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Abstract
The theta body of a graph, introduced by Grötschel, Lovász, and Schrijver (in 1986),
is a tractable relaxation of the independent-set polytope derived from the Lovász theta
number. In this paper,we recursively extend the theta body, and hence the theta number,
to hypergraphs. We obtain fundamental properties of this extension and relate it to the
high-dimensional Hoffman bound of Filmus, Golubev, and Lifshitz. We discuss two
applications: triangle-free graphs and Mantel’s theorem, and bounds on the density of
triangle-avoiding sets in the Hamming cube.
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1 Introduction

The theta number of a graph, introduced by Lovász [18] to determine the Shannon
capacity of the pentagon, is one of the founding results of semidefinite programming
and has inspired numerous developments in combinatorics (see Grötschel, Lovász,
and Schrijver [12, Chapter 9] and Schrijver [23, Chapter 67]), coding theory (see
Schrijver [24]), and discrete geometry (see Oliveira and Vallentin [5]). It is a graph
parameter that provides at the same time an upper bound for the independence number
of a graph and a lower bound for the chromatic number of its complement, a result
known as Lovász’s sandwich theorem. The theta number also has weighted variants,
and both Lovász’s original parameter and its variants can be computed in polynomial
time. To this day, the only known polynomial-time algorithms to compute amaximum-
weight independent set or a minimum-weight coloring in a perfect graph compute the
weighted theta number as a subroutine.

The sandwich theoremhas a geometrical counterpart, the theta body. The theta body
of a graph G = (V , E) was introduced by Grötschel, Lovász, and Schrijver [13]; it
is the convex body TH(G) ⊆ R

V given by the feasible region of the optimization
program defining the theta number. It contains the independent-set polytope of G and
is contained in the polytope defined by the clique inequalities of G. One can optimize
linear functions over the theta body in polynomial time, that is, the weak optimization
problem over TH(G) can be solved in polynomial time. The theta body provides a
characterization of perfect graphs: TH(G) is a polytope, and in this case is exactly the
independent-set polytope, if and only if G is a perfect graph.

In this paper we extend the definition of the theta body from graphs to hypergraphs,
derive fundamental properties of this extension, and discuss applications.

1.1 Independence in Hypergraphs

Let H = (V , E) be an r -uniform hypergraph for some integer r ≥ 1, so V is a
finite set and E ⊆ (V

r

)
, where

(V
r

)
denotes the set of r -element subsets of V . For

r = 2 this gives the usual notion of a graph, while the case r = 1 is somewhat
degenerate but convenient for inductive arguments. The complement of H is the r -
uniform hypergraph H with vertex set V in which an r -subset e of V is an edge if and
only if e is not an edge of H .

A set I ⊆ V is independent in H if no edge of H is contained in I . Given a weight
function w ∈ R

V , the weighted independence number of H is

α(H , w) = max{ w(I ) : I ⊆ V is independent },

where w(I ) = ∑
x∈I w(x). When w = 1 is the constant-one function, α(H , w) is the

independence number of H , denoted simply by α(H). Computing the independence
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number of a graph is a known NP-hard problem [16] and computing its hypergraph
counterpart is also NP-hard.

The independent-set polytope of H is the convex hull of characteristic functions of
independent sets of H , namely

IND(H) = conv{ χI ∈ R
V : I ⊆ V is independent },

where χS ∈ R
V is the characteristic function of S ⊆ V . The weighted independence

number α(H , w) can be computed by maximizing wT f over f ∈ IND(H), and so
optimizing over IND(H) is an NP-hard problem.

A clique of H is a set C ⊆ V such that every r -subset of C is an edge. Note that
cliques of H are independent sets of H and vice versa. Note also that any set with
fewer than r elements is both a clique and an independent set (the same happens with
graphs: single vertices are both cliques and independent sets).

If C is a clique of H and if f ∈ IND(H), then f (C) ≤ r − 1. These valid
inequalities for IND(H) are called clique inequalities; they give a relaxation of the
independent-set polytope, namely the polytope

QIND(H) = { f ∈ [0, 1]V : f (C) ≤ r − 1 for every clique C ⊆ V }. (1)

Clearly, IND(H) ⊆ QIND(H) ⊆ [0, 1]V . The integer vectors in QIND(H) are
precisely the characteristic functions of independent sets, and so the integer hull
of QIND(H) is IND(H).

Since cliques of H are independent sets of H , the separation problem over
QIND(H) consists of finding a maximum-weight independent set of H , and it is
therefore NP-hard. As a consequence, optimizing over QIND(H) is NP-hard as well.

1.2 The Theta Body of Graphs and Hypergraphs

Grötschel, Lovász, and Schrijver [13] defined the theta body of a graph G: a convex
relaxation of IND(G) stronger than QIND(G) over which it is possible to optimize a
linear function in polynomial time.

For a symmetric matrix A, write

R(A) =
(
1 aT

a A

)
,

where a = diag A is the diagonal of A. The theta body of a graph G = (V , E) is

TH(G) = { f ∈ R
V : there is F ∈ R

V×V such that f = diag F,

F(x, y) = 0 if {x, y} ∈ E, and

R(F) is positive semidefinite }.
(2)

(This specific formulation was given by Lovász and Schrijver [17].) Here and else-
where, positive semidefinite matrices are always symmetric.
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The theta body is a closed and convex set satisfying

IND(G) ⊆ TH(G) ⊆ QIND(G)

for every graph G; since QIND(G) is bounded, the theta body is compact. Moreover,
optimizing over the theta body is the same as solving a semidefinite program, and in
this case this can be done to any desired precision in polynomial time using either the
ellipsoid method [12, Chapter 9] or the interior-point method [4].

The Lovász theta number of G for a weight function w ∈ R
V is obtained by

optimizing over the theta body, namely

ϑ(G, w) = max{ wT f : f ∈ TH(G) };

for w = 1 we recover the theta number as originally defined by Lovász [18], which
we denote simply by ϑ(G). Immediately we get

α(G, w) ≤ ϑ(G, w).

Our aim is to extend the definition of the theta body, and therefore of the theta
number, to r -uniform hypergraphs for r ≥ 3. We do so recursively, and the base of
our recursion is r = 1. By taking this as the base, we can give uniform proofs without
relying onwhat is known about the theta body of a graph. Sowewill always take r = 1
as the base, unless this choice would lead us into trouble.

Let H = (V , E) be an r -uniform hypergraph for r ≥ 2. Given x ∈ V , the link of x
in H is the (r − 1)-uniform hypergraph Hx with vertex set

Vx = { y ∈ V \ {x} : there is e ∈ E containing x and y },

in which an (r − 1)-subset e of Vx is an edge if and only if e ∪ {x} is an edge of H .
Given a matrix A ∈ R

V×V and x ∈ V , let Ax ∈ R
V denote the row of A indexed

by x , that is, Ax (y) = A(x, y). If f : V → R is a function andU ⊆ V is a set, denote
by f [U ] the restriction of f to U .

We are now ready to give our main definition.

Definition 1.1 Let H = (V , E) be an r -uniform hypergraph. For r = 1, the theta
body of H is TH(H) = IND(H). For r ≥ 2, the theta body of H is

TH(H) = { f ∈ R
V : there is F ∈ R

V×V such that f = diag F,

Fx [Vx ] ∈ F(x, x)TH(Hx ) for every x ∈ V , and

R(F) is positive semidefinite },

where, if a link Hx is empty, no constraint is imposed on the row Fx .

Since the links of an r -uniform hypergraph are (r − 1)-uniform hypergraphs, we
have a recursive definition. When r = 2, we have TH(Hx ) = {0} for every nonempty
link, and so we recover the usual definition (2) of the theta body of a graph.
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The theta number can now be extended to hypergraphs: given aweight functionw ∈
R
V , the theta number of H for w is

ϑ(H , w) = max{ wT f : f ∈ TH(H) }. (3)

For unit weights, we write ϑ(H) instead of ϑ(H , 1).
In Sect. 2, we will see how TH(H) defined above is in many ways analogous to the

theta body of a graph defined in (2). In particular, we will see in Theorem 2.1 that

IND(H) ⊆ TH(H) ⊆ QIND(H),

and therefore α(H , w) ≤ ϑ(H , w) for every weight function w. Moreover, as shown
in Theorem 2.5, it is possible to optimize linear functions over TH(H) in polynomial
time.

1.3 TheWeighted Fractional Chromatic Number

Let H = (V , E) be an r -uniform hypergraph for some r ≥ 2. The chromatic number
of H , denoted by χ(H), is the minimum number of colors needed to color the vertices
of H in such a way that no edge is monochromatic. In other words, χ(H) is the
minimum number of disjoint independent sets needed to partition the vertex set of H .

Given w ∈ R
V+, the weighted fractional chromatic number of H is

χ∗(H , w) = minimum of λ1 + · · · + λk,where λ1, . . . , λk ≥ 0 and there are
independent sets I1, . . . , Ik such that λ1χI1 + · · · + λkχIk = w.

When w = 1 is the constant-one function, χ∗(H , w) is the fractional chromatic
number, denoted simply by χ∗(H). Note also that k is not specified, so we may
consider any number of independent sets. In this way, ifw = 1 and the λi are required
to be integers, then we get the chromatic number, so χ∗(H) ≤ χ(H).

For the chromatic orweighted fractional chromatic number, the case r = 1 is degen-
erate: if the hypergraph has an edge, then there is no coloring, hence the restriction
to r ≥ 2.

For a graphG = (V , E) and a weight functionw ∈ R
V+, it is known [12, Chapter 9]

that ϑ(G, w) ≤ χ∗(G, w). (The same inequality for the chromatic number andw = 1
was proved by Lovász [18].) Corollary 2.3 generalizes this inequality to the setting
of hypergraphs: if H = (V , E) is an r -uniform hypergraph and w ∈ R

V+ is a weight
function, then ϑ(H , w) ≤ (r − 1)χ∗(H , w).

1.4 The Hoffman Bound

The Lovász theta number is also related to a well-known spectral upper bound for the
independence number of regular graphs, originally due to Hoffman. IfG is a d-regular
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graph on n vertices and if λ is the smallest eigenvalue of its adjacency matrix, then

α(G) ≤ −λ

d − λ
n;

this upper bound for the independence number is known as the Hoffman bound.
The Hoffman bound connects spectral graph theory with extremal combinatorics,

and as suchhas foundmanyapplications in combinatorics and theoretical computer sci-
ence. Recently, it has been extended to the high-dimensional setting of edge-weighted
hypergraphs by Filmus, Golubev, and Lifshitz [10], who also derived interesting appli-
cations in extremal set theory.

Lovász [18, Theorem 9] showed that the theta number ϑ(G) is always at least as
good as the Hoffman bound, that is, α(G) ≤ ϑ(G) ≤ −λn/(d − λ) for every d-
regular graph G. In Sect. 3 we will extend Lovász’s result to hypergraphs, showing
that the hypergraph theta number ϑ(H) is also at least as good as the high-dimensional
Hoffman bound.

1.5 The Antiblocker of the Theta Body

A convex set K ⊆ R
n is of antiblocking type if ∅ 
= K ⊆ R

n+ and if x ∈ K
and 0 ≤ y ≤ x implies that y ∈ K . The antiblocker of K is

A(K ) = { x ∈ R
n+ : xT y ≤ 1 for all y ∈ K }.

Note that the antiblocker of a convex set of antiblocking type is also a convex set
of antiblocking type. If K is also assumed to be closed, then A(A(K )) = K (see
Grötschel, Lovász, and Schrijver [12, p. 11]).

If G is a graph, then the antiblocker of TH(G) is TH(G) (see Grötschel, Lovász,
and Schrijver [12, Chapter 9]). This fact is essential for proving that a graph is perfect
if and only if its theta body is a polytope.

The same, however, does not hold for hypergraphs in general. In Sect. 4 we will
describe the antiblocker of TH(H) explicitly, and this will lead to another relaxation
of IND(H) and corresponding bounds for the weighted independence number and the
weighted fractional chromatic number.

1.6 Symmetry and Applications

When a hypergraph is highly symmetric, it is possible to greatly simplify the opti-
mization problem giving the theta number, as we explore in Sect. 5.

By exploiting symmetry we are able to explicitly compute the theta number in the
following two illustrative cases. In Sect. 6 we consider a family of hypergraphs related
toMantel’s theorem in extremal graph theory. In this toy example,we compute the theta
number of these hypergraphs, showing that it gives a tight bound for the independence
number leading to a proof of Mantel’s theorem.
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In Sect. 7 we consider 3-uniform hypergraphs over the Hamming cube whose edges
are all triangleswith a given side length inHammingdistance.Wegive a closed formula
for the theta number, and we show numerical results supporting our conjecture (see
Conjecture 7.3) that the density of such triangle-avoiding sets in the Hamming cube
decays exponentially fast with the dimension.

1.7 Notation

For an integer n ≥ 1 we write [n] = {1, . . . , n}. For a set V and S ⊆ V we denote
by χS : V → R the characteristic function of S, which is defined by χS(x) = 1
if x ∈ S andχS(x) = 0 otherwise. If f : V → R is a function and S ⊆ V , then f (S) =∑

x∈S f (x). The collection of all r -subsets of V is denoted by
(V
r

)
.

If H = (V , E) is an r -uniform hypergraph, we denote by H the complement of H ,
which is the hypergraph with vertex set V and edge set

(V
r

) \ E .
We denote by diag A the vector giving the diagonal of a square matrix A. The

trace inner product between symmetric matrices A, B ∈ R
n×n is 〈A, B〉 = tr AB =∑n

i, j=1 Ai j Bi j . Positive semidefinite matrices are always symmetric. For a symmetric
matrix A with diagonal a, we write

R(A) =
(
1 aT

a A

)
.

2 Properties of the Theta Body

Given an r -uniform hypergraph H = (V , E) for r ≥ 2, it is useful to consider the
lifted version of the theta body as given in Definition 1.1, namely

LTH(H) = { F ∈ R
V×V : Fx [Vx ] ∈ F(x, x)TH(Hx ) for every x ∈ V and

R(F) is positive semidefinite }.
Note that TH(H) is the projection of LTH(H) onto the subspace of diagonal matrices,
being therefore a projected spectrahedron.

Theorem 2.1 If H is an r-uniform hypergraph, then TH(H) is compact, convex, and
satisfies

IND(H) ⊆ TH(H) ⊆ QIND(H). (4)

Proof The proof proceeds by induction on r . The base case is r = 1, for which the
statement is easily seen to hold.

Assume r ≥ 2. By the induction hypothesis, the statement of the theorem holds for
the theta body of every link. This implies that LTH(H) is convex, and hence TH(H)

is convex.
Let us show that LTH(H) is compact and, since TH(H) is a projection of LTH(H),

it will follow that TH(H) is compact.
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Let (Fk)k≥1 be a sequence of points in LTH(H) that converges to F . Immediately
we have that R(F) is positive semidefinite. Now fix x ∈ V and let aT f ≤ β be any
valid inequality for TH(Hx ). Then

aTFx [Vx ] = lim
k→∞ aT(Fk)x [Vx ] ≤ lim

k→∞ Fk(x, x)β = F(x, x)β,

and we see that Fx [Vx ] ∈ F(x, x)TH(Hx ), proving that LTH(H) is closed.
To see that LTH(H) is bounded, note that for every x ∈ V the 2 × 2 submatrix

(
1 f (x)

f (x) f (x)

)

of R(F) is positive semidefinite (where f = diag F), hence f (x) − f (x)2 ≥ 0 and
so |F(x, x)| = | f (x)| ≤ 1 for all x ∈ V . This implies that tr F ≤ |V | and, since F is
positive semidefinite, the Frobenius norm1 of F is at most |V |. This finishes the proof
that LTH(H) is compact.

It remains to show that (4) holds. For the first inclusion, let I ⊆ V be an independent
set. For every x ∈ V , if x ∈ I , then I ∩ Vx is an independent set of the link Hx , so by
the induction hypothesis χI [Vx ] ∈ TH(Hx ). It follows that χIχ

T
I ∈ LTH(H), and so

IND(H) ⊆ TH(H).
For the second inclusion in (4), note first that TH(H) ⊆ [0, 1]V . Let C ⊆ V be a

clique and let F ∈ LTH(H); write f = diag F . If |C | ≤ r − 1, then since f ≤ 1 we
have f (C) ≤ |C | ≤ r − 1 and we are done.

So assume |C | ≥ r . Since R(F) is positive semidefinite we have

0 ≤ (r − 1;−χC )TR(F)(r − 1;−χC ) = (r − 1)2 − 2(r − 1)χT
C f + χT

C FχC . (5)

Since |C | ≥ r , every r -element subset of C is an edge of H , and so for every x ∈ C
we know that C \ {x} ⊆ Vx is a clique of the link Hx . By the induction hypothesis we
know that TH(Hx ) ⊆ QIND(Hx ), hence

χT
C FχC =

∑

x,y∈C
F(x, y) =

∑

x∈C

(
F(x, x) +

∑

y∈C\{x}
F(x, y)

)

≤
∑

x∈C
(F(x, x) + F(x, x)(r − 2)) = (r − 1) f (C).

Together with (5) we get 0 ≤ (r − 1)2 − (r − 1) f (C), whence f (C) ≤ r − 1 as
wished. ��

As a corollary we get that TH(H) is a formulation of IND(H), that is, the integer
hull of the theta body is the independent-set polytope.

1 The Frobenius norm of a symmetric matrix A ∈ R
n×n is the Euclidean norm of A considered as an n2-

dimensional vector. If A has eigenvalues λ1, …, λn , then the square of the Frobenius norm is λ21 +· · ·+λ2n ,
hence the Frobenius norm is at most tr A = λ1 + · · · + λn when all eigenvalues are nonnegative, that is,
when A is positive semidefinite.
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Corollary 2.2 If H is an r-uniform hypergraph and if f ∈ TH(H) is an integral vector,
then f is the characteristic function of an independent set of H.

Proof AsTH(H) ⊆ QIND(H) ⊆ [0, 1]V , we know that f is a 0–1 vector that satisfies
all clique inequalities, and the conclusion follows. ��

Since IND(H) ⊆ TH(H), it follows immediately from the definition (3) that
α(H , w) ≤ ϑ(H , w) for every w ∈ R

V . What about a lower bound for the chro-
matic number?

For a graph G = (V , E) and w ∈ R
V+ we also have ϑ(G, w) ≤ χ∗(G, w). (Recall

the definition of χ∗ from Sect. 1.3.) A simple example shows that the same cannot
be true for hypergraphs in general. Indeed, fix r ≥ 3 and let H be the complete r -
uniform hypergraph on r vertices (that is, H has exactly one edge containing all of
its vertices). The complement of H is the empty hypergraph. Then ϑ(H) = r − 1,
whereas χ∗(H) = 1, and the inequality fails to hold. It can, however, be extended,
and this simple example shows that the extension is tight.

Corollary 2.3 If H is an r-uniform hypergraph and w ∈ R
V+, then α(H , w) ≤

ϑ(H , w). If moreover r ≥ 2, then ϑ(H , w) ≤ (r − 1)χ∗(H , w).

Proof The first statement follows immediately from IND(H) ⊆ TH(H).
The second statement follows from TH(H) ⊆ QIND(H). Indeed, let λ1, …, λk be

nonnegative numbers andC1,…,Ck be independent sets of H such that λ1χC1 +· · ·+
λkχCk = w. If f ∈ TH(H), then f satisfies all clique inequalities, so since each Ci

is a clique of H we have χT
Ci

f = f (Ci ) ≤ r − 1. Hence

wT f = (λ1χC1 + · · · + λkχCk )
T f ≤ (r − 1)(λ1 + · · · + λk),

and we are done. ��
Just like the theta body of a graph, the theta body of a hypergraph can be shown to

be of antiblocking type (see Sect. 1.5 for background), and this leads to an inequality
description of the theta body in terms of the theta number.

Theorem 2.4 If H = (V , E) is an r-uniform hypergraph, then TH(H) is of antiblock-
ing type and TH(H) = { f ∈ R

V+ : wT f ≤ ϑ(H , w) for all w ∈ R
V+ }.

Proof We proceed by induction on r . The statement is immediate for the base case r =
1, so assume r ≥ 2. We claim: if w ∈ R

V and w+(x) = max{0, w(x)} for all x ∈ V ,
then ϑ(H , w) = ϑ(H , w+).

Since TH(H) ⊆ R
V+, it is clear that ϑ(H , w) ≤ ϑ(H , w+) for every w ∈ R

V ; let
us now prove the reverse inequality. Let F ∈ LTH(H) be a matrix such that wT+ f =
ϑ(H , w+), where f = diag F . Let S = { x ∈ V : w(x) ≥ 0 } and denote by F̄ the
Hadamard (entrywise) product of F and χSχ

T
S ; write f̄ = diag F̄ .

Note that R(F̄) is the Hadamard product of R(F) and (1;χS)(1;χS)
T, hence R(F̄)

is positive semidefinite. For every x ∈ V we have 0 ≤ F̄x [Vx ] ≤ Fx [Vx ], and so the
induction hypothesis implies that F̄x [Vx ] ∈ F̄(x, x)TH(Hx ). Hence F̄ ∈ LTH(H),
and ϑ(H , w) ≥ wT f̄ = wT+ f = ϑ(H , w+), proving the claim.
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The inequality description follows immediately. Every f ∈ TH(H) is nonnegative
and satisfies wT f ≤ ϑ(H , w) for all w ∈ R

V+. For the reverse inclusion note that,
since TH(H) is closed and convex,

TH(H) = { f ∈ R
V : wT f ≤ ϑ(H , w) for all w ∈ R

V }.

So let f ≥ 0 be such that wT f ≤ ϑ(H , w) for all w ∈ R
V+. For w ∈ R

V , let w+ be
defined as above, so w+ ≥ 0. Then, for every w ∈ R

V we have

wT f ≤ wT+ f ≤ ϑ(H , w+) = ϑ(H , w),

and we see that f ∈ TH(H).
To finish, let us show that the theta body is of antiblocking type. If f ∈ TH(H)

and 0 ≤ g ≤ f , then for every w ∈ R
V+ we have wTg ≤ wT f ≤ ϑ(H , w), and

so g ∈ TH(H). ��
Finally, for every fixed r ≥ 1 it is possible to optimize over TH(H) in polyno-

mial time. More precisely, in the language of Grötschel, Lovász, and Schrijver [12,
Chapter 4], we have:

Theorem 2.5 If r ≥ 1 is fixed, then the weak optimization problem over TH(H) can
be solved in polynomial time for every r-uniform hypergraph H.

Proof The result is trivial for r = 1. For graphs, that is, r = 2, the statement was
proven by Grötschel, Lovász, and Schrijver [12, Theorem 9.3.30], and here it is easier
to take r = 2 as our base case, as will become clear soon. So we assume that r ≥ 3
and that the weak optimization problem can be solved in polynomial time for (r − 1)-
uniform hypergraphs; we want to show how to solve the weak optimization problem
in polynomial time for r -uniform hypergraphs.

Let H = (V , E) be an r -uniform hypergraph. If we show that we can solve the
weak optimization problem over the convex set LTH(H), then we are done. It suffices
[12, Chapter 4] to show that LTH(H) has the required inscribed and circumscribed
balls of appropriate size, and that the weak membership problem for LTH(H) can be
solved in polynomial time.

It can be easily checked that all entries of a matrix in LTH(H) are bounded in
absolute value by 1, and so the origin-centered ball of radius |V | circumscribes the
theta body. To find an inscribed ball, note that the full-dimensional convex set

conv{ χIχ
T
I ∈ R

V×V : I ⊆ V , |I | ≤ 2 }

is a subset of LTH(H), so it contains a ball which is also contained in LTH(H). (This
assertion fails when H is a graph, which is why we take r = 2 as the base to simplify
the proof.)

Now, given a symmetric matrix F ∈ R
V×V , to test whether F ∈ LTH(H) we first

test whether R(F) is positive semidefinite using (for instance) Cholesky decompo-
sition. By induction, the weak optimization problem for each link can be solved in
polynomial time, hence so can the weak membership problem for each link. We then
finish by calling the weak membership oracle for each link. ��
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3 Relationship to the Hoffman Bound

Let G be a d-regular graph on n vertices and let λ be the smallest eigenvalue of its
adjacency matrix. Hoffman showed that

α(G) ≤ −λ

d − λ
n;

the right-hand side above became know as the Hoffman bound. Hoffman never pub-
lished this particular result, though he did publish a similar lower bound [15] for the
chromatic number which also came to be known as the Hoffman bound; see Haemers
[14] for a historical account. Lovász [18] showed that the theta number is always at
least as good as the Hoffman bound and that, when the graph is edge transitive, both
bounds coincide. TheHoffman bound has also been extended to certain infinite graphs,
and its relation to extensions of the theta number has been studied [1].

Filmus, Golubev, and Lifshitz [10] extended the Hoffman bound to edge-weighted
hypergraphs and described several applications to extremal combinatorics. Our goal
in this section is to show that our extension of the theta number to hypergraphs is
always at least as good as the extended Hoffman bound. We begin with the extension
of Filmus, Golubev, and Lifshitz.

To simplify the presentation and to be consistent with the setup used so far, we
restrict ourselves toweighted hypergraphswithout loops.Aweighted r-uniformhyper-
graph is a pair X = (V , μ) where V is a finite set, called the vertex set of the
hypergraph, and μ is a probability measure on

(V
r

)
. The underlying hypergraph of X

is the r -uniform hypergraph on V whose edge set is the support of μ.
Let X = (V , μ) be a weighted r -uniform hypergraph and let H = (V , E) be its

underlying hypergraph. For i = 1, …, r − 1, the measure μ induces a probability
measure μ(i) on

(V
i

)
by the following experiment: we first choose an edge e of X

according to μ and then we choose an i-subset of e uniformly at random. Concretely,
for σ ∈ (V

i

)
we have

μ(i)(σ ) =
(
r

i

)−1

μ({ e ∈ E : σ ⊆ e }). (6)

Note that μ(1) can be seen as a weight function on V . We define the independence
number of X as α(X) = α(H , μ(1)).

Let X (i) ⊆ (V
i

)
be the support of μ(i). We may assume, without loss of generality,

that X (1) = V , since vertices not in the support ofμ(1) are isolated anddonot contribute
to the independence number.

The link of σ ∈ X (i) is the weighted (r − i)-uniform hypergraph Xσ = (V , μσ ),
where μσ is the probability measure on

( V
r−i

)
defined by the following experiment:

sample a random edge e ∈ (V
r

)
according to μ conditioned on σ ⊆ e and output e \σ .
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We also say that Xσ is an i -link of X . Concretely, for e ∈ (V \σ
r−i

)
we have

μσ (e) = μ(e ∪ σ)

μ({ e′ ∈ E : σ ⊆ e′ }) . (7)

For a vertex x ∈ V we write Xx instead of X{x} for the link of x . Note that the
underlying hypergraph of Xx , minus its isolated vertices, is exactly Hx , the link of x
in the underlying hypergraph of X , which we have used so far.

Equip R
V with the inner product

( f , g) =
∑

x∈V
f (x)g(x)μ(1)(x)

for f , g ∈ R
V . Since V is the support of μ(1), this inner product is nondegenerate.

The normalized adjacency operator of X is the operator TX on RV such that

(TX f )(x) =
∑

y∈V
f (y)μ(1)

x (y)

for all f ∈ R
V . Here, μ(1)

x = (μx )
(1) is the measure on V induced by the measure μx

defining the link of x . Combine (6) and (7) to get

μ(1)
x (y) = 1

r − 1

μ({ e ∈ E : x, y ∈ e })
μ({ e ∈ E : x ∈ e }) . (8)

Now use (6) and (8) to see that

μ(1)
x (y) = μ(2)({x, y})

2μ(1)(x)
(9)

for every x ∈ V and y ∈ Vx . Hence

(TX f , g) =
∑

x∈V

∑

y∈V
f (y)μ(1)

x (y)g(x)μ(1)(x) =
∑

{x,y}∈(V2)
f (x)g(y)μ(2)({x, y})

(10)

for f , g ∈ R
V . It follows at once that TX is self-adjoint and thus has real eigenvalues.

Note that TX1 = 1, hence the constant one vector is an eigenvector of TX with
associated eigenvalue 1. Moreover, the largest eigenvalue of TX is 1. Indeed, recall
that if A ∈ R

n×n is a matrix and if λ is an eigenvalue of A, then |λ| ≤ ‖A‖∞ =
maxi∈[n]

∑n
j=1 |Ai j |. Since ‖TX‖∞ = 1 by construction, it follows that 1 is the largest

eigenvalue of TX .
Let λ(X) be the smallest eigenvalue of TX , which is negative since tr TX = 0 as is

clear from (10). For i = 1, …, r − 2, let λi (X) be the minimum possible eigenvalue
of the normalized adjacency operator of any i-link of X , that is,
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λi (X) = min
σ∈X (i)

λ(Xσ ),

and set λ0(X) = λ(X).
With this notation, the Hoffman bound of X introduced by Filmus, Golubev, and

Lifshitz [10] is

Hoff(X) = 1 − 1

(1 − λ0(X))(1 − λ1(X)) · · · (1 − λr−2(X))
.

Say G = (V , E) is a d-regular graph and introduce on its edges the uniform
probability measure, obtaining a weighted 2-uniform hypergraph X = (V , μ). In this
case, μ(1) is the uniform probability measure on V and the normalized adjacency
operator TX is simply the adjacency matrix of G divided by d. If λ is the smallest
eigenvalue of the adjacency matrix of G, then λ(X) = λ/d and the high-dimensional
Hoffman bound reads

Hoff(X) = 1 − 1

1 − λ0(X)
= −λ

d − λ
,

which is, up to normalization, the Hoffman bound for α(G).
Filmus, Golubev, and Lifshitz showed that α(X) ≤ Hoff(X) and that this bound

does not change when one takes tensor powers of the hypergraph, a fact that has
implications for some problems in extremal combinatorics. The next theorem relates
the hypergraph theta number to the high-dimensional Hoffman bound.

Theorem 3.1 If X = (V , μ) is a weighted r-uniform hypergraph for some r ≥ 2 and
if H is its underlying hypergraph, then α(X) ≤ ϑ(H , μ(1)) ≤ Hoff(X).

A few remarks before the proof. The theta number is a bound for the weighted
independence number, where the weights are placed on the vertices. The Hoffman
bound on the other hand is defined for an edge-weighted hypergraph, and since edge
weights naturally induce vertexweights, it is possible to compare it to the theta number.
However, not every weight function on vertices can be derived from a weight function
on edges, so in this sense the theta number applies in more general circumstances.

Moreover, evenwhen a vertex-weight functionw : V → R+ can be derived from an
edge-weight function, it is not clear how to efficiently find an edge-weight function that
gives w and for which the Hoffman bound gives a good upper bound for α(H , w). A
natural idea is to compute the optimal Hoffman bound, that is, to find the edge weights
inducing w for which the corresponding Hoffman bound is the smallest possible. This
was proposed by Filmus, Golubev, and Lifshitz [10, Sect. 4.3], but for r ≥ 3 the
resulting optimization problem has a nonconvex objective function, and it is not clear
how to solve it efficiently. In contrast, one can always efficiently compute the theta
number of a hypergraph (see Theorem 2.5), and Theorem 3.1 says that the bound so
obtained will always be at least as good as the optimal Hoffman bound.

Finally, an important property of the extension of the Hoffman bound is that it is
invariant under the tensor power operation, while it is unclear whether the hypergraph
theta number behaves nicely under natural hypergraph products.
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Proof of Theorem 3.1 By definition we have α(X) = α(H , μ(1)) which, by Corol-
lary 2.3, is at most ϑ(H , μ(1)).

The proof of the inequality ϑ(H , μ(1)) ≤ Hoff(X) proceeds by induction on r .
The base is r = 2, in which case the statement was shown by Lovász [18, Theorem 9].
(Note that the Hoffman bound is not defined for r = 1, which is why we take r = 2
as the base.)

So assume r ≥ 3. Let f ∈ TH(H) be such that (μ(1))T f = ϑ(H , μ(1)) and
let F ∈ LTH(H)be amatrix such that f = diag F . Since R(F) is positive semidefinite,
by taking the Schur complement we see that F − f f T is also positive semidefinite,
and so

∑

x,y∈V
F(x, y)μ(1)(x)μ(1)(y) ≥ ((μ(1))T f )2 = ϑ(H , μ(1))2.

To finish the proof it then suffices to show that

∑

x,y∈V
F(x, y)μ(1)(x)μ(1)(y) ≤ ϑ(H , μ(1))Hoff(X). (11)

Since F ∈ LTH(H), we have Fx [Vx ] ∈ F(x, x)TH(Hx ) for every x ∈ V , and so

∑

y∈Vx
F(x, y)μ(1)

x (y) ≤ F(x, x)ϑ(Hx , μ
(1)
x ).

By induction, ϑ(Hx , μ
(1)
x ) ≤ Hoff(Xx ), hence

∑

x∈V
μ(1)(x)

∑

y∈Vx
F(x, y)μ(1)

x (y) ≤
∑

x∈V
μ(1)(x)F(x, x)ϑ(Hx , μ

(1)
x ) ≤ ϑ(H , μ(1))M,

where M = maxx∈V Hoff(Xx ). Use (9) on the left-hand side above to get

∑

{x,y}∈(V2)
F(x, y)μ(2)({x, y}) ≤ ϑ(H , μ(1))M, (12)

which already looks much closer to (11).
We work henceforth on the space R

V equipped with the nondegenerate inner
product (·, ·) defined above. Since F is positive semidefinite, let g1, …, gn be an
orthonormal basis of eigenvectors of F , with associated nonnegative eigenvalues λ1,
…, λn . We then have F(x, y) = ∑n

i=1 λi gi (x)gi (y) and

n∑

i=1

λi =
n∑

i=1

λi (gi , gi ) =
∑

x∈V
F(x, x)μ(1)(x) = ϑ(H , μ(1)), (13)

n∑

i=1

λi (gi , 1)2 =
∑

x,y∈V
F(x, y)μ(1)(x)μ(1)(y), (14)
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and, using (10),

n∑

i=1

λi (TXgi , gi ) =
n∑

i=1

λi
∑

{x,y}∈(V2)
gi (x)gi (y)μ

(2)({x, y})

=
∑

{x,y}∈(V2)
F(x, y)μ(2)({x, y}).

(15)

Let 1 = v1, v2,…, vn be an orthonormal basis of eigenvectors of TX with associated
eigenvalues 1 = α1 ≥ α2 ≥ · · · ≥ αn = λ(X). For every i we have

1 = (gi , gi ) =
n∑

j=1

(gi , v j )
2,

whence
∑n

j=2(gi , v j )
2 = 1 − (gi , 1)2. It follows that

(TXgi , gi ) =
n∑

j=1

α j (gi , v j )
2

≥ (gi , 1)2 +
n∑

j=2

αn(gi , v j )
2

= (1 − αn)(gi , 1)2 + αn .

Combine this with (15) and (12) to get

n∑

i=1

λi ((1 − αn)(gi , 1)2 + αn) ≤
∑

{x,y}∈(V2)
F(x, y)μ(2)({x, y}) ≤ ϑ(H , μ(1))M .

By (13) this implies that

(1 − αn)

n∑

i=1

λi (gi , 1)2 ≤ ϑ(H , μ(1))(M − αn).

Since αn < 0 and hence 1 − αn > 0, using (14) we finally get

∑

x,y∈V
F(x, y)μ(1)(x)μ(1)(y) =

n∑

i=1

λi (gi , 1)2 ≤ ϑ(H , μ(1))
M − αn

1 − αn
. (16)
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We are now essentially done. Indeed, λi (Xx ) ≥ λi+1(X) for all x ∈ V and i = 0,
…, r − 2, hence

1 − 1

(1 − λ0(Xx )) · · · (1 − λr−3(Xx ))
≤ 1 − 1

(1 − λ1(X)) · · · (1 − λr−2(X))
.

The left-hand side above is precisely Hoff(Xx ) and the right-hand side is equal
to λ0(X) + (1 − λ0(X))Hoff(X). We conclude that

M − λ0(X)

1 − λ0(X)
= max

x∈V
Hoff(Xx ) − λ0(X)

1 − λ0(X)
≤ Hoff(X).

Since αn = λ0(X) by definition, this combined with (16) gives (11), as wished. ��

We mentioned above that the Hoffman bound coincides with the theta number
when the graph is edge transitive. More generally, if a weighted hypergraph and all
its lower-order links are vertex transitive, then the Hoffman bound coincides with the
theta number. The proof of this assertion is an adaptation of the proof of Theorem 3.1:
use the results of Sect. 5 to take an invariant matrix F ∈ LTH(H) and check that since
the hypergraph and all its lower-order links are vertex transitive, every inequality in
the proof is tight.

4 The Antiblocker

Recall the definition of antiblocker from Sect. 1.5. If G is a graph, then the antiblocker
of TH(G) is TH(G) (see Grötschel, Lovász, and Schrijver [12, Chapter 9]). The same
does not hold for hypergraphs in general. Consider, for instance, the hypergraph H =
([r ], {[r ]}) and notice that f = χ[r−1] ∈ IND(H) and g = χ[r ] ∈ IND(H). So f ∈
TH(H) and g ∈ TH(H), but f Tg = r − 1. Hence, for r ≥ 3, TH(H) is not the
antiblocker of TH(H).

It seems from this simple example that we are off by a factor of r − 1, so
is A(TH(H)) = (r − 1)−1 TH(H)? The answer is again no, and the smallest example
is the hypergraph on {1, . . . , 5} with edges {1, 2, 5}, {1, 3, 4}, and {2, 3, 4}.

To describe the antiblocker of the theta body, we start by defining an alternative
theta number inspired by the dual of the theta number for graphs. For a number λ and
a symmetric matrix A with diagonal a, write

R(λ, A) =
(

λ aT

a A

)
.
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Given an r -uniform hypergraph H for r ≥ 2 and a weight function w ∈ R
V+, denote

by ϑ◦(H , w) both the semidefinite program below and its optimal value:

min λ

diag Z = w,

Zx [V x ] ∈ Z(x, x)TH(Hx ) for all x ∈ V ,

Z ∈ R
V×V and R(λ, Z) is positive semidefinite,

(17)

where V x is the vertex set of the link of x in H .
Now define

TH◦(H) = { g ∈ R
V+ : wTg ≤ ϑ◦(H , w) for all w ∈ R

V+ }.

This is a nonempty, closed, and convex set of antiblocking type contained in [0, 1]V .
Indeed, to see that TH◦(H) ⊆ [0, 1]V , fix x ∈ V and let w = χ{x}. Then λ = 1
and Z = χ{x}χT{x} is a feasible solution of ϑ◦(H , w), whence ϑ◦(H , w) ≤ 1, implying

that g(x) = wTg ≤ 1 for every g ∈ TH◦(H), as we wanted.

Theorem 4.1 If H = (V , E) is an r-uniform hypergraph for r ≥ 2, then:

(1) ϑ◦(H , w) = max{ wTg : g ∈ TH◦(H) } for every w ∈ R
V+;

(2) ϑ(H , l)ϑ◦(H , w) ≥ lTw for every l, w ∈ R
V+;

(3) A(TH(H)) = TH◦(H).

If G is a graph, then A(TH(G)) = TH(G), and hence TH(G) = TH◦(G). For
r -uniform hypergraphs with r ≥ 3, this is no longer always the case.

Proof The proof of (1) will require the following facts:

(i) if w ∈ R
V+ and α ≥ 0, then ϑ◦(H , αw) = αϑ◦(H , w);

(ii) if w, w′ ∈ R
V+, then ϑ◦(H , w + w′) ≤ ϑ◦(H , w) + ϑ◦(H , w′);

(iii) if w, w′ ∈ R
V+ and w′ ≤ w, then ϑ◦(H , w′) ≤ ϑ◦(H , w).

To show (i), note that if (λ, Z) is a feasible solution of ϑ◦(H , w), then (αλ, αZ)

is a feasible solution of ϑ◦(H , αw). For (ii), simply take feasible solutions for w

and w′ and note that their sum is a feasible solution for w + w′. For (iii), we show
that if w′ ≤ w differs from w in a single entry x ∈ V , then the inequality holds; by
applying this result repeatedly, we then get (iii).

Indeed, fix x ∈ V and let (λ, Z) be an optimal solution of ϑ◦(H , w). If Z̄ is the
Hadamard product of Z and (1 − χ{x})(1 − χ{x})T, then (λ, Z̄) is a feasible solution
of ϑ◦(H , w̄), where w̄(x) = 0 and w̄(y) = w(y) for y 
= x . By taking convex
combinations of (λ, Z̄) and (λ, Z), we then see that ϑ◦(H , w′) ≤ λ = ϑ◦(H , w) for
every w′ such that 0 ≤ w′(x) ≤ w(x) and w′(y) = w(y) for y 
= x .

Back to (1), suppose max{ wTg : g ∈ TH◦(H) } < ϑ◦(H , w). Since TH◦(H) is
a compact set, Theorem 8.1 from Appendix 1 gives us a function y : RV+ → R+, of
finite support, such that

∑

w̄∈RV+

y(w̄)w̄ ≥ w and
∑

w̄∈RV+

y(w̄)ϑ◦(H , w̄) < ϑ◦(H , w),

123



Combinatorica

and together with (i), (ii), and (iii) we get a contradiction.
To see (2), fix l, w ∈ R

V+ and let (λ, Z) be an optimal solution of ϑ◦(H , w). If
w = 0, then the result is immediate, so assume w 
= 0 and therefore ϑ◦(H , w) > 0.
Then λ−1Z ∈ LTH(H) so λ−1w ∈ TH(H) and

ϑ(H , l) ≥ lT(λ−1w) = ϑ◦(H , w)−1lTw,

proving (2).
To finish, we prove that if f ∈ TH(H) and g ∈ TH◦(H), then f Tg ≤ 1, as (3)

then follows by using Lehman’s length-width inequality2 together with (1) and (2). So
take f ∈ TH(H) and g ∈ TH◦(H). Let A ∈ LTH(H) be such that ϑ(H , g) = gTa,
where a = diag A. Note that λ = 1 and Z = A is a feasible solution of ϑ◦(H , a),
so ϑ◦(H , a) ≤ 1. Hence

f Tg ≤ ϑ(H , g) = gTa ≤ ϑ◦(H , a) ≤ 1,

and we are done. ��
The antiblocker offers another relaxation of the independent-set polytope: we have

the following analogue of Theorem 2.1 and Corollary 2.3.

Theorem 4.2 If H is an r-uniform hypergraph for r ≥ 2, then

(r − 1)−1 IND(H) ⊆ TH◦(H) ⊆ (r − 1)−1 QIND(H) (18)

and (r − 1)−1α(H , w) ≤ ϑ◦(H , w) ≤ χ∗(H , w) for every w ∈ R
V+.

Proof The antiblocker of IND(H) is (r−1)−1 QIND(H) (seeTheorem9.4 in Schrijver
[25]). Since also A(αK ) = α−1A(K ) for every convex set of antiblocking type K
and α > 0, we get (18) directly from Theorems 2.1 and 4.1.

It follows that (r−1)−1α(H , w) ≤ ϑ◦(H , w). The proof ofϑ◦(H , w) ≤ χ∗(H , w)

is a straightforward modification of the proof of Corollary 2.3. ��

5 Exploiting Symmetry

When a hypergraph is highly symmetric, the optimization problem over the theta body
or its lifted counterpart can be significantly simplified. We enter the realm of invariant
semidefinite programs, a topic which has been thoroughly explored in the last decade
[2]. In this section, we discuss the aspects of the general theory that are most relevant
to our applications.

Let V be a finite set and let � be a finite group that acts on V . The action of �

extends naturally to a function f ∈ R
V : given σ ∈ � we define

(σ f )(x) = f (σ−1x).

2 See Theorem 9.5 in Schrijver [25], where the result is stated for polyhedra, but the same proof works for
convex sets as well.
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Similarly, the action extends to matrices A ∈ R
V×V by setting

(σ A)(x, y) = A(σ−1x, σ−1y)

for every σ ∈ �. We say that f ∈ R
V is �-invariant if σ f = f for all σ ∈ �. We

define �-invariant matrices likewise.
An automorphism σ of a hypergraph H = (V , E) is a permutation of V that

preserves edges: if e ∈ E , then σe ∈ E . The set of all automorphisms forms a
group under function composition, called the automorphism group of H and denoted
by Aut(H).

Let H = (V , E) be an r -uniform hypergraph for r ≥ 2. Consider first the opti-
mization problem over LTH(H): given w ∈ R

V+, we want to find

max{ wT f : F ∈ LTH(H) and f = diag F }. (19)

If � ⊆ Aut(H) is a group and w is �-invariant, then when solving the optimization
problem above we may restrict ourselves to �-invariant matrices F .

Indeed, for x ∈ V , let Hx = (Vx , Ex ) be the link of x . Since � ⊆ Aut(H),
for every x ∈ V and every σ ∈ � we have that Vσ x = σVx and Eσ x = σ Ex ,
hence Hσ x = σHx . It follows that TH(Hσ x ) = σ TH(Hx ), where the action of σ

maps the function f : Vx → R to the function σ f : Vσ x → R by (σ f )(σ y) = f (y)
for y ∈ Vx .

This implies that, if F ∈ LTH(H), then σ F ∈ LTH(H) for every σ ∈ �. Since w

is invariant, the objective values of F and σ F coincide for every σ ∈ �. Use the
convexity of LTH(H) to conclude that, if F ∈ LTH(H), then

F̄ = 1

|�|
∑

σ∈�

σ F

also belongs to LTH(H). Now F̄ is �-invariant and has the same objective value as F ,
hence when solving (19) we can restrict ourselves to �-invariant matrices.

If � is a large group, this restriction allows us to simplify (19) considerably using
standard techniques [2]. The case when� acts transitively on V is of particular interest
to us.

Theorem 5.1 If H = (V , E) is an r-uniform hypergraph for r ≥ 2 and if� ⊆ Aut(H)

acts transitively on V , then the optimal value of (19) forw = 1 is equal to the optimal
value of the problem

max |V |−1〈J , A〉
A(x0, x0) = 1,
Ax0 [Vx0 ] ∈ TH(Hx0),

A ∈ R
V×V is positive semidefinite and �-invariant,

(20)

where x0 ∈ V is any fixed vertex and J is the all-ones matrix.
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Proof Note that w = 1 is �-invariant, so when solving (19) we can restrict ourselves
to �-invariant matrices. Let F be a �-invariant feasible solution of (19) and set A =
|V |(1T f )−1F , where f = diag F .

Since � acts transitively, all diagonal entries of F are equal, hence A is a feasible
solution of (20). Now R(F) is positive semidefinite, and hence the Schur comple-
ment F − f f T is also positive semidefinite. So

|V |−1〈J , A〉 = (1T f )−1〈J , F〉 ≥ (1T f )−1〈J , f f T〉 = 1T f ,

and we see that the optimal value of (20) is at least that of (19).
For the reverse inequality, let A be a feasible solution of (20). Since the action of �

is transitive, we immediately get that A(x, x) = 1 for all x ∈ V ; it is a little more
involved, though mechanical, to verify that Ax [Vx ] ∈ TH(Hx ) for all x ∈ V .

So set F = |V |−2〈J , A〉A and f = diag F ; note that f = |V |−2〈J , A〉1. Since
1T f = |V |−1〈J , A〉, if we show that F is a feasible solution of (19), then we are
done, and to show that F is feasible for (19) it suffices to show that R(F) is positive
semidefinite.

This in turn can be achieved by showing that the Schur complement F − f f T is
positive semidefinite. Indeed, note that since A is �-invariant, the constant vector 1 is
an eigenvector of A with eigenvalue |V |−1〈J , A〉. Hence 1 is an eigenvector of both F
and f f T with the same eigenvalue; since all other eigenvalues of f f T are zero and F
is positive semidefinite, we are done. ��

Symmetry also simplifies testing whether a given vector is in the theta body.

Theorem 5.2 Let H = (V , E) be an r-uniform hypergraph with r ≥ 2 and let � ⊆
Aut(H) be a group. A �-invariant vector f ∈ R

V is in TH(H) if and only if f ≥ 0
and wT f ≤ ϑ(H , w) for every �-invariant w ∈ R

V+.

Proof Necessity being trivial from Theorem 2.4, let us prove sufficiency. If w ∈ R
V+

is any weight function, then since f is �-invariant we have that

wT f = 1

|�|
∑

σ∈�

wT(σ f ) = 1

|�|
∑

σ∈�

(σ−1w)T f = w̄T f ,

where w̄ = |�|−1 ∑
σ∈� σ−1w. Note that w̄ is �-invariant.

We claim that ϑ(H , w̄) ≤ ϑ(H , w). Indeed, since w̄ is �-invariant, let g ∈ TH(H)

be a�-invariant vector such that w̄Tg = ϑ(H , w̄). Then (σw)Tg = wT(σ−1g) = wTg
for all σ ∈ �, and so wTg = w̄Tg, hence ϑ(H , w) ≥ w̄Tg, proving the claim.

Now use to claim to get wT f = w̄T f ≤ ϑ(H , w̄) ≤ ϑ(H , w), and with Theo-
rem 2.4 we are done. ��

6 Triangle-Encoding Hypergraphs andMantel’s Theorem

In a 1910 issue of the journal Wiskundige Opgaven, published by the Royal Dutch
Mathematical Society, Mantel [19] asked what perhaps turned out to be the first
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question of extremal graph theory; in modern terminology: how many edges can a
triangle-free graph on n vertices have? The complete bipartite graph on n vertices
with parts of size �n/2� and �n/2� is triangle-free and has �n2/4� edges. Can we do
better?

The answer came in the same issue, supplied by Mantel and several others: a
triangle-free graph on n vertices has at most �n2/4� edges. Mantel’s theorem was
later generalized by Turán to Kr -free graphs for r ≥ 4.

Given an integer n ≥ 3, we want to find the largest triangle-free graph on [n] =
{1, . . . , n}. So we construct a 3-uniform hypergraph Hn = (Vn, En) as follows:

• the vertices of Hn are the edges of the complete graph Kn on [n];
• three vertices of Hn , corresponding to three edges of Kn , form an edge of Hn if
they form a triangle in Kn .

Independent sets of Hn thus correspond to triangle-free subgraphs of Kn , and the
independent-set polytopeofHn coincideswith theTuránpolytope studiedbyRaymond
[21]. In order to illustrate ourmethodswewill compute the theta numberϑ(Hn), which
provides an upper bound of n2/4 for the independence number of Hn . This bound,
rounded down, coincides with the lower bound �n2/4� given by the complete bipartite
graph, showing that the theta number is essentially tight for this infinite family of
hypergraphs. Incidentally, this gives another proof of Mantel’s theorem, though not a
particularly short one.

The symmetric group Sn on n elements acts on [n], and therefore on Vn , and this
action preserves edges of Hn , hence Sn is a subgroup of Aut(Hn). The action of Sn is
also transitive, so we set x0 = {1, 2} and use Theorem 5.1 to get

ϑ(Hn) = max |Vn|−1〈J , A〉
A(x0, x0) = 1,
Ax0 [(Vn)x0 ] ∈ TH((Hn)x0),

A ∈ R
Vn×Vn is positive semidefinite and Sn-invariant.

(21)

The link of x0 = {1, 2} is the graph with vertex set

(Vn)x0 = { {1, k} : k ∈ {3, . . . , n} } ∪ { {2, k} : k ∈ {3, . . . , n} }

and edge set

(En)x0 = { {{1, k}, {2, k}} : k ∈ {3, . . . , n} },

that is, it is a matching with 2(n − 2) vertices and n − 2 edges (see Figure). 1
The row Ax0 of an Sn-invariant matrix A ∈ R

Vn×Vn is invariant under the stabilizer
of x0, and so Ax0 [Vx0 ] is a constant function since the stabilizer acts transitively
on (Vn)x0 . Theorem 5.2 then implies that Ax0 [(Vn)x0 ] ∈ TH((Hn)x0) if and only if

0 ≤ A(x0, {1, 3}) ≤ ϑ((Hn)x0)

2(n − 2)
= 1

2
, (22)
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Fig. 1 On the left, the hypergraph H4 where each vertex is the edge of K4 shown. On the right, the link

of , consisting of a matching with 4 vertices and 2 edges

since n − 2 ≤ α((Hn)x0) ≤ ϑ((Hn)x0) ≤ χ((Hn)x0) ≤ n − 2.
We simplify this problem further by computing a basis of the space of Sn-invariant

symmetric matrices in RVn×Vn . The action of Sn on Vn extends naturally to an action
on Vn ×Vn . There are three orbits of Vn ×Vn under this action, namely Rk = { (x, y) :
|x ∩ y| = 2 − k } for k = 0, 1, and 2. So a basis of the invariant subspace is given by
the matrices Ak such that

Ak(x, y) =
{
1, if (x, y) ∈ Rk;
0, otherwise.

Note that A0 is the identity matrix.
A feasible solution of (21) is then of the form

A = A0 + αA1 + βA2 (23)

for some real numbers α and β. We see moreover that A(x0, {1, 3}) = α, and so (22)
becomes 0 ≤ α ≤ 1/2. The objective function is

|Vn|−1〈J , A〉 = |Vn|−1(〈J , A0〉 + α〈J , A1〉 + β〈J , A2〉)
= 1 + |Vn|−1|R1|α + |Vn|−1|R2|β.

(24)

For the positive semidefiniteness constraint on A, we observe that {A0, A1, A2} is
the Johnson scheme J (n, 2) (see Godsil and Meagher [11, Chapter 6]). The algebra
spanned by the scheme (its Bose-Mesner algebra) is commutative, unital, and closed
under transposition; its matrices then share a common basis of eigenvectors, say v1,
v2, and v3, and can therefore be simultaneously diagonalized. The eigenvalues of v1,
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v2, and v3 for each matrix are (see Theorem 6.5.2, ibid.):

A0 : 1, 1, 1;
A1 : −2, n − 4, 2n − 4;
A2 : 1, −(n − 3), (n − 2)(n − 3)/2.

Putting it all together, our original problem can be rewritten as

max 1 + |Vn|−1|R1|α + |Vn|−1|R2|β
0 ≤ α ≤ 1/2,
1 − 2α + β ≥ 0,
1 + (n − 4)α − (n − 3)β ≥ 0,
1 + (2n − 4)α + ((n − 2)(n − 3)/2)β ≥ 0.

This is a linear program on two variables. Using the dual, or finding all vertices of the
primal feasible region, it is easy to verify that one optimal solution is

α = 1/2 and β = n − 2

2(n − 3)

for all n ≥ 4. This gives us an optimal value of n2/4, which rounded down coincides
with the lower bound coming from complete bipartite graphs.

7 Triangle-Avoiding Sets in the Hamming Cube

For an integer n ≥ 1, consider the Hamming cube H
n = {0, 1}n equipped with

the Hamming distance, which for x , y ∈ H
n is denoted by d(x, y) and equals the

number of bits in which x and y differ. A classical problem in coding theory is to
determine the parameter A(n, d), which is the maximum size of a subset I ofHn such
that d(x, y) ≥ d for all distinct x , y ∈ I .

If we let G(n, d) be the graph with vertex set Hn in which x , y ∈ H
n are adjacent

if d(x, y) < d, then A(n, d) = α(G(n, d)). A simple variant of the Lovász theta
number of G(n, d), obtained by requiring that F in (2) be nonnegative as well, then
provides an upper bound for A(n, d), which is easy to compute given the abundant
symmetry ofG(n, d). This bound, known as the linear programming bound, was orig-
inally described by Delsarte [6]; its relation to the theta number was later discovered
by McEliece, Rodemich, and Rumsey [20] and Schrijver [22].

We now consider a hypergraph analogue of this problem. Let s ≥ 1 be an integer.
Three distinct points x1, x2, x3 ∈ H

n form an s-triangle if d(xi , x j ) = s for all i 
= j .
It is easy to show that there is an s-triangle in Hn if and only if s is even and 0 < s ≤
�2n/3�.

We want to find the largest size of a set of points inHn that avoids s-triangles. More
precisely, given integers n, s ≥ 1, we consider the hypergraph H(n, s) whose vertex
set is Hn and whose edges are all s-triangles and we want to find its independence
number. The theta number ϑ(H(n, s)) defined in (3) gives us an upper bound.
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To compute ϑ(H(n, s)), start by noting that Iso(Hn), the group of isometries ofHn ,
is a subgroup of the automorphism group of H = H(n, s) and, since it acts transitively
onHn , we can use Theorem 5.1 to simplify our problem. To do so we choose x0 = 0.

The vertex set of the link H0 of 0 isHn
s , the set of all words of weight s, the weight

of a word being the number of 1 s in it; two words are adjacent in H0 if they are at
distance s. The isometry group Iso(Hn

s ) of Hn
s is a subgroup of the automorphism

group of H0.
If A : Hn × H

n → R is an Iso(Hn)-invariant symmetric matrix, then A(x, y)
depends only on d(x, y), and so a = A0[V0] is a constant function. We write A(t) for
the value of A(x, y) when d(x, y) = t .

By Theorem 5.2, we have a ∈ TH(H0) if and only if a ≥ 0 and wTa ≤ ϑ(H0, w)

for every Iso(Hn
s )-invariant w ∈ R

V0+ . Since Iso(Hn
s ) acts transitively on H

n
s , every

such invariant w is constant, and we conclude that A0[V0] ∈ TH(H0) if and only if
0 ≤ |Hn

s |A(s) ≤ ϑ(H0).
The problem can be further simplified. A matrix A : Hn × H

n → R is Iso(Hn)-
invariant and positive semidefinite if and only if there are numbers a0,…, an ≥ 0 such
that

A(t) =
n∑

k=0

akK
n
k (t),

where Kn
k is the Krawtchouk polynomial of degree k, normalized so Kn

k (0) = 1. This
polynomial can be defined on integers t ∈ {0, . . . , n} by the formula

Kn
k (t) =

(
n

k

)−1 k∑

i=0

(−1)i
(
t

i

)(
n − t

k − i

)
.

If Ek(x, y) = Kn
k (d(x, y)), then we have the orthogonality relations 〈Ek, El〉 = 0

for k 
= l; see Dunkl [8].
With this characterization, and noting that E0 = J is the all-ones matrix, we have

〈J , A〉 = 〈J , a0E0〉 = |Hn|2a0 = 22na0.

Rewriting (20), we see that ϑ(H(n, s)) is the optimal value of the problem

max 2na0∑n
k=0 ak = 1,∑n
k=0 akK

n
k (s) ≤ |Hn

s |−1ϑ(H0),

a0, . . . , an ≥ 0.

(25)

Here, we have omitted the constraint 0 ≤ |Hn
s |A(s), since it is automatically satisfied

by the optimal solution.
Problem (25) has only two constraints, and so its optimal solution admits a simple

expression. With Mn
K (s) = min{ Kn

k (s) : k = 0, . . . , n } for s ≥ 0 we have:
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Theorem 7.1 If n ≥ 1 is an integer and 0 < s ≤ �2n/3� is an even integer, then

ϑ(H(n, s)) = 2n
Mn

K (s) − |Hn
s |−1ϑ(H(n, s)0)

Mn
K (s) − 1

. (26)

Proof Write H = H(n, s). By our choice of s, there are s-triangles in H
n , so H0 is a

nonempty graph. Hence ϑ(H0) ≤ χ(H0) < |Hn
s |, and so a feasible solution of (25)

has to use some variable ak for k > 0.
To solve our problem we want to maximize a0 keeping the convex combination

n∑

k=0

akK
n
k (s)

below |Hn
s |−1ϑ(H0). We cannot achieve this by using only a0, so the best way to do it

is to let k∗ be such that Kn
k∗(s) = Mn

K (s) and use only the variables a0 and ak∗ . This
leads us to the system

a0 + ak∗ = 1,

a0 + ak∗Mn
K (s) = |Hn

s |−1ϑ(H0),

whose solution yields exactly (26). ��

To compute ϑ(H0) we again use symmetry. Let A : Hn
s × H

n
s → R be a matrix.

If A is Iso(Hn
s )-invariant, then A(x, y) depends only on d(x, y), and so we write A(t)

for the value of A(x, y) when d(x, y) = t . The matrix A is Iso(Hn
s )-invariant and

positive semidefinite if and only if there are numbers a0, …, as ≥ 0 such that

A(t) =
s∑

k=0

akQ
n,s
k (t/2)

(note that Hamming distances in H
n
s are always even), where Qn,s

k is the Hahn poly-
nomial of degree k, normalized so Qn,s

k (0) = 1. For an integer 0 ≤ t ≤ s, these
polynomials are given by the formula

Qn,s
k (t) =

k∑

i=0

(−1)i
(
s

i

)−1(n − s

i

)−1(k
i

)(
n + 1 − k

i

)(
t

i

)
.

If Ek(x, y) = Qn,s
k (d(x, y)/2), then 〈Ek, El〉 = 0 whenever k 
= l (see Delsarte [7],

in particular Theorem 5, and Dunkl [9]).
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With this characterization, 〈J , A〉 = |Hn
s |2a0 since E0 = J . Rewriting (20), we

see that ϑ(H0) is the optimal value of the problem

max |Hn
s |a0∑s
k=0 ak = 1,∑s
k=0 akQ

n,s
k (s/2) = 0,

a0, . . . , as ≥ 0.

(27)

Writing Mn
Q(s) = min{ Qn,s

k (s/2) : k = 0, . . . , s }, we have the analogue of The-
orem 7.1.

Theorem 7.2 If n ≥ 1 is an integer and 0 < s ≤ �2n/3� is an even integer, then

ϑ(H(n, s)0) = |Hn
s |

Mn
Q(s)

Mn
Q(s) − 1

.

Proof Adapt the proof of Theorem 7.1. ��
The upshot is that ϑ(H(n, s))may be expressed entirely in terms of the parameters

Mn
K (s) = min{ Kn

k (s) : k = 0, . . . , n } and (28)

Mn
Q(s) = min{ Qn,s

k (s/2) : k = 0, . . . , s }. (29)

Very similar expressions can be derived for the theta number in the more general
setting of q-ary cubes {0, . . . , q − 1}n for any integer q ≥ 2; in this case we must
use Krawtchouk polynomials with weight (q − 1)/q (see Dunkl [8]) and q-ary Hahn
polynomials [7].

The theta number for hypergraphs can also be extended to some well-behaved
infinite hypergraphs, and can be used in particular to provide upper bounds for the
density of simplex-avoiding sets on the sphere and in Euclidean space [3]. For triangle-
avoiding sets on the sphere Sn−1, for instance, the bound obtained is like the one in
Theorems 7.1 and 7.2, with both the Krawtchouk and Hahn polynomials replaced by
Gegenbauer (ultraspherical) polynomials Pn

k (resp. Pn−1
k ), which are the orthogonal

polynomials on the interval [−1, 1] for the weight function (1 − x2)(n−3)/2. In this
setting, the link of a vertex x ∈ Sn−1 is a scaled copy of Sn−2.

This bound can be analyzed asymptotically, yielding an upper bound for the den-
sity of simplex-avoiding sets that decays exponentially fast in the dimension of the
underlying space. The key point in the analysis is to show exponential decay of the
parameter Mn

P (t) = min{ Pn
k (t) : k ≥ 0 } for t ∈ (0, 1). This is done in two steps.

First, one uses results on the asymptotic behavior of the roots of Gegenbauer polyno-
mials to show that min{ Pn

k (t) : k ≥ 0 } is attained at k = 	(n). Then, one shows that
|Pn

k (t)| tends to 0 exponentially fast if k = 	(n) by exploiting a particular integral
representation for the Gegenbauer polynomials [3, Lemma 4.2].

The same can be attempted for the Hamming cube: how does the density of a subset
of Hn that avoids s-triangles behave as n goes to infinity? For a fixed s, the answer is
simple, since |Hn

s | is exponentially smaller than |Hn|. We should therefore consider
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20 15085

−2.3

−11.4

Fig. 2 The plot shows, for every n = 20, …, 150 on the horizontal axis, the value of ln(ϑ(H(n, s))/2n) on
the vertical axis, where s is the even integer closest to n/2 (in green), n/3 (in red), and n/4 (in blue)

a regime where s and n both tend to infinity; for instance, we could take s = s(n, c)
to be the even integer closest to n/c for some c > 1. Numerical evidence (see Fig. 7)
supports the following conjecture.

Conjecture 7.3 With s(n, c) defined as above, ϑ(H(n, s(n, c)))/2n decays exponen-
tially fast with n for every fixed c > 2, whereas ϑ(H(n, s(n, 2)))/2n decays linearly
fast with n.

We leave open the question of whether this conjecture, for c > 2, can be proven
using Theorems 7.1 and 7.2. Following the strategy of Castro-Silva, Oliveira, Slot, and
Vallentin [3], it is possible to show that the minima in (28) and (29) are attained at k =
	(n), using results on the roots of Krawtchouk and Hahn polynomials. For c = 2, it
appears that the minimum in (28) is always attained at k = 2 when n is a multiple of 4,
implying in this case thatMn(n/2) = Kn

2 (n/2) = −1/(n−1). The remaining obstacle
to finishing the analysis of the asymptotic behavior of Mn

K (s) and Mn
Q(s) is the lack of

a suitable integral representation for the Krawtchouk and Hahn polynomials, as was
available for the Gegenbauer polynomials.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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Appendix A. Duality for Optimization Over Compact Convex Sets

In the proof of Theorem 4.1 we used a kind of linear programming dual of the opti-
mization problem over TH◦(H) to get a contradiction, but TH◦(H) is not necessarily
a polyhedron. Since it is convex and compact, however, a kind of strong duality holds.
The following theorem should be known, but we could not find a suitable reference.

Theorem 8.1 let I be a set and for every i ∈ I let ai ∈ R
n and βi ∈ R; write S =

{ x ∈ R
n+ : aTi x ≤ βi for i ∈ I }. If S is nonempty and compact, then for every c ∈ R

n

we have that max{ cTx : x ∈ S } is the optimal value of

inf
∑

i∈I yiβi∑
i∈I yi ai ≥ c,

y : I → R+ has finite support.
(30)

Proof It is easy to show that max ≤ inf: if x ∈ S and if y is a feasible solution of (30),
then

cTx ≤
(∑

i∈I
yi ai

)T

x =
∑

i∈I
yi a

T
i x ≤

∑

i∈I
yiβi .

For the reverse inequality, start by observing thatwemay assume that I is countable.
Indeed, center on each rational point inRn+1 balls of radii 1/k for each integer k ≥ 1.
Inside every such ball choose a point (ai , βi ), for i ∈ I , if such a point exists. This
gives a countable subset of I defining the same set S.

So say I = {1, 2, . . .} and for an integer k ≥ 1 write

Sk = { x ∈ R
n+ : aTi x ≤ βi for 1 ≤ i ≤ k }.

We claim that there is k0 such that Sk0 is compact. If not, then for every k ≥ 1 there
is a nonzero zk ∈ R

n+ such that aTi zk ≤ 0 for all 1 ≤ i ≤ k. If we normalize these
points so ‖zk‖ = 1 for every k, then the sequence (zk) has a converging subsequence,
and we may assume that the sequence itself converges, say to a point z with ‖z‖ = 1.
Note that z ≥ 0. Moreover, for every i ≥ 1 we have

aTi z = lim
k→∞ aTi zk ≤ 0,

and since S is nonempty it follows that S is unbounded, a contradiction.
So for every k ≥ k0 let x∗

k be an optimal solution of max{ cTx : x ∈ Sk }. Since Sk0
is bounded and x∗

k ∈ Sk0 for every k ≥ k0, the sequence (x∗
k ) has a converging

subsequence; assume the sequence itself converges to x∗. Then x∗ ≥ 0 and for i ≥ 1
we have

aTi x
∗ = lim

k→∞ aTi x
∗
k ≤ βi ,
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so x∗ ∈ S. Moreover, since cTx∗
k ≥ max{ cTx : x ∈ S } for every k, we conclude

that x∗ is an optimal solution of max{ cTx : x ∈ S }.
The strong duality theorem of linear programming gives us, for every k ≥ k0, a

function yk : I → R+, supported on [k], such that

∑

i∈I
(yk)i ai ≥ c and

∑

i∈I
(yk)iβi = cTx∗

k .

Each yk is a feasible solution of (30), and it follows that the optimal value of (30)
is ≤ cTx∗. ��
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