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Abstract This chapter investigates the cone of copositive matrices, with a focus on
the design and analysis of conic inner approximations for it. These approximations
are based on various sufficient conditions for matrix copositivity, relying on positiv-
ity certificates in terms of sums of squares of polynomials. Their application to the
discrete optimization problem asking for a maximum stable set in a graph is also
discussed. A central theme in this chapter is understanding when the conic approxi-
mations suffice for describing the full copositive cone, and when the corresponding
bounds for the stable set problem admit finite convergence.

1 Introduction

An n × n symmetric matrix M is said to be copositive if the associated quadratic
form xT M x =

∑n
i, j=1 Mi j xi x j is nonnegative over the nonnegative orthant Rn+. The

set of copositive matrices is a cone, the copositive cone COPn, thus defined as

COPn = {M ∈ Sn : xT M x ≥ 0 ∀x ∈ Rn+}. (1)

Copositive matrices are a fundamental class of matrices that play an important role
in several areas, including linear algebra and combinatorial matrix theory (see the
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monograph [53]) and optimization (see, e.g., the overview [17]). Their relevance
in optimization is illustrated by the fact that many hard combinatorial optimization
problems can be formulated as linear optimization problems over the copositive
cone (see, e.g., [6, 7, 13, 16, 22]). This is the case, in particular, for the problem of
determining the maximum stable set in a graph, a topic that we will discuss in this
chapter (see Section 5).

Hence the copositive cone has a broad modeling power. As a consequence it is
a computationally hard object to work with: linear optimization over COPn is an
NP-hard problem and checking whether a matrix is copositive is a co-NP-complete
problem [39]. Motivated by these hardness results, several hierarchies of conic inner
approximations for COPn have been introduced in the literature. A key ingredient
in these approximations is to design tractable certificates that permit to certify that
the quadratic form xT M x is nonnegative over Rn+ and thus that the matrix M is
copositive. These certificates are based on using sums of squares of polynomials as a
“proxy" for global nonnegativity, which is motivated by the fact that sums of squares
of polynomials can be modeled using semidefinite optimization (as recalled later in
relation (18)).

Another possible approach to certify copositivity of a matrix M is to consider the
quartic form

(x◦2)T M x◦2 :=
n∑

i, j=1
Mi j x2

i x2
j (2)

and to design sum-of-squares based certificates that certify that (x◦2)T M x◦2 is
nonnegative on the full space Rn. In other words, one may rely on the following
alternative definition of the copositive cone

COPn = {M ∈ Sn : (x◦2)T M x◦2 ≥ 0 for all x ∈ Rn}, (3)

where we let x◦2 = (x2
1, . . . , x2

n) denote the vector of squared variables.
As we will see in this chapter, these two equivalent definitions (1) and (3) of the

copositive cone offer the starting point for the definition of several hierarchies of
conic approximations. Our objective in this chapter is to discuss the relationships
between these various hierarchies, their convergence properties, and their application
to the maximum stable set problem in graphs. We now briefly describe the contents
of this chapter.

Organization of the chapter

In Section 2 we introduce some general background about polynomial optimization
and sums of squares of polynomials. In particular, in Section 2.1, we recall some
important positivity certificates that permit to certify the nonnegativity of a polyno-
mial on the nonnegative orthant and on compact semialgebraic sets. In Section 2.2
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we describe how these positivity certificates are used to define hierarchies of bounds
for polynomial optimization problems and, in Section 2.3, we recall a criterion that
can be used to detect when the bounds have finite convergence.

In Section 3 we present several hierarchies of conic inner approximations for
the copositive cone COPn. These conic approximations are based on using different
types of positivity certificates for the quadratic form xT M x, or for the quartic form
(x◦2)T M x◦2 from (2). Moreover, one considers positivity on the full space Rn, on
the nonnegative orthant Rn+, on the standard simplex ∆n = {x ∈ Rn+ :

∑n
i=1 xi = 1},

or on the unit sphere Sn−1 = {x ∈ Rn :
∑n

i=1 x2
i = 1}.

In Section 3.1 we introduce the cones C (r )
n andK (r )

n , where, for C (r )
n , one requires

that the polynomial (
∑n

i=1 xi)r xT M x has nonnegative coefficients, and, for K (r )
n ,

one requires that the polynomial (
∑n

i=1 x2
i )r (x◦2)T M x◦2 is a sum of squares of

polynomials. These two conic hierarchies are motivated by the representation results
by Reznick (for positive polynomials on Rn, Theorem 1) and by Pólya (for positive
polynomials on Rn+, Theorem 2). In addition, the cones Q (r )

n are introduced as a
simpler, but weaker variation of the cones K (r )

n .
In Section 3.2 we introduce the Lasserre-type cones LAS(r )

∆n
, LAS(r )

∆n,T
and

LAS(r )
Sn−1 , where, respectively, one now uses positivity certificates for the polynomial

xT M x on the standard simplex ∆n (using representations in the quadratic module or
the preordering of ∆n), and positivity certificates for the polynomial (x◦2)T M x◦2 on
the unit sphere Sn−1. The motivation for these cones now stems from the represen-
tation results by Schmüdgen (Theorem 3) and by Putinar (Theorem 4).

In Section 3.3 we explain in detail the relationships between these various hierar-
chies of conic approximations of the copositive cone (see Theorem 7).

Each of the above hierarchies of conic approximations covers the interior of the
copositive cone, which follows from the above mentioned representation results.
This raises naturally the question of whether some of these hierarchies are able to
cover the full copositive cone (i.e., also its boundary). This question is the central
theme of Section 4.

Section 4 is devoted to investigating exactness properties of the above hierarchies
of cones, i.e., for which matrix sizes the hierarchies are able to cover the full
copositive cone COPn. This question is studied for the cones K (r )

n in Section 4.1
and for the cones LAS(r )

∆n
in Section 4.2. Section 4.3 is devoted to the exceptional

case n = 5, where one can show that the hierarchy of cones K (r )
5 covers the full

copositive cone COP5.

Section 5 discusses the application of the various conic approximation hierarchies
for COPn to the design of upper bounds for the graph parameter α(G), defined as the
maximum cardinality of a stable set in a graph G. In particular, the cones C (r )

n lead to
the linear programming based parameters ζ (r ) (G), discussed in Section 5.1, and the
cones K (r )

n lead to the semidefinite bounds ϑ(r ) (G), discussed in Section 5.2. The
main theme in this section is to investigate whether the parameters ϑ(r ) (G) do admit
finite convergence to α(G) or, equivalently, whether a class of associated copositive
matrices MG belong to the union

⋃
r K

(r )
n . This question, which relates to a long
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standing conjecture by de Klerk and Pasechnik [13], is now settled in the affirmative
and a sketch of proof is offered in this section.

We conclude with some observations and further research directions in the last
Section 6.

Notation

Throughout we will use the following notation. For n ∈ N we set [n] = {1, 2, . . . , n}.
The nonnegative orthant is Rn+ = {x ∈ Rn : x1, . . . , xn ≥ 0}, the standard simplex
in Rn is defined as ∆n = {x ∈ Rn+ :

∑n
i=1 xi = 1}, and the unit sphere in Rn is

defined as Sn−1 = {x ∈ Rn :
∑n

i=1 x2
i = 1}. For x ∈ Rn, the support of x is the

set {i ∈ [n] : xi , 0} and we let x◦2 := (x2
1, . . . , x2

n) denote the vector of squared
entries. We use the notation e to denote the all-ones vector (of appropriate size), so
e = (1, . . . , 1)T . For a sequence α ∈ Nn, we set |α | :=

∑n
i=1 αi .

Throughout, Sn denotes the set of n×n symmetric matrices. We say that a matrix
M ∈ Sn is positive semidefinite (denoted as M � 0) if xT M x ≥ 0 for all x ∈ Rn.
The set of n× n positive semidefinite matrices is denoted by Sn

+ . The set of diagonal
matrices with strictly positive diagonal entries is denoted by Dn

++. We let In, Jn (or
simply I, J) denote the identity matrix and the all-ones matrix in Sn.

We denote by R[x1, x2, . . . , xn] the set of polynomials with real coefficients
in n variables. Throughout we abbreviate R[x1, . . . , xn] by R[x] when there is no
ambiguity. Any polynomial is of the form p =

∑
α∈Nn pαxα, where only finitelymany

coefficients pα are nonzero. Then |α | is the degree of the monomial xα = xα1
1 · · · x

αn
n

and the degree of p, denoted deg(p), is the maximum degree of its terms pαxα with
pα , 0. We denote by R[x]r the set of polynomials of degree at most r . A form, also
known as a homogeneous polynomial, is a polynomial in which all its terms have
the same degree.

Given a polynomial f ∈ R[x] and a set K ⊆ Rn, we say that f is nonnegative (or
positive) on the set K if f (x) ≥ 0 for all x ∈ K , and we say that f is strictly positive
on K if f (x) > 0 for all x ∈ K . Given a tuple of polynomials h = (h1, . . . , hl), the
ideal generated by h is defined as I (h) := {

∑l
i=1 qihi : qi ∈ R[x]}. Its truncation

at degree r is defined as I (h)r := {
∑l

i=1 qihi : deg(qihi) ≤ r for i ∈ [m]}. We
will in particular consider the case when h =

∑n
i=1 xi − 1 or h =

∑n
i=1 x2

i − 1,
that define the simplex ∆n and the unit sphere Sn−1, respectively. Then we use the
shorthand notation I∆n := I (

∑n
i=1 xi − 1) and ISn−1 := I (

∑n
i=1 x2

i − 1). Finally, we
let Σ := {

∑m
i=1 q2

i : qi ∈ R[x]} denote the cone of sums of squares of polynomials,
and, for an integer r ∈ N, Σr = Σ ∩ R[x]r is the subcone consisting of the sums of
squares that have degree at most r .
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2 Preliminaries on polynomial optimization, nonnegative
polynomials and sums of squares

Polynomial optimization asks for minimizing a polynomial over a semialgebraic set.
That is, given polynomials f , g1, . . . , gm, h1, . . . , hl ∈ R[x], the task is to find (or
approximate) the infimum of the following problem

f ∗ = inf
x∈K

f (x), (4)

where

K =
{
x ∈ Rn : gi (x) ≥ 0 for i = 1, . . . ,m and hi (x) = 0 for i = 1, . . . , l

}
(5)

is a semialgebraic set. Problem (4) can be equivalently rewritten as

f ∗ = sup{λ : f (x) − λ ≥ 0 for all x ∈ K }. (6)

In view of this new formulation, finding lower bounds for a polynomial optimization
problem amounts to finding certificates that certain polynomials are nonnegative on
the semialgebraic set K .

2.1 Sum-of-squares certificates for nonnegativity

Testingwhether a polynomial is nonnegative on a semialgebraic set is hard in general.
Even testing whether a polynomial is globally nonnegative (nonnegative on K = Rn)
is a hard task in general. An easy sufficient condition for a polynomial to be globally
nonnegative is being a sum of squares. A polynomial p ∈ R[x] is said to be a
sum of squares if it can be written as a sum of squares of other polynomials, i.e.,
if p = q2

1 + · · · + q2
m for some q1, . . . , qm ∈ R[x]. Hilbert [24, 25] showed that

every nonnegative polynomial of degree 2d in n variables is a sum of squares in the
following cases: (2d, n)=(2d, 1), (2, n), or (4, 2). Moreover, he showed that for any
other pair (2d, n) there exist nonnegative polynomials that are not sums of squares.
The first explicit example of a nonnegative polynomial that is not a sum of squares
was given by Motzkin [37] in 1967.

The Motzkin polynomial is nonnegative, but not a sum of squares

The following polynomial in two variables is known as the Motzkin polynomial:

h(x, y) = x4y2 + x2y4 − 3x2y2 + 1. (7)

The Motzkin polynomial is nonnegative in R2. This can be seen, e.g., by using the
Arithmetic-Geometric Mean inequality, which gives
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x4y2 + x2y4 + 1
3

≥
3
√

x4y2 · x2y4 · 1 = x2y2.

However, h(x, y) cannot be written as a sum of squares. This can be checked using
“brute force": assume h =

∑
i q2

i and examine the coefficients on both sides (starting
from the coefficients of the monomials x6, y6, etc.; see, e.g., [48]).
The Motzkin form is the homogenization of h, thus the homogeneous polynomial in
three variables:

m(x, y, z) = x4y2 + x2y4 − 3x2y2z2 + z6. (8)

Hence, the Motzkin form is nonnegative on R3 and it cannot be written as a sum of
squares.

In 1927 Artin [1] proved that any globally nonnegative polynomial f can be
written as a sum of squares of rational functions, i.e., f =

∑
i (

pi
qi

)2 for some
pi, qi ∈ R[x], solving affirmatively Hilbert’s 17th problem. Equivalently, Artin’s
result shows that for any nonnegative polynomial f there exists a polynomial q
such that q2 f ∈ Σ. Such certificates are sometimes referred to as certificates “with
denominator". The following result shows that, when f is homogeneous and strictly
positive on Rn \ {0}, the denominator can be chosen to be a power of (

∑n
i=1 x2

i ).

Theorem 1 (Reznick [47])
Let f ∈ R[x] be a homogeneous polynomial such that f (x) > 0 for all x ∈ Rn\{0}.

Then the following holds:

( n∑
i=1

x2
i

)r
f ∈ Σ for some r ∈ N. (9)

Scheiderer [49] shows that the strict positivity condition can be omitted for n = 3:
any nonnegative form f in three variables admits a certificate as in (9). On the
negative side, this is not the case for n ≥ 4: there exist nonnegative forms in n ≥ 4
variables that do not admit a positivity certificate as in (9) (an example is given
below).

Certificate for nonnegativity of the Motzkin polynomial

Let h(x, y) = x4y2 + x2y4 − 3x2y2 + 1 be the Motzkin polynomial, which is
nonnegative and not a sum of squares. However,

(x2 + y2)2h(x, y) = x2y2(x2 + y2 + 1)(x2 + y2 − 2)2 + (x2 − y2)2

is a sum of squares. This sum-of-squares certificate thus shows (again) that h is
nonnegative on R2.
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A nonnegative polynomial f such that (
∑n

i=1 x2
i )r f < Σ for all r ∈ N

Let q(x, y, z,w) := m2 + w6m, where m is the Motzkin form from (8). Clearly, q
is nonnegative on R4, as m is nonnegative on R3. Assume that there exists r ∈ N
such that (x2 + y2 + z2 + w2)rq ∈ Σ. Then, p′ := (x2 + y2 + z2 + 1)rq(x, y, z, 1) =
(x2 + y2 + z2 + 1)r (m2 +m) is also a sum of squares. As p′ is a sum of squares, one
can check that also its lowest degree homogeneous part is a sum of squares (see [32,
Lemma 4]). However, the lowest degree homogeneous part of p′ is m, which is not
a sum of squares. Hence this shows that (x2 + y2 + z2 + w2)rq < Σ for all r ∈ N.

Next, we give some positivity certificates for polynomials on semialgebraic sets.
The following result shows the existence of a positivity certificate for polynomials
that are strictly positive on the nonnegative orthant Rn+.

Theorem 2 (Pólya [44])
Let f be a homogeneous polynomial such that f (x) > 0 for all x ∈ Rn+ \ {0}. Then

the following holds:

( n∑
i=1

xi
)r

f has nonnegative coefficients for some r ∈ N. (10)

In addition, Castle, Powers, and Reznick [9] show that nonnegative polynomials
on Rn+ with finitely many zeros (satisfying some technical properties) also admit a
certificate as in (10).

Now we consider positivity certificates for polynomials restricted to compact
semialgebraic sets. Let g = {g1, . . . , gm} and h = {h1, . . . , hl } be sets of polynomi-
als and consider the semialgebraic set K defined as in (5). The quadratic module
generated by g, denoted byM (g), is defined as

M (g) :=
{ m∑
i=0

σigi : σi ∈ Σ for i = 0, 1, . . . ,m, and g0 := 1
}
, (11)

and the preordering generated by g, denoted by T (g), is defined as

T (g) :=
{ ∑
J⊆[m]

σJ

∏
i∈J

gi : σJ ∈ Σ for J ⊆ {1, . . .m}, and g∅ := 1
}
. (12)

Observe that, if for a polynomial f we have

f ∈ M(g) + I (h), (13)
or f ∈ T (g) + I (h), (14)

then f is nonnegative on K . Moreover, if a polynomial admits a certificate as in (13),
then it also admits a certificate as in (14), becauseM (g) ⊆ T (g).



8 Luis Felipe Vargas and Monique Laurent

Example

Consider the polynomial p(x, y) = x2 + y2 − xy in two variables x, y. We show that
p is nonnegative on R2

+ in two different ways. The following identities hold:

(x + y)p(x, y) = x3 + y3,

p(x, y) = (x − y)2 + xy,

which both certify that p is nonnegative on R2
+. The first identity is a certificate

as in (10): x3 + y3 has nonnegative coefficients. The second identity shows that
p ∈ T ({x, y}), i.e., gives a certificate as in (14).

The following two theorems show that, under certain conditions on the semialge-
braic set K (and on the tuples g and h defining it), every strictly positive polynomial
admits certificates as in (13) or (14).

Theorem 3 (Schmüdgen [50])
Let K = {x ∈ Rn : gi (x) ≥ 0 for i ∈ [m], h j (x) = 0 for j ∈ [l]} be a compact

semialgebraic set. Let f ∈ R[x] such that f (x) > 0 for all x ∈ K . Then we have
f ∈ T (g) + I (h).

We say that the sets of polynomials g = {g1, . . . , gm} and h = {h1, . . . , hl } satisfy the
Archimedean condition if

N −
n∑
i=1

x2
i ∈ M(g) + I (h) for some N ∈ N. (15)

Note this implies that the associated set K is compact. We have the following result.

Theorem 4 (Putinar [45])
Let K = {x ∈ Rn : gi (x) ≥ 0 for i ∈ [m], h j (x) = 0 for j ∈ [l]} be a semial-

gebraic set. Assume the sets of polynomials g = {g1, . . . , gm} and h = {h1, . . . , hl }
satisfy the Archimedean condition (15). Let f ∈ R[x] be such that f (x) > 0 for all
x ∈ K . Then we have f ∈ M(g) + I (h).

Note that positivity certificates for a polynomial f as in Theorem 3 and Theorem 4
involve a representation of the polynomial f “without denominators".

2.2 Approximation hierarchies for polynomial optimization

Based on the result in Putinar’s theorem, Lasserre [28] proposed a hierarchy of
approximations ( f (r ))r ∈N for problem (4). Given an integer r ∈ N, the quadratic
module truncated at degree r (generated by the set g = {g1, . . . , gm}) is defined as
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M (g)r :=
{ m∑
i=0

σigi : σi ∈ Σr−deg(gi ) for i ∈ {0, 1, . . . ,m}, and g0 = 1
}
, (16)

and the parameter f (r ) as

f (r ) := sup{λ : f − λ ∈ M(g)r + I (h)r }. (17)

Clearly, f (r ) ≤ f (r+1) ≤ f ∗ for all r ∈ N. The hierarchy of parameters f (r ) is also
known as Lasserre sum-of-squares hierarchy for problem (4).

Semidefinite programming and sums of squares

Consider a polynomial p ∈ R[x]2d . The following observation was made in [10]:

p ∈ Σ2d ⇐⇒ p = [x]Td M[x]d for some M � 0, (18)

where [x]d = (xα) |α | ≤d denotes the vector of monomials with degree at most d.
Indeed, if p ∈ Σ2d then p =

∑m
i=1 q2

i for some qi ∈ R[x]d .We canwrite qi = [x]T
d
vi

for an appropriate vector vi . Then, we obtain p =
∑m

i=1 q2
i = [x]T

d
(
∑m

i=1 viv
T
i )[x]T

d
=

[x]T
d

M[x]d , where M :=
∑m

i=1 viv
T
i is a positive semidefinite matrix.

Conversely, assume p = [x]T
d

M[x]d with M � 0. Then M =
∑m

i=1 viv
T
i for some

vectors v1, . . . , vm. Hence, p =
∑m

i=1([x]T
d
vi)2 is a sum of squares.

So relation (18) shows that testing whether a given polynomial is a sum of
squares can be modeled as a semidefinite program. There exist efficient algorithms
for solving semidefinite programs (up to any arbitrary precision, and under some
technical assumptions). See, e.g., [2, 11].

Under the Archimedean condition, by Putinar’s theorem, we have asymptotic
convergence of the Lasserre hierarchy: f (r ) → f ∗ as r → ∞. We say that finite
convergence holds if f (r ) = f ∗ for some r ∈ N. In general, finite convergence does
not hold, as the following example shows.

A polynomial optimization problem without finite convergence

Consider the problem

min x1x2 s.t. x ∈ ∆3, i.e., x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x1 + x2 + x3 = 1.

We show that the Lasserre hierarchy for this problem does not have finite conver-
gence. The optimal value is clearly 0 and is attained, for example, in x = (0, 0, 1).
Assume the Lasserre hierarchy has finite convergence. Then,

x1x2 = σ0 +

3∑
i=1

xiσi + q(
3∑
i=1

xi − 1), (19)
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for some σi ∈ Σ for i = 0, 1, 2, 3 and q ∈ R[x]. For a scalar t ∈ (0, 1) define the
vector ut := (t, 0, 1 − t) ∈ ∆3. Now we evaluate equation (19) at x + ut and obtain

x1x2 + t x2 = σ0(x + ut ) + (x1 + t)σ1(x + ut ) + x2σ2(x + ut )
+(x3 + 1 − t)σ3(x + ut ) + q(x + ut )(x1 + x2 + x3).

for any fixed t ∈ (0, 1). We compare the coefficients of the polynomials in x at both
sides of the above identity. Observe that there is no constant term in the left hand
side, so σ0(ut )+ tσ1(ut )+ (1− t)σ3(ut ) = 0, which implies σi (ut ) = 0 for i = 0, 1, 3
as σi ∈ Σ and thus σi (ut ) ≥ 0. Then, for i = 0, 1, 3, the polynomial σi (x+ut ) has no
constant term, and thus it has no linear terms. Now, by comparing the coefficient of
x1 at both sides, we get q(ut ) = 0. Finally, by comparing the coefficient of x2 at both
sides, we get t = σ2(ut ) for all t ∈ (0, 1). This implies σ2(ut ) = t as polynomials in
the variable t. This is a contradiction because σ2(ut ) is a sum of squares in t.

2.3 Optimality conditions and finite convergence

In this section we recall a result of Nie [40] that guarantees finite convergence of the
Lasserre hierarchy (17) under some assumptions on the minimizers of problem (4).
This result builds on a result of Marshall [35, 36].

Let u be a local minimizer of problem (4) and let J (u) := { j ∈ [m] : gj (u) = 0}
be the set of inequality constraints that are active at u. We say that the constraint
qualification condition (abbreviated as CQC) holds at u if the set

G(u) := {∇gj (u) : j ∈ J (u)} ∪ {∇hi (u) : i ∈ [l]}

is linearly independent. If CQC holds at u then there exist λ1, . . . , λl, µ1, . . . , µm ∈ R
satisfying

∇ f (u) =
l∑

i=1
λi∇hi (u) +

∑
j∈J (u)

µ j∇gj (u), µ j ≥ 0 for j ∈ J (u),

µ j = 0 for j ∈ [m] \ J (u).

If we have µ j > 0 for all j ∈ J (u), then we say that the strict complementarity
condition (abbreviated as SCC) holds. The Lagrangian function L(x) is defined as

L(x) := f (x) −
l∑

i=1
λihi (x) −

∑
j∈J (u)

µ jgj (x).

Another (second order) necessary condition for u to be a local minimizer is the
following inequality
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vT∇2L(u)v ≥ 0 for all v ∈ G(u)⊥. (SONC)

If it happens that the inequality (SONC) is strict, i.e., if

vT∇2L(u)v > 0 for all 0 , v ∈ G(u)⊥, (SOSC)

then one says that the second order sufficiency condition (SOSC) holds at u.

We can now state the following result by Nie [40].

Theorem 5 (Nie [40])
Assume that the Archimedean condition (15) holds for the polynomial sets g and

h in problem (4). If the constraint qualification condition (CQC), the strict com-
plementarity condition (SCC), and the second order sufficiency condition (SOSC)
hold at every global minimizer of (4), then the Lasserre hierarchy (17) has finite
convergence, i.e., f (r ) = f ∗ for some r ∈ N.

Nie [40] uses Theorem 5 to show that finite convergence of Lasserre hierarchy
(17) holds generically. Note that the conditions in the above theorem imply that
problem (4) has finitely many minimizers. So this result may help to show finite
convergence only when there are finitely many minimizers. It will be used later in
this chapter (for the proof of Theorem 17 and Theorem 24).

3 Sum-of-squares approximations for COPn

As mentioned in the Introduction, optimizing over the copositive cone is a hard
problem, this motivates to design tractable conic inner approximations for it. One
classical cone that is often used as inner relaxation of COPn is the cone SPNn,
defined as

SPNn := {M ∈ Sn : M = P + N where P � 0, N ≥ 0}. (20)

In this section we explore several conic approximations for COPn, strengthening
SPNn, based on sums of squares of polynomials. They are inspired by the positivity
certificates (9), (10), (13), and (14) introduced in Section 2.

3.1 Cones based on Pólya’s nonnegativity certificate

In view of relation (1), a matrix is copositive if the homogeneous polynomial xT M x
is nonnegative on Rn+. Motivated by the nonnegativity certificate (10) in Pólya’s
theorem, de Klerk and Pasechnik [13] introduced the cones C (r )

n , defined as
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C (r )
n :=

{
M ∈ Sn :

( n∑
i=1

xi
)r

xT M x has nonnegative coefficients
}

(21)

for any r ∈ N. Clearly, C (r )
n ⊆ C

(r+1)
n ⊆ COPn. By Pólya’s theorem (Theorem 2), the

cones C (r )
n cover the interior of COPn, i.e., int(COPn) ⊆

⋃
r≥0 C

(r )
n . This follows

from the fact that M ∈ int(COPn) precisely when xT M x > 0 for all x ∈ Rn+ \ {0}.
The cones C (r )

n were introduced in [13] for approximating the stability number of a
graph, as we will see in Section 5.

In a similar way, in view of relation (3), a matrix is copositive if the homogeneous
polynomial (x◦2)T M x◦2 is globally nonnegative. Parrilo [42] introduced the cones
K

(r )
n , that are defined by using certificate (9) as

K (r )
n :=

{
M ∈ Sn :

( n∑
i=1

x2
i

)r
(x◦2)T M x◦2 ∈ Σ

}
. (22)

Clearly, C (r )
n ⊆ K

(r )
n ⊆ COPn, and thus int(COPn) ⊆

⋃
r≥0K

(r )
n . This inclusion

also follows from Reznick’s theorem (Theorem 1).
The following result by Peña, Vera and Zuluaga [55] gives information about the

structure of the homogeneous polynomials f for which f (x◦2) is a sum of squares.
As a byproduct, this gives the reformulation for the cones K (r )

n from relation (24)
below.

Theorem 6 (Peña, Vera, Zuluaga [55])
Let f ∈ R[x] be a homogeneous polynomial with degree d. Then the polynomial

f (x◦2) is a sum of squares if and only if f admits a decomposition of the form

f =
∑

S⊆[n], |S | ≤d
|S |≡d (mod 2)

σS xS for some σS ∈ Σd−|S | . (23)

In particular, for any r ≥ 0, we have

K (r )
n =

{
M ∈ Sn :

( n∑
i=1

xi
)r

xT M x =
∑

S⊆[n], |S | ≤r+2
|S |≡r (mod 2)

σS xS for some σS ∈ Σr+2−|S |
}
.

(24)

Alternatively, the cones K (r )
n may be defined as

K (r )
n =

{
M ∈ Sn :

( n∑
i=1

xi
)r

xT M x =
∑
β∈Nn

|β | ≤r+2

σβ xβ for some σβ ∈ Σr+2−|β |
}
,

(25)

where, in (24), one replaces square-free monomials by arbitrary monomials. Based
on this reformulation of the cones K (r )

n , Peña et.al. [55] introduced the cones Q (r )
n ,
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defined as

Q (r )
n :=

{
M ∈ Sn :

( n∑
i=1

xi
)r

xT M x =
∑
β∈Nn

|β |=r,r+2

σβ xβ for some σβ ∈ Σr+2−|β |
}
.

(26)

So Q (r )
n is a restrictive version of the formulation (25) for the cone K (r )

n , in which
the decomposition only allows sums of squares of degree 0 and 2. Then, we have

C (r )
n ⊆ Q (r )

n ⊆ K (r )
n , (27)

and thus

int(COPn) ⊆
⋃
r≥0
C (r )
n ⊆

⋃
r≥0
Q (r )

n ⊆
⋃
r≥0
K (r )

n . (28)

As an application of (24) we obtain the following characterization of the cones
K

(r )
n for r = 0, 1. A matrix M ∈ Sn belongs to K (0)

n if and only if

xT M x = σ +
∑

1≤i< j≤n
ci j xi x j

for some σ ∈ Σ2 and some scalars ci j ≥ 0 for 1 ≤ i < j ≤ n, and M belongs toK (1)
n

if and only if

( n∑
i=1

xi
)
xT M x =

n∑
i=1

xiσi +
∑

1≤i≤ j≤k≤n
ci jk xi x j xk, (29)

for some σi ∈ Σ2 for i ∈ [n] and some scalars ci jk for 1 ≤ i ≤ j ≤ n. From this, one
can also derive the following result.

Lemma 1 (Characterization of the cones K (0)
n and K (1)

n )
Let M ∈ Sn be a symmetric matrix. Then the following holds.

(1) M belongs to the cone K (0)
n if and only if there exists a positive semidefinite

matrix P � 0 such that P ≤ M . In other words,

K (0)
n = {M ∈ Sn : M = P + N for some P � 0 and N ≥ 0} = SPNn. (30)

(2) M belongs to the cone K (1)
n if and only if there exist symmetric matrices P(i)

for i ∈ [n] satisfying the following conditions:

(i) P(i) � 0 for all i ∈ [n],
(ii) P(i)ii = Mii for all i ∈ [n],
(iii) 2P(i)i j + P( j)ii = 2Mi j + Mii for all i , j ∈ [n],
(iv) P(i)jk + P( j)ik + P(k)i j ≤ Mi j + Mik + Mjk for all distinct i, j, k ∈ [n].
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Claim (1) and the “if" part in (2) in the above lemma were already proved by Parrilo
in [42]. The “only if" part in (2) was proved by Bomze and de Klerk in [5].

A matrix P is called to be a K (0)-certificate for M if P � 0 and P ≤ M . Now
we show a result that relates the zeros of the form xT M x with the kernel of its
K (0)-certificates, which will be used later in the chapter.

Lemma 2 ([32])
Let M ∈ K

(0)
n and let P be a K (0)-certificate of M . If x ∈ Rn+ and xT M x = 0,

then Px = 0 and P[S] = M[S], where S = {i ∈ [n] : xi > 0} is the support of x.

Proof Since P is aK (0)-certificate there exists a matrix N ≥ 0 such that M = P+N .
Hence, 0 = xT M x = xT Px + xT N x. Then xT Px = 0 = xT N x as P � 0 and N ≥ 0.
This implies Px = 0 since P � 0. On the other hand, since xT N x = 0 and N ≥ 0,
we get Ni j = 0 for i, j ∈ S. Hence, M[S] = P[S], as M = P + N . �

3.2 Lasserre-type approximation cones

Recall the definitions (1) and (3) of the copositive cone. Clearly, in (1), the non-
negativity condition for xT M x can be restricted to the simplex ∆n and, in (3), the
nonnegativity condition for (x◦2)T M x◦2 can be restricted to the unit sphere Sn−1.
Based on these observations, one can now use the positivity certificate (13) or (14) to
certify the nonnegativity on∆n or Sn−1. This leads naturally to defining the following
cones (as done in [33]): for an integer r ∈ N,

LAS(r )
∆n

:=
{
M ∈ Sn : xT M x = σ0 +

n∑
i=1

σi xi + q for σ0 ∈ Σr, σi ∈ Σr−1, q ∈ I∆n
}
,

(31)

LAS(r )
∆n,T

=
{
M ∈ Sn : xT M x =

∑
S⊆[n], |S | ≤r

σS xS + q for σS ∈ Σr−|S | and q ∈ I∆n
}
,

(32)

LAS(r )
Sn−1 =

{
M ∈ Sn : (x◦2)T M x◦2 = σ + q for some σ ∈ Σr, q ∈ ISn−1

}
. (33)

Clearly, we have LAS(r )
∆n
⊆ LAS(r )

∆n,T
and, by Putinar’s theorem (Theorem 4),

int(COPn) ⊆
⋃
r≥0

LAS(r )
∆n
, int(COPn) ⊆

⋃
r≥0

LAS(r )
Sn−1 . (34)
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3.3 Links between the various approximation cones for COPn

In this section, we link the various cones introduced in the previous sections.

Theorem 7 ([33])
Let r ≥ 2 and n ≥ 1. Then the following holds.

LAS(r )
∆n
⊆ K (r−2)

n = LAS(r )
∆n,T

= LAS(2r )
Sn−1 . (35)

So, this result shows that membership in the cones K (r )
n can be characterized via

positivity certificates onRn+ orRn of Pólya- and Reznick-type (using a ’denominator’
of the form (

∑
i xi)r for some r ∈ N), or, alternatively, via ‘denominator-free’

positivity certificates on the simplex or the sphere of Schmüdgen- and Putinar-type.
Theorem 7 was implicitly shown in [31, Corollary 3.9]. We now sketch the proof.

First, the equality K (r−2)
n = LAS(2r )

Sn−1 follows from the following result.

Theorem 8 (de Klerk, Laurent, Parrilo [12])
Let f be a homogeneous polynomial of degree 2d and r ∈ N. Then, we have

(
∑n

i=1 x2
i )r f ∈ Σ if and only if f = σ + u(

∑n
i=1 x2

i − 1) for some σ ∈ Σ2r+2d and
u ∈ R[x].

In particular, for any r ≥ 2, we have

LAS(2r )
Sn−1 =

{
M ∈ Sn :

( n∑
i=1

x2
i

)r−2
(x◦2)T M x◦2 ∈ Σ

}
= K (r−2)

n . (36)

Next, the inclusion LAS(r )
∆n,T

⊆ LAS(2r )
Sn−1 follows by replacing x by x◦2 in the

definition of LAS(r )
∆n,T

. Indeed, if M ∈ LAS(r )
∆n,T

, then

xT M x =
∑

S⊆[n], |S | ≤r
σS xS + q

( n∑
i=1

xi − 1
)
for σS ∈ Σ |S |−r, q ∈ R[x].

Then, by replacing x by x◦2, we obtain

(x◦2)T M x◦2 =
∑
S⊆[n]
|S | ≤r

σS (x◦2)
∏
i∈S

x2
i + q(x◦2)

( n∑
i=1

x2
i −1

)
for σS ∈ Σ |S |−r, q ∈ R[x],

where the first summation is a sum of squares of degree at most 2r , thus showing
that M ∈ LAS(2r )

Sn−1 .
Finally, as the inclusion LAS(r )

∆n
⊆ LAS(r )

∆n,T
is clear, it remains to show that

K
(r−2)
n ⊆ LAS(r )

∆n,T
in order to conclude the proof of Theorem 7. For this, we use

the formulation (24) of the cones K (r )
n . Let M ∈ K (r−2)

n , then
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( n∑
i=1

xi
)r−2

xT M x =
∑

S⊆[n], |S | ≤r
|S |≡r (mod 2)

σS xS for some σS ∈ Σr−|S | .

Write
∑n

i=1 xi = (
∑n

i=1 xi − 1) + 1 and expand (
∑n

i=1 xi)r as 1 + p(
∑n

i=1 xi − 1) for
some p ∈ R[x]. From this, setting q = −pxT M x, we obtain

xT M x =
∑

S⊆[n], |S | ≤r
|S |≡r (mod 2)

σS xS + q
( n∑
i=1

xi − 1
)

for some σS ∈ Σr+2−|S |, q ∈ R[x],

which shows M ∈ LAS(r )
∆n,T

.
It is useful to note that, in the formulation (32) of LAS(r )

∆n,T
, we could equivalently

require a decomposition of the form

xT M x =
∑

β∈Nn, |β | ≤r

σβ xβ + q for some σβ ∈ Σr−|β | and q ∈ I∆n, (37)

thus using arbitrary monomials xβ instead of square-free monomials xS . This allows
to draw a parallel with the definitions of the cones C (r )

n (in (21)) and Q (r )
n (in (26)).

Namely, using the same type of arguments as above, one can obtain the following
analogous reformulations for the cones C (r )

n and Q (r )
n :

Q (r )
n =

{
M ∈ Sn : xT M x =

∑
β∈Nn

|β |=r,r+2

σβ xβ + q for σβ ∈ Σr+2−|β | and q ∈ I∆n
}
,

(38)

C (r )
n = {M ∈ Sn : xT M x =

∑
β∈Nn

|β |=r+2

cβ xβ + q for cβ ≥ 0 and q ∈ I∆n }. (39)

Seeing all cones as restrictive Schmüdgen-type representations of xT M x

We illustrate how membership in the cones LAS(r )
∆n

, LAS(r )
∆n,T

, C (r )
n , and Q (r )

n can
also be viewed as ‘restrictive’ versions of membership in the cone K (r−2)

n . Indeed,
as we saw above, K (r−2)

n = LAS(r )
∆n,T

and thus a matrix M belongs to K (r−2)
n if and

only if the form xT M x has a decomposition of the form (37). Then, membership in
the cones LAS(r )

∆n
, C (r−2)

n , and Q (r−2)
n corresponds to restricting to decompositions

that allow only some terms in (37):
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σ0 +

n∑
i=1

xiσi︸           ︷︷           ︸
for cones LAS(r )

∆n

+ · · · +

for cones Q (r−2)
n︷                                         ︸︸                                         ︷∑

β∈Nn, |β |=r−2
xβσβ +

∑
β∈Nn, |β |=r

xβcβ︸             ︷︷             ︸
for cones C (r−2)

n

+ q(
n∑
i=1

xi − 1)︸          ︷︷          ︸
for cones




LAS(r )
∆n

Q
(r−2)
n

C
(r−2)
n

(40)

4 Exactness of sum-of-squares approximations for COPn

We have discussed several hierarchies of conic inner approximations for the copos-
itive cone COPn. In particular, we have seen that each of them covers the interior
of COPn. In this section, we investigate the question of deciding exactness of these
hierarchies, where we say that a hierarchy of conic inner approximations is exact if
it covers the full copositive cone COPn.

4.1 Exactness of the conic approximationsK (r )
n

We first recall a result from [14], that shows equality in the inclusion K (0)
n ⊆ COPn

for n ≤ 4.

Theorem 9 (Diananda [14])
For n ≤ 4 we have

COPn = {M ∈ Sn : M = P + N for some P � 0, N ≥ 0} = K (0)
n (= SPNn).

This result does not extend to matrix size n ≥ 5. For instance, as we now see, the
Horn matrix H in (41) is copositive, but it does not belong to K (0)

5 .

The Horn matrix

The Horn matrix

H :=

*......
,

1 1 −1 −1 1
1 1 1 −1 −1
−1 1 1 1 −1
−1 −1 1 1 1
1 −1 −1 1 1

+//////
-

(41)
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is copositive. A direct way to show this is to observe that H ∈ K (1)
n . Parrilo [42]

shows this latter fact by giving the following explicit sum of squares decomposition:

( 5∑
i=1

x2
i

)
(x◦2)T H x◦2 = x2

1(x2
1 + x2

2 + x2
5 − x2

3 − x2
4)2

+ x2
2(x2

1 + x2
2 + x2

3 − x2
4 − x2

5)2

+ x2
3(x2

2 + x2
3 + x2

4 − x2
5 − x2

1)2

+ x2
4(x2

3 + x2
4 + x2

5 − x2
1 − x2

2)2

+ x2
5(x2

1 + x2
4 + x2

5 − x2
2 − x2

3)2

+ 4x2
1x2

2x2
5 + 4x2

1x2
2x2

3

+ 4x2
2x2

3x2
4 + 4x2

3x2
4x2

5

+ 4x2
4x2

5x2
1.

(42)

On the other hand, Hall and Newman [23] show that H does not belong to SPN5
(= K (0)

5 ). We give a short proof of this fact, based on Lemma 2.

Theorem 10 (Hall, Newman [23])
The Horn matrix H does not belong to K (0)

5 . Hence, the inclusion K (0)
n ⊆ COPn

is strict for any n ≥ 5.

Proof Assume, by way of contradiction, that H ∈ K (0)
5 . Let P be a K (0)-certificate

for H , i.e., such that P � 0 and P ≤ H , and let C1,C2, . . . ,C5 denote the columns
of P. Observe that u1 = (1, 0, 1, 0, 0) and u2 = (1, 0, 0, 1, 0) are zeros of the form
xT H x. Then, by Lemma 2, Pu1 = Pu2 = 0. Hence, C1 + C3 = C1 + C4 = 0, so that
C3 = C4. Using an analogous argument we obtain that C1 = C2 = . . . = C5, which
implies P = t J for some scalar t ≥ 0, where J is the all-ones matrix. This leads to a
contradiction since P ≤ H . �

Next, we recall a result of Dickinson, Dür, Gijben and Hildebrand [15] that shows
exactness of the conic approximation K (1)

5 for copositive matrices with an all-ones
diagonal.

Theorem 11 (Dickinson, Dür, Gijben, Hildebrand [15])
Let M ∈ COP5 with Mii = 1 for all i ∈ [5]. Then M ∈ K (1)

5 .

In contrast, the same authors show that the cone COPn is never equal to a single cone
K

(r )
n for n ≥ 5.

Theorem 12 (Dickinson, Dür, Gijben, Hildebrand [15])
For any n ≥ 5 and r ≥ 0, we have COPn , K (r )

n .
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Proof Let M be a copositive matrix that lies outside K (0)
n . Clearly, any positive

diagonal scaling of M remains copositive, that is, DMD ∈ COPn for any D ∈ Dn
++.

We will show that for any r ≥ 0 there exists a diagonal matrix D ∈ Dn
++ such that

DMD < K (r )
n . Fix r ≥ 0 and assume, by way of contradiction, that DMD ∈ K (r )

n

for any positive diagonal matrix D. Then, for all scalars d1, d2, . . . , dn > 0 the
polynomial (

∑n
i=1 x2

i )r (
∑n

i, j=1 Mi jdid j x2
i x2

j ) is a sum of squares. Equivalently, the
polynomial (

∑n
i=1 d−1

i z2
i )r (

∑n
i, j=1 Mi j z2

i z2
j ) is a sum of squares in the variables zi =

√
di xi (i = 1, . . . , n). Nowwe fix d1 = 1 andwe let di → ∞ for i = 2, . . . , n. Since the

cone of sums of squares of polynomials is closed (see, e.g., [30, Section 3.8]), the limit
polynomial (z2

1)r (
∑n

i, j=1 Mi, j z2
i z2

j ) is also a sumof squares in the variables z1, . . . , zn.
Say (z2

1)r (
∑n

i, j=1 Mi, j z2
i z2

j ) =
∑m

k=1 q2
k
. Then, for each k, we have qk (z) = 0whenever

z1 = 0. Hence, if r ≥ 1, then z1 can be factored out from qk , and we obtain
that (z2

1)r−1(
∑n

i, j=1 Mi, j z2
i z2

j ) is also a sum of squares. After repeatedly using this
argument we can conclude that

∑n
i, j=1 Mi, j z2

i z2
j is a sum of squares, that is, M ∈ K (0)

n ,
leading to a contradiction.

As was recalled earlier, sums of squares of polynomials can be expressed us-
ing semidefinite programming. Hence, the cone K (r )

n is semidefinite representable,
whichmeans that membership in it can bemodeled using semidefinite programming.
In [4] it is shown that COP5 is not semidefinite representable, which is thus a stronger
result that implies Theorem 12. On the other hand, it was shown recently in [52] that
every 5 × 5 copositive matrix belongs to the cone K (r )

5 for some r ∈ N.

Theorem 13 (Laurent, Vargas [33]; Schweighofer, Vargas [52])
We have COP5 =

⋃
r≥0K

(r )
5 .

We will return to this result in Section 4.3, where we will give some hints on the
strategy and tools that are used for the proof.

It is known that the result from Theorem 13 does not extend to matrix size n ≥ 6.
To show this, we recall the following result.

Proposition 1 ([32])
Let M1 ∈ COPn and M2 ∈ COPm be two copositive matrices. Assume M1 < K

(0)
n

and there exists 0 , z ∈ Rm+ such that zT M2z = 0. Then we have(
M1 0
0 M2

)
∈ COPn+m \

⋃
r ∈N

K
(r )
n+m. (43)

Now we give explicit examples of copositive matrices of size n ≥ 6 that do not
belong to any of the cones K (r )

n .

Examples of copositive matrices outside
⋃

r≥0K
(r )
n

Let M1 = H be the Horn matrix, known to be copositive with H < K (0)
n . For the

matrix M2 we first consider the 1 × 1 matrix M2 = 0 and, as a second example,
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we consider M2 =

(
1 −1
−1 1

)
∈ COP2. Then, as an application of Proposition 1, we

obtain (
H 0
0 0

)
∈ COP6 \

⋃
r ∈N

K
(r )

6 ,
*.
,

H 0

0 1 −1
−1 1

+/
-
∈ COP7 \

⋃
r ∈N

K
(r )

7 . (44)

The leftmost matrix in (44) is copositive, it has all its diagonal entries equal to 0
or 1, and it does not belong to any of the cones K (r )

6 . Selecting for M2 the zero
matrix of size m ≥ 1 gives a matrix in COPn \

⋃
r≥0K

(r )
n for any size n ≥ 6. The

rightmost matrix in (44) is copositive, it has all its diagonal entries equal to 1, and
it does not lie in any of the cones K (r )

7 . More generally, if we select the matrix
M2 =

1
m−1 (mIm − Jm), which is positive semidefinite with eT M2e = 0, then we

obtain a matrix in COPn \
⋃

r≥0K
(r )
n with an all-ones diagonal for any size n ≥ 7. In

contrast, as mentioned in Theorem 11, any copositive 5 × 5 matrix with an all-ones
diagonal belongs to K (1)

5 . The situation for the case of 6 × 6 copositive matrices
remains open.

Question

Is it true that any 6 × 6 copositive matrix with an all-ones diagonal belongs to K (r )
6

for some r ∈ N?

4.2 Exactness of the conic approximations LAS(r )
∆n

We begin with the characterization of the matrix sizes n for which the hierarchy of
cones LAS(r )

∆n
is exact.

Theorem 14 (Laurent, Vargas [33])
We have COP2 = LAS(3)

∆2
, and the inclusion

⋃
r≥0 LAS

(r )
∆n
⊆ COPn is strict for

any n ≥ 3.

Proof First, assume M =
(
a c
c b

)
∈ COP2, we show M ∈ LAS(3)

∆2
. Note that a, b ≥ 0

and c ≥ −
√

ab (using the fact that uT Mu ≥ 0 with u = (1, 0), (0, 1), and (
√

b,
√

a)).
Then we can write xT M x = (

√
ax1 −

√
bx2)2 + 2(c +

√
ab)x1x2, which, modulo

the ideal I∆2 , is equal to (
√

ax1 −
√

bx2)2(x1 + x2) + 2(c +
√

ab)(x2
2x1 + x2

1x2), thus
showing M ∈ LAS(3)

∆2
.

For n = 3, the matrix
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M := *.
,

0 1 0
1 0 0
0 0 0

+/
-

(45)

is copositive (since nonnegative), but does not belong to any of the cones LAS(r )
∆3

. To
see this, assume, by way of contradiction, that M ∈ LAS(r )

∆3
for some r ∈ N. Then the

polynomial xT M x = 2x1x2 has a decomposition as in (19). However, we showed in
the related example (end of Section 2.2) that such a decomposition does not exist.�

Some differences between the cones LAS(r )
∆n

and K (r )
n

By Theorems 7 and 14, we have
⋃

r LAS
(r )
∆n
⊆

⋃
r K

(r )
n , with equality if n = 2. This

inclusion is strict for any n ≥ 3. Indeed, the matrix M in (45) is an example of a
matrix that does not belong to any cone LAS(r )

∆3
while it belongs to the cone K (0)

3
(because M is copositive and COP3 = K

(0)
3 , in view of Theorem 9).

Another example is the Horn Matrix H . As observed in (42), H ∈ K (1)
5 and it

can be shown that H < LAS(r )
∆5

for any r (see [33]). The proof exploits the structure
of the (infinitely many) zeros of the form xT H x in ∆5.

We just saw two examples of copositive matrices that do not belong to any cone
LAS(r )

∆n
. In both cases, the structure of the infinitely many zeros plays a crucial role.

We will now discuss some tools that can be used to show membership in some cone
LAS(r )

∆n
in the case when the quadratic form xT M x has finitely many zeros in ∆n.

First, recall that, if a matrix M lies in the interior of the cone COPn, then it
belongs to some cone LAS(r )

∆n
(see relation (34)). Therefore we now assume that M

lies on the boundary of COPn, denoted by ∂COPn. The next result shows that, if
the quadratic form xT M x has finitely many zeros in ∆n and if these zeros satisfy an
additional technical condition, then M belongs to some cone LAS(r )

∆n
.

Theorem 15 (Laurent, Vargas [33])
Let M ∈ ∂COPn. Assume that the quadratic form pM := xT M x has finitely many

zeros in ∆n and that, for every zero u of pM in ∆n, we have (Mu)i > 0 for all
i ∈ [n] \ Supp(u). Then, M ∈

⋃
r≥0 LAS

(r )
∆n

and, moreover, DMD ∈
⋃

r≥0 LAS
(r )
∆n

for all D ∈ Dn
++.

The proof of Theorem 15 relies on following an optimization approach, which
enables using the result from Theorem 5 about finite convergence of the Lasserre
hierarchy. For this, consider the following standard quadratic program

min{xT M x : x ∈ ∆n}. (46)

First, since M ∈ ∂COPn the optimal value of problem (46) is zero and thus a vector
u ∈ ∆n is a global minimizer of problem (46) if and only if u is a zero of xT M x.
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Next, observe that, as a direct consequence of the definitions, showingmembership in
some cone LAS(r )

∆n
amounts to showing finite convergence of the Lasserre hierarchy

for problem (46).

Linking membership in LAS(r )
∆n

to finite convergence of Lasserre hierarchy

Assume M ∈ ∂COPn. Then, M ∈
⋃

r≥0 LAS
(r )
∆n

if and only if the Lasserre hierarchy
(17) applied to problem (46) (for matrix M) has finite convergence.

Now, in order to study the finite convergence of the Lasserre hierarchy for problem
(46), we will apply the result of Theorem 5 to the special case of problem (46). First,
we observe that the Archimedean condition holds. For this, note that, for any i ∈ [n],
we have

1 − xi = 1 −
n∑

k=1
xk +

∑
k∈[n]\{i }

xk, 1 − x2
i =

(1 + xi)2

2
(1 − xi) +

(1 − xi)2

2
(1 + xi).

This implies n−
∑n

i=1 x2
i ∈ M(x1, . . . , xn)+ I∆n , thus showing that the Archimedean

condition holds.
In [33] it is shown that the strict complementarity condition (SCC) holds at a

global minimizer u of problem (46) if and only if (Mu)i > 0 for all i ∈ [n]\Supp(u).
It is also shown there that, if problem (46) has finitely many minimizers, then the
second order sufficiency condition (SOSC) holds at each of them. These two facts
(roughly) allow us to apply the result from Theorem 5 and to conclude the proof of
Theorem 15. The exact technical details are summarized in the next result.

Proposition 2 ([33])
Let M ∈ ∂COPn and D ∈ Dn

++. Assume the form xT M x has finitely many zeros
in ∆n. Then the following holds.

(i) (SCC) holds at a minimizer u of problem (46) (for M) if (Mu)i > 0 for all
i ∈ [n] \ Supp(u).

(ii) (SOSC) holds at every minimizer of problem (46) (for M).

In addition, if the optimality conditions (SCC) and (SOSC) hold at every minimizer
of problem (46) for the matrix M , then they also hold for every minimizer of problem
(46) for the matrix DMD.

The following example shows a copositive matrix M for which the form xT M x
has a unique zero in ∆n; however M does not belong to

⋃
r≥0K

(r )
n , and thus it also

does not belong to
⋃

r≥0 LAS
(r )
∆n

(in view of relation (35)). Hence, the condition on
the support of the zeros in Theorem 15 cannot be omitted.

A copositive matrix with a unique zero, that does not belong to any cone K (r )
n
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Let M1 be a matrix lying in int(COPn) \ K (0)
n . Such a matrix exists for any n ≥ 5.

As an example for M1, one may take the Horn matrix H in (41), in which we replace
all entries 1 by t, where t is a given scalar such that 1 < t <

√
5 − 1 (see [32]). By

Theorem 1 we have

M := *.
,

M1 0

0 1 −1
−1 1

+/
-
∈ COPn+2 \

⋃
r≥0
K

(r )
n+2. (47)

Nowweprove that the quadratic form xT M x has a unique zero in the simplex. For this,
let x ∈ ∆n+2 such that xT M x = 0. As M1 is strictly copositive and y := (x1, . . . , xn)
is a zero of the quadratic form yT M1y it follows that x1 = . . . = xn = 0. Hence
(xn+1, xn+2) is a zero of the quadratic form x2

n+1 − 2xn+1xn+2 + x2
n+2 in the simplex

∆2 and thus xn+1 = xn+2 = 1/2. This shows that the only zero of the quadratic form
xT M x in the simplex ∆n is x = (0, 0, . . . , 0, 1

2,
1
2 ), as desired.

4.3 The cone of 5 × 5 copositive matrices

In this section we return to the cone COP5, more specifically, to the result in The-
orem 13 claiming that COP5 =

⋃
r K

(r )
5 . Here we give a sketch of proof for (some

of) the main arguments that are used to show this result.
As a starting point, observe that it suffices to show that every 5 × 5 copositive

matrix that lies on an extreme ray of COP5 (for short, call such a matrix extreme)
belongs to some cone K (r )

5 . Then, as a crucial ingredient, we use the fact that the
extreme matrices in COP5 have been fully characterized by Hildebrand [26]. Note
that, if M is an extreme matrix in COPn, then the same holds for all its positive
diagonal scalings DMD where D ∈ Dn

++. Hildebrand [26] introduced the following
matrices

T (ψ) =

*......
,

1 − cosψ4 cos(ψ4 + ψ5) cos(ψ2 + ψ3) − cosψ3
− cosψ4 1 − cosψ5 cos(ψ5 + ψ1) cos(ψ3 + ψ4)

cos(ψ4 + ψ5) − cosψ5 1 − cosψ1 cos(ψ1 + ψ2)
cos(ψ2 + ψ3) cos(ψ5 + ψ1) − cosψ1 1 − cosψ2
− cosψ3 cos(ψ3 + ψ4) cos(ψ1 + ψ2) − cosψ2 1

+//////
-

,

where ψ ∈ R5, which he used to prove the following theorem.

Theorem 16 (Hildebrand [26])
The extreme matrices M in COP5 can be divided into the following three cate-

gories:

(i) M ∈ K (0)
n ,

(ii) M is (up to row/column permutation) a positive diagonal scaling of the Horn
matrix H ,
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(iii) M is (up to row/column permutation) a positive diagonal scaling of a matrix
T (ψ) for some ψ ∈ Ψ, where the set Ψ is defined by

Ψ =
{
ψ ∈ R5 :

5∑
i=1

ψi < π, ψi > 0 for i ∈ [5]
}
. (48)

As a direct consequence, in order to show equality COP5 =
⋃

r≥0K
(r )
n , it suffices to

show that every positive diagonal scaling of the matrices T (ψ) (ψ ∈ Ψ) and H lies
in some cone K (r )

n . It turns out that a different proof strategy is needed for the class
of matrices T (ψ) and for the Horn matrix H . The main reason lies in the fact that the
form xT M x has finitely many zeros in the simplex when M = T (ψ), but infinitely
many zeros when M = H . We will next discuss these two cases separately.

Proof strategy for the matrices T (ψ)

Here we show that any positive diagonal scaling of a matrix T (ψ) (with ψ ∈ Ψ)
belongs to some coneK (r )

5 . We, in fact, show a stronger result, namely membership
in some cone LAS(r )

∆n
. For this, the strategy is to apply the result of Theorem 15 to

the matrix T (ψ). So we need to verify that the required conditions on the zeros of
xTT (ψ)x are satisfied. First, we recall a characterization of the (finitely many) zeros
of xTT (ψ)x, which follows from results in [26].

Lemma 3 ([26])
For any ψ ∈ Ψ, the zeros of the quadratic form xTT (ψ)x in the simplex ∆5 are

the vectors vi = ui
‖ui ‖1

for i ∈ [5], where the ui’s are defined by

u1 =

*......
,

sinψ5
sin(ψ4 + ψ5)

sinψ4
0
0

+//////
-

, u2 =

*......
,

sin(ψ3 + ψ4)
sinψ3

0
0

sinψ4

+//////
-

, u3 =

*......
,

0
sinψ1

sin(ψ1 + ψ5)
sinψ5

0

+//////
-

, u4 =

*......
,

0
0

sinψ2
sin(ψ1 + ψ2)

sinψ1

+//////
-

, u5 =

*......
,

sinψ2
0
0

sinψ3
sin(ψ2 + ψ3)

+//////
-

.

Then, it is straightforward to check that the conditions in Theorem 15 are satisfied and
so we obtain the following result for the extremematrices of type (iii) in Theorem 16.

Theorem 17 (Laurent, Vargas [33])
We have DT (ψ)D ∈

⋃
r≥0 LAS

(r )
∆n

for all D ∈ D5
++ and ψ ∈ Ψ.

Proof strategy for the Horn matrix H

As already mentioned, the above strategy cannot be applied to the positive diagonal
scalings of H (extreme matrices of type (ii) in Theorem 16), because the form xT H x
has infinitely many zeros in ∆5; e.g., any x = ( 1

2, 0,
t
2,

1−t
2 , 0) with t ∈ [0, 1] is a zero.

In fact, as mentioned earlier, the Horn matrix H does not belong to any of the cones
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LAS(r )
∆n

(see [33]). Then, another strategy should be applied for showing that all its
positive diagonal scalings belong to some cone K (r )

5 .

The starting point is to use the fact that
⋃

r K
(r )
n =

⋃
r LAS

(r )
Sn−1 (recall Theorem 7)

and to change variables. This enables us to rephrase the question of whether all
positive diagonal scalings of H belong to

⋃
r K

(r )
5 as the question of deciding

whether, for all positive scalars d1, . . . , d5, the form (x◦2)T H x◦2 can be written as
a sum of squares modulo the ideal generated by

∑5
i=1 di x2

i − 1. This latter question
was recently answered in the affirmative by Schweighofer and Vargas [52].

Theorem 18 (Schweighofer, Vargas [52])
Let d1, d2, . . . , d5 > 0 be positive real numbers. Then we have

(x◦2)T H x◦2 = σ + q
(
1 −

5∑
i=1

di x2
i

)
for some σ ∈ Σ and q ∈ R[x].

Therefore, DHD ∈
⋃

r K
(r )

5 for all D ∈ D5
++.

The proof of this theorem uses the theory of pure states in real algebraic geometry
(as described in [8]), combined with a characterization of the diagonal scalings of
the Horn matrix that belong to the cone K (1)

n (given in [32]). The technical details
go beyond the scope of this chapter, so we refer to [52] for details.

5 The stability number of a graph α(G)

In this section, we investigate a class of copositive matrices that arise naturally from
graphs. Consider a graphG = (V = [n], E), whereV = [n] is the set of vertices and E
is the set of edges, consisting of the pairs of distinct vertices that are adjacent in G. A
set S ⊆ V is called stable (or independent) if it does not contain any edge of G. Then,
the stability number of G, denoted by α(G), is defined as the maximum cardinality
of a stable set in G. Computing α(G) is a well-known NP-hard problem (see [27]),
with many applications, e.g., in operations research, social networks analysis, and
chemistry. There is a vast literature on this problem, dealing among other things
with how to define linear and/or semidefinite approximations for α(G) (see, e.g.,
[13, 29, 55] and further references therein).

Lasserre hierarchy for α(G) via polynomial optimization on the binary cube

The stability number ofG = ([n], E) can be formulated as a polynomial optimization
problem on the binary cube {0, 1}n:

α(G) = max
{ ∑
i∈V

xi : xi x j = 0 for {i, j} ∈ E, x2
i − xi = 0 for i ∈ V

}
. (49)
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Wecan consider the Lasserre hierarchy (17) for problem (49) and obtain the following
bounds

las(r ) (G) := min
{
λ : λ −

∑
i∈V

xi = σ +
∑
{i, j }∈E

pi j xi x j +
∑
i∈V

qi (x2
i − xi) (50)

for some σ ∈ Σ2r and pi j, qi ∈ R[x]2r−2
}
. (51)

Clearly, we have α(G) ≤ las(r ) (G). Moreover, the bound is exact at order r = α(G),
that is, α(G) = las(α(G)) (G) (see [29]). The proof is not difficult and exploits the
fact that in the definition of these parameters one works modulo the ideal generated
by the polynomials x2

i − xi (i ∈ V ) and the edge monomials xi x j ({i, j} ∈ E). At
order r = 1, the bound las(1) (G) coincides with the parameter ϑ(G) introduced in
1979 by Lovász in his seminal paper [34].

In this section we focus on the hierarchies of approximations that naturally arise
when considering the following copositive reformulation for α(G), given by deKlerk
and Pasechnik [13]:

α(G) = min{t : t(AG + I) − J ∈ COPn}. (52)

Here, AG, I, and J are, respectively, the adjacency matrix of G (whose entries are
all 0 except 1 at the positions corresponding to the edges of G), the identity, and
the all-ones matrix. As a consequence, it follows from (52) that the following graph
matrix

MG := α(G)(I + AG ) − J (53)

belongs to COPn. The copositive reformulation (52) for α(G) can be seen as an
application of the following quadratic formulation by Motzkin and Straus [38]:

1
α(G)

= min{xT (I + AG )x : x ∈ ∆n}.

The Horn matrix coincides with the graph matrix of the graph C5.

When G = C5 is the 5-cycle, its adjacency matrix AG is given by

AC5 =

*......
,

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

+//////
-

.

As α(C5) = 2, it follows that the graph matrix MC5 = 2(I + AC5 )− J of C5 coincides
with the Horn matrix H .
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Based on the formulation (52), de Klerk and Pasechnik [13] proposed two hierar-
chies ζ (r ) (G) and ϑ(r ) (G) of upper bounds for α(G), that are obtained by replacing
in (52) the cone COPn by its subcones C (r )

n andK (r )
n , respectively. In this section, we

present several known results about these two hierarchies and related results for the
graph matrices MG . One of the central questions is whether the hierarchy ϑ(r ) (G)
converges to α(G) in finitely many steps or, equivalently, whether the matrix MG

belongs to
⋃

r K
(r )
n , and what can be said about the minimum number of steps where

finite convergence takes place.

5.1 The hierarchy ζ (r ) (G)

As mentioned above, for an integer r ≥ 0, the parameter ζ (r ) (G) is defined as

ζ (r ) (G) := min{t : t(AG + I) − J ∈ C (r )
n }. (54)

Since int(COPn) ⊆
⋃

r≥0 C
(r )
n , it follows directly that the parameters ζ (r ) (G) con-

verge asymptotically to α(G) as r → ∞. Note that, if G = Kn is a complete graph,
then α(G) = 1 and the matrix I + AG − J is the zero matrix, thus belonging trivially
to the cone C (0)

n , so that 1 = α(Kn) = ζ (0) (Kn). However, finite convergence does
not hold if G is not a complete graph.

Theorem 19 (de Klerk, Pasechnik [13])
Assume G is not a complete graph. Then, we have ζ (r ) (G) > α(G) for all r ∈ N.

By the definition of the cone C (r )
n , the parameter ζ (r ) (G) can be formulated as a

linear program, asking for the smallest scalar t for which all the coefficients of the
polynomial (

∑n
i=1 xi)r xT (t(I + AG ) − J)x are nonnegative. The parameter ζ (r ) (G)

is very well understood. Indeed, Peña, Vera and Zuluaga [43] give a closed-form
expression for it in terms of α(G).

Theorem 20 (Peña, Vera, Zuluaga [43])
Write r+2 = uα(G)+v, whereu, v are nonnegative integers such that v ≤ α(G)−1.

Then we have

ζ (r ) (G) =

(
r+2

2

)(
u
2

)
α(G) + uv

,

where we set ζ (r ) (G) = ∞ if r ≤ α(G) − 2 (since then the denominator in the above
formula is equal to 0).

So the above result shows that the bound ζ (r ) is useless for r ≤ α(G) − 2. Another
consequence is that after r = α(G)2 − 1 steps we find α(G) up to rounding. (See
also [13] where this result is shown for r = α(G)2).

Corollary 1 ([43])
We have bζ (r ) (G)c = α(G) if and only if r ≥ α(G)2 − 1.
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5.2 The hierarchy ϑ (r ) (G)

We now consider the parameter ϑ(r ) (G), for r ∈ N, defined as follows in [13]:

ϑ(r ) (G) := min{t : t(AG + I) − J ∈ K (r )
n }. (55)

Since C (r )
n ⊆ K

(r )
n ⊆ COPn we have α(G) ≤ ϑ(r ) (G) ≤ ζ (r ) (G) for any r ≥ 0, and

thus the parameters ϑ(r ) (G) converge asymptotically to α(G) as r → ∞.
At order r = 0, while the parameter ζ (0) (G) = ∞ is useless, the parameter ϑ(0) (G)

provides a useful bound for α(G). Indeed, it is shown in [13] that ϑ(0) (G) coincides
with the variation ϑ′(G) of the Lovász theta number ϑ(G) (obtained by adding some
nonnegativity constraints); so we have the inequalities α(G) ≤ ϑ′(G) = ϑ(0) (G) ≤
ϑ(G) (see [34, 51]). This connection in fact motivates the choice of the notation
ϑ(r ) (G). For instance, if G is a perfect graph1, then we have ϑ(G) = ϑ(0) (G) = α(G)
(see [20] for a broad exposition). We also have ϑ(C5) = ϑ(0) (C5) (note that C5 is
not a perfect graph since ω(C5) = 2 < χ(C5) = 3). But there exist graphs for which
α(G) = ϑ(0) (G) < ϑ(G) (see, e.g., [3]).

In Theorem 19 we saw that the bounds ζ (r ) (G) are never exact. This raises
naturally the question of whether the (stronger) bonds ϑ(r ) (G) may be exact. Recall
the definition of the graph matrix MG = α(G)(AG + I) − J in (53), and define the
associated polynomial pG := (x◦2)T MG x◦2. Then, for any r ∈ N, we have

ϑ(r ) (G) = α(G) ⇐⇒ MG ∈ K
(r )
n ⇐⇒

( n∑
i=1

x2
i

)r
pG ∈ Σ.

As MG is copositive the polynomial pG is globally nonnegative. The point however
is that pG has zeros in Rn \ {0}. In particular, every stable set S ⊆ V of cardinality
α(G) provides a zero x = χS . Thus the question of whether pG admits a positivity
certificate of the form (

∑n
I=1 x2

i )r pG ∈ Σ for some r ∈ N (as in (9)) is nontrivial. In
[13] it was in fact conjectured that such a certificate exists at order r = α(G) − 1; in
other words, that the parameter ϑ(r ) (G) is exact at order r = α(G) − 1.

Conjecture 1 (de Klerk and Pasechnik [13])
For any graph G, we have ϑ(α(G)−1) (G) = α(G), or, equivalently, we have

MG ∈ K
(α(G)−1)
n .

Comparison of the parameters ϑ(r ) (G) and las(r ) (G)

At the beginning of Section 5 we introduced the parameters las(r ) (G). In [21]
it is shown that, for any integer r ≥ 1, a slight strengthening of the parameter

1 A graph G is called perfect if its clique number ω(G) coincides with its chromatic number
χ(G), and the same holds for any induced subgraph G′ of G. Here ω(G) denotes the maximum
cardinality of a clique (a set of pairwise adjacent vertices) inG and χ(G) is the minimum number
of colors that are needed to color the vertices of G in such a way that adjacent vertices receive
distinct colors. An induced subgraph G′ of G is any subgraph of G of the form G′ = G[U],
obtained by selecting a subsetU ⊆ V and keeping only the edges of G that are contained inU .
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las(r ) (G) (obtained by adding some nonnegativity constraints) is at least as good as
the parameter ϑ(r−1) (G). The bounds las(r ) (G) are known to converge to α(G) in
α(G) steps, i.e., las(α(G)) (G) = α(G). Thus Conjecture 1 asks whether a similar
property holds for the parameters ϑ(r ) (G). While the finite convergence property for
the Lasserre-type bounds is relatively easy to prove (by exploiting the fact that one
works modulo the ideal generated by x2

i − xi for i ∈ V and xi x j for {i, j} ∈ E)),
proving Conjecture 1 seems much more challenging.

Conjecture 1 is known to hold for some graph classes. For instance, we saw above
that it holds for perfect graphs (with r = 0), but it also holds for odd cycles and their
complements – that are not perfect (with r = 1, see [13]). In [21] Conjecture 1 was
shown to hold for all graphs G with α(G) ≤ 8 (see also [43] for the case α(G) ≤ 6).
In fact, a stronger result is shown there: the proof relies on a technical construction
of matrices that permit to certify membership of MG in the cones Q (r )

n (and thus in
the cones K (r )

n ).

Theorem 21 (Gvozdenović, Laurent [21])
Let G be a graph with α(G) ≤ 8. Then we have ϑ(α(G)−1) (G) = α(G), or,

equivalently, MG ∈ K
(α(G)−1)
n .

Whether Conjecture 1 holds in general is still an open problem. However, a weaker
form of it has been recently settled; namely finite convergence of the hierarchy
ϑ(r ) (G) to α(G), or, equivalently, membership of the graphmatrices MG in

⋃
r K

(r )
n .

Theorem 22 (Schweighofer, Vargas [52])
For any graph G, we have ϑ(r ) (G) = α(G) for some r ∈ N. Equivalently, we have

MG ∈
⋃

r K
(r )
n .

In what follows we discuss some of the ingredients that are used for the proof of
this result. Here too, we will use the fact that

⋃
r LAS

(r )
∆n
⊆

⋃
r K

(r )
n =

⋃
r LAS

(r )
Sn−1

(recall Theorem 7) and so we we will consider the quadratic form xT MG x instead
of the quartic form pG = (x◦2)T MG x◦2. Whether the quadratic form xT MG x has
finitely many zeros in the simplex plays an important role. We will first discuss the
case when there are finitely many zeros, in which case one can show a stronger result,
namely membership of MG in

⋃
r LAS

(r )
∆n

(see Theorem 24 below).

As we will see in Corollary 2 below, whether the number of zeros of xT MG x in
∆n is finite is directly related to the notion of critical edges in the graph G. We first
introduce this graph notion.

Critical edges

Let G = (V, E) be a graph. The edge e ∈ E is critical is α(G \ e) = α(G) + 1. Here
G \ e denotes the graph (V, E \ {e}).
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For example, for the above graph, the two dashed edges are its critical edges.

Critical graphs

We say that G is critical if all its edges are critical. For example, odd cycles are
critical graphs. The next figure shows the 5-cycle C5.

Acritical graphs

We say that G is acritical if it does not have critical edges. Every even cycle is
acritical, as well as the Petersen graph. The next figure shows the 6-cycle C6 and the
Petersen graph.

K1
l3
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We now explain the role played by the critical edges in the description of the
zeros of the form xT MG x in the simplex ∆n. First, note that, if S is a stable set of
size α(G), then x = χS/|S | is a zero. However, in general, there are more zeros. A
characterization of the zeros was given in [31] (see also [19]).

Theorem 23 ([31])
Let x ∈ ∆n with support S := {i ∈ V : xi > 0} and let V1,V2, . . . ,Vk denote the

connected components of G[S], the subgraph of G induced by the support S of x.
Then x is a zero of the form xT MG x if and only if k = α(G) and, for all h ∈ [k], Vh

is a clique of G and
∑

i∈Vh
xi = 1

α(G) . In addition, the edges that are contained in S
are critical edges of G.

In particular, we can characterize the graphs G for which the form xT MG x has
finitely many zeros in ∆n.

Corollary 2 ([31])
Let G be a graph. The form xT MG x has finitely many zeros in ∆n if and only if

G is acritical (i.e., G has no critical edge). In that case, the zeros are the vectors of
the form χS/|S |, where S is a stable set of size α(G).

Zeros of the form xT MG x for the cycles C4 and C5

The 4-cycle C4 has vertex set {1, 2, 3, 4} and edges {1, 2}, {2, 3}, {3, 4}, and {4, 1}.
It has stability number α(C4) = 2, it is acritical, and its maximum stable sets are
the sets {1, 3} and {2, 4}. Then, in view of Corollary 2, the only zeros of the form
xT MC4 x in ∆4 are ( 1

2, 0,
1
2, 0) and (0, 1

2, 0,
1
2 ).

The 5-cycle C5 has vertex set {1, 2, 3, 4, 5} and edges {1, 2}, {2, 3}, {3, 4}, {4, 5},
and {5, 1}. It has stability number α(C5) = 2 and it is critical. Then, in view of
Theorem 23, the form xT MC5 x has infinitely many zeros in ∆5. For example, for any
t ∈ (0, 1), the point xt = ( 1

2, 0,
t
2,

1−t
2 , 0) is a zero supported in the two cliques {1}

and {3, 4} (indeed a critical edge). It can be checked that (up to symmetry) all zeros
take the shape of xt for t ∈ [0, 1].

When G is an acritical graph one can show that its graph matrix MG belongs to
one of the cones LAS(r )

∆n
, thus a stronger result than the result from Theorem 22.

Theorem 24 (Laurent, Vargas [31])
Let G be an acritical graph. Then we have MG ∈

⋃
r≥0 LAS

(r )
∆n

.

As LAS(r )
∆n
⊆ K

(r )
n for any r ∈ N, this result implies finite convergence of the

hierarchy of bounds ϑ(r ) (G) to α(G) for the class of acritical graphs.
The proof of Theorem 24 relies on applying Theorem 5. By assumption, G

is acritical, and thus the quadratic form xT MG x has finitely many zeros in ∆n, as
described in Corollary 2. Now it suffices to verify that the zeros satisfy the conditions
of Theorem 5. We next give the (easy) details for the sake of concreteness.



32 Luis Felipe Vargas and Monique Laurent

Lemma 4 ([31])
Let G be an acritical graph and let S be a stable set of size α(G). Then, for

x = χS/α(G), we have (MG x)i > 0 for i < S.

Proof For a vertex i ∈ V \ S, let NS (i) denote the number of neighbours of i in S.
We have NS (i) ≥ 1 because S ∪ {i} is not stable, as S is a stable set of size α(G).
Since G is acritical we must have NS (i) ≥ 2. Indeed, if NS (i) = 1 and j ∈ S is the
only neighbour of i in S, then {i, j} is a critical edge, contradicting the assumption
on G. Now we compute (MG x)i:

(MG x)i =
1

α(G)
((α(G) − 1)NS (i) − (α(G) − NS (i)))

=
1

α(G)
(α(G)NS (i) − α(G)) > 0,

where the last inequality holds as NS (i) ≥ 2. �

The above strategy does not extend for general graphs (having some critical edges)
and also the result of Theorem 24 does not extend. For example, if G = C5 is the
5-cycle (whose edges are all critical), then MG is the Horn matrix that does not
belong to any of the cones LAS(r )

∆n
(as we saw in Section 4.2). Hence another strategy

is needed to show membership of MG in
⋃

r K
(r )
n for general graphs. We now sketch

some of the key ingredients that are used to show this result.

Some key ingredients for the proof for Theorem 22

For studying Conjecture 1 and, in general, the membership of the graph matrices
MG in the cones K (r )

n , it turns out that the graph notion of isolated nodes plays a
crucial role.

A node i of a graph G is said to be an isolated node of G if i is not adjacent to
any other node of G. Given a graph G = (V, E) and a new node i0 < V , the graph
G ⊕ i0 is the graph (V ∪ {i0}, E) obtained by adding i0 as an isolated node to G. The
following result makes the link to Conjecture 1 clear.

Theorem 25 (Gvozdenović, Laurent [21])
Assume that, for any graph G = ([n], E) and r ∈ N, we have

MG ∈ K
(r )
n =⇒ MG⊕i0 ∈ K

(r )
n+1. (56)

Then Conjecture 1 holds.

Moreover, it was conjectured in [21] that (56) holds for each r ∈ N (which, if true,
would thus imply Conjecture 1). However, this conjecture was disproved in [31].

Adding an isolated node may not preserve membership in K (r )
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Consider the 5-cycle C5, whose graph matrix coincides with the Hall matrix:
MC5 = H . As we have seen earlier, MC5 ∈ K

(1)
5 . In [31] it is shown that, if

G = C5 ⊕ i1 ⊕ · · · ⊕ i8 is the graph obtained by adding eight isolated nodes to the
5-cycle, then MG ∈ K

(1)
13 , but, if we add one more isolated node i0 to G (thus we

add nine isolated nodes to C5), then we have MG⊕i0 < K
(1)

14 .

Hence, one cannot rely on the result of Theorem 25 and a new strategy is needed
for solving Conjecture 1. The following variation of Theorem 25 is shown in [32],
which can serve as a basis for proving a weaker form of Conjecture 1, namely
membership of MG in

⋃
r K

(r )
n .

Theorem 26 (Laurent and Vargas [32])
The following two assertions are equivalent.

(i) For any graph G = ([n], E), MG ∈
⋃

r≥0K
(r )
n implies MG⊕i0 ∈

⋃
r≥0K

(r )
n+1.

(ii) For any graph G = ([n], E), we have MG ∈
⋃

r≥0K
(r )
n .

This result is used as a crucial ingredient in [52] for showing Theorem 22; namely,
the authors of [52] show that Theorem 26 (i) holds. The starting point of their proof
is to use the fact that

⋃
r≥0K

(r )
n =

⋃
r≥0 LAS

(r )
Sn−1 (by Theorem 7) and then to show

that membership of the graph matrices in
⋃

r≥0 LAS
(r )
Sn−1 is preserved after adding

isolated nodes. Recall that pG = (x◦2)T MG x◦2 =
∑

i, j∈V x2
i x2

j (MG )i j .

Theorem 27 (Schweighofer and Vargas [52])
Let G = ([n], E) be a graph. Assume that pG = σ0 + q(

∑n
i=1 x2

i − 1) for some
σ0 ∈ Σ and q0 ∈ R[x1, . . . , xn]. Then pG⊕i0 = σ1 + q1(x2

i0
+

∑n
i=1 x2

i − 1) for some
σ1 ∈ Σ and q1 ∈ R[xi0, x1, . . . , xn].

Here too, the proof of this theorem uses the theory of pure states in real algebraic
geometry (as described in [8]). The technical details are too involved and thus go
beyond the scope of this chapter, we refer to [52] for the full details. As explained
above, this theorem implies Theorem 22. The result (and proof) of Theorem 27,
however, does not give any explicit bound on the degree of σ1 in terms of the degree
of σ0. Hence one cannot infer any information on the degree of a representation of
pG in Σ + I (

∑n
i=1 x2

i − 1). In other words, this result gives no information on the
number of steps at which finite convergence of ϑ(r ) (G) to α(G) takes place.

Therefore, the status of Conjecture 1 remains widely open and its resolution
likely requires new techniques. There is some evidence for its validity; for instance,
Conjecture 1 holds for perfect graphs and for graphsG with α(G) ≤ 8 (Theorem 25),
and any graph matrix MG belongs to some cone K (r )

n (Theorem 22). These facts
also make the search for a possible counterexample a rather difficult task.
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6 Concluding remarks

In this chapter we have discussed several hierarchies of conic inner approximations
for the copositive cone COPn, motivated by various sum-of-squares certificates for
positive polynomials on Rn, Rn+, the simplex ∆n, and the unit sphere Sn−1. The main
players are Parrilo’s cones K (r )

n , originally defined as the sets of matrices M for
which the polynomial (

∑n
i=1 x2

i )r (x◦2)T M x◦2 is a sum of squares of polynomials,
thus having a certificate “with denominator" (for positivity on Rn). The question
whether these cones cover the full copositive cone is completely settled: the answer
is positive for n ≤ 5 and negative for n ≥ 6. The conesK (r )

n also capture the class of
copositive graph matrices, of the form MG = α(G)(AG + I) − J for some graph G.
The challenge in settling these questions lies in the fact that, for any copositive matrix
lying on the border of COPn, the associated form has (nontrivial) zeros (and thus is
not strictly positive), so that the classical positivity certificates do not suffice to claim
membership in the conic approximations, and thus other techniques are needed.

A useful step is understanding the links to other certificates “without denomina-
tors" for positivity on the simplex or the sphere, which lead to the Lasserre-type cones
LAS(r )

∆n
and LAS(r )

Sn−1 . Roughly speaking, the simplex-based cones form a weaker hi-
erarchy, while the sphere-based cones provide an equivalent formulation for Parrilo’s
cones (see Theorem 7 and relation (40) for the exact relationships). Membership in
the simplex-based cones can be shown for some classes of copositivematrices, which
thus implies membership in Parrilo’s cones.

We recall Conjecture 1 that asks whether any graph matrix MG belongs to the
cone K (r )

n of order r = α(G) − 1, still widely open for graphs with α(G) ≥ 9.
The resolution of Conjecture 1 would offer an interesting result that is relevant to
the intersection of combinatorial optimization (about the computation of α(G)),
matrix copositivity (membership of a class of structured copositive matrices in one
of Parrilo’s approximation cones), and real algebraic geometry (a sum-of-squares
representation result with an explicit degree bound for a polynomial with zeros).

Matrix copositivity revolves around the question of deciding whether a quadratic
form is nonnegative on Rn+. This fits, more generally, within the study of copositive
tensors, thus going from quadratic forms to forms with degree d ≥ 2. There is a
wide literature on copositive tensors; we refer, e.g., to [41, 46, 54] and further refer-
ences therein. The relationships between the various types of positivity certificates
discussed in this chapter for the case d = 2 extend to the case d ≥ 2. (Note indeed
that Theorems 6 and 8 hold for general homogeneous polynomials.) An interesting
research direction may be to understand classes of structured symmetric tensors that
are captured by some of the corresponding conic hierarchies.
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