
Citation: Mücke, N.T.; Pandey, P.;

Jain, S.; Bohté, S.M.; Oosterlee, C.W.

A Probabilistic Digital Twin for Leak

Localization in Water Distribution

Networks Using Generative Deep

Learning. Sensors 2023, 23, 6179.

https://doi.org/10.3390/s23136179

Academic Editors: Laura Belli, Luca

Davoli, Marco Martalò and Gianluigi

Ferrari

Received: 14 June 2023

Revised: 29 June 2023

Accepted: 30 June 2023

Published: 5 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Probabilistic Digital Twin for Leak Localization in Water
Distribution Networks Using Generative Deep Learning
Nikolaj T. Mücke 1,2,* , Prerna Pandey 3 , Shashi Jain 3 , Sander M. Bohté 1,4,5 and Cornelis W. Oosterlee 2

1 Centrum Wiskunde & Informatica, Science Park 123, 1098 XG Amsterdam, The Netherlands; sbohte@cwi.nl
2 Mathematical Institute, Utrecht University, 3584 CS Utrecht, The Netherlands; c.w.oosterlee@uu.nl
3 Department of Management Studies, Indian Institute of Science, Bangalore 560012, India;

preranap@iisc.ac.in (P.P.); shashijain@iisc.ac.in (S.J.)
4 Swammerdam Institute of Life Sciences (SILS), University of Amsterdam,

1098 XH Amsterdam, The Netherlands
5 Bernoulli Institute, Rijksuniversiteit Groningen, 9747 AG Groningen, The Netherlands
* Correspondence: nikolaj.mucke@cwi.nl

Abstract: Localizing leakages in large water distribution systems is an important and ever-present
problem. Due to the complexity originating from water pipeline networks, too few sensors, and noisy
measurements, this is a highly challenging problem to solve. In this work, we present a methodology
based on generative deep learning and Bayesian inference for leak localization with uncertainty
quantification. A generative model, utilizing deep neural networks, serves as a probabilistic surrogate
model that replaces the full equations, while at the same time also incorporating the uncertainty
inherent in such models. By embedding this surrogate model into a Bayesian inference scheme,
leaks are located by combining sensor observations with a model output approximating the true
posterior distribution for possible leak locations. We show that our methodology enables producing
fast, accurate, and trustworthy results. It showed a convincing performance on three problems with
increasing complexity. For a simple test case, the Hanoi network, the average topological distance
(ATD) between the predicted and true leak location ranged from 0.3 to 3 with a varying number of
sensors and level of measurement noise. For two more complex test cases, the ATD ranged from
0.75 to 4 and from 1.5 to 10, respectively. Furthermore, accuracies upwards of 83%, 72%, and 42%
were achieved for the three test cases, respectively. The computation times ranged from 0.1 to 13 s,
depending on the size of the neural network employed. This work serves as an example of a digital
twin for a sophisticated application of advanced mathematical and deep learning techniques in the
area of leak detection.

Keywords: leak localization; water distribution network; Bayesian inverse problems; generative deep
learning; digital twin

1. Introduction

Water distribution systems make up a large and important part of our civil infrastruc-
ture. They need to be safe, efficient, and reliable. Ensuring a constant supply of clean water
is, however, not an easy task. Distribution is typically carried out using networks of pipes,
which can be highly intricate and involve multiple components, such as several kilometers
of pipe segments and numerous junctions, valves, pumps, reservoirs, and tanks. Such net-
works are difficult to manage and they are prone to failure due to leakages and blockages,
which may result in economic losses and environmental damage. Therefore, it is important
to have a quick and trust-worthy monitoring method in place. Monitoring is typically done
by recording information from a number of sensors installed at critical locations within the
network. However, detecting the occurrence and location of leaks can still be a challenging
task, even with sensor data being available, because the information captured by sensors
will be incomplete in both time and space, making it difficult to pinpoint the exact location

Sensors 2023, 23, 6179. https://doi.org/10.3390/s23136179 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23136179
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2635-9586
https://orcid.org/0000-0002-1588-1117
https://orcid.org/0000-0002-2467-9332
https://orcid.org/0000-0002-7866-278X
https://orcid.org/0000-0002-7322-4094
https://doi.org/10.3390/s23136179
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23136179?type=check_update&version=4

Sensors 2023, 23, 6179 2 of 23

and timing of the leak. In this paper, we address the problem of leak localization in real
time by means of machine learning techniques.

For a leak localization framework to be considered useful in practice, it has to satisfy
certain requirements. First, it should be sufficiently accurate. Second, it must be computa-
tionally fast, so that any leakage can be identified quickly. Third, it must be reliable. That is,
the framework should not only provide an estimated leak location but also a measure of the
level of confidence of the estimate. Fourth, it should be general and work under different
circumstances. The framework should be sufficiently generic to work with different water
distribution networks with widely varying complexities. Last, it must be flexible. In this
context, flexibility refers to various aspects, such as whether it is possible to include prior
knowledge when such becomes available, and whether it can handle different kinds of sen-
sor readings or varying numbers of sensors, etc. There are not many approaches that satisfy
all these requirements, since many of them are difficult to satisfy simultaneously. For exam-
ple, computing uncertainty often comes at the cost of computation time, and generalized
models are typically less accurate than models tailored to specific cases, and they struggle
with incorporating prior knowledge, as they then lose their general nature. The framework
presented here satisfies all these requirements, at the cost of a computationally intensive
training stage.

1.1. Leak Localization Literature

There has already been a significant amount of research in the area of leak localization.
However, not many approaches satisfy all the above-mentioned requirements. The authors
in [1,2] made use of a model to generate synthetic sensor observations. The residuals
between the model output and the observed values were then used to predict the leak
location using a trained classifier. Similarly, in [3] residuals were employed for leak
detection, after which the characteristics of the residuals were used to localize the leak.
In [4], encoding of sensor observations was used, together with a trained classifier and a
graph theory-based clustering method. While these approaches are computationally fast
and were shown to be accurate for the selected test cases, they mainly work for the sensor
configurations they were trained on and are limited regarding uncertainty quantification,
as they do not model the inherent input uncertainty in, e.g., the demand. Furthermore,
even if it is available, prior information cannot be embedded in these approaches. On the
other hand, in [5], a combination of model- and graph theory-driven techniques was used,
together with online training of a neural network classifier, to predict the cluster of nodes
in which the leak was present. This is a flexible setup that allows for changes in sensor
configurations. However, the uncertainty quantification is still limited, as only the size of
the predicted cluster is used as a proxy for the reliability of the prediction.

1.2. Literature on Modern Machine Learning Techniques

In a rather different setting, the authors of [6] proposed a GAN-based automatic
property generation approach, to generate verification properties for model checking.
The verification properties, encoded in computational tree logic, were used as input to
the GAN, whereas [7] presented a novel memory-augmented autoencoder approach for
unsupervised anomaly detection in IoT data, which mitigated over-generalization by
incorporating a memory mechanism in a time-series autoencoder (TSMAE). A methodology
based on semi-supervised learning was introduced in [8], using an opposition-based novel
updating spotted hyena optimization (ONU-SHO)-based recurrent neural network (RNN)
for handling continuous or streaming data. The authors in [9] proposed a new record
linkage (with the task of identifying and linking records from multiple sources) model for
unstructured data, wherein a deep learning approach is used to improve the generalization
of the Siamese multilayer preceptron model, to make it less sensitive to parameter selection.

Sensors 2023, 23, 6179 3 of 23

1.3. Bayesian Inference

As an alternative to the above-mentioned approaches, one can make use of Bayesian
inference. This allows one to accurately solve the leak localization problem using uncer-
tainty quantification. The general technique is to compute the data likelihood and combine
this with a prior. The output from a Bayesian inference approach is then a distribution
of the leak location conditioned on sensor observations, i.e., the posterior distribution.
This approach also provides flexibility, as new sensor configurations can be incorporated
by simply modifying the likelihood. Both the sensor noise and model uncertainty are
modeled within the likelihood. That is, the uncertainty associated with imperfect sensors
and, e.g., stochastic nodal demand in the water network, can be included in the compu-
tation of the posterior directly. Furthermore, one can incorporate prior information in a
straight-forward manner. However, the Bayesian approach has the significant drawback
of being computationally expensive. Approximating the likelihood accurately requires
solving the model many times, due to the nonlinearity and high-dimensionlity. Hence, it
is often infeasible to run a Bayesian inference procedure in real time. In [10], the authors
overcame this problem by assuming normally distributed demands and inputs, to be able to
use gradient-based optimization together with kernel methods. However, this assumption
may be restrictive. Instead, we propose an alternative solution to this problem that does
not require such a restriction.

1.4. Computational Bottleneck

To overcome the computational bottleneck associated with Bayesian inference, one
can make use of a surrogate model. A surrogate model is trained in an offline stage, before
being used in an online stage for leak localization. The usage of surrogate modeling has
become widespread nowadays, due to the potential for computational speed-up without an
essential loss of accuracy. Conventionally, a linear dimensionality reduction, such as proper
orthogonal decomposition (POD), is used together with a regression method in the reduced
space; for example, in [11], a combination of POD and radial basis functions with neural
networks was used in an inverse analysis for structural diagnosis. In [12], POD was used
with stochastic spectral methods to relate the input to the output within a Bayesian inverse
problem to speed up the process. In [13], POD was combined with Gaussian processes, to
speed up nonlinear structural analysis. In recent years, deep neural networks have become
a popular choice for surrogate models in scientific computing, due to their performance in
dimensionality reduction and their predictive power [14–16]. For the purpose of speeding
up Bayesian inference, we decided to model a high-dimensional stochastic problem. We
made use of the concept of generative modeling. While applications of generative modeling
in various scientific fields are already widespread [17–19], it has not yet been tailored to
the area of water management. The general concept is to train a neural network to learn
the underlying distribution of a data set, in order to be able to sample from it after a
training phase. This enables fast sampling from complicated and highly dimensional
distributions. There are several kinds of generative neural network, such as generative
adversarial networks [20], variational autoencoders [21], and diffusion models [22]. Each
of these models has its advantages and drawbacks. Specifically, there are three factors to
consider when using generative models: sampling quality, speed, and diversity [23]. In this
work, we adopt the Wasserstein autoencoder [24], as it performs highly satisfactory in these
three criteria.

1.5. Overview of the Paper

In this paper, we present a novel leak localization framework based on Bayesian
inference and generative deep learning. By formulating the leak localization problem as a
Bayesian inverse problem, the uncertainty in model parameters and sensor observations is
included in the leak location estimation, which enables accurate uncertainty quantification
of the predicted leak location. Furthermore, prior information can be included in the
computations. To overcome the computational drawbacks, we make use of neural networks

Sensors 2023, 23, 6179 4 of 23

as the stochastic surrogate model. A neural network is trained as a generative model to
estimate the distribution of pressure heads and flow rates given a certain leak location.This
enables the fast evaluation of the likelihood function, while retaining a high accuracy.

In Section 2, we present the theory behind our framework. The problem setting and
the underlying equations are described; the leak localization problem is presented as a
Bayesian inverse problem; and the generative neural networks, WAEs, and neural network
architectures are presented. In Section 3, we combine the components from Section 2 in
the presented framework. In Section 4, we showcase the framework on three test cases.
The paper is then concluded in Section 5.

2. Problem Setting and Preliminaries

In this section, we introduce the problem setting and briefly cover the preliminaries
for the proposed framework. We start by introducing the mathematical model for the
water distribution network, which allows us to simulate the pressure heads and flow
rates given a set of parameters, such as the demand, pipe roughness, and leak location.
Then, we describe leak localization as a Bayesian inverse problem and explain how the
Bayesian setting allows us to model the uncertainty and incorporate prior information.
Furthermore, we state the assumptions and the drawbacks of the proposed framework.
Lastly, we present the relevant machine learning framework and deep learning architecture.
Specifically, we discuss Wasserstein autoencoders, which are crucial for speeding up the
Bayesian inference, as well as residual and transformer neural networks, which enable us
to replace the conventional mathematical model, without losing significant accuracy.

2.1. Problem Setting

We consider a water distribution network that has Np pipes, Nj variable head nodes,
and N f fixed head nodes. The head losses in all pipes in the network are assumed to be
modeled by the Hazen–Williams formula, so the relation between the heads at two ends
(nodes i and k) of a pipe j and the flow is given by

hi − hk = rjQn
j , (1)

where Qj is the flow rate in pipe pj; hi is the head at node i, n = 1.852, and rj is the pipe
resistance factor, which depends on the length, diameter, and the material of the pipe.
Define q = (Q1, . . . , QNp)

> as a vector of unknown fluid flow rates in the pipes.
The network topology is modeled using the incidence matrices A1 ∈ RNp×Nj and

A2 ∈ RNp×N f for the unknown head nodes and the fixed head nodes, respectively. These
incidence matrices are defined as

Ab =

−1 if the flow in pipe j enters the node i,
0 if the j does not connect to the node i,
1 if the flow in pipe j leaves the node i,

(2)

where b = 1, 2. The unknown heads at different nodes are defined as h = (h1, . . . , hNj)
>,

the known nodal demands as dm ∈ RNj , and el ∈ RN f are the fixed head elevations.
Additionally, we define the following matrices: O, as the Nj × Nj zero matrix, o, as an
Np · Nj zero vector, and an RNp×Np diagonal matrix G(q), with diagonal entries,

Gjj(q) = rj|Qj|n−1. (3)

The hydraulic problem entails solving the unknown flow rates in the Np pipes, q, and
the unknown heads at the Nj nodes, h, given the network topology Ab, the demand at
the nodes dm, and a fixed head elevation, el , such that the mass and energy for the flow

Sensors 2023, 23, 6179 5 of 23

are balanced. The continuity equation to be solved in matrix form is written as (see [25]
for details):

f (x) =
(

G(q) −A1
−A>1 O

)(
q
h

)
−
(

A2el
dm

)
= o, (4)

where we solve for the unknown vector x := (qT , hT)T . The above set of equations is
typically solved using Rossman’s popular program EPANET ([26]), to obtain a steady
state solution.

A leak is modeled by adding a leak demand at a specific node. The leak demand is
given by

dleak = Cd Apα

√
2
ρ

. (5)

Typically, α = 0.5 is chosen [26]; Cd is the dimension-less discharge coefficient, A [m2] is the
leak area, g [m/s2] is acceleration by gravity, p [Pa] is the gauge pressure, and ρ [kg/m3]
is the density. Note that a leak is modeled as a nodal demand dependent on the pressure
head. However, in the vast majority of cases, a leak will be located in a pipe section and
not at a node. Therefore, we will introduce an extra node into the pipe section in which the
leak occurs. The demand on that node is the leak demand.

2.2. Leak Localization as a Bayesian Inverse Problem

Detecting water leaks can be formulated as an inverse problem. Solving inverse
problems is the process of computing the causal factors that give rise to a set of observations.
These causal factors are typically either model parameters, the model itself, or the model
output. There are, in general, two approaches for solving inverse problems: The variational
approach, where a functional is minimized; and the Bayesian approach, where a posterior
distribution is computed. We focus on the Bayesian approach, as we aim to resolve,
in addition to a point estimate, the uncertainty associated with the estimate.

We use the notation Px for the probability distribution of the stochastic variable, x,
and px for the associated density function. Px(xi) then denotes the probability of a specific
value xi.

The leak location is denoted by c ∈ {1, . . . , Np}, the sensor observations by y ∈ RNy ,
the state is x = (qT , hT)T ∈ RNj+Np , the uncertain parameters are ω ∈ RNω , ω ∼ Pω,
the forward model is given by F : R × Nω → RNj+Np , F(c, ω) = x, the observation
operator by H : RNj+Np → RNy , H(x) = y, and the observation noise is η ∈ RNy , η ∼ Pη.
These quantities are related in the following way:

y = H(F(c, ω)) + η. (6)

The forward model, F, is closely related to Equation (4). The output, F(c, ω) = x, is the
solution to Equation (4) for a given c and ω. The uncertain parameters, ω, depend on the
problem at hand, and can, for example, be the demand at each node or the pipe roughness
in each pipe section. One would typically have some knowledge of the distribution, Pω,
based on previous observations and calibration. The forward model is the function that
maps the leak location and parameters to the solution of Equation (4). Hence, for larger
WDNs, this can potentially be expensive to evaluate.

The distribution of interest is the posterior distribution of the leak location, i.e., the
distribution over the leak location given the observations, Pc|y. Since c is a discrete vari-
able, we have to compute the posterior probability of all possible values of c, Pc|y(ck|y),
ck = 1, . . . , Np. Using Bayes’ theorem for density functions, we obtain:

pc|y(ck|y) =
py|c(y|ck)pc(ck)

py(y)
, (7)

Sensors 2023, 23, 6179 6 of 23

where py|c is referred to as the likelihood, pc is the prior, and py the evidence. For leak
detection, we often choose a uniform prior distribution. However, there are cases where
prior information is known and incorporating it is highly beneficial. The evidence serves
as a normalizing constant, which ensures that pc|y sums to one over all possible values of
ck. This is given by

py(y) =
Np

∑
k=1

py|c(y|ck). (8)

The likelihood is not directly available; however, from Equation (6) we obtain:

py|c,ω(y|ck, ω) = pη(y− H(F(ck, ω))), (9)

which implies that we can compute the likelihood by marginalizing over ω:

py|c(y|ck) =
∫ −∞

−∞
py|c,ω(y|ck, ω)pω|c(ω|ck)dω

=
∫ −∞

−∞
py|c,ω(y|ck, ω)pω(ω)dω

= Eω∼Pω

[
py|c,ω(y|ck, ω)

]
.

(10)

We assume that ω is independent of ck.
As observations will arrive with time, we need to update the posterior when new

observations become available, using the posterior from the previous observation time as
the prior. We denote observations at time ti by yi, which gives us the following posterior:

pc|y(ck|yi) =
py|c(yi|ck)pc|y(ck|yi−1)

py(yi)

=
Eω∼Pω

[
py|c,ω(yi|ck, ω)

]
pc|y(ck|yi−1)

∑
Np
j=1 Eω∼Pω

[
py|c,ω(yi|cj, ω)

] . (11)

The posterior distribution after observations at times t0, t1, . . . , tNt is given by

pc|y(ck|y0:Nt
) = pc(ck)

Nt

∏
i=0

Eω∼Pω

[
py|c,ω(yi|ck, ω)

]

∑
Np
j=1 Eω∼Pω

[
py|c,ω(yi|cj, ω)

] . (12)

We can write down the expression pc|y(ck|y0:Nt
) for all k, but it is not feasible to analytically

solve it. Therefore, we need to make use of numerical approximations, such as Monte Carlo
approaches. However, there are several computational challenges associated with this:

• Pω is not necessarily known or it could be difficult to sample from;
• ω is, in general, high-dimensional. For example, when ω represents the stochastic

demand in each node, then ω is Nj-dimensional. This makes the integral to be
computed in Equation (10) high-dimensional, and it is thereby not feasible to compute
the likelihood, Eω∼Pω

[
pc|y,ω(yi|ck, ω)

]
, for all k in real time;

• pc|y,ω(yi|ck, ω) can be expensive to evaluate as it requires solving Equation (4).

While several methods exist that address the computation of stochastic integrals, most
of them have undesirable issues. For example, Gaussian processes (GPs) can be trained
to compute the posterior distribution directly. However, with GPs, one is restricted to
modeling multivariate Gaussian distributions. Furthermore, it is well known that kernel
methods are, in general, not suitable for very high-dimensional cases [27]. An alternative
to GPs is the polynomial chaos expansion (PCE), which allows for more complicated

Sensors 2023, 23, 6179 7 of 23

distributions than GPs. However, with PCE, one is typically even more restricted in
dimensionality, as these methods suffer from the curse of dimensionality [28]. We will
make use of deep learning, as it allows us to deal with arbitrary distributions and high-
dimensional problems.

2.3. Supervised Wasserstein Autoencoder

The methodology chosen here to address the above-mentioned challenges is generative
modeling. Particularly, we will focus our discussion on the use of the autoencoder set-up,
whose details are explained in this subsection. A supervised Wasserstein autoencoder
(SupWAE) represents a type of neural network that simultaneously achieves a problem
dimensionality reduction and an approximation of the relevant distribution [24]. Before ex-
plaining the SupWAE, we briefly introduce the regular autoencoder (AE) and add the
necessary components for leak detection.

2.3.1. Autoencoders

A regular autoencoder (AE) is often used to identify an accurate low-dimensional
representation of data [29]. This low-dimensional representation is then referred to as the
latent state, which is an element of the latent space, while the original data are referred to
as the high-fidelity state, belonging to the high-fidelity space.

An AE consists of two neural networks: An encoder, φenc, that sparsifies (i.e., reduces
the dimensionality of) the data, and a decoder, φdec, that reconstructs the data:

φenc(x) = z, φdec(z) = x̃, φdec(φenc(x)) = x̃ ≈ x. (13)

Considering a training set, {xi}N
i=1 ∼ Px(x), AEs are trained by minimizing the mean

squared error (MSE) with a weight regularization:

LAE(φenc, φdec) =
1
N

N

∑
zi=1

(xi − φdec(φenc(xi)))
2 + αR(φenc, φdec) (14)

LAE is minimized with respect to the weights of φenc and φdec, typically using stochastic
gradient-descent-type algorithms. The term R(φenc, φdec) is chosen to be the l2 norm of the
weights. This is referred to as the weight decay within machine learning; α determines how
much we regularize the weights. The purpose of this regularization is to avoid overfitting
to the training data.

2.3.2. Wasserstein Autoencoders

While AEs provide a framework for computing latent representations of data, they lack
certain properties that are of interest when computations in the latent space are necessary.
Specifically, small perturbations in the latent space should also result in small perturbations
in the high-fidelity space. Moreover, it should be possible to sample from the latent space.
By using Wasserstein AEs (WAEs) [24], we can also obtain these properties.

We introduce a prior distribution to the latent space, Pz(z). While the encoder and
decoder remain deterministic mappings, they define the conditional distributions Penc(z|x)
and Pdec(x|z), respectively, using the densities:

pz(z) =
∫

x
p(z|x)px(x)dx ≈

∫

x
penc(z|x)px(x)dx = penc(z), (15)

px(x) =
∫

z
p(x|z)pz(z)dz ≈

∫

z
pdec(x|z)pz(z)dz = pdec(x). (16)

Here, a sample from Penc(z|x) is computed using the encoder, z = φenc(x), and similarly a
sample from Pdec(x|z) is obtained using the decoder, x = φdec(z). The goal is to ensure that
the encoder approximates the latent prior distribution, Pz(z) ≈ Penc(z), and the decoder

Sensors 2023, 23, 6179 8 of 23

approximates the high-fidelity prior distribution, Px(x) ≈ Pdec(x). This is achieved by
simultaneously minimizing the reconstruction error and a divergence, D, between Pz(z)
and Penc(z), which measures the similarity of the two distributions:

LWAE(φenc, φdec) =
1
N

N

∑
i=1

(xi − φdec(φenc(xi)))
2

︸ ︷︷ ︸
reconstruction

+λ D(Pz(z), Penc(z))︸ ︷︷ ︸
divergence

+α R(φenc, φdec)︸ ︷︷ ︸
regularization

. (17)

Here, λ is another regularization parameter to be determined through hyperparameter
tuning. In this paper, we choose the maximum mean discrepancy (MMD) with a multi-
quadratics kernel for the divergence, which gives us the WAE-MMD. In [30], it was argued
that this is an accurate choice when Pz(z) is the normal distribution, see [24]. In summary,
we obtain:

LWAE(φenc, φdec) =
1
N

N

∑
i=1

(xi − φdec(φenc(xi)))
2 + λMMD

(
φenc, {zi}N

i=1

)

+ αR(φenc, φdec),

where zi ∼ Pz(z),

MMD
(

φenc, {zi}N
i=1

)
=

λ

N(N − 1)

N

∑
l 6=j

[
k(zl , zj) + k(φenc(xl), φenc(xj))

]

+
2λ

N2

N

∑
l,j

k(zl , φenc(xj),

and

k(zl , zj) =
C

C + ||zl − zj||22
. (18)

After training, it is possible to sample from the chosen latent prior distribution, pz(z), pass
it through the decoder, φdec, and obtain a high-fidelity sample, φdec(z) = x.

To obtain the supervised version of the WAE, we introduce c as an extra input to the
decoder, so φenc(·) := φenc(z, c). In this way, the decoder models the conditional probability
density function, px|c(x|c),

px|c(x|c) =
∫

z
px|c,z(x|c, z)pz(z)dz

≈
∫

z
pdec(x|c, z)pz(z)dz =

∫

z
φdec(z, c)pz(z)dz = pdec(x|c),

(19)

so that c is considered a known condition. During training, the WAE sees pairs (x, c) and
uses this information to learn the conditional distribution. The condition c determines
the class, while the latent variable, z, determines the style. This separation will be crucial
for the proposed framework. A visualization of the supervised WAE-MMD is shown in
Figure 1.

Sensors 2023, 23, 6179 9 of 23

Latent prior
distribution

F
lo

w
 r

at
e

P
re

ss
ur

e
he

ad

R
ec

on
st

ru
ct

ed
flo

w
 r

at
e

R
ec

on
st

ru
ct

ed
pr

es
su

re
 h

ea
d

Leak Leak

Minimize
MMD Loss

Training data Reconstructed
training data

Minimize
Reconstruction Loss

Forward propagation
Forward and backward propagation

Encoder Decoder

Leak location & time

Latent
state

Figure 1. Illustration of a Wasserstein AE for reconstruction of a water distribution network.

2.4. Neural Network Architectures

Different kinds of neural network architecture can be incorporated into the WAEs
framework. Therefore, one should choose the architecture that performs optimally for
the data type. In this paper, we showcase the performance using two different kinds of
architecture—residual neural networks (ResNet) [31] and transformers.

2.4.1. Residual Neural Networks

A residual neural network is a neural network that consists of residual layers. A resid-
ual layer is defined as having a skip connection bypassing the normal layer. That is,
a residual layer is given by

xi+1 = F i(xi) + xi, (20)

where xi is the output of layer i and F i is the ith layer. F i typically consists of a linear layer,
followed by an activation function, and then another linear layer. The linear layers can be
either dense or convolutional.

The advantage of using ResNets is that the problem of vanishing gradients is not very
apparent, which makes them easier to train [31].

2.4.2. Transformers

Transformers are another type of neural network architecture, introduced in 2017 [32],
that became the default choice for natural language processing. Since then, transformers
have outperformed the state-of-the-art methodologies in areas such as image recogni-
tion [33], protein structure prediction [34], and time series forecasting [35]. While these
applications seem very different from leak detection in water distribution networks, they
share some features that the transformer architecture addresses well.

Transformers treat the data as if it were a fully connected graph. The multi-head
attention models how information from one node or pipe section should be aggregated to
another node or pipe section. In this way, the neural networks learn which connections
should be strengthened and which should be weakened. Hence, the transformer can
efficiently learn long-range relations between nodes and pipe sections. This is in sharp
contrast to graph neural networks, where many layers are necessary to capture such
long-range relations.

For a more technical presentation of the transformer architecture and the attention
mechanism, we refer to Appendix A.

3. Proposed Framework

The aim of the proposed framework is to overcome the challenges related to solving
Bayesian inverse problems, as described in Section 2.2, while maintaining a high accuracy

Sensors 2023, 23, 6179 10 of 23

when computing the posterior over the parameters of interest. The framework employed
here is an extension of the one presented in [17].

We will use a generative neural network as a stochastic digital twin of the WDN.
This can be used to sample pressure heads and flow rates of the entire WDN for a given
leak location and time. By modeling the pressure heads and flow rates as distributions
conditioned on leak location and time, instead of a deterministic output, the uncertainty
due to the stochastic parameters is included in the model output. A generative neural
network is a suitable choice for this, as this enables us to sample from the distribution of
pressure heads and flow rates.

We will specifically make use of the generative properties of the decoder of the
supervised WAE-MMD, whereas the encoder is discarded after training. The decoder is
trained to approximate the state, when given the random noise, leak location, and the time
of day.It then replaces the forward model, and the latent vector, z, replaces the uncertain
parameters; in our case, the demand. Using the same approach as in Section 2.2, we can
rewrite the posterior for given observations, as follows:

pc|y(ck|yi) =
pc(ck)

∫
z py|c,z(yi|ck, z)pz(z) dz

∑
Np
j=1

∫
z py|c,z(yi|cj, z)pz(z) dz

=
pc(ck)Ez∼Pz

[
py|c,z(yi|ck, z)

]

∑
Np
j=1 Ez∼Pz

[
py|c,z(yi|cj, z)

] , (21)

where the likelihood is computed by

py|c,z(yi|ck, z) = pη(yi − H(φdec(z, ck))). (22)

As in Equations (11) and (12), we can use the posterior from time ti−1 as the prior for the
posterior at time ti. This gives us the resulting posterior for a series of Nt observations:

pc|y(ck|y0:Nt
) = pc(ck)

Nt

∏
i=0

Ez∼Pz

[
py|c,z(yi|ck, z)

]

∑
Np
j=1 Ez∼Pz

[
py|c,z(yi|cj, z)

] . (23)

At time t0, we simply use a uniform prior.
As an addition to the described setup, we add the timestamp as an additional input to

the decoder. This gives us the following description:

φdec(z, c, ti) = xi(c, ω) = (qT
i (c, ω), hT

i (c, ω))T . (24)

With this formulation the decoder disentangles the temporal information from the rest.
Hence, the time dependency of the stochastic demand is explicitly modeled in the decoder.

The proposed framework essentially resolves the challenges described in Section 2.2:

• Pω is replaced by the latent prior, Pz, which is known, as we used it during training of
the WAE-MMD;

• z is of a much lower dimension than ω, which makes the evaluation of the integral
in Equation (10) fast and thereby enables real-time computation of the likelihood,
Ez∼Pz

[
py|c,z(yi|ck, z)

]
;

• The likelihood, py|ck ,z, is computed using a forward propagation of the decoder,
instead of solving an expensive forward model.

While the costs are drastically reduced in the leak detection stage, the training stage
is now (potentially) expensive to compute. These two stages are referred to as the online
stage, in which the trained supervised WAE-MMD is used to solve the leak localization
problem for given observations, and the offline stage, in which we generate training data
and train the supervised WAE-MMD. These two stages are outlined in Algorithms 1 and 2,
respectively. Furthermore, the online stage is visualized in Figure 2.

Sensors 2023, 23, 6179 11 of 23

p(y|ck, ti) =
N∑

i=1

p(y|ck, zi, t)

Generate N samples of
state for each leak location

Latent prior
distribution

G
en

er
at

ed
flo

w
 r

at
e

G
en

er
at

ed
pr

es
su

re
 h

ea
d

Generated Water
Distribution Network

Leak

G
en

er
at

ed
 s

en
so

r
ob

se
rv

at
io

ns

Real Water Distribution Network

Leak

R
eal sensor observations

Compute
likelihood of
each possible
leak location

Likelihood of each leak location

Compute
information

gain

Time

Leak
location

Probability of leak in each pipe

NNp

IG <

IG >

Leak prediction

Max

Go to next
observation

time

P
(c

k |y
0
:i)

P
(c

k |y
0
:i)

P (ck|y0:i)

Decoder

p(y|ck, z, t)
p(y|ck, z, t)

Combine prior
and likelihood

Use posterior as prior for next iteration

p(y|ck, z, t)
p(y|ck, z, t)

ε

ε

Figure 2. Illustration of the online computation of the posterior distribution, p(ck|y0:i), k = 1, . . . , Np.

Algorithm 1: Offline stage
Input : Ntrain, training hyperparameters, WAE-MMD architecture

1 Generate training samples, {(xi, ci)}Ntrain
i=1 , by solving the forward problem (see

Section 2.1);
2 Train the supervised WAE-MMD (see Section 2.3);

Output : φdec

Algorithm 2: Online stage
Input : φdec from Algorithm 1, observations y, threshold ε

1 i = 0
2 for ck = {1, . . . , Np} do

3 Compute pc|y(ck|yi) =
pc(ck)Ez∼Pz [py|c,z(yi |ck ,z)]

∑
Np
j=1 Ez∼Pz [py|c,z(yi |cj ,z)]

4 end for
5 while IG(c, yi) > ε do
6 i = i + 1
7 for ck = {1, . . . , Np} do

8 pc|y(ck|y0:i) = pc(ck)∏i
i=0

Ez∼Pz [py|c,z(yi |ck ,z)]

∑
Np
j=1 Ez∼Pz [py|c,z(yi |cj ,z)]

9 end for
10 end while

Output : pc|y(c|y0:i)

3.1. Stopping Criterion in the Online Stage

With every new set of observations, yi, we receive additional information about the
system at hand. However, at some point, new observations no longer contribute to the
accuracy of the posterior. In other words, the posterior density should converge:

pc|y(ck|y0:Nt
)→ pc|y(ck|y), for Nt → ∞. (25)

This implies that the algorithm should be stopped when there is no significant change to
the posterior. For this reason, we introduce the information gain of c, IG(c, yi), obtained
from additional observations, as the stopping criterion. The information gain is defined

Sensors 2023, 23, 6179 12 of 23

by the KL divergence between the posterior at time ti and time ti−1, which measures how
much the posterior distribution changed with new observations:

IG(c, yi) = DKL(Pc|y(ck|y0:i)||Pc|y(ck|y0:i−1))

= −
Np

∑
k=1

pc|y(ck|y0:i) log

(
pc|y(ck|y0:i)

pc|y(ck|y0:i−1)

)
.

(26)

We terminate the computations when the information gain is below a threshold, ε.

3.2. Estimating Uncertainty

In order to decide whether a leak location prediction is trustworthy, we can compute
the entropy of the posterior:

H(C) = −
Np

∑
i=1

pc(ci|y0:1) log(pc(ci|y0:1)). (27)

This tells us how much information or uncertainty we have in the posterior distribution.
A low entropy means a sufficient amount of information, i.e., low uncertainty, and a high
entropy signifies the opposite. Therefore, we can use the entropy as a measure of how
much we can trust our prediction. That is, when there are insufficient observations to
make a trustworthy prediction, the entropy will be higher and thereby indicate that more
observations are needed. Hence, when the truth is unknown, we can still assess whether
the prediction is accurate or not.

This is a crucial step in applying the methodology in practice, as it provides the
necessary information to act on a certain prediction. If the entropy is high, this tells us that
we need more observations in order to provide a trustworthy prediction.

3.3. Model Architectures

As mentioned in Section 2, the WAE and the proposed framework do not rely on only
one neural network architecture. In this work, we make use of two different types of neural
network architecture, to demonstrate that the framework can be based on more than one
possible choice. Moreover, we will see that each choice has a superior performance for a
certain test case. Specifically, we use transformers and dense ResNets in the experiments
that follow. For a detailed breakdown of the model architectures, see Appendix B, and for
a visualization of the transformer network, see Figure A2. For the transformers, both the
encoder and the decoder make use of a combination of dense neural networks, transformer
encoders, and transformer decoders. With this architecture, the network structure of the
data is modeled using attention mechanisms. For the dense ResNet, the encoder and
decoder consist of a series of residual layers with dimension reduction and increasing
layers, respectively, in between.

4. Results

In this section, we show the performance of the proposed framework in three test
cases. We assessed the framework’s performance with respect to the topological distance
and accuracy (The code used for generating the data and the corresponding results can
be found on GitHub, see https://github.com/nmucke/DT-for-WDN-leak-localization.git
(accessed on 13 June 2023)). We compared the performance of two distinct architectures,
a dense ResNet and a transformer architecture. In both cases, the neural networks were
similar to the encoder network, but with a softmax activation function at the output.

For comparison, we also computed the leak location using a conventional classification
neural network, which was trained to classify a leak location based on sensor observations
at a given time. The classification network was trained on the same data as the autoencoders.
It is worth noting that, with this method, it is necessary to train a model for each sensor
configuration. This is in contrast to the proposed framework, where a single model can

https://github.com/nmucke/DT-for-WDN-leak-localization.git

Sensors 2023, 23, 6179 13 of 23

handle all possible sensor configurations. For more details on the classification model, see
Appendix D.

4.1. Test Cases

All test cases were defined in a similar manner, however, with some variations. Figure 3
shows the three test WDN topologies, together with the sensor locations. The first one is
typically referred to as a Hanoi network; the second is often referred to as Net3 (not to be
confused with the numbering of the cases in this paper), and the third is known as Modena.

Case 1:
Case 2:
Case 3:

Node: 27
Pipe: 27

Node: 32
Pipe: 33

Node: 28
Pipe: 30

Node: 18
Pipe: 17

Node: 20
Pipe: 20

Node: 4
Pipe: 3

Node: 9
Pipe: 8

(a) Test WDN1.

Node: 3 (Tank)
Pipe: 20

Node: 143
Pipe: 149

Node: 213
Pipe: 247

Node: 237
Pipe: 271

Node: 2 (Tank)
Pipe: 50

Node: 1 (Tank)
Pipe: 40

Node: 117 (Tank)
Pipe: 119

Pipe: 10

Pipe: 60

Node: 193
Pipe: 116

Node: 181
Pipe: 193

Case 1:
Case 2:

(b) Test WDN2.

Node: 32
Pipe: 128

Node: 46
Pipe: 310

Node: 70
Pipe: 50

Node: 54
Pipe: 240

Node: 84
Pipe: 204

Node: 118
Pipe: 93

Node: 161
Pipe: 70

Node: 202
Pipe: 145

Node: 225
Pipe: 83

Node: 55
Pipe: 242

Node: 63
Pipe: 13

Node: 188
Pipe: 290

Node: 191
Pipe: 182

Node: 240
Pipe: 220

Case 1:
Case 2:

Pipe: 330

Pipe: 331

Pipe: 336

Pipe: 335

Node: 91
Pipe: 156

(c) Test WDN3.

Figure 3. Network topologies and the sensor locations for the three test cases.

We placed sensors in various nodes in the WDN. Each sensor measured the pressure
head value in the node and the flow rate in a neighboring pipe section. We did not use
pressure head sensors at the water sources, as such information does not make sense in
many cases, e.g., for lakes and rivers. However, we placed flow rate sensors in pipes
connected to those sources, in order to mimic a real-world scenario, where the inflow into
the network is measured. For test case 1, we show results for three configurations, each
with a varying number of sensors. For test cases 2 and 3, we show results for two sensor
configurations. Note that, since the generative model outputs the full state, consisting
of pressure heads and flow rate, the different sensor configurations only changed the
observation operator in the online stage; that is, only H in (22) was varied with the different
sensor configurations.Hence, a single training stage was performed, and the resulting
generative model worked under multiple sensors settings.

We also added noise to the sensor readings, to mimic a real-world scenario where
the sensors would not be perfect. In all cases and for all pressure head and flow rate
observations, the noise was sampled from a normal distribution at each time step and
added to the observations. The noise at each sensor was independent of the other sensors.
The normal distribution had a mean of zero and a standard deviation corresponding to a
percentage of the observed value. We show results for various noise percentages in all test
cases, to analyze the performance of the algorithm in various settings. In Table 1, we show
the specific parameter and noise settings for the three test cases.

Table 1. Settings for the three test cases.

WDN 1 WDN 2 WDN 3

Num. pipes 34 119 317
Num. junctions 31 97 272
Demand noise 10% 5% 10%

In all test cases, the data were generated by varying the pipe section in which the leak
was present. The leak size was also varied by varying the leak area between 0.002 [m2]
(20 [cm2]) and 0.004 [m2] (40 [cm2]). The test cases were simulated for 24 h, with values
recorded every hour.

All the demands followed a temporal pattern, i.e., in each node at every time of the
day, the demand had a base value. In order to mimic the stochasticity of the demand, we

Sensors 2023, 23, 6179 14 of 23

added noise to the base values. The total demands in each network are shown in Figure 4
and examples of demand patterns for individual nodes are shown in Figure 5.

We used two metrics to assess the performance of the framework: the average topolog-
ical distance (ATD), and the accuracy. The accuracy is the fraction of correctly predicted leak
locations. The topological distance is the distance of the shortest route from the predicted
leak location to the true leak location. The ATD was then computed by taking the average
of the many different solutions of the inverse problems for varying leak locations, sizes,
demands, and sensor noises.

Furthermore, it is important to emphasize that the models were trained on a dataset
that was distinct from the test dataset used in assessing the performance. The Epanet .inp
files can be found in the GitHub repository.

0 5 10 15 20
Time [Hours]

1500

2000

2500

3000

3500

4000

4500

5000

To
ta

l d
em

an
d

[l/
s]

(a) Test WDN 1.

0 5 10 15 20
Time [Hours]

600

700

800

900

1000

To
ta

l d
em

an
d

[l/
s]

(b) Test WDN 2.

0 5 10 15 20
Time [Hours]

150

200

250

300

350

400

450

500

To
ta

l d
em

an
d

[l/
s]

(c) Test WDN 3.

Figure 4. Total demand with standard deviation.

0 5 10 15 20
Time [Hours]

0

5

10

15

20

25

30

35

40

To
ta

l d
em

an
d

[l/
s]

Node 15
Node 103
Node 179
Node 205
Node 253

(a) Demands for 5 nodes.

0 5 10 15 20
Time [Hours]

100

50

0

50

100

150

200

250

300

To
ta

l d
em

an
d

[l/
s]

Tank 1
Tank 2
Tank 3

(b) Demands for tanks.

Figure 5. Demand patterns for the test WDN 2.

4.2. Training of the WAEs

The WAEs were trained on simulated data. Training data were generated by simu-
lating according to the settings described above. The leak locations were sampled from a
multinomial distribution, with an equal probability assigned to each pipe section. The leak
size was sampled uniformly from the interval [0.002 m2, 0.004 m2]. Furthermore, the de-
mand noise was sampled at each time instance from a normal distribution with a mean
0 and a variance equal to 10% of the base value in test cases 1 and 3 and 5% in test case 2.

The hyperparameter settings for the WAEs are described in Appendix C.

4.3. Test WDN1: Hanoi Network

For test WDN1, we considered three different sensor configurations (see Figure 3a),
each with five different sensor noise levels. All nodes are given the same demand pattern,
but with varying base values in each node. Noise was added to the total demand, which
was then distributed to all nodes according to the relative base value. Noise was added to
each node independently of the other nodes. See Figure 4a for the total demand time series
with the standard deviation.

We tested the framework with both a prior distribution of the leak locations and
without any prior knowledge. The prior distribution is shown in Figure 6d.

We made use of a transformer architecture here. The results are shown in Figure 6.
The likelihood was computed with 30,000 samples. We tested using 50 different leak locations.

As expected, the ATD increased and the accuracy decreased with increasing noise and
a decreasing number of sensors. The ATD went from approximately 0.25 to approximately
3.0 from the best to the worst case, and the accuracy diminished from approximately 79% to

Sensors 2023, 23, 6179 15 of 23

approximately 9% when no prior was available. When a prior was present, the ATD ranged
from approximately 0.4 to approximately 2.7, and the accuracy ranged from approximately
81% to approximately 19%, which was a drastic reduction.

0.027

0.028

0.029

0.030

0.031

0.032

P(c)

(a) Prior probability.

0.5% 1.0% 2.5% 5.0% 10.0%
Noise

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

To
po

lo
gi

ca
l D

ist
an

ce 3 sensors
5 sensors
7 sensors

(b) ATD.

0.5% 1.0% 2.5% 5.0% 10.0%
Noise

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 [%
]

3 sensors
5 sensors
7 sensors

(c) Accuracy.

0.00

0.01

0.02

0.03

0.04

0.05

P(c)

(d) Prior probability.

0.5% 1.0% 2.5% 5.0% 10.0%
Noise

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

To
po

lo
gi

ca
l D

ist
an

ce 3 sensors
5 sensors
7 sensors

(e) ATD.

0.5% 1.0% 2.5% 5.0% 10.0%
Noise

20

30

40

50

60

70

80

Ac
cu

ra
cy

 [%
]

3 sensors
5 sensors
7 sensors

(f) Accuracy.

Figure 6. Results for WDN1 for the given priors. The first row shows results for the prior in (a) and
the second row shows results for the prior in (d). The number of sensors counted is the number of
flow rate sensors. Note that there are fewer pressure head sensors.

4.4. Test WDN2

For test WDN2, we considered two different sensor configurations (see Figure 3b),
each with five different sensor noise levels. The total demand is shown Figure 4b. There
was a varying demand pattern for each node. Some nodes mimicked households, other
nodes had no demand, and some had demands mimicking factories. Noise was added to
each node independently of the other nodes. In Figure 5a, examples of the demand patterns
are presented. Furthermore, there were water tanks present, which served as stabilizers
for the WDN. Hence, their demand varied according to the total demand. In Figure 5b,
examples of three tanks are shown.

As for test WDN1, we worked with a prior distribution of the leak locations and
without any prior knowledge. The prior distribution is shown in Figure 7d. We made
use of a transformer architecture. The results are shown in Figure 7. The likelihood was
computed with 30,000 samples. We tested with 200 different leak locations.

The results were very similar to the results for WDN1, which suggests that the frame-
work scales well to more complicated settings.

4.5. Test WDN3: Modena

For test WDN3, we again considered two different sensor configurations (see Figure 3c),
each with five different sensor noise levels. The demand patterns were modeled in the
same way as for WDN1, but with a different total demand. See Figure 4c for the total
demand time series.

Uniquely to this test case, we made use of a different standard deviation for the
likelihood computation than for the noise added to the observations. Specifically, we used
a standard deviation of 5%, no matter the artificial noise added to the observations. This is
more reminiscent of a real-world scenario, where the true sensor noise would be unknown.

Sensors 2023, 23, 6179 16 of 23

0.0076

0.0078

0.0080

0.0082

0.0084

0.0086

0.0088

0.0090

0.0092

P(c)

(a) Prior probability.

0.5% 1.0% 2.5% 5.0% 10.0%
Noise

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e

To
po

lo
gi

ca
l D

ist
an

ce 9 sensors
11 sensors

(b) ATD.

0.5% 1.0% 2.5% 5.0% 10.0%
Noise

10

20

30

40

50

60

70

Ac
cu

ra
cy

 [%
]

9 sensors
11 sensors

(c) Accuracy.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

P(c)
(d) Prior probability.

0.5% 1.0% 2.5% 5.0% 10.0%
Noise

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

To
po

lo
gi

ca
l D

ist
an

ce 9 sensors
11 sensors

(e) ATD.

0.5% 1.0% 2.5% 5.0% 10.0%
Noise

20

30

40

50

60

Ac
cu

ra
cy

 [%
]

9 sensors
11 sensors

(f) Accuracy.

Figure 7. Results for WDN2 for the given priors. The first row shows the results for the prior in
(a), and the second row shows the results for the prior in (d). The number of sensors counted is the
number of flow rate sensors. Note that there are fewer pressure head sensors.

As for test cases WDN1 and WDN2, we worked with a prior distribution of the
leak locations and without any prior knowledge. The prior distribution is shown in
Figure 8d. Here, we made use of the ResNet architecture. The results are shown in
Figure 8. The likelihood was computed with 50,000 samples. We tested with 250 different
leak locations.

As for the other two test cases, we saw a better performance when we made use of
prior information. Furthermore, increasing the number of sensors also gave better results.

0.0029

0.0030

0.0031

0.0032

0.0033

0.0034

P(c)

(a) Prior probability.

0.5% 1.0% 2.5% 5.0% 10.0%
Noise

2

4

6

8

10

Av
er

ag
e

To
po

lo
gi

ca
l D

ist
an

ce 9 sensors
14 sensors

(b) ATD.

0.5% 1.0% 2.5% 5.0% 10.0%
Noise

15

20

25

30

35

40

Ac
cu

ra
cy

 [%
]

9 sensors
14 sensors

(c) Accuracy.

0.000

0.002

0.004

0.006

0.008

0.010

0.012

P(c)

(d) Prior probability.

0.5% 1.0% 2.5% 5.0% 10.0%
Noise

2

3

4

5

6

7

Av
er

ag
e

To
po

lo
gi

ca
l D

ist
an

ce 9 sensors
14 sensors

(e) ATD.

0.5% 1.0% 2.5% 5.0% 10.0%
Noise

10

20

30

40

50

Ac
cu

ra
cy

 [%
]

9 sensors
14 sensors

(f) Accuracy.

Figure 8. Results for WDN3 for the given priors. The first row shows the results for the prior in
(a), and the second row shows the results for the prior in (d). The number of sensors counted is the
number of flow rate sensors. Note that there are fewer pressure head sensors.

We saw a decrease in accuracy and an increase in ATD when the noise level was
increased. However, in contrast to the other test cases, the performance was relative
constant across noise levels, until 5% and 10%, where the accuracy and ATD worsened.
This suggests that our method is stable until a certain threshold, where more information

Sensors 2023, 23, 6179 17 of 23

is needed to say something definite about the leak location. This is not a surprise, as the
WDN was significantly larger than in the two other test cases and therefore might require
additional observations when there is a lot of noise present. In such cases it is of great value
that our method also quantifies the uncertainty associated with the prediction. Hence,
the user will know when there is insufficient information to come to a strong conclusion.

4.6. Comparison with the Baseline

In Table 2, we show a comparison of the results computed with our framework and
the baseline classifier. Clearly, the proposed framework outperformed the classifier for both
WDN1 and WDN2 with both the ResNet and the transformer architectures. Furthermore,
the transformer network gave the best results, suggesting that the transformer architecture
is a suitable choice for small to medium-sized WDNs.

For WDN3, the results were different. The ResNet architecture with the new frame-
work gave the best results, while the transformer architecture did not perform very well.
However, with the classifier, the transformer architecture performed the best, suggesting
that the transformer architecture may also be a satisfactory choice in that setting.

Table 2. Comparison with the baseline. The ATD and accuracy were computed for all noise and
sensors cases, both with a prior and without a prior, and then averaged. Our framework is denoted by
“Bayes”, followed by the neural networks utilized. The vertical arrows denote the desired direction of
the metric. The best results are highlighted in boldface.

WDN1 WDN2 WDN3

ATD ↓ Acc ↑ ATD ↓ Acc ↑ ATD ↓ Acc ↑
Classifier-ResNet 2.94 26.5 5.81 13.25 10.01 7.85
Classifier-Transformer 2.06 31.67 3.60 21.5 4.88 27.92

Bayes-WAE, ResNet 1.23 45.70 2.91 25.03 3.49 29.50
Bayes-WAE, Transformer 1.07 50.00 1.71 39.28 10.38 4.54

4.7. Posterior Distribution Entropy

To evaluate the entropy computations, we considered three different entropy functions,
i.e., the mean entropy of the posterior for all incorrect predictions, E[Hwrong(C)], the mean
entropy of the posterior for all correct predictions E[Hcorrect(C)], and the ratio between
the two E[Hwrong(C)]/E[Hcorrect(C)]. This ratio informs us about the relative size of the
entropy of an incorrect prediction compared to a correct prediction. Ideally, this ratio
should be large, as this is an indication that the framework provides high uncertainty for
incorrect predictions and a low uncertainty for correct predictions.

In Figure 9, it is clear that, compared with the classifier, the new framework showed
consistently higher entropy ratios. Thus, the framework provided more accurate uncer-
tainty estimates compared to the classifier. In particular, for the transformer neural network
in the new approach, the entropy ratio was high, because the entropy for incorrect pre-
dictions was high. In summary, if the ATDs and accuracy were not high, this would be
reflected in the entropy. Therefore, we know a posteriori, and accurately, when predictions
computed with the new framework are trustworthy. This is an important feature and one
that is not easily attained.

Sensors 2023, 23, 6179 18 of 23

(a) Ratio. (b) Correct predictions. (c) Wrong predictions

Figure 9. Entropy of the estimated posterior distributions. (a) Shows the ratio between the mean
entropy of the posterior for a wrong prediction and a correct prediction. (b) Shows the mean entropy
of the posterior distribution for correct predictions. (c) Shows the mean entropy of the posterior
distribution for wrong predictions

5. Conclusions

We presented a framework for computing leakage locations using Bayesian infer-
ence and generative deep learning. A Bayesian approach was used to formulate the leak
localization in a probabilistic manner. A generative neural network was trained to ap-
proximate the distribution of pressure heads and flow rates given a leak location and time
using the WAE framework. To use the generative neural network for leak localization,
the Bayesian problem was reformulated to a latent Bayesian inference problem. The ap-
proach was showcased in three test cases and showed a superior performance compared to
a classification approach.

A Bayesian approach to leak localization offers two distinct advantages compared to
non-probabilistic methods. First, it automatically gives the uncertainty of the prediction, in
the shape of the posterior distribution. Second, it allows one to incorporate prior knowledge.
However, it comes at a cost to the computation time.

The generative deep learning is trained in an offline stage on simulated data. Af-
ter training, it then serves as a fast to evaluate surrogate model. In other words, the Bayesian
inverse problem can be solved efficiently and without sacrificing accuracy when the neural
network is trained properly.

We showed that one can obtain good quality performance using different architectures.
We specifically showcased results using transformers and dense ResNets. The transformer
architecture performed best in the two first test cases, while the ResNet performed best in
the last test case. Therefore, one should investigate which neural network architecture to
use in advance. However, the fact that the framework works with various architectures
means that new state-of-the-art architectures can easily be incorporated.

For all test cases considered, the new framework outperformed the classification
approach. Furthermore, the flexibility of the framework was shown through varying the
amount of noise in the nodal demand and sensor measurements. Even when the true
noise level was unknown, it was shown in test case 3 that the method performed well.
Furthermore, the (positive) impact of prior knowledge of the leak location on the accuracy
was detailed.

The framework not only provides leak location estimates, but also estimates of the
uncertainty in the estimates. This is achieved by means of the entropy of the posterior distri-
bution. We showed that the entropy computed with the new framework was significantly
more informative than for the classification approach.

This paper thus showed the potential of using generative deep learning as a stochastic
digital twin for water distribution networks, as it was seamlessly integrated with Bayesian
inversion schemes.

There are many opportunities for further study. The computation of the posterior
could be sped up with more efficient integration methods than Monte Carlo simulation.
The physics of the problem could be incorporated into the training of the neural network,
to ensure conservation of important quantities such as mass and momentum.

Sensors 2023, 23, 6179 19 of 23

Author Contributions: Conceptualization, N.T.M., S.M.B. and C.W.O.; Methodology, N.T.M.; Soft-
ware, N.T.M.; Validation, N.T.M. and P.P.; Formal analysis, N.T.M.; Investigation, N.T.M., P.P. and S.J.;
Writing—original draft, N.T.M.; Writing—review & editing, N.T.M., S.J., S.M.B. and C.W.O.; Supervi-
sion, S.J., S.M.B. and C.W.O.; Project administration, S.J., S.M.B. and C.W.O.; Funding acquisition, S.J.,
S.M.B. and C.W.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Dutch National Science Foundation NWO under the
grant number 629.002.213, which was a cooperative project with IISc Bangalore and Shell Research as
project partners.

Data Availability Statement: The code for generating the synthetic data used in the paper can be
found in the GitHub repository: https://github.com/nmucke/DT-for-WDN-leak-localization.git
(accessed on 13 June 2023)).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Attention and Transformers

We will highlight the relevant features of the transformer architecture used in this work.
The key to the transformer architecture is the so-called attention mechanism. The scaled
dot-product attention is the method of choice here. For a matrix, X ∈ Rk×d, the scaled
dot-product attention is computed by

K = Fk(X) ∈ Rk×d, Q = Fq(X) ∈ Rk×d, V = Fv(X) ∈ Rk×d, (A1a)

Attention(Q, K, V) = so f tmax
(

QKT
√

d

)
V, (A1b)

where K refers to the keys, Q the queries, and V the values. Fk, Fq, and Fv are typically
shallow neural networks to be fitted during training. k is the context length and d is
the embedding dimension. An attention layer typically consists of so-called multiple
attention “heads”. Each head is of the same structure but consists of different functions,
Fk, Fq, and Fv, resulting in multiple attention maps, Ci, that are concatenated along the
dth dimension.

By connecting the attention layer to a residual connection, a normalization layer,
a dense neural network, another residual connection, and another normalization, we have
the transformer encoder module. See Figure A1 for a visualization.

With matrix X, a sequence of k elements, with each element being a vector of size
d, the attention mechanism computes how much each element in the sequence should
attend to every other element. In the context of natural language processing, the attention
mechanism computes how much every word in a sequence is influenced by any other word
in the sequence. A slightly more suitable interpretation in the present application is to
consider X a graph with k nodes and d features in each node. The attention mechanism
then computes how strong the connection should be between each pair of nodes.

In Equation (A1), the attention described is referred to as self-attention, referring to the
fact that all elements of X only attend to other elements in X. Similarly, one defines cross-
attention using the attention map from another source as keys and values. By combining
this with self-attention, normalization, and a dense neural network, we have the decoder
transformer module, see also Figure A1 for a visualization.

The transformer encoder and decoder networks are not aware of the relative positions
of the individual nodes. Therefore, positional encoding is added to the features before
passing them through the transformers.

https://github.com/nmucke/DT-for-WDN-leak-localization.git

Sensors 2023, 23, 6179 20 of 23

Positional
encoding

Multi-head
attention

Add
& norm

Dense
neural

network

Add
& norm

Positional
encoding

Multi-head
attention

Add
& norm

Dense
neural

network

Add
& norm

Multi-head
attention

Add
& norm

Transformer decoder

Transformer encoder

Figure A1. Transformer encoder and decoder architecture.

Appendix B. Model Architecture

Appendix B.1. Dense ResNet

The encoder consists of a series of ResNet layers, followed by dense layers that reduce
the dimensionality. Similarly, the decoder consists of ResNet layers, followed by dense
layers that increase the dimensionality. The input layer of the encoder takes a vector with
the flow rates and pressure heads concatenated and outputs the latent state. The decoder
takes the latent state and the parameters (leak location and time) concatenated and outputs
the full order state.

Appendix B.2. Transformer

For the encoder, the data are first passed through a dense layer, in order to increase the
embedding dimension. Then, they are passed through several transformer encoder layers.
The transformer layers model interactions between the nodes and edges of the network.
The resulting attention maps are reshaped into a vector and passed through dense layers,
in order to decrease the dimensionality. Lastly, the reduced representation of the network
is passed through transformer encoder layers, in order to model the relations between the
latent features. The decoder follows a similar structure, the difference being the inclusion of
the parameters and transformer decoder layers instead of encoder layers. The parameters
are passed through two different sets of transformer encoder layers. The output of the
first set of transformer encoder layers is used as input to the cross-attention in the latent
transformer decoder layers. The output of the second transformer encoder layer is passed
to the full state space decoder transformer layers. For a visualization of the architectures,
see Figure A2.

Transformer
Encoder

N Blocks N Blocks

Transformer
Encoder

Transformer
Decoder

N Blocks

Transformer
Decoder

N Blocks

Transformer
Encoder

Transformer
Encoder

Encoder

Decoder

P
aram

eters
Latent State

Latent State

F
lo

w
 r

at
e

P
re

ss
ur

e
he

ad
F
lo

w
 r

at
e

P
re

ss
ur

e
he

ad

Figure A2. Illustration of the encoder and decoder architectures.

Appendix C. WAE Training

All neural network code was based on PyTorch [36]. Training was performed in a
similar manner for all three test cases. We used the Adam optimizer with a cosine warm-up

Sensors 2023, 23, 6179 21 of 23

learning rate scheduler with 50 warm-up steps, as described in [37]. That is, the learning rate
started as a small value, and was increased to the chosen value over 50 epochs. Thereafter,
it was reduced following a cosine function over the remaining epochs. The gradient norms
were clipped to 0.5, to stabilize the training. We made use of early stopping with a patience
of 50 to avoid over-fitting; that is, if there were 50 consecutive epochs without improvement
on the validation data, we stopped the training and made use of the best performing model.
In all test cases, we trained on 25,000 samples and used 5000 samples for validation. For all
hyperparameters, see Table A1.

Table A1. Hyperparameters for the WAEs.

WDN 1 WDN 2 WDN 3

Training hyperparameters
Batch size 256 256 256
Learning rate 5× 10−5 5× 10−5 5× 10−5

l2 regularization 10−10 10−10 10−10

MMD regularization 10−2 10−2 10−2

Scheduler warmup 50 50 50
Early stopping
patience 50 50 50

ResNet Architecture
Latent dimension 8 16 16
layers 5 5 7
neurons 64, 48, 32, 192, 160, 128, 512, 384, 320,

24, 16 96, 64, 32 256, 192, 128, 64
Act. func. Leaky ReLU Leaky ReLU Leaky ReLU

Transformer Architecture
Latent dimension 8 16 16
Num. dense neurons 32 128 256
Embedding dimension 4 4 4
Attn. heads 2 2 2
Latent transformer
blocks 2 2 2

Full order
transformer blocks 1 1 1

Act. func. transformer
layers GeLU GeLU GeLU

Act. func. dense layers Leaky ReLU Leaky ReLU Leaky ReLU

Appendix D. Classification Model

The classification neural network, g, outputs a vector of the same size as the number of
pipe sections, Np. Furthermore, it has a softmax activation after the last layer, to ensure that
the output sums to 1. The model was trained on a labeled dataset consisting of noiseless
sensor observations, H(x) = y and the corresponding leak location, c, as the target. The leak
location was one-hot encoded; that is, the target was a zero vector with a one at the entry of
leak location index. Hence, the dataset is given by

{(H(x1), c1), . . . , (H(xN), cN)}. (A2)

The neural network is trained using the cross-entropy loss:

L(g) = −
N

∑
i=1

Np

∑
j=1

ci,j log(g(H(xi)j), (A3)

where ci,j is the jth index of the ith training sample and H(xi)j is the jth index of the output
of the neural network evaluated at the ith training sample. Hence, the neural network was
trained to output the probability of a leak being present in each possible pipe section given

Sensors 2023, 23, 6179 22 of 23

the observations, i.e., the posterior distribution, g(yi) = pc|y(ck|yi). In the online stage,
the distribution is updated with observations in time, by

pc|y(ck|y0:Nt
) = pc(ck)

Nt

∏
i=0

pc|y(ck|y0:i) = pc(ck)
Nt

∏
i=0

g(yi), (A4)

until convergence with respect to the KL-divergence. This is the same procedure as for the
proposed framework.

It is important to keep in mind that the classifier only approximates the leak location
posterior for a single sensor configuration. This is in contrast to the proposed framework,
where the full state posterior is approximated together with the leak location. This also
means that the classification neural network needs to be retrained every time the sensor
configuration is changed.

References
1. Sun, C.; Parellada, B.; Puig, V.; Cembrano, G. Leak localization in water distribution networks using pressure and data-driven

classifier approach. Water 2019, 12, 54. [CrossRef]
2. Javadiha, M.; Blesa, J.; Soldevila, A.; Puig, V. Leak localization in water distribution networks using deep learning. In

Proceedings of the 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), Paris, France,
23–26 April 2019; pp. 1426–1431.

3. Mohammed, E.G.; Zeleke, E.B.; Abebe, S.L. Water leakage detection and localization using hydraulic modeling and classification.
J. Hydroinform. 2021, 23, 782–794. [CrossRef]

4. Romero, L.; Blesa, J.; Puig, V.; Cembrano, G.; Trapiello, C. First results in leak localization in water distribution networks using
graph-based clustering and deep learning. IFAC-PapersOnLine 2020, 53, 16691–16696. [CrossRef]

5. Shekofteh, M.; Jalili Ghazizadeh, M.; Yazdi, J. A methodology for leak detection in water distribution networks using graph
theory and artificial neural network. Urban Water J. 2020, 17, 525–533. [CrossRef]

6. Gao, H.; Dai, B.; Miao, H.; Yang, X.; Barroso, R.J.D.; Walayat, H. A novel gapg approach to automatic property generation for
formal verification: The gan perspective. ACM Trans. Multimed. Comput. Commun. Appl. 2023, 19, 1–22. [CrossRef]

7. Gao, H.; Qiu, B.; Barroso, R.J.D.; Hussain, W.; Xu, Y.; Wang, X. Tsmae: A novel anomaly detection approach for internet of things
time series data using memory-augmented autoencoder. IEEE Trans. Netw. Sci. Eng. 2022, 1. [CrossRef]

8. Singh, M.N.; Khaiyum, S. Enhanced data stream classification by optimized weight updated meta-learning: Continuous
learning-based on concept-drift. Int. J. Web Inf. Syst. 2021, 17, 645–668. [CrossRef]

9. Jurek-Loughrey, A. Deep learning based approach to unstructured record linkage. Int. J. Web Inf. Syst. 2021, 17, 607–621.
[CrossRef]

10. van Lagen, G.; Abraham, E.; Esfahani, P.M. A Bayesian Approach for Active Fault Isolation with an Application to Leakage
Localization in Water Distribution Networks. IEEE Trans. Control. Syst. Technol. 2022, 31, 761–771. [CrossRef]

11. Maier, G.; Bolzon, G.; Buljak, V.; Garbowski, T.; Miller, B. Synergic combinations of computational methods and experiments for
structural diagnoses. Comput. Methods Mech. 2010, 1, 453–476.

12. Frangos, M.; Marzouk, Y.; Willcox, K.; van Bloemen Waanders, B. Surrogate and reduced-order modeling: A comparison of
approaches for large-scale statistical inverse problems. In Large-Scale Inverse Problems and Quantification of Uncertainty; Wiley
Online Library: Hoboken, NJ, USA, 2010 ; pp. 123–149.

13. Guo, M.; Hesthaven, J.S. Reduced order modeling for nonlinear structural analysis using Gaussian process regression. Comput.
Methods Appl. Mech. Eng. 2018, 341, 807–826. [CrossRef]

14. Mücke, N.T.; Bohté, S.M.; Oosterlee, C.W. Reduced Order Modeling for Parameterized Time-Dependent PDEs using Spatially
and Memory Aware Deep Learning. J. Comput. Sci. 2021, 53 , 101408. [CrossRef]

15. Hesthaven, J.S.; Ubbiali, S. Non-intrusive reduced order modeling of nonlinear problems using neural networks. J. Comput. Phys.
2018, 363, 55–78. [CrossRef]

16. Li, Z.; Kovachki, N.; Azizzadenesheli, K.; Liu, B.; Bhattacharya, K.; Stuart, A.; Anandkumar, A. Fourier neural operator for
parametric partial differential equations. arXiv 2020, arXiv:2010.08895.

17. Mücke, N.T.; Sanderse, B.; Bohté, S.; Oosterlee, C.W. Markov Chain Generative Adversarial Neural Networks for Solving
Bayesian Inverse Problems in Physics Applications. arXiv 2021, arXiv:2111.12408.

18. Drygala, C.; Winhart, B.; di Mare, F.; Gottschalk, H. Generative modeling of turbulence. Phys. Fluids 2022, 34, 035114. [CrossRef]
19. Patel, D.; Oberai, A.A. Bayesian inference with generative adversarial network priors. arXiv 2019, arXiv:1907.09987.
20. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

networks. Commun. ACM 2020, 63, 139–144. [CrossRef]
21. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
22. Sohl-Dickstein, J.; Weiss, E.; Maheswaranathan, N.; Ganguli, S. Deep unsupervised learning using nonequilibrium thermodynam-

ics. In Proceedings of the International Conference on Machine Learning, Lille, France, 7–9 July 2015 ; pp. 2256–2265.

http://doi.org/10.3390/w12010054
http://dx.doi.org/10.2166/hydro.2021.164
http://dx.doi.org/10.1016/j.ifacol.2020.12.1104
http://dx.doi.org/10.1080/1573062X.2020.1797832
http://dx.doi.org/10.1145/3517154
http://dx.doi.org/10.1109/TNSE.2022.3163144
http://dx.doi.org/10.1108/IJWIS-01-2021-0007
http://dx.doi.org/10.1108/IJWIS-05-2021-0058
http://dx.doi.org/10.1109/TCST.2022.3201334
http://dx.doi.org/10.1016/j.cma.2018.07.017
http://dx.doi.org/10.1016/j.jocs.2021.101408
http://dx.doi.org/10.1016/j.jcp.2018.02.037
http://dx.doi.org/10.1063/5.0082562
http://dx.doi.org/10.1145/3422622

Sensors 2023, 23, 6179 23 of 23

23. Xiao, Z.; Kreis, K.; Vahdat, A. Tackling the generative learning trilemma with denoising diffusion GANs. arXiv 2021,
arXiv:2112.07804.

24. Tolstikhin, I.; Bousquet, O.; Gelly, S.; Schoelkopf, B. Wasserstein auto-encoders. arXiv 2017, arXiv:1711.01558.
25. Simpson, A.; Elhay, S. Jacobian matrix for solving water distribution system equations with the Darcy-Weisbach head-loss model.

J. Hydraul. Eng. 2011, 137, 696–700. [CrossRef]
26. Rossman, L.A. EPANET 2: Users Manual. 2000. Available online: https://nepis.epa.gov/Exe/ZyNET.exe/P1007WWU.

TXT?ZyActionD=ZyDocument&Client=EPA&Index=2000+Thru+2005&Docs=&Query=&Time=&EndTime=&SearchMethod=
1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=
0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C00thru05%5CTxt%5C00000024%5CP1007WWU.txt&User=
ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=
r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=
Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL (accessed on 29 June 2023).

27. Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction;
Springer: New York, NY, USA, 2009; Volume 2.

28. Xiu, D. Numerical Methods for Stochastic Computations: A Spectral Method Approach; Princeton University Press: Princeton, NJ,
USA, 2010 .

29. Kramer, M.A. Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 1991, 37, 233–243.
[CrossRef]

30. Gretton, A.; Borgwardt, K.M.; Rasch, M.J.; Schölkopf, B.; Smola, A. A kernel two-sample test. J. Mach. Learn. Res. 2012,
13, 723–773.

31. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, USA, 27–30 June 2016; pp. 770–778.

32. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30 , 6000–6010.

33. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

34. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.;
Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [CrossRef]

35. Lim, B.; Arık, S.Ö.; Loeff, N.; Pfister, T. Temporal fusion transformers for interpretable multi-horizon time series forecasting. Int.
J. Forecast. 2021, 37, 1748–1764. [CrossRef]

36. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Advances in Neural Information Processing
Systems 32, Vancouver, BC, Canada, 8–14 December 2019 ; pp. 8024–8035.

37. Loshchilov, I.; Hutter, F. Sgdr: Stochastic gradient descent with warm restarts. arXiv 2016, arXiv:1608.03983.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000341
https://nepis.epa.gov/Exe/ZyNET.exe/P1007WWU.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2000+Thru+2005&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C00thru05%5CTxt%5C00000024%5CP1007WWU.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL
https://nepis.epa.gov/Exe/ZyNET.exe/P1007WWU.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2000+Thru+2005&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C00thru05%5CTxt%5C00000024%5CP1007WWU.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL
https://nepis.epa.gov/Exe/ZyNET.exe/P1007WWU.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2000+Thru+2005&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C00thru05%5CTxt%5C00000024%5CP1007WWU.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL
https://nepis.epa.gov/Exe/ZyNET.exe/P1007WWU.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2000+Thru+2005&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C00thru05%5CTxt%5C00000024%5CP1007WWU.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL
https://nepis.epa.gov/Exe/ZyNET.exe/P1007WWU.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2000+Thru+2005&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C00thru05%5CTxt%5C00000024%5CP1007WWU.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL
https://nepis.epa.gov/Exe/ZyNET.exe/P1007WWU.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2000+Thru+2005&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C00thru05%5CTxt%5C00000024%5CP1007WWU.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL
https://nepis.epa.gov/Exe/ZyNET.exe/P1007WWU.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2000+Thru+2005&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C00thru05%5CTxt%5C00000024%5CP1007WWU.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL
http://dx.doi.org/10.1002/aic.690370209
http://dx.doi.org/10.1038/s41586-021-03819-2
http://dx.doi.org/10.1016/j.ijforecast.2021.03.012

	Introduction
	Leak Localization Literature
	Literature on Modern Machine Learning Techniques
	Bayesian Inference
	Computational Bottleneck
	Overview of the Paper

	Problem Setting and Preliminaries
	Problem Setting
	Leak Localization as a Bayesian Inverse Problem
	Supervised Wasserstein Autoencoder
	Autoencoders
	Wasserstein Autoencoders

	Neural Network Architectures
	Residual Neural Networks
	Transformers

	Proposed Framework
	Stopping Criterion in the Online Stage
	Estimating Uncertainty
	Model Architectures

	Results
	Test Cases
	Training of the WAEs
	Test WDN1: Hanoi Network
	Test WDN2
	Test WDN3: Modena
	Comparison with the Baseline
	Posterior Distribution Entropy

	Conclusions
	Attention and Transformers
	Model Architecture
	Dense ResNet
	Transformer

	WAE Training
	Classification Model
	References

