
Randomized versus Deterministic Decision Tree Size
Arkadev Chattopadhyay

Tata Institute of Fundamental

Research

Mumbai, India

arkadev.c@tifr.res.in

Yogesh Dahiya

IMSc

Chennai, India

yogeshdahiya@imsc.res.is

Nikhil S. Mande

QuSoft and CWI

Amsterdam, The Netherlands

nikhil.s.mande@gmail.com

Jaikumar Radhakrishnan

TIFR, Mumbai, and

ICTS–TIFR, Bengaluru

India

jaikumar@tifr.res.in

Swagato Sanyal

IIT Kharagpur

India

swagato@cse.iitkgp.ac.in

ABSTRACT
A classic result of Nisan [SICOMP ’91] states that the deterministic

decision tree depth complexity of every total Boolean function is at

most the cube of its randomized decision tree depth complexity. The

question whether randomness helps in significantly reducing the

size of decision trees appears not to have been addressed. We show

that the logarithm of the deterministic decision tree size complexity

of every total Boolean function on 𝑛 input variables is at most the

fourth power of the logarithm of its bounded-error randomized

decision tree size complexity, ignoring a polylogarithmic factor

in the input size. Our result has the following consequences: (1)

The deterministic AND-OR query complexity of a total Boolean

function is at most the fourth power of its randomized AND-OR

query complexity, ignoring a polylog 𝑛 factor, (2) The deterministic

AND (OR) query complexity of a total Boolean function is at most

the cube of its randomized AND (OR) query complexity, ignoring

a polylog 𝑛 factor. This answers a recent open question posed by

Knop, Lovett, McGuire and Yuan [SIGACT News ’21], (3) The no-

tion of rank of a Boolean function was defined in a classic work

of Ehrenfeucht and Haussler [Information and Computation’89]

in the context of learning theory, and is characterized by the loga-

rithm of decision tree size up to a logarithmic factor in the input

size. Our results confirm a recent conjecture (ignoring a polylog 𝑛

factor) of Cornelissen, Mande and Patro [FSTTCS ’22], that asserted

the equivalence of randomized and deterministic analogs of rank,

upto polynomial factors, for all total Boolean functions, and (4)

Combined with the above-mentioned work of Ehrenfeucht and

Haussler, our result implies that the class of functions computable

by randomized decision trees of polynomial size, is PAC-learnable

in quasi-polynomial time. To obtain our main result on decision

tree size, we use as an intermediate measure the block number of
a Boolean function, studied first by Kulkarni and Tal [CJTCS’16],

which can be thought of as a counting analog of block sensitivity

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’23, June 20–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9913-5/23/06. . . $15.00

https://doi.org/10.1145/3564246.3585199

of a Boolean function that played a central role in Nisan’s result

mentioned above.

CCS CONCEPTS
• Theory of computation → Oracles and decision trees; Prob-
abilistic computation.

KEYWORDS
Boolean functions, derandomization, query complexity

ACM Reference Format:
Arkadev Chattopadhyay, Yogesh Dahiya, Nikhil S. Mande, Jaikumar Rad-

hakrishnan, and Swagato Sanyal. 2023. Randomized versus Deterministic

Decision Tree Size. In Proceedings of the 55th Annual ACM Symposium on
Theory of Computing (STOC ’23), June 20–23, 2023, Orlando, FL, USA. ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3564246.3585199

1 INTRODUCTION
Understanding the power of randomness is of central interest in

computer science. There are two main resources for algorithms:

time and space. The role randomness plays in reducing require-

ments of time and space is under intensive investigation, but a

resolution seems quite out of reach of current techniques.

Decision trees are one of the most basic models of computation

that has been studied for a long time. How much does randomness

help algorithms in this model?

The two natural complexity measures of a decision tree are its

depth, also called height, and its size.While depth hasmost probably

been looked at more intensively, size also arises often, especially

in the context of learning theory (see for example [7, 8, 17]). Small

depth directly implies small size, i.e., a depth 𝑡 decision tree has size

at most 2
𝑡
. But the converse is well known to be false, as witnessed

by the And or Or function that can be computedwith size (𝑛+1) but
need depth also to be 𝑛. A classic work of Nisan [35], first published

in the late eighties, showed that deterministic decision tree depth

complexity is at most a cube of its randomized counterpart, for every

total function.
1
The question about the extent of possible savings

from the use of randomness in terms of the size of decision trees

is natural. It remained unaddressed, somewhat surprisingly, since

Nisan’s work. It can be inferred from long-existing results that some

savings is indeed possible. For instance, consider the function 𝑓

1
Whether this cubic gap can be narrowed down further, is an area of active research

with relatively recent breakthroughs [1, 34].

867

https://doi.org/10.1145/3564246.3585199
https://doi.org/10.1145/3564246.3585199
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3564246.3585199&domain=pdf&date_stamp=2023-06-02

STOC ’23, June 20–23, 2023, Orlando, FL, USA Arkadev Chattopadhyay, Yogesh Dahiya, Nikhil S. Mande, Jaikumar Radhakrishnan, and Swagato Sanyal

known as the And-Or tree of size 𝑛. This function is represented by

a monotone formula of depth log𝑛, with binary And and Or gates

alternating in the layers. Saks and Wigderson [37] showed that the

randomized depth complexity of 𝑓 isΘ(𝑛0.753...) which implies that

the randomized size complexity of 𝑓 is 2
𝑂 (𝑛0.753...)

. Snir’s [38] early

and elegantwork already implies that the deterministic decision tree

size of 𝑓 is 2
Θ(𝑛)

. This was later rediscovered by Jukna, Razborov,

Savický and Wegener [28] via a spectral technique. While this gap

may appear significant, in the log-scale the gap is still polynomial,

i.e.,

log(DSize
dt (𝑓)) ≥ (log(RSize

dt (𝑓))1.32..., 2

whereDSize
dt (𝑓) and RSize

dt (𝑓) denote deterministic and bounded-

error randomized decision tree complexity of 𝑓 , respectively. In

the log-scale, the largest known gap between randomized and de-

terministic size is quadratic (see Section C). Analogous to depth

complexity, one may ask if the gap remains polynomial for ev-

ery total function. Our main result answers this in the affirmative,

ignoring polylog(𝑛) factors.

Theorem 1.1. For every total Boolean function 𝑓 : {0, 1}𝑛 →
{0, 1},

log DSize
dt (𝑓) = 𝑂 ((log RSize

dt (𝑓))4
log

3 (𝑛)) .

1.1 Consequences
Theorem 1.1 complements Nisan’s derandomization of decision

tree depth. In this section, we describe three consequences of our

main result, the first two of which are derandomization of depth in

stronger models of decision trees. In such models, internal nodes

of a tree are allowed to evaluate any function of the input bits

from a given class of functions. The class of allowed functions

defines the model. One such model is called Parity decision tree

(PDT), where the class of allowed functions is just the set of all

possible parities of the 𝑛 input bits
3
PDT’s have gained significant

interest, see for example [13, 19, 24, 40]. Interestingly, it is well

known that randomness can provide largest possible savings in

depth (and size) for PDT’s. A simple adversary-based argument

shows that deterministic PDTs need depth 𝑛 to compute the Or of

𝑛 bits. However, randomized PDTs compute Or with bounded error

in just 𝑂 (1) depth.
In a recent interesting survey, Knop, Lovett, McGuire and Yuan

[29] advocate looking at other natural classes of allowed functions,

like And and Or, besides Parity. They mainly argue that such

models act as natural and insightful intermediate models between

ordinary decision trees and Yao’s 2-party communication model.

The latter is of great independent interest, and can also be naturally

thought of as a decision tree, known as a protocol tree, with each

node evaluating an arbitrary function that depends on just Alice’s

or Bob’s input bits. In particular, if there exists a PDT or And/Or

decision tree evaluating a function 𝑓 in small depth, then there

exists a protocol tree of at most twice the depth for computing

the same function, irrespective of the partition of the input bits

between the players.

2
We observe in Corollary A.4 that the AND-OR tree does not witness a stronger

separation than this.

3
Note that this is a generalization of ordinary decision trees as they can be simulated

by merely evaluating the parity of just the relevant bit.

The study of these models of decision trees also has well-known

connections to combinatorial group testing. The natural quantum

analog of And decision trees has been studied in this context [3]

with surprising applications in proving classical lower bounds [5].

In another direction, PDTs (and more generally parity decision

DAGs) are closely related to proof systems that allow resolution

over equations in F2, known as Res-Lin that is a generalization of

ordinary resolution of clauses (see [36]). And (Or) decision trees

are a special case of linear threshold decision trees that are closely

connected to the cutting planes proof system (see [25]). Both these

proof systems are poorly understood [18, 26] and it is believed

that a better understanding of PDT’s and threshold decision trees,

especially w.r.t. search problems, should lead to progress here.

1.1.1 (And,Or)-decision trees. The two fundamental functions

that are hard for decision tree depth are And and Or, which are

two of the most basic Boolean functions. It is thus natural to look

at decision trees where query nodes can evaluate And’s or Or’s of

arbitrary subsets of input bits. Note that the model is equivalent up

to a factor of 2 in query cost, to the model where And (Or) alone

is allowed, but over literals (i.e., possibly negated variables) and

not just positive variables. Such decision trees have been studied

for long, for example in the early work of Ben-Asher and New-

man [4] and more recently in the context of graph problems, see

for example [6, 9].

Observing that (And,Or)-decision tree depth is equivalent to

logarithm of ordinary decision tree size after ignoring polyloga-

rithmic factors in the input size (see Lemma 4.3 and Lemma 4.4),

we conclude from Theorem 1.1 that the randomized and determin-

istic depth in this model, denoted respectively by R
(∧,∨)-dt (·) and

D
(∧,∨)-dt (·), are polynomially related as stated below formally.

Theorem 1.2. For every Boolean function 𝑓 : {0, 1}𝑛 → {0, 1},

D
(∧,∨)-dt (𝑓) = 𝑂 (R(∧,∨)-dt (𝑓)4

log
7 (𝑛)).

1.1.2 And-decision trees. A recent technique that has generated a

lot of insight and solved several longstanding problems in two-party

communication complexity is that of lifting decision tree depth com-

plexity of a function/problem 𝑓 to communication complexity of a

composed problem. In this setting, each input bit of 𝑓 is distributed

among Alice and Bob via a gadget 𝑔 : {0, 1}𝑏 × {0, 1}𝑏 → {0, 1}.
When the gadget 𝑔 has a nice (obfuscating) property and its size 𝑏

is appropriately large, lifting theorems assert that the randomized

(deterministic) communication complexity of the composed prob-

lem is asymptotically R
dt (𝑓) ·Rcc (𝑔) (Ddt (𝑓) ·Dcc (𝑔)). Observe that

this corresponds roughly to the communication cost of the naive

protocol that simulates the optimal decision tree algorithm for 𝑓 ,

solving the 𝑖-th instance of 𝑔 when the decision tree algorithm stip-

ulates querying its 𝑖-th input bit. These theorems are attractive as

they reduce the task of understanding communication complexity

to that of decision tree depth complexity, the latter usually being

a lot simpler. Several such theorems have been developed, see for

example [12, 14, 21, 22, 24, 29], exploiting convenient properties of

the gadget 𝑔. A well-known challenge in this area is to reduce the

size of the gadget to a constant (see for example [33]), independent

of the input length of 𝑓 , and still prove such lifting theorems. There

are essentially two one-bit gadgets, Xor and And (Or).

868

Randomized versus Deterministic Decision Tree Size STOC ’23, June 20–23, 2023, Orlando, FL, USA

It is not difficult to see that when Xor is the gadget, then a

communication protocol can simulate a PDT for 𝑓 , a more pow-

erful model than ordinary decision trees. This explains why the

Eq function, a composition of And and Xor, has small randomized

communication complexity: And has an 𝑂 (1)-depth randomized

PDT. For the Xor gadget, a deterministic lifting theorem
4
was rela-

tively recently developed by Hatami, Hosseini and Lovett [24]. No

randomized lifting theorem is known for the Xor gadget.

For the And gadget, similarly, a communication protocol can

simulate an And-decision tree (ADT). Very recently, Knop, Lovett,

McGuire and Yuan [30] lifted deterministic ADT depth complexity

of 𝑓 to deterministic communication complexity of 𝑓 ◦ And. They
left open the problem of proving a randomized lifting theorem. In

a follow-up survey [29] it was argued that this inability is linked

to our lack of understanding of basic questions about randomized

ADT complexity. They conjectured, however, that the randomized

and deterministic ADT depth complexity of total functions are

polynomially related. Using a key inequality we establish in the

proof of our main result, Theorem 1.1, we are able to confirm this

conjecture as stated below.

Theorem 1.3. For every Boolean function 𝑓 : {0, 1}𝑛 → {0, 1},
D
∧-dt (𝑓) = 𝑂 (R∧-dt (𝑓)3

log
4 (𝑛)).

En route to proving the above, we establish a characterization,

up to polynomial gap, of the randomized ADT depth complexity in

terms of natural combinatorial quantities associated with a Boolean

function. At an input 𝑥 ∈ {0, 1}𝑛 , a block 𝐵 ⊆ [𝑛], is called a

sensitive 0-block if 𝑥𝑖 = 0 for every 𝑖 ∈ 𝐵, and 𝑓 (𝑥) ≠ 𝑓 (𝑥 ⊕ 1𝐵),
where 𝑥 ⊕ 1𝐵 is obtained from 𝑥 by switching values of the bits

in 𝐵 to 1. A set of indices 𝐻 ⊆ [𝑛] is called a 0-hitting set for

𝑓 at 𝑥 if it intersects every sensitive 0-block of 𝑥 . The 0-hitting

set complexity of 𝑓 , denoted by HSC0 (𝑓), is the smallest number

𝑟 , such that for every input 𝑥 ∈ {0, 1}𝑛 , there exists a 0-hitting

set of size at most 𝑟 . A natural fractional relaxation leads to a

quantity called the 0-fractional hitting set complexity, denoted

by FHSC0 (𝑓). We also consider the zero (one) cover number of

𝑓 , denoted by N0 (𝑓) (N1 (𝑓)), which is the minimum number of

monochromatic subcubes needed to cover 𝑓 −1 (0) (𝑓 −1 (1)). The
cover number of 𝑓 , denoted by N(𝑓), is defined to be N0 (𝑓) +N1 (𝑓).
We show that log N(𝑓) is bounded from above by 𝑂 (R∧-dt (𝑓)2),5
and that FHSC0 (𝑓) = 𝑂 (R∧-dt (𝑓)) (see Proof of Theorem 4.5 for

proofs of these inequalities). Finally we also show that D
∧-dt (𝑓) =

𝑂 (FHSC0 (𝑓) log N(𝑓)) (Claim 4.7). Combining these together, we

obtain the following combinatorial characterization of deterministic

and randomized ADT depth complexity.

Theorem 1.4. For every Boolean function 𝑓 : {0, 1}𝑛 → {0, 1},

max

{
Ω(FHSC0 (𝑓)), Ω̃(log N(𝑓)1/2)

}
= R

∧-dt (𝑓)

≤ D
∧-dt (𝑓) = 𝑂 (FHSC0 (𝑓) · log N(𝑓)) .

4
Ideally, lifting theorems should work even when 𝑓 is not only a total function but

just a partial function or a relation. Many applications, particularly in circuit and proof

complexity, require this generality of a lifting theorem. There are no such general

lifting theorems known with a constant-size gadget.

5
Throughout this paper we use notations𝑂 (·), Θ̃(·), Ω̃ (·) to hide polylogarithmic

factors in the input size.

Theorem 1.4 says that a function is hard for randomized ADTs

if and only if its cover number is large or it has a large 0-fractional

hitting set complexity. We note below two simple functions, one

of which has large cover number and small 0-fractional hitting

set complexity, and the other has small cover number but large

0-fractional hitting set complexity.

• 𝑓 = Or𝑛 : log N(𝑓) = 𝑂 (log𝑛), FHSC0 (𝑓) = 𝑛,R∧-dt (𝑓) =

Ω(𝑛).
• 𝑓 = And𝑛◦Or2: log N(𝑓) = Ω(𝑛), FHSC0 (𝑓) = 2, R∧-dt (𝑓) =
Ω̃(𝑛).

On the other hand, the And function has small cover number, as

well as small 0-fractional hitting set complexity. This is not surpris-

ing as D
∧-dt (And) = 1.

1.1.3 Decision tree rank. Another measure of decision trees that

has attracted interest recently is its decision tree rank [15, 16],

which measures the tree’s branching complexity; it is defined to be

the height of the largest complete binary tree that can be embed-

ded in the given tree. This notion was introduced by Ehrenfeucht

and Haussler [17] in the context of learning theory. The rank of

a Boolean function 𝑓 is defined as the minimum rank of a deci-

sion tree computing 𝑓 . One can show that rank characterizes the

logarithm of decision tree size up to a logarithmic factor (see [16,

Proposition 2.5], for example). An analogous statement is easily

seen to hold true for randomized decision tree size and the natural

randomized variant of rank. Cornelissen, Mande and Patro [15]

conjectured that rank and randomized rank are polynomially re-

lated for all total Boolean functions. By the equivalence of rank

with the logarithm of decision tree size mentioned above, Theo-

rem 1.1 resolves this conjecture in the affirmative up to a polylog 𝑛

factor. Ehrenfeucht and Haussler showed that the class of functions

on 𝑛 variables with decision tree size polynomial in 𝑛 is learnable

from random examples in quasi-polynomial time. An immediate

consequence of Theorem 1.1 is that even the class of functions on

𝑛 variables with randomized decision tree size polynomial in 𝑛 is

learnable from random examples in quasi-polynomial time.

1.2 Our Techniques
As far as we are aware, the only previous work achieving full

derandomization for a model of decision trees is due to Nisan’s [35],

where he used beautiful argument by defining the block sensitivity
of a Boolean function 𝑓 . The block sensitivity of 𝑓 at an input𝑥 is the

maximum number of disjoint sensitive blocks of 𝑓 at 𝑥 . Another key

notion required in Nisan’s argument is that of certificate complexity.
The certificate complexity of 𝑓 at 𝑥 is the minimum number of bits

of 𝑥 one needs to reveal to force 𝑓 to a constant. The certificate

complexity of 𝑓 is the maximum certificate complexity over all

inputs. Nisan’s argument is completed essentially
6
by two facts:

first, the certificate complexity of 𝑓 at any input 𝑥 is bounded from

above by the square of the block sensitivity of 𝑓 . Using the older

known fact, re-discovered by many authors in different contexts

[10, 23, 39], showing that the square of the certificate complexity is

an upper bound for deterministic depth, yields the fourth power

of block sensitivity as an upper bound on the deterministic depth

6
Here, for simplicity, we sketch the ideas achieving a fourth power gap, and not the

cubic gap that Nisan proved.

869

STOC ’23, June 20–23, 2023, Orlando, FL, USA Arkadev Chattopadhyay, Yogesh Dahiya, Nikhil S. Mande, Jaikumar Radhakrishnan, and Swagato Sanyal

of 𝑓 . Second, Nisan proved that block sensitivity is a valid lower

bound on the randomized depth complexity of 𝑓 .7 This is simply

because 𝑓 embeds at 𝑥 a promised Or of arity as much as its block

sensitivity at 𝑥 .

Block sensitivity is a very influential notion, but is not helpful

for us in proving randomized decision tree size lower bounds. For

example, Or andAnd have the largest possible block sensitivity, and

even sensitivity, of 𝑛 and yet have deterministic decision tree size

merely 𝑂 (𝑛). More generally, any measure certified by specifying

the evaluation of 𝑓 at 𝑠 points of the Boolean cube can yield at

most a lower bound of 𝑠 on decision tree size. This is because there

always exists a deterministic decision tree of size 𝑠 that computes 𝑓

restricted to those 𝑠 points, as we describe now. We will construct a

tree such that each leaf corresponds to a unique point amongst the

𝑠 given points. Start with a single node, and as long as there exists

a leaf ℓ which is reached by two distinct points 𝑥 = (𝑥1, . . . , 𝑥𝑛)
and 𝑦 = (𝑦1, . . . , 𝑦𝑛), query a variable 𝑖 such that 𝑥𝑖 ≠ 𝑦𝑖 at ℓ . This

way, ℓ is replaced by two other leaves, and 𝑥 and 𝑦 are separated.

Continuing this way, we eventually end up with a tree with exactly

𝑠 leaves, one for each point. We may then label the leaves with the

function values of the corresponding points.

Consider the Majority function, at the all zero point. Its block

sensitivity there is just 2. However, there are exponentially many,

i.e.,

(𝑛
𝑛/2

)
, minimally sensitive blocks. These minimal blocks form

an anti-chain with respect to inclusion. Further, their minimality

implies
8
that each point in the cube obtained by flipping the bits

of such a block yields a point where every (flipped) bit is sensitive.

Our argument has two parts.

• First, we show (Lemma 3.2) that any large set 𝑆 of such

points, by itself, ensures that the randomized decision tree

size is Ω̃(|𝑆 |). This holds more generally. Hence, a random-

ized decision tree computing a function 𝑓 that has a large

number of minimally sensitive blocks at some input 𝑥 will

be forced to have a large size. To formalize this, we define

the block number of a function 𝑓 as the largest integer 𝑟 for

which there exists a point 𝑥 where 𝑓 has 𝑟 minimally sensi-

tive blocks. To the best of our knowledge, this notion was

first studied by Kulkarni and Tal [31] to show relationships

between different query complexity measures.

• In the second part of our argument, we deal with functions

that have small block number. These are functions 𝑓 , which

at every point 𝑥 , have few minimally sensitive blocks. An

example of such an 𝑓 with large randomized size complexity

is Parity. In the second part of the argument (Lemma 3.3),

we prove, using a simple boosting argument that for such

an 𝑓 , one would be able to extract a cover for both the ones

and zeroes of 𝑓 by monochromatic subcubes, using about

as many subcubes as the size of the randomized decision

tree. This is sufficient to construct a deterministic decision

tree for 𝑓 of not too large size, thanks to a classical result of

Ehrenfeucht and Haussler [17] from the late eighties. This

7
It was later shown [2] that the square root of block sensitivity is also a lower bound

on the quantum analog of depth complexity (which is better known as quantum

query complexity), showing that deterministic depth complexity and quantum query

complexity are also polynomially related for all total Boolean functions.

8
This property ofminimally sensitive blocks is a well-known fact that Nisan’s argument

also exploited.

result states that there exists a deterministic decision tree of

size at most 𝑛log
2

N(𝑓)
, where N(𝑓) is the minimal size of a

cover of 𝑓 by monochromatic subcubes.

In particular, combining the above two parts yields the following

interesting relationship between the cover number and randomized

size complexity, as stated in Theorem 3.1, part (a):

log N(𝑓) = 𝑂

(
log

2
RSize

dt (𝑓)
)
. (1)

The derandomization of depth for (And,Or)-decision trees fol-

lows directly, once we observe that such depth complexity of 𝑓 is

equivalent, ignoring a factor of log𝑛, to the logarithm of its ordi-

nary decision tree size complexity. This equivalence is established

using a simple tree-balancing argument that is possible as we have

both And and Or queries available.

It requires more work to deal with decision trees that have

just And (Or) queries. The main reason is that And queries on

unnegated variables are not sufficient to equate depth with the

logarithm of ordinary size. This is illustrated by the fact, already

mentioned before in Section 1.1.2, that the Or function has ordinary

decision tree size only 𝑛 and, yet, the ADT depth complexity of

Or is full, i.e., 𝑛. However, as observed by Loff and Mukhopadhyay

[32], the ADT depth complexity is equivalent, upto polylog(𝑛) fac-
tors, to the zero-depth complexity of ordinary decision trees. The

zero-depth complexity of 𝑓 is the smallest number 𝑟 for which there

exists a decision tree computing 𝑓 in which every path from the root

to a leaf encounters no more than 𝑟 zeroes. Our main contribution

here is an adaptation of Ehrenfeucht and Haussler’s argument to

prove a convenient deterministic zero-depth upper bound in terms

of the fractional zero-hitting set complexity of 𝑓 and its cover num-

ber, as stated in Theorem 1.4. The second important observation is

that the fractional zero-hitting set complexity is a lower bound on

the randomized zero-depth complexity of 𝑓 . Noting the fact that

a decision tree of zero-depth 𝑑 is also an ordinary decision tree of

𝑂 (𝑛𝑑) size, we complete the derandomization of ADT depth using

Equation (1).

We remark here that the notion of fractional zero-hitting set

complexity was introduced in [30]. However, the approach taken

by the authors in that paper was algebraic, in the sense that they

focused on the sparsity of the unique polynomial over the AND ba-

sis representing 𝑓 . In fact, in their later survey [29], they suggested

looking at the sparsity needed by polynomials to approximate 𝑓

to tackle randomized ADT depth complexity. Our proof of their

conjecture (our Theorem 1.3), however, deviates from this approach

completely and involves purely combinatorial arguments.

2 PRELIMINARIES
This section formally introduces the required notation, different

query models and various complexity measures used in our proofs.

All logarithms in this paper are taken base 2. We use notations

𝑂 (·), Θ̃(·), Ω̃(·) to hide polylogarithmic factors in the input size

(and not just polylogarithmic factors in the argument). For a bit

𝑏 ∈ {0, 1}, ¯𝑏 denotes the bit 1 − 𝑏. For a Boolean function 𝑓 :

{0, 1}𝑛 → {0, 1}, let ¯𝑓 : {0, 1}𝑛 → {0, 1} be the Boolean function

defined as
¯𝑓 (𝑥) = 1− 𝑓 (𝑥) for all 𝑥 ∈ {0, 1}𝑛 . For a positive integer

𝑛, let [𝑛] denote the set {1, 2, . . . , 𝑛}. For 𝑥,𝑦 ∈ {0, 1}𝑛 we say 𝑥 ≤ 𝑦

if 𝑥𝑖 ≤ 𝑦𝑖 for all 𝑖 ∈ [𝑛]. A Boolean function 𝑓 is monotone if 𝑥 ≤ 𝑦

870

Randomized versus Deterministic Decision Tree Size STOC ’23, June 20–23, 2023, Orlando, FL, USA

implies 𝑓 (𝑥) ≤ 𝑓 (𝑦). A maxterm of a monotone Boolean function,

𝑓 : {0, 1}𝑛 → {0, 1}, is a minimal set of variables 𝑆 ⊆ [𝑛] such that

setting the variables in 𝑆 to 0 forces 𝑓 to 0. A minterm of 𝑓 is a

minimal set of variables which, when set to 1 forces 𝑓 to 1.

2.1 Combinatorial Measures of Boolean
Functions

Definition 2.1 (Subcube). A subcube of dimension 𝑑 (equiva-
lently, codimension 𝑛 − 𝑑) is a subset of {0, 1}𝑛 obtained by fixing
𝑛 − 𝑑 of the variables. In other words, a subcube is a set of all inputs
consistent with a partial assignment of𝑛 bits. For𝑏 ∈ {0, 1}, a subcube
𝐴 is said to be 𝑏-monochromatic with respect to 𝑓 if 𝑓 (𝑥) = 𝑏 for all
𝑥 in 𝐴. The codimension of a subcube 𝐴 is denoted by co-dim(𝐴).

Definition 2.2 (Cover number). For a function 𝑓 : {0, 1}𝑛 →
{0, 1} and 𝑏 ∈ {0, 1}, we define its 𝑏-cover number, denoted by N𝑏 (𝑓),
as

min {𝑘 : ∃𝑏-monochromatic subcubes wrt 𝑓 ,

𝑆1, . . . 𝑆𝑘 such that
⋃
𝑖∈[𝑘]

𝑆𝑖 = 𝑓 −1 (𝑏) }.

The cover number of 𝑓 , denoted by N(𝑓), is defined to be N0 (𝑓) +
N1 (𝑓).

For 𝑥 ∈ {0, 1}𝑛 and 𝐵 ⊆ [𝑛], let 1𝐵 denote the 𝑛-bit string that is

1 on bits in 𝐵 and 0 otherwise.

Definition 2.3 (Sensitive block, block sensitivity). Let 𝑓 :

{0, 1}𝑛 → {0, 1}. A set 𝐵 ⊆ [𝑛] is a sensitive block of 𝑓 at input 𝑥

if 𝑓 (𝑥 ⊕ 1𝐵) ≠ 𝑓 (𝑥); a sensitive block at 𝑥 is minimal if no proper
subset of it is a sensitive block at 𝑥 . The block sensitivity of 𝑓 at 𝑥 ,
denoted by bs(𝑓 , 𝑥), is the maximum 𝑟 for which there exist disjoint
blocks, 𝐵1, 𝐵2, . . . , 𝐵𝑟 , each of which is a sensitive block of 𝑓 at 𝑥 . The
block sensitivity of 𝑓 , denoted by bs(𝑓), is defined as

bs(𝑓) = max

𝑥∈{0,1}𝑛
bs(𝑓 , 𝑥) .

An index 𝑖 ∈ [𝑛] is sensitive for 𝑥 with respect to 𝑓 if {𝑖} is a
sensitive block of 𝑓 at 𝑥 . For a function 𝑓 : {0, 1}𝑛 → {0, 1} and
𝑥 ∈ {0, 1}𝑛 , let W(𝑓 , 𝑥) denote the set of all minimal sensitive

blocks of 𝑓 at 𝑥 . A set 𝐵 ⊆ [𝑛] is a sensitive 0-block of 𝑓 at 𝑥 if

𝑓 (𝑥 ⊕ 1𝐵) ≠ 𝑓 (𝑥) and 𝑥𝑖 = 0 for each 𝑖 ∈ 𝐵. Let W0 (𝑓 , 𝑥) denote
the set of all minimal sensitive 0-blocks of 𝑓 at 𝑥 .

Next we define hitting set complexity and a new measure which

we call block number. For sets 𝑆, 𝐹 ⊆ [𝑛], we say that 𝑆 hits 𝐹 if

𝑆 ∩ 𝐹 ≠ ∅.

Definition 2.4 (Block number, hitting set complexity). For
a function 𝑓 : {0, 1}𝑛 → {0, 1} and 𝑥 ∈ {0, 1}𝑛 , we define the block
number of 𝑓 at 𝑥 , denoted by #bs(𝑓 , 𝑥), to be the number of elements
in W(𝑓 , 𝑥); the block number of 𝑓 is

#bs(𝑓) = max

𝑥∈{0,1}𝑛
#bs(𝑓 , 𝑥).

The hitting set complexity of 𝑓 at 𝑥 , denoted by HSC(𝑓 , 𝑥), is the
minimum size of a set 𝑆 ⊆ [𝑛] that hits each 𝐹 ∈ W(𝑓 , 𝑥). The
hitting set complexity of 𝑓 , denoted by HSC(𝑓), is defined as

HSC(𝑓) = max

𝑥∈{0,1}𝑛
HSC(𝑓 , 𝑥) .

We remark here that, to the best of our knowledge, the notion of

block number (in a different language) was first studied by Kulkarni

and Tal [31].

Next we define 0-hitting set complexity.

Definition 2.5 (0-hitting set complexity, same as [30, Def-

inition 2.10]). For 𝑓 : {0, 1}𝑛 → {0, 1} and input 𝑥 ∈ {0, 1}𝑛 , the
0-hitting set complexity of 𝑓 at 𝑥 , denoted HSC0 (𝑓 , 𝑥), is the mini-
mum size of a set 𝑆 ⊆ [𝑛] that hits each 𝐹 ∈ W0 (𝑓 , 𝑥). The 0-hitting

set complexity of 𝑓 , denoted by HSC0 (𝑓), is defined as
HSC0 (𝑓) = max

𝑥∈{0,1}𝑛
HSC0 (𝑓 , 𝑥) .

To study And decision trees (see Section 2.2), Knop, Lovett,

McGuire and Yuan [30] considered a fractional version of hitting

set complexity, which we define below.

Definition 2.6 (0-fractional hitting set complexity, same

as [30, Definition 2.14]). For 𝑓 : {0, 1}𝑛 → {0, 1} and input 𝑥 ∈
{0, 1}𝑛 , the 0-fractional hitting set complexity of 𝑓 at 𝑥 , denoted
FHSC0 (𝑓 , 𝑥), is 1/𝑝 , where 𝑝 > 0 is the largest number such that
there exists a distribution D on indices 𝑖 ∈ [𝑛] with the property
that Pr𝑖∼D [𝑖 ∈ 𝐹] ≥ 𝑝 for each 𝐹 ∈ W0 (𝑓 , 𝑥). Define FHSC0 (𝑓) =
max𝑥∈{0,1}𝑛 FHSC0 (𝑓 , 𝑥).

Lemma 2.7. Fix 𝑥 ∈ {0, 1}𝑛 , and let (𝑊1,𝑊2, . . . ,𝑊𝑡) ∈ W0 (𝑓 , 𝑥)
be a sequence of blocks (not necessarily different). There there is an
index 𝑗∗ such that |{ℓ : 𝑗∗ ∈𝑊ℓ }| ≥ 𝑡FHSC0 (𝑓).

Proof. Let FHSC0 (𝑓) = 1/𝑝 . From Definition 2.6, we obtain a

distribution D on indices in [𝑛] such that Pr𝑗∼𝐷 [𝑗 ∈𝑊] ≥ 𝑝 , for

each𝑊 ∈ W0 (𝑓 , 𝑥). By linearity of expectation, E𝑗∈𝐷 [|{ℓ : 𝑗 ∈
𝑊ℓ }|] ≥ 𝑝𝑡 , so there must be a choice 𝑗∗ for which the conclusion

of the lemma holds. □

2.2 Decision Trees for Boolean Functions
A deterministic decision tree (DT) on 𝑛 variables is a binary tree

whose internal nodes are labeled by variables and leaves are labeled

{0, 1}. Every internal node has a left child and a right child; the

edge leading to the left child is labeled 0 and the edge leading

to the right child is labeled 1. On an input 𝑥 ∈ {0, 1}𝑛 , the tree’s
computation proceeds from the root down to a leaf as follows.When

the computation reaches a certain node, the variable associated with

that node is queried: if the value obtained is 0, the computation

moves to the left child, otherwise it moves to the right child. The

output of a decision tree𝑇 on input 𝑥 , denoted by𝑇 (𝑥), is the label
of leaf node reached by this computation. We say that a decision

tree𝑇 computes the function 𝑓 : {0, 1}𝑛 → {0, 1} (or𝑇 is a decision

tree for 𝑓), if 𝑇 (𝑥) = 𝑓 (𝑥) for all 𝑥 ∈ {0, 1}𝑛 . The deterministic

decision tree depth complexity of 𝑓 , is

D
dt (𝑓) := min

𝑇 :𝑇 computes 𝑓
Depth(𝑇).

Analogously the deterministic decision tree size complexity of 𝑓 is

DSize
dt (𝑓) := min

𝑇 :𝑇 computes 𝑓
Size(𝑇),

where Size(𝑇) is the number of leaves in 𝑇 .

A randomized query algorithm/decision tree A is a distribution

DA over deterministic decision trees. The computation of A on

871

STOC ’23, June 20–23, 2023, Orlando, FL, USA Arkadev Chattopadhyay, Yogesh Dahiya, Nikhil S. Mande, Jaikumar Radhakrishnan, and Swagato Sanyal

input 𝑥 proceeds by sampling a deterministic decision tree 𝑇 ac-

cording to DA , and outputs the label of the leaf reached by 𝑇 on 𝑥 .

A computes 𝑓 with error at most 𝜀 if for every input 𝑥 , the proba-

bility that 𝐴(𝑥) = 𝑓 (𝑥) is at least 1 − 𝜀. The cost of the randomized

algorithm is measured by the number of worst-case queries made

by A on any input 𝑥 , i.e., the maximum depth over all decision

trees in the support of the distribution. The 𝜀-error randomized

decision tree complexity of 𝑓 , denoted R
dt

𝜀 (𝑓), is the minimum cost

of such a randomized decision tree. The randomized decision tree

size of 𝑓 , denoted by RSize
dt

𝜀 (𝑓), is defined similarly. That is,

RSize
dt

𝜀 (𝑓) = min

A computes 𝑓

with error ≤𝜀

max

𝑇 :DA (𝑇)>0

Size(𝑇).

Each internal node of a standard decision tree corresponds to a

variable being queried. Generalizing the class of permitted queries

gives rise to many variants of decision trees that have been consid-

ered in different contexts. In each variant, the relevant deterministic

and randomized decision tree complexities are defined just as above.

In our work, we are interested in three such classes.

• When the permitted queries are And of (non-negated) vari-

ables, we refer to such trees as And-decision trees (ADT). We

let D
∧-dt (·) and R

∧-dt

𝜀 (·) denote the deterministic and 𝜀-error

randomized decision tree complexities, respectively, in this

model.

• When the permitted queries are And of a subset of variables

(And query) or an Or of a subset of variables (Or query), we

refer to such trees as (And,Or)-decision trees ((And,Or)-
DT). We let D

(∧,∨)-dt (·) and R
(∧,∨)-dt

𝜀 (·) denote the deter-

ministic and 𝜀-error randomized decision tree complexities,

respectively, in this model.

• When the permitted queries are just variables, but the depth

of a path is measured by the number of queries answered

as 0 on the path, we refer to deterministic and 𝜀-error ran-

domized decision tree complexities as D
0-dt (·) and R

0-dt

𝜀 (·),
respectively. We use the term ‘0-depth’ of a decision tree to

refer to the longest root-to-leaf path where only 0-labelled

edges contribute to the length.

Throughout this paper, when we drop 𝜀 from the subscript of a

randomized decision tree (possibly with generalized queries as

above) measure, we assume 𝜀 = 1/3.

Definition 2.8 (Query tree, qery set, transcript). A de-
terministic query tree on 𝑛 variables is a rooted binary tree where
every node is labelled by a variable. Unlike a decision tree, a query
tree does not return the value of any function at the leaves. (It rep-
resents a strategy for querying variables with the goal of finding a
certificate.) By dropping its leaves, we regard a decision tree for a
function as a query tree. A randomized query tree is modelled as a
distribution over deterministic query trees. For a query tree 𝑇 and
an input 𝑥 ∈ {0, 1}𝑛 , let 𝑄𝑇 (𝑥) be the set of indices of variables
queried by𝑇 on input 𝑥 ; the transcript of𝑇 on input 𝑥 is the sequence
𝜎𝑇 (𝑥) = (⟨𝑖𝑡 , 𝑥 [𝑖𝑡]⟩ : 𝑡 = 1, 2, . . .), where 𝑖𝑡 is the index of the input
bit of 𝑥 probed by𝑇 in the 𝑡-th step. For a randomized query tree𝑇 , let
𝑇 ⊗ℓ be the randomized query tree corresponding to performing ℓ in-
dependent computations of the query tree𝑇 . We use Size(𝑇) to denote
the number of distinct transcripts of 𝑇 over all inputs 𝑥 ∈ {0, 1}𝑛 .

We define the notion of rank of a decision tree introduced by

Ehrenfeucht and Haussler [17]. We also define randomized rank,

a natural randomized variant of the same studied by Cornelissen,

Mande and Patro [15].

Definition 2.9 (Decision tree rank and randomized rank).

Let 𝑇 be a binary decision tree. Define the rank of 𝑇 recursively as
follows. For a leaf node 𝑎, let rank(𝑎) = 0. For an internal node 𝑢 with
children 𝑣,𝑤 , let

rank(𝑢) =
{

max {rank(𝑣), rank(𝑤)} if rank(𝑣) ≠ rank(𝑤)
rank(𝑣) + 1 if rank(𝑣) = rank(𝑤) .

Define rank(𝑇) to be the rank of the root of𝑇 . Define the randomized

rank of a randomized decision tree to be the maximum rank of a
deterministic decision tree in its support.

Definition 2.10 (Rank of a Boolean function). For a Boolean
function 𝑓 : {0, 1}𝑛 → {0, 1}, define the rank of 𝑓 , which we denote
by rank(𝑓), by rank(𝑓) = min𝑇 :𝑇 computes 𝑓 rank(𝑇). Analogously
define the randomized rank of 𝑓 , which we denote by rrank(𝑓), to be
the minimum randomized rank of a randomized decision tree that
computes 𝑓 to error 1/3.

The following rank and size relationship is known for Boolean

functions.

Proposition 2.11 ([17, Lemma 1]). For a Boolean function 𝑓 :

{0, 1}𝑛 → {0, 1},

rank(𝑓) ≤ log DSize
dt (𝑓) ≤ rank(𝑓) log

(
𝑒𝑛

rank(𝑓)

)
,

rrank(𝑓) ≤ log RSize
dt (𝑓) ≤ rrank(𝑓) log

(
𝑒𝑛

rrank(𝑓)

)
Ehrenfeucht and Haussler [17] only deal with deterministic trees.

The analogous result holds for randomized trees because we may

apply the relevant deterministic result to all trees in the support of

the given randomized tree.

2.3 Required Results
This section contains some required results that give bounds on

some combinatorial measures and on certain decision tree measures

of Boolean functions defined in the earlier two subsections.

Cover number gives a lower bound on deterministic decision

tree size. Each leaf of a decision tree corresponds to a monochro-

matic subcube generated by the partial assignments defined by the

root to leaf path. Thus a deterministic decision tree computing a

function 𝑓 induces a monochromatic subcube partition of 𝑓 , giving

the following.

Proposition 2.12. For every Boolean function 𝑓 : {0, 1}𝑛 →
{0, 1}, DSize

dt (𝑓) ≥ N(𝑓).

In the other direction, Ehrenfeucht and Haussler [17, Lemma 1,

Lemma 6] gave the following upper bound on the logarithm of the

decision tree size of a function 𝑓 . The version we state below can

be found in [27, Theorem 14.32], for example.

Theorem 2.13 ([27, Theorem 14.32]). For every Boolean function
𝑓 : {0, 1}𝑛 → {0, 1}, log DSize

dt (𝑓) = 𝑂 (log
2

N(𝑓) · log𝑛).

872

Randomized versus Deterministic Decision Tree Size STOC ’23, June 20–23, 2023, Orlando, FL, USA

Lemma 2.14. Suppose 𝑓 : {0, 1}𝑛 → {0, 1} and 𝑦 ∈ {0, 1}𝑛 .
Suppose 𝑇 is an 𝜀-error randomized decision tree for 𝑓 , 𝐵 ∈ W(𝑓 , 𝑦)
is a sensitive block of 𝑓 at 𝑦, and𝑊 ⊆ W(𝑓 , 𝑦) is a set of sensitive
blocks of 𝑓 at 𝑦. Then,

(a) Pr[𝑄𝑇 (𝑦) ∩ 𝐵 = ∅] ≤ 2𝜀.
(b) Pr[𝑄𝑇 ⊗ℓ (𝑦) ∩ 𝐵 = ∅] ≤ (2𝜀)ℓ .
(c) Pr[𝑄𝑇 ⊗ℓ (𝑦) is a hitting set for𝑊] ≥ 1 − (2𝜀)ℓ |𝑊 |.

Proof. For part (a), we have

1 = Pr[𝑓 (𝑦) ≠ 𝑓 (𝑦 ⊕ 1𝐵)]
≤ Pr[𝑓 (𝑦) ≠ 𝑇 (𝑦)] + Pr[𝑇 (𝑦) ≠ 𝑇 (𝑦 ⊕ 1𝐵)]
+ Pr[𝑇 (𝑦 ⊕ 1𝐵) ≠ 𝑓 (𝑦 ⊕ 1𝐵)]

≤ 2𝜀 + Pr[𝑇 (𝑦) ≠ 𝑇 (𝑦 ⊕ 1𝐵)] .
Thus, Pr[𝑇 (𝑦) ≠ 𝑇 (𝑦 ⊕ 1𝐵)] ≥ 1 − 2𝜀. Then,

Pr[𝑄𝑇 (𝑦) ∩ 𝐵 = ∅] ≤ Pr[𝑇 (𝑦) = 𝑇 (𝑦 ⊕ 1𝐵)]
= 1 − Pr[𝑇 (𝑦) ≠ 𝑇 (𝑦 ⊕ 1𝐵)] ≤ 2𝜀.

Part (b) follows from part (a) because 𝑇 ⊗ℓ
corresponds to ℓ inde-

pendent computations performed on 𝑇 ; in particular, 𝑄𝑇 ⊗ℓ (𝑦) =

𝑄1 ∪ 𝑄2 ∪ · · · ∪ 𝑄ℓ , where the 𝑄𝑖 are independent and each has

the same distribution as 𝑄𝑇 (𝑦). By a union bound over all 𝐵 ∈𝑊 ,

we have Pr[∃𝐵 ∈ 𝑊 : 𝑄𝑇 ⊗ℓ (𝑦) ∩ 𝐵 = ∅] ≤ (2𝜀)ℓ |𝑊 |. Part (c)
immediately follows. □

Proposition 2.15. 𝑄 ⊆ [𝑛] contains a certificate for 𝑓 at 𝑥 iff 𝑄

intersects every block inW(𝑓 , 𝑥).

Proof. Suppose 𝑄 contains a certificate for 𝑓 at 𝑥 . If 𝑄 does

not intersect a block 𝐵 in W(𝑓 , 𝑥), then 𝑦 = 𝑥 ⊕ 1𝐵 and 𝑥 agree

on all the positions in 𝑄 but 𝑓 (𝑥) ≠ 𝑓 (𝑦)—a contradiction; thus 𝑄
intersects every block inW(𝑓 , 𝑥). Next suppose𝑄 intersects every

block in W(𝑓 , 𝑥). Suppose for some 𝑦, we have 𝑓 (𝑥) ≠ 𝑓 (𝑦); we
will show that 𝑥 and 𝑦 differ in some position in 𝑄 . Now, 𝑥 ⊕ 𝑦 is a

characteristic vector of a sensitive block of 𝑓 at 𝑥 , and must include

in it a block in W(𝑓 , 𝑥); 𝑄 intersects this block, so 𝑥 and 𝑦 differ

in a position in 𝑄 . □

And query complexity is tightly related to 0-depth query com-

plexity, which was introduced by Loff and Mukhopadhyay [32].

Claim 2.16 ([32], [30, Claim 4.4]). For every Boolean function
𝑓 , we have D

0-dt (𝑓) ≤ D
∧-dt (𝑓) ≤ D

0-dt (𝑓) log𝑛 and R
0-dt (𝑓) ≤

R
∧-dt (𝑓) ≤ R

0-dt (𝑓) log𝑛.

While Loff and Mukhopadhyay [32], and Knop, Lovett, McGuire

and Yuan [30] only deal with deterministic trees, the analogous

result for randomized trees can easily be seen to hold true by ap-

plying the relevant deterministic result to all trees in the support

of the relevant randomized tree.

3 RANDOMIZED VERSUS DETERMINISTIC
SIZE COMPLEXITY

In this section, we establish upper bounds for N(𝑓) and DSize
dt (𝑓)

in terms of RSize
dt (𝑓). We present these upper bounds in Theo-

rem 3.1 below. In the next section, we will make use of part (a)

of this theorem to obtain similar results for decision trees with

(And,Or) queries and And queries.

Theorem 3.1 (Main result). For every Boolean function 𝑓 :

{0, 1}𝑛 → {0, 1}, we have the following.
(a) log N(𝑓) = 𝑂 ((log RSize

dt (𝑓))2
log(𝑛)).

(b) log DSize
dt (𝑓) = 𝑂 ((log RSize

dt (𝑓))4
log

3 (𝑛)) .

As we stated in the introduction, the block number of a Boolean

function plays a central role in our argument. In the following two

lemmas the block number appears first in the lower bound and then

in an upper bound.

Lemma 3.2. Let 𝑓 : {0, 1}𝑛 → {0, 1}. Then, for all 𝑥 ∈ {0, 1}𝑛 , we
have

(
1

2

)
#bs(𝑓 , 𝑥) ≤ RSize

dt

1/3
(𝑓)2 log𝑛 .

Lemma 3.3. Let 𝑓 : {0, 1}𝑛 → {0, 1}. Then,

N(𝑓) ≤ 𝑛 · RSize
dt

1/3
(𝑓)2 log #bs(𝑓) .

Before justifying these lemmas formally, we first verify that our

main result follows from them.

Proof of Theorem 3.1. The theorem clearly holds if 𝑓 is a con-

stant functions. So we assume that 𝑓 is not constant; in particular,

we assume that RSize
dt

1/3
(𝑓) ≥ 2. From Lemma 3.3 and Lemma 3.2

we obtain

log N(𝑓) ≤ log𝑛 + log RSize
dt

1/3
(𝑓) · 2 log #bs(𝑓);

≤ log𝑛 + 2 log RSize
dt

1/3
(𝑓) (log RSize

dt

1/3
(𝑓) · 2 log𝑛 + 1)

= 𝑂 ((log RSize
dt

1/3
(𝑓))2 · log𝑛) .

Part (b) follows by combining part (a) with Theorem 2.13. □

We now prove the lemmas.

Proof of Lemma 3.2. Let 𝑇 be an (1/3)-error randomized deci-

sion tree for 𝑓 . Fix 𝑥 ∈ {0, 1}𝑛 . For 𝐵 ∈ W(𝑓 , 𝑥), let 𝑦𝐵 = 𝑥 ⊕ 1𝐵 .

Since 𝐵 is minimal, we have 𝑓 (𝑦𝐵) ≠ 𝑓 (𝑦𝐵 ⊕ 1{𝑖 }) for all 𝑖 ∈ 𝐵;

that is, {𝑖} ∈ W(𝑓 , 𝑦𝐵). With ℓ = ⌊2 log𝑛⌋ (assume 𝑛 is large) and

𝑊 = {{𝑖} : 𝑖 ∈ 𝐵}, we conclude from Lemma 2.14 (c) that

Pr[𝑄𝑇 ⊗ℓ (𝑦𝐵) ⊇ 𝐵] ≥ 1 −
(

2

3

)ℓ
|𝐵 | ≥ 1 −

(
1

2𝑛

)
|𝐵 | ≥ 1

2

.

Thus, using linearity of expectation, we may fix a deterministic tree

𝑇 ∗
in the support of 𝑇 ⊗ℓ

such that for at least half of the #bs(𝑓 , 𝑥)
choices for 𝐵, we have 𝑄𝑇 ∗ (𝑦𝐵) ⊇ 𝐵; let𝑊 ′

be the set of these 𝐵.

For each 𝐵 ∈𝑊 ′
, let 𝜎𝐵 = 𝜎𝑇 ∗ (𝑦𝐵) be the transcript of 𝑇 ∗

on input

𝑦𝐵 . We make two remarks.

(a) Since the blocks inW(𝑓 , 𝑥) are minimal, for distinct 𝐵, 𝐵′ ∈
W(𝑓 , 𝑥), there is an 𝑖 ∈ 𝐵 \ 𝐵′; for this 𝑖 , 𝑦𝐵 [𝑖] = 𝑥 [𝑖] + 1 ≠

𝑥 [𝑖] = 𝑦𝐵′ [𝑖] (mod 2). (There is a similar 𝑖′ ∈ 𝐵′ \ 𝐵, but
we won’t need it.) Thus, for distinct 𝐵, 𝐵′ ∈ 𝑊 ′

, we have

𝜎𝐵 ≠ 𝜎′
𝐵
.

(b) Since 𝑇 ∗
is obtained by picking ℓ trees in the support of 𝑇

and running them one after the other, the total number of

possibilities for 𝜎𝐵 is at most Size(𝑇)ℓ .
Since 𝑇 was an arbitrary (1

3
)-error decision tree for 𝑓 , we con-

clude from the above remarks that RSize
dt

1/3
(𝑓)2 log𝑛 ≥ |𝑊 ′ | ≥

1

2
#bs(𝑓 , 𝑥). □

873

STOC ’23, June 20–23, 2023, Orlando, FL, USA Arkadev Chattopadhyay, Yogesh Dahiya, Nikhil S. Mande, Jaikumar Radhakrishnan, and Swagato Sanyal

Proof of Lemma 3.3. Let 𝑇 be a (1

3
)-error randomized decision

tree for 𝑓 . Fix 𝑥 ∈ {0, 1}𝑛 , and let 𝑊 = W(𝑓 , 𝑥). Recall from
Proposition 2.15 that a set 𝑄 contains a certificate for 𝑓 at 𝑥 iff

𝑄 intersects every set in W(𝑓 , 𝑥). Now, set ℓ = 2 log #bs(𝑓) and
conclude from Lemma 2.14 (c) that

Pr[𝑄𝑇 ⊗ℓ (𝑥) contains a certificate for 𝑓 at 𝑥]
= Pr[𝑄𝑇 ⊗ℓ (𝑥) is a hitting set forW(𝑓 , 𝑥)]

≥ 1 −
(

2

3

)ℓ
#bs(𝑓) > 1

2

.

Let 𝑇1,𝑇2, . . . ,𝑇𝑛 be 𝑛 trees each picked with the same distribution

as𝑇 ⊗ℓ
. Then, using a union bound over all 𝑥 ∈ {0, 1}𝑛 , we conclude

that with non-zero probability, for all 𝑥 ∈ {0, 1}𝑛 , there is an 𝑖 such
that 𝑄𝑇𝑖 (𝑥) contains a certificate of 𝑥 . Fix a choice 𝑇 ∗

1
,𝑇 ∗

2
, . . . ,𝑇 ∗

𝑛

of deterministic query trees in the support of 𝑇 ⊗ℓ
such that for all

𝑥 , there is an 𝑖 such that 𝑄𝑇 ∗
𝑖
(𝑥) includes a certificate of 𝑓 at 𝑥 . Let

𝜎𝑖 (𝑥) = 𝜎𝑇 ∗
𝑖
(𝑥) be the transcript of 𝑇 ∗

𝑖
on input 𝑥 ; let 𝐶𝑖,𝑥 = {𝑦 :

𝜎𝑖 (𝑥) = 𝜎𝑖 (𝑦)}. Note that each 𝐶𝑖,𝑥 is a subcube; furthermore, if

𝑄𝑇 ∗
𝑖
(𝑥) contains a certificate for 𝑥 , then𝐶𝑖,𝑥 is monochromatic. For

every 𝑖 , the number of possibilities for 𝜎𝑖 (𝑥) and hence 𝐶𝑖,𝑥 is at

most Size(𝑇)ℓ . Then,
{𝐶𝑖,𝑥 : 𝑖 ∈ [𝑛], 𝑥 ∈ {0, 1}𝑛 and 𝑄𝑇 ∗

𝑖
(𝑥) contains a certificate for 𝑥}

is a cover for 𝑓 with at most 𝑛 · Size(𝑇)ℓ subcubes. Since 𝑇 was an

arbitrary

(
1

3

)
-error protocol, the lemma follows. □

3.1 A Better Bound for Monotone Functions
In this section, we observe that for monotone functions we can

obtain better bounds than those provided by Theorem 3.1.

Theorem 3.4 (Improvement for monotone functions). Sup-
pose 𝑓 : {0, 1}𝑛 → {0, 1} is monotone. Then, we have the following.

(a) log N(𝑓) = 𝑂 (log RSize
dt (𝑓) log(𝑛));

(b) log DSize
dt (𝑓) = 𝑂 ((log RSize

dt (𝑓))2
log

3 (𝑛)).

Proof. Note that part (b) follows from part (a) and Theorem 2.13.

Part (a) clearly holds if 𝑓 is a constant function, so we restrict

attention to functions 𝑓 that are not constant. Note that #bs(𝑓 , 0𝑛) =
N1 (𝑓), for we have a distinct minimal sensitive block from each

minterm; similarly, #bs(𝑓 , 1𝑛) = N0 (𝑓), for we have one minimal

sensitive block from eachmaxterm. It follows that N(𝑓) ≤ 2·#bs(𝑓).
Then,

log N(𝑓) ≤ log(#bs(𝑓)) + 1 = 𝑂 (log RSize
dt (𝑓) log𝑛),

where the last inequality follows from Lemma 3.2. □

4 (AND,OR) QUERY COMPLEXITY AND AND

QUERY COMPLEXITY
In the previous section, we established that for every total function,

there is a deterministic decision tree whose size is bounded by a

quasi-polynomial of the size of its smallest randomized decision tree

(ignoring some polynomial factors involving log𝑛 in the exponent).

Though this result referred to decision tree size, we now use it to

derive consequences for the randomized and deterministic depth in

the (And,Or) decision tree model, and in the And (Or) decision

tree model.

4.1 Randomized versus Deterministic (And,Or)
Query Complexity

The following is our main theorem in this subsection, that shows

that randomness does not offer much advantage in the (And,Or)

decision tree model.

Theorem 4.1. For every Boolean function 𝑓 : {0, 1}𝑛 → {0, 1},

D
(∧,∨)-dt (𝑓) = 𝑂 (R(∧,∨)-dt (𝑓)4

log
7 (𝑛)) .

The translation is achieved by showing that for all functions,

the logarithm of the size of the best ordinary decision tree and the

depth of an (And,Or) decision tree are closely related.

Lemma 4.2. For every Boolean function 𝑓 : {0, 1}𝑛 → {0, 1}, we
have

log DSize
dt (𝑓)/(2 log𝑛) ≤ D

(∧,∨)-dt (𝑓) ≤ 4 log DSize
dt (𝑓), (2)

log RSize
dt (𝑓)/(2 log𝑛) ≤ R

(∧,∨)-dt (𝑓) ≤ 4 log RSize
dt (𝑓) . (3)

Proof of Theorem 4.1. We use the second inequality of Equa-

tion (2) and the first inequality of Equation (3). We then have

D
(∧,∨)-dt (𝑓) ≤ 4 log DSize

dt (𝑓)

= 𝑂 ((log RSize
dt (𝑓))4 (log𝑛)3)

= 𝑂 (R(∧,∨)-dt (𝑓)4
log

7 (𝑛)).
The first line above follows from the second inequality in Equa-

tion (2), the second line by Theorem 3.1 (b), and the last line by the

first inequality in Equation (3). □

It remains to establish Lemma 4.2. We need two observations,

which we state in the following lemmas. We first observe that if

(And,Or) queries are allowed, then an arbitrary decision tree can

be balanced so that the depth of the resulting (And,Or) decision

tree is logarithmic in the size of the original tree.

Lemma 4.3. Suppose 𝑇 is an ordinary decision tree for a function
𝑓 . Then, there is an (And,Or) decision tree 𝐶 for 𝑓 such that.

Depth
(∧,∨)-dt (𝐶) ≤ 4 log DSize

dt (𝑇).

This lemma follows using a tree-balancing argument that has

been used in various settings (Boolean formulas, communication

protocols, etc.) previously. A formal justification appears in the

full version of our paper [11]. Note that Lemma 4.3 immediately

implies the second inequality in Equation (2) and also Equation (3).

To justify the first inequality, we show that (And,Or) decision trees

can be converted to ordinary decision trees whose size is bounded

by an exponential in the depth of the original tree. Our justification

of Lemma 4.2 will be complete once we show the following.

Lemma 4.4. For every (And,Or) decision tree 𝐶 of depth 𝑑 com-
puting 𝑓 , there is an ordinary decision tree 𝑇 computing 𝑓 such that

log Size(𝑇) ≤ 𝑑 log

(
𝑛𝑒
𝑑

)
.

Again we provide a formal justification in the full version of

our paper [11]. An informal argument goes as follows. Replace

each And query in the tree by a skewed ordinary decision tree

for computing And. Label the edges corresponding to the value

0 as Red and the other edges as Blue. Similarly, replace each Or

query by a skewed ordinary decision tree, but this time label the

874

Randomized versus Deterministic Decision Tree Size STOC ’23, June 20–23, 2023, Orlando, FL, USA

edge with label 1 as Red and the edges with label 0 as Blue. In the

resulting tree, we may eliminate nodes where a variable queried

earlier is queried again. Thus we obtain an ordinary decision tree

with depth at most 𝑛 and at most 𝑑 Red edges on any root-to-leaf

path. The number of paths to a leaf in this tree can be bounded

by the number of sequences in {Red, Blue}𝑛 with at most 𝑑 Red

edges; any such sequence can be completed to a sequence with

exactly 𝑛 + 𝑑 elements, with exactly 𝑑 Reds; thus, the number of

leaves is at most

(𝑛+𝑑
𝑑

)
≤

(
2𝑒𝑛
𝑑

)𝑑
.

4.2 Randomized versus Deterministic
And Query Complexity

In the previous subsection, we saw an application of our main

result to (And,Or) decision tree depth. That application crucially

depended on our ability to balance decision trees by using (And,Or)

queries. With just And queries, we cannot use the same argument.

Nevertheless, in this section, we show that randomness does not

offer much advantage even in the And decision tree model.

Theorem 4.5. For every Boolean function 𝑓 : {0, 1}𝑛 → {0, 1},
D
∧-dt (𝑓) = 𝑂 (R∧-dt (𝑓)3

log
4 (𝑛)).

Recall from Claim 2.16 that And decision tree depth complexity

is bounded from below and above (up to an 𝑂 (log𝑛) factor) by 0-

depth complexity, both in the deterministic and randomized settings.

In this section, we will work mainly with 0-depth complexity and

use this connection to derive our conclusion on And decision tree

depth complexity.

Once again, our proof relies on two observations. First, a random-

ized decision tree of small 0-depth provides us a way of efficiently

hitting the 0-blocks of 𝑓 at any input. We formalize this using the

notion of 0-fractional hitting set complexity.

Lemma 4.6. FHSC0 (𝑓) = 𝑂 (R0-dt (𝑓)).

Our next observation allows us to build 0-depth decision trees

from 0-fractional hitting sets. This argument, which can be regarded

as the analog of the result of Ehrenfeucht and Haussler [17] (see

Theorem 2.13), is the main technical argument of this section.

Lemma 4.7. D
0-dt (𝑓) = 𝑂 (FHSC0 (𝑓) (log N0 (𝑓) + log N1 (𝑓))).

Before we formally justify these observations, let us see how

they imply Theorem 4.5.

Proof of Theorem 4.5. We have

D
∧-dt (𝑓) ≤ D

0-dt (𝑓) log𝑛 (Claim 2.16)

= 𝑂 (FHSC0 (𝑓) · (log N0 (𝑓) + log N1 (𝑓))) log𝑛 (Claim 4.7)

= 𝑂 (R0-dt (𝑓) · (log N0 (𝑓) + log N1 (𝑓)) log𝑛) (Claim 4.6)

= 𝑂 (R0-dt (𝑓) · log N(𝑓) · log𝑛)

= 𝑂 (R0-dt (𝑓) · (log RSize
dt (𝑓))2 · log

2 𝑛) (Theorem 3.1 (a))

(∗)
= 𝑂 (R0-dt (𝑓)3 · log

4 𝑛) (Equation (4))

= 𝑂 (R∧-dt (𝑓)3 · log
4 𝑛) . (Claim 2.16)

The inequality marked (*) holds because a decision tree 𝑇 on 𝑛

variables (that queries no variable twice on the same path) with

0-depth 𝑑 has at most

(𝑛+𝑑
𝑑

)
leaves (see Lemma 4.4); thus

log RSize
dt (𝑓) = 𝑂 (R0-dt (𝑓) log𝑛). (4)

□

Proof of Claim 4.7. We first present an informal overview. Sup-

pose FHSC0 (𝑓) = 1/𝑝 . Then, by Lemma 2.7, for every input 𝑧 and

(multi-)set𝑊 of sensitive 0-blocks of 𝑓 at 𝑧, there is a variable that

hits at least a fraction 𝑝 of the blocks in𝑊 . Our strategy for building

the decision tree for 𝑓 is as follows. After having queried some vari-

ables, we restrict attention to the unset variables, and the function

induced on these variables. If the restricted function is a constant

function, then we announce the value. Otherwise, we present a

specific reference input (consistent with the answers received to the

queries so far) and consider a (multi-)set𝑊 of sensitive 0-blocks

of this input. The property above ensures that there is a variable

that lies in a fraction 𝑝 of these blocks. We query this variable; the

choice of the variable will ensure that if this bit is 0 (in the actual

input, not in the reference input), then after querying this bit, the

size of either the 0-cover or the 1-cover for the restricted function

will be at most a factor 1 − 𝑝 of what it was before the current step.

Thus, on any input, by the time 𝑡∗ = ⌈(1/𝑝) ln(N0 (𝑓) · N1 (𝑓))⌉ bits
read turn out to be zero, either the 0-cover number or the 1-cover

number for the restricted function will have become zero, making

the restricted function constant. To implement this strategy, we

need to specify how the following are determined at each step.

Suppose we wish to compute 𝑓 (𝑥).
Reference input: Our reference input 𝑧 will initially be set

to (0, 0, . . . , 0). Suppose the input bit 𝑥 [𝑖] is queried in a certain

step; we obtain the next reference input by changing that bit of

the current reference input from 0 to 𝑥 [𝑖]. Thus, at every stage,

the reference input is consistent with the part of 𝑥 discovered by

previous queries; the variables not yet queried continue to be 0.

The set of 0-blocks: Let 𝑆 ⊆ [𝑛] be the indices of variables

queried so far and 𝜌 : 𝑆 → {0, 1} be the assignment obtained

for them. Restrict attention to the variables with indices not in 𝑆 .

Assume that this restricted function is not constant, that is, the

optimal size of 0-cover and 1-cover are at least 1. Note that the

reference input 𝑧 assigns zeros to all the unset variables. We have

two cases.

• Suppose 𝑓 (𝑧) = 0: For each subcube 𝐶 in the 1-cover consis-

tent with the queried variables (for 𝑖 ∈ 𝑆 , 𝑥 [𝑖] is unset or set
to 𝜌 (𝑖) in 𝐶), identify it with a conjunction of the form∧

𝑗∈𝐵𝐶
𝑥 [𝑗] ∧

∧
𝑗∈𝐵′

𝐶

𝑥 [𝑗], (5)

where 𝐵𝐶 = {𝑖 : 𝑖 ∉ 𝑆 and 𝑥 [𝑖] is set to 1 in 𝐶} and 𝐵′
𝐶
= {𝑖 :

𝑖 ∉ 𝑆 and 𝑥 [𝑖] is set to 0 in 𝐶}. Since 𝑓 (𝑧) = 0, each 𝐵𝐶 must

be non-empty; furthermore, each 𝐵𝐶 is a sensitive 0-block for

𝑓 at 𝑧. We define𝑊 to be the multiset {𝐵𝐶 : 𝐶 is a subcube

in the 1-cover consistent with the queried variables}.
• Suppose 𝑓 (𝑧) = 1: We consider subcubes in the optimal

0-cover consistent with the queried variables, and identify

each of them with a conjunction of the form (5). We obtain

a multi-set𝑊 of sensitive 0-blocks for the reference input 𝑧

as before.

875

STOC ’23, June 20–23, 2023, Orlando, FL, USA Arkadev Chattopadhyay, Yogesh Dahiya, Nikhil S. Mande, Jaikumar Radhakrishnan, and Swagato Sanyal

The bit to be queried next: By construction, each block in𝑊

is a sensitive 0-block for the reference input 𝑧. So by the property

stated at the outset, there is a variable 𝑥 [𝑖] that belongs to at least a
fraction 𝑝 of the blocks in𝑊 (counted with multiplicity). Note that

if this variable is queried and the input bit 𝑥 [𝑖] is revealed to be

zero, then the subcubes𝐶 in the cover corresponding to blocks in𝑊

where 𝑖 ∈ 𝐵𝐶 do not contribute to the cover for the new restricted

function.

At each step, if the value of 𝑓 has not yet been determined, we

determine the next variable to be queried as described above. This

completes the description of our strategy. It remains to bound the 0-

depth of the decision tree corresponding to this strategy. Let N
𝑡
0
and

N
𝑡
1
denote the number of subcubes surviving (that is, consistent

with values the variables already queried) after 𝑡 queries. Note

that surviving subcubes form a cover for the restricted function,

although it need not be optimal. Consider the quantity𝑀𝑡 = N
𝑡
0
·N𝑡

1
.

Initially,𝑀0 = N0 (𝑓) · N1 (𝑓); and in general𝑀𝑡 ≤ 𝑀0 (1 − 𝑝)𝑡 . Set
𝑡∗ = ⌈(1/𝑝) ln(N0 (𝑓) · N1 (𝑓))⌉. Suppose we read at least 𝑡∗ + 1

zeros; then𝑀𝑡∗ < 1, that is,𝑀𝑡∗ = 0 (one of the covers has become

empty); but then we would have stopped when we read 𝑡∗ zeros—
a contradiction. It follows that the 0-depth of the decision tree

underlying this strategy is 𝑂 ((1/𝑝) log(N0 (𝑓) · N1 (𝑓)). □

Proof of Claim 4.6. Let 𝑇 be an 𝜀-error randomized decision

tree for 𝑓 with 0-depth 𝑑 . We will show that for each 𝑥 ∈ {0, 1}𝑛 ,
we have

FHSC0 (𝑓 , 𝑥) ≤
𝑑

1 − 2𝜀
. (6)

Our claim will follow from this, because 𝑇 was fixed arbitrarily. By

Lemma 2.14, for each block 𝐵 ∈ W0 (𝑓 , 𝑥), we have Pr[𝑄𝑇 (𝑥) ∩𝐵 ≠

∅] ≥ 1 − 2𝜀. Let 𝑄0

𝑇
(𝑥) = {𝑖 ∈ 𝑄𝑇 (𝑥) : 𝑥 [𝑖] = 0}; note that

|𝑄0

𝑇
(𝑥) | ≤ 𝑑 . Since 𝐵 is a zero block of 𝑓 at 𝑥 , we have that 𝑥 [𝑖] = 0

for each 𝑖 ∈ 𝐵; thus, Pr[𝑄0

𝑇
(𝑥) ∩ 𝐵 ≠ ∅] ≥ 1 − 2𝜀. Let the index 𝐼

be chosen uniformly from𝑄0

𝑇
(𝑥). Then, for each 𝐵 ∈ W0 (𝑓 , 𝑥), we

have Pr[𝐼 ∈ 𝐵] ≥ (1 − 2𝜀)/𝑑 . This establishes Equation (6): we take

the distribution of 𝐼 as the distribution 𝐷 required in the definition

of FHSC0 (𝑓 , 𝑥) (see Definition 2.6). □

5 CONCLUSIONS
Nisan’s result from the late eighties [35] can be viewed as the analog

of derandomizing time for decision trees. The complexity measure

of logarithm of decision tree size may naturally be thought of as the

analog of space for decision trees. In this light, wewould like to view

our main theorem as providing a derandomization of space in the

decision tree model. Nisan’s result upper bounds the deterministic

depth complexity of a function 𝑓 by the cube of its randomized

depth. It remains an outstanding problem to determine if this gap

is achieved by some total function. Relatively recently, a new total

function was defined by Göös, Pitassi and Watson [21] to separate

deterministic partition number and communication complexity by

a quadratic factor, solving a longstanding problem. A modification

of this function, which we refer to henceforth as the modified GPW

function, was shown in [1] to achieve a quadratic gap between the

bounded-error randomized and deterministic decision tree depth.

In particular, the modified GPW function has deterministic depth

Ω(𝑛) but randomized depth Θ(
√
𝑛). No better separation is known

for depth for any function.

It becomes natural to wonder if our Theorem 1.1 obtains the

optimal relationship between the logarithms of randomized and

deterministic decision tree size. Interestingly, even though the mod-

ified GPW function provided a breakthrough in increasing the

known gap between randomized and deterministic depth, it turns

out that both its deterministic and randomized size is 2
Θ̃(

√
𝑛)
. We

observe however (see Section C), that lifting a function with the

XOR gadget lifts a deterministic-randomized depth separation to

a deterministic-randomized log size separation. Thus, the largest

known separation between the logarithms of randomized and de-

terministic decision tree size is quadratic as well.

For ADT’s, again it can be shown that the modified GPW func-

tion fails to generate any advantage for randomized algorithms

w.r.t. depth, however lifting it by the XOR gadget again gives a qua-

dratic separation. It would be interesting to find either functions

yielding larger gaps or to narrow down the gap from cubic given

by our Theorem 1.3.

ACKNOWLEDGMENTS
We thank Shachar Lovett for useful comments on an earlier draft

of this paper, and Weiqiang Yuan for pointing out to us that the

best possible separation between logarithm of deterministic deci-

sion tree size and logarithm of randomized decision tree size, and

between deterministic and randomized ADT’s, must be at least

quadratic. AC was partially supported by the Science & Engineer-

ing Research Board of the DST, India, through the MATRICS grant

MTR/2019/001633. NSM was supported by the Dutch Research

Council (NWO), as part of the Quantum Software Consortium pro-

gramme (project number 024.003.037). JR was partially supported

by the Science & Engineering Research Board of the DST, India,

through theMATRICS grant MTR/2019/001226. AC and JR were par-

tially supported by the Department of Atomic Energy, Government

of India, under project 12-R&D-TFR-5.01-0500. SS was supported

through an ISIRD grant by SRIC, IIT Kharagpur.

A LOWER BOUNDS FOR RANDOMIZED
DECISION TREE SIZE

In this section we first observe that randomized communication

complexity gives a lower bound on randomized decision tree size.

As a consequence, using a communication lower bound due to Göös

and Jayram [20], we conclude a lower bound on the randomized de-

cision tree size of the And-Or tree on 𝑛 variables, nearly matching

the upper bound implied by the following result.

Theorem A.1 ([37]). Let 𝑓 : {0, 1}𝑛 → {0, 1} be the And-Or tree
on 𝑛 variables. Then, R

dt

1/3
(𝑓) = Θ(𝑛0.753...).

This immediately implies

RSize
dt

1/3
(𝑓) = 2

𝑂 (𝑛0.753...) . (7)

After this, we give a general template to prove randomized decision

tree size lower bounds and demonstrate its use by showing lower

bounds for specific classes of Boolean functions.

876

Randomized versus Deterministic Decision Tree Size STOC ’23, June 20–23, 2023, Orlando, FL, USA

A.1 Communication Complexity
We refer the reader to the full version of our paper [11] for the

relevant preliminaries in communication complexity. We require

the following theorem due to Göös and Jayram [20, Theorem 2.3].

Theorem A.2. Let 𝐹 : {0, 1}𝑛 × {0, 1}𝑛 → {0, 1} be the And-Or
tree on 2𝑛 inputs, where Alice gets the first bit of every bottom gate
and Bob gets the rest. Then, R

cc

𝜀 (𝐹) = Ω̃(𝑛0.753...).

A.2 Lower Bounds via Communication
Complexity

We observe the following.

Lemma A.3. Let 𝑓 : {0, 1}𝑛 → {0, 1} be a Boolean function
such that R

cc

𝜀 (𝑓) ≥ 𝑐 under some partition of the inputs. Then,
RSize

dt

𝜀 (𝑓) = 2
Ω (𝑐) .

Proof. Consider an arbitrary partition of inputs between Alice

and Bob. Consider a randomized decision tree of size 𝑠 computing

𝑓 to error 𝜀. One obtains a communication protocol for 𝑓 in the

following way: Alice and Bob sample a tree from the underlying dis-

tribution of the randomized decision tree using public randomness.

They then evaluate this tree from the root down using a communi-

cation protocol; if a node has the label of a variable held by Alice

(Bob), she (he) sends its value to Bob (Alice) and they continue in

the relevant subtree. When they reach a leaf they output the value

at that leaf. Note that the randomized protocol thus obtained has

exactly the same structure as the randomized decision tree. It is

well known that communication protocols can be balanced (using

the same ideas as in the proof of Lemma 4.3). We thus obtain a

randomized protocol of cost 𝑂 (log 𝑠) that computes 𝑓 to error 𝜀.

This proves the lemma. □

Along with Theorem A.2, this implies the following, yielding

near-tightness of the bound in Equation (7).

Corollary A.4. Let 𝑓 : {0, 1}𝑛 → {0, 1} be the And-Or tree on
𝑛 inputs. Then, RSize

dt

1/3
(𝑓) = 2

Ω̃ (𝑛0.753...) .

In view of the above, one might ask if it is necessary for the

randomized communication complexity of a function to be large

under some partition of inputs in order for its randomized decision

tree size to be large. Specifically, can one show that the randomized

decision tree size of the well-studied Equality function is large, even

though its randomized communication complexity is a constant?

In Section A.3 we show that the randomized decision tree size of

Equality is indeed large, as an application of a more general tem-

plate that we introduce to prove lower bounds against randomized

decision tree size.

A.3 A Template for Proving Randomized
Decision Tree Size Lower Bounds

In this section, we give a set of sufficient conditions which imply

randomized decision tree size lower bounds. In particular, we can

use these to recover Theorem 3.1 for the particular case of monotone

functions and we can also use these in other cases to prove better

randomized size lower bounds. We start by giving some definitions.

For a subcube 𝐴, its 0-codimension is the number of variables fixed

to 0 by 𝐴 and its 1-codimension is the number of variables fixed

to 1 by 𝐴. We define a notion of spreadness for a distribution on

{0, 1}𝑛 . For a set 𝑆 ⊆ {0, 1}𝑛 and a distribution 𝜇 on {0, 1}𝑛 , let
𝜇 (𝑆) = Pr𝑥∼𝜇 [𝑥 ∈ 𝑆].

Definition A.5 (Spreadness). A probability distribution 𝜇 on
{0, 1}𝑛 is

• (ℓ, 𝜅)-spread if for a subcube 𝑆 of codimension ℓ , 𝜇 (𝑆) ≤ 𝜅.
• (ℓ, 𝜅, 1)-spread if for a subcube 𝑆 of 1-codimension ℓ , 𝜇 (𝑆) ≤ 𝜅 .
• (ℓ, 𝜅, 0)-spread if for a subcube 𝑆 of 0-codimension ℓ , 𝜇 (𝑆) ≤ 𝜅 .

Next, we define a notion of sensitivity of a distribution. For

𝑏 ∈ {0, 1}, a set 𝐵 ⊆ [𝑛] is a sensitive 𝑏-block of 𝑓 at input 𝑥 if

𝑓 (𝑥 ⊕ 1𝐵) ≠ 𝑓 (𝑥) and 𝑥𝑖 = 𝑏 for each 𝑖 ∈ 𝐵. The 𝑏-block sensitivity
of 𝑓 at 𝑥 , denoted by bs𝑏 (𝑓 , 𝑥), is the maximum integer 𝑟 for which

there exist 𝑟 disjoint sensitive 𝑏-blocks of 𝑓 at 𝑥 .

Definition A.6 (Sensitivity of a distribution). For a Boolean
function 𝑓 : {0, 1}𝑛 → {0, 1} and 𝑏 ∈ {0, 1}, a distribution 𝜇 on
{0, 1}𝑛 is

• (ℓ, 𝑏)-sensitive w.r.t. 𝑓 if for each input 𝑥 in the support of 𝜇,
we have 𝑓 (𝑥) = 𝑏 and bs(𝑓 , 𝑥) ≥ ℓ .

• (ℓ, 𝑏, 0)-sensitive w.r.t. 𝑓 if for each input 𝑥 in the support of 𝜇,
we have 𝑓 (𝑥) = 𝑏 and bs0 (𝑓 , 𝑥) ≥ ℓ .

• (ℓ, 𝑏, 1)-sensitive w.r.t. 𝑓 if for each input 𝑥 in the support of 𝜇,
we have 𝑓 (𝑥) = 𝑏 and bs1 (𝑓 , 𝑥) ≥ ℓ .

We now show that the existence of a distribution that is spread

and sensitive w.r.t. 𝑓 implies large randomized decision tree size

complexity.

Theorem A.7. For a Boolean function 𝑓 : {0, 1}𝑛 → {0, 1}, let
𝑏 ∈ {0, 1} and let 𝜇𝑏 be a distribution on {0, 1}𝑛 which satisfies any
of the following properties:

(1) 𝜇𝑏 is (ℓ, 𝑏)-sensitive w.r.t. 𝑓 and (⌈ℓ/2⌉, 𝜅)-spread.
(2) There exists 𝑐 ∈ {0, 1} such that 𝜇𝑏 is (ℓ, 𝑏, 𝑐)-sensitive w.r.t. 𝑓

and (⌈ℓ/2⌉, 𝜅, 𝑐)-spread.
Then RSize

dt

1/10
(𝑓) = Ω(1/𝜅).

Proof. We prove (1) above, the proof of (2) follows along sim-

ilar lines. Without loss of generality, assume 𝑏 = 0. Thus, 𝜇0 is a

distribution over inputs in 𝑓 −1 (0) that is (ℓ, 0)-sensitive. Define
𝜇1, a distribution over 𝑓 −1 (1), as follows: Sample an input 𝑥 ac-

cording to 𝜇0 and let 𝐵1, 𝐵2, ..., 𝐵𝑟 be disjoint sensitive block of 𝑓 at

𝑥 where 𝑟 = bs(𝑓 , 𝑥). Sample a 𝑖 from [𝑟] and return 𝑥 ⊕ 1𝐵𝑖
.

Define the distribution 𝜇 = (𝜇0 + 𝜇1)/2. We show below that

DSize
dt

𝜇,1/10
(𝑓) = Ω(1/𝜅), thereby showing RSize

dt

1/10
(𝑓) = Ω(1/𝜅).

Let 𝑇 be a deterministic decision tree that computes 𝑓 correctly

on at least a (9/10)-mass of inputs sampled according to 𝜇. Since

𝜇 can be viewed as sampling according to 𝜇0 with probability 1/2

and according to 𝜇1 with probability 1/2, 𝑇 must be correct on at

least a (4/5) mass of 𝜇0 as well as a (4/5) mass of 𝜇1. Let 𝐿0 and 𝐿1

be set of all 0-leaves and 1-leaves of 𝑇 , respectively. Define

𝜌0 =
∑︁
𝑣∈𝐿0

Pr

𝑥∼𝜇0

[𝑥 reaches 𝑣], 𝜌1 =
∑︁
𝑣∈𝐿1

Pr

𝑥∼𝜇1

[𝑥 reaches 𝑣] .

That is, 𝜌0 (𝜌1) denotes the 𝜇0-mass (𝜇1-mass) captured by 0-leaves

(1-leaves). By the argument above, both 𝜌0 and 𝜌1 must be at least

877

STOC ’23, June 20–23, 2023, Orlando, FL, USA Arkadev Chattopadhyay, Yogesh Dahiya, Nikhil S. Mande, Jaikumar Radhakrishnan, and Swagato Sanyal

4/5. We observe following about the 0-paths (paths leading to 0-

leaves).

(1) (Short Paths). Firstly, we show that the 0-paths of length

less than ⌈ℓ/2⌉ must capture less than 2/5 mass of 𝜇0, i.e.,∑
𝑣∈𝐿0

|𝑣 |<⌈ℓ/2⌉
Pr𝑥∼𝜇0

[𝑥 reaches 𝑣] ≤ 2/5, where |𝑣 | denotes the

length of the path leading to 𝑣 . Towards a contradiction,

assume

∑
𝑣∈𝐿0

|𝑣 |<⌈ℓ/2⌉
Pr𝑥∼𝜇0

[𝑥 reaches 𝑣] > 2/5. Let 𝑆 be a

subcube with codimension less than ⌈ℓ/2⌉ corresponding
to a 0-leaf. For each 𝑥 supported by 𝜇0 which lies in 𝑆 , our

assumption on 𝜇0 implies that bs(𝑓 , 𝑥) ≥ ℓ . Thus, there

must exist at least bs(𝑓 , 𝑥)/2 blocks such that none of their

variables are read on the path to this leaf. Flipping any one

of these blocks gives an input supported by 𝜇1 and that still

reaches this leaf. Hence 𝜇1 (𝑆) ≥ (1/2)𝜇0 (𝑆). Thus,∑︁
𝑣∈𝐿0

|𝑣 |<⌈ℓ/2⌉

Pr

𝑥∼𝜇1

[𝑥 reaches 𝑣] ≥ 1

2

·
∑︁
𝑣∈𝐿0

|𝑣 |<⌈ℓ/2⌉

Pr

𝑥∼𝜇0

[𝑥 reaches 𝑣] > 1/5.

This contradicts the fact that 𝑇 is correct on at least a 4/5

mass of 𝜇1.

(2) (Long Paths). Secondly, a 0-path of length at least ⌈ℓ/2⌉ cap-
tures at most 𝜅 of 𝜇0 mass. This follows from the spreadness

property of 𝜇0.

Since 𝜌0 must be atleast 4/5, from the first bullet above, we have

that 0-paths in𝑇 of length at least ⌈ℓ/2⌉ must capture at least 2/5 of

𝜇0 mass. By the second bullet above, there must be at least 2/(5𝜅) 0-

paths in 𝑇 of length at least ⌈ℓ/2⌉, proving an Ω(1/𝜅) lower bound
on the number of leaves in 𝑇 .

The analysis for (2) is along similar lines. The only difference

will be in using sensitive 𝑐-blocks in place of sensitive blocks and

defining short and long paths for the case analysis above based on

𝑐-codimension of the corresponding subcubes. □

Belowwe give some examples to showcase the usage of the above

template to prove randomized decision tree size lower bounds for

monotone Boolean functions. We refer the reader to the full version

of our paper [11] for applications of our template to the Equality

function and symmetric functions.

A.3.1 Monotone Functions. In this section, we use our template

to give an alternative proof of Theorem 3.4. We prove part (a) of

Theorem 3.4 as part (b) follows from part (a) and Theorem 2.13.

Proof. (Part (a) Theorem 3.4).We show that 𝑓 has a sub-function

(𝑓 under some restriction) 𝑔 that has large randomized decision tree

size. The statement of theorem trivially holds when N(𝑓) ≤ 𝑛𝑐 for

any fixed constant 𝑐 , so we restrict our attention to the case when

N(𝑓) ≥ 𝑛𝑐 for some appropriate 𝑐 to be fixed later. Without loss of

generality, let N1 (𝑓) ≥ N(𝑓)/2, the case when N0 (𝑓) ≥ N(𝑓)/2 is

similar. For a monotone function 𝑓 , the subcubes corresponding

to minterms of 𝑓 form the unique minimum 1-cover for 𝑓 . For a

minterm 𝑀 , let 𝑥𝑀 be the input such that 𝑥𝑖 = 1 for 𝑖 ∈ 𝑀 and

0 otherwise. Let 𝑆 = {𝑥𝑀 |𝑀 is a minterm of 𝑓 }. Since we have a
distinct minimal sensitive block for 0

𝑛
from each minterm, |𝑆 | =

N1 (𝑓) and each 𝑥 ∈ 𝑆 is a 1-input of 𝑓 with bs1 (𝑓 , 𝑥) = |𝑥 |, i.e.,
each 1-bit position of 𝑥 is sensitive. For 𝑖 ∈ [𝑛], let 𝑆𝑖 denote inputs
of Hamming weight 𝑖 in 𝑆 . By an averaging argument, there exists

𝑗 ∈ [𝑛] such that |𝑆 𝑗 | ≥ N1 (𝑓)/𝑛. We give an iterative procedure

to find our desired sub-function 𝑔.

(1) Initialise the parameters 𝑉 = [𝑛], 𝑔 = 𝑓 , ℓ = 𝑗 , 𝑅 = 𝑆 𝑗 and

𝑘 = log(N1 (𝑓)/𝑛)/(2(⌈log𝑛⌉ + 1)). We use 𝑉 to denote the

input domain of 𝑔. Throughout the process, 𝑅 will be a set

of 1-inputs of 𝑔 over {0, 1}𝑉 each of Hamming weight and

1-block sensitivity ℓ w.r.t. 𝑔.

(2) Find a subcube 𝑃 over {0, 1}𝑉 of 1-codimension ⌈ℓ/2⌉ such
that it contains more than 2

−𝑘
fraction of inputs in 𝑅. Let

𝑄 ⊆ 𝑉 be the set of variables fixed by 𝑃 . If no such subcube

exists, stop the procedure. Else, update𝑉 to [𝑛]\𝑄 , ℓ to ⌊ℓ/2⌋
and 𝑔 to 𝑔|𝑃 (𝑔 restricted to 𝑃). For𝑉 ⊆ 𝑇 and 𝑥 ∈ {0, 1}𝑇 , let
𝑥𝑉 in {0, 1}𝑉 denote the projection of 𝑥 on to𝑉 . Update 𝑅 to

{𝑥𝑉 |𝑥 ∈ 𝑅 and 𝑥 lies in 𝑃}. Note that after this update, 𝑔 is

a function on {0, 1}𝑉 and 𝑅 ⊆ {0, 1}𝑉 . Also, each 𝑥 ∈ 𝑅 is a

1-input of 𝑔, has Hamming weight ℓ , and each 1-bit position

of 𝑥 forms a sensitive 1-block for 𝑔 i.e., bs1 (𝑔, 𝑥) = ℓ .

(3) Repeat the above step.

We claim the above procedure can not run forever and must ter-

minate within the second step’s (⌈log𝑛⌉ + 1)’th repetition. The

procedure starts with each input in 𝑅 having Hamming weight ℓ ,

and with every repetition of the second step, the updated 𝑅 contains

inputs with Hamming weight halved from the previous iteration.

So if the second step repeats (⌈log𝑛⌉ + 1) times, 𝑅 can have only

one input, namely 0
𝑛
. On the other hand, the size of 𝑅 only reduces

by a factor of 2
−𝑘

with each repetition of the second step because of

the way we choose the subcube 𝑃 , and so by the end of (⌈log𝑛⌉ +1)
repetitions, the size of 𝑅 must be

|𝑅 | ≥ |𝑆 𝑗 |2−𝑘 (⌈log𝑛⌉+1) ≥ (N1 (𝑓)/𝑛)2−𝑘 (⌈log𝑛⌉+1)

= (N1 (𝑓)/𝑛)1/2 ≥ 𝑛
𝑐−1

2 .

So if we choose 𝑐 > 1, the size of |𝑅 | will be strictly larger than 1,

contradicting our earlier conclusion, which says the size of 𝑅 can

be at most 1 after (⌈log𝑛⌉ +1) repetitions of the second step. So, the
above procedure does terminate and at the end of the process we

get 𝑔, a subfunction of 𝑓 on {0, 1}𝑉 , and 𝑅 ⊆ {0, 1}𝑉 with following

properties

• 𝑔(𝑥) = 1 for all 𝑥 ∈ 𝑅.

• (Spreadness). Each 𝑥 ∈ 𝑅 has Hamming weight ℓ and no

subcube of 1-codimension ⌈ℓ/2⌉ contains more than 2
−𝑘

fraction of inputs of 𝑅.

• (Sensitivity). Each 𝑥 ∈ 𝑅 has bs1 (𝑔, 𝑥) = ℓ .

Let 𝜇1 be the distribution that randomly samples an input from

𝑅. From the properties of 𝑅 stated above, we get 𝜇1 is a distribu-

tion over 1-inputs of 𝑔 which is (⌈ℓ/2⌉, 2−𝑘 , 1)-spread and (ℓ, 1, 1)-
sensitive w.r.t. 𝑔. Applying Theorem A.7, we get log RSize

dt

1/10
(𝑓) ≥

log RSize
dt

1/10
(𝑔) = Ω(𝑘) = Ω(log N1 (𝑓)/log𝑛), which yields a

lower bound of Ω(log N(𝑓)/log𝑛). □

B NECESSITY OF LOG FACTORS
We give an example which shows that a factor of log𝑛 can not be

avoided in Theorem 4.1 and Theorem 4.5. Let Thr
𝑛
𝑘

: {0, 1}𝑛 →
{0, 1} be the function which outputs 1 if and only if |𝑥 | ≥ 𝑘 . Thr𝑛

𝑛−1

and Thr
𝑛
2
appeared in the work of [30] and [4] to demonstrate

878

Randomized versus Deterministic Decision Tree Size STOC ’23, June 20–23, 2023, Orlando, FL, USA

that deterministic And (Or) query complexity and randomized

And (Or) query complexity can be arbitrarily apart. Below we

observe that even deterministic (And,Or) query complexity can be

arbitrarily separated from randomized (And,Or) query complexity.

Claim B.1. D
(∧,∨)-dt (Thr𝑛

𝑛−1
) = Θ(log𝑛).

Proof. First, we show that D
(∧,∨)-dt (Thr𝑛

𝑛−1
) = 𝑂 (log𝑛). In

fact D
∧-dt (Thr𝑛

𝑛−1
) is 𝑂 (log𝑛). For input 𝑥 ∈ {0, 1}𝑛 , 𝑓 outputs 0

if and only if it contains 2 or more than 2 bits set to 0 in 𝑥 . Con-

sider the query algorithm which uses binary search for the first-bit

position set to 0 in 𝑥 . This can be done using ⌈log𝑛⌉ And queries.

If the binary search fails to find a 0 bit output 1, the input must

have been all 1 input. Otherwise, let 𝑖 be the bit position the binary

search returns. If 𝑖 = 𝑛 output 1, else output the answer to the query∧𝑛
𝑗=𝑖+1

𝑥 𝑗 . So we need at most ⌈log𝑛⌉ + 1 And queries to compute

Thr
𝑛
𝑛−1

.

For the lower bound, we give an adversary strategy to respond

to queries such that it forces any correct (And,Or)-decision tree

for Thr
𝑛
𝑛−1

to make Ω(log𝑛) queries. The adversary,A, maintains

a partial assignment 𝜌 . Let 𝑆 be a set of unset bits in 𝜌 . Bits set by 𝜌

will all be set to 1 by the adversary. A starts with all bits unset i.e.,

𝑆 = [𝑛] to begin with. For a query 𝑄 , if 𝑄 is already determined by

𝜌 , A answers accordingly. Otherwise, let 𝑄 ′
be the reduced query

containing variables from set 𝑃 ⊆ 𝑆 . A answers 𝑄 ′
as follows:

(1) If 𝑄 ′
is an Or query, A answers 1 and set 𝑥𝑖 to 1 in 𝜌 where

𝑥𝑖 is an arbitrary variable in 𝑄 ′
.

(2) If 𝑄 ′
is an And query and |𝑃 | < |𝑆 |/2, A answers 1 and set

all variables indexed by 𝑃 to 1 in 𝜌 .

(3) If𝑄 ′
is an And query and |𝑃 | ≥ |𝑆 |/2 then A answers 0 and

set all variables indexed by 𝑆 \ 𝑃 to 1 in 𝜌 .

It is clear that in cases 1 and 2, the partial assignment 𝜌 maintained

by the adversary makes him consistent with his answers. For case

3, the adversary can stay consistent with his answers if the set of

unset bits, 𝑆 , is non-empty. Moreover, at any stage of answering, if

|𝑆 | ≥ 2 then there exist two inputs consistent with the adversary’s

answers with Hamming weight 𝑛 − 2 and 𝑛 − 1, respectively. This

tells us that as long as more than 1 bit is unset in 𝜌 , no (And,Or)-
decision tree for Thr

𝑛
𝑛−1

can output an answer and be error-free.

Since with each Or query size of 𝑆 reduces by 1 and with each

And query it reduces by at most a multiplicative factor of 1/2, we

conclude that a correct (And,Or)-decision tree for Thr
𝑛
𝑛−1

must

make Ω(log𝑛) queries. □

Note that by symmetry we also get D
(∧,∨)-dt (Thr𝑛

2
) = Θ(log𝑛).

ObservationB.2 ([4],[30, Example 6.3]). R
∧-dt (Thr𝑛

𝑛−1
) = 𝑂 (1).

Indeed, consider the randomized And query algorithm which sam-
ples a subset 𝑆 ⊆ [𝑛] uniformly at random and outputs 0 if both∧

𝑖∈𝑆 𝑥𝑖 and
∧

𝑖∉𝑆 𝑥𝑖 equal to 0 and output 1 otherwise. Note that if
|𝑥 | ≥ 𝑛 − 1, the algorithm outputs the correct answer with probability
1. If |𝑥 | ≤ 𝑛 − 2, then with probability 1/2 the algorithm is correct.
Repeating the algorithm once more will give an error probability of
1/4.

Combining Claim B.1 and Observation B.2, we get that

R
∧-dt (Thr𝑛

𝑛−1
) = 𝑂 (1) and D

(∧,∨)-dt (Thr𝑛
𝑛−1

) = Ω(log𝑛), telling

us that a dependence on input dimension can not be avoided in

Theorem 4.1 and Theorem 4.5.

C BEST POSSIBLE SEPARATIONS
We next observe that the best possible separation between the log

of deterministic size and the log of randomized size (and also the

best possible separation between deterministic and randomized

And (Or) query complexity) must be as large as the best possible

separation between deterministic and randomized query complex-

ity. We thank Weiqiang Yuan for pointing out this observation

to us. We need the following deterministic size lower bound for

composed functions which follows from [16, Theorem 6.6] and

Proposition 2.11.

Corollary C.1 (Proposition 2.11, [16, Theorem 6.6]). Let 𝑓 :

{0, 1}𝑛 → {0, 1} be a Boolean function. Then log DSize
dt (𝑓 ◦Xor) ≥

Depth(𝑓) + 1.

ObservationC.2. For a Boolean function 𝑓 , log RSize
dt (𝑓 ◦Xor) =

𝑂 (Rdt (𝑓)). Indeed, one way to construct a randomized decision tree
for 𝑓 ◦ Xor is to start with an optimal randomized decision tree 𝑇
for 𝑓 , inflate each internal node 𝑢 of 𝑇 into a copy of Xor on the
appropriate input variables and attach the left and the right subtree of
𝑢 as appropriate at the leaves of this copy of Xor. From construction,
it is clear that such a decision tree will compute 𝑓 ◦ Xor with the
same error probability as that of 𝑇 on 𝑓 . Furthermore, the size of the
constructed tree is bounded by 4

R
dt (𝑓) .

Combining Corollary C.1 and Observation C.2, we have that

for any Boolean function 𝑓 , log RSize
dt (𝑓 ◦ Xor) = 𝑂 (Rdt (𝑓)) and

log DSize
dt (𝑓 ◦ Xor) = Ω(Ddt (𝑓)), giving us that the separation

between log RSize
dt
and log DSize

dt
is at least as large as the sepa-

ration between R
dt
and D

dt
. In particular, using the modified GPW

function from [1] as 𝑓 we get that log RSize
dt
and log DSize

dt
are

quadratically separated. Furthermore, using Lemma 4.2, we get that

D
(∧,∨)-dt

and R
(∧,∨)-dt

must also be at least quadratically separated.

Next, we observe that the separation between D
∧-dt

and R
∧-dt

must

also be at least as large as the separation between D
dt
and R

dt
.

Observation C.3. For a Boolean function 𝑓 , D
∧-dt (𝑓 ◦ Xor) ≥

D
dt (𝑓)/log𝑛)

D
∧-dt (𝑓 ◦ Xor) ≥ D

0-dt (𝑓 ◦ Xor) (by Claim 2.16)

≥ log DSize
dt (𝑓 ◦ Xor)/log𝑛 (by Equation (4))

≥ D
dt (𝑓)/log𝑛 (by Corollary C.1).

However, R
∧-dt (𝑓 ◦ Xor) ≤ 2R

dt (𝑓), since we can simulate the op-
timal randomized decision tree for 𝑓 , querying both the variables
corresponding to 𝑖-th copy of Xor when the decision tree queries the
𝑖-th input bit. Using the modified GPW function from [1] as 𝑓 we get
that D

∧-dt and R
∧-dt are at least quadratically separated.

Using the observation above, our result in Theorem 4.5 can be

considered a generalization of Nisan’s derandomization of ordinary

decision tree depth. Using Observation C.3 and Theorem 4.5, we

879

STOC ’23, June 20–23, 2023, Orlando, FL, USA Arkadev Chattopadhyay, Yogesh Dahiya, Nikhil S. Mande, Jaikumar Radhakrishnan, and Swagato Sanyal

can recover Nisan’s cubic relationship between D
dt
and R

dt
upto

polylog 𝑛 factors.

D
dt (𝑓) =𝑂 (D∧-dt (𝑓 ◦ Xor) log𝑛) = 𝑂 (R∧-dt (𝑓 ◦ Xor)3 · log

5 𝑛)

=𝑂 (Rdt (𝑓)3 · log
5 𝑛) .

REFERENCES
[1] Andris Ambainis, Kaspars Balodis, Aleksandrs Belovs, Troy Lee, Miklos Santha,

and Juris Smotrovs. 2017. Separations in Query Complexity Based on Pointer

Functions. J. ACM 64, 5 (2017), 32:1–32:24. https://doi.org/10.1145/3106234

Earlier version in STOC 2016.

[2] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de

Wolf. 2001. Quantum lower bounds by polynomials. J. ACM 48, 4 (2001), 778–797.

https://doi.org/10.1145/502090.502097 Earlier version in FOCS 1998.

[3] Aleksandrs Belovs. 2015. Quantum Algorithms for Learning Symmetric Juntas

via the Adversary Bound. Comput. Complex. 24, 2 (2015), 255–293. https:

//doi.org/10.1007/s00037-015-0099-2 Earlier version in CCC 2014.

[4] Yosi Ben-Asher and Ilan Newman. 1995. Decision trees with Boolean threshold

queries. J. Comput. System Sci. 51, 3 (1995), 495–502. https://doi.org/10.1006/jcss.

1995.1085

[5] Shalev Ben-David, Adam Bouland, Ankit Garg, and Robin Kothari. 2018. Classical

Lower Bounds from Quantum Upper Bounds. In 59th IEEE Annual Symposium
on Foundations of Computer Science, FOCS. IEEE Computer Society, 339–349.

https://doi.org/10.1109/FOCS.2018.00040

[6] Gal Beniamini and Noam Nisan. 2021. Bipartite perfect matching as a real

polynomial. In 53rd Annual ACM SIGACT Symposium on Theory of Computing
STOC. ACM, 1118–1131. https://doi.org/10.1145/3406325.3451002

[7] Guy Blanc, Jane Lange, Mingda Qiao, and Li-Yang Tan. 2021. Properly learning

decision trees in almost polynomial time. In 62nd IEEE Annual Symposium on
Foundations of Computer Science, FOCS. IEEE, 920–929. https://doi.org/10.1145/

3561047

[8] Guy Blanc, Jane Lange, and Li-Yang Tan. 2020. Top-Down Induction of Decision

Trees: Rigorous Guarantees and Inherent Limitations. In 11th Innovations in
Theoretical Computer Science Conference, ITCS (LIPIcs, Vol. 151). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 44:1–44:44. https://doi.org/10.4230/LIPIcs.ITCS.

2020.44

[9] Joakim Blikstad, Jan Van Den Brand, Yuval Efron, Sagnik Mukhopadhyay, and

Danupon Nanongkai. 2022. Nearly optimal communication and query complexity

of bipartite matching. In 2022 IEEE 63rd Annual Symposium on Foundations of
Computer Science (FOCS). IEEE, 1174–1185. https://doi.org/10.1109/FOCS54457.

2022.00113

[10] Manuel Blum and Russell Impagliazzo. 1987. Generic oracles and oracle classes.

In 28th Annual Symposium on Foundations of Computer Science (sfcs 1987). IEEE,
118–126. https://doi.org/10.1109/SFCS.1987.30

[11] Arkadev Chattopadhyay, Yogesh Dahiya, Nikhil S. Mande, Jaikumar Radhakrish-

nan, and Swagato Sanyal. 2022. Randomized versus Deterministic Decision Tree

Size. Electron. Colloquium Comput. Complex. TR22-185 (2022). ECCC:TR22-185
https://eccc.weizmann.ac.il/report/2022/185

[12] Arkadev Chattopadhyay, Yuval Filmus, Sajin Koroth, OrMeir, and Toniann Pitassi.

2021. Query-to-Communication Lifting Using Low-Discrepancy Gadgets. SIAM J.
Comput. 50, 1 (2021), 171–210. https://doi.org/10.1137/19M1310153 Preliminary

version in ICALP, 2019.

[13] Arkadev Chattopadhyay, Ankit Garg, and Suhail Sherif. 2021. Towards Stronger

Counterexamples to the Log-Approximate-Rank Conjecture. In 41st IARCS An-
nual Conference on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS (LIPIcs, Vol. 213). Schloss Dagstuhl - Leibniz-Zentrum für Infor-

matik, 13:1–13:16. https://doi.org/10.4230/LIPIcs.FSTTCS.2021.13

[14] Arkadev Chattopadhyay, Michal Koucký, Bruno Loff, and Sagnik Mukhopadhyay.

2019. Simulation Theorems via Pseudo-random Properties. Comput. Complex. 28,
4 (2019), 617–659. https://doi.org/10.1007/s00037-019-00190-7

[15] Arjan Cornelissen, Nikhil S. Mande, and Subhasree Patro. 2022. Improved Quan-

tum Query Upper Bounds Based on Classical Decision Trees. In 42nd IARCS
Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science, FSTTCS (LIPIcs, Vol. 250). Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 15:1–15:22. https://doi.org/10.4230/LIPIcs.FSTTCS.2022.15

[16] Yogesh Dahiya andMeenaMahajan. 2021. On (Simple) Decision Tree Rank. In 41st
IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS (LIPIcs, Vol. 213). Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 15:1–15:16. https://doi.org/10.4230/LIPIcs.FSTTCS.2021.15

[17] Andrzej Ehrenfeucht and David Haussler. 1989. Learning decision trees from

random examples. Information and Computation 82, 3 (1989), 231 – 246. https:

//doi.org/10.1016/0890-5401(89)90001-1 Earlier version in COLT’88.

[18] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. 2020. Monotone

Circuit Lower Bounds from Resolution. Theory Comput. 16 (2020), 1–30. https:

//doi.org/10.1145/3188745.3188838 Earlier version in STOC’18.

[19] Uma Girish, Avishay Tal, and KewenWu. 2021. Fourier Growth of Parity Decision

Trees. In 36th Computational Complexity Conference, CCC (LIPIcs, Vol. 200). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 39:1–39:36. https://doi.org/10.4230/

LIPIcs.CCC.2021.39

[20] Mika Göös and T. S. Jayram. 2016. A Composition Theorem for Conical Juntas.

In 31st Conference on Computational Complexity, CCC (LIPIcs, Vol. 50). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 5:1–5:16. https://doi.org/10.4230/

LIPIcs.CCC.2016.5

[21] Mika Göös, Toniann Pitassi, and Thomas Watson. 2018. Deterministic Com-

munication vs. Partition Number. SIAM J. Comput. 47, 6 (2018), 2435–2450.

https://doi.org/10.1109/FOCS.2015.70 Earlier version in FOCS 2015..

[22] MikaGöös, Toniann Pitassi, and ThomasWatson. 2020. Query-to-Communication

Lifting for BPP. SIAM J. Comput. 49, 4 (2020). https://doi.org/10.1109/FOCS.2017.

21 Preliminary version in FOCS, 2017.

[23] Juris Hartmanis and Lane A Hemachandra. 1986. One-way functions, robustness,
and the non-isomorphism of NP-complete sets. Technical Report. Cornell University.
https://doi.org/1813/6636

[24] Hamed Hatami, Kaave Hosseini, and Shachar Lovett. 2018. Structure of Protocols

for XOR Functions. SIAM J. Comput. 47, 1 (2018), 208–217. https://doi.org/10.

1109/FOCS.2016.38 Earlier version in FOCS 2016.

[25] Russell Impagliazzo, Toniann Pitassi, and Alasdair Urquhart. 1994. Upper and

Lower Bounds for Tree-Like Cutting Planes Proofs. In Proceedings of the Ninth
Annual Symposium on Logic in Computer Science, LICS. IEEE Computer Society,

220–228. https://doi.org/10.1109/LICS.1994.316069

[26] Dmitry Itsykson and Dmitry Sokolov. 2020. Resolution over linear equations

modulo two. Ann. Pure Appl. Log. 171, 1 (2020). https://doi.org/10.1016/j.apal.

2019.102722

[27] Stasys Jukna. 2012. Boolean Function Complexity - Advances and Frontiers. Algo-
rithms and Combinatorics, Vol. 27. Springer. https://doi.org/10.1007/978-3-642-

24508-4

[28] Stasys Jukna, Alexander A. Razborov, Petr Savický, and Ingo Wegener. 1999.

On P versus NP ∩ co-NP for decision trees and read-once branching programs.

Comput. Complex. 8, 4 (1999), 357–370. https://doi.org/10.1007/s000370050005

[29] Alexander Knop, Shachar Lovett, Sam McGuire, and Weiqiang Yuan. 2021. Guest

Column: Models of computation between decision trees and communication.

SIGACT News 52, 2 (2021), 46–70. https://doi.org/10.1145/3471469.3471479

[30] Alexander Knop, Shachar Lovett, Sam McGuire, and Weiqiang Yuan. 2021. Log-

rank and lifting for AND-functions. In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, STOC. 197–208. https://doi.org/10.

1145/3406325.3450999

[31] Raghav Kulkarni and Avishay Tal. 2016. On Fractional Block Sensitivity. Chic.
J. Theor. Comput. Sci. 2016 (2016). http://cjtcs.cs.uchicago.edu/articles/2016/8/

contents.html

[32] Bruno Loff and Sagnik Mukhopadhyay. 2019. Lifting Theorems for Equality. In

36th International Symposium on Theoretical Aspects of Computer Science, STACS
(LIPIcs, Vol. 126). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 50:1–50:19.

https://doi.org/10.4230/LIPIcs.STACS.2019.50

[33] Shachar Lovett, Raghu Meka, Ian Mertz, Toniann Pitassi, and Jiapeng Zhang.

2022. Lifting with Sunflowers. In 13th Innovations in Theoretical Computer Sci-
ence Conference, ITCS (LIPIcs, Vol. 215). Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 104:1–104:24. https://doi.org/10.4230/LIPIcs.ITCS.2022.104

[34] Sagnik Mukhopadhyay, Jaikumar Radhakrishnan, and Swagato Sanyal. 2018.

Separation Between Deterministic and Randomized Query Complexity. SIAM J.
Comput. 47, 4 (2018), 1644–1666. https://doi.org/10.1137/17M1124115

[35] Noam Nisan. 1991. CREW PRAMs and Decision Trees. SIAM J. Comput. 20, 6
(1991), 999–1007. https://doi.org/10.1145/73007.73038 Earlier version in STOC’89.

[36] Ran Raz and Iddo Tzameret. 2008. Resolution over linear equations and multilin-

ear proofs. Ann. Pure Appl. Log. 155, 3 (2008), 194–224. https://doi.org/10.1016/j.

apal.2008.04.001

[37] Michael E. Saks and Avi Wigderson. 1986. Probabilistic Boolean Decision Trees

and the Complexity of Evaluating Game Trees. In 27th Annual Symposium on
Foundations of Computer Science, FOCS. IEEE Computer Society, 29–38. https:

//doi.org/10.1109/SFCS.1986.44

[38] Marc Snir. 1985. Lower Bounds on Probabilistic Linear Decision Trees. Theor.
Comput. Sci. 38 (1985), 69–82. https://doi.org/10.1016/0304-3975(85)90210-5

[39] Gábor Tardos. 1989. Query complexity, or why is it difficult to separate NP
𝐴

cap coNP
𝐴
from P

𝐴
by random oracles A? Comb. 9, 4 (1989), 385–392. https:

//doi.org/10.1007/BF02125350

[40] Hing Yin Tsang, Chung Hoi Wong, Ning Xie, and Shengyu Zhang. 2013. Fourier

Sparsity, Spectral Norm, and the Log-Rank Conjecture. In 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS. IEEE Computer Society,

658–667. https://doi.org/10.1109/FOCS.2013.76

Received 2022-11-07; accepted 2023-02-06

880

https://doi.org/10.1145/3106234
https://doi.org/10.1145/502090.502097
https://doi.org/10.1007/s00037-015-0099-2
https://doi.org/10.1007/s00037-015-0099-2
https://doi.org/10.1006/jcss.1995.1085
https://doi.org/10.1006/jcss.1995.1085
https://doi.org/10.1109/FOCS.2018.00040
https://doi.org/10.1145/3406325.3451002
https://doi.org/10.1145/3561047
https://doi.org/10.1145/3561047
https://doi.org/10.4230/LIPIcs.ITCS.2020.44
https://doi.org/10.4230/LIPIcs.ITCS.2020.44
https://doi.org/10.1109/FOCS54457.2022.00113
https://doi.org/10.1109/FOCS54457.2022.00113
https://doi.org/10.1109/SFCS.1987.30
https://eccc.weizmann.ac.il/report/2022/185
https://doi.org/10.1137/19M1310153
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.13
https://doi.org/10.1007/s00037-019-00190-7
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.15
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.15
https://doi.org/10.1016/0890-5401(89)90001-1
https://doi.org/10.1016/0890-5401(89)90001-1
https://doi.org/10.1145/3188745.3188838
https://doi.org/10.1145/3188745.3188838
https://doi.org/10.4230/LIPIcs.CCC.2021.39
https://doi.org/10.4230/LIPIcs.CCC.2021.39
https://doi.org/10.4230/LIPIcs.CCC.2016.5
https://doi.org/10.4230/LIPIcs.CCC.2016.5
https://doi.org/10.1109/FOCS.2015.70
https://doi.org/10.1109/FOCS.2017.21
https://doi.org/10.1109/FOCS.2017.21
https://doi.org/1813/6636
https://doi.org/10.1109/FOCS.2016.38
https://doi.org/10.1109/FOCS.2016.38
https://doi.org/10.1109/LICS.1994.316069
https://doi.org/10.1016/j.apal.2019.102722
https://doi.org/10.1016/j.apal.2019.102722
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1007/s000370050005
https://doi.org/10.1145/3471469.3471479
https://doi.org/10.1145/3406325.3450999
https://doi.org/10.1145/3406325.3450999
http://cjtcs.cs.uchicago.edu/articles/2016/8/contents.html
http://cjtcs.cs.uchicago.edu/articles/2016/8/contents.html
https://doi.org/10.4230/LIPIcs.STACS.2019.50
https://doi.org/10.4230/LIPIcs.ITCS.2022.104
https://doi.org/10.1137/17M1124115
https://doi.org/10.1145/73007.73038
https://doi.org/10.1016/j.apal.2008.04.001
https://doi.org/10.1016/j.apal.2008.04.001
https://doi.org/10.1109/SFCS.1986.44
https://doi.org/10.1109/SFCS.1986.44
https://doi.org/10.1016/0304-3975(85)90210-5
https://doi.org/10.1007/BF02125350
https://doi.org/10.1007/BF02125350
https://doi.org/10.1109/FOCS.2013.76

	Abstract
	1 Introduction
	1.1 Consequences
	1.2 Our Techniques

	2 Preliminaries
	2.1 Combinatorial Measures of Boolean Functions
	2.2 Decision Trees for Boolean Functions
	2.3 Required Results

	3 Randomized versus deterministic size complexity
	3.1 A Better Bound for Monotone Functions

	4 (And,Or) query complexity and And query complexity
	4.1 Randomized versus Deterministic (And,Or) Query Complexity
	4.2 Randomized versus Deterministic And Query Complexity

	5 Conclusions
	Acknowledgments
	A Lower bounds for randomized decision tree size
	A.1 Communication Complexity
	A.2 Lower Bounds via Communication Complexity
	A.3 A Template for Proving Randomized Decision Tree Size Lower Bounds

	B Necessity of log factors
	C Best possible separations
	References

