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Abstract
Gibbs manifolds are images of affine spaces of symmetric matrices under the
exponential map. They arise in applications such as optimization, statistics and quan-
tum physics, where they extend the ubiquitous role of toric geometry. The Gibbs
variety is the zero locus of all polynomials that vanish on the Gibbs manifold. We
compute these polynomials and show that the Gibbs variety is low-dimensional. Our
theory is applied to a wide range of scenarios, including matrix pencils and quantum
optimal transport.

Keywords Gibbs variety · Toric geometry · Semidefinite programming · Quantum
optimal transport

Mathematics Subject Classification 68W30 · 14M25 · 90C22

1 Introduction

Toric varieties provide the geometric foundations for many successes in the mathe-
matical sciences. In statistics they appear as discrete exponential families [27, p. 2],
and their ideals reveal Markov bases for sampling from conditional distributions
[5]. In optimization, they furnish nonnegativity certificates [9] and they govern the
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entropic regularization of linear programming [26]. Notable sightings in phylogenet-
ics, stochastic analysis, Gaussian inference and chemical reaction networks gave us
the slogan that the world is toric [19, Section 8.3].

In all of these applications, the key player is the positive part of the toric vari-
ety. That real manifold is identified with a convex polytope by the moment map [19,
Theorem 8.24]. The fibers of the underlying linear map are polytopes of comple-
mentary dimension, and each fiber intersects the toric variety uniquely, in the Birch
point. This is the unique maximizer of the entropy over the polytope [22, Theorem
1.10]. In statistical physics and computer science [29], the Birch point is known as the
Gibbs distribution. The name Gibbs refers to the maximum entropy state in a quantum
system, and this is also the reason behind our title.

This paper initiates a non-commutative extension of applied toric geometry. In
that extension, points in R

n are replaced by real symmetric n × n matrices, and lin-
ear programming is replaced by semidefinite programming. There is a moment map
which takes the cone of positive semidefinite matrices onto a spectrahedral shadow,
and whose fibers are spectrahedra of complementary dimension. The Gibbs manifold
plays the role of the positive toric variety. Each spectrahedron intersects theGibbsman-
ifold uniquely, in the Gibbs point. Just like in the toric case, we study these objects
algebraically by passing to the Zariski closure of our positive manifold. The resulting
analogues of toric varieties are called Gibbs varieties.

We illustrate these concepts for the following linear space of symmetric 3 × 3-
matrices:

L =
⎧
⎨

⎩

⎡

⎣
y1 + y2 + y3 y1 y2

y1 y1 + y2 + y3 y3
y2 y3 y1 + y2 + y3

⎤

⎦ : y1, y2, y3 ∈ R

⎫
⎬

⎭
. (1)

The Gibbs manifold GM(L) is obtained by applying the exponential function to each
matrix in L. Since the matrix logarithm is the inverse to the matrix exponential, it is
a 3-dimensional manifold, contained in the 6-dimensional cone int(S3+) of positive
definite 3 × 3 matrices.

The quotient map from the matrix space S3 � R
6 onto S3/L⊥ � R

3 takes positive
semidefinite matrices X = [xi j ] to their inner products with the matrices in a basis
of L:

π : S
3+ → R

3 : X �→ (
trace(X) + 2x12, trace(X) + 2x13, trace(X) + 2x23

)
.

Precisely thismap appeared in the statistical study ofGaussianmodels in [25, Example
1]. The fibers π−1(b) are three-dimensional spectrahedra, and these serve as feasi-
ble regions in optimization, both for semidefinite programming and for maximum
likelihood estimation.

We here consider yet another convex optimization problem over the spectrahedron
π−1(b), namelymaximizing the vonNeumann entropy h(X) = trace(X−X ·log(X)).
This problem has a unique local and global maximum, at the intersection π−1(b) ∩
GM(L). See Theorem 5.1. This Gibbs point is the maximizer of the entropy over the
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spectrahedron. Therefore, the Gibbs manifold GM(L) is the set of Gibbs points in all
fibers π−1(b), as b ranges over R3.

To study these objects algebraically, we ask for the polynomials that vanish on
GM(L). The zeros of these polynomials form the Gibbs variety GV(L). Thus, the
Gibbs variety is the Zariski closure of the Gibbs manifold. In our example, the Gibbs
manifold has dimension 3, whereas the Gibbs variety has dimension 5. The latter is
the cubic hypersurface

GV(L) = {
X ∈ S

3 : (x11 − x22)(x11 − x33)(x22 − x33)

= x33(x
2
13 − x223) + x22(x

2
23 − x212) + x11(x

2
12 − x213)

}
.

Aspromised, the studyofGibbsmanifolds andGibbs varieties is a non-commutative
extension of applied toric geometry. Indeed, every toric variety is a Gibbs variety
arising from diagonal matrices. For instance, the toric surface { x ∈ R

3 : x1x3 = x22 }
is realized as

GV(L′) = {
X ∈ S

3 : x11x33 − x222 = x12 = x13 = x23 = 0
}

for the diagonal matrix pencil

L′ =
⎧
⎨

⎩

⎡

⎣
2y1 0 0
0 y1+y2 0
0 0 2y2

⎤

⎦ : y1, y2 ∈ R

⎫
⎬

⎭
. (2)

However, even for diagonal matrices, the dimension of the Gibbs variety can exceed
that of the Gibbs manifold. To see this, replace the matrix entry 2y1 by

√
2y1 in

the definition of L′. This explains why transcendental number theory will make an
appearance in this work.

Our presentation in this paper is organized as follows. Section2 gives a more thor-
ough introduction to Gibbs manifolds and Gibbs varieties. Theorem 2.4 states that
the dimension of the Gibbs variety is usually quite small. The proof of this result is
presented in Sect. 3. In that section we present algorithms for computing the prime
ideal of the Gibbs variety. This is an implicitization problem, where the parametriza-
tion uses transcendental functions. We compare exact symbolic methods for solving
that problem with a numerical approach. A key ingredient is the Galois group for the
eigenvalues of a linear space of symmetric matrices. We implemented our algorithms
in Julia, making use of the computer algebra package Oscar.jl [21]. Our code
and data are available at https://mathrepo.mis.mpg.de/GibbsManifolds.

In Sect. 4 we study the Gibbs varieties given by two-dimensional spaces of sym-
metric matrices. This rests on the classical Segre-Kronecker classification of matrix
pencils [8].

In Sect. 5 we turn to the application that led us to start this project, namely entropic
regularization in convex optimization. That section develops the natural generalization
of the geometric results in [26] from linear programming to semidefinite programming.
We conclude in Sect. 6 with a study of quantum optimal transport [3]. This is the
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semidefinite programming analogue to the classical optimal transport problem [26,
Section 3]. We show that its Gibbs manifold is the positive part of a Segre variety in
matrix space.

2 Frommanifolds to varieties

We write S
n for the space of symmetric n × n-matrices. This is a real vector space

of dimension
(n+1

2

)
. The subset of positive semidefinite matrices is denoted S

n+. This
is a full-dimensional closed semialgebraic convex cone in S

n , known as the PSD
cone. The PSD cone is self-dual with respect to the trace inner product, given by
〈X ,Y 〉 := trace(XY ) for X ,Y ∈ S

n .
The matrix exponential function is defined by the usual power series, which con-

verges for all real and complex n×n matrices. It maps symmetric matrices to positive
definite symmetric matrices. The zero matrix 0n is mapped to the identity matrix idn .
We write

exp : S
n → int(Sn+), X �→

∞∑

i=0

1

i ! X
i .

This map is invertible, with the inverse given by the familiar series for the logarithm,
which is convergent for any positive definite matrix:

log : int(Sn+) → S
n, Y �→

∞∑

j=1

(−1) j−1

j
( Y − idn)

j .

We next introduce the geometric objects studied in this article. We fix any matrix
A0 ∈ S

n and d linearly independent matrices A1, A2, . . . , Ad , also in S
n . We write

L for the affine subspace A0 + spanR(A1, . . . , Ad) of the vector space Sn � R(n+1
2 ).

Thus, L is an affine space of symmetric matrices (ASSM) of dimension d. If A0 = 0,
thenL is a linear space of symmetric matrices (LSSM).We are interested in the image
of L under the exponential map:

Definition 2.1 The Gibbs manifold GM(L) of L is the d-dimensional manifold
exp(L) ⊂ S

n+.

This is indeed a d-dimensionalmanifold inside the convex cone Sn+. It is diffeomorphic
to L � R

d , with the identification given by the exponential map and the logarithm
map.

In notable special cases (e.g. that in Sect. 6), the Gibbs manifold is semi-algebraic,
namely it is the intersection of an algebraic variety with the PSD cone. However,
this fails in general, as seen in the Introduction. It is still interesting to ask which
polynomial relations hold between the entries of any matrix in GM(L). This motivates
the following definition.
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Definition 2.2 The Gibbs variety GV(L) of L is the Zariski closure of GM(L)

in C(n+1
2 ).

Example 2.3 (n = 4, d = 2) Consider the 2-dimensional linear space of symmetric
matrices

L =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

0 0 0 y1
0 0 y1 y2
0 y1 y2 0
y1 y2 0 0

⎤

⎥
⎥
⎦ : y1, y2 ∈ R

⎫
⎪⎪⎬

⎪⎪⎭

⊂ S
4.

Its Gibbs manifold GM(L) is a surface in S
4 � R

10. The Gibbs variety GV(L) has
dimension five and degree three. It consists of all symmetricmatrices X = (xi j )whose
entries satisfy

x13 − x22 + x44 = x14 − x23 + x34 = x24 − x33 + x44 = 0,

and rank

[
x11−x44 x12−x34 x22−x33

x12 x22−x44 x23−x34

]

≤ 1.
(3)

This follows from the general result on matrix pencils in Theorem 4.4. �
The following dimension bounds constitute our main result on Gibbs varieties.

Theorem 2.4 Let L ⊂ S
n be an ASSM of dimension d. The dimension of the Gibbs

variety GV(L) is at most n + d. If A0 = 0, i.e. L is an LSSM, then dimGV(L) is at
most n + d − 1.

These bounds are attained in many cases, including Example 2.3. Our proof of
Theorem 2.4 appears in Sect. 3, in the context of algorithms for computing the ideal
of GV(L).

While it might be difficult to find all polynomials that vanish on the Gibbsmanifold,
finding linear relations is sometimes easier. Such relations are useful for semidefinite
optimization, see Remark 5.2. This brings us to the final geometric object studied in
this paper.

Definition 2.5 TheGibbs planeGP(L) is the smallest affine space containing GV(L).

Clearly, we have the chain of inclusions GM(L) ⊆ GV(L) ⊆ GP(L) ⊆ C(n+1
2 ).

Example 2.6 The Gibbs plane of the LSSM L from Example 2.3 is the 7-dimensional
linear space in C

10 that is defined by the three linear relations listed in the first row
of (3). �

It was claimed in the Introduction that this article offers a generalization of toric
varieties. We now make that claim precise, by discussing the case when L is a com-
muting family. This means that the symmetric matrices A0, A1, . . . , Ad commute
pairwise, i.e. Ai A j = A j Ai for all i, j . We now assume that this holds. Then the
ASSM L can be diagonalized [14, Theorem 1.3.19], i.e. there is an orthogonal matrix
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V such that �i = V�AiV is a diagonal matrix, for all i . The vector λi ∈ R
n of

diagonal entries in �i = diag(λi ) contains the eigenvalues of Ai .
The matrix exponential of any element in L can be computed as follows:

exp(A0 + y1A1 + · · · + yd Ad) = V · exp(�0 + y1�1 + · · · + yd�d) · V�. (4)

LetD denote this ASSM of diagonal matrices, i.e. D = {�0 + y1�1 +· · ·+ yd�d :
y ∈ R

d}. Then the linear change of coordinates given by V identifies the respective
Gibbs manifolds:

GM(L) = V · GM(D) · V�. (5)

The same statement holds for the Gibbs varieties and the Gibbs planes:

GV(L) = V · GV(D) · V� and GP(L) = V · GP(D) · V�. (6)

The dimensions of these objects are determined by arithmetic properties of the eigen-
values.

We identify the space of diagonal n×n-matriceswithRn . Recall that�i = diag(λi )
where λi is a vector in Rn . Let � denote the linear subspace of Rn that is spanned by
the d vectors λ1, . . . , λd . We have D = λ0 + �, and therefore

GM(D) = exp(λ0) � exp(�) = {(eλ01w1, . . . , e
λ0nwn) : w ∈ exp(�)} ⊂ R

n .

Here � denotes coordinate-wise multiplication in R
n . Let �Q be the smallest vector

subspace of Rn spanned by elements of Qn which contains �. Its dimension dQ =
dim�Q satisfies d ≤ dQ ≤ n. Fix lattice vectors a1, a2, . . . , adQ in Z

n that form
a basis of �Q. Then, inside the n-dimensional linear space of diagonal matrices, we
have

GV(D) =
{
(
eλ01

dQ∏

i=1

zai1i , eλ02

dQ∏

i=1

zai2i , . . . , eλ0n

dQ∏

i=1

zaini

) : z ∈ (C∗)dQ
}

. (7)

This is a toric variety of dimension dQ. Just like in [26, Section 2], the closure is taken
in C

n . The Gibbs manifold GM(D) is a d-dimensional subset of the real points in
GV(D) for which z has strictly positive coordinates. We summarize our discussion in
the following theorem.

Theorem 2.7 Let L be an affine space of pairwise commuting symmetric matrices.
Then the Gibbs variety GV(L) is a toric variety of dimension dQ, given explicitly by
(6) and (7).

For an illustration, consider the seemingly simple case d = 1 and A0 = 0. Here,
GM(L) is the curve formed by all powers of exp(A1), and GV(L) is a toric variety of
generally higher dimension. This scenario is reminiscent of that studied by Galuppi
and Stanojkovski in [10].
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Example 2.8 Let n=3 and consider the LSSM L spanned by A1=
⎡

⎣
4 1 1
1 3 1
1 1 3

⎤

⎦. We have

A1 = V · diag(λ) · V�, where λ = (
2, 4 + √

2, 4 − √
2
)

and

V = 1

2

⎡

⎣
0

√
2 −√

2
−√

2 1 1√
2 1 1

⎤

⎦ .

Here, D = � = Rλ, dQ = 2, and �Q = R{(1, 2, 2), (0, 1,−1)} = {p ∈ R
3 :

4p1 = p2 + p3}. Hence GV(D) is the toric surface {q411 = q22q33} in GP(D) = {Q ∈
S
3 : q12 = q13 = q23 = 0}. We transform that surface into the original coordinates

via (6). The computation reveals

GV(L) = {X ∈ GP(L) : x423 − 4x323x33 + 6x223x
2
33 − 4x23x

3
33 + x433

+2x213 − x223 − 2x23x33 − x233 = 0}.

The ambient 3-space is GP(L)={X ∈ S
3 : x11−x23−x33= x12−x13= x22−x33=0}.�

This concludes our discussion of the toric Gibbs varieties that arise from pairwise
commuting matrices. In the next section we turn to the general case, which requires
new ideas.

3 Implicitization of Gibbs varieties

Implicitization is the computational problem of finding implicit equations for an object
that comes in the form of a parametrization. When the parametrizing functions are
rational functions, these equations are polynomials and can be found using resultants
or Gröbner bases [19, Section 4.2]. A different approach rests on polynomial interpola-
tion and numerical nonlinear algebra. This section studies the implicitization problem
for Gibbs varieties. The difficulty arises from the fact that Gibbs manifolds are tran-
scendental, since their parametrizations involve the exponential function. We start out
by presenting our proof of Theorem 2.4.

As in Sect. 2,L = A0+spanR(A1, . . . , Ad) is a d-dimensional affine space of sym-
metric n×n-matrices. Its elements are A0+ y1A1+· · ·+ yd Ad . We shall parametrize
the Gibbs manifold GM(L) in terms of the coordinates y1, . . . , yd on L. This uses the
following formula.

Theorem 3.1 (Sylvester [28]) Let f : D → R be an analytic function on an open
set D ⊂ R and M ∈ R

n×n a matrix that has n distinct eigenvalues λ1, . . . , λn in D.
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Then

f (M) =
n∑

i=1

f (λi )Mi , with Mi =
∏

j �=i

1

λi − λ j
(M − λ j · idn).

We note that the product on the right hand side takes place in the commutative
ring R[M].
Proof of Theorem 2.4 The characteristic polynomial of A(y) = A0+y1A1+· · ·+yd Ad

equals

PL(λ; y) = det(A(y) − λ · idn) = c0(y) + c1(y) λ + · · · + cn−1(y) λn−1 + (−1)n λn .

Its zeros λ are algebraic functions of the coordinates y = (y1, . . . , yd) on L.
We first assume that L has distinct eigenvalues, i.e. there is a Zariski open subset

U ⊂ R
d such that PL(λ; y∗) has n distinct real roots λ for all y∗ ∈ U . Sylvester’s

formula writes the entries of exp(A(y)) as rational functions of y, λi (y) and eλi (y) for
y ∈ U . These functions are multisymmetric in the pairs (λi , eλi ). They evaluate to
convergent power series on U .

Let V be the subvariety of U × R
n that is defined by the equations

ci (y) = (−1)iσn−i (λ) for i = 0, . . . , n − 1, (8)

where (λ1, . . . , λn) are the coordinates onRn andσt (λ) is the t th elementary symmetric
polynomial evaluated at (λ1, . . . , λn). We have dim V = d. Define a map φ : V ×
R
n → S

n , using coordinates z1, . . . , zn on R
n , as follows:

(y1, . . . , yd , λ1, . . . , λn, z1, . . . , zn) �−→
n∑

i=1
zi

∏

j �=i

1

λi − λ j
(A(y)−λ j · idn). (9)

The closure φ(V × Rn) of the image of this map is a variety. It contains the Gibbs
variety: setting zi = eλi parametrizes a dense subset of the Gibbs manifold, by Theo-
rem 3.1.

TheGibbs variety of the LSSMRL spanned by theASSML also lies inφ(V × Rn),
because exp(y0A(y)) = φ(y0 · y, y0 · λ, ey0·λ) for any y ∈ U and y0 ∈ R\{0}. We
thus have

dimGV(L) ≤ dim φ(V × Rn) ≤ d + n and dimGV(RL) ≤ d + n.

Finally, suppose thatL is an LSSM, i.e. A0 = 0. ThenL is the linear span of an ASSM
ofdimensiond−1 inSn . The second inequality therefore gives dimGV(L) ≤ d+n−1.

Wefinally consider the casewhenL hasm < n distinct eigenvaluesλ1, . . . , λm with
multiplicities μ1, . . . , μm . That is, there is a Zariski open subset U ⊂ R

d such that
PL(λ; y∗) has m distinct real roots λ with multiplicities μ1, . . . , μm for all y∗ ∈ U .
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Since symmetricmatrices are diagonalizable, Sylvester’s formula can easily be adapted
to this case: it suffices to sumover the distinct eigenvalues ofM , ignoring themultiplic-
ities. That is, we replace n in the statement of Theorem 3.1 bym. See [15, Chapter 6.1,
Problem 14(a)] for details. The variety V now lives in U × R

m . It is still defined by
the equations (8) but now σt (λ) is evaluated at (λ1, . . . , λ1, . . . , λm, . . . , λm), where
λi appears μi times. The parametrization (9) takes the form of a map φ : V × R

m

defined by (9) with every occurrence of n replaced bym. With this adjustments made,
the proof repeats the case of n distinct eigenvalues. ��
Remark 3.2 If the points exp(λ(y)) = (eλ1(y), . . . , eλn(y)), y ∈ U , lie in a lower-
dimensional subvariety W ⊂ R

n , then the proof of Theorem 2.4 gives the better
bound dimGV(L) ≤ d + dimW . We saw this in Example 2.8. In general, no such
subvariety W exists, i.e. one expects W = R

n . This is an issue of Galois theory, to be
discussed at the end of this section.

For ease of exposition, we work only with LSSMs in the rest of this section. That
is, we set A0 = 0. We comment on the generalization to ASSMs in Remark 3.7. Our
discussion and the proof of Theorem 2.4 suggest Algorithm 1, for computing the ideal
of the Gibbs variety of an LSSM L.

Algorithm 1 Implicitization of the Gibbs variety of an LSSM L, defined over Q
Input: Linearly independent matrices A1, . . . , Ad ∈ S

n with rational entries
Output: Polynomials that define GV(L), where L = spanR(A1, . . . , Ad )

1: Compute the characteristic polynomial PL(λ; y) = c0(y) + c1(y)λ + · · · + cn(y)λn

Require: PL(λ; y) has n distinct roots in R(y)
2: E ′

1 ← {the n polynomials (−1)iσn−i (λ) − ci (y) in (8)}
3: E1 ← {generators of any associated prime over Q of 〈E ′

1〉}
4: E2 ← {the entries of φ(y, λ, z) − X}, with X = (xi j ) a symmetric matrix of variables
5: E2, D ← clear denominators in E2 and record the least common denominator D
6: if the roots λ1, . . . , λn of PL(λ; y) are Q-linearly dependent then
7: E3 ← {zα − zβ : ∑

αiλi = ∑
β jλ j , α, β ∈ Z

n≥0}
8: else
9: E3 ← ∅
10: I ← the ideal generated by E1, E2, E3 in the polynomial ring R[y, λ, z, X ]
11: I ← I : D∞
12: J ← elimination ideal obtained by eliminating y, λ, z from I
13: return a set of generators of J

That ideal lives in a polynomial ring R[X ] whose variables are the entries of a
symmetric n × n matrix. The algorithm builds three subsets E1, E2, E3 of the larger
polynomial ring R[y, λ, z, X ]. After the saturation (step 11), the auxiliary variables
y, λ, z are eliminated. The equations E ′

1 come from (8). They constrain (y, λ) to lie
in V . The set E1 generates an associated prime of 〈E ′

1〉 (step 3), see the discussion
preceding Theorem 3.6. The equations E2 come from the parametrization (9). Note
that, if L has m < n distinct eigenvalues, this formula can be adjusted as in the end of
the proof of Theorem 2.4, and the requirement after step 1 can be dropped. Later in
the algorithm, one replaces n with m. It is necessary to clear denominators in order to
obtain polynomials (step 5). The saturation by the LCD D avoids spurious components
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arising from this step. Finally, E3 accounts for toric relations between the zi arising
from Q-linear relations among the λi . If no such relations exist, then Theorem 3.5
ensures that the assignment E3 ← ∅ in step 9 is correct.

Steps 6 and 7 in Algorithm 1 require a detailed discussion. Further below we shall
explain the Q-linear independence of eigenvalues, how to check this, and how to
compute E3. Ignoring this for now, one can also run Algorithm 1 with E3 = ∅. Then
step 13 still returns polynomials that vanish on the Gibbs variety GV(L) but these may
cut out a larger variety.

We implemented Algorithm 1 in Julia (v1.8.3), using Oscar.jl [21], and
tested it on many examples. The code is available at https://mathrepo.mis.mpg.de/
GibbsManifolds.

Example 3.3 The Gibbs variety GV(L) for the LSSML in (1) has the parametrization

φ =
3∑

i=1

zi
q(λi , y1, y2, y3)

⎡

⎣
p11(λi , y1, y2, y3) p12(λi , y1, y2, y3) p13(λi , y1, y2, y3)
p12(λi , y1, y2, y3) p22(λi , y1, y2, y3) p23(λi , y1, y2, y3)
p13(λi , y1, y2, y3) p23(λi , y1, y2, y3) p33(λi , y1, y2, y3)

⎤

⎦ ,

where

q = 2y21+6y1y2+2y22+6y1y3+6y2y3 + 2y23 − 6y1λ − 6y2λ − 6y3λ + 3λ2,
p11 = y21 + 2y1y2 + y22 + 2y1y3 + 2y2y3 − 2y1λ − 2y2λ − 2y3λ + λ2,

p12 = −y21 − y1y2 − y1y3 + y2y3 + y1λ,

p13 = −y1y2 − y22 + y1y3 − y2y3 + y2λ,

p22 = y21 + 2y1y2 + 2y1y3 + 2y2y3 + y23 − 2y1λ − 2y2λ − 2y3λ + λ2,

p23 = y1y2 − y1y3 − y2y3 − y23 + y3λ,

p33 = 2y1y2 + y22 + 2y1y3 + 2y2y3 + y23 − 2y1λ − 2y2λ − 2y3λ + λ2.

Our Julia code for Algorithm 1 easily finds the cubic polynomial defining
GV(L). �

In spite of such successes, symbolic implicitization is limited to small n and d.
Numerical computations can help, in some cases, to find equations for more challeng-
ing Gibbs varieties.

Example 3.4 We consider the LSSM of 4 × 4 Hankel matrices with upper left entry
zero:

L =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

0 y2 y3 y4
y2 y3 y4 y5
y3 y4 y5 y6
y4 y5 y6 y7

⎤

⎥
⎥
⎦ : (y2, . . . , y7) ∈ R

6

⎫
⎪⎪⎬

⎪⎪⎭

.

Algorithm1 failed to compute itsGibbs variety.We proceed using numerics as follows.
Fix adegreeD > 0 and let N = (9+D

D

)
be thenumber ofmonomials in the 10unknowns

x11, . . . , x44. We create M ≥ N samples on GM(L) by plugging in random values
for the six parameters yi and applying the matrix exponential. Finding all vanishing
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equations of degree D on these samples amounts to computing the kernel of an M×N
Vandermonde matrix. If this matrix has full rank, then there are no relations of degree
D. We implemented this procedure in Julia. In our example, Theorem 2.4 says
that GV(L) is contained in a hypersurface. Using our numerical method, we find one
defining equation of degree D = 6. We used M = 5205 ≥ N = 5005 samples. Our
sextic has 853 terms with integer coefficients:

x311x22x24x34 − x311x
2
23x34 − x311x23x

2
24 + x311x23x24x33 +

· · · + 3x23x
2
24x33x

2
34 + x424x33x34 − x324x

2
33x34.

Its Newton polytope has the f-vector (456, 5538, 21, 560, 41, 172, 44, 707, 29, 088,
11, 236, 2370, 211). In fact, the Gibbs variety in this example is precisely the hyper-
surface defined by this sextiv. This follows from a result of the first author, namely
[23, Theorem 2.6], which appeared while the present article was under review.

Note that the package Oscar.jl conveniently allows to perform symbolic and
numerical implicitization and polyhedral computations in the same programming envi-
ronment.

We emphasize that our numerical Julia code is set up to find exact integer coef-
ficients. For this, we first normalize the numerical approximation of the coefficient
vector by setting its first (numerically) nonzero entry to one. Then we rationalize the
coefficients using the built in command rationalize in Julia, with error toler-
ance tol = 1e-7. Correctness of the result is proved by checking that the resulting
polynomial vanishes on the parametrization. �

We now turn to Q-linear relations among eigenvalues of L. Our arithmetic dis-
cussion begins with a version of [1, (SP)], which is well-known in transcendental
number theory:

Theorem 3.5 (Ax-Schanuel) If the eigenvalues λ1, . . . , λn of the LSSM L are Q-
linearly independent, then eλ1 , . . . , eλn are algebraically independent over the field
C(y1, . . . , yd).

In our situation, the eigenvalues λ1, . . . , λn are algebraic over C(y1, . . . , yd). We
can therefore conclude that, under the assumptions of Theorem 3.5, their exponentials
eλ1 , . . . , eλn are algebraically independent over C(λ1, . . . , λn).

On the other hand, suppose that the eigenvalues of L satisfy some non-trivial linear
relation over Q. We can then find nonnegative integers αi and β j , not all zero, such
that

n∑

i=1

αiλi =
n∑

j=1

β jλ j . (10)

This implies that the exponentials of the eigenvalues satisfy the toric relations

n∏

i=1

zαii =
n∏

j=1

z
β j
j . (11)
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The linear relations (10) can be found from the ideal 〈E ′
1〉 in step 2 which specifies

that the λi are the eigenvalues of A(y). This ideal is radical if we assume that L has
distinct eigenvalues. We compute the prime decomposition of the ideal over Q. All
prime components are equivalent under permuting the λi , so we replace 〈E ′

1〉 by any
of these prime ideals in step 3.We compute (10) as the linear forms in that prime ideal.
Using (11), we compute the toric ideal 〈E3〉 in step 7, which is also prime. This ideal
defines a toric variety W ′, whose Sn-orbit is the variety W in Remark 3.2. We arrive
at the following result.

Theorem 3.6 Let L ⊂ S
n be an LSSM with distinct eigenvalues. The Gibbs vari-

ety GV(L) is irreducible and unirational, and the ideal J found in Algorithm 1 is its
prime ideal.

Proof Sylvester’s formula yields a rational parametrization ψ of GV(L) with param-
eters y1, . . . , yd , z1, . . . , zn . The parameters λi in (9) can be omitted: the entries in
the image are multisymmetric in (λi , zi ), so that they can be expressed in terms of
elementary symmetric polynomials of the λi [2, Theorem 1]. The point (z1, . . . , zn)
lies on the toric varietyW ′ defined above. The domainCd ×W ′ of ψ is an irreducible
variety, and it is also rational. The image of ψ is the Gibbs variety GV(L), which is
therefore unirational and irreducible. The ideals given by E1 and E2 in Algorithm 1
are prime, after saturation, and elimination in step 12 preserves primality. Hence the
output in J in step 13 is the desired prime ideal. ��

We define the Galois group GL of an LSSM L to be the Galois group of the
characteristic polynomial PL(λ, y) over the field Q(y1, . . . , yd). Note that GL is the
subgroup of the symmetric group Sn whose elements are permutations that fix each
associated prime of 〈E ′

1〉. Hence the index of the Galois group GL in Sn is the number
of associated primes. In particular, the Galois group equals Sn if and only if the ideal
〈E ′

1〉 formed in step 2 is prime.
The existence of linear relations (10) depends on the Galois groupGL. If the Galois

group is small then the primes of 〈E1〉 are large, andmore likely to contain linear forms.
There is a substantial literature in number theory on this topic. See [11, 12] and the
references therein. For instance, by Kitaoka [17, Proposition 2], there are no linear
relations if n is prime, or if n ≥ 6 and the Galois group is Sn or An . If this holds,
E3 = ∅ in step 9 of Algorithm 1.

The computation of Galois groups is a well-studied topic in symbolic computation
and number theory. Especially promising are methods based on numerical algebraic
geometry (e.g. in [13]). These fit well with the approach to implicitization in Example
3.4. For a future theoretical project, it would be very interesting to classify LSSMs by
their Galois groups.

Remark 3.7 We briefly comment on how to adjust Algorithm 1 to compute the Gibbs
variety of an ASSM L with A0 �= 0. In this case, algebraic relations between
eλ1 , . . . , eλn come from Q-linear relations between the eigenvalues of L, but this
time modulo C: an affine relation

∑
αiλi = ∑

β jλ j + γ gives zα − eγ · zβ = 0,
where zi = eλi , αi , β j ∈ Z≥0, γ ∈ C. Here γ is aQ-linear combination of eigenvalues
of A0. Theorem 3.6 holds for ASSMs as well, provided that these Q-linear relations
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moduloC can be computed in practice. This can usually not be done overQ. We leave
this algorithmic challenge for future research.

4 Pencils of quadrics

In this section we study the Gibbs variety GV(L)whereL ⊂ S
n is a pencil of quadrics,

i.e. an LSSM of dimension d = 2.We follow the exposition in [8], where pencilsL are
classified by Segre symbols. The Segre symbol σ = σ(L) is a multiset of partitions
that sum up to n. It is computed as follows: Pick a basis {A1, A2} of L, where A2 is
invertible, and find the Jordan canonical form of A1A

−1
2 . Each eigenvalue determines

a partition, according to the sizes of the corresponding Jordan blocks. The multiset of
these partitions is the Segre symbol σ .

We use the canonical form in [8, Section 2]. Suppose the Segre symbol is σ =
[σ1, . . . , σr ], where the i th partition σi equals (σi,1 ≥ σi,2 ≥ · · · ≥ σi,n ≥ 0). There
are r groups of blocks, one for each eigenvalue αi of A1A

−1
2 . The j th matrix in the

i th group is the σi, j × σi, j matrix

y1 ·

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 . . . 0 αi

0 0 . . . αi 1
...

... . .
.
. .
. ...

0 αi 1 . .
.
0

αi 1 . . . 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+ y2 ·

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 . . . 0 0 1
0 . . . 0 1 0
0 . . . 1 0 0
... . . .

...
...

...
1 . . . 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

There are 13 Segre symbols for n = 4; see [8, Example 3.1]. It is instructive to com-
pute their Gibbs varieties. All possible dimensions, 2, 3, 4 and 5, are attained. Dimen-
sion 2 arises for the diagonal pencil Lσ = diag(α1y1+y2, α2y1+y2, α3y1+y2, α4
y1+y2), with Segre symbol σ = [1, 1, 1, 1]. When the αi are distinct integers,
GV(Lσ ) = GM(Lσ ) is a toric surface. This is similar to (2). Dimension 5 arises
for σ = [4], which was presented in Example 2.3.

The following examples, also computed with Algorithm 1, exhibit the dimensions
5, 4, 3.

Example 4.1 Consider the Segre symbol σ = [3, 1]. The canonical pencil L[3,1] is
spanned by

⎡

⎢
⎢
⎣

0 0 α1 0
0 α1 1 0
α1 1 0 0
0 0 0 α2

⎤

⎥
⎥
⎦ and

⎡

⎢
⎢
⎣

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎤

⎥
⎥
⎦ , for α1, α2 ∈ R distinct.

Here, dim GV(L[3,1]) = 5, the upper bound in Theorem 2.4. Algorithm 1 produces
the ideal

J = 〈
x14, x24, x34, x13 − x22 + x33, x

2
12 − x11x22 − x12x23 + x11x33 + x22x33 − x233

〉
.
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If α1 = α2, then the Segre symbol changes to σ = [(3, 1)]. We now find the additional
cubic

x11x22x33 + 2x12x13x23 − x213x22 − x11x
2
23 − x212x33 − x44 ∈ J . (12)

This cuts down the dimension by one, and we now have dimGV(L[(3,1)]) = 4. �
Example 4.2 Consider the Segre symbol σ = [(2, 2)]. The pencil L[(2,2)] is spanned
by

⎡

⎢
⎢
⎣

0 α 0 0
α 1 0 0
0 0 0 α

0 0 α 1

⎤

⎥
⎥
⎦ and

⎡

⎢
⎢
⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤

⎥
⎥
⎦ , for some α ∈ R.

A version of Algorithm 1 for LSSMs with multiple eigenvalues produces the ideal

J = 〈 x11 − x33, x12 − x34, x22 − x44, x13, x14, x23, x24 〉.

The Gibbs variety GV(L[(2,2)]) is 3-dimensional and equals the Gibbs plane
GP(L[(2,2)]). �

The cubic (12)which distinguishes the Segre symbols [3, 1] and [(3, 1)] is explained
by the following result. This applies not just to pencils but to all ASSMs with block
structure.

Proposition 4.3 LetL be a block-diagonal ASSMwith r blocks Xi (y) of size τi , where
τ1 + · · · + τr = n. The Gibbs plane GP(L) is contained in S

τ1 × · · · × S
τr ⊂ S

n.
Moreover, with the notation J = {{i, j} ∈ ([r ]

2

) : trace(Xi (y)) = trace(X j (y))}, we
have

GV(L) ⊆ {(X1, . . . , Xr ) ∈ GP(L) : det(Xi ) = det(X j ) for all {i, j} ∈ J }.

Proof Block-diagonal matrices are exponentiated block-wise. The entries out-
side the diagonal blocks are zero. The statement follows from det(exp(Xi (y))) =
exp(trace(Xi (y))). ��

Proposition 4.3 applies to the canonical pencil Lσ of any Segre symbol σ . First of
all, for all indices (i, j) outside the diagonal blocks, we have xi j = 0 on the Gibbs
plane GP(Lσ ). Next, one has equations for the exponential of a single block, like those
in Theorem 4.4 below. Finally, there are equations that link the blocks corresponding to
entries σi j of the same partition σi . Some of these come from trace equalities between
blocks of Lσ , and this is the scope of Proposition 4.3. In particular, blocks i j and
ik for which σi j = σik mod 2 exponentiate to Xi j ∈ S

σi j
+ and Xik ∈ S

σik+ with equal
determinant. We saw this in (12). In all examples we computed, the three classes of
equations above determine the Gibbs variety.
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We now derive the equations that hold for the exponential of a single block. To this
end, we fix σ = [n] with α1 = 0. The canonical LSSM L[n] consists of the symmetric
matrices

Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 . . . 0 y2
0 0 . . . y2 y1
...

... . .
.
. .
. ...

0 y2 y1
... 0

y2 y1
... 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The case n = 4 was featured in Example 2.3. In what follows we generalize that
example. By convention, we assume xi j = 0 if i > n or j > n

Theorem 4.4 The following linear equations hold on the Gibbs plane GP(L[n]):

xi−1, j + xi+1, j = xi, j−1 + xi, j+1 for 2 ≤ i < j ≤ n. (13)

The 2 × 2-minors of the following 2 × (n − 1) matrix vanish on the Gibbs variety
GV(L[n]):

D(X) =
[
x11 x12 x22 . . .

x12 x22 x23 . . .

]

−
[
xn,n xn−1,n xn−1,n−1 . . .

0 xn,n xn−1,n . . .

]

. (14)

If the Galois group GL[n] is the symmetric group Sn, then the prime ideal of GV(L[n])
is generated by (13) and (14), andwe have dim GP(Ln) = 2n−1 and dim GV(L[n]) =
n + 1.

Remark 4.5 We conjecture that GL[n] = Sn . This was verified computationally for
many values of n, but we currently do not have a proof that works for all n. This gap
underscores the need, pointed out at the end of Sect. 3, for a study of the Galois groups
of LSSMs.

Proof We claim that the linear equations (13) hold for every non-negative integer
power of Y . This implies that they hold for exp(Y ). We will show this by induction.
The equations clearly hold for Y 0 = idn . Suppose they hold for (mi j ) = M = Y k .
Write (bi j ) = B := Y k+1 = MY .

The two-banded structure of Y implies bi, j = y1 · mi,n− j+1 + y2 · mi,n− j+2
for 1 ≤ i < j . The following identity holds for 2 ≤ i < j , and it shows that exp(Y )

satisfies the equations (13):

bi−1, j − bi, j−1 − bi, j+1 + bi+1, j = y1 · mi−1,n− j+1 + y2 · mi−1,n− j+2 − y1 · mi,n− j+2

−y2 · mi,n− j+3 − y1 · mi,n− j − y2 · mi,n− j+1 + y1 · mi+1,n− j+1 + y2 · mi+1,n− j+2

= y1 · (mi−1,n− j+1 − mi,n− j+2 − mi,n− j + mi+1,n− j+1)

+y2 · (mi−1,n− j+2 − mi,n− j+3 − mi,n− j+1 + mi+1,n− j+2) = 0.
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We next consider the matrix D(X) in (14). We must show that D(X) has rank
≤ 1 for X ∈ GV(L[n]). We claim that the rows of D(Y k) are proportional with the
same coefficient for all k ∈ Z≥0. This will imply that the rows of D(exp (Y )) are
proportional. For the proof, let v1 and v2 be the rows of D(B), where B = Y k . We
will show that y1v1 + y2v2 = 0.

First note that D(idn) = 0. Also note that each column of D(B) has the form

[
bi,i − bn+1−i,n+1−i

bi,i+1 − bn+1−i,n+2−i

]

or

[
bi,i+1 − bn−i,n+1−i

bi+1,i+1 − bn−i+1,n−i+1

]

.

We start with the left case. We must show y1(bi,i − bn+1−i,n+1−i ) + y2(bi,i+1 −
bn+1−i,n+2−i ) = 0.

Recall from above that bi, j = y1 ·mi,n− j+1 + y2 ·mi,n− j+2, where (mi, j ) = M =
Y k−1 for i < j . Using this and the fact that the powers of Y are symmetric, we write

y1(bi,i − bn+1−i,n+1−i ) + y2(bi,i+1 − bn+1−i,n+2−i )

= y1((y1 · mi,n−i+1 + y2 · mi,n−i+2) − (y1 · mn+1−i,i + y2 · mn+1−i,i+1))

+y2((y1 · mi,n−i + y2 · mi,n−i+1) − (y1 · mn+1−i,i−1 + y2 · mn+1−i,i ))

= y1y2(mi,n−i+2 − mi+1,n+1−i + mi,n−i − mn+1−i,i−1) = 0,

where the last equality follows from (13). Now, for the second case we have

y1(bi,i+1 − bn−i,n+1−i ) + y2(bi+1,i+1 − bn−i+1,n−i+1)

= y1(y1 · mi,n−i + y2 · mi,n−i+1 − y1 · mn−i,i − y2 · mn−i,i+1)

+y2(y1 · mi+1,n−i + y2 · mi+1,n−i+1 − y1 · mn−i+1,i − y2 · mn−i+1,i+1) = 0.

This proves that the 2 × 2 minors of D(X) vanish on the Gibbs variety GV(L[n]).
Suppose now that the eigenvalues of Y are Q-linearly independent. We can check

this directly for n ≤ 5. For n ≥ 6 it follows from our hypothesis GL[n] = Sn , by [17,
Proposition 2]. That hypothesis implies dimGV(L[n]) = n + 1, by Theorems 2.4 and
3.5.

For the primality statement, we note that the matrix D(X) is 1-generic in the sense
of Eisenbud [6, 7]. By [6, Theorem 1], the 2 × 2-minors of D(X) generate a prime
ideal of codimension n−2 in the coordinates of the (2n−1)-dimensional space given
by (13). The equality of dimensions yields dimGP(L[n]) = 2n − 1, and we conclude
that our linear and quadratic constraints generate the prime ideal of GV(L[n]). ��

Theorem 2.4 and its refinement in Remark 3.2 furnish an upper bound on the
dimension of any Gibbs variety. This raises the question when this bound is attained.
In what follows, we offer a complete answer for d = 2. Let L be a pencil with
eigenvalues λi (y), and let W denote the Zariski closure in R

n of the set of points
exp(λ(y)) = (eλ1(y), . . . , eλn(y)), y ∈ R

2.

Theorem 4.6 Let L = spanR(A1, A2), where A1A2 �= A2A1. Then dimGV(L) =
dim(W ) + 1. In particular, if the Galois group GL is the symmetric group Sn then
dimGV(L) = n + 1.
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Proof We claim that the fibers of the map φ : V × W → S
n defined by

(9) are one-dimensional. Let B ∈ φ(V × W ) and consider any point p =
(y1, y2, λ1, . . . , λn, z1, . . . , zn) ∈ φ−1(B). The condition that p lies in the fiber
φ−1(B) is equivalent to

1. z1, . . . , zn are the eigenvalues of B, and
2. X = y1A1 + y2A2 and B have the same eigenvectors, and
3. λ1, . . . , λn are the eigenvalues of X .

Condition (1) follows from Theorem 3.1 for f = exp. It implies that there
are only finitely many possibilities for the z-coordinates of the point p in the
fiber: up to permutations, they are the eigenvalues of B. Condition (3) follows
from (y1, y2, λ1, . . . , λn) ∈ V . It says that the λ-coordinates are determined, up to
permutation, by y1, y2. Therefore, it suffices to show that the matrices in L whose
eigenvectors are those of B form a one-dimensional subvariety.

Symmetricmatrices have common eigenvectors if and only if they commute. Define
S = {X = y1A1 + y2A2 ∈ L : X · B = B · X} ⊂ L. This is a pairwise commuting
linear subspace. Note that S contains a nonzero matrix X , since there is a point in
φ−1(B) whose y-coordinates define a nonzero matrix in L. Therefore dim S ≥ 1.
Since A1A2 �= A2A1, we also have dim S ≤ 1. Hence dim S = dim φ−1(B) = 1.
Moreover, the upper bound dimW + 1 for the dimension of GV(L), which is given
by Remark 3.2, is attained in our situation. ��

5 Convex optimization

In this section we show how Gibbs manifolds arise from entropic regularization in
optimization (cf. [26]). We fix an arbitrary linear map π : Sn → R

d . This can be
written in the form

π(X) = (〈A1, X〉, 〈A2, X〉, . . . , 〈Ad , X〉).

Here the Ai ∈ S
n , and 〈Ai , X〉 := trace(Ai X). The image π(Sn+) of the PSD cone Sn+

under our linear map π is a spectrahedral shadow. Here it is a full-dimensional semi-
algebraic convex cone in R

d . Interestingly, π(Sn+) can fail to be closed, as explained
in [16].

Semidefinite programming (SDP) is the following convex optimization problem:

Minimize 〈C, X〉 subject to X ∈ S
n+ and π(X) = b. (15)

See e.g. [19, Chapter 12]. The instance (15) is specified by the cost matrix C ∈ S
n and

the right hand side vector b ∈ R
d . The feasible region Sn+∩π−1(b) is a spectrahedron.

The SDP problem (15) is feasible, i.e. the spectrahedron is non-empty, if and only if
b is in π(Sn+).
Consider the LSSM L = spanR(A1, . . . , Ad). We usually assume that L contains

a positive definite matrix. This hypothesis ensures that each spectrahedron π−1(b) is
compact.
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As a natural extension of [26, eqn (2)], we now define the entropic regularization
of SDP:

Minimize 〈C, X〉 − ε · h(X) subject to X ∈ S
n+ and π(X) = b. (16)

Here ε > 0 is a small parameter, and h denotes the von Neumann entropy, here defined
as

h : S
n+ → R, X �→ trace

(
X − X · log(X)

)
.

Wenote that h is invariant under the action of the orthogonal group on Sn+. This implies
that h(X) = ∑n

i=1(λi −λi log(λi )), where λ1, . . . , λn are the eigenvalues of X . Hence
the von Neumann entropy h is the matrix version of the entropy function on Rn+ used
in [26].

Our next result makes the role of Gibbs manifolds in semidefinite programming
explicit. The following ASSM is obtained by incorporating ε and the cost matrix C
into the LSSM:

Lε := L − 1

ε
C for any ε > 0.

Here we allow the case ε = ∞, where the dependency onC disappears and the ASSM
is simply the LSSM, i.e. L∞ = L. The following theorem is the main result in this
section.

Theorem 5.1 For b ∈ π(Sn+), the intersection of π−1(b) with the Gibbs manifold
GM(Lε) consists of a single point X∗

ε . This point is the optimal solution to the regu-
larized SDP (16). For ε = ∞, it is the unique maximizer of von Neumann entropy on
the spectrahedron π−1(b).

The importance of this result for semidefinite programming lies in taking the limit
as ε tends to zero. This limit limε→0 X∗

ε exists and it is an optimal solution to (15).
The optimal solution is unique for generic C . Entropic regularization is about approx-
imating that limit.

Remark 5.2 Theorem 5.1 implies that adding the condition X ∈ GV(Lε) to (16) leaves
the optimizer unchanged. Hence, if we know equations for the Gibbs variety, we may
shrink the feasible region by adding polynomial constraints. Most practical are the
affine-linear equations: imposing X ∈ GP(Lε) allows to solve (16) on a spectrahedron
of lower dimension.

To prove Theorem 5.1, we derive two key properties of the von Neumann entropy:

Proposition 5.3 The function h satisfies:

(a) h is strictly concave on the PSD cone Sn+, and
(b) the gradient of h is the negative matrix logarithm: ∇(h)(X) = −log(X).
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Proof For (a), we use a classical result by Davis [4]. The function h is invariant in the
sense that its value h(X) depends on the eigenvalues of X . In fact, it is a symmetric
function of the n eigenvaluesλ1, λ2, . . . , λn . This function equals h(λ1, λ2, . . . , λn) =∑n

i=1(λi − λi log(λi )), and this is a concave function R
n+ → R. The assertion hence

follows from the theorem in [4].
For (b) we prove a more general result. For convenience, we change variables

Y = X − idn so that f (Y ) = h(Y + idn) is analytic at Y = 0. Fix any function
f : R → R that is analytic in a neighborhood of the origin. Then Y �→ trace( f (Y ))

is a well-defined real-valued analytic function of n × n matrices Y = (yi j ) that are
close to zero. The gradient of this function is the n × n matrix whose entries are the
partial derivatives ∂trace( f (Y ))/∂ yi j . We claim that

∇trace( f (Y )) = f ′(Y�). (17)

Both sides are linear in f , and f is analytic, so it suffices to prove this for monomials,
i.e.

∇trace(Y k) = k · (Y�)k−1 for all integers k ≥ 1. (18)

Note that trace(Y k) is a homogeneous polynomial of degree k in the matrix entries
yi j , namely it is the sum over all products yi1i2 yi2i3 · · · yik−2ik−1 yik−1i1 that represent
closed walks in the complete graph on k nodes. When taking the derivative ∂/∂ yi j of
that sum, we obtain k times the sum over all walks that start at node j and end at node
i . Here each walk occurs with the factor k because yi j can be inserted in k different
ways to create one of the closed walks above. This polynomial of degree k − 1 is the
entry of the matrix power Y k−1 in row j and column i , so it is the entry of its transpose
(Y�)k−1 in row i and column j . To prove the proposition, we now apply (17) to the
function f (y) = (y + 1) − (y + 1) · log(y + 1). ��

IfL = D consists of diagonalmatrices then theGibbsmanifoldGM(D) is a discrete
exponential family [27, §6.2], and π(GM(D)) is the associated convex polytope. This
uses the moment map from toric geometry [19, Theorem 8.24]. In particular, if the
linear space D is defined over Q then the polytope is rational and the Zariski closure
of GM(D) is the toric variety of that polytope. If the space D is not defined over Q
then GM(D) is an analytic toric manifold, whose Zariski closure is the larger toric
variety GV(D) = GM(DQ) seen in (7).

The key step to proving Theorem 5.1 is a non-abelian version of the toric moment
map.

Theorem 5.4 The restriction of the linear map π : S
n+ → R

d to the Gibbs mani-
fold GM(L) defines a bijection between GM(L) and the open spectrahedral shadow
int(π(Sn+)) in R

d .

Proof Fix an arbitrary positive definite matrix X ∈ int(Sn+) and set b = π(X). We
must show that the spectrahedron π−1(b) contains precisely one point that lies in
GM(L).
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Consider the restriction of the vonNeumann entropy h to the spectrahedronπ−1(b).
This restriction is strictly concave on the convex body π−1(b) by Proposition 5.3.
Therefore h attains a unique maximum X∗ in the relative interior of π−1(b). The first
order condition at this maximum tells us that ∇(h)(X∗) = −log(X∗) lies in L, which
is the span of the gradients of the constraints 〈Ai , X〉 = bi . Hence, the optimal matrix
X∗ lies in the Gibbs manifold

GM(L) = {
X ∈ S

n+ : log(X) ∈ L}
.

The assignment b �→ X∗ = X∗(b) is well defined and continuous on the interior
of the cone π(Sn+). We have shown that it is a section of the linear map π , which
means π(X∗(b)) = b. It is also surjective onto GM(L), because X∗(π(X)) = X , for
X ∈ GM(L). We conclude that π defines a homeomorphism between GM(L) and
int(π(Sn+)). ��
Proof of Theorem 5.1 For any fixed ε > 0, the minimizer X∗ = X∗

ε of the regularized
problem (16) lies in the interior of the spectrahedron π−1(b). This is because the
gradient of the entropy function diverges at the boundary (Proposition 5.3). By the
same convexity argument as in the proof of Theorem 5.4, the objective function in (16)
has only one critical point X∗ in the spectrahedron π−1(b). It satisfies the first order
optimality conditions, which impose C + ε · log(X∗) ∈ L. Therefore X∗ ∈ GM(Lε),
and π−1(b) ∩ GM(Lε) = {X∗

ε }. ��
We can now turn the discussion around and offer a definition of Gibbs manifolds

and Gibbs varieties purely in terms of convex optimization. Fix any LSSM L of
dimension d in S

n . This defines a canonical linear map π : Sn+ → S
n/L⊥ � R

d .
Each fiber π−1(b) is a spectrahedron. If this is non-empty then the entropy h(X) has
a unique maximizer X∗(b) in π−1(b). The Gibbs manifold GM(L) is the set of these
entropy maximizers X∗(b) for b ∈ R

d . The Gibbs variety GV(L) is defined by all
polynomial constraints satisfied by these X∗(b).

This extends naturally to any ASSM A0 + L. Here we maximize the concave
function h(X)+〈A0, X〉 over the spectrahedraπ−1(b). TheGibbsmanifoldGM(A0+
L) collects all maximizers, and the Gibbs variety GV(A0 + L) is defined by their
polynomial constraints.

Example 5.5 Let L denote the space of all Hankel matrices [yi+ j−1]1≤i, j≤n in S
n .

This LSSM has dimension d = 2n − 1. The linear map π : Sn+ → R
d takes any

positive definite matrix X to a nonnegative polynomial b = b(t) in one variable t of
degree 2n − 2. We have b(t) = (1, t, . . . , tn−1)X(1, t, . . . , tn−1)�, so the matrix X
gives a sum-of-squares (SOS) representation of b(t). The fiber π−1(b) is the Gram
spectrahedron [24] of the polynomial b. The entropy maximizer X∗(b) in the Gram
spectrahedron is a favorite SOS representation of b. The Gibbs manifold GM(L)

gathers the favorite SOS representations for all non-negative polynomials b. TheGibbs
variety GV(L), which has dimension ≤ 3n − 2, is the tightest outer approximation of
GM(L) that is definable by polynomials in the matrix entries.

In Example 3.4 we saw a variant of L, namely the sub-LSSM where the upper left
entry of the Hankel matrix was fixed to be zero. If C = −E11 is the corresponding
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negated matrix unit, then (15) is the problem of minimizing b(t) over t ∈ R. See [19,
Section 12.3] for a first introduction to polynomial optimization via SOS represen-
tations. It would be interesting to explore the potential of the entropic regularization
(16) for polynomial optimization. �

One of the topics of [26] was a scaling algorithm for solving the optimization prob-
lem (16) for linear programming (LP), i.e. the case when A1, . . . , Ad are diagonal
matrices. This algorithm extends the Darroch-Ratcliff algorithm for Iterative Propor-
tional Fitting in statistics. Combining this with a method for driving ε to zero leads
to a numerical algorithm for large-scale LP problems, such as the optimal transport
problems in [26, Section 3].

We are hopeful that the scaling algorithm can be extended to the problem (16) in
full generality. By combining this with a method for driving ε to zero, one obtains a
numerical framework for solving SDP problems such as quantum optimal transport
in Sect. 6.

One important geometric object for SDP is the limiting Gibbs manifold,
limε→0 GM(Lε). This is the set of optimal solutions, as b ranges over Rd . In the
case of LP, with C generic, it is the simplicial complex which forms the regular trian-
gulation given by C . This reveals the combinatorial essence of entropic regularization
of LP, as explained in [26, Theorem 7]. From the perspective of positive geometry,
it would be worthwhile to study limε→0 GM(Lε) for SDP. This set is semialgebraic,
and it defines a nonlinear subdivision of the spectrahedral shadow π(Sn+). If we vary
the cost matrix C , the theory of fiber bodies in [18] becomes relevant.

6 Quantum optimal transport

In this section we examine a semidefinite programming analogue of the classical
optimal transport problem, known as quantum optimal transport (QOT). We follow
the presentation by Cole, Eckstein, Friedland, and Zyczkowski in [3]. Our notation for
the dimensions is as in [26, Section 3.1].We consider the space Sd1d2 of real symmetric
matrices X of size d1d2 × d1d2. Rows and columns are indexed by [d1] × [d2]. Thus,
we write X = (xi jkl), where (i, j) and (k, l) are in [d1] × [d2]. The matrix being
symmetric means that xi jkl = xkli j for all indices. Each such matrix is mapped to a
pair of two partial traces by the following linear map:

S
d1d2 → S

d1 × S
d2 , X �→ (Y , Z),

where the d1×d1 matrix Y = (yik) satisfies yik = ∑d2
j=1 xi jk j , and the d2×d2 matrix

Z = (z jl) satisfies z jl = ∑d1
i=1 xi jil . If X is positive semidefinite then so are its

partial traces Y and Z . Hence our marginalization map restricts to a linear projection
of closed convex cones, denoted

μ : S
d1d2+ → S

d1+ × S
d2+ , X �→ (Y , Z). (19)
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Diagonalmatrices inSd1d2+ can be identifiedwith rectangularmatrices of format d1×d2
whose entries are nonnegative. The map μ takes such a rectangular matrix to its row
sums and column sums. Hence the restriction of μ to diagonal matrices in S

d1d2+ is
precisely the linear map that defines classical optimal transport in the discrete setting
of [26, Section 3.1].

The quantum optimal transportation problem (QOT) is the task of minimizing a
linear function X �→ 〈C, X〉 over any transportation spectrahedron μ−1(Y , Z). This
is an SDP. Our main theorem in this section states that the Gibbs manifold of μ is
semialgebraic.

Theorem 6.1 The Gibbs manifoldGM(L) for QOT is a semialgebraic subset of Sd1d2+ .

It consists of all symmetric matrices Y ⊗ Z, where Y ∈ S
d1+ and Z ∈ S

d2+ . The Gibbs
variety GV(L) ⊂ S

d1d2 is linearly isomorphic to the cone over the Segre variety

P
(d1+1

2 )−1 × P
(d2+1

2 )−1.

The image of the marginalization map μ generalizes the polytope �d1−1 × �d2−1,
and the fibers of μ are quantum versions of transportation polytopes. These shapes
are now nonlinear.

Lemma 6.2 The image of the mapμ is a convex cone of dimension
(d1+1

2

)+(d2+1
2

)−1:

image(μ) = {
(Y , Z) ∈ S

d1+ × S
d2+ : trace(Y ) = trace(Z)

}
. (20)

For any point (Y , Z) in the relative interior of this cone, the transportation spectra-
hedron μ−1(Y , Z) is a compact convex body of dimension 1

2 (d1 − 1)(d2 − 1)(d1d2 +
d1 + d2 + 2).

Proof of Lemma 6.2 The partial trace map μ in (19) restricts to tensor products as
follows:

μ(Y ⊗ Z) = (
trace(Z) · Y , trace(Y ) · Z )

. (21)

Hence, if Y ∈ S
d1+ and Z ∈ S

d2+ satisfy t = trace(Y ) = trace(Z) then 1
t Y ⊗ Z is a

positive semidefinite matrix in the fiber μ−1(Y , Z). This shows that the image is as
claimed on the right hand side of (20). The image is a spectrahedral cone of dimension
(d1+1

2

)+(d2+1
2

)−1. Subtracting this from dim S
d1d2+ = (d1d2+1

2

)
yields the dimension

of the interior fibers. ��
Example 6.3 (d1=d2=2) The map μ projects positive semidefinite 4 × 4 symmetric
matrices

X =

⎡

⎢
⎢
⎣

x1111 x1112 x1121 x1122
x1112 x1212 x1221 x1222
x1121 x1221 x2121 x2122
x1122 x1222 x2122 x2222

⎤

⎥
⎥
⎦
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onto a 5-dimensional convex cone, given by the direct product of two disks. The
formula is

Y =
[
x1111 + x1212 x1121 + x1222
x1121 + x1222 x2121 + x2222

]

and Z =
[
x1111 + x2121 x1112 + x2122
x1112 + x2122 x1212 + x2222

]

.

The fibers of this mapμ are the 5-dimensional transportation spectrahedraμ−1(Y , Z).
To illustrate the QOT problem, we fix the margins and the cost matrix as follows:

Y =
[
5 1
1 6

]

and Z =
[
7 2
2 4

]

and C = y

⎡

⎢
⎢
⎣

2 3 5 7
3 11 13 17
5 13 23 29
7 17 29 31

⎤

⎥
⎥
⎦ . (22)

We wish to minimize 〈C, X〉 subject to μ(X) = (Y , Z). The optimal solution X∗ is
equal to

⎡

⎢
⎢
⎣

3.579128995196972555885181314 2.148103387337332721011731020
2.148103387337332721011731020 1.420871004803027444114818686
2.671254991031789281229265149 1.169783821392767632002405371
−2.07566204542024789990696017 −1.671254991031789281229265149

2.671254991031789281229265149 −2.07566204542024789990696017
1.16978382139276763200240537 −1.671254991031789281229265149
3.420871004803027444114818686 −0.14810338733733272101173102
−0.14810338733733272101173102 2.579128995196972555885181314

⎤

⎥
⎥
⎦ .

This matrix has rank 2. The optimal value equals v = 156.9644857988272710353675
39305 . . .. This is an algebraic number of degree 12. Its exact representation is the
minimal polynomial

125v12 − 465480v11 + 770321646v10−744236670798v9+463560077206539v8

−193865445786866004v7 + 54901023652716544539v6

−10330064181552258647604v5 + 1219620644420527588643307v4

−77994100149206862070472310v3 + 1395374211380010273312826701v2

+83502957914204004050312708316v

−2047417613706778627978564647804 = 0.

This was derived from the KKT equations in [20, Theorem 3]. We conclude that the
algebraic degree of QOT for d1 = d2 = 2 is equal to 12. This is smaller than the
algebraic degree of semidefinite programming, which is 42. That is the entry form=5
and n=4 in [20, Table 2].
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This drop arises because QOT is a very special SDP. The LSSM for our QOT
problem is

L =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

y1 + y3 y5 y4 0
y5 y1 0 y4
y4 0 y2 + y3 y5
0 y4 y5 y2

⎤

⎥
⎥
⎦ : y1, y2, y3, y4, y5 ∈ R

⎫
⎪⎪⎬

⎪⎪⎭

. (23)

This defines our 5-dimensionalGibbsmanifoldGM(L) in the 10-dimensional coneS4+.
Theorem 6.1 states that it equals the positive part of the Gibbs variety, i.e. GM(L) =
GV(L) ∩ S

4+.
We compute the entropy maximizer inside the 5-dimensional transportation spec-

trahedron μ−1(Y , Z) for the marginal matrices Y and Z in (22). Notably, its entries
are rational:

μ−1(Y , Z) ∩ GV(L) = μ−1(Y , Z) ∩ GM(L) =

⎧
⎪⎪⎨

⎪⎪⎩

1

11

⎡

⎢
⎢
⎣

35 10 7 2
10 20 2 4
7 2 42 12
2 4 12 24

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

.

Proof of Theorem 6.1 By linear extension, the equation (21) serves as a definition of
the marginalization map μ on S

d1d2 . We observe the following for the trace inner
product on S

d1d2 :

trace
(
(A ⊗ idd2)(Y ⊗ Z)

) = trace(Z) · trace(AY ) for all A ∈ S
d1

and trace
(
(idd1 ⊗ B)(Y ⊗ Z)

) = trace(Y ) · trace(BZ) for all B ∈ S
d2 .

Therefore, the (i, j) entry of trace(Z) ·Y is obtained as 1
2 〈(Ei j + E ji )⊗ idd2 ,Y ⊗ Z〉,

where Ei j is the (i, j)-th matrix unit. A similar observation holds for the entries of
trace(Y ) · Z . This means thatμ(X) is computed by evaluating trace

(
(A⊗ idd2)X

)
and

trace
(
(idd1 ⊗ B)X

)
, where A ranges over a basis of Sd1 and B ranges over a basis of

S
d2 . Therefore, we have

L = {
A ⊗ idd2 + idd1 ⊗ B : A ∈ S

d1 and B ∈ S
d2

}
. (24)

Now, the key step in the proof consists of the following formula for the matrix loga-
rithm

log(Y ⊗ Z) = log(Y ) ⊗ idd2 + idd1 ⊗ log(Z).

This holds for positive semidefinitematricesY and Z , and it is verified bydiagonalizing
these matrices. By setting Y = exp(A) and Z = exp(B), we now conclude that the
Gibbs manifold GM(L) consists of all tensor products Y ⊗ Z where Y ∈ S

d1+ and

Z ∈ S
d2+ .
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We have shown that GM(L) is the intersection of a variety with S
d1d2+ . This vari-

ety must be the Gibbs variety GV(L). More precisely, GV(L) consists of all tensor
products Y ⊗ Z where Y , Z are complex symmetric. This is the cone over the Segre

variety, which is the projective variety in P
(d1d2+1

2 )−1 whose points are the tensor
products X = Y ⊗ Z . ��

We have the following immediate consequence of the proof of Theorem 6.1. The
entropy maximizers have rational entries. This explains the matrix at the end of Exam-
ple 6.3

Corollary 6.4 TheGibbs point forQOT is givenby Y⊗Z
trace(Y )

, withY , Z thegivenmargins.

At this point, it pays off to revisit Sect. 3 and to study its thread for the LSSM
in (24).

Example 6.5 We apply Algorithm 1 to the LSSM L in (23). The eigenvalues of L are
distinct, and the ideal 〈E ′

1〉 in step 2 is the intersection of six prime ideals. One of
them is

〈 λ1 + λ2 − y1 − y2 − y3, λ3 + λ4 − y1 − y2 − y3,

2λ2λ4 − λ2y1 − λ4y1 − λ2y2 − λ4y2 + 2y1y2
−λ2y3 − λ4y3 + y1y3 + y2y3 + y23 − 2y24 + 2y25 ,

λ22 + λ24 − λ2y1 − λ4y1 − λ2y2 − λ4y2 + 2y1y2 − λ2y3
−λ4y3 + y1y3 + y2y3 − 2y24 − 2y25 〉.

The other five associated primes are found by permuting indices of λ1, λ2, λ3, λ4.
Hence, the Galois group GL is the Klein four-group S2 × S2 in S4, and we infer the
linear relation λ1 + λ2 − λ3 − λ4. The set E3 in step 7 is the singleton {z1z2 − z3z4}.
The elimination in step 12 reveals the prime ideal in R[X ] that is shown for arbitrary
d1, d2 in Corollary 6.6. �

Our final result is derived fromTheorem6.1 using tools of toric algebra [19, Chapter
8].

Corollary 6.6 The Gibbs variety for QOT is parametrized by monomials xi jkl = yik z jl
that are not all distinct. Its prime ideal in R[X ] is minimally generated by the 2 × 2
minors of a matrix of format

(d1+1
2

) × (d2+1
2

)
, together with

(d1
2

)(d2
2

)
linear forms in

the entries of X.

We propose to extend QOT to quantum graphical models [30]. In statistics, every
undirected graphG on s vertices defines such amodel [27, Section 13.2]. The graphical
model lives in the probability simplex �d1d2···ds−1. Its points are nonnegative tensors
of format d1 × d2 × · · · × ds whose entries sum to 1. The quantum graphical model
lives in the high-dimensional PSD cone Sd1d2···ds+ , where the marginalization records
the partial trace for every clique in G. It would be interesting to study the Gibbs
manifold and the Gibbs varieties for these models. One may ask whether they agree
for all graphs G that are decomposable. By Theorem 6.1, this holds for QOT, where
G is the graph with two nodes and no edges.
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