
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 220 (2023) 102–109

1877-0509 © 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the Conference Program Chairs
10.1016/j.procs.2023.03.016

10.1016/j.procs.2023.03.016 1877-0509

© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the Conference Program Chairs

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2023) 000–000
www.elsevier.com/locate/procedia

The 14th International Conference on Ambient Systems, Networks and Technologies (ANT)
March 15-17, 2023, Leuven, Belgium

Hourly forecasting of traffic flow rates using spatial temporal graph
neural networks

Eline A. Belta,b,∗, Thomas Kocha,c, Elenna R. Dugundjia,c

aCWI National Research Institute for Mathematics & Computer Science, 1098 XG Amsterdam, The Netherlands
bVrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands

cMassachusetts Institute of Technology, Center for Transportation and Logistics, 1 Amherst St, Cambridge, MA 02142, USA

Abstract

Traffic congestion forms a large problem in many major metropolitan regions around the world, leading to delays and societal costs.
As people resume travel upon relaxation of COVID-19 restrictions and personal mobility returns to levels prior to the pandemic,
policy makers need tools to understand new patterns in the daily transportation system. In this paper we use a Spatial Temporal
Graph Neural Network (STGNN) to train data collected by 34 traffic sensors around Amsterdam, in order to forecast traffic flow
rates on an hourly aggregation level for a quarter. Our results show that STGNN did not outperform a baseline seasonal naive model
overall, however for sensors that are located closer to each other in the road network, the STGNN model did indeed perform better.

© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Highway Traffic; Traffic Flow Forecasting; Spatial Temporal Graph Neural Network; Seasonal Naive; Metropolitan Regional
Congestion

In the past couple of decades the city of Amsterdam has grown rapidly. As a result, more people living in and around
Amsterdam leads to more people that need to use the transportation network for daily activities. The number of people
traveling on the road network is also influenced by different aspects such as the season, time of day, day of week and
location. In this context, it is of great importance that accessibility in the region is maintained especially during the
peak hour travel. Forecasting traffic flow rates can support intelligent management of transportation network.

The aim of this paper is to explore to what extent a Spatial Temporal Graph Neural Network (STGNN) framework
can be used to predict the traffic flow rate in and around Amsterdam. In the following two sections, some related
research will be discussed and the data that was provided for the metropolitan Amsterdam case study will be dis-
cussed. Subsequently, the methods used in this paper – the Seasonal Naive (baseline) model and the STGNN – will be

∗ Corresponding author. Tel.: +31 20 592 9333
E-mail address: e.a.belt@student.vu.nl

1877-0509© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2023) 000–000
www.elsevier.com/locate/procedia

The 14th International Conference on Ambient Systems, Networks and Technologies (ANT)
March 15-17, 2023, Leuven, Belgium

Hourly forecasting of traffic flow rates using spatial temporal graph
neural networks

Eline A. Belta,b,∗, Thomas Kocha,c, Elenna R. Dugundjia,c

aCWI National Research Institute for Mathematics & Computer Science, 1098 XG Amsterdam, The Netherlands
bVrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands

cMassachusetts Institute of Technology, Center for Transportation and Logistics, 1 Amherst St, Cambridge, MA 02142, USA

Abstract

Traffic congestion forms a large problem in many major metropolitan regions around the world, leading to delays and societal costs.
As people resume travel upon relaxation of COVID-19 restrictions and personal mobility returns to levels prior to the pandemic,
policy makers need tools to understand new patterns in the daily transportation system. In this paper we use a Spatial Temporal
Graph Neural Network (STGNN) to train data collected by 34 traffic sensors around Amsterdam, in order to forecast traffic flow
rates on an hourly aggregation level for a quarter. Our results show that STGNN did not outperform a baseline seasonal naive model
overall, however for sensors that are located closer to each other in the road network, the STGNN model did indeed perform better.

© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Highway Traffic; Traffic Flow Forecasting; Spatial Temporal Graph Neural Network; Seasonal Naive; Metropolitan Regional
Congestion

In the past couple of decades the city of Amsterdam has grown rapidly. As a result, more people living in and around
Amsterdam leads to more people that need to use the transportation network for daily activities. The number of people
traveling on the road network is also influenced by different aspects such as the season, time of day, day of week and
location. In this context, it is of great importance that accessibility in the region is maintained especially during the
peak hour travel. Forecasting traffic flow rates can support intelligent management of transportation network.

The aim of this paper is to explore to what extent a Spatial Temporal Graph Neural Network (STGNN) framework
can be used to predict the traffic flow rate in and around Amsterdam. In the following two sections, some related
research will be discussed and the data that was provided for the metropolitan Amsterdam case study will be dis-
cussed. Subsequently, the methods used in this paper – the Seasonal Naive (baseline) model and the STGNN – will be

∗ Corresponding author. Tel.: +31 20 592 9333
E-mail address: e.a.belt@student.vu.nl

1877-0509© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

2 Belt, Koch, Dugundji / Procedia Computer Science 00 (2023) 000–000

explained. Next the results of the two models will be compared and their results will be discussed. We conclude with
a summary and provide recommendations for future research in this area.

1. Background

Previous research on the topic of forecasting traffic flow rates has been done using a wide range of techniques.
Lv et al. [6] proposed an early deep learning based traffic flow prediction method. They consider spatial and

temporal correlations using a stacked auto encoder model which learns generic traffic flow features. The model is
trained in a greedy layer wise fashion.

Qu et al. [7] used a deep neural network to forecast long term daily traffic flows using temporal correlation together
with contextual factors such as day of week, weather, and season. To investigate the relationship of these factors, they
trained a predictor using multi-layer supervised learning. A batch training method was proposed to reduce training
times. A case study in Seattle shows that their method outperforms the conventional forecasting in terms of prediction
accuracy.

Kang et al. [3] proposed a Long Short-Term Memory (LSTM) recurrent neural network to predict traffic flow based
on inputs such as flow, speed and occupancy at each sensor. Furthermore they include the variables from sensors
upstream and downstream to capture (partial) spatial effects. In this study they show that the inclusion of this spatial
information improves prediction accuracy.

For a better model of spatial connections in traffic data, other studies incorporated a Graph Neural Network (GNN)
into their network architecture. This is done to augment temporal structure in the data with spatial connections between
different sensors that measure the data.

Much of the related research incorporates the GNN into their network as a new layer in its architecture, or modifies
the structure of a existing network architecture to allow the GNN to be incorporated in the network. Cui et al. [2]
proposed a Traffic Graph Convolutional LSTM recurrent neural network, where they keep the structure of the LSTM
unit the same, and instead replace the input by graph convolutional features. Yu et al. [10] proposed a framework
that consists of spatio-temporal blocks, where these blocks contain temporal gated convolution layers to model the
temporal dependencies, together with a spatial graph convolutional layer that models the spatial dependencies of the
data. Most recently Wang et al. [9] used a GNN as the first layer in a framework that they call a Spatial Temporal
Graph Neural Network. All these papers achieve very good results on their traffic datasets with these methods that
incorporate GNNs.

2. Case study

For this study, data from 48 traffic sensors in and around Amsterdam in the period from 2016 to 2020 have been
provided. The relevant columns of the data are shown in table 1. The data contains measurements of the traffic flow
rate (vehicle count) and the average speed per sensor location, per hour, per traffic lane and per vehicle category. This
means we have very granular data. To simplify the data, we aggregate over all vehicle categories and traffic lanes.
This results in data per location, per hour. An issue with the data however, is that there are two types of sensors: a so-
called MONICA sensor, and a so-called MONIBAS sensor. MONIBAS sensors are built to complement any missing
data from MONICA sensors. However, MONIBAS sensors measure multiple lanes, whereas MONICA sensors only
measure one lane. Using the coordinates of the MONICA sensors, we merged the MONICA sensors that are at the
same location to get measurements for multiple lanes as well. Here, we summed the traffic flow rates (vehicle counts)
and averaged the speeds. Finally, we removed all sensors that only recorded data for a short period of time; less
than one month. This resulted in a final dataset which contained 34 sensors, the locations of these sensors and their
connections are shown in Fig. 1. These connections between sensors are present if the sensors are on the same side of
the road and if they are direct neighbours of each other.

To create the training set, validation set and test set for the STGNN, the data concerning the year 2020 was used.
This data was pre-processed so that it can be used in a STGNN. This was done by creating a new dataset where one
entry consists of the features corresponding to a time window of size s and a target with the traffic flow rate for the
next s′ time periods, i.e., one entry contains the features corresponding to times [t, ..., t + s] and traffic intensities of
times [t + s + 1, ..., t + s + s′]. After this pre-processing step, 70% of this new dataset were used for training, 10% for

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2023.03.016&domain=pdf

 Eline A. Belt et al. / Procedia Computer Science 220 (2023) 102–109 103

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2023) 000–000
www.elsevier.com/locate/procedia

The 14th International Conference on Ambient Systems, Networks and Technologies (ANT)
March 15-17, 2023, Leuven, Belgium

Hourly forecasting of traffic flow rates using spatial temporal graph
neural networks

Eline A. Belta,b,∗, Thomas Kocha,c, Elenna R. Dugundjia,c

aCWI National Research Institute for Mathematics & Computer Science, 1098 XG Amsterdam, The Netherlands
bVrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands

cMassachusetts Institute of Technology, Center for Transportation and Logistics, 1 Amherst St, Cambridge, MA 02142, USA

Abstract

Traffic congestion forms a large problem in many major metropolitan regions around the world, leading to delays and societal costs.
As people resume travel upon relaxation of COVID-19 restrictions and personal mobility returns to levels prior to the pandemic,
policy makers need tools to understand new patterns in the daily transportation system. In this paper we use a Spatial Temporal
Graph Neural Network (STGNN) to train data collected by 34 traffic sensors around Amsterdam, in order to forecast traffic flow
rates on an hourly aggregation level for a quarter. Our results show that STGNN did not outperform a baseline seasonal naive model
overall, however for sensors that are located closer to each other in the road network, the STGNN model did indeed perform better.

© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Highway Traffic; Traffic Flow Forecasting; Spatial Temporal Graph Neural Network; Seasonal Naive; Metropolitan Regional
Congestion

In the past couple of decades the city of Amsterdam has grown rapidly. As a result, more people living in and around
Amsterdam leads to more people that need to use the transportation network for daily activities. The number of people
traveling on the road network is also influenced by different aspects such as the season, time of day, day of week and
location. In this context, it is of great importance that accessibility in the region is maintained especially during the
peak hour travel. Forecasting traffic flow rates can support intelligent management of transportation network.

The aim of this paper is to explore to what extent a Spatial Temporal Graph Neural Network (STGNN) framework
can be used to predict the traffic flow rate in and around Amsterdam. In the following two sections, some related
research will be discussed and the data that was provided for the metropolitan Amsterdam case study will be dis-
cussed. Subsequently, the methods used in this paper – the Seasonal Naive (baseline) model and the STGNN – will be

∗ Corresponding author. Tel.: +31 20 592 9333
E-mail address: e.a.belt@student.vu.nl

1877-0509© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2023) 000–000
www.elsevier.com/locate/procedia

The 14th International Conference on Ambient Systems, Networks and Technologies (ANT)
March 15-17, 2023, Leuven, Belgium

Hourly forecasting of traffic flow rates using spatial temporal graph
neural networks

Eline A. Belta,b,∗, Thomas Kocha,c, Elenna R. Dugundjia,c

aCWI National Research Institute for Mathematics & Computer Science, 1098 XG Amsterdam, The Netherlands
bVrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands

cMassachusetts Institute of Technology, Center for Transportation and Logistics, 1 Amherst St, Cambridge, MA 02142, USA

Abstract

Traffic congestion forms a large problem in many major metropolitan regions around the world, leading to delays and societal costs.
As people resume travel upon relaxation of COVID-19 restrictions and personal mobility returns to levels prior to the pandemic,
policy makers need tools to understand new patterns in the daily transportation system. In this paper we use a Spatial Temporal
Graph Neural Network (STGNN) to train data collected by 34 traffic sensors around Amsterdam, in order to forecast traffic flow
rates on an hourly aggregation level for a quarter. Our results show that STGNN did not outperform a baseline seasonal naive model
overall, however for sensors that are located closer to each other in the road network, the STGNN model did indeed perform better.

© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Highway Traffic; Traffic Flow Forecasting; Spatial Temporal Graph Neural Network; Seasonal Naive; Metropolitan Regional
Congestion

In the past couple of decades the city of Amsterdam has grown rapidly. As a result, more people living in and around
Amsterdam leads to more people that need to use the transportation network for daily activities. The number of people
traveling on the road network is also influenced by different aspects such as the season, time of day, day of week and
location. In this context, it is of great importance that accessibility in the region is maintained especially during the
peak hour travel. Forecasting traffic flow rates can support intelligent management of transportation network.

The aim of this paper is to explore to what extent a Spatial Temporal Graph Neural Network (STGNN) framework
can be used to predict the traffic flow rate in and around Amsterdam. In the following two sections, some related
research will be discussed and the data that was provided for the metropolitan Amsterdam case study will be dis-
cussed. Subsequently, the methods used in this paper – the Seasonal Naive (baseline) model and the STGNN – will be

∗ Corresponding author. Tel.: +31 20 592 9333
E-mail address: e.a.belt@student.vu.nl

1877-0509© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

2 Belt, Koch, Dugundji / Procedia Computer Science 00 (2023) 000–000

explained. Next the results of the two models will be compared and their results will be discussed. We conclude with
a summary and provide recommendations for future research in this area.

1. Background

Previous research on the topic of forecasting traffic flow rates has been done using a wide range of techniques.
Lv et al. [6] proposed an early deep learning based traffic flow prediction method. They consider spatial and

temporal correlations using a stacked auto encoder model which learns generic traffic flow features. The model is
trained in a greedy layer wise fashion.

Qu et al. [7] used a deep neural network to forecast long term daily traffic flows using temporal correlation together
with contextual factors such as day of week, weather, and season. To investigate the relationship of these factors, they
trained a predictor using multi-layer supervised learning. A batch training method was proposed to reduce training
times. A case study in Seattle shows that their method outperforms the conventional forecasting in terms of prediction
accuracy.

Kang et al. [3] proposed a Long Short-Term Memory (LSTM) recurrent neural network to predict traffic flow based
on inputs such as flow, speed and occupancy at each sensor. Furthermore they include the variables from sensors
upstream and downstream to capture (partial) spatial effects. In this study they show that the inclusion of this spatial
information improves prediction accuracy.

For a better model of spatial connections in traffic data, other studies incorporated a Graph Neural Network (GNN)
into their network architecture. This is done to augment temporal structure in the data with spatial connections between
different sensors that measure the data.

Much of the related research incorporates the GNN into their network as a new layer in its architecture, or modifies
the structure of a existing network architecture to allow the GNN to be incorporated in the network. Cui et al. [2]
proposed a Traffic Graph Convolutional LSTM recurrent neural network, where they keep the structure of the LSTM
unit the same, and instead replace the input by graph convolutional features. Yu et al. [10] proposed a framework
that consists of spatio-temporal blocks, where these blocks contain temporal gated convolution layers to model the
temporal dependencies, together with a spatial graph convolutional layer that models the spatial dependencies of the
data. Most recently Wang et al. [9] used a GNN as the first layer in a framework that they call a Spatial Temporal
Graph Neural Network. All these papers achieve very good results on their traffic datasets with these methods that
incorporate GNNs.

2. Case study

For this study, data from 48 traffic sensors in and around Amsterdam in the period from 2016 to 2020 have been
provided. The relevant columns of the data are shown in table 1. The data contains measurements of the traffic flow
rate (vehicle count) and the average speed per sensor location, per hour, per traffic lane and per vehicle category. This
means we have very granular data. To simplify the data, we aggregate over all vehicle categories and traffic lanes.
This results in data per location, per hour. An issue with the data however, is that there are two types of sensors: a so-
called MONICA sensor, and a so-called MONIBAS sensor. MONIBAS sensors are built to complement any missing
data from MONICA sensors. However, MONIBAS sensors measure multiple lanes, whereas MONICA sensors only
measure one lane. Using the coordinates of the MONICA sensors, we merged the MONICA sensors that are at the
same location to get measurements for multiple lanes as well. Here, we summed the traffic flow rates (vehicle counts)
and averaged the speeds. Finally, we removed all sensors that only recorded data for a short period of time; less
than one month. This resulted in a final dataset which contained 34 sensors, the locations of these sensors and their
connections are shown in Fig. 1. These connections between sensors are present if the sensors are on the same side of
the road and if they are direct neighbours of each other.

To create the training set, validation set and test set for the STGNN, the data concerning the year 2020 was used.
This data was pre-processed so that it can be used in a STGNN. This was done by creating a new dataset where one
entry consists of the features corresponding to a time window of size s and a target with the traffic flow rate for the
next s′ time periods, i.e., one entry contains the features corresponding to times [t, ..., t + s] and traffic intensities of
times [t + s + 1, ..., t + s + s′]. After this pre-processing step, 70% of this new dataset were used for training, 10% for

104 Eline A. Belt et al. / Procedia Computer Science 220 (2023) 102–109

Belt, Koch, Dugundji / Procedia Computer Science 00 (2023) 000–000 3

Fig. 1. Sensor locations and their connections

validation, and 20% for testing. To train the baseline model, the traffic flow rate in 2019 was used to predict the traffic
flow rate in 2020.

Table 1. Column description of sensor data
Name Description Type
id meetlocatie Name of the sensor location Text
start meetperiode Start of measurement Datetime
eind meetperiode End of measurement Datetime
waarnemingen intensiteit Number of observations of flow rate Numeric
waarnemingen snelheid Number of observations of traffic speed Numeric
gebruikte minuten intensiteit Number of minutes in measurement period for traffic counts Numeric
gebruikte minuten snelheid Number of minutes in measurement period for traffic speeds Numeric
data error snelheid Number of errors in speed measurement Boolean
data error intensiteit Number of errors in flow rate measurement Boolean
gem intensiteit Number of vehicles in class and on traffic lane Numeric
gem snelheid Average speed of vehicles in class and on traffic lane Numeric
totaal aantal rijstroken Number of traffic lanes Numeric
rijstrook rijbaan Number indicating the lane number Numeric
voertuigcategorie Vehicle category Category
start locatie latitude Latitude of sensor location Numeric
start locatie longitude Longitude of sensor location Numeric

3. Methods

3.1. Seasonal Naive Model (Baseline)

The choice for the baseline model is the Seasonal Naive Model. It is a simple method that uses previous data to
predict the future. For this model, the dataset is split into seasons. The Seasonal Naive Model looks at the value of data

4 Belt, Koch, Dugundji / Procedia Computer Science 00 (2023) 000–000

GNN GNN GNN

GRU GRU GRUGNN GNN ...

...

Transformer Layers

Prediction Layer

...

...

Xt Xt+1

Xt+s+1, ..., Xt+s+s'

Xt+s

Positional Encoding Positional Encoding Positional Encoding

Fig. 2. Spatial Temporal Graph Neural Network framework, adapted from Wang et al. [9]

from the previous season to predict the value of the next season. An example could be to define a season as a week.
This would mean that, in order to predict a value of next Friday, the value of the previous Friday is taken. For this
project, the choice of season is a little bit more complicated because there are multiple seasonal trends. For example,
not only a yearly trend is visible, but also a weekly trend, and a trend within a day. This makes it hard to define a
season. To try to predict a future value of a specific sensor as accurately as possible, we use the data of that sensor of
the year before, in the same month, weekday and hour. For example, if the value of Friday the 29th of January 2020
at 10:00 is to be predicted, then the average value of all the Fridays in January 2019 at 10:00 is used.

3.2. Spatial Temporal Graph Neural Network

The method that will be used to predict the traffic flow rate, while also taking the spatial dependencies between
the sensors into account, is a Spatial Temporal Graph Neural Network [9]. This network has multiple layers that are
made up of different types of neural networks. The first layer consists of multiple graph neural networks, one for each
time step in the time window that is used as input. These GNNs will model the spatial dependency of the sensors.
Then the output of these networks will be used as input for a recurrent neural network, which uses Gated Recurrent
Units (GRUs) to model local temporal dependencies. The hidden layers of this GRU will then be used as input for
transformer layers to model the global temporal dependencies. As a final step, the output of the transformer layers
is used to make a prediction of the flow rate for a certain time interval, for all the sensors at the same time. The
framework of this network is shown in Fig. 2 [9]. The rest of this section will describe the different layers of this
STGNN in more detail.

3.3. Graph Neural Network

The GNN or Graph Convolutional Network (GCN) [4] models the spatial relations of the traffic network. For this,
the traffic network can be represented by a directed graph G = (V, E), where V = {v1, ..., vN} is the set of nodes, which
represent the N sensors, and E = {e1, ..., eM} is the set of edges, which represent the roads that connect the sensors.
From this graph G, an adjacency matrix A ∈ RN×N will be made. The elements of this adjacency matrix represent the
geographical proximity of two sensors and it could be seen as a weighted adjacency matrix, with

Ai j =

exp(− d2

i j

σ2), if i � j and exp(− d2
i j

σ2) ≥ ϵ
0, otherwise,

(1)

 Eline A. Belt et al. / Procedia Computer Science 220 (2023) 102–109 105

Belt, Koch, Dugundji / Procedia Computer Science 00 (2023) 000–000 3

Fig. 1. Sensor locations and their connections

validation, and 20% for testing. To train the baseline model, the traffic flow rate in 2019 was used to predict the traffic
flow rate in 2020.

Table 1. Column description of sensor data
Name Description Type
id meetlocatie Name of the sensor location Text
start meetperiode Start of measurement Datetime
eind meetperiode End of measurement Datetime
waarnemingen intensiteit Number of observations of flow rate Numeric
waarnemingen snelheid Number of observations of traffic speed Numeric
gebruikte minuten intensiteit Number of minutes in measurement period for traffic counts Numeric
gebruikte minuten snelheid Number of minutes in measurement period for traffic speeds Numeric
data error snelheid Number of errors in speed measurement Boolean
data error intensiteit Number of errors in flow rate measurement Boolean
gem intensiteit Number of vehicles in class and on traffic lane Numeric
gem snelheid Average speed of vehicles in class and on traffic lane Numeric
totaal aantal rijstroken Number of traffic lanes Numeric
rijstrook rijbaan Number indicating the lane number Numeric
voertuigcategorie Vehicle category Category
start locatie latitude Latitude of sensor location Numeric
start locatie longitude Longitude of sensor location Numeric

3. Methods

3.1. Seasonal Naive Model (Baseline)

The choice for the baseline model is the Seasonal Naive Model. It is a simple method that uses previous data to
predict the future. For this model, the dataset is split into seasons. The Seasonal Naive Model looks at the value of data

4 Belt, Koch, Dugundji / Procedia Computer Science 00 (2023) 000–000

GNN GNN GNN

GRU GRU GRUGNN GNN ...

...

Transformer Layers

Prediction Layer

...

...

Xt Xt+1

Xt+s+1, ..., Xt+s+s'

Xt+s

Positional Encoding Positional Encoding Positional Encoding

Fig. 2. Spatial Temporal Graph Neural Network framework, adapted from Wang et al. [9]

from the previous season to predict the value of the next season. An example could be to define a season as a week.
This would mean that, in order to predict a value of next Friday, the value of the previous Friday is taken. For this
project, the choice of season is a little bit more complicated because there are multiple seasonal trends. For example,
not only a yearly trend is visible, but also a weekly trend, and a trend within a day. This makes it hard to define a
season. To try to predict a future value of a specific sensor as accurately as possible, we use the data of that sensor of
the year before, in the same month, weekday and hour. For example, if the value of Friday the 29th of January 2020
at 10:00 is to be predicted, then the average value of all the Fridays in January 2019 at 10:00 is used.

3.2. Spatial Temporal Graph Neural Network

The method that will be used to predict the traffic flow rate, while also taking the spatial dependencies between
the sensors into account, is a Spatial Temporal Graph Neural Network [9]. This network has multiple layers that are
made up of different types of neural networks. The first layer consists of multiple graph neural networks, one for each
time step in the time window that is used as input. These GNNs will model the spatial dependency of the sensors.
Then the output of these networks will be used as input for a recurrent neural network, which uses Gated Recurrent
Units (GRUs) to model local temporal dependencies. The hidden layers of this GRU will then be used as input for
transformer layers to model the global temporal dependencies. As a final step, the output of the transformer layers
is used to make a prediction of the flow rate for a certain time interval, for all the sensors at the same time. The
framework of this network is shown in Fig. 2 [9]. The rest of this section will describe the different layers of this
STGNN in more detail.

3.3. Graph Neural Network

The GNN or Graph Convolutional Network (GCN) [4] models the spatial relations of the traffic network. For this,
the traffic network can be represented by a directed graph G = (V, E), where V = {v1, ..., vN} is the set of nodes, which
represent the N sensors, and E = {e1, ..., eM} is the set of edges, which represent the roads that connect the sensors.
From this graph G, an adjacency matrix A ∈ RN×N will be made. The elements of this adjacency matrix represent the
geographical proximity of two sensors and it could be seen as a weighted adjacency matrix, with

Ai j =

exp(− d2

i j

σ2), if i � j and exp(− d2
i j

σ2) ≥ ϵ
0, otherwise,

(1)

106 Eline A. Belt et al. / Procedia Computer Science 220 (2023) 102–109
Belt, Koch, Dugundji / Procedia Computer Science 00 (2023) 000–000 5

where di j is the distance between sensor i and j, andσ2 and ϵ are thresholds that control the sparsity of the adjacency
matrix [10]. From this matrix A, the refined adjacency matrix Ã = A + IN can be created, with IN the N-dimensional
identity matrix [9], this adds self-loops to the graph G. From the refined adjacency matrix, the refined degree matrix
can be determined and its elements can be calculated as follows: D̃ =

∑
j Ãi j. The final part of the data preparation

is making the feature matrices, Xt ∈ RN×din , for each time t (every hour) in the dataset, where din is the number of
features which will be used in the model. The inputs of this GNN layer are the matrices Ã, D̃, and Xt, where Xt is
the feature matrix, and the output of this layer is Xout,t ∈ RN×din , which is calculated for each time t as specified by
Equation 2.

GCN(Xt) = Xout,t = ReLU(D̃−1/2ÃD̃−1/2XtW) (2)

3.4. Gated Recurrent Unit

The Gated Recurrent Unit (GRU) [1],[9] is used to model the local temporal dependency. The GRU operation is
applied to each input separately, but the parameters of the operation are shared for all the inputs of this layer. The
operations of the GRU at time t are the following for each node vi:

zt = σz(WzX̃out,t[i, :] + UzH̃t−1[i, :] + bz),
rt = σr(WrX̃out,t[i, :] + UrH̃t−1[i, :] + br),
Ĥt[i, :] = tanh

(
WhX̃out,t[i, :] + Uh(rt ⊙ UhH̃t−1[i, :]) + bh

)
,

Ht[i, :] = (1 − zt) ⊙ H̃t−1[i, :] + zt ⊙ H̃t[i, ;]

(3)

where σ is the sigmoid function, ⊙ is the element-wise multiplication, the matrices Wz,Wr,Wh,Uz,Ur,Uh are the
parameters to be learned, H̃t−1 = GCN(Ht−1), and Ht[i, :] is the hidden representation of the current time step, which
also serves as the output of the GRU layer.

3.5. Transformer Layer

To model the global temporal dependency, the transformer layer is used [8],[9]. This layer is also applied to each
input seperately, just like for the GRU layer. The transformer layer is made up of a multi-head attention layer, a batch
normalization layer, a shared feed-forward network, and another batch normalization layer. There is also a residual
connection from the input of the transformer layer to the batch normalization layer, and from the output of the first
batch normalization layer to the second batch normalization layer. The multi-head attention layer uses queries, keys,
and values. The keys have dimension dk, and the values have dimension dv. Then the attention function is defined as

Attention(Q,K,V) = softmax
(

QKT

√
dk

V
)

(4)

where Q,K ∈ RT×dk and V ∈ RT×dv are the queries, keys, and values for all the nodes, respectively. Before the output
of the GRU layer can be used in the transformer layer, it has to be transformed so that the sequences are no longer
arranged by time, but by node. For this, the output of the GRU layer for each node vi will be stacked row-wise, such
that the matrix Hvi = (H1[i, :], ...,HT [i, :]) ∈ RT×din . To make sure that the transformer layer takes the relative position
of each input into account, a positional encoding et will be added to matrices Hvi , such that H′vi

t [i, :] = Hvi
t [i, :] + et.

This matrix H′vi will be used as input for the transformer layer. The positional encoding is defined as follows, with
dmodel being the number of dimensions used for the positional encoding:

et =

{
sin(t/100002i/dmodel), if t = 0, 2, 4, ...
cos(t/100002i/dmodel), otherwise. (5)

Then we define the queries, keys, and values for each node vi as

Qvi = H′vi WQ, Kvi = H′vi WK , Vvi = H′vi WV , (6)

where WQ ∈ Rd×dk , WK ∈ Rd×dk , and WV ∈ Rd×dv are matrices to be learned. The multi-head attention can then be
defined as follows:

Multihead(H′vi) = Concat(head1, ..., headS)WO;
heads = Attentions(H′vi WQ

s ,H′vi WK
s ,H

′vi WV
s)

(7)

6 Belt, Koch, Dugundji / Procedia Computer Science 00 (2023) 000–000

where WQ
s , WK

s , WV
s , and WO are matrices to be learned. The output of the transformer layer is Hvi

out ∈ RT×d

3.6. Prediction Layer

The output, {Hvi
out|vi ∈ V}, of the transformer layer is used as input for the prediction layer. This prediction layer

uses a multi-layer feed-forward network to give the predictions of the traffic flow rate for future periods.

3.7. Implementation details

For the implementation of the STGNN, the features that were chosen to use as input (i.e. for matrix Xt), are the
hour, weekday, and month of the start of the measuring period, the average flow rate (gem intensiteit), and the average
speed (gem snelheid). Because the columns hour, weekday, and month are cyclical features represented as a number
range, a transformation was performed that ensured that the first and last number in the range have a similar value.
The transformation creates two new features out of one cyclical feature, and it is the following:

xsin = sin
(

2πx
max(x)

)

xcos = cos
(

2πx
max(x)

)
,

(8)

where x represents the vector (column of a dataframe) that contains the cyclical feature. After this transformation,
the features that will be used in the network are the transformation of the features hour, weekday, and month, and the
average flow rate and average speed, so in total the model uses eight features. The number of sensors that were used
as input is 34, which means the matrices Xt ∈ R34×8. The model will be trained using 24 hours as input to predict
the next 7 days, which means it will predict the next 168 hours. To create the dataset that will be used for training,
validation, and testing purposes, a sliding window of size 192 was used, for which the first 24 values will be used to
determine the times for which a matrix Xt has to be added to the batch, and the last 168 values are used to add the
targets y to the batch. This way, for each time t in our original dataset, a batch was created of inputs and targets. All
the batches together form the dataset of which 70% will be used for training, 10% for validation, and 20% for testing.

4. Results

4.1. Seasonal Naive Model

To be able to compare the results of the seasonal naive model with those of the STGNN, the root mean square error
(RMSE) of the predictions starting from 2020-10-20 00:00:00, and ending at 2020-12-31 23:00:00, is averaged over
the different sensors. This results in a RMSE of 715 over all sensors.

4.2. Spatial Temporal Graph Neural Network

The network architecture was implemented with hidden dimensions of the network set to 64, the number of atten-
tion heads to 4, and the number of transformer layers set to 1. The hyperparameter tuning of the learning rate and
weight decay was done using Ray Tune [5] and using the Adam optimizer. For both the learning and the weight decay,
the specified range that Ray Tune could choose from was [1e-5, 1e-2]. The hyperparameters that gave the lowest
RMSE during hyperparameter tuning were learning rate ≈ 0.0014, and weight decay ≈ 0.0004. The network was then
trained using this learning rate and this weight decay, while using the standard Pytorch values for the other parameters.
The network was trained for 20 epochs, for each epoch the mean and standard deviation of the RMSE were saved, and
they are shown in Fig. 3. From this figure we can see that the validation RMSE is around 850 after 20 epochs, and the
validation loss is around 1000. After the training was finished, the network was run on the test set, which resulted in
a RMSE of 869 over all sensors.

5. Discussion

For most of the sensors, the RMSE of the spatial temporal graph neural network are not as low as the RMSE of
the seasonal naive model. Some causes of that could be that it has not been trained for enough epochs, or that the

 Eline A. Belt et al. / Procedia Computer Science 220 (2023) 102–109 107
Belt, Koch, Dugundji / Procedia Computer Science 00 (2023) 000–000 5

where di j is the distance between sensor i and j, andσ2 and ϵ are thresholds that control the sparsity of the adjacency
matrix [10]. From this matrix A, the refined adjacency matrix Ã = A + IN can be created, with IN the N-dimensional
identity matrix [9], this adds self-loops to the graph G. From the refined adjacency matrix, the refined degree matrix
can be determined and its elements can be calculated as follows: D̃ =

∑
j Ãi j. The final part of the data preparation

is making the feature matrices, Xt ∈ RN×din , for each time t (every hour) in the dataset, where din is the number of
features which will be used in the model. The inputs of this GNN layer are the matrices Ã, D̃, and Xt, where Xt is
the feature matrix, and the output of this layer is Xout,t ∈ RN×din , which is calculated for each time t as specified by
Equation 2.

GCN(Xt) = Xout,t = ReLU(D̃−1/2ÃD̃−1/2XtW) (2)

3.4. Gated Recurrent Unit

The Gated Recurrent Unit (GRU) [1],[9] is used to model the local temporal dependency. The GRU operation is
applied to each input separately, but the parameters of the operation are shared for all the inputs of this layer. The
operations of the GRU at time t are the following for each node vi:

zt = σz(WzX̃out,t[i, :] + UzH̃t−1[i, :] + bz),
rt = σr(WrX̃out,t[i, :] + UrH̃t−1[i, :] + br),
Ĥt[i, :] = tanh

(
WhX̃out,t[i, :] + Uh(rt ⊙ UhH̃t−1[i, :]) + bh

)
,

Ht[i, :] = (1 − zt) ⊙ H̃t−1[i, :] + zt ⊙ H̃t[i, ;]

(3)

where σ is the sigmoid function, ⊙ is the element-wise multiplication, the matrices Wz,Wr,Wh,Uz,Ur,Uh are the
parameters to be learned, H̃t−1 = GCN(Ht−1), and Ht[i, :] is the hidden representation of the current time step, which
also serves as the output of the GRU layer.

3.5. Transformer Layer

To model the global temporal dependency, the transformer layer is used [8],[9]. This layer is also applied to each
input seperately, just like for the GRU layer. The transformer layer is made up of a multi-head attention layer, a batch
normalization layer, a shared feed-forward network, and another batch normalization layer. There is also a residual
connection from the input of the transformer layer to the batch normalization layer, and from the output of the first
batch normalization layer to the second batch normalization layer. The multi-head attention layer uses queries, keys,
and values. The keys have dimension dk, and the values have dimension dv. Then the attention function is defined as

Attention(Q,K,V) = softmax
(

QKT

√
dk

V
)

(4)

where Q,K ∈ RT×dk and V ∈ RT×dv are the queries, keys, and values for all the nodes, respectively. Before the output
of the GRU layer can be used in the transformer layer, it has to be transformed so that the sequences are no longer
arranged by time, but by node. For this, the output of the GRU layer for each node vi will be stacked row-wise, such
that the matrix Hvi = (H1[i, :], ...,HT [i, :]) ∈ RT×din . To make sure that the transformer layer takes the relative position
of each input into account, a positional encoding et will be added to matrices Hvi , such that H′vi

t [i, :] = Hvi
t [i, :] + et.

This matrix H′vi will be used as input for the transformer layer. The positional encoding is defined as follows, with
dmodel being the number of dimensions used for the positional encoding:

et =

{
sin(t/100002i/dmodel), if t = 0, 2, 4, ...
cos(t/100002i/dmodel), otherwise. (5)

Then we define the queries, keys, and values for each node vi as

Qvi = H′vi WQ, Kvi = H′vi WK , Vvi = H′vi WV , (6)

where WQ ∈ Rd×dk , WK ∈ Rd×dk , and WV ∈ Rd×dv are matrices to be learned. The multi-head attention can then be
defined as follows:

Multihead(H′vi) = Concat(head1, ..., headS)WO;
heads = Attentions(H′vi WQ

s ,H′vi WK
s ,H

′vi WV
s)

(7)

6 Belt, Koch, Dugundji / Procedia Computer Science 00 (2023) 000–000

where WQ
s , WK

s , WV
s , and WO are matrices to be learned. The output of the transformer layer is Hvi

out ∈ RT×d

3.6. Prediction Layer

The output, {Hvi
out|vi ∈ V}, of the transformer layer is used as input for the prediction layer. This prediction layer

uses a multi-layer feed-forward network to give the predictions of the traffic flow rate for future periods.

3.7. Implementation details

For the implementation of the STGNN, the features that were chosen to use as input (i.e. for matrix Xt), are the
hour, weekday, and month of the start of the measuring period, the average flow rate (gem intensiteit), and the average
speed (gem snelheid). Because the columns hour, weekday, and month are cyclical features represented as a number
range, a transformation was performed that ensured that the first and last number in the range have a similar value.
The transformation creates two new features out of one cyclical feature, and it is the following:

xsin = sin
(

2πx
max(x)

)

xcos = cos
(

2πx
max(x)

)
,

(8)

where x represents the vector (column of a dataframe) that contains the cyclical feature. After this transformation,
the features that will be used in the network are the transformation of the features hour, weekday, and month, and the
average flow rate and average speed, so in total the model uses eight features. The number of sensors that were used
as input is 34, which means the matrices Xt ∈ R34×8. The model will be trained using 24 hours as input to predict
the next 7 days, which means it will predict the next 168 hours. To create the dataset that will be used for training,
validation, and testing purposes, a sliding window of size 192 was used, for which the first 24 values will be used to
determine the times for which a matrix Xt has to be added to the batch, and the last 168 values are used to add the
targets y to the batch. This way, for each time t in our original dataset, a batch was created of inputs and targets. All
the batches together form the dataset of which 70% will be used for training, 10% for validation, and 20% for testing.

4. Results

4.1. Seasonal Naive Model

To be able to compare the results of the seasonal naive model with those of the STGNN, the root mean square error
(RMSE) of the predictions starting from 2020-10-20 00:00:00, and ending at 2020-12-31 23:00:00, is averaged over
the different sensors. This results in a RMSE of 715 over all sensors.

4.2. Spatial Temporal Graph Neural Network

The network architecture was implemented with hidden dimensions of the network set to 64, the number of atten-
tion heads to 4, and the number of transformer layers set to 1. The hyperparameter tuning of the learning rate and
weight decay was done using Ray Tune [5] and using the Adam optimizer. For both the learning and the weight decay,
the specified range that Ray Tune could choose from was [1e-5, 1e-2]. The hyperparameters that gave the lowest
RMSE during hyperparameter tuning were learning rate ≈ 0.0014, and weight decay ≈ 0.0004. The network was then
trained using this learning rate and this weight decay, while using the standard Pytorch values for the other parameters.
The network was trained for 20 epochs, for each epoch the mean and standard deviation of the RMSE were saved, and
they are shown in Fig. 3. From this figure we can see that the validation RMSE is around 850 after 20 epochs, and the
validation loss is around 1000. After the training was finished, the network was run on the test set, which resulted in
a RMSE of 869 over all sensors.

5. Discussion

For most of the sensors, the RMSE of the spatial temporal graph neural network are not as low as the RMSE of
the seasonal naive model. Some causes of that could be that it has not been trained for enough epochs, or that the

108 Eline A. Belt et al. / Procedia Computer Science 220 (2023) 102–109Belt, Koch, Dugundji / Procedia Computer Science 00 (2023) 000–000 7

Fig. 3. RMSE of the training and validation set during training of the network

Fig. 4. RMSE of the baseline model and the STGNN on 2020-07-28 at midnight

dataset does not contain enough sensors for the network to have strong connections in the adjacency matrix, since
a lot of sensors are very far apart. An indication that more sensors, and thus a more dense graph, could benefit this
network is shown in Fig. 4. In this figure, the RMSE is shown for each sensor on a randomly chosen day, which is
in this case 2020-07-28 at midnight. On the left side of this figure, for the sensors of the municipality of Amsterdam,
the sensors starting with ’GAD’, it can be seen that the STGNN has a similar RMSE to the baseline model, while for
the other sensors, the STGNN has a RMSE that is a lot higher than that of the baseline model. This could be because
the sensors of the municipality of Amsterdam are all close together in the center of Amsterdam and therefore have a
strong connection in the adjacency matrix, while the other sensors are on highways and very far apart from each other
and thus have a less strong connection in the adjacency matrix.

8 Belt, Koch, Dugundji / Procedia Computer Science 00 (2023) 000–000

6. Conclusion

Related work indicated that incorporating a GNN in the network architecture showed very promising results in
traffic prediction. Because of these results, the STGNN that was proposed in [9] was applied to a new dataset. The
results of this framework on this new dataset were not as promising as those in the related literature. Comparing
the results of the STGNN to a seasonal naive model showed that the STGNN did not outperform this simple model.
However, for sensors that were closer together, like the ones in the center of Amsterdam, the STGNN seemed to
perform more similar to the seasonal naive model, indicating that the framework might work better on a dataset which
contains data from sensors that are located closer together.

7. Future study

Based on the results that were obtained in this paper, some interesting topics for future research are training the
network for more epochs and/or including more training data. Also adding data from more sensors to the dataset
would be useful to inspect if the STGNN model works better with a denser graph. Another interesting subject for
future research could be to learn latent positional representations of the graph, which could also model some factors
that influence the relationships between nodes that we are not aware of. This latent representation could be used to
model pairwise relations between any two nodes and can be used instead of the refined adjacency matrix, as described
in [9].

Acknowledgment

We would like to thank the Faculty of Science at the Vrije Universiteit Amsterdam for giving us the opportunity to
initially work on the research during the Project Operations of Business Processes (POBP).

References

[1] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y., 2014. Learning phrase representations
using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 .

[2] Cui, Z., Henrickson, K., Ke, R., Wang, Y., 2019. Traffic graph convolutional recurrent neural network: A deep learning framework for network-
scale traffic learning and forecasting. IEEE Transactions on Intelligent Transportation Systems 21, 4883–4894.

[3] Kang, D., Lv, Y., Chen, Y.y., 2017. Short-term traffic flow prediction with lstm recurrent neural network, in: 2017 IEEE 20th International
Conference on Intelligent Transportation Systems (ITSC), IEEE. pp. 1–6.

[4] Kipf, T.N., Welling, M., 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 .
[5] Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J.E., Stoica, I., 2018. Tune: A research platform for distributed model selection and

training. arXiv preprint arXiv:1807.05118 .
[6] Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.Y., 2014. Traffic flow prediction with big data: a deep learning approach. IEEE Transactions on

Intelligent Transportation Systems 16, 865–873.
[7] Qu, L., Li, W., Li, W., Ma, D., Wang, Y., 2019. Daily long-term traffic flow forecasting based on a deep neural network. Expert Systems with

applications 121, 304–312.
[8] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I., 2017. Attention is all you need. arXiv

preprint arXiv:1706.03762 .
[9] Wang, X., Ma, Y., Wang, Y., Jin, W., Wang, X., Tang, J., Jia, C., Yu, J., 2020. Traffic flow prediction via spatial temporal graph neural network,

in: Proceedings of The Web Conference 2020, pp. 1082–1092.
[10] Yu, B., Yin, H., Zhu, Z., 2017. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint

arXiv:1709.04875 .

 Eline A. Belt et al. / Procedia Computer Science 220 (2023) 102–109 109Belt, Koch, Dugundji / Procedia Computer Science 00 (2023) 000–000 7

Fig. 3. RMSE of the training and validation set during training of the network

Fig. 4. RMSE of the baseline model and the STGNN on 2020-07-28 at midnight

dataset does not contain enough sensors for the network to have strong connections in the adjacency matrix, since
a lot of sensors are very far apart. An indication that more sensors, and thus a more dense graph, could benefit this
network is shown in Fig. 4. In this figure, the RMSE is shown for each sensor on a randomly chosen day, which is
in this case 2020-07-28 at midnight. On the left side of this figure, for the sensors of the municipality of Amsterdam,
the sensors starting with ’GAD’, it can be seen that the STGNN has a similar RMSE to the baseline model, while for
the other sensors, the STGNN has a RMSE that is a lot higher than that of the baseline model. This could be because
the sensors of the municipality of Amsterdam are all close together in the center of Amsterdam and therefore have a
strong connection in the adjacency matrix, while the other sensors are on highways and very far apart from each other
and thus have a less strong connection in the adjacency matrix.

8 Belt, Koch, Dugundji / Procedia Computer Science 00 (2023) 000–000

6. Conclusion

Related work indicated that incorporating a GNN in the network architecture showed very promising results in
traffic prediction. Because of these results, the STGNN that was proposed in [9] was applied to a new dataset. The
results of this framework on this new dataset were not as promising as those in the related literature. Comparing
the results of the STGNN to a seasonal naive model showed that the STGNN did not outperform this simple model.
However, for sensors that were closer together, like the ones in the center of Amsterdam, the STGNN seemed to
perform more similar to the seasonal naive model, indicating that the framework might work better on a dataset which
contains data from sensors that are located closer together.

7. Future study

Based on the results that were obtained in this paper, some interesting topics for future research are training the
network for more epochs and/or including more training data. Also adding data from more sensors to the dataset
would be useful to inspect if the STGNN model works better with a denser graph. Another interesting subject for
future research could be to learn latent positional representations of the graph, which could also model some factors
that influence the relationships between nodes that we are not aware of. This latent representation could be used to
model pairwise relations between any two nodes and can be used instead of the refined adjacency matrix, as described
in [9].

Acknowledgment

We would like to thank the Faculty of Science at the Vrije Universiteit Amsterdam for giving us the opportunity to
initially work on the research during the Project Operations of Business Processes (POBP).

References

[1] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y., 2014. Learning phrase representations
using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 .

[2] Cui, Z., Henrickson, K., Ke, R., Wang, Y., 2019. Traffic graph convolutional recurrent neural network: A deep learning framework for network-
scale traffic learning and forecasting. IEEE Transactions on Intelligent Transportation Systems 21, 4883–4894.

[3] Kang, D., Lv, Y., Chen, Y.y., 2017. Short-term traffic flow prediction with lstm recurrent neural network, in: 2017 IEEE 20th International
Conference on Intelligent Transportation Systems (ITSC), IEEE. pp. 1–6.

[4] Kipf, T.N., Welling, M., 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 .
[5] Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J.E., Stoica, I., 2018. Tune: A research platform for distributed model selection and

training. arXiv preprint arXiv:1807.05118 .
[6] Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.Y., 2014. Traffic flow prediction with big data: a deep learning approach. IEEE Transactions on

Intelligent Transportation Systems 16, 865–873.
[7] Qu, L., Li, W., Li, W., Ma, D., Wang, Y., 2019. Daily long-term traffic flow forecasting based on a deep neural network. Expert Systems with

applications 121, 304–312.
[8] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I., 2017. Attention is all you need. arXiv

preprint arXiv:1706.03762 .
[9] Wang, X., Ma, Y., Wang, Y., Jin, W., Wang, X., Tang, J., Jia, C., Yu, J., 2020. Traffic flow prediction via spatial temporal graph neural network,

in: Proceedings of The Web Conference 2020, pp. 1082–1092.
[10] Yu, B., Yin, H., Zhu, Z., 2017. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint

arXiv:1709.04875 .

