
1

Secure Remote Attestation with Strong Key
Insulation Guarantees

Deniz Gurevin, Chenglu Jin, Phuong Ha Nguyen, Omer Khan, Marten van Dijk

Abstract—Secure processors with hardware-enforced isolation are crucial for secure cloud computation. However, commercial secure
processors have underestimated the capabilities of attackers and failed to provide secure execution environments capable of protecting
sensitive information against side-channel attacks. Remote Attestation protocols based on traditional signature schemes are not
secure under side-channel attacks anymore since their secret keys can be leaked. Previously, Key-Insulated Schemes (KIS) have been
introduced to mitigate the damage caused by secret key exposure in cryptosystems by breaking the lifetime of secret keys into
independent sessions. KIS protect the security of all other sessions if any session keys are compromised, however, provide no security
guarantees for a compromised session. We introduce a new cryptographic primitive called One-Time Signature with Secret Key
Exposure (OTS-SKE), which ensures no one can forge a valid signature of a new message or nonce even if all secret session keys are
leaked. OTS-SKE enables us to sign attestation reports securely under a powerful adversary who can observe all digital states in
secure enclaves through side-channel attacks. We also minimize the trusted computing base by introducing a secure co-processor that
is only responsible for key generation into the system. Our experiments show that the signing of OTS-SKE is faster than KIS as well as
Elliptic Curve Digital Signature Algorithm (ECDSA) used in Intel SGX.

Index Terms—Remote Attestation, One Time Signatures, Secure Processor Architecture

✦

1 INTRODUCTION

Sensitive computations are being increasingly de-
ployed on shared pay-per-use infrastructures that leverage
economies of scale and drive down costs. These shared
services expose software systems and even physical hard-
ware components to emerging security vulnerabilities. This
trend has led to the deployment of trusted execution envi-
ronments (TEE), more recently coined as Confidential Com-
puting platforms. Driven by the security challenges, the
semiconductor industry has adopted a paradigm shift in
security as most major instruction set architectures have
added support for confidential computing. Examples in-
clude Intel SGX, TDX, AMD SEV, and ARM CCA that aim
to enable application isolation technology, enclaves [1], [2],
[3], [4], [5].

In general, the secure processor technology [1], [6], [7],
[8], [9], [10], [11], [12], [13] is based on hardware isolation
and remote attestation (RA) principles. Hardware isolation
allows one to run a code snippet in an enclave that is
isolated from the OS and other enclaves with the goal of
keeping its internal computations private. Besides being
able to execute code in a trusted execution environment
that guarantees privacy, a remote user also needs to be able
to verify whether a computed result originated from the
executed code. RA is based on digital signature schemes
that sign and bind a computed result to the enclave code
that produced it, along with the processor identity. A remote
user needs remote attestation to verify the results produced
by such an enclave. Usually, an asymmetric key crypto-system
is adopted for attestation purposes, so that an attestation can

• D. Gurevin and O. Khan are with the Department of Electrical and
Computer Engineering, University of Connecticut, Storrs, CT 06269,
USA. E-mail: deniz.gurevin, khan@uconn.edu

• C. Jin and M. Dijk are with CWI, Amsterdam, The Netherlands. M.
van Dijk is affiliated with the Vrije Universiteit van Amsterdam and
University of Connecticut. E-mail: chenglu.jin, marten.van.dijk@cwi.nl

• P. H. Nguyen is with eBay, San Jose, CA, USA. E-mail:
phuongha.ntu@gmail.com

be performed using the private key in an enclave-isolated
platform, and then verified by a remote user using the
corresponding public key that is known to the verifier.

Unfortunately, the hardware isolation that RA relies
on for its security has shown to be elusive. The enclave
platform, where the remote attestation is performed, itself
may have vulnerabilities and can possibly be exploited
through its own I/O interactions. With the developing ca-
pabilities of adversaries and side-channel attacks, vulner-
abilities of processors executing enclaves are continuously
exploited, leaking private digital state (including private
keys). A recent survey [14] has shown that Intel SGX has
been susceptible to a wide range of attacks [15], [16], [17],
[18], [19]. We may conclude that hardware isolation as is
implemented today for executing enclave code cannot
guarantee privacy. An RA scheme that relies on hardware
isolation to hide its attestation keys will suffer from side-
channel attacks, which can leak these secret keys when they
are used inside enclaves. In fact, any internally computed
enclave value may potentially leak, and any solid privacy
guarantee cannot be made. Therefore, the current state-of-
the-art processor technology’s RA cannot be trusted.

Key-Insulated Schemes (KIS) have been introduced to
mitigate the damage caused by secret key exposure in public
cryptosystems [20], [21]. KIS break the lifetime of the secret
key into multiple sessions and update it at the beginning
of every session. KIS typically have an architectural design
with a user and a base. The secret keys are held in shares by
the user and its base, and all secret session keys correspond
to one universal public key. Hence, the public key does
not need to be updated frequently, while the secret session
keys are refreshed for each session. A perfectly key-insulated
scheme protects the security of all other sessions if any session
keys are compromised [20]. However, KIS-based signature
schemes leave a loophole for attackers to exploit, i.e., the KIS
signatures provide no security guarantees for a compromised
session. If a session key is leaked, the attacker can use the



2

leaked key to forge valid signatures of any messages specific
to the compromised session. One can use a synchronization
mechanism between the signer and verifier to synchronize
a clock and enforce the expiration of a session key so that
a signature can only be deemed valid within a time win-
dow. Nevertheless, having a synchronization mechanism
still does not completely protect the security of the leaked
session since the attacker can still forge valid signatures
within the time window.

We introduce a new cryptographic protocol, One-Time
Signature with Secret Key Exposure (OTS-SKE) that guar-
antees the security of all sessions, including the compromised
session. In OTS-SKE, each secret session key is unique to
both the message and a fresh nonce sent by the user. Hence,
even if a session key is leaked, it can only be used to sign
the message-nonce pair that the session was scheduled to
sign. Signing a different message or nonce using the leaked
session key will result in a failure in signature verifica-
tion. Figure 1 depicts our solution, where a one-directional
memory component is added to ensure the one-time use
of session keys. The OTS-SKE scheme signs each user’s
message with a secret session key tailored for the user’s
nonce and message. Unlike KIS, OTS-SKE does not require a
synchronization mechanism between the signer and the user
to enforce the expiration of a session key since the session
key automatically expires with each usage. An adversary
who is able to leak a session key cannot use this key to
sign another message to forge a signature since the key does
not match with another message-nonce pair. Consequently,
the forged signature fails during the verification by the
user. Therefore, OTS-SKE severely limits the exposure to the
adversary.

Both KIS and OTS-SKE protocols require their private
key generation to be secure, and the master secret key
that is responsible for session private keys should be kept
hidden. Since the enclave processor takes inputs from a
user, it cannot be isolated from the adversary. Therefore,
as shown in Figure 1, we introduce a truly isolated piece
of hardware that is not affected by any adversary – a secure
co-processor that is dedicated to generating secret keys. This
is accomplished by enforcing a unidirectional interaction
between the KeyGen co-processor and the enclave proces-
sor, and hence the co-processor only generates fresh secret
keys and does not take any inputs. The session keys in
both protocols can be observed by the adversary once they
enter the enclave processor. However, in OTS-SKE, they are
discarded as soon as they are used. This requires the co-
processor to generate new session keys at the rate at which
the remote attestations are being requested.

The secure key generation co-processor generates a set of
secret keys skt for each session t, and stores these subkeys in
a special memory component, called One-Directional Memory
(ODM) [22], [23] as highlighted in Figure 1. The signing
enclave then selects a subset skx of these keys based on
a message including the user’s nonce to create a unique
session key that binds to the user and the message. All
secret keys that once leave the one-directional memory are
exposed to the adversary, and they are used for signing the
attestation report. The output skx returned by the ODM is
essentially already a signature due to its unique dependence
on the combination of a message and nonce. Therefore, the
role of the signing function is to combine the subset skx of

Fig. 1. Overview of the proposed RA protocol. A remote user makes an
attestation request sending a random nonce to the enclave processor.
The KeyGen co-processor generates and transfers session keys using
the unidirectional interface enabled by the One-Directional Memory. The
RA/signing enclave creates a RA signature with a session key skx which
is read as a subset of the key material skt most recently generated
by the KeyGen co-processor; skx corresponds to the user’s nonce
and message. The remote user uses the public key to verify the RA
signature.

subkeys for that session to generate a shorter signature. The
signature produced by the signing enclave is verified by the
user using a single universal public key, the message, and its
nonce. To ensure one-time use, ODM implements a special
mechanism for the used and unused session keys: after read-
ing a subset of the subkeys chosen by the enclave processor
from the one-directional memory, all subkeys of that session
are automatically erased. This way, the unused session keys
are not exposed to the adversary. However, even though the
used session keys are exposed, the adversary is unable to
forge another valid signature since these keys are unique to
each use.

In this paper, we make a key observation that KIS is
not able to protect remote attestations against impersonation
attacks that involve an adversary that leaks the session keys
and use them to forge signatures. We introduce the OTS-
SKE cryptographic primitive that improves security over
KIS by protecting against an adversary who is capable
of leaking all current and past secret session keys and
launching signature forgery attacks using them. Building
upon the proposed OTS-SKE construction, we propose a
remote attestation scheme and demonstrate its effective-
ness and performance compared to the KIS-based remote
attestation for secure processors. We also compare the per-
formance of the OTS-SKE and KIS against Elliptic Curve
Digital Signature Algorithm (ECDSA) deployed in existing
commercial secure processors. Our evaluation shows that
the performance of OTS-SKE is constrained by the rate of
generating private keys. The key generation has been imple-
mented on an Intel machine, as well as an area and power-
optimized ARM processor. The key generation on the secure
co-processor executes in parallel with the signing. Therefore,
the performance overhead of the proposed protocol can
maintain high throughput if the key generation processor
keeps up with the expected signing rate.

1.1 Paper Outline
In Section 2, an overview of the remote attestation protocol
implemented in commercial secure processor architectures,
and their shortcomings in the presence of side-channel at-
tacks are discussed. Motivated by these security challenges,
we define a strong adversary that is able to leak secret keys.
Section 3 introduces a baseline system implementation of
the KIS-based RA protocol for secure processor architectures



3

and discusses its security challenges. Section 4 extends KIS
and introduces the OTS-SKE protocol for secure processor
architectures that is secure in the presence of the adversary.
Finally, Section 5 evaluates the performance of the RA
protocols.

2 MOTIVATION AND ADVERSARIAL MODEL

Today’s secure processors from Intel and AMD support
authentication with a remote user [2], [19]. For instance, in
Intel SGX, the RA flow starts with a remote user sending an
attestation request, with a nonce to guarantee freshness, to
the SGX platform. The SGX application receives this request
and forwards it to its application enclave, which generates a
local attestation report that includes the enclave’s measure-
ment and the nonce. The Quoting Enclave (QE) then verifies
the local attestation and signs it with a secret attestation
key provided by Intel. This signed report is called a Quote
and can be verified by the remote user using the public
key. Intel SGX uses an ECDSA-based attestation, which
allows third parties to build their own non-Intel attestation
infrastructure. ECDSA uses 256-bit Elliptic Curve secret and
public key pairs.

In all commercial secure processors, remote attestation
relies on the usage of a single private signing key that is the
root of trust. To secure the storage and use of these keys, the
secure processors rely on hardware isolation principles and
access control mechanisms. While theoretically intact, these
hardware isolation primitives are not sufficient to prevent
private data from leaking through side channels, i.e., other
sources of information that can still be observed and used
by a malicious adversary to extract sensitive information.
In fact, in recent years, it has been shown that commercial
secure processors are vulnerable against a wide range of
side-channel attacks [14], [17], [18], [19]. We may conclude
that the private keys that are used for attestations leak
due to side-channel attacks. We can no longer only rely on
hardware isolation for the maintenance of the private keys.

In order to provide a secure remote attestation protocol
in secure processor architectures, we have to consider an
adversary with all known and unknown side-channel attack
capabilities. We assume an adversary that can observe and
leak all digital secrets in the enclave processor where the
RA enclave resides, including the secret signing keys for
attestation. In other words, we do not trust the confidential
computing offered by secure processor architectures as se-
cret values inside enclaves leak through side channels. On
the other hand, we trust the integrity of the code executed
inside the enclave, i.e., we assume that the enclave processor
keeps on functioning according to its specification which
includes under which conditions (verified by hardware
checks) an executing process (OS or enclave code) can
access or manipulate data flow. Therefore, we consider a
passive adversary that cannot tamper with computations
in the processor but can observe them. Let us consider an
adversary that

• can compromise and alter the OS, run its own en-
clave code, and can execute or interact with instanti-
ations of the RA enclave,

• can observe all digital state of the enclave processor,
which includes all intermediate digital values com-
puted by the RA enclave as well as all digital storage

together with register values, permanent storage,
and fused (endorsement) keys,

• cannot tamper with the enclave processor’s function-
ing in that its specification cannot be circumvented,
in particular, the adversary is not physically present
or has inserted hardware Trojans (as a consequence,
the adversary cannot circumvent the enclave pro-
cessor’s specified hardware checks to tamper with
values computed inside the RA enclave or stored in
the on-chip digital storage),

• cannot tamper with or observe the secret computa-
tions within the physically isolated key generation
co-processor,

• and cannot tamper with or observe the stored values
in the one-directional memory before they leave the
one-directional memory.

These capabilities give the adversary the opportunity to
steal digital keys and perform impersonation attacks. We
argue that one can only achieve secure remote attestation if
we can design a protocol that is intact in the presence of the
proposed adversary.

3 KIS-BASED REMOTE ATTESTATION

In order to mitigate secret key exposure, Key Insulated
Schemes (KIS) have been introduced in literature [20], [21].
KIS implements a public cryptosystem by generating a
public key along with a master secret key which is stored
on a secure device. The lifetime of the secret key is divided
into distinct periods of time, called sessions. A secret key for
each session is generated from the master secret key and
then used for signing on an insecure device where the key
exposure may occur. At the end of the session, the secret
session key is discarded and replaced with a new session
key. This makes it possible to refresh a potentially leaked
secret key periodically, without the need to replace the
public key. Because each secret session key is independent
of one another, KIS reduces the damage caused by a secret
session key leakage.

In the remainder of this section, we describe the KIS-
based RA in further detail. We start by giving the definition
of a Key-Insulated Signature Scheme based on the scheme
introduced in [21].

A KIS S consists of three procedures1

S = (KEYGEN, SIGN, VERIFY) :

Key generation. Based on a security parameters λ, KEY-
GEN generates a public key pk together with session se-
cret key ski and auxiliary variables auxi for each session
i ∈ {0, . . . , N − 1}. We have

(pk, {ski, auxi}N−1
i=0 )← KEYGEN(λ).

1. A typical KIS signature scheme consists of five procedures: key
generation, device (base) key update, user key update, signing, and
verification [21]. Because KIS store and manage the secret keys of the
device (base) and the user separately, they have separate procedures to
generate the initial secret keys (the key generation procedure in [21])
and to update the device key and the user key. For the simplicity
of our discussion and comparison with our scheme, we merge the
device/user key update procedures into the key generation procedure
in our discussion, such that the definition of KIS will be consistent with
the one we propose for OTS-SKE.



4

Signing. SIGN takes as input the session id i with session
secret key ski and auxiliary variable auxi. Together with a
message M ∈ {0, 1}n as input SIGN produces a signature σ,

σ ← SIGN(ski, auxi;M).

Verification. VERIFY outputs

{true, false} ← VERIFY(pk, i;σ,M)

for a signed message (σ,M) for session id i. Notice that the
same public key pk is used for all sessions.

3.1 Design Requirements

Secret Key Generation. KIS requires its key generation to be
on a physically secure device, i.e., the future/unused session
keys should not be exposed to the adversary. Since the
enclave processor where the RA report is signed cannot be
trusted, the key generation must be offloaded to completely
isolated hardware that is only responsible for refreshing
session keys. It is important to minimize the attack surface
for key generation by removing any user-level communica-
tion channels. This is done by having a physically isolated
key generation processor, that is separated from the enclave
processor. The physically isolated co-processor generates
secret signing keys at runtime that are concurrently used
by the remote attestation enclave.

Local Attestation. In practice, an application enclave first
uses local attestation to a quoting enclave that is responsible
for the remote attestation protocol with the client. For this
reason, we need to rely on secure local attestation in the
presence of the adversary who can steal any master key of
the local attestation mechanism and use this to remotely
circumvent the application enclave and impersonate its
identity. One solution is to implement local attestation as
a physical authentic channel between enclaves. Here, the
channel is hardware isolated such that the messages trans-
mitted over the channel cannot be tampered with, and the
source/authenticity of messages cannot be modified [11].
As another option, adopted in this paper, the application
and remote attestation enclaves can be combined together
in one single enclave such that a physical authenticated
channel is inherently present. Here, each application enclave
implements its own remote attestation. This discards the use
of a quoting enclave (with higher permissions as in Intel
SGX) which implements remote attestation for all applica-
tion enclaves. Instead, each application enclave uses its own
remote attestation code as a wrapper around the applica-
tion enclave itself. In what follows, RA enclave should be
interpreted as the application enclave with its own remote
attestation wrapper code.

3.2 KIS-based RA Protocol

A remote attestation wrapper (RAWrapper) is merged with
the application enclave (AppEnc). We want to show that Ap-
pEnc can have its computed result signed by RAWrapper for
a remote user. Figure 2 depicts the solution. There are three
main functions for the KIS: KEYGEN, SIGN and VERIFY.
The secure, isolated co-processor implements KEYGEN to
generate a sequence of session keys. The SIGN functionality

Fig. 2. KIS-based RA protocol. The remote user starts the RA process
by sending a random nonce nonce. The AppEnc forwards this request
along with its computed result R to RAWrapper. In order to retrieve a
signing key, RAWrapper computes a message M that takes the hash
of the AppEnc’s measurement along with the result R and the user’s
nonce. RAWrapper uses the current session key that is provided by
the Secure Co-processor to create a signature and sends it back to the
remote user, who can then verify the signature using the public key.

is implemented by the RAWrapper, and the remote user uses
VERIFY to verify the result sent by the RAWrapper.

During the initialization phase of the RA protocol, the
secure key generation co-processor bootstraps and uses
KEYGEN to generate a public key pk and initializes the
default state of the session counter i to 0. The public key
must bind to the identity of the processor.2 During the
initialization of RAWrapper, it takes this pk from the key
generation co-processor and stores precomputed values that
it can use during runtime for signing. The pk is known by
the remote user and used during attestation verification.
After the initialization, the essential components of the RA
protocol are set up.

Algorithm 1 describes the signature generation process
for the RA protocol. KEYGENPROCESSOR is responsible for
the key generation module while RAWRAPPER(.) handles
the RA requests from the remote user and is responsible for
signature generation.

Key Generation. In the secure co-processor, if the session
key has expired (i.e., the time elapsed since the last session t
is greater than the predefined session period ∆T ), then the
session counter i is incremented and published (Line 3–4).
The co-processor then starts generating the next session’s
secret key ski+1 along with the auxiliary information
auxi+1 and sends the updated key to the RAWrapper (Line
5–6).

Signing. The signing is performed by the RAWrapper
which resides in the insecure enclave processor. RA starts
with RAWrapper receiving a signing request from the
remote user along with its random nonce. The RAWrapper
receives a result R from an AppEnc and combines AppEnc’s
measurement MRapp with R and nonce to create a unique
message, M = HASH(MRapp, R, nonce) (Line 11–13).
RAWrapper receives the current session secret key and its

2. During bootstrapping, this public key should leave the secure co-
processor in a one-directional way and must be released to the clients
securely. In other words, no adversary should be present during the
initialization phase. In order to achieve this, the initialization mode of
KEYGEN can, for example, be done on the manufacturer side (Intel)
and the manufacturer can then certify the public key and serve as a
third party that knows that the processor is associated with the specific
public key.



5

Algorithm 1 KIS-based Remote Attestation
We assume a bilinear map-based KIS S =
(KEYGEN, SIGN, VERIFY). KEYGEN is implemented in
a secure isolated co-processor and SIGN is performed in
the RAWrapper. In the initialization phase, pk is generated
and published, and the session counter variable i = 0 is
initialized in the isolated secure co-processor. sk is updated
periodically, i.e. when the time elapsed since the last session
(t) is greater than the pre-defined key renewal period (∆T ).

1: procedure KEYGENPROCESSOR
2: if t ≥ ∆T then
3: i += 1
4: Publish i
5: Send (ski, auxi) to RAWrapper
6: (ski+1, auxi+1)←KEYGEN(λ)
7: end if
8: end procedure
9: procedure RAWRAPPER

10: while true do
11: Pop a signing request from the queue
12: (R,nonce,RemoteUser)
13: M = HASH(MRapp, R, nonce)
14: (ski, auxi, i)← KEYGENPROCESSOR
15: key ← (ski, auxi)
16: σ = SIGN(key;M)
17: S ← (i, σ,MRapp, R)
18: send S to RemoteUser
19: end while
20: end procedure

Algorithm 2 Request and Verification
We assume the remote user knows pk (as part of a
certificate issued by a trusted CA) of the KIS S =
(KEYGEN, SIGN, VERIFY) used by AppEnc with RAWrap-
per.

1: procedure REQUESTANDVERIFY
2: send random nonce to AppEnc
3: receive S from AppEnc
4: (i, σ,MRapp, R)← S
5: M = HASH(MRapp, R, nonce)
6: return VERIFY(pk, i;σ,M)
7: end procedure

session ID from the KEYGENPROCESSOR, and uses it to
sign M (Line 14–16). Finally, RAWrapper sends the session
counter i and the resulting signature S consisting of σ,
measurement of AppEnc, and the result R to RemoteUser
(Line 17–18).

Verification. On the remote user’s side (explained in Algo-
rithm 2), after selecting a nonce and making an RA request
to RAWrapper with it, the user receives the created signature
S = (i, σ′,MRapp, R) for the i-th session (Line 2–4). After
computing M (Line 5), it can verify the validity of its
signature using the public key pk and session counter3 i
(Line 6).

3. This includes verifying whether counter i corresponds to a ∆T
time window not too far in the past.

3.3 Shortcomings of KIS-based RA Protocol

If the KIS-based RA protocol fails to prevent an adversary
from stealing a session key, then the adversary can forge a
valid signature within the same session. Because a single
secret key is used multiple times for different users in a
session (i.e., a time window), the key is not unique to the
user’s message. Therefore, an adversary who leaks the secret
key in a session, can create his own message and sign it
to create a valid signature for that session. To limit the
adversary’s capability to leak the secret key, the session
length in KIS can be shortened to enforce the expiration
of a session key more frequently to limit the damage of a
compromised session. However, this still requires a reliable
synchronization mechanism implemented between the user
and processor to ensure the freshness of the session key.

In the next section, we introduce One-time Signature
with Secret Key Exposure (OTS-SKE) to make the remote at-
testation resilient to signature forgery attacks. The objective
is to strengthen the security of KIS-based remote attestation
in secure processors.

4 OTS-SKE REMOTE ATTESTATION PROTOCOL

In the proposed OTS-SKE scheme, an attacker cannot forge
a valid signature of a new message for any session even
if all session keys are leaked, while key-insulated schemes
provide no security for the compromised sessions. Given
this, the next sections describe the definition of OTS-SKE,
the construction, and implementation of this new signature
scheme, and how it is contextualized in state-of-the-art
secure processor architectures.

4.1 OTS Scheme with Secret Key Exposure

The idea is to have (1) one (universal) public key that can
be used to verify all session signatures, (2) each session
generates at most one signature with its own secret session
key that is unique to a random nonce sent by the remote user
and the message to be signed, and (3) this unique session
key is exposed to the adversary for free. Since the session
key is unique to the message, the key cannot be used to sign
any other messages. Also, the key cannot be used to sign
messages for other users due to the use of a random nonce.
An OTS-SKE scheme S consists of three procedures

S = (KEYGEN, SIGN, VERIFY) :

Key generation. Based on a security parameters λ, KEYGEN
generates a public key pk together with session secret keys

ski = {ski,j}q−1
j=0

and auxiliary variables auxi for each session i ∈ {0, . . . , N−
1} and a-priori fixed parameter q. We have

(pk, {ski, auxi}N−1
i=0 )← KEYGEN(λ).

Signing. SIGN takes as input the session id i with session
secret key ski and auxiliary variable auxi. Together with a
message M ∈ {0, 1}n as input SIGN produces a signature σ,

σ ← SIGN(ski, auxi;M).

The computation of SIGN is split in three steps:



6

1) We have a keyed pseudo-random permutation
PRP(key;x) which, for each key, is a bijective map-
ping from strings x ∈ {0, 1}n to {0, 1}n. We also
have an injective mapping ϕ from {0, 1}n to subsets
of {0, . . . , q − 1} (here, q ≥ n). SIGN first selects a
random key and computes the subset

I = ϕ(PRP(key;M)) ⊆ {0, . . . , q − 1}.

2) SIGN extracts a corresponding subset of the i-th
session secret key:

ski,I = {ski,j}j∈I .

3) SIGN uses ski,I together with auxi and input mes-
sage M to produce a signature σ′. In order to make
the dependence on the subset of the session key
explicit, we write

σ′ ← SIGN’(ski,I , auxi;M).

SIGN returns σ = (σ′, key).

Verification. VERIFY outputs

{true, false} ← VERIFY(pk, i;σ,M)

for a signed message (σ,M) for session id i. Notice that the
same public key pk is used for all sessions.

4.1.1 Correctness and Security Definition
We define the correctness and security of the OTS-SKE
scheme even if the adversary has the knowledge of subsets
of session keys.

Correctness. OTS-SKE scheme S is correct if for all σ ←
SIGN(ski, auxi;M) we have true← VERIFY(pk, i;σ,M).

Security. Even if an adversary has knowledge of subsets of
session keys

{ski,Ii}N−1
i=0

together with auxiliary information {auxi}N−1
i=0 , the adver-

sary cannot impersonate a signature for some session with
id i∗ for a new message that has not yet been signed in
session i∗. This security notion is formalized by GameOTS-
SKE for S as the following security game:

• Setup: The challenger runs KEYGEN which returns

(pk, {{ski,j}q−1
j=0, auxi}N−1

i=0 ).

The challenger gives pk as well as {auxi}N−1
i=0 to the

adversary.
• Query: The adversary adaptively issues a sequence

of messages Mi at most one message for each session
id i. The challenger computes

Ii = ϕ(PRP(keyi;Mi)) and ski,Ii = {ski,j}j∈Ii

for random keyi. The challenger gives the extracted
information ski,Ii with keyi to the adversary (as soon
as Mi is received). Notice that the adversary can use
this information to sign message Mi for session i by
applying SIGN’. This may lead to multiple signatures
for Mi (since SIGN’ may use fresh randomness for
each signature generation). However, no signatures
for other messages ̸= Mi for session id i can be
forged if the following Guess does not succeed.

• Guess: The adversary selects a session number i∗ ∈
{0, . . . , N − 1} which refers to the session for which
the adversary will want to forge a signature: The
adversary outputs a signed message (σ,M∗) for
session i∗ such that M∗ ̸= Mi∗ . The adversary wins
the game if the signature verifies, that is

true← VERIFY(pk, i∗;σ,M∗).

In this game, the adversary, denoted by A, is called
an OTS-SKE-EUF-CMA (OTS-SKE Existential UnForgeabil-
ity under Chosen Message Attack) adversary. If A wins
GameOTS-SKE with probability ≥ ϵ in time ≤ T , then we
call A a (T,QP , ϵ)-OTS-SKE adversary for S , where QP is
the maximum number of queries allowed to be made by
A to a PRP oracle in GameOTS-SKE. We say scheme S is
(T,QP , ϵ)-secure against OTS-SKE-EUF-CMA attacks if no
(T,QP , ϵ)-OTS-SKE adversary exists.

4.1.2 Bilinear Map-based OTS-SKE Construction

We introduce a new bilinear map-based construction that
realizes a correct, secure OTS-SKE scheme S . We begin with
introducing the following definitions:

Bilinear map. Let G be a bilinear group of prime order p
and g be a generator of G. Here, size p of G is determined
(by some functional relation) by the security parameter λ of
the to-be-explained constructions. Let e : G × G → G1 be a
bilinear map, i.e., we have the following properties

• Bilinear : For all x, y ∈ G and all a, b ∈ Z,

e(xa, yb) = e(x, y)ab.

• Non-degenerate : e(g, g) ̸= 1.

For practical usage, the bilinear map is efficiently com-
putable. The above properties can be realized by the modi-
fied Weil pairing based on supersingular curves.

OTS-SKE scheme. Below we describe our OTS-SKE scheme

S = (KEYGEN, SIGN, VERIFY) :

Key generation. We use parameters q = tn and represent
index tj + b ∈ {0, . . . , q − 1} as the pair (j, b). KEYGEN sets
parameters, computes the public key, and all secret keys

(pk, {{ski,j,b}n−1,t−1
j=0,b=0 , auxi}N−1

i=0 )← KEYGEN(λ)

as follows:

• (p,G,G1, e, g, g2) ← IG(1λ) where λ is the security
parameter and algorithm IG generates a suitable
mathematical structure for our signature scheme. g
and g2 are generators of G and G1, respectively.

• Randomly generate α ∈ Z∗
p and set g1 = gα. Define

F (i) = gi1h where h is a random number chosen
from G. Note that F : Zp → G.

• Generate N secret keys {ski}N−1
i=0 with auxiliary in-

formation {auxi}N−1
i=0 as follows:

ski = {ski,j,b}n−1,t−1
j=0,b=0

with

ski,j,b = gα2 F (itn + bntj)rivi,j and auxi = gri , (1)



7

where ri is a random number chosen from Zp

and vi,j = gβi,j , where βi,j are random numbers
from Zp such that

∑n−1
j=0 βi,j = 0, or equivalently,∏n−1

j=0 vi,j = 1.
• Parameters pk = (p,G,G1, e, g, g1, g2, h) are made

public and secret keys {ski}N−1
i=0 are kept private.

The auxiliary information {auxi}N−1
i=0 is kept at the

signer side but is not kept secret (it can be accessed
by anyone who wants to). Random numbers {ri} and
{vi,j} are deleted.

We notice that KeyGen can be implemented in KEY-
GENPROCESSOR using an update rule as in [24] to create
a continuous stream of session keys. A deviation from [24]
is the secret sharing mechanism based on the {vi,j}, whose
role will become clear in the security analysis and allows us
to achieve resistance against OTS-SKE-EUF-CMA attacks.

Signing. We compute B =
∑n−1

j=0 bjt
j with 0 ≤ bj < t as

the pseudo-random permutation output B = PRP(key;M)
for a random key. We define subset ϕ(B) = {tj + bj}n−1

j=0 of
{0, . . . , q − 1} for q = tn. We represent its elements by the
pairs (j, bj). We produce

σ′ ← SIGN’({ski,j,bj}n−1
j=0 , auxi;M),

which signs a message M ∈ G1 as follows:

• Compute

ski =
n−1∏
j=0

ski,j,bj =
n−1∏
j=0

gα2 F (itn + bjnt
j)rivi,j

= gnα2

n−1∏
j=0

F (itn + bjnt
j)

ri

= gnα2 (git
n+B

1 h)nri = (gα2 F (itn +B)ri)n.

• Return signature σ = (σ′, key) for

σ′ = (y, z)

= (auxi, ski)

= (gri , (gα2 F (itn +B)ri)n).

Verification. VERIFY(pk, i;σ,M ) with σ = (σ′, key) verifies
signature σ′ = (y, z) for message M , where σ′ is generated
during the i-th session:

• Compute B = PRP(key;M).
• The signature verifies if and only if

e(g, z) = e(g1, g
n
2 )× e(y, (gk1h)

n) with k = itn +B.

Correctness. The correctness of the scheme follows from
g1 = gα, y = gri , z = (gα2 F (k)ri)n, and

e(g1, g
n
2 )× e(y, (gk1h)

n)

= e(gα, gn2 )× e(gri , (gk1h)
n) = e(gα, g2)

n × e(gri , gk1h)
n

= (e(gα, g2)× e(gri , gk1h))
n = (e(g, gα2 )× e(g, (gk1h)

ri))n

= (e(g, gα2 (g
k
1h)

ri))n = (e(g, gα2 F (k)ri))n

= e(g, (gα2 F (k)ri)n) = e(g, z).

Security. For any (T,QP , ϵ)-OTS-SKE adversary, for S
with N sessions, there exists an algorithm that solves

CDHP (Computational Diffie-Helman Problem) in G (ellip-
tic curve) in expected time ≤ T (QP + 1)N/ϵ. The details
of the security proof are provided as an appendix in the
supplementary material.

4.2 Design Requirements

Based on our adversarial setting, we have the following
requirement: we have to prevent the leakage of future, past,
and current secret session keys. Leakage of future secret
session keys can be prevented by using an isolated secure
key generation co-processor that is also required by KIS
as described in Section 3.1. However, additionally, the past
keys must be protected to prevent impersonation attacks by
an adversary who is able to observe session keys once they
enter the enclave processor. Therefore, the signing key must
be used only once, and the remote user must be able to verify
its freshness by generating a session key that is unique based
on their random nonce.

This is achieved by generating and storing in One-
Directional Memory (ODM) a session key as a sequence of
secret subkeys by using the strongly isolated key generation
processor. Based on a random nonce received from the
remote client (for proving freshness) and based on the to-be-
signed message, the RA enclave/wrapper computes a nonce
which is forwarded to the ODM. The ODM combines and
maps the nonce and the measurement of the RA enclave
(which includes the application code) to a subset of subkeys
that are read and given to the RA enclave. By its specifi-
cation, the ODM erases the rest of the sequence. The RA
enclave combines the selected subset and creates a single
unique session key, which is used by the RA enclave for
signing. The adversary can observe this subset of keys, but
despite leaking them, he cannot forge a signature since in
our construction the selected subset of subkeys returned by
the ODM already represents an unforgeable binding to the
measurement of the RA enclave, the message to be signed,
and the random nonce from the remote client.

4.3 Proposed Remote Attestation Protocol

The OTS-SKE-based RA protocol follows the same building
blocks as the KIS-based RA protocol described in Section
3.2. However, the one-directional memory is included as
a buffer between the secure co-processor and the enclave
processor for providing the secret session keys as shown in
Figure 3. Differently from KIS, now the secure co-processor
generates and stores multiple subkeys per session in the
ODM. Upon the RAWrapper’s read request with its message
x that includes the remote user’s nonce, only a subset of
secret session keys are selected corresponding to x and the
rest are automatically erased.

The initialization phase follows the same procedure
of KIS-based RA described in Section 3.2 where pk is
generated and published, and the session counter i is
initialized as 0. Algorithm 3 describes the working phase of
the RA protocol. EODMEM(.) is implemented as an enclave
call that handles the ODM’s read requests and implements
its access control mechanism.

Key Generation. KEYGENPROCESSOR increments the ses-
sion counter i and generates the complete set of secret keys
ski along with the auxiliary information auxi (Line 2–3). It



8

Algorithm 3 OTS-SKE-based Remote Attestation
We assume a OTP-SKE-EUF-CMA secure bilinear map-
based OTS-SKE scheme S = (KEYGEN, SIGN, VERIFY)
where SIGN is defined by the procedure SIGN’. KEYGEN
is implemented in a secure isolated co-processor and SIGN
is performed in the RAWrapper.

1: procedure KEYGENPROCESSOR
2: i = i + 1
3: key = ({ski,j,b}n−1,t−1

j=0,b=0 , auxi)←KEYGEN(λ)
4: Publish {auxi, i}
5: Store ski = {ski,j,b}n−1,t−1

j=0,b=0 in OD memory Mem
6: end procedure
7: procedure EODMEM(x)
8: Compute I = ϕ(HASH(x,MRcaller))
9: Read y = (Memj)j∈I

10: Erase (Memj)j /∈I

11: return y
12: end procedure
13: procedure RAWRAPPER
14: while true do
15: Pop a signing request from the queue
16: (R,RemoteUser,nonce)
17: M = HASH(MRapp, R)
18: x = HASH(nonce,M)
19: {auxi, i} ← KEYGENPROCESSOR
20: {keyI} ← EODMEM(x)
21: k ← Combine keyI , auxi

22: σ′ = SIGN’(k;M)
23: S ← (i, σ′,MRapp, R)
24: send S to RemoteUser
25: end while
26: end procedure

publishes auxi with the session i, and it stores the set of sub-
keys that constitute session secret key ski = {ski,j,b}n−1,t−1

j=0,b=0
in the one-directional memory (Line 4–5).

EODMEM(.) is implemented as an ECall (enclave call)
that handles the read requests for the one-directional mem-
ory. It computes the hash of input x, concatenated with the
caller enclave’s measurement MRcaller to compute the set
I = ϕ(HASH(x,MRcaller)) to extract a subset of keys from
memory that is related to I (Line 8). Here, we define

PRP(i;M) = HASH(HASH(noncei,M),MRapp),

where noncei is the nonce received from RemoteUser for
session i. Regarded as a function of M , a collision-resistant
hash function HASH(noncei,M) cannot be distinguished
from a pseudo-random permutation with non-negligible
probability. Therefore, we may use this for our PRP and
fit the definition of the OTS-SKE scheme. As soon as the
subset of secret keys y is extracted, the rest of the secret
keys that are not included in subset I are erased from the
one-directional memory, and y is returned to the caller (Line
9–11).

An example of how this process works is demonstrated
in Figure 3. I is generated to map x to n t-ary symbols (t = 3
and n = 4 in the example). This implies that OTS-SKE key
generation produces nt = 12 subkeys in a single session.
The ODM selects exactly one subkey out of t subkeys for
each j where j = {0, 1, ..., n− 1}.

Fig. 3. The one-directional memory (ODM) stores the complete set of
keys for a session i, skj,b where j ∈ {0, 1, 2, 3} and b ∈ {0, 1, 2}, gener-
ated by the secure key generation co-processor. When the RAWrapper
makes a read request to the one-directional memory by sending its input
x = HASH(nonce,M), ODM extracts a unique subset of keys related to
the input x and immediately erases the keys that were not included in the
subset. RAWrapper combines this subset of keys and uses it to create
a signature and sends it back to the remote user who then verifies the
signature using the public key.

Signing. Remote attestation session starts with RAWrapper
receiving a signing request. The RAWrapper receives a result
R from an AppEnc, which needs to be signed for a remote
user. RAWrapper combines AppEnc’s measurement with R
to create a unique message, M = HASH(MRapp, R). After
this, the random nonce, that is received as a part of the RA
request, is used to compute the input x = HASH(nonce,M)
(Line 14–18). Meanwhile, RAWrapper receives the current
session’s auxiliary key along with the session counter i
from KEYGENPROCESSOR. In order to read the subset of
secret keys from the one-directional memory, it makes the
EODMEM(x) call and reads the secret key subset that
is related to the input x (which is unique to the nonce
and the message M ) from the one-directional memory.
It then combines this unique subset of secret keys, along
with the auxiliary key auxi to generate the signing key
k, which is used to sign the message M (Line 19–21).
Finally, RAWrapper sends out the session counter i and
the resulting signature S consisting of σ′, measurement
of AppEnc, and the result R to RemoteUser (Line 22–24).
The subkeys in the ODM are overwritten by the secure
co-processor in the next session.

Verification. On the remote user’s side, after selecting a
nonce and making a RA request to RAWrapper with it, the
user receives the created signature S = (i, σ′,MRapp, R) for
the i-th session. The user uses VERIFY to verify the signature
S. If verified, then the remote user knows that R was indeed
created by AppEnc at the enclave processor: The chain of
trust shows that the signature was created by RAWrapper,
which only signs messages M that are the hash of MRapp

with R.

4.4 Security of OTS-SKE-based RA Protocol
In OTS-SKE, even if a current session key leaks, it cannot
be used to impersonate a signature for the current session.
OTS-SKE uses one-time signatures, whereas KIS uses a
time window: During the time window, new signatures can
be impersonated, as many as feasibly possible. OTS-SKE-
based RA protocol prevents an adversary from forging a
signature of a malicious result R for a remote user, even



9

if the adversary leaks all the session keys. This is because
each session key is unique to the user’s message M . If the
adversary observes and leaks the current or a past session’s
secret key, the observed session key will always be unique
to another user’s message (that includes the hash of the
application enclave’s report and the user’s nonce together).
The adversary can create his own message M∗, however,
the stolen session key will not match the message, and the
forged signature will fail during verification.

Moreover, the adversary cannot learn the unused portion
of the session subkeys in the ODM and use them to forge a
valid signature in that session. Even if the adversary runs
the RAWrapper itself, it only learns at most one subset
of keys {ski,j}j∈I and auxi for a session id i, because
once a subset is used for signing, i is incremented. If the
adversary attempts to read the one-directional memory,
the returned subset of keys depends on the adversarial
enclave’s measurement through a hash evaluation (Line 8
in EODMEM). Because of the hash collision resistance, the
adversary cannot use EODMEM to learn a set of subkeys
that fits MRapp. If the adversary observes the message
M as supplied by the remote verifier, then he learns the
related subset of keys of session i and can create other
σ′ for the same message M and session id i. However, as
previously explained, he cannot generate a signature for a
new malicious message M∗. A new malicious message M∗

corresponds to a different subset of the session key indicated
by a set I∗.

The security guarantee of the OTS-SKE scheme shows
that the adversary cannot successfully forge a signature for
M∗. We conclude that under the adversary our scheme
offers secure RA.4

5 IMPLEMENTATION & EVALUATION

In this section, we give the details of our implementation
and performance analysis for the proposed protocol. We
show the timings for the key generation, signing, and veri-
fication phases of the proposed RA attestation.

5.1 Experimental Setup
All experiments are conducted on an Intel Xeon Gold 5218
CPU with 2 sockets, each supporting 16 cores, running at
2.3 GHz and using Ubuntu 18.04 operating system. For
the parallel execution of the key generation module of the
OTS-SKE-based RA protocol, the pthread library and g++
compiler (v 6.4.1) with the -O3 optimization flag are used.

The bilinear map-based OTS-SKE scheme is imple-
mented using the open-source MIRACL Multiprecision In-
teger Cryptographic Library5 that includes elliptic curve
cryptography arithmetic. C++ language is used for the
implementation, along with fast in-line assembly language
alternatives for most performance-critical parts of the code

4. Note that, in our scheme, even if signing goes wrong due to fault
injections [25], [26], the security of our RA scheme is not broken.
Because there are no secrets used in the signing procedure, injecting
faults in the signing procedure cannot leak any extra information.
The remote user will reject a wrong signature, so one just needs to
sign again with a new session key from the co-processor. However,
fault injections may hurt the correctness of results R produced by the
AppEnc; therefore, the AppEnc needs to use some form of fault-tolerant
computing if fault injection attacks are present.

5. https://github.com/miracl/MIRACL

TABLE 1
Runtime Cost Analysis (in milliseconds) per Remote Attestation (RA)
session of the bilinear map-based OTS-SKE scheme in Comparison
with the KIS-based RA and the ECDSA used in Intel SGX (Average

taken over 100 runs). In the bilinear map-based scheme we use t = 4
(such that (t/ log2 t) · 64 = 128 and 128/ log2 t = 64). The classical
security of both schemes is 256 bits and a message signed during a

RA session has 128 bits. The overhead of key generation that runs on
the secure co-processor has been reported using ARM and Intel

processors.

OTS-SKE KIS ECDSA

Key Generation 1153.4 (ARM) 74.2 (ARM) 21.235.6 (Intel) 26.6 (Intel)
Signing 3.5 66.9 22.5
Verification 69.3 70.2 78.5

to speed up the performance, such as modular multiplica-
tion and exponentiation.

In order to evaluate the performance of the key gen-
eration of the OTS-SKE and KIS-based RA protocols that
are performed on the proposed secure co-processor, we
have additionally used a slower in-order ARM architecture
simulation with 64KB L1-I and L1-D cache, L1-I associativity
of 2 and L1-D associativity of 4 using gem5 and compared its
performance against the Intel key generation co-processor.

5.2 Runtime Cost Comparison
Table 1 shows the performance comparison of the KIS,
OTS-SKE-based RA protocols with the standard Elliptic
Curve Digital Signature Algorithm (ECDSA) based attes-
tation used by Intel SGX. Both schemes are implemented
with 256-bit security and the message signed during an RA
session has 128 bits. The nonce used by the remote user
has 64 bits. Note that the reported results correspond to a
single session for OTS-SKE and KIS. For OTS-SKE, the 64-bit
nonce is represented by n = 32 t-ary symbols, where t = 4
(64 = n log2 t). This implies that OTS-SKE key generation
produces nt = 128 subkeys in a single session. On the
other hand, KIS produces a single key per session. ECDSA
does not use sessions and pre-generates a single secret key;
therefore, we report the initial key generation time. The
subkey generation of OTS-SKE has been parallelized using
32 threads on the Intel machine. However, on the in-order
ARM machine, a serial key generation module has been
used.
Key Generation. As it can be seen from Table 1, with a
serialized implementation of key generation in OTS-SKE (as
used in the in-order ARM co-processor), the key generation
cost of OTS-SKE (1.1 seconds) is significantly higher than
the baselines, KIS and ECDSA (15× and 54× higher, re-
spectively). This is because OTS-SKE generates 128 subkeys
per session to create a unique secret signing key for each
user. However, the generation of these subkeys can be
significantly reduced by exploiting extreme parallelism. A
parallel implementation on the faster Intel key generation
co-processor using 32 threads has reduced this cost to 35.6
milliseconds (ms), which is comparable with the baselines.

Signing. In OTS-SKE, the signing process is completed by
computing a string x based on the user’s received random
nonce and the message M and extracting a set of secret keys
unique to x. For this reason, the generated unique secret
session key can be directly forwarded to the user, rather than
performing an actual signing operation on message M . This



10

Algorithm 4 Bilinear Map-based OTS-SKE
The implementation of the Key Generation and Signing
modules of the OTP-SKE-EUF-CMA secure bilinear map-
based OTS-SKE scheme. Algorithm IG generates a suitable
mathematical structure for our signature scheme and λ is
the security parameter. We assume a Pseudo Random Num-
ber Generator (PRNG) bootstrapped from an initial seed
extracted from a True Random Number Generator (TRNG)
to generate random bit strings.

1: procedure KEYGEN(session i)
2: pk ← (p,G,G1, e, g, g1, g2, h)
3: ri ← PRNG
4: auxi ← gri

5: l = gα2 h
ri

6: k = gri1
7: for j ← 0 to n− 1 do
8: Generate Vj ▷

∏n−1
j=0 Vj = 1

9: m = lVj

10: for b← 0 to t− 1 do
11: ski,j,b = m(k(it

n+bntj))
12: end for
13: end for
14: end procedure
1: procedure SIGN(session i, nonce, M )
2: Initialize skprod ← 0
3: B = PRP(nonce;M) ▷ B =

∑n−1
j=0 bjt

j

4: for j ← 0 to n− 1 do
5: skprod = skprod · ski,j,bj
6: end for
7: σ′ ← (auxi, skprod)
8: return σ ← (σ′, nonce)
9: end procedure

reduces the computational overhead of OTS-SKE’s signing
(3.5 ms) since it only requires the selection and combination
of a subset of keys. This allows OTS-SKE to avoid complex
and costly elliptic curve operations during signing such as
pairings. On the other hand, during the signing, KIS requires
pairing on the elliptic curve which approximately takes 35
ms. This operation is repeated 3 times during signing. By
parallelizing 2 pairings, we have reduced the signing cost
of KIS from 105 ms to 66.9 ms, which is still significantly
slower than the OTS-SKE. This can potentially become the
main performance bottleneck in the runtime. Overall, OTS-
SKE achieves 19× and 6.4× speedup over KIS and ECDSA,
respectively.

Verification. This step is performed offline on the remote
user side and therefore, its performance is not critical for
the throughput of the RA protocol. However, as it can
be seen from Table 1, the performance of OTS-SKE, KIS,
and ECDSA-based RA protocols are comparable to each
other during the verification. As discussed in Section 4.1.2
During the verification, the pairing operation on the elliptic
curve is performed 3 times. In our implementation, we have
performed these 3 pairings in parallel, with takes 49.4 ms
in total. Because of this, the overall cost of verification is
high (70 ms on average for OTS-SKE and KIS), while the
ECDSA takes 74.2 ms for verification. The performance of
the verification process primarily depends on the overhead

TABLE 2
Breakdown of Key Generation and Signing Modules of OTS-SKE given

in Algorithm 4 (in milliseconds).

Operation Time Repeats Total Time

Key
Generation

ri 0.005 1 0.005
auxi 5.35 1 5.35
l 7.34 1 7.34
k 3.45 1 3.45
Vj 0.11 32 3.52
m 0.34 32 10.88

ski,j,b 4.01 128 513.28
Total 543.8

Total (Parallel) 35.5

Signing
B 0.85 1 0.85

skprod 0.083 32 2.65
Total 3.5

of the pairing operation (approximately 35 ms) performed
on the elliptic curve.

5.3 Implementation and Runtime Cost Analysis of OTS-
SKE-based RA
Since the key generation and signing modules of the RA pro-
tocol are performed on the processor side, their performance
is more critical compared to the verification module. For this
reason, we provide the pseudocode for the implementation
of the KEYGEN and SIGN modules of the bilinear map-based
OTS-SKE in Algorithm 4, which have been introduced in
Section 4.1.2, and show a breakdown of the runtime cost of
each operation in Table 2. Note that, for the key generation,
we only provide the breakdown of the secret key generation
since the public key is generated once in the initialization
phase, and hence, is not performed in run-time.

In KEYGEN, the runtime cost of the pre-generated vari-
ables ri, auxi, l and k to generate secret keys ski,j,b are
reported in Table 2, with a total runtime cost of 16 ms. Vj

and m are generated n = 32 times and ski,j,b is generated
nt = 128 times, resulting in a total of 527 ms runtime cost
without parallelization. In our implementation, we have
parallelized the key generation loop (Line 7) given in Al-
gorithm 4, and therefore, the total cost of the key generation
has been reduced to 35.5 ms.

In SIGN, the computation of B to map the user’s nonce
with the message to a unique subset of the secret keys takes
0.85 ms in total. After this, n = 32 secret keys that belong
to this subset are combined, i.e., multiplied, to create the
final secret key skprod. Since this final key is created based
on the user’s nonce and message, it is directly returned by
the SIGN module as the final signature. Therefore, the per-
formance breakdown of the signature creation only includes
the multiplication operation between n = 32 chosen secret
subkeys, which takes 2.65 ms in total.

5.4 Performance Implications of Additional Hardware
The signing modules of both OTS-SKE and KIS run on the
same enclave processor as the ECDSA-based RA protocol
and the verification is offloaded to the remote user. There-
fore, signing and verifications are performed in the same
manner as the ECDSA-based RA and do not have additional
performance implications. The main additional hardware
component required for the KIS and the OTS-SKE-based



11

RA is a secure key generation co-processor, which we have
evaluated in Table 1 using Intel and ARM processors. We
have shown that, by duplicating the same Intel processor
used by ECDSA as an additional co-processor for isolated
key generation, and using a parallel implementation of the
key generation module for OTS-SKE, we can make the
computational cost of OTS-SKE comparable to the baseline
KIS and ECDSA-based RA protocol.

The only additional requirement for OTS-SKE compared
to the KIS is the use of a one-directional memory for key
storage for a single session. While KIS only generates a
single secret key for a session, OTS-SKE generates multiple
subkeys (e.g., 128 given in Table 1). Therefore, OTS-SKE
requires an additional 8KB of memory to store all subkeys,
which is an inexpensive addition to the baseline KIS system.

5.5 Evaluation and Discussion

Today, the wide employment of elliptic curve cryptography
(ECC) in various applications relies on a variety of imple-
mentation types from pure software or hardware imple-
mentations to hardware and software co-design. However,
pure software implementations of ECC, despite offering
the best flexibility at the lowest cost, cannot cope with
the speed demands of many application areas as general
purpose processors are not designed for efficient handling of
ECC’s underlying finite field arithmetic. Considering these
limitations, hardware-based implementations turn out to be
the more suitable alternatives [27], [28], [29], [30], [31], [32],
[33]. Despite this, in this paper, we evaluated a software-
based implementation of the ECC-based signature scheme
that has its own computational disadvantages. However, we
posit that with hardware acceleration and high parallelism,
the proposed OTS-SKE RA scheme can achieve a significant
performance boost.

Table 1 shows that the key generation phase is the
main bottleneck in the OTS-SKE-based signature scheme.
The main contribution of OTS-SKE is the use of one-time
signatures for the RA in the secure processor architectures
to protect the digital secrets against the adversary. This
requires the processor to renew the secret keys, after each
signing session, to be secure against impersonation attacks.
This extra level of security increases the overhead of the key
generation co-processor, which emerges as the main bot-
tleneck in the OTS-SKE implementation. The introduction
of a secure co-processor dedicated to key generation can
potentially increase the overhead of the key generation due
to the use of a slower processor. For example, on an in-order
ARM processor, the key generation takes 1.1 seconds while
its parallel implementation takes 35.6 ms on the main Intel
processor. Even with the given slowdown with a slower
co-processor, considering the fact that the key generation
module runs in the background and in parallel with the
signing, and remote attestation is performed only once at
the enclave (VM/container) creation time in the state-of-the-
art secure processors, we argue that this key generation cost
is reasonable. For example, the Kata container already takes
approx. 2.6 seconds to launch with AMD SEV [34].

The signing cost (3.4 ms) of the OTS-SKE-based RA is
much smaller than the baselines while bringing stronger
security benefits. Note that the introduction of a secure co-
processor does not bring additional overheads to the signing

and verification phases. The verification takes place on the
user side and the signing computations still take place in the
remote attestation enclave on the main enclave processor.
The only difference between the hardware implementations
of the OTS-SKE’s signing protocol and the baselines is the
retrieval of the signing key. In the OTS-SKE-based RA, the
key needs to be retrieved from the special memory that
consists of the current session keys. In our performance
evaluation, we give an estimation based on key retrieval
from DRAM. On the other hand, given the fact that the size
of the entire set of session keys is 16KB, the proposed one-
directional memory can be designed as a relatively small
buffer with less latency than a DRAM. The signing cost of
OTS-SKE is 19 and 6.4 times faster than the KIS and ECDSA,
respectively. Therefore, even with multiple additional mem-
ory accesses, OTS-SKE remains faster during the signing.
Additionally, considering the fact that the remote attestation
is performed only once at the enclave/VM/container cre-
ation time in state-of-the-art secure processors such as Intel
SGX, AMD SEV, and Intel TDX, the signing cost is relatively
small. For example, Intel’s EPID attestation takes 31.7 ms
for quote generation and signing, at the enclave creation
which takes 24.5 ms itself on an enclave with 5 MB of
memory [35]. This shows that enclave creation itself already
comes at a high cost. Moreover, the signing cost can further
be reduced with pipelined hardware implementations of
signing computations, B, and σ.

6 CONCLUSION

We demonstrated for the first time how to design a Remote
Attestation (RA) protocol that resists a powerful adversary
that can leak all digital secrets of a processor through side
channels during the signing procedure. Even with secure
processor technology that implements access control using
hardware isolation but without any privacy guarantees (due
to the recent avalanche of attacks), the proposed remote
attestation protocol is secure and can be used to verify
computation by remote users. The new RA scheme offers
the first crucial level of trust for current attacked secure
processor technology.

ACKNOWLEDGMENTS

This research was supported by the National Science Foun-
dation under Grants No. 1617774 and 1929261.

REFERENCES

[1] V. Costan and S. Devadas, “Intel sgx explained,” IACR Cryptol.
ePrint Arch., vol. 2016, p. 86, 2016.

[2] Intel, “Intel trust domain extensions,” Intel Technical White Paper,
2020.

[3] D. Kaplan, J. Powell, and T. Woller, “Amd memory encryption
whitepaper,” AMD Technical White Paper, 2016.

[4] ARM, “Arm confidential compute architecture (arm cca),” ARM
Technical White Paper, 2021.

[5] ——, “Arm security technology – building a secure system using
trustzone technology.” ARM Technical White Paper, 2009.

[6] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz, “Architectural support for copy and tamper
resistant software,” in SIGP, 2000.

[7] G. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas,
“Aegis: architecture for tamper-evident and tamper-resistant pro-
cessing,” in ICS, 2003.



12

[8] D. Champagne and R. Lee, “Scalable architectural support for
trusted software,” HPCA - 16 2010 The Sixteenth International
Symposium on High-Performance Computer Architecture, pp. 1–12,
2010.

[9] R. Boivie and P. Williams, “Secureblue++: Cpu support for secure
execution,” IBM, IBM Research Division, RC25287 (WAT1205-070),
pp. 1–9, 2012.

[10] C. W. Fletcher, M. van Dijk, and S. Devadas, “A secure processor
architecture for encrypted computation on untrusted programs,”
in STC ’12, 2012.

[11] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hard-
ware extensions for strong software isolation,” in USENIX Security
Symposium, 2016.

[12] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, Arvind, and S. De-
vadas, “Mi6: Secure enclaves in a speculative out-of-order pro-
cessor,” Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019.

[13] H. Omar and O. Khan, “IRONHIDE: A secure multicore that
efficiently mitigates microarchitecture state attacks for interactive
applications,” in IEEE International Symposium on High Performance
Computer Architecture, HPCA 2020, San Diego, CA, USA, February
22-26, 2020. IEEE, 2020, pp. 111–122. [Online]. Available:
https://doi.org/10.1109/HPCA47549.2020.00019

[14] A. Nilsson, P. N. Bideh, and J. Brorsson, “A survey of published
attacks on intel sgx,” ArXiv, vol. abs/2006.13598, 2020.

[15] S. Checkoway and H. Shacham, “Iago attacks: Why the system call
API is a bad untrusted RPC interface,” in Proceedings of ASPLOS
2013, R. Bodik, Ed. ACM Press, Mar. 2013, pp. 253–64.

[16] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,”
Science, vol. 283, pp. 1237 – 1237, 1999.

[17] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
attacks: Exploiting speculative execution,” 2019 IEEE Symposium
on Security and Privacy (SP), pp. 1–19, 2019.

[18] F. Dall, G. D. Micheli, T. Eisenbarth, D. Genkin, N. Heninger,
A. Moghimi, and Y. Yarom, “Cachequote: Efficiently recovering
long-term secrets of sgx epid via cache attacks,” IACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2018, pp. 171–191, 2018.

[19] R. Buhren, C. Werling, and J.-P. Seifert, “Insecure until proven
updated: Analyzing amd sev’s remote attestation,” Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019.

[20] Y. Dodis, J. Katz, S. Xu, and M. Yung, “Key-Insulated Public Key
Cryptosystems,” in Advances in Cryptology - EUROCRYPT 2002,
International Conference on the Theory and Applications of Crypto-
graphic Techniques, Amsterdam, The Netherlands, April 28 - May 2,
2002, Proceedings, 2002, pp. 65–82.

[21] ——, “Strong key-insulated signature schemes,” in International
Conference on Theory and Practice of Public Key Cryptography, 2003.

[22] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “One-time pro-
grams,” in Annual International Cryptology Conference. Springer,
2008, pp. 39–56.

[23] J. Kilian, “Founding crytpography on oblivious transfer,” in Pro-
ceedings of the twentieth annual ACM symposium on Theory of com-
puting, 1988, pp. 20–31.

[24] S. S. Chow, L. C. Hui, S. M. Yiu, and K. Chow, “Secure hierarchical
identity based signature and its application,” in International Con-
ference on Information and Communications Security. Springer, 2004,
pp. 480–494.

[25] K. Murdock, D. Oswald, F. Garcia, J. V. Bulck, D. Gruss, and
F. Piessens, “Plundervolt: Software-based fault injection attacks
against intel sgx,” 2020 IEEE Symposium on Security and Privacy
(SP), pp. 1466–1482, 2020.

[26] Z. Kenjar, T. Frassetto, D. Gens, M. Franz, and A.-R. Sadeghi,
“V0ltpwn: Attacking x86 processor integrity from software,” in
29th {USENIX} Security Symposium ({USENIX} Security 20), 2020,
pp. 1445–1461.

[27] G. Agnew, R. Mullin, and S. Vanstone, “An implementation of el-
liptic curve cryptosystems over f2155,” IEEE J. Sel. Areas Commun.,
vol. 11, pp. 804–813, 1993.

[28] K. H. Leung, K. W. Ma, W. Wong, and P. Leong, “Fpga implemen-
tation of a microcoded elliptic curve cryptographic processor,”
Proceedings 2000 IEEE Symposium on Field-Programmable Custom
Computing Machines (Cat. No.PR00871), pp. 68–76, 2000.

[29] L. Gao, S. Shrivastava, and G. Sobelman, “Elliptic curve scalar
multiplier design using fpgas,” in CHES, 1999.

[30] Y. Zhang, C. Xue, D. Wong, N. Mamoulis, and S. Yiu, “Acceleration
of composite order bilinear pairing on graphics hardware,” IACR
Cryptol. ePrint Arch., vol. 2011, p. 196, 2012.

[31] S. Cui, J. Großschädl, Z. Liu, and Q. Xu, “High-speed elliptic curve
cryptography on the nvidia gt200 graphics processing unit,” in
ISPEC, 2014.

[32] W. Pan, F. Zheng, Y. Zhao, W. Zhu, and J. Jing, “An efficient elliptic
curve cryptography signature server with gpu acceleration,” IEEE
Transactions on Information Forensics and Security, vol. 12, no. 1, pp.
111–122, 2017.

[33] S. Pu and J. Liu, “Eagl: An elliptic curve arithmetic gpu-based
library for bilinear pairing,” in Pairing, 2013.

[34] J. Gu, X. Wu, B. Zhu, Y. Xia, B. Zang, H. Guan, and H. Chen,
“Enclavisor: A hardware-software co-design for enclaves on un-
trusted cloud,” IEEE Transactions on Computers, vol. 70, no. 10, pp.
1598–1611, 2021.

[35] K. A. Küçük, A. Paverd, A. Martin, N. Asokan, A. Simpson, and
R. Ankele, “Exploring the use of intel sgx for secure many-party
applications,” in Proceedings of the 1st Workshop on System Software
for Trusted Execution, ser. SysTEX ’16. New York, NY, USA:
Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/3007788.3007793

Deniz Gurevin received her B.S. degree in Elec-
trical and Electronics Engineering from MEF
University, Istanbul, Turkey in 2018. She is cur-
rently pursuing her Ph.D. degree and working
as a graduate research assistant in the De-
partment of Electrical & Computer Engineering
at the University of Connecticut, CT, USA. Her
main research interests include hardware secu-
rity, spatiotemporal graph processing, and deep
learning.

Chenglu Jin received the Ph.D. degree from
the Electrical and Computer Engineering De-
partment, University of Connecticut, Storrs, CT,
USA, in 2019. He is a tenure-track researcher
in the Computer Security Group in Centrum
Wiskunde & Informatica (CWI Amsterdam), The
Netherlands. His research interests are cy-
ber–physical system security, hardware security,
and applied cryptography.

Phuong Ha Nguyen received the Specialist de-
gree in computer science and mathematics from
Lomonosov Moscow State University, Russia in
2008, and the Ph.D. degree in cryptography from
Nangyang Technological University, Singapore,
in 2013. He is currently working as a Researcher
at eBay. His research interests include machine
learning and cryptography.

Omer Khan is the Castleman Associate Pro-
fessor in the Department of Electrical & Com-
puter Engineering at the University of Connecti-
cut. Prior to joining UConn, he was a Postdoc-
toral Research Scientist at the Massachusetts
Institute of Technology. His research interests
include developing cross-layer methods to im-
prove the performance scalability and security
of multicore processor architectures. Khan re-
ceived a PhD in Electrical and Computer En-
gineering from the University of Massachusetts

Amherst. He is a senior member of IEEE and a member of ACM.
Marten van Dijk (Fellow, IEEE) is currently
Group Leader of the Computer Security Group,
CWI, The Netherlands, with over 20 years of
experience in both industry (Philips Research
and RSA Laboratories) and academia (MIT and
UConn). His work has been recognized by
the IEEE CS Edward J. McCluskey Technical
Achievement Award 2023 and the IEEE & ACM
A. Richard Newton Technical Impact Award in
Electronic Design Automation 2015, and has re-
ceived several best (student) paper awards.


