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Abstract. We consider simultaneous Waring decompositions: Given forms fd
of degrees kd, (d = 2, 3), which admit a representation as d-th power sums of

k-forms q1, . . . , qm, when is it possible to reconstruct the addends q1, . . . , qm
from the power sums fd? Such powers-of-forms decompositions model the
moment problem for mixtures of centered Gaussians. The novel approach of

this paper is to use semidefinite programming in order to perform a reduction

to tensor decomposition. The proposed method works on typical parameter
sets at least as long as m ≤ n−1, where m is the rank of the decomposition and

n is the number of variables. While provably not tight, this analysis still gives

the currently best known rank threshold for decomposing third order powers-
of-forms, improving on previous work [30], which required Ω(1) ≤ m ≤ O(

√
n)

and, more recently, Bafna, Hsieh, Kothari and Xu [6], which can go up to

m = O( n
log(n)2

). Our algorithm can produce proofs of uniqueness for specific

decompositions. A numerical study is conducted on Gaussian random trace-

free quadratics, giving evidence that the success probability converges to 1 in

an average case setting, as long as m = n and n→∞. Some evidence is given
that the algorithm also succeeds on instances of rank m = Θ(n2).

1. Introduction

Waring decompositions for polynomials are a highly studied problem with a wide
range of applications in sciences and statistics, including phylogenetics [39], cryo-
genic electron microscopy [7], Gaussian mixtures ([30],[29], see Section 5) and many
more [39]. They serve as a fundamental model in the theory of arithmetic circuits
[29] and occur as an important algorithmic primitive for various machine learn-
ing problems [8],[46]. Formally, for a fixed form, i.e., a homogeneous polynomial
fd ∈ K[X]dk of degree dk ∈ N, the representation

fd =

m∑
i=1

λiq
d
i , (q1, . . . , qm ∈ K[X]k, λ ∈ Km) (1.1)

is a k-Waring decomposition of rank m of fd over the field K. For fd ∈ K[X], the
minimum m such that fd has a k-Waring decomposition of rank m is called the
k-Waring rank of fd over the field K. Classically, the main focus of attention used
to be the case where K = C is the field of complex numbers, and power sums of
linear polynomials were considered. The latter corresponds to k = 1. Note that
over the complex field, the weights λi are redundant, and thus omitted. A long
series of work, started more than a century ago, e.g., by Sylvester [66], Hilbert
[34] and Terracini [68], lead via the celebrated Alexander-Hirschowitz theorem [35]
and results by Chiantini-Ottaviani-Vannieuwenhoven [16],[17],[18], Galuppi-Mella
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[28] (and many others) to a complete classification when generic 1-Waring decom-
positions are unique for the forms they describe. This property is called generic
identifiability.

A second line of thoughts (e.g., [31],[42],[3],[22]) developed from the side of appli-
cations and was continued by theoretical computer scientists. Among many other
things, it produced algorithmic uniqueness theorems for 1-Waring decompositions.
From one perspective, these can be seen as “efficient” algorithms that recover the
representation fd = `d1 + . . .+ `dm from the d-th power sum fd as input, under some
restrictive assumptions on the rank and some nondegeneracy assumptions on the
parameters of the representation, cf. Theorem 2.3 and [12, Theorem 2.4.8]. From
another perspective, these results provide a proof of uniqueness for the minimum
rank decomposition, whenever certain explicit conditions are met. Therefore, they
are a tool to produce rank lower bounds for explicit families of polynomials.

The work on higher degree Waring decompositions has been pioneered by Reznick
[56],[57],[63] (with Tokcan), [58],[59],[60],[61],[62]. In recent years, geometers have
been trying to understand uniqueness and generic rank of Waring decompositions
also for higher values of k [26]. A conjecture due to Ottaviani [45, Conjecture
1.2] states that the generic rank of k-Waring decompositions behaves as expected
from counting parameters, if d ≥ 3. In [13], the author showed in joint work
with Casarotti, Michalek and Oneto, that for “most” subgeneric ranks m, Waring
decompositions are unique, based on work of Nenashev [49] and Casarotti-Mella
[14]. The results imply in particular bounds on the generic rank for k-Waring
decompositions. Casarotti and Postinghel [15] then studied a different asymptotic
setting where not the number of variables n but rather the degree k is assumed to
be large. Simultaneous Waring decompositions for vectors of forms of (possibly)
different degrees have been studied geometrically e.g. by Angelini, Galuppi, Mella
and Ottaviani [5]. From the computational perspective, the work of Garg, Kayal
and Saha [29] and Bafna, Hsieh, Kothari, Xu [6] examined polynomial-time recovery
procedures for some variants of powers-of-forms decomposition.

This paper aims to generalize the second line of work, concerning algorithmic
uniqueness theorems, to higher values of k, although a slightly different setting is
considered: The focus is on real decompositions, degree k ≥ 2, and simultaneous
power sum decomposition in various degrees. Formally, we provide an algorithm
and a uniqueness theorem (cf. Algorithm 1 and Theorem 3.1) for third order
powers-of-forms (POF) decompositions, which have the following basic template:

(PoF)f,m,k given f0, f1, f2, f3 of degrees 0, k, 2k, 3k, (1.2)

find q1, . . . , qm ∈ R[X]k,

λ1, . . . , λm ∈ R≥0,

s. t. fd =

m∑
i=1

λiq
d
i , d = 0, 1, 2, 3.

Let us call f0, f1, f2, f3 the power sums, q1, . . . , qm the addends and λ1, . . . , λm the
(nonnegative) weights. Throughout, X = (X1, . . . , Xn) are polynomial variables
and n,m, k ∈ N are positive integers. For the scope of this paper, we limit our
attention to real POF decompositions. The recovery task is not necessarily well-
posed, since a given form f might have various decompositions. However, if m is
not too large, e.g., if m = O(n(d−1)k), then a general form of k-Waring rank m has
a unique decomposition, cf. [13].

The special case k = 1 relates to a plethora of important problems, e.g.: atom
reconstruction of finitely supported measures, mixtures of Gaussians with identical
covariance matrices and to symmetric tensor decomposition [12]. The case k = 2 of
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quadratic forms has to do with mixtures of centered Gaussians. Therefore, it has
Machine Learning applications, e.g., for learning a union of subspaces. These con-
nections are explained in Section 5. For mixtures of centered Gaussians, third order
powers-of-quadratics decomposition yields the first case where nontrivial recovery
results are achievable. This case is a special focus of the present paper, although
our algorithm works for all values of k.

1.1. Overview of Contributions and main results. This paper proposes and
analyzes an algorithm to recover third order POF decompositions, as stated in
(1.2). A proof-of-concept implementation of the algorithm in Julia can be found
on GitHub, see [67]. Algorithm 1 is based on semidefinite programming and is
“efficient” in the sense that, aside from its calls to the SDP solver, which is treated
as a blackbox, it only uses basic linear-algebraic operations on polynomially-sized
quantities constructed from the input. In other words, one could say that it is
efficient up to the automatizability of semidefinite programming, which is still not
completely understood, cf. [50]. Any numerical troubles, such as condition, are
also ignored. E.g., for the sake of readability, we will write “λ1 > 0” rather than
requiring λ1 to be sufficiently bounded away from zero.

When it succeeds, the algorithm will also produce a proof of uniqueness of the
decomposition. Therefore, it implies an algorithmic uniqueness result, Theorem 3.1,
which is at the core of this paper. The conditions of Theorem 3.1 can be explicitly
described in terms of just the second power sum f2 of degree 2k and checked before
computing the decomposition. One basic tool is to associate a subspace of degree-k
forms to the second order power sum f2, which will be called the Sum of Squares
support of f2. It consists of all polynomials contributing to some Sum-of-Squares
decomposition of f2:

sosupp f2 = {p ∈ R[X]k | ∃λ ∈ R>0 : f2 − λp2 is a sum of squares}. (1.3)

The Sum of Squares support will be explained in detail in Section 2. For now, it
was just introduced in order to state the main result.

Theorem 1.1 (Cf. Theorem 3.1). Let k ∈ N and let f2, f3 be forms of degree 2k
and 3k, respectively. Denote U := sosupp f2 and N := dimU . Assume that the
space of threefold products {u · v · w | u, v, w ∈ U} of the polynomials in U has

dimension
(
N+2
3

)
.1 Then f2 and f3 have at most one joint POF decomposition

fd =

m∑
i=1

λiq
d
i , d = 2, 3 (1.4)

with positive weights λ1, . . . , λm > 0, m ∈ N and linearly independent q1, . . . , qm.
Furthermore, if such a decomposition exists, then Algorithm 1 computes it efficiently
and it is the unique minimum rank POF decomposition of (f2, f3).

Unlike Waring decompositions of order 3 or higher, Sum-of-Squares represen-
tations are highly non-unique. Indeed, consider a Sum-of-Squares representation
f = p21 + . . . + p2N of some form f and any orthogonal matrix A ∈ RN×N . Write
p := (p1, . . . , pN ). Then clearly also the entries of s := Ap give a Sum-of-Squares
representation of f , since

s21 + . . .+ s2N = sT s = pTATAp = pT p = p21 + . . .+ p2N = f. (1.5)

Nevertheless, we say that a form f ∈ R[X]2k is uniquely Sum-of-Squares repre-
sentable, if there is only one Sum-of-Squares representation modulo orthogonal
transformations.

1In other words, there are no algebraic relations between linearly independent elements of U
of degree at most 3.
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Section 3.1 derives and explains the idea behind Algorithm 1 and states the
main result, while Section 4 offers a detailed discussion of the conditions. Here,
we just highlight a few corollaries for instances constructed from general addends
q1, . . . , qm. One important quantity will be the number βk(n) introduced below.

Definition 1.2. Let n ∈ N. Then we denote by βk(n) the maximum number m of
k-forms q1, . . . , qm that satisfy one of the following equivalent conditions

(1) There are no algebraic relations of q1, . . . , qm of degree at most 3.
(2) There are no homogeneous algebraic relations of q1, . . . , qm of degree 3.
(3) dimR[q1, . . . , qm]3k =

(
m+2
3

)
.

It holds that βk(n) ≥ n + 1 for all k ≥ 2, n ≥ 2 and, e.g., that β2(n) = Θ(n2),
see Section 4.1. For power sums constructed from at most m ≤ βk(n) general
addends, the conditions of Theorem 1.1 are satisfied, if f2 is uniquely Sum-of-
Squares representable. See Section 4.1 and, in particular, Proposition 4.4 for a
detailed discussion. This yields the following simplification.

Corollary 1.3. For any n,m, k ∈ N with m ≤ βk(n), there is an efficient algorithm
for the following problem: If λ1, . . . , λm ∈ R>0 and q1, . . . , qm ∈ R[X]k are general
forms such that f2 :=

∑m
i=1 λiq

2
i is uniquely Sum-of-Squares representable, compute

the set {(q1, λ1), . . . , (qm, λm)} from inputs f2 and f3 := λ1q
3
1 + . . .+ λmq

3
m.

For m < n, it is in addition possible to give geometric criteria.

Corollary 1.4. For any n,m ∈ N with m ≤ n− 2, there is an efficient algorithm
for the following problem: If q1, . . . , qm ∈ R[X]k are general forms such that their
real variety VR(q1, . . . , qm) contains a nonzero point and λ1, . . . , λm are positive,
compute the set {(q1, λ1), . . . , (qm, λm)} from inputs f2 := λ1q

2
1 + . . . + λmq

2
m and

f3 := λ1q
3
1 + . . .+ λmq

3
m.

The case m = n− 1 is special:

Corollary 1.5. For any n ∈ N, there is an efficient algorithm for the following
problem: If q1, . . . , qn−1 ∈ R[X]k are general forms such that all the finitely many
lines of the variety V (q1, . . . , qn−1) are real and λ1, . . . , λm are positive, compute
the set {(q1, λ1), . . . , (qm, λm)} from inputs f2 := λ1q

2
1 + . . . + λmq

2
m and f3 :=

λ1q
3
1 + . . .+ λmq

3
m.

In Appendix C, it is proven that the conditions of both Corollary 1.4 and Corol-
lary 1.5 are satisfied for typical choices of q1, . . . , qm, i.e. on a Euclidean open
subset of R[X]mk . However, note that the geometric arguments fail for m � n,
whereas one has evidence to believe that Algorithm 1 can also decompose some
instances of quadratic rank m = Θ(n2), cf. Conjecture 4.10. Therefore it is not
clear whether Corollary 1.3 extends beyond m = n−1, but numerical evidence from
Section 4.2 strongly suggests so. Unique Sum-of-Squares representability appears
to be in general not well-understood and Corollary 1.3 gives further motivation
to understand it better. The recovery result from Theorem 3.1 has consequences
for certain Machine Learning problems, two of which we highlight in the following
section.

1.2. Learning parameters of centered Gaussian mixtures. The parameter
estimation problem for Gaussian mixtures has a rich history, dating back to Pearson
[51]. It has now been studied over more than a century in all kinds of flavours e.g.
from the perspective of computer science ([20],[64],[21],[47],[38],[37],[4],[54],[44]), al-
gebraic geometry ([1],[2]), moment problems ([19],[23]) and applications ([55],[52]).
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A mixture of m centered Gaussians has a degree-2d moment form (cf. Section 5.1)
proportional to

m∑
i=1

λiq
d
i , (1.6)

where λ1, . . . , λm ∈ R≥0 are the mixing weights (summing up to 1) and q1, . . . , qm
are positive (semi)definite quadratic forms qi = XTΣiX, where Σi is the covariance
matrix of the i-th centered Gaussian. Thus, there is a straightforward connection
between the parameter estimation problem for mixtures of centered Gaussians from
their moments on one side and decompositions as powers of quadratic forms on the
other side. At first glance, Theorem 1.1 does not fare well together with the setting
of Gaussian mixtures, since if one of the forms q1, . . . , qm is positive definite, then∑m
i=1 λiq

2
i will never be uniquely Sum-of-Squares representable. With some slight

adaptations, it is possible to prove a recovery result for typical instances of Gaussian
mixtures. This is done in Section 5 and highlighted here:

Corollary 1.6. For any n ∈ N, m ∈ {1, . . . , n − 1}, there is a Euclidean open
subset U of R[X1, . . . , Xn]m2 and an efficient algorithm for the following problem:
If Y is a mixture of m centered Gaussian random variables with general positive
definite covariance forms (q1, . . . , qm) ∈ U and positive mixing weights λ1, . . . , λm,
compute the set of parameters {(q1, λ1), . . . , (qm, λm)} from the moments M≤6(Y )
of Y of degree at most 6.

1.3. Learning unions of subspaces. A special type of Gaussian mixture distri-
butions can be used as a model for subspace learning. Here, data is assumed to
be normally distributed on either of the r-dimensional subspaces U1, . . . , Um and
the task is to find bases for the subspaces U1, . . . , Um from samples of the mixture
distribution as input. The main difference to a general Gaussian mixture instance
from above is that the forms q1, . . . , qm corresponding to the subspaces U1, . . . , Um
will not have full rank.

We highlight this special application, since it is a case where one needs uniqueness
not for general forms, but for forms that are general within the class of fixed-rank
quadratic forms. We are not aware of any decomposition result applicable for this
case, since the previous work [6], [30] is based on a probabilistic analysis and thus
implicitly assumes full-rank quadratics.

Corollary 1.7. For any n, r ∈ N≥3, m ≤ n − 1, there is a Euclidean open sub-
set U of the problem parameters2 and an efficient algorithm for the following prob-
lem: If Y1, . . . , Ym are normally distributed random variables on r-dimensional sub-
spaces U1, . . . , Um and λ ∈ Rm>0 with

∑m
i=1 λi = 1, compute bases for the subspaces

U1, . . . , Um from the moments of λ1Y1 ⊕ . . .⊕ λmYm of degree at most 6.

1.4. Relevance of results. The aim of this work is to get tighter, algorithmic
rank lower bounds for third-order powers-of-forms decomposition. In a typical real
case, with Corollary 1.5, we improve the rank threshold for efficient recovery from
m ≤ O( n

log(n)2 ) (due to [6]) or Ω(1) ≤ m ≤ O(
√
n) (due to [30]) to 1 ≤ m ≤ n− 1.

Compared to the previous results, this gives an improvement of the asymptotic
order and the constant factors, with a much simpler proof. In addition, Algorithm 1
implicitly produces a proof of uniqueness of the minimum rank decomposition for
any concrete instance where it succeeds.

Analysis beyond the case m = n− 1 is more difficult, since one may not rely on
geometric arguments any more. However, there is significant reason to hope that

2The parameters are the subspaces together with the means and covariances of the Gaussians.
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Algorithm 1 can decompose instances of rank m = Θ(n2). Indeed, m = Θ(n2) gen-
eral quadratics q1, . . . , qm do not satisfy any algebraic relations of degree 3, which
is implicitly shown by Bafna, Hsieh, Kothari and Xu [6, Section 6.4]. The big
open question is whether there are also instances of m = Θ(n2) quadratics that are
uniquely Sum-of-Squares representable, and if these sets have nonempty intersec-
tion. Numerical findings suggest this is the case, cf. Conjecture 4.10. The threshold
m ∈ O(n) is thus likely not an actual algorithmic boundary, see Section 4.2.

Acknowledgements. I wish to thank Pravesh Kothari, who encouraged me to work
on powers-of-forms decompositions and pointed me towards the work of Ankit Garg
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2. Preliminaries

Notation. Let us write N = {1, 2, 3, . . .} for the set of natural numbers and N0

for N ∪ {0}. This paper concerns POF decompositions over the real field R, but
we might occasionally mention some results that hold over the complex numbers
C. For K ∈ {R,C}, we endow any finite dimensional K-vector space U with the
K-Zariski topology. The varieties considered in this paper are closed affine or
projective varieties. Closed affine varieties are subsets of U that can be written as
the feasible set V (q1, . . . , qm) of a system of polynomial equations

q1(x) = 0, . . . , qm(x) = 0, (x ∈ U). (2.1)

The space of linear functionals from U to R is denoted U∨ and called the dual
space of U . Algebraic unknowns will be denoted by capital letters. In particular,
for U = Kn, it is by default assumed that the unknowns are X = (X1, . . . , Xn) and
the polynomial ring is denoted K[X]. Note that p ∈ K[X] denotes a polynomial,
whereas p(x) denotes the evaluation of p in some point x ∈ Kn. As one exception,
when talking about algebraic relations of some polynomials q1, . . . , qm ∈ K[X], let
us denote their ideal of relations

Irel(q1, . . . , qm) = {f ∈ K[Y ] | f(q1, . . . , qm) = 0} (2.2)

in some separate set of unknowns Y = (Y1, . . . , Ym), to avoid confusion. For some
graded K-algebra R, Rk denotes the k-th graded component of R and R≤k :=
R0⊕ . . .⊕Rk denotes the part of grade at most k. Quotients of polynomial rings by
homogeneous ideals will naturally inherit the grading by the degree. However, for
a subalgebra K[q1, . . . , qm] ⊆ K[X1, . . . , Xn] generated by some k-forms q1, . . . , qm,
we will often deviate from the canonical grading by the degree and instead grade
K[q1, . . . , qm] by 1

k times the degree, for technical reasons.

The reader is assumed to have some basic familiarity with convex geometry (e.g.,
the notions of convex cones, faces, relative interior, conic duality) and with algebraic
geometry (e.g., Bertini’s theorem). For the background knowledge, cf. the books of
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Barvinok [9] for convex geometry and Hartshorne [32] for algebraic geometry. For
a convex cone C ⊆ U in some R-vector space U , the dual cone of C is denoted as

C∗ := {L ∈ U∨ | ∀u ∈ U : L(u) ≥ 0} ⊆ U∨. (2.3)

In the special case where C is even a subspace of U , it holds

C∗ = {L ∈ U∨ | ∀u ∈ U : L(u) = 0}. (2.4)

Thus, C∗ is then a subspace of U∨, which is called the conormal space of C. It is
commonly denoted C⊥ rather than C∗. If R is a commutative, graded R-algebra
with graded components R0, R1, R2, . . ., then for k ∈ N0, we denote by

ΣR,2k =

{
f ∈ R2k | ∃N ∈ N0, p1, . . . , pN ∈ Rk : f =

N∑
i=1

p2i

}
. (2.5)

the homogeneous Sums-of-Squares cone of R in degree 2k. If R = R[X] is the
polynomial ring, we simply write Σ2k, suppressing the dependency on the variables.
For a homogeneous ideal I ⊆ R, we denote by Ik the degree-k component of I, i.e.,
Ik = I ∩Rk.

2.1. Gram Spectrahedra. A form f ∈ R[X] is a sum of squares if there exist
N ∈ N0 and forms q1, . . . , qN ∈ R[X] such that

f =

N∑
i=1

q2i . (2.6)

The right hand side of (2.6) is called a Sum-of-Squares representation. For any
orthogonal transformation A ∈ RN×N , both q = (q1, . . . , qN )T and A(q1, . . . , qN )T

represent the same polynomial f . Let us denote by [X]k = (Xα)|α|=k the vector
of monomials of degree k. Then, any polynomial p ∈ R[X]k can be written as
p = cTp [X]k for some real coefficient vector cp = (cp,α)|α|=k. This allows to write
Sum-of-Squares representations such as (2.6) via Gram matrices

f = [X]Tk

(
N∑
i=1

cqic
T
qi

)
[X]k = [X]TkG(q)[X]k. (2.7)

Here, we denoteG(q) :=
∑N
i=1 cqic

T
qi for the positive semidefinite (psd) Gram matrix

of the Sum-of-Squares representation f = qT q. Let us write G � 0 to denote that
some (symmetric) matrix G is psd. It turns out that any matrix representation f =
[X]TkG[X]k, where G � 0, corresponds to a class of Sum-of-Squares representations
modulo orthogonal transformations. The convex set

Gram(f) := {G � 0 | [X]TkG[X]k = f} (2.8)

is called the Gram spectrahedron of f . Let us collect some basic properties.

Proposition 2.1. Let k ∈ N, f ∈ Σ2k.

(a) Every face F of Gram(f) has an associated subspace UF such that

F = {G ∈ Gram(f) | imG ⊆ UF }
and such that equality imG = UF holds for all points in the relative interior of
F . We interpret UF as a subspace of R[X]k, by sending c ∈ UF to [X]Tk c.

(b) A relative interior point of F corresponds to a class of Sum-of-Squares repre-
sentations of f (modulo orthogonal transformations) of length dimUF .

(c) A linear subspace U of R[X]k is called facial for Gram(f), if there exists some
G in Gram(f) such that imG = U .

(d) If F ′ ( F is a proper subface, then dimUF ′ < dimUF .
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(e) The set

sosupp f = {p ∈ R[X]k | ∃λ ∈ R>0 : f − λp2 is a sum of squares}
of all polynomials contributing to some Sum-of-Squares decomposition of f is
a subspace of R[X]k.

(f) The sum of facial subspaces is facial. In particular, there exists a largest facial
subspace UGram(f) of Gram(f) and this subspace equals sosupp f .

Proof. Cf. the work of Ramana and Goldman [53] on the facial structure of (arbi-
trary) spectrahedra. This formulation loosely follows Scheiderer [65, Section 2]. �

Recall that for a point x in some convex set C, the supporting face suppf x of
x is defined to be the minimal face of C containing x. For a face F of C it holds
x ∈ relintF , if and only if F is the supporting face of x.

2.2. Powers-of-forms decomposition. Throughout, we will consider third order
powers-of-forms decomposition, as introduced in (1.2). Let us restate the standard
setting of third order POF decomposition used in this paper:

(PoF)f,m,k given f0, f1, f2, f3 of degrees 0, k, 2k, 3k, (2.9)

find q1, . . . , qm ∈ R[X]k,

λ1, . . . , λm ∈ R≥0,

s. t. fd =

m∑
i=1

λiq
d
i , d = 0, 1, 2, 3.

Note that in order to recover both the addends and the weights, it is necessary to
use power sums of at least two different orders. Our main results, Theorem 3.1
and Algorithm 1, are “minimal” in the sense that they only make use of the power
sums f2 and f3. In some applications, it is canonical and useful to have f1 as well.
This is explained in Section 5.

Definition 2.2. Let k, d ∈ N and f ∈ R[X]dk. There exists a smallest number
m ∈ N such that f has a k-Waring decomposition of rank m, i.e., a decomposition

f =
m∑
i=1

σiq
d
i (2.10)

of f as a signed sum of m d-th powers of k-forms q1, . . . , qm, with signs σ1, . . . , σm ∈
{±1}. This m is called the (real) k-Waring rank of f . For odd d, the signs can
be omitted. For even d, let us define the k-length of f as the smallest number
m ∈ N∪{∞} such that f has a k-Waring decomposition of length m, with all signs
being positive. We denote it by lenk f and understand it as∞, whenever there is no
such decomposition. In the case d = 2, len f := len2 f is called the Sum-of-Squares
length, or simply the length of f . The k-Waring rank of a generic kd-form in n
variables is denoted rank◦k(n, kd).

2.3. Powers of linear forms. The case k = 1 of powers of linear forms is compar-
atively well-understood. A classical uniqueness result for cubic forms of very low
rank is known due to Jennrich (via Harshman [31]). There exist efficient methods
to extract the linear forms, c.f. Anandkumar, Ge, Hsu, Kakade and Telgarsky [3].

Theorem 2.3. (cf. e.g. [42],[3]) There exists an algorithm that, on input n ∈ N
and forms f2, f3 of degrees 2 and 3, respectively, computes the solution to the
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following problem: If f2, f3 have a POF decomposition

fd =

m∑
i=1

λi`
d
i (2.11)

such that `1, . . . , `m are linearly independent and λ1, . . . , λm ∈ R \ {0}, then com-
pute (`1, λ1), . . . , (`m, λm). Under these conditions, (2.11) is the unique minimum
rank POF decomposition of (f2, f3) and the only POF decomposition with linearly
independent addends.

Proof. The proof is deferred to Appendix A. �

3. Basic Algorithm for PoF decomposition

3.1. Overview of ideas and techniques. The main result of this paper is a
recovery algorithm for the addends and weights of a third order powers-of-forms
decomposition, as described in Section 2.2. It is simultaneously also an algorithmic
proof of uniqueness of the decomposition, and can thus be seen as a generalization
of the classical result, Theorem 2.3, commonly attributed to Jennrich [31]. Some of
the conditions impose implicit constraints on the rank of the POF decomposition.
Section 4 discusses these implications in detail and Section 4.2 proves uniqueness
of the POF decomposition for some concrete examples.

The algorithm combines two simple ideas: First, we aim to recover the space
〈q1, . . . , qm〉 spanned by the addends. Note that this is a trivial task for k = 1, but
for k ≥ 2 it is not. Then, given a basis u1, . . . , um for the space 〈q1, . . . , qm〉, note
that sometimes it is possible to reduce the k-Waring decomposition problem to a
1-Waring decomposition problem. Let us start by explaining this second idea:

Second idea: Reduction to k = 1. R[q1, . . . , qm] is an algebra graded by 1
k times the

degree and the kernel of the graded algebra homomorphism

ϕ : R[Y1, . . . , Ym]→ R[q1, . . . , qm], Y1 7→ u1, . . . , Ym 7→ um (3.1)

is the ideal Irel(u1, . . . , um) of algebraic relations of u1, . . . , um, which, via a change
of coordinates, translates to the ideal of relations of q1, . . . , qm. If Irel(q1, . . . , qm)
does not contain forms of degree at most 3, then the restriction ϕ≤3 of ϕ to
R[Y1, . . . , Ym]≤3 is an invertible linear map onto its image R[q1, . . . , qm]≤3. The

inverse map ϕ−1≤3 must map the k-forms q1, . . . , qm in X1, . . . , Xn to some linear

forms `1, . . . , `m in Y1, . . . , Ym. One easily sees that for d ∈ {1, 2, 3}:

gd := ϕ−1≤3(fd) =

m∑
i=1

`di (3.2)

admit a joint decomposition as powers of linear forms. From that, a classical
algorithm based on eigenvalue decomposition can be used, which is described in
Theorem 2.3 and Appendix A. Note that the inverse of ϕ≤3 can be computed: Since
the d-fold products (uα)|α|=d of entries of u form a basis of R[U ]d for d = 1, 2, 3,
there exist unique coefficients (cα)|α|=d such that

fd =
∑
|α|=d

cαu
α, (d = 1, 2, 3), (3.3)

which can be obtained by linear system solving. Then, gd =
∑
|α|=d cαY

α.

It is easy to see that the invertibility condition is a generic property at least as
long as m ≤ n + 1, but e.g. for quadratics q1, . . . , qm ∈ R[X]2, it also holds for
some m = Θ(n2). This is discussed in Section 4.1.
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First idea: Space recovery. To recover a basis of the space 〈q1, . . . , qm〉, we make
heuristic use of the Gram spectrahedron. By Proposition 2.1, there is a super-
space UF of 〈q1, . . . , qm〉 associated with every face F of Gram(f2) containing the
Gram matrix G(q) of the representation f2 =

∑m
i=1 q

2
i . In particular, one of these

subspaces is equal to 〈q1, . . . , qm〉. It corresponds to the supporting face of G(q).
It is not clear whether the faces containing G(q) are accessible to us from input

f2, f3. Fortunately, there are many cases where Gram(f2) has a particularly sim-
ple structure. The simplest possible case is when f2 is uniquely Sum-of-Squares
representable. Then, Gram(f2) = {G(q)} is a singleton. It suffices to compute
the unique Gram matrix G = G(q) of f2 and its image will give the space of
q1, . . . , qm. The second simplest case is when G(q) ∈ relint Gram(f2): Then, while
there might be several nonequivalent Sum-of-Squares representations, the space
〈q1, . . . , qm〉 is still accessible to us, since we can compute a relative interior point
of Gram(f2) with an interior point solver for SDPs. If f2 is constructed from
(not too many) generic addends q1, . . . , qm, then G(q) ∈ relint Gram(f2) is in fact
equivalent to Gram(f2) = {G(q)}, cf. Proposition 4.4. In both these cases, it holds
sosupp f2 = 〈q1, . . . , qm〉 by Proposition 2.1(f). In all other cases, note that one
may still take the potentially larger space sosupp f2 as an “upper approximation”
for the space 〈q1, . . . , qm〉, and hope for the best.

To justify that the approach is reasonable, we will show that there are sufficiently
many choices of q1, . . . , qm, such that their second order power sum f2 is uniquely
Sum-of-Squares representable. This is done in Section 4.

3.2. Algorithms. The procedure to recover the POF decomposition is described
in Algorithm 1. The following theorem is a uniqueness result for POF decom-
position, derived as a consequence. Note that for the first read, it is instructive
to have the case in mind where f2 =

∑m
i=1 λiq

2
i is uniquely Sum-of-Squares rep-

resentable. In this case, N = m in both Theorem 3.1 and Algorithm 1, and it
holds U = 〈q1, . . . , qm〉. The condition dimR[U ]3k =

(
m+2
3

)
is then equivalent to

Irel(q1, . . . , qm)3 = {0}, which, according to [6, Section 6.4], is satisfied for generic
q1, . . . , qm with m = Θ(n2). Note that a tentative implementation of Algorithm 1,
with an example Julia notebook, can be found on GitHub. See [?].

Theorem 3.1. Let k ∈ N and let f2, f3 be forms of degree 2k and 3k, respectively.
Denote U := sosupp f2 and N := dimU . Assume that the graded component R[U ]3k
has dimension

(
N+2
3

)
. Then, f2 and f3 have at most one joint POF decomposition

fd =

m∑
i=1

λiq
d
i , d = 2, 3, (3.4)

with positive weights λ1, . . . , λm > 0, m ∈ N and linearly independent q1, . . . , qm.
Furthermore, if such a decomposition exists, then Algorithm 1 computes it efficiently
and it is the unique minimum rank POF decomposition of (f2, f3).

Proof. Assume there are two distinct POF decompositions, the left one of which
had linearly independent addends,

m∑
i=1

λiq
d
i = fd =

m′∑
i=1

µip
d
i , d = 2, 3, (3.5)

with positive weights λi, µi and m,m′ ∈ N. Then by Proposition 2.1, it holds that

〈q1, . . . , qm〉 ⊆ U ⊇ 〈p1, . . . , pm′〉. (3.6)

The linearly independent system q1, . . . , qm can therefore be extended to a basis
u = (q1, . . . , qm, um+1, . . . , uN ) of U . By assumption on the dimension of R[U ]3,
there are no algebraic relations of degree 3 between linearly independent elements
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of U . Since these relations form a homogeneous ideal, there are also no relations of
degree at most 3. For the evaluation map

ϕ : R[Y1, . . . , YN ]→ R[u1, . . . , uN ], Yi 7→ ui (i = 1, . . . , N), (3.7)

which sends forms of degree d ∈ N0 to forms of degree kd, the restriction ϕ≤3 to

R[Y ]≤3 is therefore invertible. The inverse ϕ−1≤3 maps f2 and f3 to quadratic and
cubic forms g2 and g3, respectively, which admit decompositions

gd =

m∑
i=1

λiX
d
i =

m′∑
i=1

µi`
d
i , (d = 2, 3) (3.8)

where `i := ϕ−1≤3(pi). However, Theorem 2.3 shows uniqueness of the rank-m POF

decomposition for g2 and g3. Precisely, Theorem 2.3 implies that m′ ≥ m and
if m = m′, then, up to reordering, λi = µi and Xi = `i for all i ∈ {1, . . . ,m}.
Substituting back via ϕ yields qi = pi for all i ∈ {1, . . . ,m}. �

Algorithm 1 Semidefinite algorithm for powers-of-forms decomposition.

Input: k ∈ N and forms f2 ∈ R[X]2k, f3 ∈ R[X]3k.
Assumptions:

(1) fd have a joint POF decomposition fd =
∑m
i=1 λiq

d
i for d = 2, 3, where

q1, . . . , qm ∈ R[X]k are linearly independent k-forms, m ∈ N and
λ1, . . . , λm ∈ R>0.

(2) For U := sosupp f2 and N := dimU , R[U ]3 has dimension
(
N+2
3

)
.

Output: {(q1, λ1), . . . , (qm, λm)}
Procedure:

1: Use f2 and an interior point SDP solver to compute some basis
u = (u1, . . . , uN ) of U . This can be done by computing some
G ∈ relint Gram(f) and a basis of imG, see Proposition 2.1. Cf. Appendix B
for the SDP formulation.

2: The linear system

fd =
∑
|α|=d

cαu
α, cα ∈ R, (α ∈ NN0 , |α| = d)

has a unique solution cd = (cα)|α|=d ∈ R[Y1, . . . , YN ]d for both d = 2 and
d = 3. Compute it and set

gd :=
∑
|α|=d

cαY
α.

Note that gd = ϕ−1≤3(fd), where

ϕ≤3 : R[Y1, . . . , YN ]≤3 → R[u1, . . . , uN ]≤3, Yi 7→ ui (i = 1, . . . , N).

3: For degree reasons and since the map ϕ≤3 is the restriction of an algebra
homomorphism, there exist unique linearly independent linear forms
`1 = ϕ−1≤3(q1), . . . , `m = ϕ−1≤3(qm) such that gd =

∑m
i=1 λi`

d
i for d = 2, 3.

4: Compute {(`1, λ1), . . . , (`m, λm)} with the algorithm from Theorem 2.3.
5: return {(ϕ≤3(`1), λ1), . . . , (ϕ≤3(`m), λm)}.
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4. Interpretation of Requirements

4.1. Real Geometry Viewpoint. Let us try to understand the conditions of The-
orem 3.1 in terms of geometrical properties of the addends (q1, . . . , qm) ∈ R[X]mk .
Throughout this section, the addends are assumed to be generic forms. Our goal is
twofold: On one hand, we want to formulate geometric criteria that are sufficient for
the recovery. On the other hand, we want to justify our seemingly heuristic usage of
the Gram spectrahedron. To this end, we will, for instance, examine the values of
m, for which uniquely representable sums of squares occur for typical choices of ad-
dends. In this section, we will prove Corollary 1.3, Corollary 1.4 and Corollary 1.5.
Note that Corollary 1.3 is actually a direct consequence of Theorem 3.1:

Proof of Corollary 1.3. If f2 =
∑m
i=1 λiq

2
i is uniquely Sum-of-Squares representable,

then the space U := sosupp f2 equals 〈q1, . . . , qm〉 by Proposition 2.1. Since
q1, . . . , qm do not satisfy any algebraic relations of degree 3, the space R[U ]3 has
dimension

(
m+2
3

)
and Theorem 1.1 yields the claim. �

In fact, one sees that Theorem 3.1 yields uniqueness of the POF decomposition
fd =

∑m
i=1 λiq

d
i , d = 2, 3 under these two simplified conditions:

◦ There are no algebraic relations of q1, . . . , qm of degree at most 3. (4.1)

◦ sosupp(

m∑
i=1

q2i ) = 〈q1, . . . , qm〉 (4.2)

The positive weights λ1, . . . , λm matter for neither of these conditions, which is why
we omit them throughout the section. Let us now discuss (4.1) and (4.2).

First condition: Algebraic relations of general k-forms. Condition (4.1) is the easier
one: General choices of q1, . . . , qm will not have any algebraic relations at all as long
as m ≤ n. However, since we are only interested in degree-3 relations, the maximum
value βk(n) of k-forms q1, . . . , qβk(n) ∈ R[X]k such that Irel(q1, . . . , qβk(n))≤3 = {0}
could potentially be much higher, with the obvious bound βk(n) ≤

(
n+k−1

k

)
from

linear relations. In [6, Section 6.4], the authors give a combinatorial proof that
β2(n) = Θ(n2). I am not aware of any other reference for this statement. A

numerical study combined with OEIS suggests that β2(n) is at least d (n+2)(n+1)
6 e,

with the lower bound being obtained from the explicit instance

qijk := (Xi +Xj +Xk)2, (i ≤ j ≤ k, i+ j + k ≡n 0) (4.3)

Note that this explicit instance would give a lower bound for generic rank-r quadrat-
ics q1, . . . , qm of all ranks r ∈ {1, . . . , n}, by choosing D := Dr as the class of
quadratic forms of rank r in the subsequent Proposition 4.1.

Proposition 4.1. Let K ∈ {R,C} and m,n, k, d ∈ N0. Let D ⊆ K[X]k an ir-
reducible variety containing m distinct forms that do not satisfy any relations of
degree kd. Let q1, . . . , qm general in D. Then also Irel(q1, . . . , qm)kd = {0}.

Proof. Let d ∈ N and N := {α ∈ Nm0 | |α| = d}. We show that there are no
algebraic relations in degree kd over K = C, which clearly also shows the claim
over K = R. Consider the variety

Wm,d = {[λ : q] ∈ P(CN × Sk(Cn)m) |
∑

α∈Nm
0 ,|α|=d

λαq
α = 0} (4.4)

consisting of pairs of (q1, . . . , qm) and the coefficients λ of relations in between
them. Let π denote the projection to the q-coordinates and consider any tuple of
forms q = (q1, . . . , qm). Then the fiber π−1({q}) is a (projective) subspace of P(CN )
corresponding to the algebraic relations of q1, . . . , qm in degree d. The set of points
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q such that π−1({q}) is nonempty is Zariski closed. Thus if we find a specific point
q such that π−1({q}) is empty, it will be empty on a Zariski open neighbourhood
of q. But such a specific sequence q = (q1, . . . , qm) ∈ D exists by assumption. �

Conjecture 4.2. The family

qijk := (Xi +Xj +Xk)2, (i ≤ j ≤ k, i+ j + k ≡ 0 mod n) (4.5)

of m = d (n+2)(n+1)
6 e quadratics in n variables X = (X1, . . . , Xn) does not satisfy

any algebraic relations of degree 3.

Evidence. Verified on a computer for n ∈ {7, . . . , 12}. �

Remark 4.3. For m = n+ 1, k ≥ 2, K ∈ {R,C} and general q1, . . . , qm ∈ K[X]k,
the ideal of relations Irel(q1, . . . , qm) = (f) is principal and generated by some
f ∈ K[Y1, . . . , Ym] of degree kn. Indeed, the polynomial map

q : Kn → Km, x 7→ (q1(x), . . . , qm(x)) (4.6)

has n-dimensional image. The degree of f is the degree of the variety V (f) ⊆ Cm,
which is determined by intersecting V (f) with a general subspace H of dimension
1. Denote by L the n-dimensional space of linear equations defining H. Choose a
basis L = 〈`1, . . . , `n〉 where `1, . . . , `n ∈ C[Y ]1. Pulling back via q yields a system
of n quadratic forms `i(q1, . . . , qm) ∈ C[X]2, i ∈ {1, . . . , n}. By Bézout’s theorem
and genericity of H and q1, . . . , qm, we obtain that this system has kn (complex)
solutions, so deg(f) = kn. For all n ≥ 2, k ≥ 2, this means that βk(n) ≥ n+ 1.

Second condition: Unique Sum-of-Squares representations. Condition (4.2) is more
interesting. The space sosupp f2 is hard to analyze, unless it equals 〈q1, . . . , qm〉.
For generic q1, . . . , qm, their second order power sum f2 = q21 + . . . + q2m will have
length m as long as m ≤ rank◦k(n, 2k), cf. Definition 2.2. Thus, q1, . . . , qm form
a minimum length Sum-of-Squares representation of f2. Therefore, the Gram
matrixG(q) associated with this representation lies on the boundary of Gram(f), by
Proposition 2.1. On the other hand, also by Proposition 2.1, the Gram matrices that
have sosupp f2 as their image are precisely the relative interior points of Gram(f2),
which correspond to maximum length Sum-of-Squares representations of f2 (with
linearly independent addends). Condition (4.2) is thus saying that the boundary
point G(q) is also a relative interior point of Gram(f2). This is only possible if
Gram(f2) is a singleton and therefore if f2 is uniquely Sum-of-Squares representable.
Proposition 4.4 collects this easy fact for future reference.

Proposition 4.4. Let k,m ∈ N with m ≤ rank◦k(n, 2k) and q1, . . . , qm ∈ R[X]k
be general k-forms. Denote f2 =

∑m
i=1 q

2
i . Then f2 is uniquely Sum-of-Squares

representable, if and only if sosupp f2 = 〈q1, . . . , qm〉.

Now, under which geometrical conditions on the variety of q1, . . . , qm does
∑m
i=1 q

2
i

have a unique Sum-of-Squares representation? We write VR := V ∩ Rn for the set
of real points of some affine variety V ⊆ Cn.

Reminder 4.5. A subvariety V ⊆ Cn has dense real points VR ⊆ Rn if and only
if every irreducible component of V contains a real point that is smooth in V . In
particular, an irreducible nonsingular subvariety V ⊆ Cn has dense real points VR
if and only if it contains a real point.

Proposition 4.6 (Corollary of Bertini’s theorem, cf. [32, II 8.4(d)]). Fix k,m ∈ N.
If q1, . . . , qm ∈ C[X1, . . . , Xn]k are general and m ≤ n − 1, then I := (q1, . . . , qm)
is a radical ideal, and its variety V (I) in P(Cn) is of pure codimension m. If, in
addition, m ≤ n− 2, then I is a prime ideal and V (I) is smooth.

Lemma 4.7. Let m, k ∈ N. The following hold:
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(a) Let q1, . . . , qm ∈ R[X]mk . Assume that I := (q1, . . . , qm) is a radical ideal and
VR(I) is dense in V (I). Then, for f2 :=

∑m
i=1 q

2
i , it holds that sosupp f2 =

〈q1, . . . , qm〉 and f2 has dual nondegenerate Sum-of-Squares support.
(b) Let q1, . . . , qm ∈ R[X]mk be general forms satisfying the assumption of (a) and

let m ≤ rank◦k(n, 2k). Then f2 is uniquely Sum-of-Squares representable.

Proof. Claim (a) follows immediately from Corollary B.3, proven in Appendix B.
Everything except dual nondegeneracy can also be seen directly: Let N ∈ N0 and

p1, . . . , pN ∈ R[X]k such that
∑N
i=1 p

2
i =

∑m
i=1 q

2
i . Evaluating this identity in some

x ∈ VR(I) yields that p1, . . . , pm vanish on VR(I). Since V (I) has dense real points
and I is radical, p1, . . . , pm must lie in Ik = 〈q1, . . . , qm〉. Thus 〈q1, . . . , qm〉 equals
sosupp f2. Claim (b) follows from (a) using Proposition 4.4. �

Corollary 4.8 (Restatement of Corollaries 1.4 and 1.5). Let q1, . . . , qm ∈ R[X]mk
general satisfying one of these properties:

(1) m ≤ n− 2 and VR(q1, . . . , qm) contains a nonzero point, or
(2) m = n− 1 and all lines in the affine cone V (q1, . . . , qm) are real.

Then,
∑m
i=1 q

2
i is uniquely Sum-of-Squares representable, with dual nondegenerate

Sum-of-Squares support. In particular, Algorithm 1 recovers {q1, . . . , qm} from in-
put

∑m
i=1 q

2
i and

∑m
i=1 q

3
i . For fixed m ≤ n − 1, condition (a) or (b), respectively,

are satisfied on a Euclidean open subset of R[X]mk .

Proof. Case (1): Since m ≤ n − 2, Bertini’s Theorem 4.6 guarantees that I =
(q1, . . . , qm) is a prime ideal and the affine cone V (I) is smooth and irreducible.
Thus, by 4.5, the condition of Lemma 4.7 is satisfied. From the Poincaré-Miranda
theorem C.1, it easy to see that V (q1, . . . , qm) contains a real nonzero point for a
Euclidean open subset of all k-forms q1, . . . , qm. This is elaborated in Appendix C.

Case (2): Since m = n − 1, Bertini’s theorem 4.6 yields that I = (q1, . . . , qm)
is a radical ideal and V (I) is a union of finitely many lines. Thus the condition of
Lemma 4.7 is met if and only if all those lines are real. If the affine cone V (I) has
the maximum number of km real lines given by the Bézout bound for some specific
choice of q1, . . . , qm, then so it does in a neighbourhood: Indeed, if there was a curve
q(t) through q(0) = (q1, . . . , qm) such that V (q(t)) had nonreal lines for each t 6= 0,
then a single real line of V (q(0)) would have to branch into two complex conjugate
lines. This is not possible, since the specific system at t = 0 already attains the
Bézout bound. For the specific choice, one may choose qi ∈ R[Xi, Xn]k as Xn-
homogenizations of univariate polynomials in Xi with k distinct real zeros. �

4.2. Numerical experiments with trace-free quadratics. This section con-
ducts a numerical study on random quadratics. Instances q = (q1, . . . , qm) of ran-
dom quadratic forms are sampled such that q1, . . . , qm are iid. Subsequently, we
use semidefinite programming to determine the dimension of sosupp(

∑m
i=1 q

2
i ) and

the kernel of some relative interior point of the dual SDP from Appendix B. The
quadratics are chosen from a trace-free distribution (see Definition 4.9), to avoid
choosing positive definite forms. I wish to thank Greg Blekhermann and João Gou-
veia for this suggestion, as it appears that for these distributions, the probability to
get uniquely representable sums of squares behaves surprisingly regular. Precisely,
we consider the following distributions:

Definition 4.9. Let n ∈ N and X = (X1, . . . , Xn).

(1) We call a random quadratic q in X Gaussian trace-free, if it is sampled as
follows: Choose the entries of a matrix A ∈ Rn×n independently at random
from the standard normal distribution N (0, 1). Set q := XT (A−tr(A)In)X.
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Figure 1. The y-axis shows the probability that
∑m
i=1 q

2
i is

uniquely representable, if q1, . . . , qm are iid Gaussian random trace-
free quadratics. All probabilities were empirically estimated by
sampling the quadratic forms and then solving SDPs. Each data
point corresponds to an average over 20 instances. The curves
show the behaviour for different relations between m and n.

.

(2) We call a random quadratic q in X Gauss-Gramian trace-free, if it is
sampled as follows: Choose the entries of a matrix A ∈ Rn×n indepen-
dently at random from the standard normal distribution N (0, 1). Then, set
q := XT (ATA− tr(ATA)In)X.

In addition, some explicit family of m = Θ(n2) quadratics is constructed. We
verify for the first values n ∈ N that the sum of its squares is uniquely representable.
We conjecture that this holds true for all n ∈ N, see Conjecture 4.12. The code
and results of all experiments can be found on GitHub, see [67]. Computations
were done in Julia [10], with the packages JuMP [24], MultivariatePolynomials
[41], SumOfSquares [40], [70] and the Mosek solver [48]. For the Gaussian trace-free
distribution, this is the observed behaviour of the probability pm,n that

∑m
i=1 q

2
i is

uniquely representable and its supporting face in Σ2k is exposed:

(1) If m = n + r for some constant r, then pm,n appears to be an S-shaped
curve in n that converges to 1 as n → ∞. This behaviour is depicted in
Figure 1. Cf. [67, data/experiment-3].

(2) pm,n > 0 if m ≤ n − 1. See the blue curve in Figure 1. This is consistent
with the results from Section 4.1. Cf. [67, data/experiment-3].

(3) For m(n) = d (n+2)(n+1)
6 e = Θ(n2), it appears to hold pm(n),2n ≈ 1, but

pm(n),n ≈ 0. Cf. [67, data/experiment-2].

The same qualitative behaviour holds true if the Gaussian trace-free distribution
is replaced by the Gauss-Gramian trace-free distribution from Definition 4.9(b). Cf.
[67, data/experiment-2-gramian and [data/experiment-3-gramian]. All of the
above statements are empirical observations, based on limited computational exper-
iments in a bounded number of variables. A modest version of the first observation
is formulated in the following Conjecture.

Conjecture 4.10. If q1, . . . , qn are chosen as iid Gaussian random trace-free quadrat-
ics, then

∑n
i=1 q

2
i is uniquely representable with probability pn → 1 as n→∞.

The third observation aligns with Conjecture 4.12, for which we gathered sepa-
rate numerical evidence. In particular, both suggest that there exist open neigh-
bourhoods of parameters q = (q1, . . . , qm), where m is much larger than n and their
sum of squares is uniquely representable. This leads to a natural question: What is
the maximum typical length of a uniquely representable sum of squares? Formally:
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Question 4.11. For n ∈ N, what is the maximum number m(n) of linearly indepen-
dent quadratics q1, . . . , qm(n) in n variables such that for all p1, . . . , pm(n) in some

(Euclidean) neighbourhood of q1, . . . , qm(n),
∑m(n)
i=1 p2i is uniquely representable?

Conjecture 4.12. The explicit family of m = d (n+2)(n+1)
6 e trace-free quadratics

qijk := (Xi +Xj +Xk)(Yi + Yj + Yk), (i ≤ j ≤ k, i+ j + k ≡n 0) (4.7)

in 2n variables (X,Y ) = (X1, . . . , Xn, Y1 . . . , Yn) does not satisfy any algebraic
relations of degree 3 and ∑

i≤j≤k
i+j+k≡n0

q2ijk (4.8)

is uniquely Sum-of-Squares representable, with nondegenerate dual. The same claim
also holds true if qijk are replaced by qijk + εpijk, where ε ∈ R is sufficiently small
and pijk is some polynomial with support contained in {XiYj | i, j = 1, . . . , n}.

Evidence. In [67, data/experiment-1], we checked numerically for n = 2, . . . , 15.
Note that Conjecture 4.2 would imply that also the specific family here has no
algebraic relations up to degree 3, since this one can be reduced to the one from
Conjecture 4.2 by substituting Yi 7→ Xi for all i ∈ {1, . . . , n}. �

5. Applications

Let us now discuss two practical applications of powers-of-forms decomposition.

Figure 2. Various centered Gaussian mixture distributions of
rank 2. The sample colouring indicates which of the Gaussians
was chosen in the sampling process. The pictures on the left and
middle show mixtures of full-dimensional Gaussians, as treated in
Section 5.1. Here, the contour lines describe the probability density
function of the mixture. The rightmost picture shows a mixture
on proper subspaces. These are addressed in Section 5.2.

5.1. Mixtures of centered Gaussians. The distribution N (µ,Σ) of a Gaussian
random vector on Rn is parameterized by its mean vector µ ∈ Rn and its symmetric
positive definite covariance matrix Σ ∈ Rn×n. A Gaussian random vector is called
centered, if its mean vector is zero. In that case, all information about its distri-
bution is contained in the quadratic form q := XTΣX. A Gaussian mixture Y is
a random variable that is sampled as follows: From a box containing m normally
distributed random variables Y1, . . . , Ym, blindly draw one of them (with λi ≥ 0
being the probability to draw Yi, assuming

∑m
i=1 λi = 1), and then sample Yi. We

denote Y = λ1Y1⊕ . . .⊕λmYm for the random variable Y defined by this sampling
procedure. Let us now consider a mixture Y = λ1N (0,Σ1) ⊕ . . . ⊕ λmN (0,Σm)
of centered Gaussians with covariance forms qi = XTΣiX. It turns out that from
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sufficiently many samples of Y , it is possible to compute (noisy versions of) the
expressions

m∑
i=1

λiq
d
i , d = 0, . . . , D (5.1)

where D ∈ N is some threshold depending on the order of the number of samples.
Up to scalars, the expressions (5.1) are the degree-2d moment forms of Y , i.e. the
2d-homogeneous parts of the moment generating series E∼Y [exp(Y TX)] of Y . The
connection between samples, moments and powers-of-forms expressions is explained
with lots of details in my doctoral thesis [12, Chapter 3, Introduction].

The goal is to estimate the parameters q1, . . . , qm from not too many samples.
The moment problem for mixtures of Gaussians asks to recover the parameters
from (exact) knowledge of the moment forms instead. It can be seen as a coarsening
of the statistical estimation problem: To estimate the expression

∑m
i=1 λiq

d
i , one

needs roughly O(σd) iid samples, where the noise from estimation can be made
arbitrarily small by taking more samples, σ is a total variance parameter depending
on q1, . . . , qm and the O-Notation hides e.g. dependency on the dimension n. In
order to be efficient with the sample complexity, it is therefore desirable to keep
D as small as possible. Previous work of the author with Casarotti, Micha lek and
Oneto [13] showed that theoretical identifiability of the parameters holds true in
our setting, if D ≥ 3 and m is not too large (roughly m ∈ O(nd−1)). This explains
the focus of the present paper on the minimal case D = 3. That being said, we are
now ready to give a proof of Corollary 1.6:

Proof of Corollary 1.6. Writing qi = XTΣiX, the moment forms M2d(Y ) of the
Gaussian mixture random variable Y = λ1N (0,Σ1) ⊕ . . . ⊕ λmN (0,Σm) may be
expressed as a convex combination (cf. [12, Chapter 3, Introduction])

M2d(Y ) = cd

m∑
i=1

λiq
d
i , (cd ∈ Q), (5.2)

and these are given as input for d ∈ {0, . . . , 3}. The combinatorial expression
cd is explicitly known, see [12, Chapter 3, Introduction]. By Corollary 1.4, we
know that there exists a Euclidean open subset U of m-tuples of quadratics where
Algorithm 1 recovers the quadratics from their third and second order powers sums.
Now, fix some positive definite form p and observe that for λ ∈ R>0 sufficiently
large, U ′ := {q ∈ U + λp | q1 � 0, . . . , qm � 0} will be a nonempty Euclidean
open subset of tuples of positive definite quadratics. On this subset, the following
algorithm works:
Choose a new variable Z and compute

f2 =

m∑
i=1

λi(qi − Z)2, f3 =

m∑
i=1

λi(qi − Z)3. (5.3)

from the input. This is possible, since the X-homogeneous parts of the power sums
from (5.3) correspond to the moments forms M0(Y ),M2(Y ), . . . ,M6(Y ). Plug in
Z 7→ λp to obtain an instance where Algorithm 1 succeeds to recover the addends
q1 − λp, . . . , qm − λp, with corresponding weights. Shift back by λp to recover the
covariance forms. �

Remark 5.1. The numerical experiments, which lead to Conjecture 4.10, suggest
that the shifting method from the proof of Corollary 1.6 works with asymptotic prob-
ability 1 in an “average case” framework, where the covariance forms q1, . . . , qm are
constructed from “random positive definite matrices”: Consider q1, . . . , qm sampled
iid from the distribution 1

n2X
TATAX, where A is a random n× n matrix with iid
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Gaussian distributed entries in N (0, σ2). Here, 1
n2 tr(ATA), which is the squared

Frobenius norm of 1
nA, will concentrate around the expected value, which is σ2,

with high probability. Thus for large n, q1, . . . , qm will all have roughly the same
trace. A proxy for this value is algorithmically accessible, since σ2 ≈ 1

m tr(
∑m
i=1 qi).

A posteriori, this motivates Definition 4.9(b) of Gauss-Gramian quadratic forms,
since that will be the distribution of Gaussian random psd forms after shifting by
the trace.

5.2. Learning a union of subspaces. Learning unions of subspaces is a compar-
atively new problem that emerged from applications in computer vision and dimen-
sionality reduction techniques in data science ([69],[33],[43],[36]). It assumes that
the given data stems from a distribution, whose support is a union of r-dimensional
subspaces U1, . . . , Um. r is known and the objective is to find bases for the sub-
spaces U1, . . . , Um from samples of the mixture distribution as input. A union of
subspaces is an algebraic variety. E.g., if the subspaces are hyperplanes defined by
linear forms, then their union is the zero set of the product of the linear forms. Note
that without a distributional assumption, recovering this variety is likely the best
one can do, and it can be a hassle to recover the high-degree polynomials describing
it from data.

However, assuming that the data on the individual subspaces is Gaussian dis-
tributed, it is often possible to recover the subspaces using degree-6 moments of
the empirical data. More so, it is then possible to learn the distributions on the
subspaces. Indeed, note that this Gaussian subspace learning is a generalized ver-
sion of the Gaussian mixture problem from Section 5.1, with the difference that
Gaussians on subspaces will lead to psd forms q1, . . . , qm that are not of full rank.

Corollary 5.2 (Restatement of Corollary 1.7). For any n, r ∈ N, m ≤ n−1, there
is a Euclidean open subset U of the problem parameters and an efficient algorithm
for the following problem: If Y1, . . . , Ym are normally distributed random variables
on r-dimensional subspaces U1, . . . , Um and λ ∈ Rm>0 with

∑m
i=1 λi = 1, compute

bases for the subspaces U1, . . . , Um from the moments of λ1Y1⊕. . .⊕λmYm of degree
at most 6.

Proof. For each i ∈ {1, . . . ,m}, there exists a unique quadratic form qi on Rn such
that the restriction of qi to Ui equals the covariance form of Yi and the kernel of qi is
the orthogonal complement U⊥i of Ui (with respect to the standard inner product).
It is then not too hard to see that the even degree moment forms of degree at most
6 of λ1Y1 ⊕ . . .⊕ λmYm, up to known scalars, attain the form

m∑
i=1

λiq
d
i , d = 0, 1, 2, 3. (5.4)

Write Dr for the class of quadratic forms of rank at most r. If r = 1, then the
qi are squares of linear forms and we can directly use an algorithm for 1-Waring
decomposition, similar to the one from Appendix A. Thus, wlog r ≥ 2.

Consider first a special instance: For m ≤ n− 1, I = (X2
1 −X2

n, . . . , X
2
m −X2

n)
is a radical ideal: Indeed, if P is a minimal prime containing I, then by Krull’s
Hauptidealsatz, P has length at most m. In addition, for each i ∈ {1, . . . ,m}, we
have X1 −Xn ∈ P or X1 + Xn ∈ P. Thus, there exists a sign choice σ ∈ {±1}m
such that (X1 + σ1Xn, . . . , Xm + σmXn) ⊆ P. Since the ideal to the left is prime
and of height m, we have equality. We conclude that any minimal prime containing
I is of the form P = (X1 + σ1Xn, . . . , Xm + σmXn). A quick exercise shows
that the intersection of those 2m primes is indeed I. Thus, I is radical. Denote
qspec := (X2

i −X2
n)i=1,...,m for those special quadratic forms.
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By the Kleiman-Bertini theorem [27, Appendix B, 9.2], the set of rank-r forms
q = (q1, . . . , qm) such that V (q1, . . . , qm) is not of pure codimension m, is closed.
Thus, we find a Zariski open neighbourhood U of qspec such that for all q ∈ U ,
all irreducible components of V (q) have codimension m. Consider thus a general
subspace H in Cn of fitting dimension such that the intersection H ∩ V (q) con-
sists of deg V (q) many lines (or, projective points). Since deg V (qspec) attains the
Bézout bound, by semicontinuity of the degree, all q in a neighbourhood will satisfy
deg V (q) = 2m, too. For q = qspec, all 2m projective points in H ∩ V (q) are real.
This property must also hold in a Euclidean neighbourhood: Indeed, if a sequence
of general q(n) ∈ R[X]m2 existed such that q(n) → qspec as n→∞ and H ∩ V (q(n))
did contain non-real points, then a pair of complex conjugate non-real solutions
(zn, z

∗
n) would degenerate to just one real solution. Since H ∩ V (q) has a constant

number of 2m points in a neighbourhood of qspec, this is not possible. As H was
an arbitrary (general) hyperplane, it follows that V (q) has dense real points in a
Euclidean neighbourhood U ′ of q = qspec.

By Lemma 4.7(b), Algorithm 1 succeeds to recover the addends, if the (weighted)
power sums are constructed from elements of U ′. Therefore, on the open subset
Dr ∩ (U + 2X2

n) of quadratics of rank r, the following algorithm works:

(1) Choose a new variable Z and compute
m∑
i=1

(qi − Z)2 and

m∑
i=1

(qi − Z)3. (5.5)

from the input.
(2) Plug Z 7→ 2Xn into the forms from (5.3) to obtain power sums f2, f3, whose

unique decomposition has addends in U .
(3) Use Algorithm 1 on input f2, f3 to compute some (q̂1, λ1), . . . , (q̂m, λm).
(4) Output {(q̂1 + 2X2

n, λ1), . . . , (q̂m + 2X2
n, λm)}.

The set Dr ∩ U ′ is open in Dr and intersects the subset PSDr of rank-r psd
quadratics in the point q = (X2

i −X2
n)i=1,...,n−1. Every neighbourhood of a point

in PSDr contains points in the interior of PSDr. This means that U ′∩PSDr contains
a nonempty open subset U ′′ of PSDr, showing the claim. Note that the weights
can be arbitrary positive reals, summing up to 1. �
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k(k−1)

2
equazioni di laplace linearmente

indipendenti. Rend. Circ. Mat. Palermo 33 (1912), 176–186.

[69] Wang, Y., Wipf, D., Ling, Q., Chen, W., and Wassell, I. Multi-task learning for subspace
segmentation. In Proceedings of the 32nd International Conference on Machine Learning

(Lille, France, 07–09 Jul 2015), F. Bach and D. Blei, Eds., vol. 37 of Proceedings of Machine

Learning Research, PMLR, pp. 1209–1217.
[70] Weisser, T., Legat, B., Coey, C., Kapelevich, L., and Vielma, J. P. Polynomial and

moment optimization in julia and jump. In JuliaCon (2019).

Appendix A. Powers of Linear forms

Theorem A.1 (Restatement of Theorem 2.3). There exists an efficient algorithm
that, on input m,n ∈ N and forms f2, f3 of degrees 2 and 3, respectively, computes
the solution to the following problem: If f2, f3 have a POF decomposition

fd =

m∑
i=1

λi`
d
i (A.1)

such that `1, . . . , `m are linearly independent and λ1, . . . , λm ∈ R \ {0}, then com-
pute (`1, λ1), . . . , (`m, λm). Under these conditions, (A.1) is the unique minimum
rank POF decomposition of (f2, f3) and the only POF decomposition with linearly
independent addends.

Algorithmic Proof. First, note that a partial derivative of f2 in direction v ∈ Rn
has the form ∂vf2 = 2

∑m
i=1 λi`i(v)`i. The set {∂vf2 | v ∈ Rn} equals 〈`1, . . . , `m〉,

by linear independence. Thus, we may compute some basis u = (u1, . . . , um) of
U := 〈`1, . . . , `m〉. Then, there exist vectors a1, . . . , am ∈ Rm such that `i = aTi u.
Compute now the partial derivative

fv :=
1

3
∂vf3 =

m∑
i=1

λi(a
T
i u(v))(aTi u)2 = uTMvu (A.2)

of f3 in some random direction v ∈ Rn. Here, we writeMv :=
∑m
i=1 λi(a

T
i u(v))aia

T
i .

Similarly, the quadratic form f2 can be written as f2 = uTMu, where the matrix
M =

∑m
i=1 λiaia

T
i ∈ Rm×m is symmetric and psd. Note that the matrices M and

Mv can easily be computed from u, f2 and fv. The claim is now that the generalized
eigenvalue problem

det(Mv − µM) = 0, µ ∈ R (A.3)

has m onedimensional eigenspaces, with corresponding eigenvalues µi := aTi u(v).
Indeed, since v was chosen at random from some continuous distribution, Mv is of
full rank m, with probability 1. The rank of

Mv − µM =

m∑
i=1

λi((a
T
i u(v))− µ)aia

T
i (A.4)

https://github.com/a44l/powers-of-forms
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drops to m− 1 precisely if µ = µj := aTj u(v) for some j ∈ {1, . . . ,m}. Hence, these
are the eigenvalues. By randomness of v, the eigenvalues are pairwise distinct.
Choose eigenvectors x1, . . . , xm, satisfying the generalized eigenvalue equation

Mvxj = µjMxj (A.5)

Writing this equation out and comparing coefficients with respect to the basis
a1, . . . , am, we get that (aTi u(v))(aTi xj) = µj(a

T
i xj) and therefore aTi xj = aTj xj · δij

for each i, j ∈ {1, . . . ,m}. Therefore, with bj := Mxj = λj(a
T
j xj)aj , we recovered

a multiple of aj . It remains to recover the missing multiples and the weights. To
this end, note that the values µj = aTj u(v) and bTj u(v) are known to us, so we can

compute aj =
µj

bTj u(v)
bj and thus `i = aTi u. For the weights, solve the linear system

f2 =

m∑
i=1

νi`
2
i , ν1, . . . , νm ∈ R. (A.6)

Since the `2i are linearly independent, this system will have the unique solution
νj = λj . This concludes the algorithmic part of the proof.

Regarding the uniqueness statement: For any other decomposition fd =
∑m′

i=1 ρil
d
i

with m′ ∈ N, d ∈ {2, 3}, linear forms li ∈ R[X] and ρi ∈ R \ {0}, one easily sees
that the space U = {∂vf2 | v ∈ Rn} must be contained in 〈l1, . . . , lm′〉. Since
dimU = m, this means that m′ ≥ m, with equality if and only if l1, . . . , lm are
linearly independent. If m = m′, then the two decompositions are therefore both
equal to the output of the algorithm. This means they must be equal. �

Appendix B. Sum-of-Squares Pointedness and strict complementarity

Sum-of-Squares representations of some form f ∈ R[X]2k may be found algo-
rithmically via the following primal-dual pair of semidefinite programs:

(Gram) find G � 0 (B.1)

s. t. [X]TkG[X]k = f

(Gram)∗ minimize E(f) (B.2)

s. t. E ∈ R[X]∨2k

ME � 0

Here, for a functional E ∈ R[X]∨2k we denote by ME := (E(Xα+β))|α|=k=|β| the
so-called moment matrix of E. The moment matrix encodes a¸ psd bilinear form
(p, q) 7→ E(pq) associated with E. It is well-known that E ∈ Σ∗2k if and only if ME

is psd. Note that the dual problem has 0 as its optimal value. The set of optimal
solutions defines a face

Cf = {E ∈ Σ∗2k | E(f) = 0} (B.3)

of the dual cone Σ∗2k. By complementarity, for each optimal pair (G,E) it holds
that ME ·G = 0. In other words, imG ⊆ kerME . Taking G ∈ relint Gram(f), we
see that each E ∈ Cf satisfies sosupp f ⊆ kerME by Proposition 2.1. The latter
can also be seen directly: If λ > 0 such that f − λp2 ∈ Σ2k, then E(p2) = 0 for
all E ∈ Cf and thus by the Cauchy-Schwarz inequality applied to the psd bilinear
form ME , E(ph)2 ≤ E(p2)E(h2) = 0 for each h ∈ R[X]k, implying p ∈ kerME . It
is easy to see that the space kerME is constant among all E ∈ relintCf .

Strict complementarity is the property imG = kerME . If it holds for some
pair (G,E) of primal-dual optimal solutions, then it has to hold for all G ∈
relint Gram(f) and E ∈ relintCf . In that case, we have kerME = sosupp f for
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all E ∈ relintCf and we say that f has dual nondegenerate Sum-of-Squares sup-
port. Dual nondegeneracy can be useful from a practical perspective, since (B.2)
has nice properties, e.g., a full-dimensional feasible region. Geometrically, it means
that the supporting face of f in Σ2k is exposed (by any E ∈ relintCf ).

Relation to pointed Sum-of-Squares cones. In this section, we will see that in the
“geometric” settings of Corollary 1.4 and Corollary 1.5, the second order power sum
has dual nondegenerate Sum-of-Squares support. The argument relies on work of
Blekherman, Smith and Velasco [11] and examines pointedness of Sum-of-Squares
cones in quotient algebras of the polynomial ring.

Proposition B.1. (cf. Prop. 2.5. in [11]). Let k, n ∈ N and I ⊆ R[X] a
homogeneous ideal with graded coordinate ring R = R[X]/I such that

∀p ∈ Rk : p2 ∈ I2k =⇒ p ∈ Ik (B.4)

Then the following are equivalent:

(a) The cone ΣR,2k is pointed, i.e. it is closed and contains no lines.
(b) No nontrivial sum of squares of forms of degree k equals zero in R2k.

Proof. (a) =⇒ (b): By contraposition. Let there be N ∈ N and p1, . . . , pN ∈ Rk
such that

∑N
i=1 p

2
i = 0. Since no nontrivial squares lie in I2k by assumption, it

holds that N ≥ 2. Thus p21 = −
∑N
i=2 p

2
i lies both in ΣR,2k and −ΣR,2k. It follows

that ΣR,2k contains a line.
(b) =⇒ (a): By assumption, Σ2k cannot contain a line, since otherwise there would
be some nonzero f ∈ Σ2k∩−Σ2k and the nontrivial Sum-of-Squares f+(−f) would
be zero. It remains to show that Σ2k is closed. Fix a norm on the real vector space
Rk and denote

K := {p2 ∈ R2k | ‖p‖ = 1} (B.5)

Then K is a compact basis of the cone Σ2k: Indeed, K is compact since it is
the image of a compact set under a continuous function. It holds 0 /∈ convK by
assumption, since no nontrivial sum of squares is zero in R2k. Therefore the cone
generated by K, which is Σ2k, is closed. �

Proposition B.2. Let f ∈ Σ2k. Write I := (sosupp f) for the homogeneous ideal
generated by the Sum-of-Squares support and R := R[X]/I for the quotient algebra
graded by the degree. Consider the statements:

(i) f has dual nondegenerate Sum-of-Squares support.
(ii) Cf spans I⊥2k.

(iii) The cone Σ∗R,2k ⊆ R∨2k is full dimensional.

(iv) The cone ΣR,2k ⊆ R2k is pointed, i.e. it is closed and contains no lines.
(v) ∀p1, . . . , pN ∈ R[X]k : p21 + . . .+ p2N ∈ I2k =⇒ p1, . . . , pN ∈ Ik.

Then it holds (v) =⇒ (iv) =⇒ (iii)⇐⇒ (ii)⇐⇒ (i).

Proof. “(v) =⇒ (iv)”: Note that in Proposition B.1, (b) =⇒ (a) also holds without
the assumption (B.4).
“(iv) =⇒ (iii)”: First, assume ΣR,2k is pointed in R2k. If Σ∗R,2k ⊆ H was contained
in a hyperplane H, then by standard properties of the dual, Σ∗∗R,2k would contain the

line H⊥. Since ΣR,2k is closed, this would yield the contradiction H⊥ ⊆ Σ∗∗R,2k =

ΣR,2k = ΣR,2k.
“(iii) ⇐⇒ (ii)”: The quotient map π : R[X]2k → R2k yields a pullback π∗ : R∨2k →
R[X]∨2k, L 7→ L ◦ π. The map π∗ is a bijection onto its image

I⊥2k = {L ∈ R[X]∨2k | L vanishes on I2k}.
The image of Σ∗R,2k under π∗ equals Σ∗2k ∩ I⊥2k, which is precisely Cf .
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“(ii) =⇒ (i)”: Assume Cf spans I⊥2k. One easily sees that I⊥2k consists precisely
of those functionals L such that I is contained in the kernel of the moment matrix
ML : (p, q) 7→ L(p, q) of L. Equality I = kerML holds for general elements L of
I⊥2k and thus also for relative interior points of Cf . Thus f has dual nondegenerate
Sum-of-Squares support.
“(i) =⇒ (ii)”: Assume f has dual nondegenerate Sum-of-Squares support. Then
any E ∈ relintCf satisfies kerME = sosupp f = Ik. Now, let L ∈ I⊥2k. Since
kerML ⊇ sosupp f , it is easy to see that for any psd matrix B with kerB =
sosupp f , it holds that ML + λB is psd for all sufficiently large λ ∈ R>0. Since f
has dual nondegenerate Sum-of-Squares support, we may choose some E ∈ relintCf
and take B = ME and λ ∈ R>0 such that ML + λME � 0. But then L+ λE ∈ Cf ,
since clearly (L + λE)(f) = 0 and the moment matrix of L + λE is psd. Thus
L = (L+ λE)− λE lies in the span of Cf . �

Corollary B.3. Let f ∈ Σ2k and let I an ideal with f ∈ I ⊆ (sosupp f). If I
is real radical, then I = (sosupp f) and f has dual nondegenerate Sum-of-Squares
support.

Proof. Since I is real radical, for all p1, . . . , pN ∈ R[X]k such that p21+. . .+p2N ∈ I2k,
it holds p1, . . . , pm ∈ I. This shows that in fact I = (sosupp f). In addition,
by Proposition B.2, it also shows that f has dual nondegenerate Sum-of-Squares
support. �

Appendix C. Typical regions with singleton Gram spectrahedra

The condition of Corollary 4.8(a) is satisfied on a Euclidean open subset. This
can e.g. be seen from the Poincaré-Miranda theorem:

Theorem C.1 (Poincaré-Miranda, cf. [25, Introduction]). Write H for the paral-
lelepiped spanned by linearly independent vectors v1, . . . , vn ∈ Rn and let f : H →
Rn, x 7→ (f1(x), . . . , fn(x)) a continuous function. Denote

H1
i := {

m∑
j=1

λjvj | λj ∈ [0, 1], λi = 1}, H0
i := {

m∑
j=1

λjvj | λj ∈ [0, 1], λi = 0}

for i ∈ {1, . . . , n}. Note these are the facets of H. Assume that for each i ∈
{1, . . . , n}, fi ≤ 0 on H0

i , but fi ≥ 0 on H1
i . Then f has a zero on H.

We may now fill the gap that was left in the proof of Corollary 4.8(a):

Proof of the addendum in Corollary 4.8(a). By Theorem C.1, it clearly suffices to
find, say, a rectangle H and quadratics q1, . . . , qm, qm+1, . . . , qn such that for each
i ≤ m, qi < 0 on H0

i but qi > 0 on H1
i , as then the condition of Theorem C.1 will

be satisfied in a neighbourhood U1× . . .×Un×{qm+1}× . . .×{qn} of (q1, . . . , qm).
By introducing some new variable Y , one can take e.g. m = n, qn+1 := 0 and
qi = (Xi + Y )2 − 2Y 2 ∈ R[X1, . . . , Xn, Y ], for i ∈ {1, . . . , n} where Y is another
unknown, and consider the rectangle H = [0, 1]n × {1} in the affine plane where
“Y = 1”. This corresponds to choosing the basis e1 + en+1, . . . , en + en+1, en+1 in
Theorem C.1. Note Hai = [0, 1]i−1 × {a} × [0, 1]n−i × {1} for a ∈ {0, 1}. We have
qi = −1 < 0 on H0

i and qi = 2 > 0 on H1
i . Thus, the condition VR(q1, . . . , qm) 6= ∅

is a typical property. �
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