
Sharpness and well-conditioning of nonsmooth convex formulations
in statistical signal recovery

Lijun Ding ∗ Alex L. Wang †

July 14, 2023

Abstract

We study a sample complexity vs. conditioning tradeoff in modern signal recovery problems
where convex optimization problems are built from sampled observations. We begin by introducing
a set of condition numbers related to sharpness in ℓp or Schatten-p norms (p ∈ [1, 2]) based on
nonsmooth reformulations of a class of convex optimization problems, including sparse recovery,
low-rank matrix sensing, covariance estimation, and (abstract) phase retrieval. In each of the
recovery tasks, we show that the condition numbers become dimension independent constants
once the sample size exceeds some constant multiple of the recovery threshold. Structurally,
this result ensures that the inaccuracy in the recovered signal due to both observation noise
and optimization error is well-controlled. Algorithmically, such a result ensures that a new
first-order method for solving the class of sharp convex functions in a given ℓp or Schatten-p
norm, when applied to the nonsmooth formulations, achieves nearly-dimension-independent
linear convergence.

1 Introduction
This paper studies a sample complexity vs. convex optimization conditioning tradeoff in modern
signal recovery problems such as abstract phase retrieval (henceforth phase retrieval) [14], sparse
recovery [15], low-rank matrix sensing [9, 50], and covariance estimation [21].

Statistical signal recovery via convex optimization. To set the stage, consider recovering
an unknown element of a vector space, x♮ ∈ V , called the signal, from a linear sensing operator,
A : V → Rm, and a vector of measurements, b = A(x♮). In short, we need to

recover x♮ ∈ V from (b,A) where b = A(x♮) ∈ Rm.

In a standard statistical signal recovery setting, each coordinate of the linear map A is sampled from
a fixed distribution and m is the number of samples, i.e, A∗(e1), . . . ,A∗(em) are i.i.d, where A∗ is
the adjoint map and ei, i = 1, . . . , m, are standard basis vectors. The convex optimization approach
to this problem, pioneered in [15, 50], begins by constructing a convex optimization problem

min
x∈V

{
f(x) : A(x) = b

x ∈ K

}
. (1)
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Here, the choice of the convex objective f and the convex set K reflect prior knowledge about
the signal x♮. For example, we may set f to be the vector ℓ1-norm if x♮ is sparse [15] or K to
be the positive semidefinite (PSD) cone when x♮ is PSD1 [14]. A tremendous effort in the past
[9, 14–17, 20, 23, 49, 50] showed that, once the sample size m exceeds a small multiple of the
information-theoretic threshold2, the convex optimization problem admits x♮ as its unique minimizer
with high probability (w.h.p.).3

Issues and challenges. Unfortunately, convexity and uniqueness of solution are not the end
of the story as convex optimization problems themselves may not be well-conditioned. In these
situations, the recovery process may suffer from

• measurement error : when the observation vector b is corrupted by noise, the optimal solution
of (1) may deviate greatly from x♮ or may even cease to exist;

• optimization error : the problem (1) may admit near-optimal and near-feasible solutions in
terms of function value and constraint violation that are far from the true signal x♮;

• slow algorithm convergence: the iteration complexity of existing first-order algorithms for
solving (1) may depend polynomially on the dimension due to polynomially poor conditioning
of (1).4 Such dependence weakens the applicability of existing first-order methods on large-scale
instances of (1).

Our contribution. In this paper, we introduce a notion of conditioning related to sharpness for
(1) based on an unconstrained nonsmooth reformulation5 of (1) that allows us to quantitatively
control each of the above issues. Our contributions are summarized below:

• Statistically, we prove that a variety of problems from statistical signal recovery are well-
conditioned in terms of ℓ1 or Schatten-1 norm under standard statistical assumptions once
m is taken to be a constant factor above the information-theoretic threshold (Section 4).
Numerically, we observe that the convex optimization problems encountered in these signal
recovery problems are ill-conditioned near the known thresholds for successful recovery [2, 17].
Furthermore, (1) is not well-conditioned in standard Euclidean notions of conditioning leading
to poor numerical performance of ℓ2 based algorithms such as the subgradient method
(Section 8).

• Structurally, we show that if (1) is better conditioned, near-optimal and near-feasible solutions
are closer to the true signal, and noise/error in the observations has less of an impact on the
signal recovered via the nonsmooth reformulations (Sections 2 and 5). Furthermore, our notion
of conditioning implies an important regularity condition known as strict complementarity
(Section 7).

• Algorithmically, we develop a first-order method for the broader problem class of unconstrained
nonsmooth convex problems that are well-conditioned in terms of ℓp or Schatten-p norms

1A matrix is PSD if it is symmetric and all its eigenvalues are nonnegative.
2This threshold is usually proportional to the dimension of the manifold or the union of manifolds where x♮ belongs,

e.g., the fixed rank manifold or the set of sparse vectors.
3An event happens w.h.p. if the probability is larger than 1 − exp(−cm) for some numerical constant c.
4These polynomial factors may be even worse when measuring error in terms of distance to the true solution as

opposed to function value.
5See Section 2 or the following subsection for a description of the reformulation and the sharpness in terms of a

particular norm.
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p ∈ [1, 2]. This algorithm has an iteration complexity that is nearly dimension-independent6

(Section 6). Numerically, we observe its iteration complexity stays nearly constant for (1) when
the dimension increases. On the other hand, methods that are optimal for well-conditioned
problems in terms of Euclidean norm, e.g., the subgradient method with Polyak step sizes,
deteriorate with dimension (Section 8).

We illustrate our results more concretely in the setting of phase retrieval in the following subsection.

1.1 Vignette: phase retrieval

The phase retrieval problem asks us to recover an unknown rank-one PSD matrix X♮ ∈ Sn given a
vector of m measurements b = A(X♮) where A : Sn → Rm is defined by A(X)i = g⊺i Xgi for i.i.d.
gi ∼ N(0, In/m). In other words, A∗(ei) = gig

⊺
i for all i = 1, . . . , m. Here and throughout, Sn and

Sn
+ denote the vector space of symmetric matrices and the cone of PSD matrices respectively. In [10],

Candès and Li established an exact recovery result: If m = Θ (n), then, w.h.p., X♮ is the unique
optimizer for

min
X∈Sn

{
tr(X) : A(X) = b

X ∈ Sn
+

}
. (2)

Nonsmooth reformulation and conditioning. To measure the conditioning of (2), we introduce
the following penalized nonsmooth version of (2):

min
X∈Sn

Fr,ℓ(X) := tr(X) + r ∥A(X)− b∥1 + ℓ dist∥·∥1
(X,Sn

+). (3)

Here, the distance dist∥·∥1
(X,Sn

+) := infY ∈Sn
+
∥Y −X∥1 is measured in the Schatten-1 norm ∥·∥1,

i.e., the sum of the singular values, and r, ℓ ≥ 0 are penalty parameters on the violations of A(X) = b
and X ∈ Sn

+ respectively.

We emphasize that we penalize the violation of A(X) = b by ∥A(X)− b∥1 and not the more common
lasso-type error ∥A(X)− b∥22 and we use the Schatten-1 norm, ∥·∥1, in the distance function. These
choices lead to a nonsmooth problem even when restricted to the interior of the PSD cone. On the
other hand, such choices open the possibility for the function (3) to be µ-sharp around X♮ w.r.t.
∥·∥1 for some µ > 0:

tr(X) + r ∥A(X)− b∥1 + ℓ dist∥·∥1
(X,Sn

+)︸ ︷︷ ︸
Fr,ℓ(X)

− tr(X♮)︸ ︷︷ ︸
Fr,ℓ(X♮)

≥ µ
∥∥∥X −X♮

∥∥∥
1

, for all X ∈ Sn. (4)

Note that such a bound necessitates that X♮ is the unique minimizer of both (1) and (3). When
such a bound holds, we will think of the parameters (µ, r, ℓ) as partially describing the conditioning
of (1). Finally, in order to make our notion of conditioning “aware” of scaling, we additionally track
the Lipschitz constant, L, of (3) with respect to ∥·∥1:

|Fr,ℓ(X)− Fr,ℓ(Y )| ≤ L ∥X − Y ∥1 , for all X, Y ∈ Sn.

We use the set of numbers (µ, r, ℓ, L) to measure the conditioning of (1). The sharpness parameter
µ in some sense will control absolute notions of error, while the condition number κ := L/µ will
control relative notions of error and convergence rates of first-order methods.7

6Its per-iteration complexity mainly requires one call of A and A∗ and an additional singular value or eigenvalue
decomposition in the matrix case. This could be significantly smaller than other first order methods that need to
solve a linear system, e.g., ADMM.

7One may replace the Schatten-1 norm with other norms in these definitions. The benefit of the Schatten-1 norm,
as we will discuss, is that the conditioning in our applications can be shown to be dimension-independent.
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Our results for phase retrieval. With the above notions and notations, let us describe our
results more concretely.

• Well-conditioning: By adapting well-known proofs for exact recovery [15, 50], we show that
(3) is µ-sharp and L-Lipschitz with µ, L = Θ(1) for r, ℓ = Θ(1) w.h.p. once m = Θ(n) (See
Theorem 1). Note this implies the reformulation (3) is indeed exact.

• Optimization error : In practice, we are unable to solve (2) exactly and must resort to numerical
optimization. Using the µ-sharpness in (4), any ϵ-suboptimal solution to (2), or more generally
to (3), satisfies

∥∥∥X −X♮
∥∥∥

∗
≤ ϵ/µ.

• Measurement error : Suppose that instead of observing b = A(X♮), we observe b̃ = A(X♮) + δ.
It is known that (2) actually admits a unique feasible solution X♮ w.h.p. [10], thus (2) with b
replaced by b̃ is likely to be infeasible. On the other hand, given any optimizer X̃ of (3) with
b̃ in place of b, we may use sharpness to bound

∥∥∥X̃ −X♮
∥∥∥

1
≤ O(∥δ∥1 /µ) (see Proposition 2).

In a similar vein, we may consider a setting where b is corrupted by a sparse vector δ. Sharpness
tells us that the optimizer of (3) is unchanged if |supp(δ)| /m = O(µ), i.e., if up to an O(µ)
fraction of the entries of b are corrupted (see Proposition 3 and Example 1).

• Strict complementarity: Strict complementarity is an important regularity condition in struc-
tural optimization [27, 62]. We show that sharpness implies strict complementarity so that
strict complementarity holds for (2). This is surprising as (2) does not even satisfy Slater’s
condition due to having a unique feasible solution [10].

• Algorithms: To solve large-scale instances of (2), we develop a restarted mirror descent
algorithm for general convex functions that are µ-sharp and L-Lipschitz in terms of a Schatten-
p norm with p ∈ [1, 2] (see Section 6). This algorithm is capable of producing an ϵ-suboptimal
solution to (3) in

O

(
κ2 log(n) log

(1
ϵ

))
iterations, i.e., with nearly-dimension-independent linear convergence. Furthermore, these
convergence guarantees hold after appropriate modifications in the presence of corruption or
noise (see Propositions 2 and 3) with guarantees depending on κ.

We note that our results on optimization error, measurement error, strict complementarity, and
algorithms above depend solely on the deterministic assumption of sharpness and “well-conditioning.”
The statistical assumptions are only used to prove that the conditioning (µ, r, ℓ, L) is well-behaved
w.h.p.

1.2 Related work

To better position our work in the literature, in this section, we discuss related work on error
bounds and well-conditioning, sharpness and well-conditioning in statistical recovery, and first-order
methods for minimizing sharp functions.

Establishing error bounds and well-conditioning. The sharpness condition in (4) can be
viewed as an error bound for (1). Error bounds and conditioning are central to optimization
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problems both structurally and algorithmically [1, 27, 39, 40, 43, 62]. Consider the following general
error bound for (1):

f(x) + r ∥A(x)− b∥1 + ℓ dist∥·∥(x,K)− f(x♮) ≥ µ
∥∥∥x− x♮

∥∥∥h
, for all x ∈ V,

where, in addition to the r and ℓ introduced in (4), we also have the power h, and a general norm ∥·∥.
Most methods for establishing error bounds either require that (1) is linear [38] or that regularity
conditions such as Slater’s condition [6, 61], strict complementarity [24, 56], or nondegeneracy
conditions [42] hold. Additional work has studied error bounds in generic semialgebraic settings
[26]. Results of this type generally place an emphasis on establishing the power of h (usually to 1 or
2) and provide only weak bounds on µ, r, and ℓ. This is natural as the power h determines the
linear or sublinear convergence rate [3, 39]. On the other hand, if µ, r, or ℓ depend polynomially on
the dimension, then first-order algorithms may still be doomed to poor or dimension-dependent
convergence rates. This work connects the quantities µ, r, and ℓ to the quantitatively better-
understood restricted isometry property (RIP). This connection gives precise estimates of (µ, r, ℓ, L)
in our settings and shows that these quantities are in fact dimension independent.

Sharpness and well conditioning in statistical recovery. A series of works [18, 19, 29, 41]
studied the local landscape of nonconvex nonsmooth formulations in statistical recovery near the
signal, particularly in low-rank matrix recovery. They showed that near the ground truth X♮,
the natural loss function is sharp, and the local condition number (in terms of the Frobenius or
Schatten-2 norm) does not depend on the dimension directly. Hence, they can apply off-the-shelf
algorithms, such as subgradient and prox-linear methods [22, 28] to achieve quick convergence to X♮.
Note that results of this type are local, and the algorithms require careful initialization to achieve
provable guarantees. Moreover, because the matrix space in the nonconvex formulation is actually
low-dimensional, the difference between the Schatten-p norm for p = 1, 2 is insignificant. This fact
results in simpler analyses of conditioning and algorithmic convergence due to the unique properties
of inner products and their induced norms. Another subtlety is that the sharpness parameter in the
nonconvex setting depends on the condition number of the signal matrix X♮ in addition to the RIP
parameters. In contrast, the results here only depend on the RIP parameters.

First-order methods for minimizing sharp functions. Early work in this area established
linear convergence of the subgradient method (with appropriate step sizes) for µ-sharp L-Lipschitz
functions in the Euclidean norm [32, 35, 48]. These methods and their proofs are adapted to the
Euclidean norm and incur a polynomial dependence on the dimension when applied to µ-sharp
L-Lipschitz functions in ℓ1 or Schatten-1 norms.

Similar guarantees can be derived as a consequence of restarting schemes. Perhaps the earliest
work discussing restarting schemes is [44], where a restarting scheme was developed for convex
Hölder-smooth minimization in ℓp spaces. More recent work [43, 53, 54, 59] has used restarting
schemes to accelerate variants of (sub)gradient descent in the presence of different growth conditions,
e.g., a local guarantee of the form8

f(x)−min
x

f(x) ≥ µ dist(x,X )h

for all x close enough to the set of minimizers, X . Here, dist(·, ·) is typically measured in the
Euclidean norm and h ∈ [1,∞) captures the Hölderian growth of f . Taking h = 1 recovers

8Other forms of the necessary “growth” are possible in different settings.
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the usual definition of sharpness. In this setting, restarted subgradient descent achieves a linear
convergence rate of O

(
κ2 log(1/ϵ)

)
[59]. Adaptive versions of these restart schemes have also been

developed [51, 54] that do not require the sharpness parameter µ to be specified but incur an
additional log(1/ϵ) factor in the convergence rate.

We emphasize that much of the preceding literature on first-order methods for sharp convex functions
focuses on the Euclidean case. The only exception we know of is the work of [54], which develops a
restarted mirror descent method based on a property inspired by sharpness in the Euclidean setting.
Roulet and d’Aspremont [54] show that their method can be used to achieve O(κ2 log(n) log(1/ϵ))
convergence on this particular function class. Unfortunately, their proxy for sharpness is quite
restrictive and does not hold in settings where sparse or low rank solutions are expected. Our work
in Section 6 is closely related to [54] but uses a different specification of the restarting mechanism.
This change allows us to use a more natural definition of sharpness that is also much broader (see
Remark 7 for a thorough comparison).

1.3 Outline and notation

Outline. We begin, in Section 2, by setting up notation and defining sharpness for problems of
the form (1). We will quantify sharpness and conditioning by a set of parameters (µ, r, ℓ, L). In
Sections 3 and 4, we establish well-conditioning and sharpness under the Gaussian sensing models
for the problems of sparse recovery, low-rank matrix and bilinear sensing, and covariance estimation
in the absence of noise. Our proof relies on the well-known restricted isometry property (RIP). In
Section 5, we investigate how sharp problems of the form (1) behave in the presence of noise. In
Section 6, we describe and analyze a variant of restarted mirror descent (RMD) that has linear and
nearly dimension-independent convergence rates when applied to sharp functions in ℓp or Schatten-p
norms (see Assumption 1). In conjunction with the results of Section 5, we may apply RMD to
obtain linear nearly dimension-independent convergence rates even in the presence of noise for
those statistical recovery problems. In Section 7, we show that sharpness in (1) implies a common
regularity known as strict complementarity (see (15) and (16)). Finally, in Section 8 we implement
a Polyak-variant of RMD and experimentally test its convergence rate as the number of samples m
and the dimension of the problem is varied in statistical recovery problems.

A note on ℓp and Schatten-p norms. Let p ∈ [1,∞]. We will overload notation and use ∥x∥p
for the ℓp norm when x ∈ Rn and the Schatten-p norm when x ∈ Rn×N . Recall that the nuclear
norm is equivalent to the Schatten-1 norm, the Frobenius norm is equivalent to the Schatten-2 norm,
and the spectral norm is equivalent to the Schatten-∞ norm. To streamline the text, we will also
take “ℓp norm” of a matrix to mean its Schatten-p norm.

2 Preliminaries on sharpness and conditioning
Given two finite-dimensional normed real vector spaces V and W , we consider the following abstract
problem, a slight generalization of (1),

min
x∈V

{
f(x) : A(x) = b

x ∈ K

}
. (P)

The function f : V → R is convex, the map A : V → W is linear, and K ⊆ V is a closed convex
cone (possibly all of V ). Each vector space V and W is equipped with a norm ∥·∥ which may be
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different from the Euclidean norm. For notational simplicity, we write all norms as ∥·∥ with the
understanding that the norm is the norm associated with the space of the argument.

In this section, we first formally define the sharpness and conditioning of (P). We then give a dual
characterization of sharpness. The dual characterization is useful in showing (i) the exact penalization
formulation (5) is robust to noisy b (cf. Section 5), and (ii) sharpness implies a well-known regularity
assumption of strict complementarity (cf. Section 7).

2.1 Definition of sharpness and conditioning

For x ∈ V and a closed nonempty set X ⊆ V , let

dist(x,X ) := min
x̄∈X
∥x̄− x∥ .

Again, the norm ∥x̄− x∥ is measured in the space of the argument. In this case, the expression
x̄− x ∈ V is measured in the norm of V . The following definition of sharpness for a convex function
(or unconstrained minimization problem) is also referred to as weak sharpness in the literature [33].

Definition 1 (Sharpness). Let V be a finite-dimensional normed real vector space. Let f : V → R
be a convex function, X ⊆ V a nonempty convex set, and let µ > 0. We say that f is µ-sharp
around X if X = arg min f and

f(x̄)−min
x∈V

f(x) ≥ µ dist(x̄,X ), ∀x̄ ∈ V. □

We extend the notion of sharpness to a problem of the form (P) as follows.

Definition 2 (Sharpness of (P)). Consider a problem of the form (P). Let x♮ ∈ V , µ > 0, and
r, ℓ ≥ 0. We say that (P) is (µ, r, ℓ) sharp around x♮ if x♮ is feasible in (P) and

Fr,ℓ(x) := f(x) + r ∥A(x)− b∥+ ℓ dist(x,K) (5)

is µ-sharp around x♮. Equivalently, if x♮ is feasible in (P) and∥∥∥x− x♮
∥∥∥ ≤ 1

µ

(
f(x)− f(x♮) + r ∥A(x)− b∥+ ℓ dist(x,K)

)
, ∀x ∈ V. (6)

If K = V , then ℓ is inconsequential, so we will simply say (P) is (µ, r) sharp around x♮. □

Remark 1. Suppose (P) is (µ, r, ℓ)-sharp around x♮ for some µ > 0, r, ℓ ≥ 0. Note that x♮ is
necessarily the unique optimal solution of (P). Moreover, we have an error bound: If we numerically
solve (P) and produce x̃ ∈ V , then we may bound the distance

∥∥∥x̃− x♮
∥∥∥ according to (6). This

bound holds even if f(x̃) < f(x♮), which could happen as x̃ is not necessarily feasible for (P). □

Recall the standard definition of the Lipschitz constant of a function.

Definition 3 (Lipschitz constant). We say that a convex function f : V → R is L-Lipschitz if

|f(x)− f(y)| ≤ L ∥x− y∥ , ∀x, y ∈ V. □

We are now ready to define the conditioning of (P). Note that the following definition depends on
the norms associated with V and W .

7



Definition 4 (Conditioning and condition number). Consider a problem of the form (P) and
suppose x♮ ∈ V is its unique optimizer. Suppose for some r, ℓ ≥ 0 that Fr,ℓ is µ-sharp around x♮ and
L-Lipschitz, with µ, L > 0. The conditioning of (P) is measured by (µ, r, ℓ, L) and the condition
number is κ = L

µ . □

2.2 Dual perspective of sharpness

In this section, we apply known characterizations of sharpness from a dual perspective to (P). These
results will be useful in the remainder of the paper.

Dual space, norm, linear map, and cone. We start by recalling some basic definitions.
Let V ∗ denote the space of linear functional on V and let the primal-dual pairing ⟨g, x⟩ := g(x)
for g ∈ V ∗ and x ∈ V . We define the norm on V ∗ as ∥g∥ := maxx∈V {⟨g, x⟩ : ∥x∥ ≤ 1}. For
example, if V = (Rn, ∥·∥1) is the space of n-dimensional vectors with the ℓ1-norm, then we
have V ∗ = (Rn, ∥·∥∞), where we have identified linear functions on Rn with vectors in Rn via
the canonical inner product. Given a closed convex cone K ⊂ V , its dual cone is defined as
K∗ := {g ∈ V ∗ : ⟨g, v⟩ ≥ 0, for all v ∈ K}. For a linear operator A : V →W , the dual linear map
of A is the unique linear operator A∗ : W ∗ → V ∗ such that9

⟨w,Av⟩ = ⟨A∗w, v⟩ ∀v ∈ V, w ∈W ∗.

The following lemma presents a dual view of µ-sharpness, i.e., in terms of subgradients. This lemma
is useful when noise is present in b as shown in Section 5. For any vector space V with norm ∥·∥, we
use BV (0, r) := {x ∈ V : ∥x∥ ≤ r} to denote the closed ball of radius r centered at 0 ∈ V . Given
x ∈ V , let x⊥ := {g ∈ V ∗ : ⟨g, x⟩ = 0}.

Lemma 1. Suppose x♮ is feasible in (P), µ > 0, and r, ℓ ≥ 0. Then, (P) is (µ, r, ℓ) sharp around
x♮ if and only if

BV ∗(0, µ) ⊆ ∂f(x♮)−A∗ (BW ∗(0, r))−
(
K∗ ∩ (x♮)⊥ ∩BV ∗(0, ℓ)

)
.

Proof. By definition, (P) is (µ, r, ℓ)-sharp around x♮ iff Fr,ℓ(x) is µ-sharp around x♮ iff

BV ∗(0, µ) ⊆ ∂Fr,ℓ(x♮).

The last equivalence follows from [60] (specifically, the equivalence of properties (i) and (x) in [60,
Theorem 3.10.1]). The claim follows then from additivity of the subdifferential and the identities
(see [7, Proposition 18.22])

∂
(
r
∥∥∥A(x♮)− b

∥∥∥) = −A∗(BW ∗(0, r)), and

∂
(
ℓ dist(x♮,K)

)
= −(K∗ ∩ (x♮)⊥ ∩BV ∗(0, ℓ)). ■

The following lemma characterizes whether (1) is (µ, r, ℓ) sharp around x♮ for some µ > 0 and
r, ℓ ≥ 0. This lemma will be useful in proving negative results in Section 7. We defer the proof to
Appendix A.

9If both spaces V and W are equipped with some inner products ⟨·, ·⟩V and ⟨·, ·⟩W , then A∗ is also the adjoint
map Ā : W → V defined via ⟨w, Av⟩W =

〈
Āw, v

〉
V

if we use the inner product ⟨·, ·⟩V to identify V and V ∗, and use
⟨·, ·⟩W to identify W and W ∗.
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Lemma 2. Suppose x♮ is feasible in (P). Then, there exists µ > 0, and r, ℓ ≥ 0 such that (P) is
(µ, r, ℓ) sharp around x♮ if and only if

0 ∈ int
(
∂f(x♮)− range(A∗)−

(
K∗ ∩ (x♮)⊥

))
. (7)

Remark 2. Note that (7) does not depend on the norms of V or W . In other words, whether (P)
is (µ, r, ℓ) sharp around x♮ for some µ > 0, r, ℓ ≥ 0 is a property of the underlying vector spaces,
whereas the values of (µ, r, ℓ) are a property of the normed spaces, i.e., depends on the choices of
the norms. □

3 RIP-based sharpness and conditioning in signal recovery
This section shows that under bounds on restricted isometry (defined below), sharpness holds for
three archetypal modern signal recovery problems: sparse vector recovery, low rank matrix recovery,
and covariance estimation. Phase retrieval can also be thought of as a special case of covariance
estimation. The signal to be recovered, the optimization formulation in (P), and the choices of
norms are the following.

Definition 5. We consider the following signal recovery problems that can be formulated as (P)
and the corresponding choices for V , f , and K.

• Sparse vector recovery: recover a k-sparse vector x♮ ∈ V = Rn. In the formulation (P), the
objective f(x) = ∥x∥1, the set K = Rn, and the input space V = (Rn, ∥·∥1).

• Low rank matrix recovery : recover a rank k matrix X♮ ∈ V = Rn×N . In the formulation (P),
the objective f(X) = ∥X∥1, the set K = Rn, and the input space V = (Rn×N , ∥·∥1).

• Covariance estimation: recover a rank k PSD matrix X♮ ∈ V = Sn. In the formulation (P),
the objective is the trace f(X) = tr(X), the set K is the set of PSD matrices Sn

+, and the
input space V = (Sn, ∥·∥1). □

The space W and its norm are, as yet, unspecified. We have some freedom in the choice of the norm
as long as crucial bounds on the restricted isometry property (RIP) hold in the norm on W .

Definition 6 (Restricted isometry property). Let k′ be a positive integer and A : V → W be a
linear operator. We will let RIP−

k′(A) and RIP+
k′(A) denote any valid uniform lower bound and

upper bound on the quantity ∥Ax∥ / ∥x∥2 as x ∈ V ranges over all elements in V with support size
or rank at most k′. □

Our main result of this section is the following:

Proposition 1. Consider one of the three problems defined in Definition 5. Let c = 1 for sparse
vector recovery and c = 2 for the other two cases. Let k′ > 0 and ϵ > 0 and suppose RIP+

k′(A) ≥ 1
and √

k′

ck

(
RIP−

ck+k′(A)
RIP+

k′(A)

)
≥ 1 + ϵ.

Then, (P) is
(

ϵ
2+ϵ ,
√

k′, 2
)

sharp around x♮. Furthermore, the Lipschitz constant L is no more than
3 +
√

k′ RIP+
1 (A).

9



To put this result in context, we will see in Section 4 that the premise of Proposition 1 holds once
the sample size m is a small multiple of the recovery threshold w.h.p. with ϵ = 2 and k′ = O(k), and
RIP+

1 (A) = O(1). Hence, Problem (P) is
(

1
2 , O

(√
k
)

, 2
)

sharp around x♮ with a Lipschitz constant
no more than O

(√
k
)

w.h.p.

The rest of the section consists of proofs of Proposition 1 for the three different settings. We start
with the proof of sharpness of matrix sensing and discuss how this proof can be modified for the
other two settings. We then bound the Lipschitz constant for all three settings.

3.1 Proof of sharpness in matrix sensing

This section proves Proposition 1 for the setting of low-rank matrix sensing. Let ∆ ∈ Rn×N be
arbitrary. Our goal is to show that∥∥∥X♮ + ∆

∥∥∥
1

+
√

k′ ∥A(∆)∥ −
∥∥∥X♮

∥∥∥
1
≥ ϵ

2 + ϵ
∥∆∥1 . (8)

Change of basis. Without loss of generality, we may work in a basis such that

X♮ =
(

X♮
1,1 0k×(N−k)

0(n−k)×k 0(n−k)×(N−k)

)
and ∆ =

(
∆1,1 ∆1,2
∆2,1 ∆2,2

)
,

where X♮
1,1 is a k × k diagonal matrix and ∆2,2 ∈ R(n−k)×(N−k) is diagonal with diagonal entries

that are nonincreasing in magnitude.

Partitioning of the difference ∆. Let δk⊥ := diag(∆2,2). The rest of the proof is based on the
idea in [15, 50]. We decompose δk⊥ = σ1 + · · ·+ σt where each σi ∈ Rmin(n,N)−k. Specifically, let σ1
extract the first k′ coordinates of δk⊥ , let each subsequent σi extract the next k′ coordinates of δk⊥ .
Finally, σt may have fewer than k′ coordinates of δk⊥ . Let Σi denote the matrix of size n×N with
Diag(σi) in its bottom-right (n− k)× (N − k) block or the block itself.

Lower bound on ∥∆2,2∥1. Since σi are disjoint, we can lower bound ∥∆2,2∥1 = ∥δk⊥∥1 by

∥∆2,2∥1 = ∥δk⊥∥1 ≥
t−1∑
i=1
∥σi∥1 = k′

t−1∑
i=1

∥σi∥1
k′ .

Using δk⊥ is nonincreasing and each σi is k′ sparse, we further have

∥∆2,2∥1 ≥ k′
t∑

i=2
∥σi∥∞ ≥

√
k′

t∑
i=2
∥σi∥2 .

Next, we use the RIP to obtain

∥∆2,2∥1 ≥
√

k′

RIP+
k′

t∑
i=2
∥A(Σi)∥

(a)
≥
√

k′

RIP+
k′

(∥∥∥∥∥A
(

∆1,1 ∆1,2
∆2,2 0

)
+A(Σ1)

∥∥∥∥∥− ∥A(∆)∥
)

,

where (a) is due to triangle inequality. Using the RIP condition again and RIP+
k′ ≥ 1, we have

∥∆2,2∥1 ≥
√

k′ RIP−
2k+k′

RIP+
k′

∥∥∥∥∥
(

∆1,1 ∆1,2
∆2,1 Σ1

)∥∥∥∥∥
2
−
√

k′ ∥A(∆)∥

≥
√

k′ RIP−
2k+k′

RIP+
k′

∥∥∥∥∥
(

∆1,1 ∆1,2
∆2,1 0

)∥∥∥∥∥
2
−
√

k′ ∥A(∆)∥ .
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Lastly, since
(

∆1,1 ∆1,2
∆2,1 0

)
has rank no more than 2k, we have

∥∆2,2∥1 ≥

√
k′

2k

RIP−
2k+k′

RIP+
k′

∥∥∥∥∥
(

∆1,1 ∆1,2
∆2,1 0

)∥∥∥∥∥
1
−
√

k′ ∥A(∆)∥

≥ (1 + ϵ)
∥∥∥∥∥
(

∆1,1 ∆1,2
∆2,1 0

)∥∥∥∥∥
1
−
√

k′ ∥A(∆)∥ .

Putting things together. We are now ready to prove sharpness:∥∥∥X♮ + ∆
∥∥∥

1
+
√

k′ ∥A(∆)∥ −
∥∥∥X♮

∥∥∥
1

≥
∥∥∥∥∥
(

X♮
1,1 0
0 ∆2,2

)∥∥∥∥∥
1
−
∥∥∥X♮

∥∥∥
1
−
∥∥∥∥∥
(

∆1,1 ∆1,2
∆2,1 0

)∥∥∥∥∥
1

+
√

k′ ∥A(∆)∥

≥∥δk⊥∥1 −
∥∥∥∥∥
(

∆1,1 ∆1,2
∆2,1 0

)∥∥∥∥∥
1

+
√

k′ ∥A(∆)∥ (disjoint supports)

=
( 2

2 + ϵ
+ ϵ

2 + ϵ

)
∥δk⊥∥1 −

∥∥∥∥∥
(

∆1,1 ∆1,2
∆2,1 0

)∥∥∥∥∥
1

+
√

k′ ∥A(∆)∥

≥
( 2

2 + ϵ
(1 + ϵ)− 1

)∥∥∥∥∥
(

∆1,1 ∆1,2
∆2,1 0

)∥∥∥∥∥
1

+ ϵ

2 + ϵ
∥δk⊥∥1 (bound on ∥δk⊥∥1)

+
(

1− 2
2 + ϵ

)√
k′ ∥A(∆)∥

≥ ϵ

2 + ϵ
∥∆∥1 .

This proves the claim (8) as ∆ ∈ Rn×N was arbitrary.

3.2 Sharpness in sparse vector recovery

The proof can be done by following the proof for matrix sensing by treating the signal x♮ and
the sensing vectors in A as diagonal matrices. The better constant c = 1 is obtained by noting
there is no extra off-diagonal term for the matrices considered in the argument. Thus, the matrix(

∆1,1 ∆1,2
∆2,1 0

)
=
(

∆1,1
0

)
has rank bounded by k instead of 2k. Alternatively, we give a direct proof

in Appendix B.

3.3 Sharpness in covariance estimation

We may repeat the proof of Section 3.1 verbatim after replacing V = (Rn×N , ∥·∥1) by V = (Sn, ∥·∥1).
We deduce that, under the assumptions of this proposition,

∥X∥1 +
√

k′ ∥A(X)− b∥

is ϵ
2+ϵ sharp around X♮. Next, note that tr(X) + 2 dist(X,Sn

+) ≥ ∥X∥1. We conclude that

tr(X) + 2 dist(X,Sn
+) +

√
k′ ∥A(X)− b∥

is ϵ
2+ϵ sharp around X♮.
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3.4 Proof of Lipschitz continuity

We need to show that
f(x) +

√
k′ ∥A(x)− b∥+ 2 dist(x, K) (9)

is 3 +
√

k′ RIP+
1 (A) Lipschitz with respect to ∥·∥1.

By the triangle inequality, the objective functions f(x) = ∥x∥1 and f(X) = tr(X) are both 1-
Lipschitz in terms of ∥·∥1. In the covariance estimation setting, the distance function dist(X,Sn

+) is
also 1-Lipschitz in terms of ∥·∥1 by the triangle inequality.

Next, we show the function ∥A(x)− b∥ is RIP+
1 Lipschitz. Indeed, for any x1, x2 ∈ V , let ∆ =

x1 − x2 = ∑n
i=1 ∆i, where ∆i are 1-sparse or has rank no more than 1 (due to singular value

decomposition). We have

| ∥A(x1)− b∥ − ∥A(x2)− b∥ |

≤ ∥A(x1 − x2)∥ =
∥∥∥∥∥A

(
n∑
i

∆i

)∥∥∥∥∥ ≤
n∑

i=1
∥A∆i∥

(a)
≤

n∑
i=1

RIP+
1 ∥∆i∥2

(b)=
n∑

i=1
RIP+

1 ∥∆i∥1 = RIP+
1 ∥∆∥1 .

Here step (a) and (b) are due to the RIP and ∆i, i = 1, . . . , n are 1-sparse or have rank no more
than 1.

Since f(x) and dist(x, K) are 1 Lipschitz and ∥A(x)− b∥ is RIP+
1 Lipschitz, our proof for that the

function in (9) is 3 +
√

k′ RIP+
1 (A)-Lipschitz is complete.

4 Conditioning, sensing models, and sample complexity
In this section, we describe different sensing models of A and show that once m exceeds certain
thresholds, Problem (P) is well-conditioned in terms of ℓ1 norm with W = (Rm, ∥·∥p) where p = 1, 2.

To prove this result, we first describe the precise sensing model in Section 4.1. Then we collect
bounds on the RIP from the literature that ensure that the premise of Proposition 1 is satisfied.
Due to an additional technicality in one of the sensing models (labeled “Covariance Estimation I”
below), we give a separate proof of its well-conditioning in Section 4.2. In this section, we equip Sn

and Rn×N with the trace inner product and equip Rn with the dot product so that the dual map
A∗ can be identified with its adjoint map. A summary of the sensing model, the thresholds, and the
norms on W = Rm is described in Table 1. Our main result of this section is the following theorem.

Theorem 1. Suppose the space W and the sampling map A are described according to one of
the scenarios in Table 1 and the signal x♮ is either k-sparse or has rank no more than k. If
m ≥ CT (n, N, k), where T (n, N, k) is defined in Table 1 and C is a numerical constant, then there
are numerical constants c1, c2 > 0 such that w.h.p. the optimization problem (P) is (1

2 ,
√

c1k, 2)-sharp
around x♮ and F√

c1k,2 has a Lipschitz constant bounded by
√

c2k. Consequently, (P) has a condition
number κ bounded by 2

√
c2k.

4.1 Sensing model, sample complexity, and proof via RIP

In this section, we first describe the sensing models and the thresholds T (n, N, k) on m so that
bounds on RIP hold for A when W = Rm is equipped with either the ℓ1 or ℓ2 norms. Then, we
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Task A∗(ei) T (n, N, k) norms of W = Rm

Sparse vector recovery ai ∈ Rn k log(n/k) ℓ1 or ℓ2
Low rank matrix sensing I Ai ∈ Rn×N max{n, N}k ℓ1 or ℓ2
Low rank matrix sensing II aib

⊤
i ∈ Rn×N max{n, N}k ℓ1

Covariance estimation I aia
⊤
i ∈ Sn nk ℓ1

Covariance estimation II aia
⊤
i − bib

⊤
i ∈ Sn nk ℓ1

Table 1: Description of different statistical signal recovery tasks and the thresholds for well-
conditioning. The entries of Ai, ai, and bi are i.i.d. Gaussian random variables with appropriate
scaling (see Section 4.1). The conditioning of (P) is measured by (1

2 ,
√

c1k, 2,
√

c2k) where c1, c2 > 0
are numerical constants.

prove Theorem 1 by verifying the premise of Proposition 1.

Recall that RIP−
k′(A) and RIP+

k′(A) are any uniform lower and upper bound on ∥Ax∥ / ∥x∥2 as
x ranges over elements of V with support or rank bounded by k′. They will be set to numerical
constants c1, c2 below and could differ for different sensing models. The norm of W = Rm will be
either the ℓ1 norm or ℓ2 norm below.

Sparse vector recovery. For sparse vector recovery, the measurements are of the form

A∗(ei) = ai, i = 1, . . . , m,

where the measurement vectors ai
i.i.d.∼ N (0, I/m) in the ℓ2 setting and ai

i.i.d.∼ N
(
0, I/m2) in the

ℓ1 setting. In both settings, we may set w.h.p. RIP+
k′ (A) = c2 and RIP−

k′ (A) = c1 as long as
m ≳ k′ log( n

k′ ),10 where c1 and c2 are constants independent of k′ satisfying c2/c1 ≤ 1.1 and c2 ≥ 1.
This fact is proved in the ℓ2 setting following [13, 31] using results on singular values of random
matrices; a simple proof can be found in [5, Theorem 5.2]. This fact is proved in the ℓ1 setting using
[47, Lemma 2.1] and [55, Lemma 4.4].

Matrix sensing I. For this scenario of matrix sensing, the measurements are of the form

A∗(ei) = Ai, i = 1, . . . , m,

where each measurement matrix Ai ∈ Rn×N has Gaussian entries. Each entry of each matrix
is sampled i.i.d. according to N (0, 1/m) in the ℓ2 setting, and according to N

(
0, 1/m2) in the

ℓ1 setting. In both settings, we may set w.h.p. RIP+
k′(A) = c2 and RIP−

k′(A) = c1 as long as
m ≳ k′ max(n, N), where c1 and c2 are constants independent of k′ satisfying c2/c1 ≤ 1.1 and c2 ≥ 1.
This fact is proved in the ℓ2 setting in [12, Theorem 2.3]. This fact is proved in the ℓ1 setting in [41,
Proposition 1] and [18, Theorem 6.4].

Matrix sensing II. For this version of matrix sensing, which is more commonly known as bilinear
sensing, the measurements are of the form

A∗(ei) = aib
⊤
i , i = 1, . . . , m,

and the measurement vectors ai
i.i.d.∼ N(0, In/m) and bi

i.i.d.∼ N(0, IN /m). We equip W = Rm with
the ℓ1 norm. In this setting, we may set w.h.p. RIP+

k′(A) = c2 and RIP−
k′(A) = c1 as long as

10We write a ≳ b if a ≥ Cb for some numerical constant C > 0.
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m ≳ k′ max(n, N), where c1 and c2 and constants independent of k′ satisfying c2/c1 ≤ 4 and c2 ≥ 1.
This fact is proved according to [9, Theorem 2.2].

Covariance estimation I. For this scenario of covariance estimation, the measurements are of
the form

A∗(ei) = aia
⊤
i , i = 1, . . . , m,

where each measurement vector ai
i.i.d.∼ N(0, In/m). We equip W = Rm with the ℓ1 norm. The

proof of Theorem 1 for this setting differs from the proof of Theorem 1 for all other settings. This
difference stems from the fact that

〈
A∗(ei), X♮

〉
does not have zero mean, thus biasing the output

vector as discussed in [21, Section III.B]. Attempting to follow the same proof strategy will need
RIP+

k′(A) to be a numerical constant. However, the quantity RIP+
k′(A) scales as

√
k′. This prevents

us from applying Proposition 1 directly in this setting.

We provide a separate proof for Theorem 1(Covariance estimation I) in Section 4.2. The proof in
this setting is completed by analyzing the conditioning of a related model of covariance estimation
(Covariance estimation II).

Covariance estimation II. For this scenario of covariance estimation, the measurements are of
the form

A∗(ei) = aia
⊤
i − bib

⊤
i , i = 1, . . . , m,

where each measurement vector pair ai, bi
i.i.d.∼ N(0, In/(2m)). We equip W = Rm with the ℓ1 norm.

In this setting, we may set w.h.p. RIP+
k′(A) = c2 and RIP−

k′(A) = c1 as long as m ≳ nk′. Here, c1
and c2 are constants independent of k′ satisfying c2/c1 ≤ 4 and c2 ≥ 1. This fact is proved in [9,
Theorem 2.2] and [18, Theorem 6.4].

The Gaussian assumption on the sensing vectors or matrices are assumed for simplicity. One can
relax this condition to sub-Gaussian distributions as done in [5, Theorem 5.2], [47, Lemma 2.1], and
[18, Theorem 6.4].

Proof of Theorem 1 for all settings except covariance estimation I. As described above, for all set-
tings except covariance estimation I, as long as m ≳ T (n, N, k′), we may set w.h.p. RIP+

k′(A) = c2
and RIP−

k′(A) = c1. By setting k′ =
√

C1k for a large numerical constant C1, we see the premise of
Proposition 1 is satisfied and our proof is complete. ■

4.2 Well-conditioning of covariance estimation I

We provide a separate argument for Theorem 1 in the setting of Covariance estimation I.

In this setting, we have that ai ∼ N(0, In/m) are i.i.d. We equip the space W = Rm with the ℓ1
norm. Our goal is to show that (P) is sharp in terms of ℓ1 norm with parameters (1

2 , 1
2
√

c1k, 2)
and Lipschitz continuous with Lipschitz constant L =

√
c2k w.h.p. once m ≳ nk. We will do so by

comparing Covariance estimation I with Covariance estimation II.

First, we replace the linear constraint in Problem (P) by B(X) = d where B : Sn → R⌊m/2⌋, and

B∗(ei) = 1
2a2i−1a⊤

2i−1 −
1
2a2ia

⊤
2i di = 1

2b2i−1 −
1
2b2i, i = 1, . . . , ⌊m/2⌋. (10)
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This is distributed as an instance of Covariance estimation II. By Theorem 1 (Covariance estimation
II), we know that once m ≳ nk, it holds that

tr(X) +
√

c1k ∥B(X)− d∥1 + 2 dist(X,Sn
+)− tr(X♮) ≥ 1

2
∥∥∥X −X♮

∥∥∥
1

. (11)

Note that for each i = 1, . . . , ⌊m/2⌋, by the construction (10), we have

| ⟨B∗(ei), X⟩ − di| ≤
1
2 | ⟨A

∗(e2i−1), X⟩ − b2i−1|+
1
2 | ⟨A

∗(e2i), X⟩ − b2i|.

Combining this fact with (11), we see that the function tr(X) + 1
2
√

c1k ∥A(X)− b∥1 + 2 dist(X,Sn
+)

is 1
2 sharp around X♮ as well.

To prove the Lipschitz constant is bounded, we utilize [14, Lemma 3.1], which shows that w.h.p.

∥A(X)∥ ≤ 1.1 ∥X∥1 .

Hence we see tr(X) + 1
2
√

c1k ∥A(X)− b∥1 + 2 dist(X,Sn
+) is 3 +

√
c1k Lipschitz with respect to the

ℓ1 norm. This completes the proof of Theorem 1 (Covariance estimation I).

5 Sharp problem formulations in the presence of noise
In this section, we show that the sharpness of a problem (P) in the noiseless setting b = A(x♮)
provides (algorthmically useful) information even in the noisy setting, where b = A(x♮) + δ with δ
small or sparse. We begin with the case where δ is small.

Proposition 2. Suppose (P) is (µ, r, ℓ) sharp around x♮. Let δ ∈W and set b̃ = b + δ.

• If x̃ minimizes

F̃r,ℓ(x) := f(x) + r
∥∥∥A(x)− b̃

∥∥∥+ ℓ dist(x,K),

then
∥∥∥x̃− x♮

∥∥∥ ≤ 2r
µ ∥δ∥.

• If x̃ minimizes

F̃ thresh
r,ℓ (x) := max

(
F̃r,ℓ(x), Fr,ℓ(x♮) + 3r ∥δ∥

)
,

then
∥∥∥x̃− x♮

∥∥∥ ≤ 4r
µ ∥δ∥. Furthermore, F̃ thresh

r,ℓ is µ
2 -sharp around its optimizers.

Remark 3. Suppose Fr,ℓ is L-Lipschitz with f(x) = ∥x∥, K = V and L ≥ 1 as in sparse vector
recovery or low-rank matrix sensing. Then we have

L
∥∥∥x♮
∥∥∥ ≥ ∣∣∣Fr,ℓ(0)− Fr,ℓ(x♮)

∣∣∣ =
∣∣∣r ∥b∥ − ∥∥∥x♮

∥∥∥∣∣∣ =⇒ (L + 1)
∥∥∥x♮
∥∥∥ ≥ r ∥b∥ .

Hence, combining this inequality with the first item of Proposition 2, we have∥∥∥x̃− x♮
∥∥∥

∥x♮∥
≤ 2L + 2

µ

∥δ∥
∥b∥

.

Thus we see that indeed the condition number of (P) controls the relative change of the solution to
the relative perturbation to the data vector b:

Relative change in solution︸ ︷︷ ︸
∥x̃−x♮∥
∥x♮∥

≤ O(κ) · Relative change in data vector︸ ︷︷ ︸
∥δ∥
∥b∥

. □
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Remark 4. When δ is nonzero, the penalization formulation F̃r,ℓ is not necessarily a sharp function.
However, the above proposition asserts that F̃ thresh

r,ℓ (x) is still sharp. Hence, we may hope to apply
the methods described in Section 6, which apply to sharp functions: On the surface, evaluating
the function F̃ thresh

r,ℓ (x) (and its subgradients) requires access to both x♮ and ∥δ∥. While we will
not have access to these quantities in practice, that is of little consequence if we only plan to apply
first-order methods (as we suggest in Section 6). Indeed, any first-order method applied to F̃r,ℓ

will behave equivalently to the first-order method applied to F̃ thresh
r,ℓ until an iterate x̃ satisfying∥∥∥x̃− x♮

∥∥∥ ≤ 4r
µ ∥δ∥ is found. In particular, the algorithms presented in Section 6 applied to F̃r,ℓ will

converge linearly to such a point with a rate depending on µ
2 . We emphasize that such a procedure

is adaptive (to the noise level ∥δ∥) in both
∥∥∥x̃− x♮

∥∥∥ and the rate of convergence to x̃. □

Proof of Proposition 2. For notational convenience, in this proof we will drop all subscripts r, ℓ.

By the triangle inequality, for all x ∈ V , we have∣∣∣F (x)− F̃ (x)
∣∣∣ =

∣∣∣r ∥A(x)− b∥ − r
∥∥∥A(x)− b̃

∥∥∥∣∣∣ ≤ r ∥δ∥ .

For the first claim, note that by optimality of x̃ in F̃ , we have that

F (x̃) ≤ F̃ (x̃) + r ∥δ∥ ≤ F̃ (x♮) + r ∥δ∥ ≤ F (x♮) + 2r ∥δ∥ .

Combining this inequality with µ-sharpness of F around x♮ proves the first claim.

Consider the second claim. Note that F̃ (x♮) ≤ F (x♮) + r ∥δ∥ so that F̃ achieves values bounded
above by the threshold value of F (x♮) + 3r ∥δ∥. Thus, the set of minimizers of F̃ thresh(x) is given by
X :=

{
x ∈ V : F̃ (x) ≤ F (x♮) + 3r ∥δ∥

}
. Then, if x̃ minimizes F̃ thresh(x), we must have

F (x̃) ≤ F̃ (x̃) + r ∥δ∥ ≤ F (x♮) + 4r ∥δ∥ .

Combining this inequality with µ-sharpness of F around x♮ shows that
∥∥∥x̃− x♮

∥∥∥ ≤ 4r
µ ∥δ∥.

It remains to show that F̃ thresh(x) is µ/2 sharp around its optimizers X . By the definition of
sharpness (see Definition 1), the goal is to show that for any x̄ ∈ V \X , there exists x̃ ∈ X satisfying

µ

2 ∥x̄− x̃∥ ≤ F̃ thresh(x̄)− F̃ thresh(x̃).

Note that for any x̄ ∈ V \X and x̃ ∈ X, we have F̃ thresh(x̄) = F̃ (x̄) and F̃ thresh(x̃) = F (x♮) + 3r ∥δ∥.

Set x̃ = (1− α)x♮ + αx̄ where

α = 2r ∥δ∥
F̃ (x̄)− F (x♮)− r ∥δ∥

.

As F̃ (x̄) > F (x♮) + 3r ∥δ∥, we have that α is well-defined and α ∈ [0, 1]. By convexity of F̃ ,

F̃ (x̃) ≤ (1− α)F̃ (x♮) + αF̃ (x̄)
≤ (1− α)(F (x♮) + r ∥δ∥) + αF̃ (x̄)

= F (x♮) + r ∥δ∥+
(

2r ∥δ∥
F̃ (x̄)− F (x♮)− r ∥δ∥

)(
F̃ (x̄)− F (x♮)− r ∥δ∥

)
= F (x♮) + 3r ∥δ∥ .
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We deduce that x̃ ∈ X .

Finally, we have
µ

2 ∥x̄− x̃∥ = (1− α)µ

2
∥∥∥x♮ − x̄

∥∥∥
≤ 1− α

2
(
F (x̄)− F (x♮)

)
≤ 1

2

(
F̃ (x̄)− F (x♮)− 3r ∥δ∥
F̃ (x̄)− F (x♮)− r ∥δ∥

)(
F̃ (x̄)− F (x♮) + r ∥δ∥

)
= 1

2
(
F̃ (x̄)− F (x♮)− 3r ∥δ∥

)( F̃ (x̄)− F (x♮)− 3r ∥δ∥+ 4r ∥δ∥
F̃ (x̄)− F (x♮)− 3r ∥δ∥+ 2r ∥δ∥

)
≤ F̃ (x̄)− F (x♮)− 3r ∥δ∥ .

Here, the second line follows by µ-sharpness of F , the third line follows by the definition of α, and
the final line follows from the premise that F̃ (x̄) > F (x♮) + 3r ∥δ∥. ■

The next proposition shows that if W is equipped with the ℓ1 norm and (P) is sharp in the noiseless
case, then exact recovery continues to be possible (with linearly convergent algorithms) in the
presence of grossly-but-sparsely-corrupted observations.

Proposition 3. Suppose (P) with b = A(x♮) is (µ, r, ℓ) sharp around x♮. Let U be a finite-
dimensional normed real vector space. Let B : V → U be a linear operator with r ∥B∥ < µ and δ ∈ U .
Then, the function

Fr,ℓ(x) + r
∥∥∥B(x)− B(x♮)− δ

∥∥∥ (12)

is (µ− r ∥B∥)-sharp around x♮.

Proof. Let δ̄ ∈ U∗ be a vector such that
∥∥∥δ̄∥∥∥ = 1 and

〈
δ̄, δ
〉

= ∥δ∥. Then, ∂
∥∥∥B(x)− B(x♮)− δ

∥∥∥
evaluated at x♮ contains B∗(δ̄). By additivity of the subgradient, the subgradient of (12) evaluated at
x♮ contains ∂Fr,ℓ(x♮) + rB∗(δ̄). This set in turn contains BV ∗(0, µ− r ∥B∥) by the triangle inequality,
Lemma 1, and the fact that ∥B∗∥ = ∥B∥. We conclude that Fr,ℓ(x) + r

∥∥∥B(x)− B(x♮)− δ
∥∥∥ is

(µ− r ∥B∥) sharp around x♮. ■

Example 1. Consider the phase retrieval problem where an α-fraction of the observations are
corrupted arbitrarily. Formally, consider the following procedure: Let V = (Sn, ∥·∥∗) and W̃ =
(Rm̃, ∥·∥1). Let m = ⌈(1− α)m̃⌉. Fix X♮ ∈ Sn

+ ⊆ V to be rank-one and let Ã : V → W̃ be the
random linear map

Ã(X)i = g⊺i Xgi, where gi ∼ N(0, I/m̃).

Let δ ∈ W̃ denote an arbitrary vector, chosen possibly adversarially, with only the guarantee that
supp(δ) ⊆ [m + 1, m̃]. Set b̃ = Ã(X♮) + δ. Our goal is to recover X♮ from Ã and b̃.

Let W, U denote the decomposition of W̃ along the coordinates [m] and [m + 1, m̃]. Let A : V →W
and B : V → U denote the corresponding restrictions of Ã. Slightly abusing notation, we will let
δ ∈ U denote the restriction of δ ∈ W̃ .
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Now, suppose that

min
X∈Sn

+

{
tr(X) : A(X) = A(X♮)

X ∈ Sn
+

}

is (µ, r, ℓ) sharp around X♮. As W̃ carries the ℓ1 norm and W, U are coordinate subspaces, we may
write

tr(X) + r
∥∥∥Ã(X)− b̃

∥∥∥+ ℓ dist(X,Sn
+) (13)

= tr(X) + r
∥∥∥A(X)−A(X♮)

∥∥∥+ r
∥∥∥B(X)− B(x♮)− δ

∥∥∥+ ℓ dist(X,Sn
+).

Proposition 3 states that if µ > r ∥B∥, then X♮ is the unique minimizer of (13) despite the corruption
δ. By [57], we know that w.h.p., ∥B∥ ≤

(√
αm̃+2

√
n√

m̃

)2
≤ 2α + 8(n/m̃). Combining these bounds,

we have that X♮ is the unique minimizer of the sharp unconstrained minimization problem (13) if
α ≲ µ/r and n/m̃ ≲ µ/r. In particular, µ/r controls the fraction of allowed gross corruption in the
observation Ã(X♮). □

6 First-order methods for non-Euclidean sharp minimization
A natural class of algorithms for large-scale problems of the form (P) with sharpness is the restarted
mirror descent (RMD) algorithm (Algorithm 2). This algorithm generalizes similar algorithms for
minimizing sharp functions in a Euclidean norm [35, 48, 59] and has nearly dimension-independent
linear convergence rates that depend explicitly on sharpness (see Theorem 2). Algorithm 2 can be
applied to Fr,ℓ, the sharp exact penalty formulation of (P), or any of its sharp perturbations (see
Propositions 2 and 3).

We describe and analyze the basic RMD scheme in Section 6.1, and discuss two variants of RMD in
Section 6.2.

6.1 Restarted Mirror Descent

We restrict our attention to sharp Lipschitz convex functions in an ℓp or Schatten p-norm for
p ∈ [1, 2]: Throughout this section, let V be a normed finite-dimensional real vector space. We will
overload notation so that we can simultaneously consider three separate settings:

Assumption 1. Let p ∈ [1, 2] and either:

• Let V = (Rn, ∥·∥p) where ∥·∥p is the ℓp norm. Or,

• let V = (Sn, ∥·∥p) where ∥·∥p is the Schatten p-norm. Or,

• let V = (Rn×N , ∥·∥p) where ∥·∥p is the Schatten p-norm.

If we are in the third case, we will assume that n ≤ N . □

Note that the Schatten 1-norm, ∥·∥1 coincides with the nuclear norm.

Recall the mirror descent algorithm and its guarantee [8, Theorem 4.2].
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Algorithm 1 Mirror Descent
Given f : V → R, x̄ ∈ Rd, η > 0, T ∈ N, h : V → R

• Let x0 = x̄, θ0 = 0 ∈ Rd

• For t = 1, . . . , T
– Let gt ∈ ∂f(xt−1) and set θt = θt−1 − η · gt

– Set xt = (∇h)−1(θt)
• Output the xt minimizing f(xt) among t ∈ [0, T ].

Lemma 3. Let h : V → R be differentiable and σ-strongly convex with respect to the norm on V .
Suppose f : V → R is convex and L-Lipschitz with respect to the norm on V . Then, the mirror
descent algorithm initialized at x̄, run for t iterations, with step-size η, produces x̃ such that

f(x̃)− f(x∗) ≤ L2η

2σ
+ Dh(x∗||x̄)

ηt

where x∗ ∈ V is any minimizer of f . Here, each iteration requires computing a single subgradient of
f and applying (∇h)−1 and arithmetic operations in V and V ∗.

In the bound above, the quantity Dh(·||·) is a Bregman divergence term. We elaborate on this term
for our choice of the map h. Let p ∈ (1, 2] and define hx̄(x) := 1

2 ∥x− x̄∥2p for x̄ ∈ V . It is known [4]
that in each of the three setups in Assumption 1, that hx̄ is differentiable and (p − 1)-strongly
convex w.r.t. ∥·∥p. Furthermore, for all x∗ ∈ V , the Bregman divergence (associated to hx̄) of x∗

with respect to x̄ is

Dhx̄(x∗||x̄) := hx̄(x∗)− hx̄(x̄)− ⟨∇hx̄(x̄), x∗ − x̄⟩ = hx̄(x∗) = 1
2 ∥x

∗ − x̄∥2p .

Thus, if f is L-Lipschitz w.r.t. ∥·∥p, then the output x̃ = mirror(hx̄, f, L, x̄, t, η) has suboptimality
bounded by

f(x̃)− f(x∗) ≤ L2η

2(p− 1) +
∥x∗ − x̄∥2p

2ηT
.

This bound holds simultaneously for all minimizers x∗ ∈ V of f .

Remark 5. Consider a setup from Assumption 1 and let p ∈ (1, 2]. In each iteration of mirror
descent (applied with hx̄), we must evaluate (∇hx̄)−1 on some input θ ∈ V ∗. By [52, Corollary
23.5.1], this is equivalent to evaluating ∇h̄x̄(θ) where h̄x̄ is the convex conjugate of hx̄. Thus,

(∇hx̄)−1(θ) = ∇h̄x̄(θ) = x̄ +∇1
2 ∥θ∥

2
q = x̄ + sign(θ) ◦ |θ|q−1

∥θ∥q−2
q

.

Here, q is the Hölder dual to p and the expression sign(θ) ◦ |θ|q−1 is applied entrywise to the entries
of θ if θ is a vector and to the singular values of θ if θ is a matrix. □

Remark 6. In the matrix setting, computing the mirror map requires performing an SVD in each
iteration. We expect that this full SVD may be replaced by a partial SVD near an optimal low-rank
solution (following [34]) and leave this extension for future work. □

Now consider the following restarted variant of mirror descent where the step size and mirror map
h update at each restart.
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Algorithm 2 RMD(f, L, x0, K, {ηk} , t, p)
• For k = 1, 2, . . . , K

– Set xk ← mirror(hxk−1 , f, L, xk−1, t, ηk) where

hxk−1(x) := 1
2 ∥x− xk−1∥2p

• Output xK

Theorem 2. Consider a setup from Assumption 1 and let p ∈ (1, 2]. Suppose f : V → R is
L-Lipschitz and µ-sharp w.r.t. ∥·∥p and x0 ∈ V satisfies f(x0) − f∗ ≤ ϵ0. Let ϵk = ϵ0e−k/2,
K =

⌈
2 ln

( ϵ0
ϵ

)⌉
, t =

⌈
eL2

µ2(p−1)

⌉
, and ηk = (p−1)ϵk

L2 . Then, each iterate xk in RMD(f, L, x0, K, {ηk} , t, p)
satisfies f(xk)− f∗ ≤ ϵk. In particular, an 0 < ϵ ≤ ϵ0-optimizer can be computed in

O

(
L2

µ2(p− 1) log
(

ϵ0
ϵ

))

total mirror descent steps. If f : V → R is L-Lipschitz and µ-sharp w.r.t. ∥·∥1, we may apply the
above statement with p = 1 + 1

ln n , sharpness µ, and Lipschitz constant eL w.r.t. ∥·∥p.

Proof. The claim holds for k = 0. Now let k ≥ 1. By µ-sharpness of f , there exists an optimizer x∗

of f , satisfying µ ∥xk−1 − x∗∥p ≤ f(xk−1)− f∗. By Lemma 3, we have

f(xk)− f∗ ≤ L2ηk

2(p− 1) +
∥x∗ − xk−1∥2p

2ηkt

≤ L2ηk

2(p− 1) + eϵ2
k

2µ2ηkt

≤ L2ηk

2(p− 1) + ϵ2
k(p− 1)
2ηkL2

= ϵk.

The setting of L-Lipschitz, µ-sharp convex functions w.r.t. ∥·∥1 reduces to the setting of p = 1+ 1
ln(n)

by the bounds
1
e
∥w∥1 ≤ ∥w∥p ≤ ∥w∥1 , ∀w ∈ V,

which hold [4] in each of the setups in Assumption 1. Specifically, these inequalities imply that f is
µ-sharp and eL-Lipschitz w.r.t. ∥·∥p. ■

Remark 7. In [54], the authors consider restarted versions of various accelerated first order methods
for sharp problems including problems in non-Euclidean spaces. In the non-Euclidean setting, [54]
suggests algorithms for functions f that satisfy the following proxy for sharpness:

f(x)− f(x♮) ≥ µ
√

Dh(x♮||x). (14)

Here, h : V → R is a fixed differentiable and σ-strongly convex function11 and Dh is the Bregman
divergence induced by h. Then, calculations almost identical to the proof of Theorem 2 show that

11The notation of [54] uses a 1-strongly convex function, but this only changes the value of µ by a factor of
√

σ.
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restarted mirror descent with the mirror map h in every restart produces an ϵ-suboptimal solution
in O

(
L2

µ2σ
log

( ϵ0
ϵ

))
mirror descent steps.

Unfortunately, (14) is not implied by sharpness in the original norm and may be overly restrictive,
as illustrated in the example below. Specifically, in standard prox setups for mirror descent in ℓp

norms or Schatten-p norms, (14) cannot hold for any µ > 0 unless x♮ has full support in the vector
case or full rank in the matrix case. □

Example 2. Let V = (Rn, ∥·∥p) where p ∈ (1, 2) and n ≥ 2. Let f(x) :=
∥∥∥x− x♮

∥∥∥
p

where x♮ = e1.
Clearly, f is 1-sharp around x♮ and 1-Lipschitz w.r.t. ∥·∥p.

Two standard prox setups for mirror descent [45] in this setting are to take h(x) = 1
2 ∥x∥

2
p (in the

unbounded case) or h(x) = 1
p ∥x∥

p
p (in the bounded case); see [45, Theorem 2.1] for the corresponding

strong convexity parameters. Consider the first setting, i.e., h(x) = 1
2 ∥x∥

2
p. Letting xϵ = x♮ + ϵe2,

we have by Bernoulli’s inequality that√
Dh (x♮||x) =

√
1
2(1 + |ϵ|p)2/p − 1

2 − ⟨e1, ϵe2⟩

= 2−1/2
√

(1 + |ϵ|p)2/p − 1

≥ p−1/2 |ϵ|p/2 .

On the other hand, f(xϵ)− f(x♮) ≤ |ϵ|. Thus, letting |ϵ| → 0, we see that (14) cannot hold for any
µ > 0.

Next, suppose h(x) = 1
p ∥x∥

p
p. Then,

√
Dh(x♮||x) =

√
1
p

(1 + |ϵ|p)− 1
p
− ⟨e1, ϵe2⟩ = |ϵ|p/2 .

Again, comparing this bound to the fact that f(xϵ)− f(x♮) ≤ |ϵ|, we deduce that (14) cannot hold
for any µ > 0. □

6.2 Variants of RMD

The base version of Algorithm 2 requires knowing the sharpness µ of the function f . We describe
two variants below. The first variant, Polyak-RMD (Algorithm 3), assumes instead that the optimal
value of f is known and achieves the same convergence rate as Algorithm 2 with the optimal choice of
µ. This is the algorithm that we will implement for experimental purposes in Section 8. The second
variant, Adaptive-RMD (Algorithm 4), does not require the true optimal value or the sharpness
constant, but its convergence rate incurs an additional logarithmic term.

Algorithm 3 Polyak-RMD(f, L, x0, K, {ηk} , f∗, {ϵk} , p)
• For k = 1, 2, . . . , K

– Run mirror descent mirror(hxk−1 , f, L, xk−1,∞, ηk) until it finds an iterate xk satisfying

f(xk)− f∗ ≤ ϵk

• Output xK
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The convergence guarantee for Polyak-RMD (Algorithm 3) and its proof are entirely identical to
that of Algorithm 2.

Proposition 4. Consider a setup from Assumption 1 and let p ∈ (1, 2]. Suppose f : V → R is
L-Lipschitz and µ-sharp w.r.t. ∥·∥p and x0 ∈ V satisfies f(x0) − f∗ ≤ ϵ0. Let ϵk = ϵ0e−k/2, K =⌈
2 ln

( ϵ0
ϵ

)⌉
, and ηk = (p−1)ϵk

L2 . Then, each iterate xk in Polyak-RMD(f, L, x0, K, {ηk} , f∗, {ϵk} , p) is
computed in at most

⌈
eL2

µ2(p−1)

⌉
mirror descent steps. In particular, an 0 < ϵ ≤ ϵ0-optimizer can be

computed in

O

(
L2

µ2(p− 1) log
(

ϵ0
ϵ

))

total mirror descent steps. If f : V → R is L-Lipschitz and µ-sharp w.r.t. ∥·∥1, we may apply the
above statement with p = 1 + 1

ln n , sharpness µ, and Lipschitz constant eL w.r.t. ∥·∥p.

The next variant of Algorithm 2 does not require either µ or f∗ but incurs an additional logarithmic
dependence on ϵ−1. Its structure and proof are inspired by [51].

Algorithm 4 Adaptive-RMD(f, L, x̄, ϵ, ϵ0, p)
• Set K = 1 +

⌈
lg
( ϵ0

ϵ

)⌉
• Synchronously and in parallel, run K copies of mirror descent. We will refer to these processes

as mirror1, . . . , mirrorK . For each i ∈ [K]
– Initialize ϵi := ϵ02−i, ηi := (p−1)ϵi

L2 , and xi ← x̄.
– Repeat:

∗ Run mirror(hxi , f, L, xi,∞, ηi) until either (i) mirrori finds a x̃ satisfying

f(x̃) ≤ f(xi)− ϵi

or (ii) mirrori receives x̃ from mirrori−1 satisfying f(x̃) ≤ f(xi)− ϵi

∗ In either case, update xi ← x̃. If i < K, also pass xi to mirrori+1.

Proposition 5. Consider a setup from Assumption 1 and let p ∈ (1, 2]. Suppose f : V → R is
L-Lipschitz and µ-sharp w.r.t. ∥·∥p and x̄ ∈ V satisfies f(x̄)− f∗ ≤ ϵ0. Let 0 < ϵ < ϵ0. Then, the
quantity xK in Algorithm 4 satisfies f(xK) − f∗ ≤ ϵ after at most O

(
L2

µ2(p−1) log
( ϵ0

ϵ

))
rounds of

synchronous computation or

O

(
L2

µ2(p− 1) log
(

ϵ0
ϵ

)2
)

total mirror descent steps. If f : V → R is L-Lipschitz and µ-sharp w.r.t. ∥·∥1, we may apply the
above statement with p = 1 + 1

ln n , sharpness µ, and Lipschitz constant eL w.r.t. ∥·∥p.

Proof. For the analysis, we will imagine marking mirrori as soon as f(xi) − f∗ is small enough:
Each process mirror1, . . . , mirrorK begins unmarked. Upon a restart of mirrori, we will mark
mirrori if

f(xi)− f∗ ≤ 2ϵi.

For concreteness, assume the marking happens after xi is communicated to mirrori+1 (if i < K).
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Note that once a process is marked, it cannot become unmarked. Furthermore, if all K processes
are marked, then f(xK)− f∗ ≤ 2−K+1ϵ0 ≤ ϵ. Our goal is to bound the amount of total work before
all K processes become marked.

Note that

f(x̄) ≤ f∗ + ϵ0 = f∗ + 2ϵ1

so that mirror1 is marked at the very beginning of the algorithm.

Suppose after some amount of computation that mirror1, . . . , mirrori−1 are all marked and mirrori

is the first unmarked process for i > 1. We claim that f(xi)− f∗ = O(ϵi). The fact that mirrori−1
is marked means that some xi−1 satisfying f(xi−1)− f∗ ≤ 2ϵi−1 was communicated to mirrori in
prior computation. Thus, it holds that

f(xi) ≤ f(xi−1) + ϵi ≤ f∗ + ϵi + 2ϵi−1 = f∗ + 5ϵi.

While mirrori remains unmarked, i.e., while

f(xi)− f∗ ≥ 2ϵi,

we may apply Lemma 3 to bound the number of iterations required for mirrori to trigger a restart.
Specifically, suppose x̃ is the best iterate seen after T iterations of mirrori since its last restart.
Then by Lemma 3,

f(x̃)− f(xi) = (f(x̃)− f∗)− (f(xi)− f∗)

≤ L2ηi

2(p− 1) +
∥x∗ − xi∥2p

2ηiT
− 2ϵi

= ϵi

2 + L2(f(xi)− f∗)2

2µ2(p− 1)ϵiT
− 2ϵi

≤ ϵi

2 + L2(5ϵi)2

2µ2(p− 1)ϵiT
− 2ϵi

=
(
−3

2 + 25L2

2µ2(p− 1)T

)
ϵi.

Thus, after T = 25L2

(p−1)µ2 iterations within mirrori, we have that f(x̃) ≤ f(xi) − ϵi. Of course, a
restart of mirrori may also be triggered by mirrori−1. In either case, a restart occurs at least every
T iterations of mirrori so long as it remains the first unmarked process. Clearly, this can only
happen up to three times before mirrori itself must become marked.

We conclude that after 3KT synchronous iterations or 3K2T total iterations of mirror descent, all
K processes are marked. ■

7 Relating sharpness to strict complementarity
In this section, we relate sharpness to a notion of conditioning known as strict complementarity. This
notion has been studied extensively for linear–conic optimization problems and linearly constrained
convex optimization problems (often in the context of deriving efficient algorithms) [1, 24, 25, 27,
34, 36, 58]. We define a notion of strict complementarity for (P).
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Definition 7. We say that strict complementarity holds for an instance of (P) if there exists an
optimal solution x♮ for which

0 ∈ rint
(
∂f(x♮)− range(A∗)−

(
K∗ ∩ (x♮)⊥

))
. □

[30, Definition 4] and [46, Defintion 2] define strict complementarity for a linear–conic optimization
problem with facially exposed cones, i.e., (P) where f(x) = ⟨c, x⟩ for some c ∈ V ∗ and where K and
its dual cone are both facially exposed, as the existence of y♮ ∈W ∗ such that

c−A∗(y♮) ∈ rint(K∗ ∩ (x♮)⊥). (15)

We will treat (15) as a definition of strict complementarity for linear–conic optimization problems
even when K or its dual cone are not facially exposed.

[27, Section 4] defines strict complementarity for a linearly constrained convex optimization problem,
i.e., (P) where K = V , as the existence of y♮ ∈W ∗ such that

A∗(y♮) ∈ rint
{

∂f(x♮)
}

. (16)

Lemma 4. Suppose (P) is (µ, r, ℓ)-sharp around x♮. Then, (P) satisfies strict complementarity.
Furthermore,

• if f(x) = ⟨c, x⟩ for some c ∈ V ∗, then strict complementarity holds in the sense of (15).

• if K = V , then strict complementarity holds in the sense of (16).

Proof. From Lemma 1, we know that Problem (P) is (µ, r, ℓ)-sharp around x♮ implies that

0 ∈ int
(
∂f(x♮)−A∗(BW ∗(0, r))−

(
K∗ ∩ (x♮)⊥ ∩BV ∗(0, L)

))
⊆ int

(
∂f(x♮)− range(A∗)−

(
K∗ ∩ (x♮)⊥

))
(a)= rint(∂f(x♮))− range(A∗)− rint

(
K∗ ∩ (x♮)⊥

)
.

The step (a) follows as the interior and relative interior for a full-dimensional set are the same,
and by the additivity of relative interior. This proves the first claim. Now, further rearranging, we
deduce there exists y♮ ∈W ∗ such that

A∗(y♮) ∈ rint(∂f(x♮))− rint(K∗ ∩ (x♮)⊥).

The two additional claims follow: In the first case ∂f(x♮) = {c}, and in the second case K∗∩ (x♮)⊥ =
{0}. ■

Combining Lemma 4 with Theorem 1, we deduce that strict complementarity holds in each of the
settings described in Section 4. Strict complementarity in the setting of phase retrieval may be
surprising as Problem (2), also known as the PhaseLift, is highly degenerate. For example, it is
known that w.h.p., the unique feasible solution to (2) will be x♮ [10] so that Slater’s condition does
not hold. In fact, simply understanding when a dual optimal solution exists may require substantial
effort [37]. In comparison, Lemma 4 and Proposition 1 together imply that the much stronger
condition of sharpness holds under an appropriate RIP condition.
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The following two examples illustrate caveats in working with strict complementarity and sharpness.
First, strict complementarity does not in general imply sharpness. Second, sharpness depends on
the presentation of a problem and may be lost even under standard reformulations that are often
considered for nuclear norm minimization.

Example 3. Consider the following nuclear norm minimization problem

min
X∈R2×2

{∥X∥1 : A(X) := X1,1 = 1} . (17)

This problem has a unique minimizer X♮ = E1,1. We compute for (17):

∂f(X♮) =
{(

1
α

)
: α ∈ [−1, 1]

}
, and

range (A∗) =
{(

β
0

)
: β ∈ R

}
.

Thus, strict complementarity holds in the sense of (16). On the other hand, both sets above
are contained in a two-dimensional subspace of R2×2. By Lemma 2, we deduce that (17) is not
(µ, r, ℓ)-sharp around X♮ for any µ > 0, r, ℓ ≥ 0. □

Example 4. Consider a nuclear norm minimization problem

min
X∈Rn×n

{∥X∥1 : A(X) = b} (18)

with a unique minimizer X♮ ̸= 0. For simplicity, we assume that X♮ is a nonnegative diagonal
square matrix; however, similar calculations hold for any nonzero (possibly non-square) matrix.

The standard SDP reformulation of the operator norm minimization problem is given by

min
Ξ∈S2n

{
tr(Ξ) : Ã(Ξ) = b

Ξ ∈ S2n
+

}
, (19)

where Ã(Ξ) := A(the top-right n× n block of Ξ).

It is easy to verify that (19) has a unique minimizer Ξ♮ = ( 1 1
1 1 )⊗X♮ so that solving (19) allows us

to recover X♮. Unfortunately, we claim that (19) is not sharp: Fix e ∈ range(X♮) nonzero and note
that ker(Ξ♮) = R2 ⊗ ker(X♮) +

( 1
−1
)
⊗ Rn. Then,

∂f(Ξ♮) = I,

range(Ã∗) =
{(

0 ξ
ξ⊺ 0

)
: ξ ∈ range(A∗)

}
,

K∗ ∩ (Ξ♮)⊥ ⊆ Sker(Ξ♮) = span
{

zz⊺ : z ∈ ker(Ξ♮)
}

.

Each of the three sets above is contained in the proper subspace
(( 1

−1
)
⊗ ee⊺

)⊥. By Lemma 2, we
deduce that (19) is not (µ, r, ℓ)-sharp around Ξ♮ for any µ > 0, r, ℓ ≥ 0.

To summarize, the SDP reformulation (19) is never sharp (even if (18) is). □
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8 Numerical experiments
We corroborate our theoretical results with preliminary experiments on the sparse recovery, low-rank
matrix sensing, and phase retrieval problems. These experiments suggest that first-order methods
based on restarted mirror descent can converge linearly on a variety of statistical recovery problems.
Furthermore, the constants in the convergence rates improve (possibly drastically) with the number
of samples and are nearly dimension independent.

All experiments were performed on a 2021 Macbook Pro with an Apple M1 pro chip and 32GB of
memory. Our code is publicly available at

https://github.com/alexlihengwang/sharpness_well_conditioning

8.1 Implementation details

We implement Polyak-RMD (Algorithm 3). While the assumption that f∗ is known is not reflective
of real applications, we believe these experiments highlight more clearly the connection between
sharpness, sample complexity, and dimension. Indeed, the performance of Polyak-RMD is dependent
on the true value of the sharpness µ (for fixed r, ℓ). On the other hand, the performance of
Algorithm 2 is affected by our provided lower bound of µ and thus depends, in part, on our ability
to bound µ.

8.1.1 Sparse recovery

We generate a random vector x♮ ∈ Rn with k nonzero entries and a vector of observations b = Ax♮

where A ∈ Rm×n. For this setting, T = (2k log(n/k) + 1.25k + 1) is the current best estimate of
the statistical threshold for sparse recovery [17]. The positions of the nonzero entries in x♮ are
chosen uniformly at random, and the values of these entries are set to independent Gaussian random
variables. These entries are further normalized so that

∥∥∥x♮
∥∥∥

1
= 1. The matrix A is set to have

independent Gaussian entries with variance 1/m. We run Polyak-RMD on the function

∥x∥1 + 3
√

k ∥Ax− b∥2 .

8.1.2 Low-rank matrix sensing

We generate a random rank-k matrix X♮ ∈ Rn×n and a vector of observations b = A(X♮) where
A : Rn×n → Rm. For this setting, T = 6nk − 3k2 + 1 is the current best estimate of the statistical
threshold for low-rank matrix sensing [17]. The matrix X♮ is set to a rank-k truncation of a random
n× n matrix with independent Gaussian entries. We normalize

∥∥∥X♮
∥∥∥

1
= 1. The linear operator A

is defined as A(X) = (⟨Gi, X⟩)i where Gi ∈ Rn×n has independent Gaussian entries for each i ∈ [m]
with variance 1/m. We run Polyak-RMD on the function

∥X∥1 + 3
√

k ∥A(X)− b∥2 .

8.1.3 Phase retrieval

We generate a random rank-one PSD matrix X♮ ∈ Sn and a vector of observations b = A(X♮) where
A : Sn → Rm. For this setting, T = 2n is the current best estimate of the statistical threshold for
phase retrieval [29]. The matrix X♮ is set to x♮(x♮)⊺ where x♮ is drawn uniformly from the surface
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Figure 1: The convergence of the Polyak-variant of RMD on sparse recovery, low-rank matrix sensing,
and phase retrieval for different values of m, the number of observations. The x-axis measures
iterations in thousands of iterations and the y-axis is the distance between the true signal and the
current iterate

∥∥∥Xt −X♮
∥∥∥ measured in the 1-norm for sparse recovery and in the nuclear norm for

both low-rank matrix sensing and phase retrieval.

of the sphere. The linear operator A is defined as A(X) = diag(GXG⊺) where G ∈ Rm×n has
independent Gaussian entries with variance 1/m. We run Polyak-RMD on the function

tr(X) + 3 ∥A(X)− b∥1 + 2 dist(X,Sn
+).

8.2 Experiments and results

8.2.1 Convergence rate and sharpness vs. number of samples

Our first set of experiments investigates how the convergence rate of Polyak-RMD behaves as
the number of samples is increased. We test sparse recovery with (n, k) = (10000, 5) and m ∈
{T, 2T, 3T, 4T}, low-rank matrix sensing with (n, k) = (100, 5) and m ∈ {T, 2T, 3T, 4T}, and phase
retrieval with n = 100 and m ∈ {4T, 8T, 16T, 32T}.

For each of the three problems and for each choice of m, we compare the distance of
∥∥∥xk − x♮

∥∥∥
against the iteration number k (see Figure 1). In all three settings, we see that the convergence rate
of Polyak-RMD is linear (in terms of number of iterations) with a rate that improves as the number of
samples increases. Table 2 indicates the maximum number of iterations of mirror descent performed
in any round of Polyak-RMD in each of the three settings and for each choice of m. We believe this
gives good insight into how the quantity µ varies with the number of samples m. Indeed, recall by
Theorem 2 that the maximum number of iterations in any round of RMD (and hence Polyak-RMD)
is bounded by

⌈
e3L2 ln(n)

µ2

⌉
. We indicate also the value of µ suggested by this formula—note that this

may not be the true value of µ and is only an upper bound. Again, we see that the suggested value
of µ improves (i.e., increases) with the number of observations in all three of our settings.

8.2.2 Convergence rate vs. dimension

Our second set of experiments investigates how the convergence rate of Polyak-RMD depends on the
ambient dimension. We test sparse recovery with n ∈

{
104, 105, 106}, k = 5, and m ∈ {T, 2T, 3T, 4T}.

We compare the performance of Polyak-RMD with that of the subgradient method with Polyak
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m Max. iter. µ

T 2.3× 104 1.3
2T 4.5× 103 2.9
3T 1.1× 103 5.9
4T 9.4× 102 6.4

(a) Sparse recovery

m Max. iter. µ

T 1.4× 104 1.2
2T 2.4× 103 2.8
3T 1.2× 103 3.9
4T 9.0× 102 4.6

(b) Low-rank matrix sensing

m Max. iter. µ

4T 4.2× 103 1.3
8T 1.6× 103 2.2
16T 7.6× 102 3.1
32T 5.6× 102 3.7

(c) Phase retrieval

Table 2: Experimental results for sparse recovery with (n, k) = (100000, 5), low-rank matrix sensing
with (n, k) = (100, 5), and phase retrieval with n = 100. For each setting and each choice of m,
we record the maximum number of iterations used to complete one round of Polyak-RMD. We
additionally compute the value of µ suggested by the formula µ ≈

√
e3L2 ln(n)/t where t is the

maximum number of iterations in any round of mirror descent.
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Figure 2: The convergence of Polyak-RMD and Polyak-GD on sparse recovery for different values
of n, the ambient dimension. The support size of x♯ is five. The x-axis measures iterations in
thousands of iterations and the y-axis is the distance between the true signal and the current iterate∥∥∥xt − x♮

∥∥∥ measured in the 1-norm.

step-sizes (Polyak-GD) [48]. The latter method also assumes that the value of f∗ is known and is
guaranteed to converge linearly on Euclidean sharp Lipschitz convex functions. See Figure 2 for
the experimental results. As expected, the performance of Polyak-GD degrades with dimension
as the sharpness of the function in question w.r.t. ∥·∥2 should scale as ≈ n−1/2. In contrast, the
performance of Polyak-RMD only varies minorly as the dimension n increases.

9 Discussion
This paper shows that for various statistical signal recovery tasks, once the sample size is greater
than a constant multiple of the recovery threshold, then the convex optimization problem becomes
well-conditioned in the sense of sharpness w.r.t. the ℓ1 or Schatten-1 norm. In turn, this fact shows
the optimization problem is robust to measurement error and optimization error. Furthermore, the
newly developed algorithm RMD is able to achieve nearly-dimension-independent convergence rates.
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We hope this paper induces interest in the interplay between statistics and convex optimization,
especially in nonsmooth formulations and algorithms for these nonsmooth formulations. In particular,
the following two directions might be of interest for future investigations:

• Well conditioning beyond RIP: This paper considers recovery tasks where strong RIP
bounds have been established. Can we prove well-conditioning results for other statistical
problems such as matrix completion [16] and phase retrieval with coded diffraction patterns
[11] where similarly strong RIP bounds may not hold?

• Adaptive penalty parameters: Given a concrete statistical model, we can give upper
bounds on r and ℓ so that the corresponding function Fr,ℓ is µ-sharp. On the other hand,
determining these parameters may be difficult without a precise statistical model. Thus, are
there algorithmic ways of estimating or adaptively choosing these two parameters?
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A Proof of Lemma 2
Proof. The forward direction follows directly from Lemma 1. We focus on the reverse direction.
For notational convenience, let S1 := ∂f(x♮), S2 := − range(A∗) and S3 := −(K∗ ∩ (x♮)⊥). The
inclusion (7) implies the right of (7) is full-dimensional. Thus, its interior coincides with its relative
interior. By additivity of the relative interior [7, Corollary 6.15], we have

0 ∈ rint(S1) + rint(S2) + rint(S3).

We deduce there exists g♮ ∈ rint(S1), h♮ ∈ rint(S2), and z♮ ∈ rint(S3) such that

0 = g♮ + h♮ + z♮.

There exists an ϵ > 0, such that

BV ∗(g♮, ϵ) ∩ aff(S1) ⊆ S1,

BV ∗(h♮, ϵ) ∩ aff(S2) ⊆ S2, and
BV ∗(z♮, ϵ) ∩ aff(S3) ⊆ S3.

Let r > 0 such that −A∗(BW ∗(0, r)) ⊇ BV ∗(h♮, ϵ) ∩ aff(S2) and let ℓ =
∥∥∥z♮
∥∥∥+ ϵ. Then,

dim
(
∂f(x♮)−A∗(BW ∗(0, r))− (K∗ ∩ (x♮)⊥ ∩BV ∗(0, ℓ))

)
(a)
≥ dim

(
BV ∗(g♮, ϵ) ∩ S1 + BV ∗(h♮, ϵ) ∩ aff(S2)−BV ∗(z♮, ϵ) ∩ aff(S3)

)
(b)= dim (aff(S1 + S2 + S3))
(c)= dim(V ∗).

Here, step (a) follows as dimension is set-monotone, step (b) follows as the dimension of a convex
set is defined as the dimension of its affine hull, and the last step (d) follows by the assumption
that 0 ∈ int(S1 + S2 + S3). We deduce that ∂f(x♮)−A∗(BW ∗(0, r))− (K∗ ∩ (x♮)⊥ ∩BV ∗(0, ℓ)) is a
full-dimensional convex set containing 0 in its relative interior. Thus, it contains BV ∗(0, µ) for some
µ > 0. ■

B Proof of Proposition 1 for sparse vector recovery
Proof. Let δ ∈ Rn be arbitrary. Our goal is to show that∥∥∥x♮ + δ

∥∥∥
1

+
√

k′ ∥Aδ∥1 −
∥∥∥x♮
∥∥∥ ≥ ϵ

2 + ϵ
∥δ∥ .
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Without loss of generality, we may reindex Rn so that supp(x♮) ⊆ [k] and |δk+1| ≥ |δk+2| ≥ · · · ≥ |δn|.
We decompose δ as a sum of vectors δk + σ1 + · · · + σt, each in Rn. Specifically, δk extracts
the first k coordinates of δ, σ1 extracts the next k′ coordinates of δ, and each subsequent σi

extracts the next k′ coordinates of δ. Finally, σt may extract fewer than k′ coordinates of δ. Let
δk⊥ := δ − δk = σ1 + · · ·+ σt.

We can bound

∥δk⊥∥1 ≥
t−1∑
i=1
∥σi∥1 (σi are disjoint)

= k′
t−1∑
i=1

∥σi∥1
k′

≥ k′
t∑

i=2
∥σi∥∞ (|δk+1| ≥ · · · ≥ |δn|)

≥
√

k′
t∑

i=2
∥σi∥2

≥
√

k′ ·
(
RIP+

k′

)−1 t∑
i=2
∥Aσi∥1

≥
√

k′ ·
(
RIP+

k′

)−1
(∥A(δk + σ1)∥1 − ∥Aδ∥1) (triangle inequality)

≥
√

k′ RIP−
k+k′

RIP+
k′
∥δk + σ1∥2 −

√
k′ ∥Aδ∥1

≥
√

k′ RIP−
k+k′

RIP+
k′
∥δk∥2 −

√
k′ ∥Aδ∥1 (δk, σ1 are disjoint)

≥

√
k′

k

RIP−
k+k′

RIP+
k′
∥δk∥1 −

√
k′ ∥Aδ∥1

≥ (1 + ϵ) ∥δk∥1 −
√

k′ ∥Aδ∥1 .

We are now ready to prove sharpness:∥∥∥x♮ + δ
∥∥∥

1
+
√

k′ ∥Aδ∥1 −
∥∥∥x♮
∥∥∥

1

≥ ∥δk⊥∥1 − ∥δk∥1 +
√

k′ ∥Aδ∥1 (x♮ + δk, δk⊥ are disjoint)

=
( 2

2 + ϵ
+ ϵ

2 + ϵ

)
∥δk⊥∥1 − ∥δk∥1 +

√
k′ ∥Aδ∥1

≥
( 2

2 + ϵ
(1 + ϵ)− 1

)
∥δk∥1 + ϵ

2 + ϵ
∥δk⊥∥1 (bound on ∥δk⊥∥1)

+
(

1− 2
2 + ϵ

)√
k′ ∥Aδ∥1

≥ ϵ

2 + ϵ
∥δ∥1 .

This proves the claim as δ ∈ Rn was arbitrary. ■
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