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Abstract
The discovery of gas in Groningen in 1959 has been a massive boon to the Dutch
economy. From the 1990s onwards, though, gas production has led to induced seis-
micity. In this paper, we carry out a comprehensive exploratory analysis of the
spatio-temporal earthquake catalogue. We develop a non-parametric adaptive kernel
smoothing technique to estimate the spatio-temporal hazard map and to interpolate
monthly well-based gas production statistics. Second- and higher-order inhomoge-
neous summary statistics are used to show that the state-of-the-art rate-and-state
models for the prediction of seismic hazard fail to capture inter-event interaction in the
earthquake catalogue. Based on these findings, we suggest a modified rate-and-state
model that also takes into account changes in gas production volumes and uncertainty
in the pore pressure field.

Keywords Adaptive bandwidth selection · Induced seismicity · Inhomogeneous
summary statistics · Kernel smoothing · Pore pressure · Spatio-temporal point
process

Mathematics Subject Classification 60G55

1 Introduction

In 1959, a large gas field was discovered in Groningen, a province in the north of the
Netherlands. Its recoverable gas volume has been estimated at around 2,900 billion
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normal cubic metres (Nbcm). The extraction rate has varied considerably over the
years (NAM 2022). After a modest start, large amounts were being produced annually
during the early 1970s, rising to approximately 85 Nbcm in 1976. During the next
decade, the production volumes tended to decrease, followed by somewhat higher
values during the first half of the 1990s. Production fell again during the second half
of the decade, before rising in the new millennium to over 53 Nbcm in 2013.

From the 1990s, earthquakes were being registered in the previously tectonically
inactive Groningen region (KNMI 2022). In particular, the earthquake near Huizinge
in August 2012 with a magnitude of 3.6 led to public demand for a reduction of
gas production volumes. The government reacted with legislation to phase out gas
extraction, and by 2020, production had fallen to less than 8 Nbcm (NAM 2022).

Numerous studies have been conducted on the Groningen field. For example,
Geerdink (2014) models the intervals between earthquakes in terms of the cumu-
lative and annual production rates, pressure, subsidence and fault density. More recent
studies include those by Post et al. (2021) and Trampert et al. (2022). Van Hove et al.
(2015) propose a Poisson auto-regression model for the annual hazard maps in terms
of subsidence, distance to major fault lines, and gas extraction in previous years. Both
Hettema et al. (2017) and Vlek (2019) explore the temporal development of seismic-
ity in Groningen by proposing a linear model for the relation between the number of
earthquakes over specific periods and gas production volumes. Sijacic et al. (2017)
focus on the detection of changes in the rate of a temporal Poisson point process by
Bayesian and frequentist methods. Bourne et al. (2018) modify Ogata’s space–time
model (Ogata 1988) to include changes in stress level and estimate the probability
of fault failures. Other authors, notably Candela et al. (2019), Dempsey and Suckale
(2017) and Richter et al. (2020), discuss the modelling of seismicity in relation to
stress changes based on a differential equation and embed these in a space–time Pois-
son point process. For amore detailed review of the advantages and limitations of some
important modelling approaches including deterministic physical models, statistical
models, machine learning and hybrid approaches, we refer to Kűhn et al. (2022).

In a previous paper (Baki and Van Lieshout 2022), we investigated the temporal
development of seismicity inGroningen using cumulative and recent gas production as
dependent variables in a regressionmodel.We concluded that a decrease in production
leads to decreased seismicity. Here, we extend the analysis to take into account spatial
variations. First, we calculate non-parametric estimates for the spatio-temporal hazard
map by means of an adaptive kernel smoother (Abramson 1982; Davies et al. 2018;
Van Lieshout 2021) and generalise the bandwidth selection approach suggested by
Van Lieshout (2021, 2022) to the space–time domain. Using this map, we investigate
whether a Poisson point process model would suffice. Employing inhomogeneous
summary statistics, we find that there is interaction which cannot be accounted for by
Poisson models, including the state-of-the-art rate-and-state models (Candela et al.
2019; Dempsey and Suckale 2017; Richter et al. 2020). Since these models rely on
differential equations for changes in Coulomb stress or pore pressure, we shift our
attention to pressure and production data in the public domain. The production values
are measured monthly at wells, whereas pressure is gauged at irregular times at some
wells as well as at several observation and seismic monitoring stations. To obtain a
gas production map, we use an adaptive kernel smoothing technique with local edge
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Fig. 1 Spatial (leftmost panel) and temporal (rightmost panel) projections of the 332 earthquakes of mag-
nitude 1.5 or larger with epicentres in the Groningen gas field that occurred in the period from 1 January
1995 up to 31 December 2021. The coordinates are in the UTM system (zone 31), with kilometre as the
unit of measure

correction (VanLieshout 2012). For the pressure values,wefit aGaussian randomfield,
the mean function of which is modelled as a polynomial in space and time. Such an
approach allows us to rapidly estimate pressure from sparse data and acknowledges the
inherent uncertainty, but it ignores the field permeability. More elaborate approaches
would require detailed expert knowledge and reservoir modelling (De Zeeuw and
Geurtsen 2018). Finally, we propose a modification of the rate-and-state models of
Candela et al. (2019), Dempsey and Suckale (2017) and Richter et al. (2020) that may
exhibit clustering, accounts for the uncertainty in pore pressure, takes into account
the varying gas production, and is amenable to monitoring by means of Markov chain
Monte Carlo methods based on the history of recorded earthquakes.

This paper is organised as follows. In Sect. 2, we describe the data. Section3 carries
out a comprehensive second-order analysis, and Sect. 4 is devoted to extrapolation of
gas production and pore pressure measurements from wells to the entire gas field. The
paper closes with our proposed modification of the Coulomb rate-and-state seismicity
model.

2 Data

Data on theGroningen gas field and the induced earthquakes are available fromvarious
sources.

2.1 Shapefiles for the Groningen Gas Field

Shapefiles for the Groningen gas field can be downloaded from the Geological Survey
of the Netherlands TNO website (TNO 2022). The files are updated monthly and
contain a polygonal approximation of the border of the field. In this paper, we use
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the map that was published in April 2022. The coordinates of the field are given in
the UTM system using zone 31 with metre as the spatial unit, which we rescale to
kilometre. The boundary is outlined in the leftmost panel in Fig. 1.

2.2 Earthquake Catalogue

An earthquake catalogue for the Netherlands is maintained by the Royal Dutch Mete-
orological Office KNMI (2022). Data on the period before 1995 are not reliable due
to the inaccuracy of the equipment used. Moreover, a threshold on the magnitude is
necessary to guarantee data quality. According to Dost et al. (2012), for data from
1995, earthquakes of magnitude 1.5 or larger can be reliably recorded; a threshold of
1.3 can be used for the period from 2010 onwards due to an extension of the moni-
toring network (Hettema et al. 2017). We use data over the time window from 1995
to 2021 and therefore work with a magnitude 1.5 threshold. The coordinates of the
epicentres are listed in terms of latitude and longitude. To avoid distortions and for
compatibility with the gas field map, we project them to UTM coordinates (zone 31,
in kilometres). This procedure results in 332 earthquakes, the spatial and temporal
projections of which are shown in Fig. 1. The leftmost panel depicts the locations of
all earthquakes regardless of time. To obtain the rightmost picture, the earthquakes
are ordered chronologically. For each earthquake, its occurrence time is then plotted
against its index number. Thus, when the time between successive earthquakes is long,
the curve is steep; flatter pieces correspond to shorter inter-event times.

2.3 Wells

The exploration and production company NAM maintains a number of production,
injection and observationwells. Their coordinates (in theAmersfoort projected coordi-
nate system used in the Netherlands) are available from the production plans published
on NAM (2022). For compatibility, we transform the Amersfoort coordinates to UTM
(zone 31, in kilometres). Of the 52 locations in the Groningen gas field shown in Fig. 2,
29 are production wells (indicated by a cross), one is an injection well (indicated by
a circle) and 22 are observation wells (indicated by a triangle).

A few remarks are in order. Firstly, some production wells (at Midwolda, Noord-
broek, Nieuw Scheemda and Uiterburen) were taken out of production around the
year 2010 and are no longer in use. Secondly, two south-westerly observation wells
(at Kolham and Harkstede) were drilled in a peripheral field rather than in the main
reservoir. Finally, up to the middle of the 1970s, small amounts of gas were extracted
from wells not earmarked for production.

2.4 Gas Extraction

Monthly production values from the start of preliminary exploration in February 1956
up to and including December 2021 were kindly provided by Mr Rob van Eijs from
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Fig. 2 Production (crosses), observation (triangles) and injection (circles) well locations in the Groningen
gas field. The units are as in Fig. 1

Shell for all 29 production wells. The figures were given in cubic metres, which we
rescale to Nbcm.

In Fig. 4, we show the production time series for six wells chosen to show a range of
different patterns: Bierum in the north-east, De Paauwen in the centre and Eemskanaal
in the west of the gas field, Amsweer in the central east, Tusschenklappen in the south
and Zuiderpolder in the south-east. Their locations are indicated on the map in Fig. 3.

One may observe that not all wells were drilled at the same time and that some
were not in use during the entire period. Also, there are differences in the amount of
gas extracted: The production figures for Eemskanaal-13 are lower than average. The
sharp decline in production from 2014 following legislation is readily apparent.

2.5 Pore Pressure Observations

On the website of NAM (2022b), pore pressure observations are available over the
period from April 1960 until November 2018. In total, there are 2,056 observations.
However, these data need some cleaning, as discussed in the Appendix.

After cleaning, we are left with 2,009 pore pressure measurements (over the period
from April 1960 until November 2018). Figure5 shows time series at four locations: a
production well in the south-west (Slochteren), two observation wells (Harkstede and
Kolham) in peripheral fields and the injection well at Borgweer in the east. Their loca-
tions are indicated in the map in Fig. 3. Generally, the graph is initially flat, followed
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Fig. 3 A selection of wells indicated by name. The units are as in Fig. 1
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Fig. 4 Monthly production in Nbcm against time for the wells Bierum, Eemskanaal-13 and De Paauwen
(left to right, top row) and Amsweer, Tusschenklappen and Zuiderpolder (left to right, bottom row)

by a decrease. Note that the measurements in the periphery are higher than those in
the main reservoir.
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Fig. 5 Pore pressure measurements in bara against time for Slochteren (discs), Harkstede (crosses), Kolham
(triangles) and Borgsweer (circles)

3 Exploratory Data Analysis

In this paper, we treat the earthquake catalogue as a spatio-temporal point pattern, a
realisation of a point process in space and time. Formally, let � be a simple spatio-
temporal point process in WS × WT for bounded open sets WS ⊂ R

d and WT ⊂ R,
and suppose that its first-order moment measure exists and is finite and absolutely
continuous with respect to the product of Lebesgue measures � in space and time
(see e.g. Chiu et al. 2013). Write λ for its Radon–Nikodym derivative, known as the
intensity function, and N (� ∩ (WS × WT )) for the number of points placed by � in
WS ×WT . Intuitively speaking, λ(s, t)dsdt is the probability that � places a point in
the infinitesimal region dsdt around (s, t) ∈ WS × WT .

As usual in spatial statistics, we start with an empirical exploration of the trend and
interaction.

3.1 Adaptive Kernel Estimation of the Intensity Function

Our first step is to estimate the intensity function of the point process of earthquakes,
which describes how many tremors are expected as a function of place and time.

The standard technique to do so is kernel estimation as proposed by Diggle (1985).
This technique can be seen as a generalisation of the histogram. Briefly, a Gaussian
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kernel (say) with a given standard deviation hS in space and hT in time is centred
at each of the points in a realisation of � and their sum is reported. The choice of
the bandwidths hS and hT is crucial. If one chooses bandwidths that are too small,
the kernels concentrate around the observed earthquakes, which leads to spurious hot
spots, especially for clustered patterns. If one takes bandwidths that are too large, the
kernels spread out too far, which in turn results in the loss of structural details. Some
asymptotic results for optimal choices of bandwidth are available (Chacón and Duong
2018; Van Lieshout 2020; Lo 2017), but practical rules of thumb seem to be lacking.

The risk of using the same bandwidths hS and hT at all points of � is that, as with
all one-size-fits-all solutions, this approach tends to oversmooth in regions that are
rich in points, while at the same time it does not smooth enough in sparser regions.
To overcome this drawback, we propose using an adaptive smoother as introduced for
classic random variables by Abramson (1982). In a spatial context, such estimators
were studied by Davies et al. (2018) for Poisson point processes and by Van Lieshout
(2021, 2022) for general point processes with interaction between the points. The
underlying idea is to weight the bandwidth at (s, t) ∈ � by a scalar c(s, t) that is
inversely proportional to

√
λ(s, t). In this way, the kernel estimator adapts itself to

the observed pattern: the bandwidth decreases in point-rich regions and is increased
in regions with fewer points. The power 1/2 is motivated by asymptotics (Abramson
1982; Van Lieshout 2021). In practice, other powers could also be used.

Formally, set

λ̂A(x0; hS, hT ) =
∑

(s,t)∈�∩(WS×WT )

κ(H(c(s, t)hS, c(s, t)hT )−1(x0 − (s, t)))

w((s, t), hS, hT ) c(s, t)3 h2S hT
(1)

for x0 ∈ WS × WT . Here, H(h1, h2), h1, h2 > 0, is a 3 × 3 diagonal matrix whose
first two entries are h1 and whose third entry is h2,

c(s, t) =
⎛

⎜⎝
λ(s, t)

(∏
z∈�∩(WS×WT ) λ(z)

)1/N (�∩(WS×WT ))

⎞

⎟⎠

−1/2

, (2)

w((s, t), hS, hT ) is an edge correction term (see below) and κ is a symmetric proba-
bility density function, the kernel.

We make a few remarks. Firstly, because of the geometric averaging in (2), c is
dimension-less. Secondly, since λ is unknown, c(s, t) must be estimated. We will
therefore replace λ(s, t) in (2) by kernel estimates λ̂(s, t) using a global bandwidth
(Steps 1 and 2 in Algorithm 1).

The adaptive kernel estimator (1) relies on spatial and temporal bandwidths, hS
and hT . To select the bandwidths, several approaches can be taken. For example,
asymptotic expansions of the mean integrated squared error provide explicit formulas
for the optimal choice of hS and hT (Van Lieshout 2022). However, these formulas
depend on the unknown intensity and its derivatives, making them unsuitable for
direct practical application. For Poisson point processes, for which the likelihood is
available in explicit form, a leave-one-out cross-validation approach might be taken.
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Fig. 6 Top row: Spatial projection of the 332 earthquakes of magnitude 1.5 or larger in the Groningen gas
field that occurred in the period from 1 January 1995 up to 31 December 2021, marked by time (in days from
1 January 1995, leftmost panel) and byAbramsonweights c(s, t) (rightmost panel). Bottom row: Projections
on space of global (leftmost panel) and adaptive (rightmost panel) kernel estimates of intensity (per square
km) for the data in Fig. 1. The optimal pilot bandwidths are hg,S = 9.4km and hg,T = 182.5days, whilst
ha,S = 6.9km and ha,T = 212.9days

From a numerical point of view, as the likelihood involves an integral over the spatio-
temporal observation window, the approach is computationally costly. Indeed, the
windowmust be discretised into a lattice, and for each lattice point and every potential
bandwidth, the kernel estimator must be evaluated. Moreover, the Poisson assumption
may not hold. Instead, we propose the following computationally easy algorithm that
does not rely on any model assumptions. It relies on the Campbell–Mecke theorem
(Chiu et al. 2013), which states that

E

⎡

⎣
∑

x∈�∩(WS×WT )

1

λ(x)

⎤

⎦ = �(WS)�(WT ).
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The right-hand side, the volume of the space–time window WS × WT , is readily
available. The left-hand side may be estimated from the data patternψ and an estimate
λ̂(·; hS, hT ) of the intensity using a kernel estimator with bandwidths hS and hT .
For good choices of bandwidth, the result should be close to the theoretical value.
The idea is then to minimise the difference between the estimated left-hand side and
�(WS)�(WT ) over hS and hT .

Algorithm 1 Let ψ be a non-empty spatio-temporal point pattern that is observed in
the window WS × WT . Then

1. Choose global bandwidths hg,S, hg,T by minimising

∣∣∣∣∣∣

∑

x∈ψ∩(WS×WT )

1

λ̂(x; hS, hT )
− �(WS)�(WT )

∣∣∣∣∣∣
(3)

over hS, hT > 0 (with minimal h2ShT in the case of multiple solutions), where

λ̂(x; hS, hT ) = 1

h2ShT

∑

y∈ψ∩(WS×WT )

κ
(
H(hS, hT )−1(x − y)

)
.

2. Calculate, for each x ∈ ψ ∩ (WS × WT ), the edge-corrected pilot estimator

λ̂c(x; hg,S, hg,T ) = 1

h2g,Shg,T

∑

y∈ψ∩(WS×WT )

κ
(
H(hg,S, hg,T )−1(x − y)

)

w(y, hg,S, hg,T )

with local edge correction weights

w(y, hg,S, hg,T ) = 1

h2g,Shg,T

∫

WS×WT

κ
(
H(hg,S, hg,T )−1(z − y)

)
dz.

3. Choose adaptive bandwidths ha,S, ha,T by minimising

∣∣∣∣∣∣

∑

x∈ψ∩(WS×WT )

1

λ̂A(x; hS, hT )
− �(WS) �(WT )

∣∣∣∣∣∣

over hS, hT > 0 (with minimal h2ShT in the case of multiple solutions), where

λ̂A is given by (1) and (2) with w ≡ 1 upon plugging in the edge-corrected pilot
estimator λ̂c for λ.

Local edge correction weights, as suggested by Van Lieshout (2012), for the adap-
tive kernel estimator take the form

w(y, ha,S, ha,T ) =
∫

WS×WT

κ
(
H(ĉ(y) (ha,S, ha,T ))−1(z − y)

)

h2a,Sha,T (ĉ(y))3
dz
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Fig. 7 Left: Expected number of earthquakes against time using global (broken line) and adaptive (solid
line) kernel estimates for the data in Fig. 1 over 27 equal time intervals of approximately a year. The optimal
pilot bandwidths are hg,S = 9.4km and hg,T = 182.5days, whilst ha,S = 6.9km and ha,T = 212.9days.
Right: Curve of (hT , hS) for which the objective function (3) in Step 1 of Algorithm 1 is equal to zero. The
spatial unit is a kilometre. The temporal unit is a day

and ensure that the integral of (1) over WS × WT is equal to the number of points in
� ∩ (WS ×WT ). In selecting the bandwidth in Steps 1 and 3 of Algorithm 1, no edge
correction is applied in order to obtain a clear optimum (Cronie and Van Lieshout
2018; Van Lieshout 2022).

Thefirst and third steps aremodifications to space–time of, respectively, theCronie–
Lieshout bandwidth selector (Cronie and Van Lieshout 2018) and the adaptive selector
of Van Lieshout (2022) for purely spatial point processes. An important difference is
that in space, one optimises over a single parameter, and usually, but not always, there
is only one minimiser. In the space–time domain, the optimisation is done with respect
to two parameters, hS and hT . Therefore, as a rule, a curve of minimisers is found in
Steps 1 and 3 of Algorithm 1 (cf. Fig. 7). We pick the optimiser having the smallest
scale h2ShT .

For our earthquake catalogue, the results are shown in Figs. 6 and 7. The minimal-
scale minimisers of Eq. (3) are hg,S = 9.4km and hg,T = 182.5days. The
corresponding edge-corrected projections on space and time are shown in, respec-
tively, the bottom left panel in Fig. 6 and the broken line in the left panel in Fig. 7.
They should be compared with the projections of the edge-corrected adaptive kernel
estimate based on the minimisers ha,S = 6.9km and ha,T = 212.9days obtained in
Step 3 of Algorithm 1 shown in the bottom right panel in Fig. 6 and the solid line in the
left panel in Fig. 7. Note that λ̂A attains higher values in the central reservoir than λ̂,
and lower values near the eastern border of the gas field. From a temporal perspective,
the extremes in years with a large number of earthquakes are somewhat more pro-
nounced for the adaptive kernel estimate. Figure6 also depicts the Abramson weights
c(s, t). The weights are larger in the periphery and early in time, to compensate for
the smaller number of earthquakes.
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3.2 Inhomogeneous Spatio-Temporal K- and J-Functions

Having estimated the trend, we now turn our attention to the inter-point interactions. To
quantify such interaction, information about the joint distributions of tuples of points is
required, which is formalised by the higher-order analogues of the intensity function,
the product densities λ(n). Heuristically, λ(n)((s1, t1), . . . , (sn, tn)) ds1dt1 · · · dsndtn
is the probability that� places points at each of the infinitesimal regions dsidti around
(si , ti ), i = 1, . . . , n.

A spatio-temporal point process � on R
2 × R is said to be intensity-reweighted

moment stationary (IRMS) (Cronie andVanLieshout 2015) if its product densitiesλ(n)

of all orders exist, λ̄ = inf(s,t) λ(s, t) > 0 and, for all n ≥ 1, ξn is translation-invariant
in the sense that

ξn((s1, t1) + (a, b), . . . , (sn, tn) + (a, b)) = ξn((s1, t1), . . . , (sn, tn))

for almost all (s1, t1), . . . , (sn, tn) ∈ R
2 × R and all (a, b) ∈ R

2 × R. Here, ξn are
the n-point correlation functions defined in terms of the λ(n) by setting ξ1 ≡ 1 and for
other n recursively by

λ(n)((s1, t1), . . . , (sn, tn))∏n
k=1 λ(sk, tk)

=
n∑

k=1

∑

D1,...,Dk

k∏

j=1

ξ|Dj |((si , ti ) : i ∈ Dj ), (4)

where
∑

D1,...,Dk
is a sum over all possible k-sized partitions {D1, . . . , Dk}, Dj �= ∅,

of the set {1, . . . , n}, and |Dj | denotes the cardinality of Dj . For a Poisson point
process, in which there are no correlations between the points, ξn ≡ 0 for n ≥ 2. The
point process is said to be second-order intensity-reweighted stationary (SOIRS) if the
translation invariance holds up to n = 2 (Gabriel and Diggle 2009).

Various summary statistics exist to explore inter-point interactions. Write

ShThS = {(s, t) ∈ R
2 × R : ‖s‖ ≤ hS, |t | ≤ hT }

for the spatio-temporal cylinder with spatial radius hS and temporal range hT . It
has volume 2πh2ShT . Let � be an IRMS spatio-temporal point process. Then, for
n = 1, 2, . . ., the statistics

Jn(hS, hT ) =
∫

S
hT
hS

· · ·
∫

S
hT
hS

ξn+1((0, 0), (s1, t1), . . . , (sn, tn))
n∏

i=1

dsidti

quantify cumulative correlations up to ranges hS ≥ 0 in space and hT ≥ 0 in time.
Multiple orders can be combined. For example, Van Lieshout (2011) proposed

Jinhom(hS, hT ) = 1 +
∞∑

n=1

(−λ̄)n

n! Jn(hS, hT ) (5)
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Fig. 8 Graphs of (K̂inhom(r , 100r)/(2π))1/3 against r (solid line, leftmost panel), and graphs of Ĝ(1 −
uyr ,100r ) (solid line, rightmost panel) and Ĝ!y(1− uyr ,100r ) (broken line, rightmost panel) against r for the
data in Fig. 1. The spatial unit is a kilometre. The temporal unit is a day

for all spatial radii hS ≥ 0 and temporal ranges hT ≥ 0 for which the series is
absolutely convergent. Values greater than 1 are indicative of repulsion,whereas values
smaller than 1 suggest clustering. For further details, the reader is referred to Cronie
and Van Lieshout (2015). Truncating at n = 1,

Jinhom(hS, hT ) − 1 ≈ −λ̄
(
Kinhom(hS, hT ) − �

(
ShThS

))

in terms of the inhomogeneous K -function

Kinhom(hS, hT ) =
∫

S
hT
hS

[ξ2((0, 0), (s1, t1)) + 1] ds1dt1

of Gabriel and Diggle (2009), which is well defined under the SOIRS assumption. Val-
ues greater or smaller than the volume of ShThS are indicative of, respectively, clustering
and inhibition between points.

In practice, one must estimate these statistics based on a pattern observed in WS ×
WT . The definition of the inhomogeneous J -function does not immediately suggest
a suitable estimator. However, Cronie and Van Lieshout (2015) showed that, for all
y ∈ R

2 × R,

Jinhom(hS, hT ) =
G !y

(
1 − uy

hS ,hT

)

G
(
1 − uy

hS ,hT

) (6)
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whenever well defined and the denominator is greater than zero. Here, the function
uy
hS ,hT

is defined by

uy
hS ,hT

(s, t) = λ̄1{‖a − s‖ ≤ hS, |b − t | ≤ hT }
λ(s, t)

, y = (a, b) ∈ R
2 × R,

and G is the generating functional of �, that is,

G
(
1 − uy

hS ,hT

)
= E

⎡

⎣
∏

(s,t)∈�

(
1 − λ̄1{‖a − s‖ ≤ hS, |b − t | ≤ hT }

λ(s, t)

)⎤

⎦

for hS, hT ≥ 0, under the convention that empty products take the value 1. G !y is
defined similarly in terms of the conditional distribution of �\{y} given that there is a
point of � at y. Intuitively, the numerator in (6) may be thought of as the probability
that the nearest neighbour of a typical point y of the point process does not lie in a
cylinder ShThS centred at y. Similarly, the denominator represents the probability that
this cylinder centred at some arbitrary origin does not contain any points of the point
process.

Being expectations, the numerator and denominator in Eq. (6) can be estimated in
a straightforward manner. Write W�hS

S for the set of points in WS that are at least hS
away from the border of WS , and let W

�hT
T be the similarly eroded temporal domain.

Then, given a finite point grid L ⊆ WS × WT ,

1

N
(
L ∩

(
W�hS

S × W�hT
T

))
∑

l∈L∩
(
W

�hS
S ×W

�hT
T

)

⎡

⎢⎢⎣
∏

x∈�∩
(
l+S

hT
hS

)

(
1 − λ̄

λ(x)

)
⎤

⎥⎥⎦

is an unbiased estimator of the denominator in (6). An unbiased estimator for the
numerator is obtained analogously. Finally,

K̂inhom(hS, hT ) = 1

�
(
W�hS

S

)
�
(
W�hT

T

)
∑

x∈�∩
(
W

�hS
S ×W

�hT
T

)
∑

x �=y∈�∩
(
x+S

hT
hS

)
1

λ(x)λ(y)

is an unbiased estimator of Kinhom(hS, hT ). Note that the intensity functions are
unknown. A practical solution is to plug in their estimated counterparts (cf. Sect. 3.1).

For the earthquake catalogue depicted in Fig. 1, consider Fig. 8. The solid line in the
leftmost panel in the figure is the graph of (K̂inhom(r , 100r)/(2π))1/3 for the earth-
quake data. It lies above the graph of the same function for a Poisson point process
(shown as a broken line in the leftmost panel in the figure), suggesting attraction
between the points. In the rightmost panel in Fig. 8, the graph of Ĝ(1 − uy

r ,100r ) esti-

mated from the data lies above that of Ĝ !y(1− uy
r ,100r ), which confirms the suggested

clustering.
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Fig. 9 The graph of∑
(s,t)∈φ λ̂A((s, t), φ; h)−1 as a

function of bandwidth h (solid
line, in kilometres). The dotted
horizontal line is drawn at
969.2445, the area of the gas
field in square kilometres. The
pilot bandwidth is
hg,S = 7.6km
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4 Explanatory Variables

Gas production and pore pressure (cf. Sects. 2.4 and 2.5)maywell have an effect on the
earthquake rates. However, they are measured only for a limited number of locations
and times. Therefore, in this section, we discuss how to calculate appropriate values
for the entire space–time domain.

4.1 Non-parametric Smoothing of Gas ProductionValues

Monthly production values are available for the 29 productionwells shownby a cross in
Fig. 2 over the time period from 1956 to 2021. The gas extracted from the Eemskanaal-
13 borehole is listed separately from the other ones at the Eemskanaal site. This is
because the Eemskanaal-13 pipe is not drilled vertically but bends underground in
such a way that it is depleting the Harkstede block (cf. Fig. 3). Therefore, we assign
its production to the location of the observation well at Harkstede (Alternatively, one
may use the deviation data from TNO (2022)). Thus, we end up with a spatial pattern
of 30 points: the locations of the 29 production wells as well as the Harkstede proxy
for the Eemskanaal-13 pipe.

In order to smooth out the production, an adaptive kernel method similar to that
proposed in Sect. 3 for the intensity function can be used. More specifically, write
V (s, t) ≥ 0 for the volume of gas produced at a well at s in month t , and write φ

for the well pattern. We then use the spatial counterpart of Algorithm 1 proposed by
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Fig. 10 Smoothed monthly gas production over January 2012 (leftmost panel) and January 2021 (rightmost
panel) in Nbcm per square kilometre. The pilot bandwidth is hg,S = 7.6 km, whilst ha,S = 6.9 km

Van Lieshout (2021, 2022) to select bandwidths hg,S and ha,S and set, for s0 ∈ WS ,
t0 ∈ WT ,

λ̂V ((s0, t0), φ) =
∑

(s,t)∈φ

V (s, t)1{t0 ∈ i(t)}
w(s, ha,S)h2a,Sĉ(s; hg,S)2�(i(t))

κ

(
s0 − s

ha,Sĉ(s; hg,S)
)

based on spatial kernel κ and using local edge correction weights w (cf. Sect. 3). In
time, V (s, t) is spread evenly over the �(i(t)) days in the month i(t) ⊂ WT indexed
by t . Since

∫

WS×WT

λ̂V ((s, t), φ)dsdt =
∑

(s,t)∈φ

V (s, t)

w(s, ha,S)

∫

WS

1

h2a,S ĉ(s; hg,S)2
κ

(
s0 − s

ha,S ĉ(s; hg,S)
)
ds0

=
∑

(s,t)∈φ

V (s, t),

the total production is preserved.
For the data discussed in Sect. 2.4, Algorithm 1 yields a pilot bandwidth hg,S =

7.6km and ha,S = 6.9km. We illustrate Step 3 of Algorithm 1 in Fig. 9. The solid
line is the graph of the sum of inverse point estimates of intensity, and the horizontal
dotted line indicates the volume of WS . The point of intersection defines ha,S , here
6.9km. The resulting gas production maps for January 2012, before legislation to
phase out gas extraction came into effect, and for January 2021 are shown in Fig. 10.
The decrease in extracted volume is evident. Moreover, the remaining production is
located mostly in the southern part of the gas field.
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Fig. 11 Estimated pore pressure maps at midnight on 1 January in the years 1995 (leftmost panel) and 2022
(rightmost panel) in bara

4.2 Regression Analysis for Pore Pressure

From Fig. 5, it is clear that the pore pressure in the reservoir is decreasing over time.
The trend is similar for most wells, with some exceptions, for example, because of
large faults or at the periphery of the field. Recall from Sect. 2 that our earthquake
catalogue contains tremors from 1 January 1995 onwards. If we wish to use the pore
pressure as an explanatory variable in a monitoring model, we need their values over
the same time period. Thus, our goal in this section is to perform a regression analysis
using only the 352 pore pressure measurements from 1 January 1995 and later.

Suppose that the observed pore pressures can be seen as realisations of random
variables X(s, t) that can be decomposed in a trend termm((s, t);β) and noise E(s, t)
as

X(s, t) = m((s, t);β) + E(s, t).

We assume that the measurement errors E(s, t) are independent and normally dis-
tributed with a mean of zero and variance of σ 2. For the trend, we fit a polynomial in
space and time,

m((s, t);β) = β1 + β2t + β3t
2 + β4(s − s0)1 + β5(s − s0)2 + β6(s − s0)

2
1

+β7(s − s0)1(s − s0)2 + β8(s − s0)
2
2 + β9(s − s0)

3
1

+β10(s − s0)
2
1(s − s0)2 + β11(s − s0)1(s − s0)

2
2 + β12(s − s0)

3
2

+β13(s − s0)
4
1 + β14(s − s0)

3
1(s − s0)2 + β15(s − s0)

2
1(s − s0)

2
2

+β16(s − s0)1(s − s0)
3
2 + β17(s − s0)

4
2 + β18t(s − s0)1 + β19t(s − s0)2

+β20t(s − s0)
2
1 + β21t(s − s0)1(s − s0)2 + β22t(s − s0)

2
2 + β23t(s − s0)

3
1

+β24t(s − s0)
2
1(s − s0)2 + β25t(s − s0)1(s − s0)

2
2 + β26t(s − s0)

3
2
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Table 1 Analysis of variance table for pore pressure

Sum Sq Pr(> F)

β1 + β2t 234,611 2.2e−16

β3t
2 1,976 6.085e−09

β4(s − s0)1 + β5(s − s0)2 15,261 2.2e−16

β6(s − s0)
2
1 + · · · + β8(s − s0)

2
2 58,675 2.2e−16

β9(s − s0)
3
1 + · · · + β12(s − s0)

3
2 12,153 2.2e−16

β13(s − s0)
4
1 + · · · β17(s − s0)

4
2 25,106 2.2e−16

β18t(s − s0)1 + β19t(s − s0)2 1,502 2.189e−06

β20t(s − s0)
2
1 + · · · + β22t(s − s0)

2
2 1,773 1.041e−06

β23t(s − s0)
3
1 + · · · + β26t(s − s0)

3
2 1,148 0.0004642

Residual sum of squares 18,052

A first-order linear model in time is updated with a second-order term, first-order up to fourth-order poly-
nomials in space, and first-order up to third-order space–time interaction terms. The second column lists
the sum of squares for the coefficients in the first column, and the third column quantifies the significance
as the p value of the F test
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Fig. 12 Observed pore pressure values in bara against fitted values (leftmost panel) and the histogram of
residuals (rightmost panel)

wherewe centre the spatial locations at s0 = ((s0)1, (s0)2) = (750, 5,900) in theUTM
system (zone 31, in kilometres) and take a day as the temporal unit counting from 1
January 1995. The parameter β = (β1, . . . , β26) can be estimated by minimising the
sum of squared residuals (the difference between the observed and the fitted pore
pressure values). The analysis of variance table is given in Table 1.

The fitted pore pressure maps at midnight on 1 January in the years 1995 and 2022
are given in Fig. 11. One may note the elevated values in the Harkstede block in the
south-west as well as those in the northern border regions.

To validate the model, the actual pore pressure measurements are plotted against
their fitted values in the leftmost panel in Fig. 12. The graph seems reasonably close
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to a straight line. The histogram of the residuals is shown in the rightmost panel in
Fig. 12. Most residuals are quite small, and the histogram is centred around zero, with
an estimated standard deviation σ̂ = 7.17 bara.

5 Discussion and Further Work

In this paper, we carried out an exhaustive second-order exploratory analysis of the
spatio-temporal point pattern of earthquakes recorded in the Groningen gas field since
January 1995. To do so, we needed to develop a new methodology. We proposed an
adaptive kernel smoothing technique for estimating the intensity function and sug-
gested a practical algorithm for selecting the spatial and temporal bandwidths. The
estimated intensity function was then plugged into state-of-the-art inhomogeneous
summary statistics to quantify the degree of clustering in the earthquake catalogue.
We also applied our new adaptive kernel smoothing technique to monthly gas produc-
tion figures. Finally, we performed a regression analysis on pore pressure data for the
gas field.

In the rate-and-state models (Candela et al. 2019; Dempsey and Suckale 2017;
Richter et al. 2020) that can be seen as the state of the art in modelling the seismic
hazard (Kűhn et al. 2022) and that are being used for planning, the earthquake intensity
λ (the rate) is assumed to be inversely proportional to a state variable �, that is,

λ(s, t) ∝ �(s, t)−1, (s, t) ∈ WS × WT .

The state variable �(s, t) is defined by the ordinary differential equation

d�(s, t) = α [dt + �(s, t)dX(s, t)] ,

where X is the pore pressure at spatial location s and time t . Multiplying both sides
by exp(−αX(s, t)), it follows that

d

dt

[
�(s, t)e−αX(s,t)

]
= αe−αX(s,t). (7)

The Euler discretisation reads

�(s, t + �) = (�(s, t) + �α) exp [α(X(s, t + �) − X(s, t))] , s ∈ WS,

upon discretising WT in time steps of length �.
In the rate-and-state model, the earthquakes constitute a Poisson point process with

intensity function λ, possibly modified by a fault map. The parameter α and the initial
state �(s, 0) (as well as the proportionality constant and any parameters associated
with the fault map) are treated as unknowns and can be estimated, for example, by the
maximum likelihood method.

Based on the exploratory analysis in Sects. 3 and 4, the rate-and-state model can
be criticised on several points. As we saw in Sect. 3, the earthquake pattern exhibits
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clustering. Since by definition the points in any Poisson point process do not interact
with one another, the apparent clustering of earthquakes cannot be described by the
rate-and-state model. Secondly, the pressure values are assumed to be known every-
where, in practice by interpolation of the measurements. Proceeding in this way, the
uncertainty in the interpolations is ignored. It would be better to treat the X(s, t) as a
random field. Lastly, the varying gas extraction is not taken into account.

Motivated by the above considerations,we propose the followingmodel. Set�(s, 0)
≡ γ0 and iterate

�(s, t + �) = (�(s, t) + α�) exp [α(m(s, t + �) − m(s, t))]

exp [α(E(s, t + �) − E(s, t))]

wherem and E are as in Sect. 4.2. Gas production and random effects can be included
in the following way. Let � be a Cox process (Chiu et al. 2013) on WS × WT with
driving random measure

�(s, t) = exp
[
θ1 + θ2Ṽ (s, t) +U (s, t)

] γ0

�(s, t)
(8)

where θ1, θ2 are real-valued parameters, Ṽ (s, t) is the gas extracted at s during the year
preceding time t , that is, the integral of λ̂V ((s, ·), φ) (cf. Sect. 4.1) over this period, and
U (s, t) is a correlated Gaussian field that accounts for random effects. Instead of or in
addition to Ṽ , other covariates are easily incorporated. For example, one might add the
cumulative gas extraction, subsidence or compaction information, the distance to the
nearest fault or fault density terms to the exponent in Eq. (8). Monitoring can then be
based on the posterior distribution of � or, equivalently, � and U , given the recorded
earthquakes. The implementation requires careful use of Markov chain Monte Carlo
techniques and is the topic of our ongoing research.
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Appendix: Data Cleaning

Errors in Recorded Dates

There are some anomalies in the recorded dates. For example, in 2015, the entry
10/7/2015 should be interpreted as 7/10/2015, July the tenth. There are eight other
such errors: May 10, 2016, May 6–7, 2017, June 5 and 7, 2017, April 9 and 11, 2018,
and November 6, 2018.

Missing Coordinates

Since the coordinates of one of the stations are not listed in the production plans
(cf. Sect. 2.3) and are therefore unknown, we omit the corresponding 28 pore pressure
measurements from consideration. We also disregard the two measurements from an
observation well located outside the Groningen gas field.

The Eemskanaal-13 well is the only one depleting a peripheral field, the so-called
Harkstede block. Moreover, as can be seen from Fig. 4, it is extracting less gas than
other wells. According to an expert, setting its location to either that of the Eemskanaal
plant or to that of the installation at Harkstede would lead to biases, and it is therefore
preferable to ignore the seven observations for Eemskanaal-13 altogether.

Invalid Measurements

The NAM file mentions 10 cases in which the observations are invalid for various
reasons. We disregard these measurements.
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