Consider for
example mixing strategies, where one strategy works well in
the beginning (e.g., max total bound gap / max degree) and
switch to another strategy (e.g., max bound gap) that works
better later on. Another way, would be to select each round
a specific strategy with a certain probability. Additionally,
transfer learning [5, 6] can be applied to train an even
more advanced model (e.g., a neural network) using labeled
datasets. Such a model can be trained to choose a good
strategy at a specific time, where the new prediction error
can be used to either reward or penalize the selection. If the
chosen strategy selected a pair that gave a lot of insight, the
model can be updated to select this strategy more often in
similar cases. When properly trained, the model could be
applied to new datasets to determine the selection strategy.
Whether this is a good approach, depends on the ability of
the model to transfer the learned information over to the
new dataset.

Running time In this research, we have used straightfor-
ward criteria that are easy to compute. However, when more
complex strategies are designed, running time could start
to play a role. The importance of running time is mostly

task dependent. The cost of coming up with the next query
should be balanced with the cost of the labeling done by the
expert. We consider APDL to be particularly useful in situa-
tions where the expert can only be queried a limited number
of times (due to high costs). However, running time is some-
thing that should be considered in future work when more
complex strategies are used. When a strategy is too hard to
compute, approximation algorithms could be developed.

Running time In this research, we have used straightfor-
ward criteria that are easy to compute. However, when more
complex strategies are designed, running time could start
to play a role. The importance of running time is mostly
task dependent. The cost of coming up with the next query
should be balanced with the cost of the labeling done by the
expert. We consider APDL to be particularly useful in situa-
tions where the expert can only be queried a limited number
of times (due to high costs). However, running time is some-
thing that should be considered in future work when more
complex strategies are used. When a strategy is too hard
to compute, approximation algorithms could be developed.
The average running time of each strategy can be seen in
Table 7. We believe that the difference in running time can
mostly be explained by the following phenomenon. When
there are more samples that satisfy the selection criterion,
a random selection is made between these samples. This
function takes more time, when there are more samples to
choose from. Consider, for example, the difference between
random index / max degree and random index / min degree
that take on average 685 and 978 seconds, respectively.

Table 7 Average running time: the running time of each strategy averaged over all repetitions and datasets (including cifar10 & mnist). The
ranking is noted in brackets. Coloring is done linearly between the worst and best score
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There are considerably more samples with the same mini-
mum degree compared to the maximum degree. In Table 7,
we observe that strategies consistently are slower when they
have more samples that satisfy the criterion.

Space complexity In the experiments, at most M = 1,000
samples were used, as this already leads to 499,500
different pairs. To store the approximation bounds for
each pair, O(M2) is necessary. This can quickly become
infeasible for large M . Although rather time expensive,
these approximation bounds could be calculated every
time they are needed. Yet, for large problems, a better
solution is necessary. A major insight of this research is
that choosing based on max degree consistently performs
well. This criterion does not use any information from the
approximation bounds, which is why this is ideal for large
problems, as the approximation bounds are only necessary
for the final predictions. More research is necessary to
optimize large APDL problems.

Using feature values It was assumed in Section 2.2 that no
feature values should be used. In this way, the observations
from this research are not dependent on the application
domain. Furthermore, if new methods are developed that
do use feature values, our tested selection strategies can
function as a good baseline. Adding information (using
the feature values) should only increase the performance
of an APDL method. Thus, when a model is performing
worse than any one of our suggested strategies, it should
be considered as a major warning sign. Additionally, during
the APDL process, a model could be used to evaluate if
the feature values could help the prediction. If so, feature
values could be introduced into the query selection after
some rounds.

Gaining insight Demystifying AL can give us critical
insights. Which samples are useful to query? Can we under-
stand why? Can we explain why certain selection algo-
rithms perform better? Is the clusteredness/balancedness of
a dataset relevant? Are there better indicators for the useful-
ness of a sample query? Answering these kinds of questions
could lead to better performing models.

Error reduction rate The reduction rate in prediction
error instigates many exciting research opportunities. Can
guarantees be derived about the speed with which the
prediction error converges for certain strategies? It would
be especially useful for practical applications to know
how many labels should be gathered to get at most a
prediction error of δ > 0. To derive such a guarantee,
either theoretical proof or substantial numerical evidence is
necessary. Additionally, the effect of a tight or loose initial

upper bound for the maximum distance on the convergence
speed could also be investigated.

Additional application We think that APDL can also be
used to determine the complexity of a dataset. When a
strategy needs more rounds to attain a certain prediction
error, the dataset might be more complex, as it is harder to
learn the pairwise distances. In this way, APDL can even
be useful for fully labeled datasets. Which strategies to use
and how complexity is exactly quantified with APDL are all
interesting subjects for future research.

Prediction model Recall that there are two critical compo-
nents in APDL, namely ‘Which pair is queried each round?’
and ‘How to use this information to make the best predic-
tion?’ The focus of our research was to answer the first
question. To make a prediction of a distance, we used the
upper and lower bound approximation and took the average
as prediction (see Definition 4). Therein lies a large opportu-
nity for improvement, as a more advanced prediction model
could improve the final prediction as well as the query selec-
tion. Using a tuned weighted average of the upper and lower
approximation could already perform better.

10 Summary

We started by introducing the problem of APDL, where
the goal is to actively learn the pairwise distances between
all instances. We established upper and lower bound
approximations using properties of a distance function.
Furthermore, we presented an update rule that automatically
updates the upper and lower bounds using the newest
labeled distance. Then, we provided fourteen selection
criteria, which gave us 53 query strategies combined. These
strategies do not use feature values, making the observations
from the experiments domain-independent. This makes
these selection strategies ideal candidates for a baseline in
future research.

The experiments led to valuable new insights. These
observations were tested by evaluating all strategies on
two real world datasets (cifar10 & mnist). We found
multiple strategies that perform better than simply randomly
selecting a pair (Observation 1). This shows that it is indeed
possible to ‘smartly’ select the indices. We determined that
the performance of the strategies was not very dependent on
the datasets (Observation 7). The performance only changed
somewhat in a highly unbalanced case. We identified max
degree to be a consistently good criterion. In Section 8.1,
we explained why we believe that this criterion is useful.
Consequently, we also discovered which strategies should
not be chosen due to general bad performance (Observation
4). Choosing the right selection strategy could potentially
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save many hours and resources. The findings from the
experiments are not dependent on the dimensionality of the
data or (noisy) feature values, as feature values were not
taken into account. However, more dimensions could lead
to higher sparsity (curse of dimensionality), which is why a
mix of sparse and dense datasets were used.
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