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ABSTRACT
While the quantum query complexity of 𝑘-distinctness is known to
be 𝑂 (𝑛

3
4−

1
4

1
2𝑘−1 ) for any constant 𝑘 ≥ 4 [Belovs, FOCS 2012], the

best previous upper bound on the time complexity was 𝑂 (𝑛1−1/𝑘 ).
We give a new upper bound of𝑂 (𝑛

3
4−

1
4

1
2𝑘−1 ) on the time complexity,

matching the query complexity up to polylogarithmic factors. In
order to achieve this upper bound, we give a new technique for
designing quantum walk search algorithms, which is an extension
of the electric network framework. We also show how to solve the
welded trees problem in 𝑂 (𝑛) queries and 𝑂 (𝑛2) time using this
new technique, showing that the new quantum walk framework
can achieve exponential speedups.
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1 INTRODUCTION
In the problem of element distinctness, the input is a list of 𝑛 integers,
and the output is a bit indicatingwhether the integers are all distinct,
or there exists a pair of integers that are the same, called a collision.
This problem has been studied as a fundamental problem in query
complexity, but also for its relationship to other more practical
problems, such as sorting, or collision finding, which is similar, but
one generally assumes there are many collisions and one wants
to find one. In the worst case, element distinctness requires Θ(𝑛)
classical queries [2].

The first quantum algorithm to improve on this was a 𝑂 (𝑛3/4)
query algorithm [14], which is a variation of an optimal quan-
tum algorithm for collision finding [13], whose main technique is
amplitude amplification [12]. The algorithm of [14] could also be
implemented time efficiently, in 𝑂 (𝑛3/4) steps, with a log factor
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overhead from storing large subsets of the input in a sorted data
structure. This was later improved to𝑂 (𝑛2/3) queries, and 𝑂 (𝑛2/3)
time by Ambainis [3], which is optimal [1]. Ambainis’ algorithm
has been modified to solve other problems in various domains, from
𝑘-sum [18], to path finding in isogeny graphs [20, 26]. Moreover,
this algorithm was a critical step in our understanding of quantum
query complexity, and quantum algorithms in general, as the algo-
rithm used a new technique that was later generalized by Szegedy
into a generic speedup for random walk search algorithms of a
particular form [25].

For any constant integer 𝑘 ≥ 2, the problem 𝑘-distinctness is
to decide if an input list of integers contains 𝑘 copies of the same
integer. When 𝑘 = 2, this is exactly element distinctness. Ambai-
nis [3] actually gave a quantum algorithm for 𝑘-distinctness for any
𝑘 ≥ 2, with query complexity 𝑂 (𝑛1−1/(𝑘+1) ), and time complexity
𝑂 (𝑛1−1/(𝑘+1) ). For 𝑘 ≥ 3, Belovs gave an improved quantum query
upper bound of 𝑂 (𝑛3/4−

1
4

1
2𝑘−1 ) [8], however, this upper bound was

not constructive. Belovs proved this upper bound by exhibiting
a dual adversary solution, which can be turned into a quantum
algorithm that relies on controlled calls to a particular unitary. This
unitary can be implemented in one query, but actually implement-
ing this algorithm requires giving an efficient circuit for the unitary,
which is not possible in general. This is analogous to being given a
classical table of values, but no efficient circuit description. While it
seems reasonable to guess that the time complexity of𝑘-distinctness
should not be significantly higher than the query complexity – what
could one possibly do aside from querying and sorting well chosen
sets of inputs? – the problem of finding a matching time upper
bound was open for ten years.

In the meantime, lower bounds of Ω(𝑛
3
4−

1
2𝑘 ) for 𝑘 ≥ 3 [15]

and Ω(𝑛
3
4−

1
4𝑘 ) for 𝑘 ≥ 4 [24] were exhibited. Progress was also

made for the 𝑘 = 3 case. Two simultaneous works, [10] and [19]
(published together as [11]), gave a 𝑂 (𝑛5/7) time upper bound for
3-distinctness. Ref. [10] achieved this bound using a generalization
of Szegedy’s quantum walk framework, called the electric network
framework. Ref. [19] used the MNRS quantum walk framework [23],
and could also be generalized to give a slight improvement on the
time upper bound to 𝑂 (𝑛1−1/𝑘 ) for any 𝑘 > 3 [21].

In this work, we give an upper bound of 𝑂 (𝑛
3
4−

1
4

1
2𝑘−1 ) on the

time complexity of 𝑘-distinctness, matching the best known query
upper bound up to polylogarithmic factors. We do this using ideas
from Belovs’ query upper bound in a new framework for quantum
walk algorithms, the multidimensional quantum walk framework,
which is an extension of the electric network framework – the most
general of the quantum walk frameworks [6].We give a high-level
overview of this extension in Section 2.

Quantumwalk search frameworks are important because they al-
low one to design a quantum algorithm by first designing a classical
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random walk algorithm of a particular form, which can be com-
piled into an often faster quantum algorithm. While quantum walk
frameworks make it extremely easy to design quantum algorithms,
even without an in-depth knowledge of quantum computing, as
evidenced by their wide application across domains, the major
drawback is that they can achieve at most a quadratic speedup over
the best classical algorithm. This is because a quantum walk search
algorithm essentially takes a classical random walk algorithm, and
produces a quantum algorithm that is up to quadratically better.

This drawback does not hold for the multidimensional quantum
walk framework. We give a quantum algorithm in our framework
that solves the welded trees problem in 𝑂 (𝑛) queries and 𝑂 (𝑛2)
time, which is an exponential speedup over the classical lower
bound of 2Ω (𝑛) [17]. While a poly(𝑛) quantum algorithm based on
continuous-time quantum walks was already known, this proof-
of-concept application shows that our framework is capable of
exponential speedups. We emphasize that unlike the quantum walk
search frameworks mentioned here that give generic speedups over
classical random walk algorithms, continuous-time quantum walks
are not easily designed and analysed, and their applications have
been limited (with some exceptions based on converting quantum
walk search algorithms into continuous-time quantum walks, such
as [5]). Our multidimensional quantum walk framework, as a gener-
alization of the electric network framework, is in principal similarly
easy to apply, but with the potential for significantly more dramatic
speedups.

2 QUANTUMWALKS
We give a brief overview of previous work on quantum walk search
algorithms, with sufficient detail to understand, at a high level, the
improvements we make, before describing these improvements at
the end of this section.

The first (discrete) quantum walk search framework is due to
Szegedy [25], and is a generalization of the technique used by Am-
bainis in his element distinctness algorithm [3]. The framework
can be described in analogy to a classical random walk algorithm
that first samples an initial vertex according to the stationary dis-
tribution 𝜋 of some random walk (equivalently, reversible Markov
process) 𝑃 , and repeatedly takes a step of the random walk by sam-
pling a neighbour of the current vertex, checking each time if the
current vertex belongs to some marked set 𝑀 . Let 𝐻𝑇 (𝑃,𝑀) be the
hitting time, or the expected number of steps needed by a walker
starting from 𝜋 to reach a vertex in𝑀 . If S is the cost of sampling
from 𝜋 , U is the cost of sampling a neighbour of any vertex, C is
the cost of checking if a vertex is marked, and 𝐻 is an upper bound
on 𝐻𝑇 (𝑃,𝑀) assuming𝑀 ≠ ∅, then this classical algorithm finds a
marked vertex with bounded error in complexity:

𝑂 (S + 𝐻 (U + C)).

Szegedy showed that given such a 𝑃 and 𝑀 , if S is the cost of
coherently1 sampling from 𝜋 , i.e. generating

∑
𝑢

√︁
𝜋 (𝑢) |𝑢⟩, and

U is the cost of generating, for any 𝑢, the superposition over its
neighbours

∑
𝑣

√︁
𝑃𝑢,𝑣 |𝑣⟩, then there is a quantum algorithm that

1Technically the classical S and U might be different from the quantum ones, but in
practice they are often similar.

detects if𝑀 ≠ ∅ with bounded error in complexity:

𝑂 (S +
√
𝐻 (U + C)) .

This result was extended to the case of finding a marked vertex,
rather than just detecting a marked vertex in [4]. This framework,
and subsequent related frameworks have been widely applied, be-
cause this is a very simple way to design a quantum algorithm.

Belovs generalized this framework to the electric network frame-
work, by allowing the initial state to be |𝜎⟩ =

∑
𝑢

√︁
𝜎 (𝑢) |𝑢⟩ for

any distribution 𝜎 , analogous to starting a random walk in some
arbitrary initial distribution. Then if S𝜎 is the cost to generate |𝜎⟩,
there is a quantum algorithm that detects a marked vertex with
bounded error in complexity:

𝑂 (S𝜎 +
√
𝐶 (U + C)),

where𝐶 is a quantity that may be the same, or much larger than the
hitting time of the classical random walk starting at 𝜎 . For example,
if 𝜎 = 𝜋 , then 𝐶 = 𝐻 as above, but when 𝜎 is supported on a single
vertex 𝑠 , and𝑀 = {𝑡},𝐶 is the commute time from 𝑠 to 𝑡 [16], which
is the expected number of steps needed to get from 𝑠 to 𝑡 , and then
back to 𝑠 . If the hitting time from 𝑠 to 𝑡 is the same as the hitting
time from 𝑡 to 𝑠 , this is just twice that hitting time. However, in
some cases the hitting time from 𝑡 to 𝑠 may be significantly larger
than the hitting time from 𝑠 to 𝑡 .

A second incomparable quantum walk search framework that
is similarly easy to apply is the MNRS framework [23]. Loosely
speaking, this is the quantum analogue of a classical random walk
that does not check if the current vertex is marked at every step, but
rather, only after sufficiently many steps have been taken so that
the current vertex is independent of the previously checked vertex.
Ref. [6] extended the electric network framework to be able to find
a marked vertex, and also showed that the MNRS framework can be
seen as a special case of the resulting framework. Thus, the finding
version of the electric network framework captures all quantum
walk search frameworks in one unified framework.

We now discuss, at a high level, how a quantum walk search
algorithm works – particularly in the electric network framework
(but others are similar)2. We will suppose for simplicity that 𝜎 is
supported on a single vertex 𝑠 , and either𝑀 = ∅ or𝑀 = {𝑡}. Fix a
graph 𝐺 , possibly with weighted edges, such that 𝑠, 𝑡 ∈ 𝑉 (𝐺). It is
simplest if we imagine that 𝐺 is bipartite, so let 𝑉 (𝐺) = 𝑉A ∪𝑉B
be a bipartition, with 𝑠 ∈ 𝑉A . Let 𝐺 ′ be the graph 𝐺 with a single
extra vertex 𝑣0 that is not part the bipartition. This new vertex 𝑣0 is
connected to 𝑠 , and connected to 𝑡 if and only if 𝑡 ∈ 𝑀 . For 𝑢 ∈ 𝑉A ,
define star states:

|𝜓𝐺′
★ (𝑢)⟩ =

∑︁
𝑣∈𝑉B∪{𝑣0 }:{𝑢,𝑣 }∈𝐸 (𝐺′)

√
w𝑢,𝑣 |𝑢, 𝑣⟩,

where w𝑢,𝑣 is the weight of the edge {𝑢, 𝑣}. If we normalize this
state, we get

∑
𝑣

√︁
𝑃𝑢,𝑣 |𝑢, 𝑣⟩, where 𝑃 is the transition matrix of the

random walk on 𝐺 ′. For 𝑣 ∈ 𝑉B , define:

|𝜓𝐺′
★ (𝑣)⟩ =

∑︁
𝑢∈𝑉A∪{𝑣0 }:{𝑢,𝑣 }∈𝐸 (𝐺′)

√
w𝑢,𝑣 |𝑢, 𝑣⟩.

2We discuss the classic construction of such algorithms, without modifications that
were more recently made in [4] and [6] to not only detect, but find.
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Let

A := span{|𝜓𝐺′
★ (𝑢)⟩ : 𝑢 ∈ 𝑉A } , B := span{|𝜓𝐺′

★ (𝑣)⟩ : 𝑣 ∈ 𝑉B}.

Then a quantum walk algorithm works by performing phase esti-
mation of the unitary

𝑈AB := (2ΠA − 𝐼 ) (2ΠB − 𝐼 )

on initial state |𝑠, 𝑣0⟩ to some sufficiently high precision – this pre-
cision determines the complexity of the algorithm. Let us consider
why this algorithm can distinguish𝑀 = ∅ from𝑀 = {𝑡}.

First suppose 𝑀 = {𝑡}. Assume there is a path from 𝑠 to 𝑡 in 𝐺

(otherwise a random walk from 𝑠 will never find 𝑡 ), which means
there is a cycle in𝐺 ′ containing the edge (𝑣0, 𝑠), obtained by adding
(𝑡, 𝑣0) and (𝑣0, 𝑠) to the 𝑠𝑡-path in𝐺 . We can define a cycle state for
a cycle 𝑢1, . . . , 𝑢𝑑 = 𝑢1 as:
𝑑−1∑︁
𝑖=1

|𝑒𝑢𝑖 ,𝑢𝑖+1 ⟩√
w𝑢𝑖 ,𝑢𝑖+1

where |𝑒𝑢,𝑣⟩ :=
{

|𝑢, 𝑣⟩ if (𝑢, 𝑣) ∈ 𝑉A ×𝑉B
−|𝑣,𝑢⟩ if (𝑢, 𝑣) ∈ 𝑉B ×𝑉A .

A cycle state is orthogonal to all star states: if the cycle goes through
a vertex 𝑢, it is supported on 2 of the edges adjacent to 𝑢: one
contributing −1 because it goes into 𝑢, and the other +1 because it
comes out of𝑢. Thus a cycle state is in the (+1)-eigenspace of𝑈AB .
If there is a cycle that uses the edge (𝑣0, 𝑠), then it has non-zero
overlap with the initial state |𝑠, 𝑣0⟩, and so the initial state has non-
zero overlap with the (+1)-eigenspace of 𝑈AB , and so the phase
estimation algorithm will have a non-zero probability of outputting
a phase estimate of 0. The shorter the cycle (i.e. the shorter the
𝑠𝑡-path) the greater this overlap is relative to the size of the cycle
state. We can make a similar argument if we take not just a single
𝑠𝑡-path in 𝐺 , but a superposition of paths called an 𝑠𝑡-flow. Then
the energy of this flow controls the probability of getting a phase
estimate of 0. The minimum energy of a unit flow from 𝑠 to 𝑡 is
called the effective resistance between 𝑠 and 𝑡 , denoted R𝑠,𝑡 (𝐺).

On the other hand, suppose𝑀 = ∅. Then we claim that

|𝑠, 𝑣0⟩ =
∑︁

𝑢∈𝑉A

|𝜓𝐺′
★ (𝑢)⟩ −

∑︁
𝑣∈𝑉B

|𝜓𝐺′
★ (𝑣)⟩ ∈ A + B = (A⊥ ∩ B⊥)⊥ .

This means that our initial state has no overlap with the (+1)-
eigenspace of𝑈AB , which is exactly (A ∩ B) ⊕ (A⊥ ∩ B⊥), so if
we could do phase estimation with infinite precision, the probability
we would measure a phase estimate of 0 would be 0. Our precision
is not infinite, but using a linear algebraic tool called the effective
spectral gap lemma, we can show that precision proportional to


∑︁

𝑢∈𝑉A
|𝜓𝐺′
★ (𝑢)⟩




2 = ∑︁
𝑒∈𝐺′w𝑒 =: W(𝐺)

is sufficient.
Combining these two analyses for the𝑀 = {𝑡} and𝑀 = ∅ case

yield (in a non-obvious way) that approximately
√
RW steps of the

quantumwalk is sufficient, ifR is an upper bound onR𝑠,𝑡 (𝐺) when-
ever𝑀 = {𝑡}, andW is an upper bound onW(𝐺) whenever𝑀 = ∅.
A nice way to interpret this is that the quantity R𝑠,𝑡 (𝐺)W(𝐺) is
equal to the commute time from 𝑠 to 𝑡 – the expected number of
steps a random walker starting from 𝑠 needs to reach 𝑡 , and then
return to 𝑠 . For a discussion of how to interpret this quantity in the
case of more general 𝜎 and𝑀 , see [6].

The Multidimensional QuantumWalk Framework: We extend this
algorithm in two ways:

Edge Composition To implement the unitary𝑈AB , we per-
form a mapping that acts, for any 𝑢 ∈ 𝑉A , as |𝑢, 0⟩ ↦→
|𝜓𝐺′
★ (𝑢)⟩ (up to normalization), and a similar mapping for

𝑣 ∈ 𝑉B . Loosely speaking, what this means is that we have a
labelling of the edges coming out of𝑢, and some way of com-
puting (𝑢, 𝑣) from (𝑢, 𝑖), where 𝑣 is the 𝑖-th neighbour of𝑢. If
this computation costs T𝑢,𝑖 steps, then it takes𝑂 (max𝑢,𝑖 T𝑢,𝑖 )
steps to implement𝑈AB . However, in case this cost varies
significantly over different 𝑢, 𝑖 , we can do much better. We
show how we can obtain a unitary with polylogarithmic
cost, and essentially consider, in the analysis of the resulting
algorithm, a quantum walk on a modified graph in which an
edge {𝑢, 𝑣}, where 𝑣 is the 𝑖-th neighbour of 𝑢, is replaced
by a path of length T𝑢,𝑖 . A similar thing was already known
for learning graphs, when a transition could be implemented
with T𝑢,𝑖 queries [9]. This is an extremely useful, if not par-
ticularly surprising, feature of the framework, which we use
in our application to 𝑘-distinctness.

Alternative Neighbourhoods The more interesting way we
augment the electric network framework is to allow the use
of alternative neighbourhoods. In order to generate the star
state of a vertex𝑢, a superposition of the edges coming out of
𝑢, one must, in some sense, know the neighbours of𝑢, as well
as their relative weights. In certain settings, the algorithm
will know that the star state for 𝑢 is one of a small set of
easily preparable states Ψ★(𝑢) = {|𝜓1

★(𝑢)⟩, |𝜓2
★(𝑢)⟩, . . . }, but

computing precisely which one of these is the correct state
would be computationally expensive. In that case, we include
all of Ψ★(𝑢) when constructing the spaces A and B. In the
case when 𝑀 = ∅, the analysis is the same – by increasing
A + B, we have only made the analysis easier. However, in
the case𝑀 ≠ ∅, the analysis has become more constrained.
For the analysis of this case, we used a circulation, because
it is orthogonal to all star states. However, now there are
some extra states in A + B, and we need to take extra care
to find a circulation that is also orthogonal to these.

The new alternative neighbourhoods technique is best understood
through examples, of which we shortly describe two. We first re-
mark on the unifying idea from which both these techniques follow.

If we let {|𝜓★(𝑢)⟩}𝑢∈𝑉 be any set of states, we can make a graph
𝐺 on𝑉 by letting𝑢 and 𝑣 be adjacent if and only if ⟨𝜓★(𝑢) |𝜓★(𝑣)⟩ ≠
0. Then, if this graph is bipartite, and we can reflect around the span
of each state individually, we can reflect around span{|𝜓★(𝑢)⟩ : 𝑢 ∈
𝑉 }. Quantum walk search algorithms can be seen as a special case
of this, where we additionally exploit the structure of the graph to
analyse the complexity of this procedure. One way of viewing alter-
native neighbourhoods is that we extend this reasoning to the case
where we have spaces {span{Ψ★(𝑢)}}𝑢∈𝑉 , each of which we can
efficiently reflect around, and 𝐺 is now a bipartite graph encoding
the overlap of the spaces, hence the qualifier multidimensional.

Edge composition also exploits this picture. We can define a
sequence of subspaces {Ψ𝑢,𝑣

𝑡 }T𝑢,𝑖
𝑡=1 that only overlap for adjacent 𝑡 ,

and such that the subroutine computing |𝑣, 𝑗⟩ from |𝑢, 𝑖⟩ can be
seen as moving through these spaces. Now the overlap graph of all
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these spaces will look like 𝐺 , except with each edge (𝑢, 𝑣) replaced
by a path of length T𝑢,𝑖 . For a more detailed explanation and for
examples of such overlap graphs, see [22]. Before moving on to
our examples, we comment that unlike the finding version of the
electric network framework [6], our extension does not allow one
to find a marked vertex, but only to detect if there is one or not. We
leave extending our framework to finding as future work.

3 WELDED TREES
We motivate the alternative neighbourhoods modification by an
application to the welded trees problem [17]. In the welded trees
problem, the input is an oracle𝑂𝐺 for a graph𝐺 with 𝑠, 𝑡 ∈ 𝑉 (𝐺) ⊂
{0, 1}2𝑛 . Each of 𝑠 and 𝑡 is the root of a full binary tree with 2𝑛 leaves,
and we connect these leaves with a pair of random matchings. This
results in a graph in which all vertices except 𝑠 and 𝑡 have degree
3, and 𝑠 and 𝑡 each have degree 2. Given a string 𝑢 ∈ {0, 1}2𝑛 , the
oracle 𝑂𝐺 returns ⊥ if 𝑢 ∉ 𝑉 (𝐺), which is true for all but at most a
2−𝑛+2 fraction of strings, and otherwise it returns a list of the 2 or 3
neighbours of 𝑢. We assume 𝑠 = 02𝑛 , so we can use 𝑠 as our starting
point, and the goal is to find 𝑡 , which we can recognize since it is
the only other vertex with only 2 neighbours. The classical query
complexity of this problem is 2Ω (𝑛) [17]. Intuitively that is because
this problem is set up so that a classical algorithm has no option but
to do a random walk, starting from 𝑠 , until it hits 𝑡 . However, this
takes 2Ω (𝑛) steps, because wherever a walker is in the graph, the
probability of moving towards the centre, where the leaves of the
two trees are connected, is twice the probability of moving away
from the centre, towards 𝑠 or 𝑡 . So a walker quickly moves from 𝑠

to the centre, but then it takes exponential time to escape to 𝑡 .
While we know there is a quantum algorithm that solves this

problem in poly(𝑛) queries3 to 𝑂𝐺 [17], if we try to reproduce this
result in the electric network framework, wewill get an exponential-
time algorithm, essentially because the total weight of the graph is
exponential.

Suppose we could add weights to the edges of 𝐺 , so that at any
vertex 𝑢, the probability of moving towards the centre or away
from the centre were the same: that is, if w is the weight on the
edge from 𝑢 to its parent, then the other two edges should have
weight w/2. This would already be very helpful for a classical
random walk, however, a bit of thought shows that this is not
possible to implement. By querying 𝑢, we learn the labels of its
three neighbours, 𝑣1, 𝑣2, 𝑣3, which are random 2𝑛-bit strings, but
we get no indication which is the parent. However, we know that
the correct star state in the weighted graph that we would like to
be able to walk on is proportional to one of the following:

|𝑢, 𝑣1⟩ +
1
2 |𝑢, 𝑣2⟩ +

1
2 |𝑢, 𝑣3⟩,

|𝑢, 𝑣2⟩ +
1
2 |𝑢, 𝑣1⟩ +

1
2 |𝑢, 𝑣3⟩,

|𝑢, 𝑣3⟩ +
1
2 |𝑢, 𝑣1⟩ +

1
2 |𝑢, 𝑣2⟩.

Thus, we add all three states (up to some minor modifications)
to Ψ★(𝑢), which yields an algorithm that can learn any bit of in-
formation about 𝑡 in 𝑂 (𝑛) queries. By composing this with the
3The best previous query complexity was𝑂 (𝑛1.5) [7], although it is likely that contin-
uous time quantum walks could also be used to solve this problem in𝑂 (𝑛) queries.

𝑅1, 𝑅2

𝑉0

𝑖1
𝑅1 ∪ {𝑖1}, 𝑅2

𝑉1

𝑖2
𝑅1 ∪ {𝑖1}, 𝑅2 ∪ {𝑖2}

𝑉2

𝑖3
𝑅1 ∪ {𝑖1}, 𝑅2 ∪ {𝑖2}, 𝑖3

𝑉3

Figure 1: A sample path from𝑉0 to𝑉3 in our first attempt at a
quantum walk for 3-distinctness. The indices shown in blue
can be seen to label the edges.

Bernstein-Vazirani algorithm we can find 𝑡 . For an detailed exhibi-
tion of this algorithm, see[22].

We emphasize that our application to the welded trees problem
does not use the edge composition technique. It would be trivial
to embed any known exponential speedup in our framework by
simply embedding the exponentially faster quantum algorithm in
one of the edges of the graph, but we are able to solve the welded
trees problem using only the alternative neighbourhoods idea.

4 3-DISTINCTNESS
We first describe an attempt at a quantum walk algorithm for the
simpler case of 3-distinctness, how it fails, and how the Multidimen-
sional Quantum Walk Framework comes to the rescue. While our
result for 𝑘 = 3 is not new, our generalization to 𝑘 > 3 is, and the
case of 𝑘 = 3 is already sufficient to illustrate our techniques. For
the details of how our framework tackles 𝑘-distinctness, see [22].
Formally, the problem of 3-distinctness is: given a string 𝑥 ∈ [𝑞]𝑛 ,
output a 1 if and only if there exist distinct 𝑎1, 𝑎2, 𝑎3 ∈ [𝑛] such that
𝑥𝑎1 = 𝑥𝑎2 = 𝑥𝑎3 . We make the standard simplifying assumptions
(without loss of generality) that if such a 3-collision exists, it is
unique, and moreover, there is an equipartition [𝑛] = 𝐴1 ∪𝐴2 ∪𝐴3
such that 𝑎1 ∈ 𝐴1, 𝑎2 ∈ 𝐴2 and 𝑎3 ∈ 𝐴3.

We now describe a graph that will be the basis for a quantum
walk attempt. A vertex 𝑣𝑅1,𝑅2 is described by a pair of sets 𝑅1 ⊂ 𝐴1
and 𝑅2 ⊂ 𝐴2. 𝑣𝑅1,𝑅2 stores these sets, as well as input-dependent
data consisting of the following:

• Queried values for all of 𝑅1: 𝐷1 (𝑅) := {(𝑖, 𝑥𝑖 ) : 𝑖 ∈ 𝑅1}.
• Queried values for those elements of 𝑅2 that have a match
in 𝑅1:

𝐷2 (𝑅) := {(𝑖1, 𝑖2, 𝑥𝑖1 ) : 𝑖1 ∈ 𝑅1, 𝑖2 ∈ 𝑅2, 𝑥𝑖1 = 𝑥𝑖2 }.
By only keeping track of the values in 𝑅2 that have a match in 𝑅1,
we save the cost of initially querying the full set 𝑅2. The vertices
will be in 4 different classes, for some parameters 𝑟1 and 𝑟2 with
𝑟1 ≪ 𝑟2:

𝑉0 = {𝑣𝑅1,𝑅2 : |𝑅1 | = 𝑟1, |𝑅2 | = 𝑟2}
𝑉1 = {𝑣𝑅1,𝑅2 : |𝑅1 | = 𝑟1 + 1, |𝑅2 | = 𝑟2}
𝑉2 = {𝑣𝑅1,𝑅2 : |𝑅1 | = 𝑟1 + 1, |𝑅2 | = 𝑟2 + 1}
𝑉3 = {𝑣𝑅1,𝑅2,𝑖3 : |𝑅1 | = 𝑟1 + 1, |𝑉2 | = 𝑟2 + 1, 𝑖3 ∈ 𝐴3}.

The vertices 𝑣𝑅1,𝑅2,𝑖3 ∈ 𝑉3 are just like the vertices in 𝑉2, except
there is an additional index 𝑖3 ∈ 𝐴3 stored.We connect vertices in𝑉ℓ
and𝑉ℓ+1 in the obvious way: 𝑣𝑅1,𝑅2 ∈ 𝑉ℓ is adjacent to 𝑣𝑅′

1,𝑅
′
2
∈ 𝑉ℓ+1

if and only if 𝑅1 ⊆ 𝑅′
1 and 𝑅2 ⊆ 𝑅′

2 (exactly one of these inclusions is
proper); and 𝑣𝑅1,𝑅2 ∈ 𝑉2 is adjacent to 𝑣𝑅1,𝑅2,𝑖3 ∈ 𝑉3 for any 𝑖3 ∈ 𝐴3
(see Figure 1).

We say a vertex 𝑣𝑅1,𝑅2,𝑖3 ∈ 𝑉3 is marked if 𝑎1 ∈ 𝑅1, 𝑎2 ∈ 𝑅2,
and 𝑎3 = 𝑖3, where (𝑎1, 𝑎2, 𝑎3) is the unique 3-collision. Thus a
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quantumwalk that decides if there is a marked vertex or not decides
3-distinctness.

We imagine a quantum walk that starts in a uniform superposi-
tion over 𝑉0. To construct this initial state, we first take a uniform
superposition over all sets 𝑅1 of 𝑟1 indices, and query them. Next
we take a uniform superposition over all sets 𝑅2 of size 𝑟2, but
rather than query everything in 𝑅2, we search for all indices in 𝑅2
that have a match in 𝑅1. This saves us the cost of querying all 𝑟2
elements of 𝑅2, which is important because we will set 𝑟2 to be
larger than the total complexity we aim for (in this case, 𝑟2 ≫ 𝑛5/7),
so we could not afford to spend so much time. However, we do
not only care about query complexity, but also the total time spent
on non-query operations, so we also do not want to spend time
writing down the set 𝑅2, even if we do not query it, which is the
first problem with this approach:

Problem 1: Writing down 𝑅2 would take too long.
The fix for Problem 1 is rather simple: we will not let 𝑅2 be a
uniform random set of size 𝑟2. Instead, we will assume that 𝐴2 is
partitioned into 𝑚2 blocks, each of size 𝑛/(3𝑚2), and 𝑅2 will be
made up of 𝑡2 := 3𝑚2𝑟2/𝑛 of these blocks. This also means that
when we move from 𝑉1 to 𝑉2, we will add an entire block, rather
than just a single index. The main implication of this is that when
we move from 𝑉1 to 𝑉2, we will have to search the new block of
indices that we are adding to 𝑅2 for any index that collides with 𝑅1.
This means that transitions from 𝑉1 to 𝑉2 have a non-trivial cost,
𝑛𝜀 for some small constant 𝜀, unlike all other transitions, which
have polylogarithmic cost. Naively we would incur a multiplicative
factor of 𝑛𝜀 on the whole algorithm, but we avoid this because the
edge composition technique essentially allows us to only incur the
cost 𝑛𝜀 on the edges that actually incur this cost, and not on every
edge in the graph. Otherwise, our solution to Problem 1 is technical,
but not deep, and so we gloss over Problem 1 and its solution for
the remainder of this high-level synopsis. This is the only place we
use the edge composition part of the framework in our applications,
but we suspect it can be used in much more interesting ways.

Moving on, in order to take a step from a vertex 𝑣𝑅1,𝑅2 ∈ 𝑉0 to
a vertex 𝑣𝑅1∪{𝑖1 },𝑅2 ∈ 𝑉1, we need to select a uniform new index
𝑖1 to add to 𝑅1, and then also update the data we store with each
vertex. That means we have to query 𝑖1 and add (𝑖1, 𝑥𝑖1 ) to 𝐷1 (𝑅),
which is simple, and can be done in 𝑂 (log𝑛) basic operations as
long as we use a reasonable data structure to store 𝐷1 (𝑅); and we
also have to update 𝐷2 (𝑅) by finding anything in 𝑅2 that collides
with 𝑖1. Since 𝑅2 has not been queried, this latter update would
require an expensive search, which we do not have time for, so
we want to avoid this. However, if we do not search 𝑅2 for any
𝑖2 such that 𝑥𝑖2 = 𝑥𝑖1 , then whenever we add some 𝑖1 that has a
match in 𝑅2, the data becomes incorrect, and we have introduced
what is referred to in [8] as a fault. This is a serious issue, because
if 𝑖1 is the unique index in 𝑅1 such that there exists 𝑖2 ∈ 𝑅2 with
𝑥𝑖1 = 𝑥𝑖2 but this is not recorded in 𝐷2 (𝑅), then 𝑖1 is “remembered”
as having been added after 𝑖2. That is, the resulting vertex does
not only depend on 𝑅1 ∪ {𝑖1}, 𝑅2, but on 𝑖1 as well. For quantum
interference to happen, it is crucial that when we are at a vertex 𝑣 ,
the state does not remember anything about how we got there.

Problem 2: When we add 𝑖1 to 𝑅1 without searching for a
match in 𝑅2, we may introduce a fault.

⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄
𝑅1 ({1}) 𝑅1 ({1, 2}) 𝑅1 ({2})

∗ ∗ ⋄ ∗ ⋄ ⋄ ∗ ∗ ∗ ⋄ ∗ ∗ ⋄ ∗ ∗ ∗
𝑅2 (1) 𝑅2 (2)

Figure 2: The data we keep track of for a vertex 𝑣𝑅1,𝑅2 . ⋄ rep-
resents a queried index. ∗ represents an index whose query
value is not stored. We only store the query value of an index
in 𝑅2 (𝑠) if it collides with something in 𝑅1 ({𝑠}) ∪ 𝑅1 ({1, 2}),
shown here by a solid line. If 𝑖2 ∈ 𝑅2 (1) collides with some
value in 𝑅1 ({2}), shown here by a dashed line, we do not
record that, and do not store 𝑥𝑖2 .

Our handling of this is inspired by the solution to an analogous
problem in the query upper bound of [8]. We partition 𝑅1 into three
sets: 𝑅1 ({1}), 𝑅1 ({2}), and 𝑅1 ({1, 2}); and 𝑅2 into two sets 𝑅2 (1)
and 𝑅2 (2). Then 𝐷2 (𝑅) will only store collisions (𝑖1, 𝑖2, 𝑥𝑖1 ) such
that 𝑥𝑖1 = 𝑥𝑖2 if 𝑖1 ∈ 𝑅1 (𝑆) and 𝑖2 ∈ 𝑅2 (𝑠) for some 𝑠 ∈ 𝑆 . This is
shown in Figure 2.

Now when we add 𝑖1 to 𝑅1, we have three choices: we can add
it to 𝑅1 ({1}), 𝑅1 ({2}), or 𝑅1 ({1, 2}). Importantly, at least one of
these choices does not introduce a fault. To see this, suppose there
is some 𝑖2 ∈ 𝑅2 such that 𝑥𝑖1 = 𝑥𝑖2 . We claim there can be at most
one such index, because otherwise there would be a 3-collision in
𝐴1 ∪𝐴2, and we are assuming the unique 3-collision has one part
in 𝐴3. This leads to three possibilities:

Type 1: 𝑖2 ∈ 𝑅2 (2), in which case, adding 𝑖1 to 𝑅1 ({1}) does
not introduce a fault.

Type 2: 𝑖2 ∈ 𝑅2 (1), in which case, adding 𝑖1 to 𝑅1 ({2}) does
not introduce a fault.

Type 0: There is no such 𝑖2, in which case, adding 𝑖1 to 𝑅1 ({1})
or 𝑅1 ({2}) or 𝑅1 ({1, 2}) does not introduce a fault.

We modify the graph so that we first move from 𝑣𝑅1,𝑅2 ∈ 𝑉0 to
𝑣𝑅1,𝑅2,𝑖1 ∈ 𝑉 +

0 by selecting a new 𝑖1 ∈ 𝐴1 \ 𝑅1, and then move from
𝑣𝑅1,𝑅2,𝑖1 to 𝑣𝑅1∪{𝑖1 },𝑅2 ∈ 𝑉1 – here there are three possibilities for
𝑅1 ∪ {𝑖1}, depending on to which of the three parts of 𝑅1 we add 𝑖1.
However, we will only add 𝑖1 to a part of 𝑅1 that does not introduce
a fault. Thus, a vertex 𝑣𝑅1,𝑅2,𝑖1 in 𝑉 +

0 has one edge leading back to
𝑉0, and either one or three edges leading forward to 𝑉1, as shown
in Figure 3.

On its own, this is not a solution, because for a given 𝑣𝑅1,𝑅2,𝑖2 ,
in order to determine its type, we would have to search for an
𝑖2 ∈ 𝑅2 such that 𝑥𝑖1 = 𝑥𝑖2 , which is precisely what we want to
avoid. However, this is exactly the situation where the alternative
neighbourhood technique is useful. For all𝑢 ∈ 𝑉 +

0 , we will letΨ★(𝑢)
contain all three possibilities shown in Figure 3, of which exactly
one is the correct state. We are then able to carefully construct a
flow that is orthogonal to all three states, in our analysis. The idea
is that all incoming flow from 𝑣 must leave along the edge (𝑢, 𝑣 {1})
so that the result is a valid flow in case of Type 1. However, in
order to be a valid flow in case of Type 2, all incoming flow from 𝑣
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𝑣 𝑢

𝑣 {1}

𝑣 {1,2}

𝑣 {2}

{1}

{1,2}

{2}

Type 0

𝑣 𝑢

𝑣 {1}
{1}

Type 1

𝑣 𝑢

𝑣 {2}
{2}

Type 2

Figure 3: The possible neighbourhoods of 𝑢 = 𝑣𝑅1,𝑅2,𝑖1 ∈ 𝑉 +
0 ,

depending on the type of vertex. 𝑣𝑆 ∈ 𝑉1 is obtained from 𝑣 by
adding 𝑖1 to 𝑅1 (𝑆). The backwards neighbour 𝑣 = 𝑣𝑅1,𝑅2 ∈ 𝑉0
is always the same.

must leave along the edge (𝑢, 𝑣 {2}). But now to ensure that we also
have a valid flow in case of Type 0, we must have negative flow on
the edge (𝑢, 𝑣 {1,2}), or equivalently, flow from 𝑣 {1,2} to 𝑢. This is
indicated by the arrows on the edges in Figure 3.

Model of Computation: Our 𝑘-distinctness algorithm works in
the same model as previous 𝑘-distinctness algorithms, which we
try to make more explicit than has been done in previous work.
In addition to arbitrary 1- and 2-qubit gates, we assume quantum
random access to a large quantum memory (QRAM). This version
of QRAM is fully quantum, whereas some previous works have
used “QRAM” to refer to classical memory that can be read in
superposition by a quantum machine. For more details, see [22].
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