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Abstract
We revisit the classic regret-minimization problem in the stochastic multi-armed bandit setting when
the arm-distributions are allowed to be heavy-tailed. Regret minimization has been well studied in
simpler settings of either bounded support reward distributions or distributions that belong to a single
parameter exponential family. We work under the much weaker assumption that the moments of
order (1 + ε) are uniformly bounded by a known constant B, for some given ε > 0. We propose an
optimal algorithm that matches the lower bound exactly in the first-order term. We also give a finite-
time bound on its regret. We show that our index concentrates faster than the well-known truncated
or trimmed empirical mean estimators for the mean of heavy-tailed distributions. Computing our
index can be computationally demanding. To address this, we develop a batch-based algorithm that
is optimal up to a multiplicative constant depending on the batch size. We hence provide a controlled
trade-off between statistical optimality and computational cost.
Keywords: Multi-armed bandits, heavy-tailed distributions, confidence intervals, regret-minimization

1. Introduction

In this paper, we consider the problem of sequential allocation of resources in an uncertain en-
vironment. The player is presented with K arms, which correspond to K unknown probability
distributions. When the player selects an arm, she observes a sample generated independently from
the corresponding underlying distribution, called reward. The player’s aim is to maximize the average
cumulative reward, which is equivalent to minimizing the expected regret, defined to be the shortfall
between the cumulative expected reward of the player and the expected reward collected by the
policy playing the arm with the maximum mean in all the rounds.

Regret minimisation in the stochastic multi-armed bandit model was first studied by Thompson
(1933) in the context of designing efficient clinical trials, and by Robbins (1952). Lai and Robbins
(1985) proposed a lower bound on the expected regret for parametric distributions and gave a
framework for optimal strategies in this setting. This lower bound was later generalized by Burnetas
and Katehakis (1996) (see Lattimore and Szepesvári (2020, Chapter 16) for a proof of the lower
bound). Since then this problem has been well studied in the literature (see, e.g., Auer et al. (2002);
Agrawal (1995); Honda and Takemura (2010, 2011); Agrawal and Goyal (2012); Garivier and Cappé
(2011); Kaufmann et al. (2012); Cappé et al. (2013b); Bubeck et al. (2013); Honda and Takemura
(2015)). We refer the reader to Bubeck et al. (2012) for a survey on the extensive literature on this
problem and its variations.
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Apart from clinical trials, this regret-minimization framework finds applications in many other
settings including in advertisement selection, recommendation systems, internet routing and conges-
tion control, etc. Despite the vast body of literature, the setting where the underlying distributions are
heavy-tailed (disributions for which the moment-generating function is not defined for any θ > 0)
has been largely unaddressed. In most of the previous work, authors restrict the arm distributions
to have bounded support or belong to a restrictive single parameter exponential family (SPEF) of
distributions. In many bandit application domains such as in financial markets, or in congestion
control over networks, it is rarely the case that the arm distributions are either parametric or bounded.
In particular, it is well known that the stock returns in developed economies follow heavy-tailed dis-
tributions that typically have finite moments of order at most 4. Higher moments are not guaranteed
to exist. Furthermore, daily exchange rates and income and wealth distributions may have heavier
tails with finite moments of order less than 2 (see, e.g., Nicolau and Rodrigues (2019)). Thus, it
is important to understand and develop a general theory and efficient (both, computationally and
statistically) algorithms that have wider applicability.

Recently, there has been some interest beyond SPEFs. Bubeck et al. (2012) consider the non-
parametric class of “sub-ψ” distributions, where the convex function ψ bounds the log-moment
generating function of the arm-distributions. The ψ-UCB algorithm proposed by the authors is order-
optimal. Bubeck et al. (2013) propose algorithms which are optimal up to constants for heavy-tailed
distributions. They show that by using more robust estimators for the mean, as compared to the
empirical average, one can achieve sub-linear expected regret. The setting considered by the authors
is closest to ours. We compare the performance of our algorithm to that proposed by Bubeck et al.
(2013). Vakili et al. (2013) also consider bandits with heavy-tailed distributions. They propose
a strategy which is based on dividing the time into interleaving sequences for exploration and
exploitation. Lattimore (2017) considers distributions with a known uniform bound on the kurtosis.
Cowan et al. (2018) and Cowan and Katehakis (2015) consider Gaussian bandits with unknown
mean and variance, and uniform bandits with unknown support, respectively. However, none of their
algorithms exactly match the lower bound on the expected regret to the first order.

As in Agrawal et al. (2020a), it can be shown that if no restrictions are imposed on the class of
arm-distributions, then the lower bound on the expected regret is unbounded. To make the problem
learnable, we allow for distributions that have their (1 + ε)th-moment uniformly bounded by a
constant, B, for ε > 0. However, the existence of any higher moments is not guaranteed. In
particular, we focus on the class

LB ,
{
η ∈ P(<) : Eη |X|1+ε ≤ B

}
, (1)

where P(<) denotes the collection of probability measures on <, B > 0 and ε > 0 are known
constants, and Eη |X|1+ε :=

∫
|y|1+ε dη(y) denotes the (1 + ε)th moment of η. This is a standard

assumption in literature on heavy-tailed distributions (see, e.g., Bubeck et al. (2013); L.A. et al.
(2020)). Also see Agrawal et al. (2020b) for a discussion on methods for estimating ε and B in
specific settings. Under this mild assumption on the arm-distributions, we develop an algorithm
that suffers regret which asymptotically matches the lower bound exactly, up to the first order term.
We also give a finite time analysis for its regret. We look at the computational complexity of the
algorithm and demonstrate a trade-off in the expected regret and the computational cost suffered by
the proposed algorithm.

As is common in the stochastic-bandit literature, the performance guarantees of the algorithm
involve proving convergence results, which are typically a consequence of Chernoff-Hoeffding like
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inequalities. However, direct application of Hoeffding’s type results is not valid in our setting. We
develop non-asymptotic concentration inequalities for functionals of probability measures that appear
in the lower bound, which may also be of independent interest. Our approach for constructing
an index for each arm can be used to get tight anytime-valid confidence intervals for means of
heavy-tailed distributions. We show that these confidence intervals are at least as tight as those for
popular robust estimators such as truncated/trimmed empirical means in specific settings. See Lugosi
and Mendelson (2019) for popular estimators for a distribution’s mean in the heavy-tailed setting.
We also demonstrate numerically that our algorithm suffers significantly less regret compared to the
Robust-UCB algorithm of Bubeck et al. (2013), which derives its index from the aforementioned
estimators for mean.

Computing the index can be very costly in this generality. To address this, we propose a batched
version of the algorithm that computes the index for each arm only at the beginning of each batch,
and allocates all the samples within that batch to the arm with maximum value of the computed
index. We show that with carefully chosen batch sizes, this batched-algorithm suffers regret that is
off by only a constant multiplicative factor, while significantly improving the computational cost.

Since we allow for heavy-tailed distributions, we can no longer identify the distributions with one
parameter, as is the case in the most widely used setting of SPEF. We work in the space of probability
measures, where we use the Lévy metric (or equivalently the topology of weak-convergence) to
define the notion of convergence.

We also establish the conjectured optimality of the Empirical KL-UCB algorithm of Cappé et al.
(2013b) and give the first optimal finite-time regret bounds for bounded-support arm distributions. In
Garivier and Cappé (2011), the authors gave a finite-time bound for a modification of the algorithm,
and established its optimality only in the special case of Bernoulli arms. Maillard et al. (2011)
independently gave a tight finite time analysis for the Bernoulli case. For general bounded-support
distributions, Honda and Takemura (2010) proposed an asymptotically optimal algorithm, but did
not give finite-time bounds on the regret.

In a nutshell, we propose the first asymptotically optimal algorithm for the heavy-tailed setting
that matches the instance-dependent lower bound exactly up to the first order term. In this generality,
the computational cost incurred by the algorithm can be significant. We propose a modification of
the optimal algorithm that matches the lower bound up to constants, but requires significantly less
computational effort. Our index suggests tight anytime-valid confidence intervals for the mean of
heavy-tailed distributions, which are superior to those for the well-known truncation or trimming
based estimators in specific settings. Moreover, the finite time analysis presented can be used to
establish finite time guarantees for some of the existing algorithms.

Roadmap: In Section 2 we describe the setup and discuss the lower bound for the regret-
minimization problem. Our proposed algorithm is presented in Section 3. Section 3.1 contains
our main results for the proposed algorithm, including the finite time guarantee and its asymptotic
optimality. A modification of the original algorithm that is practically tuned but at the cost of
optimality up to constants, is also presented in this section. The regret analysis of the algorithm
and the proof ideas for its theoretical guarantee are presented in Section 3.3. Superiority of our
algorithm over that of Bubeck et al. (2013) is established in Section 3.4. In this section we also show
exactly how our anytime-valid confidence intervals dominate those for popular mean-estimators
for heavy-tailed distributions. We discuss the trade-off in the computational cost and statistical
optimality of the algorithm in Section 3.5. We present the results of our numerical experiments in
Section 4, and conclude in Section 5.
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2. Background and the lower bound

Let P(<) denote the collection of all probability measures on <. For η ∈ P(<), let m(η) =
∫
< xdη

denote the mean of distribution η. Furthermore, let KL (η, κ) =
∫

log
(
dη
dκ

)
dη(x) denote the

Kullbeck-Leibler divergence from probability distribution η to κ. Let L ⊆ P(<) be any collection of
probability measures, and let LK denote the collection of vectors of K distributions, each from L.

Given µ ∈ LK such that µ = {µ1, µ2, . . . , µK}, we assume for convenience that arm 1 has
the maximum mean. Let the arm selected by the algorithm at time n be denoted by An and let
the observed random sample at that time be denoted by Xn. Then Xn is an independent sample
distributed according to µAn . Define the expected regret till time T as follows:

E (RT ) ,
T∑
n=1

m(µ1)− E (m(µAn)) =
K∑
a=1

E (Na(T )) ∆a, (2)

where Na(T ) denotes the number of times arm a has been pulled in T trials, and ∆a := m(µ1)−
m(µa) is the sub-optimality gap of arm a. For distribution η ∈ P(<) and candidate mean x ∈ <, we
define

KLLinf(η, x) := inf {KL(η, κ) : κ ∈ L and m(κ) ≥ x} . (3)

Then, Burnetas and Katehakis (1996) show that any reasonable strategy acting on a bandit problem
µ ∈ LK , for any collection L, suffers expected regret satisfying:

lim inf
T→∞

E (RT )

log(T )
≥

∑
a: m(µa)<m(µ1)

∆a

KLLinf(µa,m(µ1))
, (4)

where RT denotes the total regret suffered by the algorithm till time T . The proof of lower bound (4)
relies on change of measure arguments (see Lattimore and Szepesvári (2020)). Agrawal et al. (2020a,
Lemma 1) show that it is necessary to impose certain restrictions on the class L under consideration,
otherwise KLLinf(·, ·) = 0 leading to unbounded expected regret. To this end, we restrict L to the
class LB defined in (1), i.e., to the collection of all distributions satisfying E(|X|1+ε) ≤ B, for fixed
positive constants ε and B. Notice that in order to bound the expected regret in (2), it is sufficient to
bound the expected number of pulls of each sub-optimal arm a 6= 1.

Building upon the algorithms with KL-based confidence intervals in Maillard et al. (2011),
Garivier and Cappé (2011), and Cappé et al. (2013b), where the authors propose optimal algorithms
for much simpler settings of either Bernoulli or SPEF arms, we develop an algorithm that matches
the lower bound in (4), in a much more general setting, allowing for heavy-tailed distributions.

As mentioned in the introduction, we study the convergence of sequences of probability measures
in the Lévy metric, which is reviewed in Appendix A. The analysis of the algorithm uses the
continuity and convexity properties of KLinf , which are also proven in Appendix A (Lemma 10).

3. The algorithm

Our algorithm follows the UCB template with two variations. First, our arm indices are constructed
from deviation inequalities for KLLinf , which allows us to show that our algorithm matches the
(asymptotic) instance-optimal regret lower bound for the heavy-tailed setting. Second, our algorithm
processes the samples in batches. Our geometric batching allows us to reduce the worst-case run-time
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from essentially O(T 2) for the sample-at-a-time case to O(T log log(T )), at the cost of a mild factor
in our regret.

Algorithm 1 formally describes our algorithm, KLinf -UCB. This is an index-based algorithm
that proceeds in batches. After each batch, it computes an index for each arm and allocates the next
batch of samples to the arm with the maximum index (breaking ties arbitrarily, if any). Henceforth,
unless specified, we set L = LB , as defined in (1). Furthermore, when L is clear from the context,
for ease of notation, we denote the functional KLLinf , defined in (3), by KLinf .

Let µ ∈ LK be the given bandit instance, Ua(n) denote the value of the index corresponding
to arm a at time n, An denote the arm selected at time n, and let [K] denote the set {1, . . . ,K}.
For simplicity of notation, in our algorithm and analysis, we denote by Na(n) the number of times
arm a has been sampled in n − 1 rounds. Moreover, let µ̂a(n) denote the empirical distribution
corresponding to Na(n) samples from arm a, and η̃ ≥ 0 be a multiplicative factor that will be used
to determine the batch sizes. The algorithm takes as inputs K, η̃, B, ε, and a threshold function, ga(.)
corresponding to each arm, which will be used for computing the index for that arm. Our index

Input :K; description of L, i.e., B and ε; η̃; threshold functions for each arm, i.e., ga(·).

Initialization: Allocate 1 sample to each of the K arms.
Set n←− K + 1, j ← K + 1.
Store empirical distributions, µ̂a(n), and update Na(n) for all arms a ∈ [K].
while True do

Compute index Ua(n) = sup {x ∈ < : Na(n) KLinf(µ̂a(n), x) ≤ ga(n)} for each arm.
Compute best arm An = argmaxa∈[K] Ua(n) and batch size Bj = max {1, dη̃NAn(n)e}.
Sample arm An for Bj many trials and set n← n+Bj , and j ← j + 1.
Update µ̂a(n) and Na(n) for each arm.

end
Algorithm 1: KLinf -UCB(K,B, ε, η̃, {ga(·)}Ka=1).

Ua(n) for arm a at time n is based on the functional KLinf . It approximately corresponds to the
inverse of Na(n) KLinf(µ̂a(n), .), evaluated at the threshold, ga(n) and can be re-expressed as

Ua(n) = max {Eη (X) : η ∈ L, Na(n) KL(µ̂a(n), η) ≤ ga(n)} . (5)

It is the maximum mean among distributions in L that are close to the empirical distribution in KL
divergence. This formulation of the index will be useful in comparing our confidence widths to those
of the truncated empirical mean estimator (see Section 3.4). Before looking at the computational
cost incurred by the algorithm, we look at its theoretical guarantees.

3.1. Main results

Let Bj be the random variable denoting the size of the jth batch. Theorem 1 below gives a finite-time
bound on the number of pulls of a sub-optimal arm by the proposed-algorithm for appropriately
chosen threshold functions ga(·). Corollary 2 shows that the KLinf -UCB algorithm is asymptotically
optimal up to a multiplicative factor of (1 + η̃), and matches the lower bound when the batch size is
1, i.e., η̃ = 0. However, from our discussion in Section 3.5, for η̃ = 0, the algorithm has a quadratic
computational cost. On the other hand, for η̃ > 0, the computational cost reduces to being almost
linear in the number of samples, at the cost of matching the lower bound upto a constant factor of
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1 + η̃. Thus, there is a trade off between the cost of computation and the expected regret suffered
by the algorithm in the long run. In Section 4, numerical experiments demonstrate that even with
the sub-optimality factor of (1 + η̃), our algorithm suffers significantly less regret compared to the
Robust-UCB algorithm with the truncated empirical mean as its estimator for the true mean, proposed
in Bubeck et al. (2013). Our main regret bound is the following:

Theorem 1 (KLinf -UCB) Let T > K ≥ 2, µ ∈ LK , η̃ ≥ 0, and ga(t) = log(t) + 2 log log(t) +
2 log(1 + Na(t)) + 1. For each sub-optimal arm a, KLinf -UCB(K,B, ε, η̃, ga (·)) has E (Na(T ))
at most

(1 + η̃)

(
log T

KLinf(µa,m(µ1))
+

3(log T )2/3(c′µ)1/3

2(KLinf(µa,m(µ1)))4/3
+O((log T )1/3) +O(log log(T ))

)
.

In Theorem 1 above, c′µ > 0 is a bandit instance-dependent constant. The exact O((log(T ))1/3) and
O(log log T ) terms are given in (11) below. Theorem 1 implies logarithmic regret for KLinf -UCB,
and Corollary 2 shows its asymptotic instance-optimality.

Corollary 2 For µ ∈ LK , η̃ ≥ 0, and ga(t) = log(t) + 2 log log(t) + 2 log(1 + Na(t)) + 1,
KLinf -UCB, with inputs (K,B, ε, η̃, ga(.)) is asymptotically optimal up to a factor of (1 + η̃), i.e.,

lim sup
T−→∞

E (Na(T ))

log(T )
≤ 1 + η̃

KLinf(µa,m(µ1))
.

Numerically we observe that the threhold ga(t) used by KLinf -UCB is conservative for finite
horizons. A version with much aggressive threshold of log t for all arms, performs much better
(Figure 1). To address this, we propose a closely related algorithm, KLinf -UCB2, which has
threshold that is much smaller than ga(t), initially. This algorithm differs from KLinf -UCB in
that it solves the regret-minimization problem with respect to a slightly perturbed (larger) class
while allowing for a more practically-relevant threshold. This results in smaller regret initially
for sometime, at the cost of being asymptotically sub-optimal. Formally, let ε1 > 0, let B̃ =
B + ε1 and define δt = log(1 + (log log(t))-1). For µ ∈ LB , KLinf -UCB2 is precisely KLinf -
UCB(K, B̃, ε, η̃, (1 + δt)

2 log(t)). Notice that the threshold used here is much smaller than ga(t) for
practically relavant horizons. For η ∈ P(<), and x ∈ <, let KLε1inf(η, x) denote KL

LB̃
inf (η, x).

Theorem 3 (KLinf -UCB2) For µ ∈ LK , η̃ ≥ 0, ε1 > 0, and ga(t) = (1+δt)
2 log(t), KLinf -UCB2

satisfies

lim sup
T→∞

E (Na(T ))

log(T )
≤ 1 + η̃

KLε1inf(µa,m(µ1))
.

In Lemma 10, Appendix A, we show that KLLBinf is a continuous function of the moment bound
B. Hence, by choosing ε1 close to 0, KLinf -UCB2’s regret gets arbitrarily close to the lower bound,
as T →∞ (modulo (1 + η̃) factor).

3.2. Conjecture and open problem of Cappé et al. (2013b):

The analysis of the proposed algorithm can be specialized to bound the regret of the Empirical
KL-UCB algorithm of Cappé et al. (2013b) for arm-distributions with bounded support. In this
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setting, L = P([0, 1]), the collection of all probability measures supported on [0, 1]. For µa ∈ L, for
each arm a ∈ [K], and x ∈ [0, 1], upon setting

KLLinf(µa, x) = inf KL(µa, κ) s.t. κ ∈ P([0, 1]), m(κ) ≥ x, (6)

in the index of our algorithm, we recover the Empirical KL-UCB algorithm.

Proposition 4 Let L = P([0, 1]). Empirical KL-UCB, with ga(t) := log t + log log t bounds the
pull counts for suboptimal arms a > 1 at T ≥ K by

E (Na(T )) ≤ log(T )

KLLinf(µa,m(µ1))−O
(

(log T )−
1
5 (log log T )

1
5

)+O
(

(log T )
4
5 (log log(T ))

1
5

)
.

Honda and Takemura (2010) develop an explicit representation and prove properties for the functional
defined in (6) above, which we review in Appendix E. Carefully using these in our analysis, we get
the above mentioned bound. We refer the reader to Appendix E for the exact bound and its proof.

3.3. Regret analysis

In this section, we prove Theorem 1. The proof of Theorem 3 is similar, and is given in Appendix F.
Henceforth, we assume that arm 1 is the unique arm with maximum mean. The proof proceeds

by analysing the events leading to the selection of a sub-optimal arm a > 1 by Algorithm 1. We show
that if arm a > 1 has been sampled enough, then the probability of it getting selected is extremely
small. In particular, this corresponds to showing 2 things: first, the KLinf -UCB index is a high
probability upper bound on the true mean, and second, the probability of it being too large is small.

Notice that for x ∈ <, and b ∈ [K], if Nb(n) KLinf(µ̂b(n), x) is at least the threshold, gb(n),
then the index for arm b at time n is smaller than x. Similarly, if Nb(n) KLinf(µ̂b(n), x) is less than
the threshold, then the index computed by KLinf -UCB is at least x. Proposition 5 below shows that
for all n, our index is an upper bound on the true mean of the arm-distribution, with high probability.

Proposition 5 For x ≥ 0, b ∈ [K],

P (∃n ∈ N : Nb(n) KLinf(µ̂b(n),m(µb))− 1− 2 log(1 +Nb(n)) ≥ x) ≤ e−x.

Using Lagrangian duality, it can be shown that Nb(n) KLinf(µ̂b(n),m(µb)) equals the maximum
over the dual variables of a sum of logarithms of i.i.d. random variables with means at most 1.
Hence, for fixed dual variables, the exponential of these sum-of-logarithms, which is a product of
non-negative random variables with mean at most 1, is a non-negative super-martingale. We construct
a mixture of these super-martingales that dominates the exponential of Nb(n) KLinf(µ̂b(n),m(µb))
after adjusting by 1 + 2 log(1 +Nb(n)). We refer the reader to Appendix A for a discussion on the
dual formulation, and to Section B.1 in the appendix for details of the proof of Proposition 5.

Proof of Theorem 3 also uses a similar concentration inequality for Nb(n) KL
LB̃
inf (µ̂b(n),m(µb))

(see Proposition 20), where recall that LB̃ is the perturbed class used by KLinf -UCB2. This
perturbation helps in getting rid of the additional cost of 2 log(1 +Nb(n)) incurred above.

We next show that the KLinf -UCB index being too large is a rare event. Let µ̂a,s denote the
empirical distribution corresponding to s samples from arm a. Lemma 6 below, will be used to
bound the probability that the index for a sub-optimal arm a > 1 takes value close to the mean of the
best-arm, after sufficient samples have been allocated to it.
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Lemma 6 For µ ∈ LK , 0 < δ < mina6=1 KLinf(µa,m(µ1)), and b ∈ [K], there exists cµ > 0 such
that

P (KLinf (µ̂b,s,m(µ1)) ≤ KLinf (µb,m(µ1))− δ) ≤ e−s cµδ2 .

The proof of Lemma 6 above relies on the dual formulation of KLinf and its properties, which we
review in Appendix A. See Appendix B.2 for the proof of Lemma 6.

3.3.1. PROOF OF THEOREM 1

We now outline the proof of Theorem 1 for the case when η̃ > 0. When η̃ = 0, the proof follows
similarly with suitable adjustments. Fix T ≥ K + 1. Let Tj = K + 1 +

∑j−1
i=K+1Bi denote the

random time marking the beginning of the jth batch, where we recall that Bi is the random variable
denoting the number of samples to be allocated in the ith batch. In this section, for simplicity of
notation, we denote m(µ1) by m. The event that at the beginning of the jth batch, a sub-optimal arm
a has the maximum index, i.e.,

{
ATj = a

}
for a 6= 1, is contained in{

U1(Tj) ≤ m and ATj = a
} ⋃ {

Ua(Tj) > m and ATj = a
}
, (7)

where the left event corresponds to the index for arm 1 evaluating smaller than its true mean at time
Tj , while the right one corresponds to the index for the sub-optimal arm taking values higher than
the mean of the optimal arm.

Let N be the random number of batches allocated by the algorithm till time T . Recall
that the initial K batches correspond to each arm being pulled once. Then, Na(T ) equals 1 +∑N

j=1Bj1
(
ATj = a

)
, and

E (Na(T )) = 1 + E (DN ) + E (EN ) ,

where, using the division from (7), we define DN and EN as follows:

DN :=
N∑

j=K+1

Bj1
(
U1(Tj) ≤ m, ATj = a

)
, and EN :=

N∑
j=K+1

Bj1
(
Ua(Tj) > m, ATj = a

)
.

Let us now look at the deviation of arm a, which will contribute to the dominant term in regret.

Controlling the deviations of sub-optimal arm-E (EN ): From the definition of the index of the
algorithm, for t ≥ K+1 and x ∈ <, the event {Ua(t) ≥ x} equals {Na(t) KLinf(µ̂a(t), x) ≤ ga(t)}.
Fix δ > 0 satisfying mina>1 KLinf (µa,m) ≥ δ. Clearly, 1

(
Ua(Tj) ≥ m, ATj = a

)
is dominated

by the sum of E1j and E2j defined below:

E1j = 1

(
KLinf (µ̂a(Tj),m) ≤ ga(Tj)

Na(Tj)
, KLinf (µ̂a(Tj),m) > KLinf(µa,m)− δ, ATj = a

)
,

E2j = 1
(
KLinf (µ̂a(Tj),m) ≤ KLinf(µa,m)− δ, ATj = a

)
.

Whence,

EN ≤
N∑
j=1

BjE1j +

N∑
j=1

BjE2j . (8)
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We argue that E1j , summed over all the batches till time T , contributes the first order term in the
regret. Clearly, it is dominated by 1

(
Na(Tj) (KLinf (µa,m)− δ) ≤ ga(Tj), ATj = a

)
, giving

N∑
j=1

BjE1j ≤
N∑
j=1

Bj1

(
Na(Tj) ≤

ga(Tj)

KLinf (µa,m)− δ
, ATj = a

)
.

Lemma 14 in Appendix B.3 essentially bounds the r.h.s. above, giving

N∑
j=1

BjE1j ≤ (1 + η̃)

(
log(T )

KLinf(µa,m)− δ
+O (log log(T ))

)
.

The exact form of the O(log log(T )) term above is given in the proof of Lemma 14.
Next, for k ≥ 2, let T ka denote the random time of the beginning of the batch when arm a won

for the kth time. In particular, arm a has been sampled for (k − 1) batches till this time. Thus, T ka is
at least K − 1 + 1 + η̃ + · · ·+ η̃(1 + η̃)k−3 = K − 1 + (1 + η̃)k−2. Moreover, let NB,a denote the
total number of batches allocated to arm a till time T . The other term in (8) satisfies

E

 N∑
j=1

BjE2j

 = E

NB,a∑
k=2

BTka 1
(

KLinf(µ̂a(T
k
a ),m) ≤ KLinf(µa,m)− δ

) .

Clearly, Na(T
k
a ) is deterministic. For k ≥ 2 and η̃ > 0, it is at least (1 + η̃)k−1, and at

most ((1 + η̃)k−1)η̃-1. Lemma 6 bounds the expectation of the indicator random variable in the
above expression. Lemma 15 in Appendix B.3 shows that the bound in this case is proportional to
(1 + η̃)/(cµδ

2), where cµ is the bandit instance-dependent constant from Lemma 6. Thus,

E (EN ) ≤ (1 + η̃)

(
log(T )

KLinf (µa,m)− δ
+
o(1)

cµδ2
+O(log log(T ))

)
, (9)

where the O(log log T ) terms in the above expression correspond to those in Lemma 14, and the o(1)
term is specified in Lemma 15.

Controlling the downward deviation of the optimal arm-E (DN ): This term only contributes
a constant to the regret till time T . We refer the reader to Lemma 18 in Appendix B.4 for a proof.

Combining everything, we get

E (Na(T )) ≤ (1 + η̃)

(
log(T )

KLinf (µa,m)− δ
+
o(1)

cµδ2
+O(log log(T ))

)
, (10)

where the O(log log T ) terms in the above expression correspond to those in Lemma 14 plus the
constant from Lemma 18, and the o(1) term is specified in Lemma 15. The above bound can be
optimized over δ. Setting δ to (c′µ(KLinf(µa,m(µ1)))2/ log T )1/3, where c′µ = 2o(1)/cµ we get
that E (Na(T )) is at most

(1 + η̃)

(
log T

KLinf(µa,m)
+

3(log T )2/3(c′µ)1/3

2(KLinf(µa,m))4/3
+O((log T )1/3) +O(log log(T ))

)
, (11)

where the O(log log T ) terms in the above expression correspond to those in Lemma 14, and
O((log T )1/3) corresponds to ((log T )1/3δ2/(KLinf(µa,m))3)

∑
i(δ/KLinf(µa,m))i.

9
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3.4. Comparison with Robust-UCB with truncated empirical-mean (Bubeck et al., 2013)

It is well known that the standard empirical mean does not concentrate fast when the underlying
distributions are heavy-tailed. Bubeck et al. (2013) review three different estimators that concentrate
exponentially fast, and propose a UCB algorithm based on these. In this section, for 0 < ε < 1, we
compare our algorithm with that based on the truncated empirical mean estimator (referred to as
Robust-UCB, in this section), at the level of confidence intervals around the true mean. The other two
estimators proposed by Bubeck et al. (2013) are under different assumptions on the arm-distributions,
and are not directly comparable.

Fix δ > 0. Let η ∈ L, and let η̂n denote the empirical distribution based on n samples from η.
Recall from (5) that our index is Uη(n) = maxκ∈L {Eκ (X) : nKL(η̂n, κ) ≤ C} , where C is an
appropriately chosen threshold to ensure that Uη(n) is an upper bound on m(η) with probability at
least 1− δ.

The Donsker-Varadhan variational representation for KL-divergence expresses the KL-divergence
between any two probability measures P,Q, defined on a common space Ω, as KL(P,Q) =
supg

{
EP (g(X))− logEQ

(
eg(X)

)}
, where the supremum is taken over all measurable functions

g : Ω→ < for which EQ
(
eg(X)

)
is well-defined. Using this to bound KL(η̂n, κ) in our index, with

g(X) := −θX1 (|X| ≤ un), where un = (Bn/ log(δ-1))1/(1+ε), and θ > 0, we get that our index
Uη(n) is at most

max

{
Eκ (X) : κ ∈ L and − θ

n∑
i=1

Xi1 (|X| ≤ un)− n logEκ
(
e−θX1(|X|≤un)

)
≤ C

}
. (12)

Since |X1 (|X| ≤ un)| ≤ un, and κ ∈ L, we have Eκ
(
X2
1 (|X| ≤ un)

)
≤ Bu1−ε

n . Let

m̂1T :=
1

n

∑
i

Xi1 (|Xi| ≤ un) .

Using the standard analysis of Bernstein’s inequality to optimize over θ in (12), and substituting for
un = (Bn/ log(δ-1))1/(1+ε), we get the following upper bound on our index:

m̂1T +B
1

1+ε

(
log δ-1

n

) ε
1+ε
(

1 +

(
e

C
log δ-1 − 1

)
log δ-1

C

)
. (13)

We refer the reader to Appendix C for a proof of the above statement. When C = log δ-1, the
above bound on our index is at most the index of the Robust-UCB algorithm (where we note that
(13) has improved constants).

We can compare more precisely by considering the application of these indices within the UCB
template. In the Robust-UCB algorithm, δ is set to t−2, while we have δ = t-1. This is due to our
making use of anytime concentration in Proposition 5, which essentially avoids one union bound
in the analysis. We set C = log(t) + 2 logNa(t) + 2 log log(t) in our algorithm. For sub-optimal
arms, since Na(t) = O(log(t)), C = log(t) + d log log(t), for some constant d. In this case,
C/ log(t) = O(1), and the bound in (13) recovers the index of Robust-UCB, which is larger than
ours. On the other hand, for the optimal-arm, C ≈ 3 log t, since the number of pulls of the optimal
arm is linear. In this case, the Robust-UCB index may be smaller than ours. But this is harmless, as a
larger index for arm 1 only increases its chances of being selected.

10
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Taking a step back, we see that concentration inequalities are typically proved starting from
an application of Chernoff (including Bernstein/Hoeffding) to get a high probability bound on the
moment-generating function of some variable of interest (which may include clipping, truncating or
soft versions thereof). From there the consequences for the mean are worked out. In our approach
we start instead from the event that κ is in a KL ball around the empirical distribution η̂. By means
of Donsker-Varadhan, this provides MGF control over all such variables simultaneously, at the price
of the slightly elevated threshold C on the MGF instead of the special-purpose ln δ-1. Modulo this
difference, we hence find that KLinf -based indices dominate all MGF-based indices simultaneously.

We finally remark that the truncated empirical mean estimator considered above is a minor
variation of the one proposed by Bubeck et al. (2013), who truncate each sample Xi at a different
truncation level ui, call this m̂2T . However, repeating the analysis of Bubeck et al. (2013, Lemma
1) using m̂1T defined above, we in fact obtain tighter confidence intervals, and hence a tighter
regret upper-bound (see Bubeck et al. (2013, Proposition 1)). There also does not seem to be a
computational advantage to using m̂2T in the context of UCB, as the threshold ui used for sample Xi

depends on the employed confidence level δ, which in turn depends on the current time t, precluding
the option of maintaining m̂2T incrementally. Numerically, we observe that Robust-UCB with these
two different estimators suffers similar regret. Later, in Section 4, we numerically establish the
superiority of our algorithm compared to Robust-UCB.

3.5. The computational cost of KLinf -UCB

In this section, we discuss the trade-off between the computational cost and statistical optimality
of the proposed algorithm. We observe numerically that the time for computing KLinf (µ̂a(n), ·),
increases withNa(n). This can be seen from its dual formulation (Lemma 7), where η corresponds to
the empirical distribution, which grows by one atom every time arm a is sampled. Hence, computing
the index for each arm at time n has a cost that is linear in n. Let this linear cost be c1 + c2n, where
c1 ∈ < and c2 > 0 are constants.

If the batch size is a constant, say 1 (i.e., when η̃ = 0), then at each time step the algorithm
evaluates the index for each arm, and plays the one with maximum value of the computed index.
The total cost of computation for n trials is given by

∑n
i=1(c1 + c2i), which is quadratic in n, the

total number of trials. For η̃ > 0, from Theorem 1, each suboptimal arm has at most d(1 + η̃) log n
samples at time n, for some constant d, while the optimal arm has close to n samples. The number
of batches allocated to each sub-optimal arm a till time n, NB,a(n), satisfies

(1 + η̃)NB,a(n)+1 ≤ d(1 + η̃) log(n) =⇒ NB,a(n) = O (log log(n)) .

Similar computation gives that NB,1(n), is O(log(n)).
The computational cost for the batches when the best arm won is at most (1 + η̃)NB,1(n)−1 +

NB,1(n)O(log(n)), which is O(n). The first term in the previous expression is the total cost of
computing the index of arm 1 over the NB,1(n) many batches in which arm 1 won, while the second
term is an upper bound on that for the sub-optimal arms. This cost for the batches when sub-optimal
arms win is at most NB,a(n)KO(n) +O(log(n)), where the first term is the computational cost of
the index of arm 1, which has O(n) samples, contributing O(n log log(n)) to the cost. Thus, the
total worst-case computational cost of KLinf -UCB with η̃ > 0 is at most O(n log log(n)), where the
multiplicative constant is given by 1

log(1+η̃) .
Computing KLinf -UCB index: Computing KLinf -UCB index in the original form would require
inverting the KLinf functional. Since there is no closed form expression for KLinf , one approach

11
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for solving this can be by binary search for the second argument, computing KLinf at each iteration.
However, the representation of the index in (5) gives it as the solution to a single optimization
problem. This is discussed in Appendix D.

4. Numerical results

In this section we discuss the numerical studies undertaken to demonstrate the superiority of KLinf -
UCB. We run our algorithm on two different bandit problems. In both these experiments, the
algorithm is presented with a two-armed bandit, each arm having a Generalized Pareto (GenPar)
distribution. It is a heavy-tailed distribution, which has 3 parameters, µ, σ, ζ, which correspond to
location, scale, and shape, respectively. When ζ > 0, it has a density function given by h(x) =

σ-1
(
1 + ζσ-1(x− µ)

)−1−ζ-1
, for x ≥ µ.

In the first experiment, we let ε = 0.7, B is set to 7, and L is the collection of all distributions
with 1.7th-moment bounded by 7. Arm 1 is GenPar(−1, 2, 0.2), and arm 2 is GenPar(−1, 1, 0.2).
Hence, arm 1 is optimal with mean = 1.5, and whenever the algorithm chooses arm 2, it suffers a
regret of 1.25. Moreover, KLinf(µ2, 1.5) ≈ 0.1, which is evaluated with respect to the class L.

We compare the performance of KLinf -UCB (with η̃ set to 0.1) to the asymptotic lower bound,
both with the theoretical threshold of Theorem 1 and with an agressive, practically-tuned threshold
of log t, which is even smaller than that for KLinf -UCB2 (Theorem 3). In Figure 1, we plot the regret
incurred by both of these, the asymptotic lower bound, and 1.1 times the lower bound, which is the
asymptotic upper-bound for KLinf -UCB with η̃ = 0.1 (Corollary 2).

As can be seen from Figure 1, the algorithm with the aggressive threshold performs significantly
better. It, in fact, suffers regret lower than the lower bound, even for large horizons. This is not
surprising, and highlights the asymptotic nature of the lower bound. In KLinf -UCB on the other
hand, the log log t term contributes significantly to the threshold over the horizon considered, leading
to higher regret. Henceforth, we only consider KLinf -UCB with threshold set to log(t).

We also compare the performance of the agressive algorithm with that of Robust-UCB with
the truncation based estimator, proposed by Bubeck et al. (2013). Figure 2 plots the ratio of regret
suffered by Robust-UCB and our algorithm, on two different bandit instances. The “Easy problem”
in the figure corresponds to the set-up of experiment 1 described above.

In the second experiment, we consider a slightly more difficult-to-learn setting, where the tails of
the arm-distribution are heavier than in the first experiment. We see that both the algorithms suffer
more regret on this problem compared to the previous bandit instance. However, the performance of
Robust-UCB degrades much more. For this experiment, we set ε to 0.1, and let B = 13, whence, L
is collection of all distributions with 1.1th-moment bounded by 13. The arm-distributions are set to
GenPar(2.17, 3.7, 0.5) for arm 1, and GenPar(−1, 2, 0.71) for arm 2. In this setting, the optimal arm
has mean 9.57, and when the sub-optimal arm is pulled, the algorithm suffers 3.674 units of regret.

Figure 2 shows that even with our batching, we significantly out-perform the Robust-UCB
algorithm. It suffers retret that is 40 times that of KLinf -UCB on the easy problem (setting of
experiment 1), and the regret ratio is 19 the difficult setting of experiment 2.

5. Conclusion

We consider minimising regret for heavy-tailed bandits. Our approach follows the UCB template.
But instead of constructing upper confidence intervals, we “let the lower bound speak” and end up

12
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Figure 1: Comparison of regret of our algorithm with different thresholds, with batch-multiplicative
factor set to η̃ = 0.1 in each, the asymptotic lower bound of Burnetas and Katehakis
(1996) and the asymptotic upper bound in Theorem 1. Plots are averaged over 100
independent experiments. The batches are visible in the staircase pattern: long horizontal
steps correspond to batches in which the optimal arm is chosen, and each vertical step
represents a short batch where a suboptimal arm is picked.

Figure 2: Ratio of regret of Robust-UCB with truncated empirical mean and KLinf -UCB with batch-
multiplicative factor set to η̃ = 0.1 and an aggressive threshold of log t, for simple and
difficult bandit instances. This figure demonstrates that the performance of Robust-UCB
degrades much more than that of our algorithm on a difficult bandit instance.
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with KLinf -based indices. We exploit the dual characterization of KLinf and the associated index,
which guides both our index implementation and its statistical concentration analysis. We show
that with these ingredients it is possible to match the instance-optimal regret lower bounds. Using a
batched sampling scheme, we achieve total run time almost linear in the number of samples, at the
cost of a small constant factor in the regret. We prove that KLinf indices dominate the UCB index
based on the standard mean estimators for heavy-tailed distributions. We empirically validate that
this translates into much improved regret on synthetic problems. Here are a few remarks to conclude
the paper

• One may generalise the moment constraint E
(
|X|1+ε

)
by requiring instead that E (f(X)) ≤

B for some convex (and super-linear) function f . To make this work, one would have to prove
compactness of the corresponding region for λ in the dual formulation, so as to make the
uniform-prior based regret analysis work. Or one would have to prove continuity of KLinf in
its second argument and the parameters of the class to employ the perturbation-based approach
from Appendix F.

• We see in experiments that the performance is sensitive to the choice of threshold, and that
our theoretically motivated thresholds are (currently) conservative. Our thresholds come from
mixture martingales with universal coding/regret guarantees. Perhaps a redundancy-based
analysis would be better suited for proving tighter concentration inequalities, and could reduce
the threshold from log n to log logn.

• We considered the class of distributions with bounded uncentered (1 + ε)th moment. A
natural problem would be to extend the approach to the centred analogue. Our approach
relies on the dual formulation of KLinf . However, bounded centered-moment is no longer a
convex constraint in the distribution, rendering the class L, and hence the corresponding KLinf

optimization problem non-convex. Handling this non-convexity would require development of
more nuanced techniques.

• Suppose that the samples from an arm are no-longer i.i.d., but satisfy only the milder condition
that their conditional mean is fixed, and the conditional (1+ ε)th-moment is bounded byB (we
may think of this as an imprecise probability analogue of the i.i.d. problem). As discussed in
Remark 12 in Section B.1, our martingale-based proof for concentration of KLinf (Proposition
5) is valid even with this relaxation, giving a high-probability confidence interval for the fixed
mean. However, it is not clear what a regret-minimization algorithm, or for that matter an
expected regret lower bound would look like in this setting.

Acknowledgments

We acknowledge the support of the Department of Atomic Energy, Government of India, to TIFR
under project no. RTI4001.

References

Rajeev Agrawal. Sample mean based index policies with o (log n) regret for the multi-armed bandit
problem. Advances in Applied Probability, pages 1054–1078, 1995.

14



REGRET MINIMIZATION IN HEAVY-TAILED BANDITS

Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit
problem. In Conference on learning theory, pages 39–1. JMLR Workshop and Conference
Proceedings, 2012.

Shubhada Agrawal, Sandeep Juneja, and Peter Glynn. Optimal δ-correct best-arm selection for
heavy-tailed distributions. In Proceedings of the 31st International Conference on Algorithmic
Learning Theory, volume 117 of Proceedings of Machine Learning Research, pages 61–110.
PMLR, 08 Feb–11 Feb 2020a.

Shubhada Agrawal, Wouter M. Koolen, and Sandeep Juneja. Optimal best-arm identification methods
for tail-risk measures. arXiv preprint arXiv:2008.07606, 2020b.

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2):235–256, May 2002.

C. Berge. Topological Spaces: Including a Treatment of Multi-valued Functions, Vector Spaces, and
Convexity. Dover books on mathematics. Dover Publications, 1997. ISBN 9780486696539.

P. Billingsley. Convergence of Probability Measures. Wiley Series in Probability and Statistics.
Wiley, 2013.

Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends® in Machine Learning, 5(1):1–122, 2012.

Sébastien Bubeck, Nicolo Cesa-Bianchi, and Gábor Lugosi. Bandits with heavy tails. IEEE
Transactions on Information Theory, 59(11):7711–7717, 2013.

Apostolos N. Burnetas and Michael N. Katehakis. Optimal adaptive policies for sequential allocation
problems. Advances in Applied Mathematics, 17(2):122 – 142, 1996.

O Cappé, A Garivier, OA Maillard, R Munos, and G Stoltz. Kullback–leibler upper confidence
bounds/supplemental article. Ann. Stat, 41(3):1516–1541, 2013a.

Olivier Cappé, Aurélien Garivier, Odalric-Ambrym Maillard, Rémi Munos, Gilles Stoltz, et al.
Kullback–Leibler upper confidence bounds for optimal sequential allocation. The Annals of
Statistics, 41(3):1516–1541, 2013b.

Wesley Cowan and Michael N Katehakis. An asymptotically optimal policy for uniform bandits of
unknown support. arXiv preprint arXiv:1505.01918, 2015.

Wesley Cowan, Junya Honda, and Michael N. Katehakis. Normal bandits of unknown means and
variances. Journal of Machine Learning Research, 18(154):1–28, 2018.

Amir Dembo and Ofer Zeitouni. Large deviations techniques and applications. corrected reprint of
the second (1998) edition. stochastic modelling and applied probability, 38, 2010.

Aurélien Garivier and Olivier Cappé. The kl-ucb algorithm for bounded stochastic bandits and
beyond. In Proceedings of the 24th annual conference on learning theory, pages 359–376, 2011.

15



AGRAWAL JUNEJA KOOLEN

Junya Honda and Akimichi Takemura. An asymptotically optimal bandit algorithm for bounded
support models. In In Proceedings of the Twenty-third Conference on Learning Theory (COLT
2010, pages 67–79. Omnipress, 2010.

Junya Honda and Akimichi Takemura. An asymptotically optimal policy for finite support models in
the multiarmed bandit problem. Machine Learning, 85(3):361–391, 2011.

Junya Honda and Akimichi Takemura. Non-asymptotic analysis of a new bandit algorithm for
semi-bounded rewards. The Journal of Machine Learning Research, 16(1):3721–3756, 2015.

Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. Thompson sampling: An asymptotically
optimal finite-time analysis. In International Conference on Algorithmic Learning Theory, pages
199–213. Springer, 2012.

Prashanth L.A., Krishna Jagannathan, and Ravi Kolla. Concentration bounds for CVaR estimation:
The cases of light-tailed and heavy-tailed distributions. In Hal Daumé III and Aarti Singh,
editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 5577–5586. PMLR, 13–18 Jul 2020. URL
http://proceedings.mlr.press/v119/l-a-20a.html.

T.L Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances in Applied
Mathematics, 6(1):4 – 22, 1985.

Tor Lattimore. A scale free algorithm for stochastic bandits with bounded kurtosis. In Advances in
Neural Information Processing Systems, pages 1584–1593, 2017.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Gábor Lugosi and Shahar Mendelson. Mean estimation and regression under heavy-tailed distribu-
tions: A survey. Foundations of Computational Mathematics, 19(5):1145–1190, 2019.

Odalric-Ambrym Maillard, Rémi Munos, and Gilles Stoltz. A finite-time analysis of multi-armed
bandits problems with kullback-leibler divergences. In Proceedings of the 24th annual Conference
On Learning Theory, pages 497–514, 2011.

João Nicolau and Paulo MM Rodrigues. A new regression-based tail index estimator. Review of
Economics and Statistics, 101(4):667–680, 2019.

E. Posner. Random coding strategies for minimum entropy. IEEE Transactions on Information
Theory, 21(4):388–391, 1975.

Herbert Robbins. Some aspects of the sequential design of experiments. Bull. Amer. Math. Soc., 58
(5):527–535, 09 1952.

Rangarajan K. Sundaram. A First Course in Optimization Theory. Cambridge University Press,
1996.

William R. Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

16

http://proceedings.mlr.press/v119/l-a-20a.html


REGRET MINIMIZATION IN HEAVY-TAILED BANDITS

Sattar Vakili, Keqin Liu, and Qing Zhao. Deterministic sequencing of exploration and exploitation
for multi-armed bandit problems. IEEE Journal of Selected Topics in Signal Processing, 7(5):
759–767, 2013.

Appendix A. KLinf - dual formulation and properties

In this appendix, we review some background and results that will be useful in the analysis of the
proposed algorithms.

Lévy metric and weak convergence: The Lévy metric, dL(κ, η), between probability distributions
(see Dembo and Zeitouni (2010, Appendix D)) κ and η on <, is given by

dL(η, κ) = inf {ζ > 0 : Fκ(x− ζ)− ζ ≤ Fη(x) ≤ Fκ(x+ ζ) + ζ, ∀x ∈ <} ,

where for ψ ∈ P(<), Fψ denotes the CDF function for ψ, i.e., for x ∈ <, Fψ(x) := ψ(−∞, x]. Fur-
thermore, weak convergence of sequences of probability measures is equivalent to their convergence
in the Lévy metric (see Billingsley (2013, Theorem 6.8), and Dembo and Zeitouni (2010, Theorem
D.8)).

Next, let us look at the functional that appears in the lower bound on expected regret. For B > 0

and ε > 0, recall that LB =
{
κ ∈ P(<) : Eκ

(
|X|1+ε

)
≤ B

}
. Let x ∈ < be such that |x|1+ε < B,

and for η ∈ P(<), recall that m(η) := Eη (X), and

KLLBinf (η, x) = inf {KL(η, κ) : κ ∈ LB, m(κ) ≥ x} .

In the rest of the appendix, we denote KLLBinf (η, x) by KLinf(η, x), and LB by L. Furthermore, let
Supp(η) denote the support of measure η. We first review an alternative representation and properties
of the function KLinf , which will be useful in the analysis of our algorithm. The following Lemma is
due to Agrawal et al. (2020a, Theorem 12), which we state for completeness.

Lemma 7 (Dual formulation of KLinf ) For η ∈ P(<) and x such that |x|1+ε < B,

KLinf(η, x) = max
(λ1,λ2)∈R(x,B)

Eη
(

log
(

1− (X − x)λ1 − (B − |X|1+ε)λ2

))
, (14)

where

R(x,B) =

(λ1 ≥ 0, λ2 ≥ 0) :
ελ

1+ 1
ε

1

λ
1
ε
2 (1 + ε)1+ 1

ε

+Bλ2 − xλ1 − 1 ≤ 0

 .

There is a unique (λ∗1, λ
∗
2) that achieves the maximum above. Furthermore, any primal variable that

achieves the infimum in (14), satisfies

dκ∗

dη
(y) =

(
1− (y − x)λ∗1 − (B − |y|1+ε)λ∗2

)-1
, for y ∈ Supp(η).

|Supp(κ∗) \ Supp(η)| is at most 1. Furthermore,

1− (y∗ − x)λ∗1 − (B − |y∗|1+ε)λ2 = 0 for y∗ ∈ {Supp(κ∗) \ Supp(η)} .
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Lemma 8 The regionR(x,B) defined in Lemma 7 is compact whenever |x|1+ε < B. It satisfies

0 ≤ λ1 ≤
(
B

1
1+ε − x

)-1
, and 0 ≤ λ2 ≤

(
B − |x|1+ε

)-1
.

Proof Let h(λ1, λ2) = ελ
1+ 1

ε
1 +Bλ

1+ 1
ε

2 (1 + ε)1+ 1
ε − (xλ1 + 1)λ

1
ε
2 (1 + ε)1+ 1

ε . Then the constraint
inR(x,B) is h(λ1, λ2) ≤ 0. Clearly, h is convex in λ1 and λ2. Thus, the given constraint implies
minλ1≥0 h(λ1, λ2) ≤ 0. This gives the bound on λ2. Similarly, minλ2≥0 h(λ1, λ2) ≤ 0 gives the
bound on λ1.

For a fixed x, KLinf(·, x) is a function from P(<) to <+. Recall that we endow the space P(<)
with the the topology of weak convergence, or equivalently with the Lévy metric (see, e.g., Dembo
and Zeitouni (2010, Appendix D) for definitions of the two topologies and their equivalence).

Lemma 9 (Properties of LB andR(x,B)) L is a a uniformly integrable collection, and a compact
set of probability measures in the topology of weak convergence. Furthermore,

1. for B > 0,R(x,B) is an upper-hemicontinuous function of x on (−B
1

1+ε , B
1

1+ε ),

2. for x ∈ <,R(x,B) is an upper-hemicontinuous function of B on (|x|1+ε ,∞).

Proof Uniform integrability and compactness of L follow from (Agrawal et al., 2020b, Lemma 3.2).
Proof of 1: To see upper-hemicontinuity ofR(x,B) for a fixed B, consider a sequence xn → x.

Let ηn ∈ R(xn, B) be a sequence of measures in L, which is a tight collection of probability
measures in the weak topology. Then, there is a subsequence ηpi which converges weakly to ηp (see
Billingsley (2013)). From (Sundaram, 1996, Proposition 9.8), it is sufficient to show that ηp belongs
toR(x,B). Clearly, ηp belongs to class L since it is a closed set, and ηpi belong to LB . Furthermore,

since L is a uniformly integrable collection, ηn
D
=⇒ η implies that Eηpi (X)→ Eηp (X), and hence,

Eηp (X) ≥ x.
Proof of 2: To see upper-hemicontinuity ofR(x,B) for a fixed x, consider a sequence Bn → B,

and let ηn be a sequence inR(x,Bn). For any fixed δ > 0, there exists n0 such that for all n ≥ n0,
Bn ≤ B + δ, and the sequence {ηn}, for all n ≥ n0, satisfies Eηn

(
|X|1+ε

)
≤ B + δ. Let LB+δ

denote the collection of all probability measures with (1 + ε)th-moment bounded by B + δ. As
above, since LB+δ is a closed, tight, and uniformly integrable collection of probability measures,
arguments as in the previous paragraph show that Eηpi (X) → Eηp (X) ≥ x, and ηp belongs to
LB+δ. Since δ was arbitrary, ηp belongs to L, and hence toR(x,B).

Lemma 10 (Properties of KLinf ) For a fixed η ∈ P(<) and

1. for a fixed B > 0, KLinf(η, x) is a continuous function of x on
(
−B

1
1+ε , B

1
1+ε

)
.

2. for a fixed x ∈ <, KLinf(η, x) is a continuous function of B on
(
|x|1+ε ,∞

)
.
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Proof To prove the continuity in x and B, we prove lower- and upper-semicontinuity separately.
To prove 1, we first argue that for a fixed B, KLinf(η, x) is a convex function of x, and hence an
upper-semicontinuous function.

Next, for y ∈ <, we define f(y) := |y|1+ε, and for y ∈ [0, B], f -1(y) := y
1

1+ε . To see the
convexity, consider x1, x2 ∈

(
−f−1(B), f−1(B)

)
. Let

R(x,B) := {γ ∈ P(<) : Eγ (X) ≥ x, Eγ (f (X)) ≤ B} .

Clearly, the setR(x,B) is convex and non-empty for the choices of x and B under consideration.
Let κ1, κ2 ∈ R(x,B) be such that KLinf(η, x1) = KL(η, κ1) and KLinf(η, x2) = KL(η, κ2).
Existence of κ1 and κ2 is guaranteed by compactness ofR(x,B) and lower-semicontinuity of KL.
Furthermore, for λ ∈ (0, 1),

R12(λ) := {λR(x1, B) + (1− λ)R(x2, B)} ⊂ R(λx1 + (1− λ)x2, B).

Consider the following inequalities:

KLinf(η, λx1 + (1− λ)x2) ≤ inf
κ∈R12(λ)

KL(η, κ) ≤ KL(η, λκ1 + (1− λ)κ2).

Using joint convexity of KL, the above can further be bounded from above by λKL(η, κ1) + (1−
λ) KL(η, κ2), which equals λKLinf(η, x1) + (1− λ) KLinf(η, x2) by choice of κ1 and κ2, giving

KLinf(η, λx1 + (1− λ)x2) ≤ λKLinf(η, x1) + (1− λ) KLinf(η, x2).

Convexity in B also follows similarly, proving the upper-semicontinuity of KLinf in x and in B,
under the given conditions.

For η ∈ P(<), since KL(η, ·) is a lower-semicontinuous function in the topology of weak
convergence (see Posner (1975)), and the region of optimization,R(x,B), is a non-empty, compact,
upper-hemicontinuous correspondence of x and B under the respective given conditions (Lemma 9),
the optimal value, KLinf(η, x) is lower-semicontinuous in x for a fixed B, and lower-semicontinuous
in B for a fixed x (see (Berge, 1997, Theorem 2, page 116)).

Appendix B. Results related to regret guarantees

In this appendix, we state and prove the results that assist us in the proof of Theorem 1.

B.1. Towards proving Proposition 5

In this section, we prove the anytime concentration inequality in Proposition 5. The proof involves
constructing mixtures of super-martingales using the dual formulation for KLinf , and may also be of
independent interest. Lemma 11 below is borrowed from (Agrawal et al., 2020b, Lemma E.1), and is
stated here for completeness.

Lemma 11 Let Λ ⊆ Rd be a compact and convex subset and let q be the uniform distribution on Λ.
Let gi : Λ→ R be any series of exp-concave functions. Then

max
λ∈Λ

T∑
i=1

gi(λ) ≤ logEλ∼q

(
e
∑T
i=1 gt(λ)

)
+ d log(T + 1) + 1.
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B.1.1. PROOF OF PROPOSITION 5

We first note that if µb = δB1/(1+ε) , which is the only distribution in LB with the maximum possible
mean in this class, i.e., B1/(1+ε), then the statement is vacuously true, since µ̂b(n) = µb. Whence
KLinf(µ̂b,m(µb)) = 0.

We now consider µb 6= δB1/(1+ε) . For ε > 0 and B > 0, let f(y) := |y|1+ε, and for c ∈ [0, B]
define f -1(c) = c1/(1+ε). From the dual formulation in Lemma 7,

Nb(n) KLinf(µ̂b(n),m(µb)) = max
λ∈R(m(µb),B)

Nb(n)∑
i=1

log (1− λ1(Xi −m(µb))− λ2(B − f(Xi))),

whereR(m(µb), B) ⊂ <2. Let q be uniform distribution onR(m(µb), B), which is defined since
the region is a compact set (see Lemma 8). Define

Ub(n) = Eλ∼q

Nb(n)∏
i=1

(1− λ1(Xi −m(µb))− λ2(B − f(Xi)))
∣∣X1, . . . , XNb(n)

 for n ≥ 1,

where
{
X1, . . . , XNb(n)

}
are Nb(n) samples generated from arm b in time n. Setting d = 2,

gi(λ) = log(1− λ1(Xi −m(µb))− λ2(B − f(Xi))), in Lemma 11, on each sample path, we have

Nb(n) KLinf(µ̂b(n),m(µb)) ≤ logUb(n) + 2 log(1 +Nb(n)) + 1. (15)

Since µb ∈ L, Ub(n) is a non-negative super-martingale with mean at most 1. Using this in (15),
together with Ville’s inequality, we get

P (∃n ∈ N : Nb(n) KLinf(µ̂b(n),m(µb))− 2 log(1 +Nb(n))− 1 ≥ x) ≤ e−x,

proving the desired inequality. �

Remark 12 The concentration inequality in Proposition 5 shows that Ub(n) (defined in (5)), with
an appropriate choice of threshold, gb(n), is a high probability upper confidence interval for the
true mean for arm b at time n. Taking a step back, let X1, . . . , Xs denote s i.i.d. samples from an
underlying distribution, η ∈ L, and let the empirical distribution corresponding to these s samples be
denoted by η̂s. Then, for δ > 0, Proposition 5 shows that

Uη(s) := max
{
x : sKLinf(η̂s, x) ≤ log δ-1 + 2 log(s+ 1) + 1

}
(16)

is an upper bound on true mean of η, m(η), with probability at least 1− δ.
However, observe that our martingale-based proof does not rely on the samples being i.i.d.

Suppose the samples, X1, . . . , Xs only satisfy the following: for p ∈ [−B
1

1+ε , B
1

1+ε ],

E
(
Xi

∣∣X1, . . . , Xi−1

)
= p, and E

(
|Xi|1+ε

∣∣∣X1, . . . , Xi−1

)
≤ B.

Even under this mild condition, (16) gives an upper confidence interval for p with probability at least
1− δ, showing that our KLinf -based approach is robust to some of the underlying assumptions, and
may be used to develop robust statistical learning procedures.
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B.2. Proof of Lemma 6

Let us first consider µb = δ−B1/(1+ε) . In this case, the statement is vacuously true since µ̂b,s = µb.
Now, let µb 6= δ−B1/(1+ε) . For ε > 0 and B > 0 let f(y) = |y|1+ε. For c ∈ [0, B] define

f -1(c) = c1/(1+ε). Using the dual formulation for KLinf(µ̂b,s,m(µ1)) from Lemma 7, the required
probability equals

P

(
max

λ∈R(m(µ1),B)

1

s

s∑
i=1

log (1− (Xi −m(µ1))λ1 − (B − f (Xi))λ2) ≤ KLinf (µb,m(µ1))− δ

)
,

which is bounded from above by

P

(
1

s

s∑
i=1

log (1− (Xi −m(µ1))λ∗1 − (B − f (Xi))λ
∗
2) ≤ KLinf (µb,m(µ1))− δ

)
,

where

(λ∗1, λ
∗
2) ∈ argmax

λ∈R(m(µ1),B)
Eµb (log (1− (X −m(µ1))λ1 − (B − f (X))λ2)) .

For θ ≥ 0, the required probability can be bounded by

P

(
−θ

s∑
i=1

log (1− (Xi −m(µ1))λ∗1 − (B − f (Xi))λ
∗
2) ≥ −sθ (KLinf (µb,m(µ1))− δ)

)
,

which can further be bounded by

Eµb

(
exp

{
−θ

s∑
i=1

log (1− (Xi −m(µ1))λ∗1 − (B − f (Xi))λ
∗
2)

})
esθ(KLinf(µb,m(µ1))−δ).

Let Yi := log (1− (Xi −m(µ1))λ∗1 − (B − f (Xi))λ
∗
2). Since Xi ∼ µb are i.i.d., Yi are i.i.d.

as well. Furthermore, let Y be independent and identically distributed as Yi, and for γ ≤ 1, let
ΛY := logE (exp {γY }). Observe that Eµb (Y ) = KLinf (µb,m(µ1)). Then the above expression
equals

exp {s (θ (KLinf (µb,m(µ1))− δ) + ΛY (−θ))} .

Since the previous bound is true for all values of θ ≥ 0, in particular, we have that the required
probability is bounded by

exp

{
−s sup

θ≤0
{θ (KLinf (µb,m(µ1))− δ)− ΛY (θ)}

}
.

Obsesrve that ΛY (0) = 0 and ΛY (−1) ≤ 0. To see the latter,

ΛY (−1) = logEµb

(
1

1− (X −m(µ1))λ∗1 − (B − f (X))λ∗2

)
= log κb(Supp(µb)) ≤ 0,
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where κb is the optimal primal variable for the KLinf (µb,m(µ1)) optimization problem, and satisfies
κb(Supp(µb)) ≤ 1 (see Lemma 7). Furthermore, ΛY (γ) is a convex function of γ. Whence, the
supremum in

sup
θ≤0
{θ(KLinf(µb,m(µ1))− δ)− ΛY (θ)}

is attained at some θ∗ < 0, and the optimal value equals IY (KLinf(µb,m(µ1)− δ)), where

IY (KLinf(µb,m(µ1))− δ) := sup
θ
{θ(KLinf(µb,m(µ1))− δ)− ΛY (θ)}

is the large deviations rate function for the random variable Y .
It is easy to check that Y satisfies Condition 1 below. Lemma 13 then shows that there ex-

ists δ0 > 0 and a constant cb, such that for all δ < δ0, IY (KLinf(µb,m(µ1)) − δ) ≥ cbδ
2.

Since δ ∈ [0,mina6=1 KLinf(µa,m(µ1))], by convexity of IY , there exists a constant c′b (possi-
bly smaller than cb), such that IY (KLinf(µb,m(µ1))− δ) ≥ c′bδ2. Then, cµ := mina6=1 c

′
a. Clearly,

IY (KLinf(µb,m(µ1))− δ) ≥ cµδ2, giving the desired bound. �

Condition 1: Given a random variable X with ΛX(θ) < ∞ for θ ∈ [−1, 1]. Let IX(x) :=
supθ {θx− ΛX(θ)} denote the associated large deviation rate function. Let m(X) > 0, i.e.,
Λ′X(0) > 0, and hence I(m(X)) = 0.

Lemma 13 For X satisfying Condition 1 above, ∃δ0 > 0 such that ∀δ ∈ [0, δ0], there exists a
constant c > 0 such that I(m(X)− δ) ≥ cδ2.

Proof Observe that if Λ′′X(0) = 0, then X is degenerate, giving I(x) =∞ for x 6= m(X).
Consider a non-degenerate X , meaning Λ′′X(0) > 0. Also, consider the θy that satisfies Λ′X(θy) = y.
Here, θm(X) = 0 and θy < 0 for y < m(X). From Condition 1, Λ′X(θ) is continuously differentiable
for θ ∈ (−1, 1). By Implicit Function Theorem, there exists a neighbourhood (m(X)− δ̃0,m(X))
such that for y ∈ (m(X)− δ̃0,m(X)), θy exists and is continuously differentiable.

Next, recall that θy < 0 for y < m(X). Choose δ̃0 such that θy ∈ [−1, 0] for all y ∈
(m(X)− δ̃0,m(X)]. Then the above discussion implies Λ′′X(θy) is a continuous function of y for
all y ∈ (m(X)− δ̃0,m(X)]. Furthermore, for y in this range, Λ′X(θy) <∞ and Λ′′X(0) > 0. This

gives∞ > Λ′′X(θy) > 0 and c := sup
{

Λ′′X(θy) : y ∈ [m(X)− δ̃0,m(X)]
}

is finite (continuous
function on a compact set).

Now, it can be checked that for y ∈ [m(X)− δ̃0,m(X)], I ′(y) = θy and I ′′(y) = 1
Λ′′(θy) ≥ c

-1.
Moreover, I(m(X)− δ) = I(m(X)) + I ′(m(X))δ+ δ2/2I ′′(x̃), for x̃ ∈ [m(X)− δ,m(X)]. This
gives

I(m(X)− δ) ≥ δ2

2c
, for δ ≤ δ0.

B.3. Bounding deviations of sub-optimal arms

Recall that for T ≥ K + 1, N denotes the random number of batches played by the algorithm till
time T , Bj denotes the random number of samples allocated within the jth batch, and Tj denotes the
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time of beginning of the jth batch. Furthermore, recall

E1j = 1

(
KLinf (µ̂a(Tj),m) ≤ ga(Tj)

Na(Tj)
, KLinf (µ̂a(Tj),m) > KLinf(µa,m)− δ, ATj = a

)
.

This corresponds to the event that sufficient samples have not been allocated to the sub-optimal arm
a, and contributes to the regret of the algorithm. Clearly,

N∑
j=1

BjE1j ≤
N∑
j=1

Bj1

(
Na(Tj) ≤

ga(Tj)

KLinf (µa,m)− δ
, ATj = a

)
.

Next, recall that for sub-optimal arm a,

E2j = 1
(
KLinf(µ̂a(Tj),m) ≤ KLinf(µa,m)− δ, ATj = a

)
.

Let NB,a denote the random number of batches allocated to arm a till time T and Bt denote the size
of the batch begining at time t.

Lemma 14 For T ≥ K + 1, η̃ ≥ 0, δ > 0,

N∑
j=1

BjE1j ≤ (1 + η̃)

(
log(T )

KLinf(µa,m)− δ
+O (log log(T ))

)
.

Proof Since log(t) + 2 log log(t) is a monotonically increasing function, using the form of ga(.),

N∑
j=1

BjE1j ≤
N∑
j=1

Bj1

(
Na(Tj) ≤

log(T ) + 2 log log(T ) + 2 log(1 +Na(Tj)) + 1

KLinf (µa,m)− δ
, ATj = a

)
.

Clearly, z∗ := sup {z ∈ N : zd ≤ log(T ) + 2 log log(T ) + 2 log(1 + z) + 1} is at most z̃, which
equals

log(T ) + 2 log log(T )

d
+

(
1 +

2

d

)
log

(
1 +

log(T ) + 2 log log(T )

d

)
+

10

d
+O (log log log(T )) .

(17)
Thus, setting d = KLinf(µa,m)− δ, we get that

N∑
j=1

BjE1j ≤ BN1
(
Na(TN ) ≤ log(T ) + 2 log log(T ) + 2 log(1 +Na(TN )) + 1

KLinf (µa,m)− δ
, ATj = a

)
+ z̃.

Clearly, when the indicator above is 1, then BN is at most (η̃z̃ + 1). Thus,

N∑
j=1

BjE1j ≤ (1 + η̃)

(
log(T )

KLinf(µa,m)− δ
+O (log log(T ))

)
,

where the lower order terms in the above expression are the o(log(T )) terms in (17), with d =
KLinf(µa,m)− δ.
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Lemma 15 For T > K, for sub-optimal arm a,

E

 N∑
j=1

BjE2j

 ≤


1+η̃
cµδ2

(
1

log(1+η̃) + 1
e

)
, for η̃ > 0

1
cµδ2

+ 1, otherwise.

Proof Recall that

E

 N∑
j=1

BjE2j

 = E

NB,a∑
k=2

BTka 1
(

KLinf(µ̂a(T
k
a ),m) ≤ KLinf(µa,m)− δ

) ,

where T ka denotes the random time of beginning of the batch when arm a won for the kth time.
Let us first consider the case when η̃ > 0. In this case, NB,a is at most log(T )

log(1+η̃) and BTka is at
most η̃Na(T

k
a ) + 1, which in turn is at most (1 + η̃)k−1. Thus, the required expectation is at most

log(T )
log(1+η̃)

+1∑
k=2

(1 + η̃)k−1
P

(
KLinf(µ̂a(T

k
a ),m) ≤ KLinf(µa,m)− δ

)
.

Clearly, Na(T
k
a ) is deterministic. Lemma 6 bounds the probability in the above expression by

e−Na(Tka )cµδ2 . Lemma 16 then bounds the summation, giving the desired bound in this case.
When η̃ = 0, NB,a ≤ T , BTka = 1 and T ka ≥ K + k − 1. The required average is bounded by

T∑
k=2

e−kcµδ
2 ≤ 1

cµδ2
+ 1,

giving the desired bound.

Lemma 16 For δ > 0, there exists a constant c̃µ(δ) (independent of T ) such that

log T
log(1+η̃)

+1∑
k=1

(1 + η̃)k−1e−Na(Tka )cµδ2 ≤ c̃µ(δ).

Proof Recall that (1 + η̃)k−2 ≤ Na(T
k
a ). The required summation is bounded by

(1 + η̃)

log T
log(1+η̃)

+1∑
k=1

(1 + η̃)k−2e−(1+η̃)k−2cµδ2 ,

which is further bounded by

(1 + η̃)

∞∫
1

(1 + η̃)k−2e−(1+η̃)k−2cµδ2dk +
1 + η̃

cµδ2e
,
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where, 1
cµδ2e

is the maximum value of the function being summed. To see the above bound, we upper
bound the required summation by sum of the integral of the function from 1 to∞ and the maximum
value of the function. The above can then be shown to equal

c̃µ(δ) :=
1 + η̃

cµδ2

(
e−cµδ

2/(1+η̃)

log(1 + η̃)
+

1

e

)
,

which is the required upper bound.

B.4. Bounding the deviations of optimal arm

Recall that, for k ≥ 2, T ka denotes the random time of the beginning of the batch when the ath arm
won for the kth time. In particular, arm a has been sampled for k − 1 batches till this time. Thus, T ka
is at least K − 1 + 1 + η̃ + · · ·+ η̃(1 + η̃)k−3 = K − 1 + (1 + η̃)k−2. Using this bound on T ka , the
following lemma follows directly from Proposition 5.

Lemma 17 For k ≥ 2, g1(t) = log(t) + 2 log log(t) + 2 log(1 +N1(t)) + 1,

P
(
N1(T ka ) KLinf

(
µ̂1(T ka ),m(µ1)

)
≥ g1(T ka )

)
≤ (1 + η̃)−k+2

(
log
(
K − 1 + (1 + η̃)k−2

))−2
.

Now, recall that for m = m(µ1),

DN :=
N∑

j=K+1

Bj1
(
U1(Tj) ≤ m, ATj = a

)
.

Lemma 18 For T > K,

E (DN ) ≤

 (1 + η̃)
(

1
(logK)2

+ π2

6(log(1+η̃))2

)
, for η̃ > 0

1+log(K+1)
(log(K+1))2

, for η̃ = 0.

Proof Recall that NB,a denotes the number of batches allocated to arm a in time T, T ka denotes the
time of beginning of batch when arm a won for the kth time, and m = m(µ1). Then DN can be
re-written as

NB,a(T )∑
k=2

BTka 1
(
U1(T ka ) ≤ m

)
.

Recall that for any t, the event {U1(t) ≤ m} is same as {N1(t) KLinf(µ̂1(t),m) ≥ g1(t)}, giving

DN =

NB,a∑
k=2

BTka 1
(
N1(T ka ) KLinf

(
µ̂1(T ka ),m

)
≥ g1(T ka

)
.

Let us first consider the case when η̃ > 0. In this case, NB,a is at most log(T )
log(1+η̃) and BTka is at

most η̃Na(T
k
a ) + 1, which in turn is at most (1 + η̃)k−1. Thus, the required expectation is at most

E (DN ) ≤

log(T )
log(1+η̃)

+1∑
k=2

(1 + η̃)k−1 P
(
N1(T ka ) KLinf

(
µ̂1(T ka ),m

)
≥ g1(T ka )

)
.
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For g1(t) = log(t) + 2 log log(t) + 2 log(1 +Na(t)) + 1, Lemma 17 bounds the probability in
the expression in the r.h.s. above. Summing over k ∈ {2, . . . log(T )/ log(1 + η̃)}, we get

E (DN ) ≤ (1 + η̃)

(
1

(logK)2
+

π2

6(log(1 + η̃))2

)
.

Now, let η̃ = 0. In this case, NB,a ≤ T , BTka = 1, T ka ≥ K + k − 1. Using these, together with
g1(T ka ) ≥ log(K + k − 1) + 2 log log(K + k − 1) + 2 log(1 +N1(T ka )) + 1, we get

E (DN ) ≤
T∑
k=2

P
(
N1(T ka ) KLinf(µ̂1(T ka ),m) ≥ g1(T ka )

)
≤

T∑
k=2

(K+k−1)-1 (log(K + k − 1))−2 ,

which is bounded by the constant in the statement.

Appendix C. Comparison with Robust-UCB of Bubeck et al. (2013)

Consider the following optimization problem that corresponds to our index:

max
κ∈L

Eκ (X) s.t. nKL(η̂(n), κ) ≤ C. (18)

Recall that the Donsker-Varadhan variational representation for KL-divergence expresses the KL-
divergence between any two probability measures P,Q, defined on a common space Ω, as

KL(P,Q) = sup
g

{
EP (g(X))− logEQ

(
eg(X)

)}
,

where the supremum is taken over all measurable functions g : Ω → < such that EQ
(
eg(X)

)
is

well-defined. Using this to lower-bound KL with a specific choice of g in the r.h.s., relaxes the
constraint in index-optimization problem, giving the following upper bound on our index:

max
κ∈L

Eκ (X) s.t. nEη̂(n) (g(X))− n logEκ
(
eg(X)

)
≤ C.

For a sequence of thresholds un (to be specified later), and θ > 0, define a function gn(X) =
−θX1 (|X| ≤ un) . Substituting gn for g in the above, and adding nθEκ (X) on both the sides, we
get that our index is bounded from above be max Eκ (X) such that κ ∈ L and

θ

n∑
i=1

(Eκ (X)−Xi1 (|Xi| ≤ un))− n logEκ
(
e−θX1(|X|≤un)

)
≤ C + nθEκ (X) . (19)

Let Yn := X1 (|X| ≤ un) and mn := Eκ (X1 (|X| ≤ un)). Then, Eκ
(
θ2Y 2

n

)
≤ θ2Bu1−ε

n , and

Eκ
(
e−θX1(|X|≤un)

)
≤ 1− θmn +

∞∑
j=2

Eκ
(
|θYn|j

)
j!

≤ 1− θmi +
B

u1+ε
n

∞∑
j=2

(θun)j

j!
. (20)
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Thus, we have Eκ
(
e−θX1(|X|≤un)

)
≤ 1 − θmn + B

u1+εn

(
eθun − θun − 1

)
. Using 1 + x ≤ ex

and (20) in (19), we get that the optimal value of the following optimization problem is an upper
bound on our index: max Eκ (X) subject to κ ∈ L and

θ
n∑
i=1

(Eκ (X)−Xi1 (|Xi| ≤ un)) ≤ C + n

(
θEκ (X)− θmn +

B

u1+ε
n

(
eθun − θun − 1

))
.

Since κ ∈ L, Eκ (X1 (|X| ≥ un)) is at most B
(un)ε , and the constraint above can be re-arranged, and

further relaxed to

1

n

n∑
i=1

(Eκ (X)−Xi1 (|Xi| ≤ un)) ≤ B

uεn
+

1

θ

(
C

n
+

B

u1+ε
n

(
eθun − θun − 1

))
.

Choosing un =
(

Bn
log δ-1

) 1
1+ε and θ = Cuεn

nB , the above constraint is 1
n

n∑
i=1

(Eκ (X)−Xi1 (|Xi|un))

less than
n∑
i=1

B

(
Bn

log δ-1

)− ε
1+ε

+ (nB)
1

1+ε
log δ-1

C

(
log δ-1) ε

1+ε

(
e

C
log δ-1 − 1

)
.

Setting µ̂T (n) = 1
n

n∑
i=1

Xi1 (|Xi| ≤ un) and re-arranging, we get the following bound on the index:

µ̂T (n) +B
1

1+ε

(
log δ-1

n

) ε
1+ε
(

1 +

(
e

C
log δ-1 − 1

)
log δ-1

C

)
.

Let us conclude this section with a remark about a phase transition in ε = 1. The bound in the
previous display, which is valid for ε ≤ 1, is of order n

−ε
1+ε . One may wonder what happens for ε > 1,

but one immediately concludes that the bound cannot hold beyond ε > 1. This is due to the presence
of distributions in L for which the central limit theorem holds (for example standard Rademacher
when B ≥ 1), which force the width to be at least n−

1
2 . The KLinf -based approach (18) does allow

ε > 1. No phase transition is present in the formulas, though a phase transition may be present in the
set of constraints active at the optimum. For example, in Lemma 19 below, ε determines whether the
lower bound on λ1 is active (which corresponds to whether the support of κ includes one additional
point beyond the support of η) or not.

Appendix D. Computing the index

Let L ⊆ P(<) be the set of distributions on < with (1 + ε)th moment bounded by B. For η ∈ P(<)
itself possibly outside L, we define the upper index at threshold C by (5), which we re-state

Uη := max
κ

m(κ) s.t. κ ∈ L and KL(η, κ) ≤ C.

We now give a characterization of the above optimisation problem. Note that the variation with
constraint nKL(η, κ) ≤ C follows from the below result after dividing C by n, the number of
samples.
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Lemma 19 (Dual formulation of index Uη)

Uη = min
λ1,λ2

λ1 + λ2B − e−C+
∫
η(x) ln(λ1−x+λ2|x|1+ε) dx s.t. λ1 ≥

ελ
− 1
ε

2

(1 + ε)1+ 1
ε

and λ2 ≥ 0.

Proof The proof is a diligent application of convex duality. Introducing Lagrange multipliers λ1, λ2

and λ3 for the normalisation, moment and KL-ball constraints respectively, we find that the objective
equals

min
λ1,λ2≥0,λ3≥0

max
κ≥0

Eκ[X] + λ1 (1− Eκ [1]) + λ2

(
B − Eκ

[
|X|1+ε

])
+ λ3 (C −KL(η, κ)) .

The solution for κ is

κ(x) =
λ3η(x)

λ1 − x+ λ2 |x|1+ε ,

where we inherit the restriction (λ1, λ2) ∈ R :=
{

(λ1, λ2) ∈ R2
∣∣∣∀x ∈ R : λ1 − x+ λ2 |x|1+ε ≥ 0

}
(which in particular implies that λ1 ≥ 0, and κ has at most one additional support point compared to
η, which must then be at (λ2(1 + ε))−1/ε). Plugging this in, we find

min
(λ1,λ2)∈R,λ3≥0

− λ3 + λ3

∫
η(x) ln

(
λ3

λ1 − x+ λ2 |x|1+ε

)
dx+ λ1 + λ2B + λ3C.

Optimising for λ3 gives

λ3 = e
∫
η(x) ln(λ1−x+λ2|x|1+ε) dx−C ,

and plugging this in gives the claim.

The upshot of this result is that our KLinf -based indices can be computed with convex optimisa-
tion tools. The optimisation variable has dimension 2, making standard convex optimisation including
e.g. the ellipsoid method practical. Note that the optimisation region for (λ1, λ2) is unbounded,
which may be addressed by successively enlarging the starting ellipsoid. When applying this to an
empirical distribution η supported on n points, the number of terms in the objective (and hence the
run time) scales linearly with n and also with the number of bits of precision required.

Appendix E. Finite time bound for bounded support distributions: Proof of
Proposition 4

In this section, we establish the conjectured optimality of the empirical KL-UCB algorithm of Cappé
et al. (2013b) and give the first optimal finite-time regret bound for bounded-support arm distributions.
In this setting, L = P([0, 1]), and for η ∈ P(<), KLLinf(η, x) is defined to be inf KL(η, κ) : κ ∈
L, and m(κ) ≥ x. Honda and Takemura (2010) develop alternate representations for the KLLinf in
this setting. They show that

KLLinf(µa, x) := max
λ∈[0, 1

1−x ]
Eµa (log (1− (X − x)λ)) for x ∈ [0, 1].
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KLinf -UCB, with L = P([0, 1]), KLLinf defined above, and g(t) = log(t) + 2 log(log(t)), recovers
the empirical KL-UCB algorithm of Cappé et al. (2013b). In particular, the index for arm a, denoted
as Ua(t), is given by

Ua(t) = max

{
x : KLLinf(µ̂a(t), x) ≤ g(t)

Na(t)

}
.

We highlight the key steps in the proof of the finite time bound, below.
As earlier, we bound the average number of pulls of a sub-optimal arm, a. For simplicity of

notation, let us assume that arm 1 is the arm with maximum mean. Let ε1 ∈ (0,m(µ1)), and
m̃ = m(µ1)− ε1. Then for arm a 6= 1, using the definition of the index, we have

Na(T ) = 1 +
T∑

t=K+1

1 (At = a) = DT + ET + 1,

where At denotes the arm selected at time t, and

DT :=
T∑

t=K+1

1

(
KLLinf (µ̂1(t), m̃) ≥ g(t)

N1(t)
and At = a

)
,

and

ET :=
T∑

t=K+1

1

(
KLLinf (µ̂a(t), m̃) <

g(t)

Na(t)
and At = a

)
.

Using Cappé et al. (2013a, Section B.2, (26)) and the bounds therein, and that ε1 < 1,

E (DT ) ≤

(
T∑

t=K+1

e−g(t)

)(
3e+ 2 +

4

ε21
+

8e

ε41

)
≤ 36

ε41

(
T∑

t=K+1

e−g(t)

)
.

For t ≥ 2 and K ≥ 2 we have

E (DT ) ≤ 36

ε41

T∑
t=K+1

1

t log t
≤ 36

ε41

 1

2 log 2
+

T∫
2

1

t log t
dt

 ≤ 36

ε41
(2 + log log T ) . (21)

Moreover, E (ET ) is bounded by

T∑
t=K+1

P
(

KLLinf(µ̂a(t), m̃) ≤ g(t)

Na(t)
; KLLinf(µ̂a(t), m̃) ≥ KLLinf(µa, m̃)− δ; At = a

)

+

T∑
t=K+1

P
(
At = a; KLLinf(µ̂a(t), m̃) ≤ KLLinf(µa, m̃)− δ

)
,

which is further bounded by

T∑
t=K+1

P
(

KLLinf(µa, m̃)− δ ≤ g(t)

Na(t)
; At = a

)
+

T∑
s=1

P
(
KLLinf(µ̂a,s, m̃) ≤ KLLinf(µa, m̃)− δ

)
,
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where µ̂a,s denotes the empirical distribution for arm a, corresponding to s samples from that arm.
Clearly, the first term in the above summation is at most

g(T )
(
KLLinf(µa, m̃)− δ

)-1
+ 1,

while the second term is bounded using Honda and Takemura (2015, Theorem 12) by

T∑
s=1

e−sc(δ,ε1) ≤
(

1− e−c(δ,ε1)
)-1

, where c(δ, ε1) =
δ2

2
(
c0 + 1−m(µa)

1−m̃

) , (22)

with the condition that δ ≤ 1
2

(
c0 + 1−m(µa)

1−m̃

)
, and c0 ≥ 2.2. Thus, we have

E (ET ) ≤ g(T )
(
KLLinf(µa, m̃)− δ

)-1
+ 1 +

1

1− e−c(δ,ε1)
,

where c(δ, ε1) is specified above. Using Cappé et al. (2013a, Lemma 4),

E (ET ) ≤ g(T )

(
KLLinf(µa,m(µ1))− ε1

1−m(µ1)
− δ
)-1

+ 1 +
(

1− e−c(δ,ε1)
)-1

, (23)

Using (21) and (23) above, average number of pulls of a sub-optimal arm is bounded by

g(T )

(
KLLinf(µa,m(µ1))− ε1

1−m(µ1)
− δ
)-1

+ 1 +
(

1− e−c(δ,ε1)
)-1

+
36

ε41
(2 + log log T ) ,

with c(δ, ε1) specified in (22). This bound can be optimized over ε1 and δ under the conditions that
ε1 < m(µ1) and δ ≤ 1

2

(
c0 + 1−m(µa)

1−m(µ1)+ε1

)
. Choosing

δ3 = 8

(
c0 +

1−m(µa)

1−m(µ1) + ε1

)((
KLLinf(µa,m(µ1))

)2
g(T )

)
and

ε51 =

(
KLLinf(µa,m(µ1))

)2
g(T )

(2 + log log T ) ,

the number of times a sub-optimal arm is pulled is bounded by

(log T + log log T )

(
KLLinf(µa,m(µ1))−O

((
log log T

log T

)) 1
5

)-1

+O
(

(log T )
4
5 (log log(T ))

1
5

)
.

Appendix F. Proving Theorem 3

In this section, we establish the theoretical guarantees for KLinf -UCB2 algorithm, which is a
perturbed version of KLinf -UCB. Recall that for ε1 > 0, we define B̃ = B + ε1, and let δ′t =
log(1 + (log log(t))-1). Given µ ∈ LK , for η̃ ≥ 0, KLinf -UCB2 is precisely KLinf -UCB(K,B̃,ε,
η̃, (1 + δ′t)

2 log(t)). Proof of Theorem 3 follows exactly along the lines of Theorem 1. We highlight
only the differences here.
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As earlier, we analyse the events leading to selection of a sub-optimal arm by the algorithm. For
ε2 > 0, in this section, let m = m(µ1)− ε2. The event that at the beginning of jth batch, sub-optimal
arm, a, has the maximum index, i.e.,

{
ATj = a

}
for a 6= 1, equals{

U1(Tj) ≤ m and ATj = a
} ⋃ {

Ua(Tj) > m and ATj = a
}
. (24)

Let N denote the random number of batches till time T . As earlier, the random variable of
interest is

E (Na(T )) = 1 + E

 N∑
j=K+1

Bj1
(
ATj = a

) = 1 + E (DN ) + E (EN ) ,

where, using the division from (24), we define

DN :=
N∑

j=K+1

Bj1
(
U1(Tj) ≤ m, ATj = a

)
, and EN :=

N∑
j=K+1

Bj1
(
Ua(Tj) > m, ATj = a

)
.

Proof for controlling the deviations of the sub-optimal arm, i.e., E (EN ) above, follows exactly
as earlier, with KLinf(µa,m(µ1)) replaced by KLε1inf(µa,m(µ1)− ε2). Thus for any δ > 0, we will
have

E (EN ) ≤ (1 + η̃)(1 + δ′t)
2 log(t)

KLε1inf(µa,m(µ1)− ε2)− δ
+O(1),

where O(1) terms involve constants that are functions of ε1, ε2, and δ.
Let T ka denote the time of beginning of the batch when arm a won for the kth time. Let us now

show that E (DN ) = O(1).
As earlier,

E (DN ) ≤

log(T )
log(1+η̃)

+1∑
k=2

(1 + η̃)k−1 P
(
N1(T ka ) KLinf

(
µ̂1(T ka ),m

)
≥ g1(T ka )

)
. (25)

Proposition 20 bounds the probability in the summand above. Lemma 21 argues that E (DN ) =
o(log T ).

Thus,

E (Na(T )) ≤ (1 + η̃)(1 + δ′t)
2 log T

KLε1inf(µa,m(µ1)− ε2)− δ
+ o(log T ).

Dividing by log(T ) and taking limit as T →∞,

lim sup
T→∞

E (Na(T ))

log(T )
≤ 1 + η̃

KLε1inf(µa,m(µ1)− ε2)− δ
.

Since ε2 > 0 and δ > 0 are arbitrary constants, taking infimum over these, and using that
KLε1inf(µa, x) is a continuous function of x, we get

lim sup
T→∞

E (Na(T ))

log(T )
≤ 1 + η̃

KLε1inf(µa,m(µ1))
. �
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For x ∈ <, let f(x) = |x|1+ε, and for c ≥ 0 define f -1(c) := c1/(1+ε). Let T > t > 0, γ > 0,
X ∼ µ1,

C1 := C2

(
1− e

−ε2
f -1(B̃)−m

)-1(
1− e

−ε1
B̃−f(m)

)-1

,

CT :=
(

1− (1 + γ)−1−δ′T
)

and C2 := exp

E (|X − m̃|)
f -1(B̃)−m

+
E
(∣∣∣B̃ − f(X)

∣∣∣)
B̃ − f (m)

 .

Proposition 20 For T > K, k > 0, ε1 > 0, and g(t) = (1 + δ′t)
2 log(t),

P
(

KLε1inf(µ̂1(T ka ),m) ≥ g(T ka )

N1(T ka )

)
≤ C1 (1 + η̃)−(k−1)(1+δ

′
T )

log
(
1 + δ′T

) (
log (1 + η̃)k−1

CT
+

log (1 + γ)

C2
T

)
.

In particular, introducing the perturbations allows us to get rid of the additional 2 log(1 + N1(t))
cost in the threshold, which resulted from the presence of this term in the bound in Proposition 5.
Proposition 20 is proved in Section F.1 below.

Lemma 21 For T > 0, ε1 > 0 and g(t) :=
(

1 + log
(

1 + 1
log log t

))2
log(t),

log(T )
log(1+η̃)

+1∑
k=1

(1 + η̃)k P
(
N1(T ka ) KLε1inf

(
µ̂1(T ka ),m

)
≥ g(T ka )

)
= o(log (T )).

Proof Using Proposition 20 to bound the probability in the summation, the required expression can
be bounded by

(1 + η̃)

log T
log(1+η̃)

+1∑
k=1

(
C1

CT

log (1 + η̃)

log
(
1 + δ′T

) k − 1

(1 + η̃)(k−1)δ
′
T

+
C1 log (1 + γ)

C2
T log

(
1 + δ′T

) 1

(1 + η̃)(k−1)δ
′
T

)
,

where C1, δ
′
T and CT are constants independent of k, such that CT converges to a constant and δ

′
T

converges to 0, as T →∞ (see Proposition 20). It is then easy to see that

log
(
1 + δ′T

)(
1− 1

(1 + η̃)δ
′
T

)2
-1

= o(log T ),

where δ
′
T = log

(
1 + 1

log log T

)
, and hence the required summation is o(log T ).
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F.1. Towards proving Proposition 20

In this section, we prove the concentration inequality in Proposition 20. The proof involves the use
of peeling arguments, the dual formulation for KLε1inf , ε-nets and careful use of martingales, and may
also be of independent interest. To facilitate the proof, we need some notation and results that will be
used later, which we prove first.

In this section, for x ∈ <, we define f(x) := |x|1+ε, and for c ≥ 0 f -1(c) := c1/(1+ε). For

T > K and K < t ≤ T , define δ′t := log
(

1 + 1
log log t

)
. For γ > 0, let JM =

log(T/(1+η̃)k−1)
log(1+γ) . For

j ∈ {0, 1, · · · , JM}, define the event

Dj =
{

(1 + η̃)k−1 (1 + γ)j ≤ T ka ≤ (1 + η̃)k−1 (1 + γ)j+1
}
,

and for η > 0, and i ≥ 0, define

Ci(t) =
{

(1 + η)i ≤ N1 (t) ≤ (1 + η)i+1
}
.

Furthermore, for ε2 > 0 recall that m = m(µ1)− ε2.

Lemma 22 For γ > 0, η > 0, i ∈ N, η̃ ≥ 0, k ≥ 1, j ∈ [JM ],

P
(
N1(T ka ) KLε1inf(µ̂1(T ka ),m) ≥ g(T ka ), Dj , Ci(T

k
a )
)
≤ C1e

−
g((1+η̃)k−1(1+γ)j)

(1+η) ,

where

C1 =
C2

1− e−ε2(f−1(B̃)−m)
-1

(
1− e

−ε1
B̃−f(m)

)−1

and C2 = e
Eµ1 (|X−m|)
f−1(B̃)−m e

Eµ1 (|B̃−f(X)|)
B̃−f(m) .

Proof On the set Ci(T ka ) (denoted as Ci in this proof), N1(T ka ) ≤ (1 + η)i+1. Using this, the
required probability is bounded from above by

P

(
KLε1inf(µ̂1(T ka ),m) ≥ g(T ka )

(1 + η)i+1
, Dj , Ci

)
. (26)

Using the dual formulation for KLε1inf from Lemma 7, above is bounded by

P

 max
λ∈R(m,B̃)

N1(Tka )∑
l=1

log
(

1− (Xl −m)λ1 − (B̃ − f (Xl))λ2

)
≥ N1(T ka )g(T ka )

(1 + η)i+1
, Dj , Ci

 ,

whereR(m, B̃) is a subset of <2 similar to that defined in the Lemma 7, such that the argument of
log in the expression above is always non-negative. Consider a (δ1, δ2)-net over the rectangle[

0,
1

f−1(B̃)−m

]
×
[
0,

1

B̃ − f(m)

]
,
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which contains the regionR(m, B̃) (see Lemma 8). Let Gl1,l2 denote a grid in the constructed net.
We will choose the side lengths δ1 and δ2, later. Then using union bound over the grids in the net,
probability in (26) can be bounded by

∑
l1,l2

P

 max
λ∈Gl1,l2

N1(Tka )∑
l=1

log
(

1− (Xl −m)λ1 − (B̃ − f (Xl))λ2

)
≥ N1(T ka )g(T ka )

(1 + η)i+1
, Dj , Ci

 .

(27)

On the set Dj , T ka is at least t = (1 + η̃)k−1 (1 + γ)j . Thus, using monotonicity of g(·), the
probability in the summation above can be bounded by

P

 max
λ∈Gl1l2

N1(Tka )∑
l=1

log
(

1− (Xl −m)λ1 − (B̃ − f (Xl))λ2

)
≥ N1(T ka )g(t)

(1 + η)i+1
, Dj , Ci

 . (28)

Let the maximum in the expression above be attained at some point in the grid, say (λ∗1, λ
∗
2).

Furthermore, let (λ̃1, λ̃2) denote one of the corner points of the grid Gl1,l2 such that (λ̃1, λ̃2) is in the
interior ofR(m, B̃). Then, 1− (Xl −m)λ∗1 − (B̃ − f (Xl))λ

∗
2 equals

1− (Xl −m)λ̃1 − (B̃ − f (Xl))λ̃2 + (Xl −m)
(
λ̃1 − λ∗1

)
+
(
B̃ − f (Xl)

)(
λ̃2 − λ∗2

)
.

Since λ∗1 and λ̃1 are in the same grid, they differ by at most δ1. Similarly, λ̃2 and λ∗2 differ by at most
δ2. Thus, the r.h.s. in the above expression can be upper bounded by

1− (Xl −m)λ̃1 − (B̃ − f (Xl))λ̃2 + |Xl −m| δ1 +
∣∣∣B̃ − f (Xl)

∣∣∣ δ2.

Let Yl := log
(

1− (Xl −m)λ̃1 − (B̃ − f (Xl))λ̃2 + |Xl −m| δ1 +
∣∣∣B̃ − f (Xl)

∣∣∣ δ2

)
. Clearly, Yl

are i.i.d. random variables. Let Y be independent and identically distributed as Yl. The probability in
(28) can then be bounded by

P

N1(Tka )∑
l=1

Yl ≥
N1(T ka )g

(
(1 + η̃)k−1 (1 + γ)j

)
(1 + η)i+1

, Dj , Ci

 . (29)

For 0 ≤ θ ≤ 1, let

ΛY (θ) = logE
(
eθY
)

and θ∗ = argmax
0≤θ≤1

θg
(

(1 + η̃)k−1 (1 + γ)j
)

(1 + η)i+1
− ΛY (θ)

 .

Clearly, θ∗ ≥ 0. Using Chernoff-like argument, we bound the expression in (29) by

P

eN1(T
k
a )∑

l=1
(θ∗Yl−ΛY (θ∗))

≥ e
N1(Tka )

(
θ∗g((1+η̃)k−1(1+γ)j)

(1+η)i+1 −ΛY (θ∗)

)
, Dj , Ci

 .
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Observe that by the choice of θ∗, the term in the exponent in the r.h.s. above is positive. Thus the
above probability is bounded by choosing lower bound for N1(T ka ) by

P

eN1(T
k
a )∑

l=1
(θ∗Yl−ΛY (θ∗))

≥ e
(1+η)i

(
θ∗g((1+η̃)k−1(1+γ)j)

(1+η)i+1 −ΛY (θ∗)

)
, Dj , Ci

 ,

which can further be bounded by

P

e1(Ci∩Dj)
N1(T

k
a )∑

l=1
(θ∗Yl−ΛY (θ∗))

≥ e
(1+η)i

(
θ∗g((1+η̃)k−1(1+γ)j)

(1+η)i+1 −ΛY (θ∗)

) .

From Markov’s Inequality, and by the choice of θ∗, the above probability is less than

E

e1(Ci∩Dj)
N1(T

k
a )∑

l=1

(θ∗Yl−ΛY (θ∗))

 e
−(1+η)i max

0≤θ≤1

(
θg((1+η̃)k−1(1+γ)j)

(1+η)i+1 −ΛY (θ)

)
,

which is less than

E

eN1(T
k
a )∑

l=1

(θ∗Yl−ΛY (θ∗))

 e
−(1+η)i

(
g((1+η̃)k−1(1+γ)j)

(1+η)i+1 −ΛY (1)

)
.

Notice that the term inside the expectation in the previous expression is a 1-mean martingale, and the
other term is bounded by choosing θ = 1. Thus, (29), and hence, (28) is bounded by

exp

−
g

(
(1 + η̃)k−1 (1 + γ)j

)
(1 + η)

− (1 + η)i ΛY (1)

 . (30)

We now evaluate ΛY (1) to simplify the above bound. Observe that

(1 + η)i ΛY (1) ≤ (1 + η)i log
(

1− ε2λ̃1 − ε1λ̃2 + E (|Xl −m|) δ1 + E
(∣∣∣B̃ − f(|Xl|)

∣∣∣) δ2

)
.

Using this in (30), probability in (28) is bounded by

e
−
g((1+η̃)k−1(1+γ)j)

(1+η)

(
1− ε2λ̃1 − ε1λ̃2 + E (|Xl −m|) δ1 + E

(∣∣∣B̃ − f(|Xl|)
∣∣∣) δ2

)(1+η)i

.

Using 1 + x ≤ ex, the above expression is less than

e
−
g((1+η̃)k−1(1+γ)j)

(1+η) e−ε2λ̃1(1+η)i−ε1λ̃2(1+η)i+E(|Xl−m|)δ1(1+η)i+E(|B̃−f(|Xl|)|)δ2(1+η)i . (31)

Choosing δ1 and δ2 as follows:

δ1 =
(1 + η)−i

f−1
(
B̃
)
− m̃

, & δ2 =
(1 + η)−i

B̃ − f (|m̃|)
,
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and substituting in (31), the probability in (28) can be bounded by

exp

−g
(

(1 + η̃)k−1 (1 + γ)j
)

(1 + η)

 exp
(
−ε2λ̃1(1 + η)i − ε1λ̃2(1 + η)i

)
C2, (32)

where,

C2 = exp

Eµ1 (|Xl −m|)
f−1(B̃)−m

+
Eµ1

(∣∣∣B̃ − f(|Xl|)
∣∣∣)

B̃ − f (|m|)

 .

Recall that (λ̃1, λ̃2) is a corner point of the grid under consideration, and hence, λ̃1 is either l1δ1, or
(l1 + 1)δ1 and similarly, λ̃2 ∈ {l2δ2, (1 + l2)δ2}. The above expression is further upper-bounded by
choosing λ̃1 = l1δ1 and λ̃2 = l2δ2. Probability in (28) is bounded with these substitutions in (32) by

C2 exp

−g
(

(1 + η̃)k−1 (1 + γ)j
)

(1 + η)

 exp

− ε2l1

f−1
(
B̃
)
−m

− ε1l2

B̃ − f (|m|)

 .

Using this bound in (27), (26) is bounded by

∑
l1,l2

C2 exp

−g
(

(1 + η̃)k−1 (1 + γ)j
)

(1 + η)

 exp

− ε2l1

f−1
(
B̃
)
−m

− ε1l2

B̃ − f (|m|)

 .

Since the summation in the expression is finite for l1 and l2 ranging over all positive integers, on
summing, we get the desired bound.

F.2. Proof of Proposition 20

Recall that for ε2 > 0, and γ > 0, m = m(µ1) − ε2, and JM =
log(T/(1+η̃)k−1)

log(1+γ) and for j ∈
{0, 1, · · · , JM}, the event Dj is defined as

Dj =
{

(1 + η̃)k−1 (1 + γ)j ≤ T ka ≤ (1 + η̃)k−1 (1 + γ)j+1
}
.

Recall that for t > 0, η > 0, and i ≥ 0, we had Ci(t) =
{

(1 + η)i ≤ N1 (t) ≤ (1 + η)i+1
}
.

Let ηT = δ′T , where recall that δ
′
t := log

(
1 + 1

log log t

)
, and define IM,j =

log((1+η̃)k−1(1+γ)j+1)
log(1+ηT ) .

Using union bound and Lemma 22 the required probability is bounded by

JM∑
j=0

IM,j∑
i=0

C1 exp

−g
(

(1 + η̃)k−1 (1 + γ)j
)

(1 + ηT )

 ,

which equals
JM∑
j=0

IM,jC1 exp

−g
(

(1 + η̃)k−1 (1 + γ)j
)

(1 + ηT )

 , (33)
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where C1 is as defined in Lemma 22. Recall that g(t) =
(

1 + log
(

1 + 1
log log t

))2
log(t). For

t = (1 + η̃)k−1 (1 + γ)j , t ≤ T and δ
′
t ≥ δ

′
T . Substituting for the function g (·), bounding the terms

involving δ
′
t by δ

′
T , and using that for all j ∈ [JM ] ηj,k ≥ ηJM ,k = log

(
1 + 1

log log T

)
, the last

expression in (33) is bounded by

C1 (1 + η̃)
−(k−1)

(
1+δ

′
T

)
log
(
1 + δ′T

) JM∑
j=0

log
(

(1 + η̃)k−1 (1 + γ)j+1
)

(1 + γ)j(1+δ
′
T )

.

Bounding the above expression by summing for j ranging over all positive integers, we get the
desired bound.
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