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ABSTRACT 

The full-waveform inversion (FWI) aims at estimating subsurface physical parameter by 

minimizing the misfit between simulated data and observations. FWI relies heavily on an accurate 

initial model and is less robust to measurement noise and physical assumptions in modeling. 

Compared to FWI, wavefield reconstruction inversion (WRI) is more robust to these uncertainties 

but faces high computational costs. To overcome these challenges, we develop a new form of WRI. 

This reformulation takes the form of a traditional FWI formula, which includes a medium-

dependent weight function, and can be easily incorporated into the current FWI workflow. This 

weight function contains the covariance matrices to characterize the distribution of uncertainties 

in measurements and physical assumptions. We discuss various options of the theoretical 

covariance matrix of the new inversion method and show how they relate to various well-known 

approaches, including FWI, WRI, and extended FWI. On the basis of the above comparison, we 

propose a theoretical covariance matrix definition based on the source. Numerical experiments 

demonstrate that the proposed method with a source-dependent theoretical covariance matrix is 

more computationally efficient than conventional WRI, while preserving a certain degree of 

robustness. 

INTRODUCTION 

The ultimate goal of Full waveform inversion (Tarantola, 1984; Pratt, 1999) is to estimate 

subsurface medium parameters by minimizing the data discrepancy between simulations and 

observations. However, FWI is a non-linear and multi-modal problem that requires low-frequency 
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and long-offset data to mitigate the local minima influence (Virieux and Operto, 2009; Plessix et 

al., 2010). That is to say, the success of FWI often relies on a good initial model. Otherwise, the 

data fitting error may be greater than half a wavelength, leading to the cycle-skipping problem 

(Beydoun and Tarantola, 1988; Pratt et al., 2008). 

Many theories and methods have been proposed to alleviate the problems stated above. 

The multi-scale strategy in either the frequency domain (Bunks et al., 1995; Sirgue and Pratt, 2004) 

or the Laplace domain (Shin and Ho Cha, 2009) is commonly used to mitigate cycle-skipping and 

broaden the basin of attraction. Misfit functions in different forms or based on different variables 

(Luo and Schuster, 1991; Gee and Jordan, 1992; Ha et al., 2009; van Leeuwen and Mulder, 2010; 

Bozdag et al., 2011; Choi and Alkhalifah, 2015; Li et al., 2017; Lin et al., 2018) can also be used 

to alleviate the non-linearity issue. In the Adaptive waveform inversion (AWI, Warner and Guasch, 

2016; Guasch et al., 2019), the data discrepancy between the predicted trace and the corresponding 

observed trace is measured using a Wiener filter to mitigate the influence of cycle-skipping. Apart 

from AWI, a new approach of matching the synthetic data and observed data using the Wasserstein 

distance (Metivier et al., 2017; Qiu et al., 2017; Yong et al., 2018) instead of the Euclidean distance 

is considered to be a promising method. 

An alternative direction is the wavefield reconstruction inversion (WRI) method proposed 

by van Leeuwen and Herrmann (2013). By adding the wave equation as a penalty term to the 

objective function and solving the wavefield and model parameters alternately, WRI reduces the 

non-linearity of the inversion while expanding the optimization space. Furthermore, introducing a 

penalty term reduces the requirement for precise data fitting, making WRI less prone to cycle-

skipping.  
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However, tuning the penalty parameter of the WRI is a challenging task. The basics rule to 

be followed is that a weak penalty should be chosen during the early iterations to facilitate data 

fitting, while the wave equation constraints should be progressively enforced during the later 

iterations. To address this issue, an automatic algorithm that balances the penalty at each iteration 

was proposed by da Silva (2015). Aghamiry et al. (2018) solves the penalty scalar problem by 

replacing the penalty method with an augmented Lagrangian method, where the Lagrange 

multipliers are updated with a classical dual ascent approach (IR-WRI as iteratively-refined WRI). 

Their experiments show that IR-WRI may significantly improve the convergence speed of WRI 

and make it easier to find the global minimum. However, solving an augmented wave equation is 

still inevitable in the IR-WRI, which is still computationally prohibited. 

Another way to expand the space is the extended full-waveform inversion (EFWI, Symes, 

2008; Abubakar et al., 2008), which enlarges the space by introducing non-physical degrees of 

freedom into the inversion. These additional degrees of freedom are not part of the fundamental 

physics used in the inversion and need to be suppressed during the inversion process. The 

dimension extended can be performed in a model space extension (Fu and Symes, 2017b) or in a 

source space extension (Huang et al., 2017). Fu and Symes (2017a) propose an adaptive multi-

scale algorithm to reduce the computational cost of subsurface-offset EFWI (one kind of EFWI in 

the model space, Fu and Symes, 2017b) caused by the use of nonlocal wave physics (Mulder, 

2013). In addition to the model-space EFWI, the EFWI in the source space (SEFWI) was also 

proposed with efficiency and less sensitivity of the cycle-skipping (Huang et al., 2018; Symes, 

2020).   
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Despite progresses made in EFWI and WRI, they are still hampered by the huge 

computational overhead. Specifically, the extended wave equation introduces additional 

dimensions involving an integral over subsurface offset axis to compute the strain from stress, 

making subsurface offset extended FWI computationally infeasible. In comparison, WRI must 

solve an augmented wave equation, which involves the inverse computation of a complex matrix 

with broader bandwidth and larger condition numbers compared to the Helmholtz matrix. 

This paper first argues that the extended inversion method essentially suppresses unknown 

measurement and theoretical uncertainties in practical cases, which is embodied in overcoming 

cycle-skipping caused by poor initial models. Then, we reformulated the WRI with these 

uncertainties as a residual-weighted FWI, where the weight term is a function of the measurement 

and theoretical covariance matrices. We discussed various theoretical covariance matrices and 

showed their connection with FWI, WRI, and SEFWI. Based on the above analysis, we propose a 

source-based theoretical covariance matrix definition, which simplifies the calculation of the 

weight function of the WRI in the form of FWI, making the new method more computationally 

efficient than the traditional WRI. Our main contribution are a theoretical framework that 

incorporates measurement and theoretical uncertainties and a definition of the theoretical 

covariance matrix for improving computational efficiency. Furthermore, the overall approach 

preserves the robustness of the WRI. 

This paper is organized as follows. We first include the measurement and theoretical 

uncertainties in the conventional WRI formulation. Then, the WRI with measurement and 

theoretical uncertainties is reformulated into the form of the conventional FWI with a residual-

weighted term. We discussed various options for the theoretical covariance matrices and connected 
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them to FWI, WRI, and SEFWI. In particular, a rank-1 theoretical covariance matrix is proposed 

to reduce the computational cost of the WRI. Finally, numerical examples are implemented to 

examine the efficiency and performance of the proposed method. 

 

THEORY 

Wavefield reconstruction inversion 

The forward modeling of seismic wave propagation can be described by the following 

wave equation:                                                                     

 ( ) i i=A m u q , (1) 

in which i  is the source number index, m is a vector of the model parameters, iu  is the 

corresponding wavefield, iq denotes the source term, and ( )A m  represents a discretized operator 

for the wave equation.  

Uncertainties in data acquisition and forward simulation are the main instability factors 

when applying FWI to real data (Symes and Carazzone, 1991; Symes, 2008; Weglein, 2013; 

Brittan and Jones, 2019). Specifically, the measurement uncertainty is mainly generated by 

unpredictable factors in the recording environment, while the theoretical uncertainty is likely 

caused by imprecise physical assumptions of the Earth, incorrect wavelet estimation, and 

numerical errors in simulation. By considering such uncertainties, the observed data is expressed 

as: 
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 1( ) ( )i i i p m

−= + +d PA m q , (2) 

where d  denotes the observed data, and iP  is the sampling operator that extracts data at the 

receivers excited by the i th source, q  denotes the real source. ( )p = −A m u q , and m = −d Pu  

are used to describe the theoretical uncertainty and the measurement uncertainty, respectively. 

Note that 
p
 is a variable associated with inaccurate laws of physics. Although 

p
 is placed in the 

source term for convenience and simplicity, we emphasize that 
p
represents the influence caused 

by a combination of many factors, including but not limited to imprecise physical assumptions of 

the Earth, numerical errors in discretization, and incorrect wavelet estimation. Furthermore, it 

should be noted that equation 2 is an exact symbolic equation describing wave propagation and 

observations in real scenarios, while equation 1 is a theoretically derived equation used for 

simulation guided by certain physical assumptions of the Earth. One can only use equation 1 for 

seismic imaging and inversion since 
p
 and m  are unpredictable in real scenarios. However, in 

this paper, existing methods are generalized and optimized by acknowledging the existence of 

measurement and theoretical uncertainties and describing their distribution. To simplify the 

derivation and calculation, a simple assumption is made to these uncertainties, which all satisfy 

the Gaussian distribution, delineated as: 

 ~ ( , )m mmμ , (3) 

 ~ ( , )p ppμ , (4) 
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where ( , )μ  represents a Gaussian distribution with mean μ  and covariance  . We assume 

that 0= =m pμ μ  for the sake of simplicity. Other non-zero means can also be included in our 

framework.  

The assumptions of equations 3 and 4 lead to a weighted least-squares problem (see 

Appendix A for details):  

 
2 2

,
min ( )

m p
i i i i i

i
 

− + −
u m

Pu d A m u q , (5) 

in which 2 * 1−=
W

r r W r  and *  denotes the adjoint of r. If both covariance matrices are a multiple 

of the identity diagonal matrix, i.e., ,p p m m  =  =I I , we can obtain another form of the 

traditional WRI based on the penalty parameter 1 1/p m  − −= . An alternating optimization method 

(Bezdek and Hathaway, 2002) and a variable projection method (Golub and Pereyra, 2003) are 

commonly used to solve equation 5. A two-step procedure is usually adopted in the alternating 

optimization algorithm. In the first step, equation 5 is minimized over the wavefield u  for fixed 

model parameters m  by solving: 

 * 1 * 1 * 1 * 1( ) ( )ii m i p i m i p i

− − − − +  =  + P P A A u P d A q . (6) 

In the second step, the model is updated using a gradient step with step-length 0  ; 

: = −m m g  with: 

 * 1( , ) ( ( ) )i ip i

i

G −=  −g m u A m u q , (7) 
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in which ( , )G m u  is the Jacobian matrix of ( )A m u .  Though an exact solution for the model 

parameter can be obtained (van Leeuwen and Herrmann, 2013; Aghamiry et al., 2019), the gradient 

descent method is chosen in this paper, we can directly calculate the model domain Hessian (van 

Leeuwen and Herrmann, 2015) to further improve the inversion result. 

Equation 6 is the augmented wave equation, which replaces forward modeling and adjoint 

state calculations, thereby expanding the search space and avoiding the storage of synthetic data 

for all sources compared to the classical solutions for FWI. However, the memory requirements of 

a traditional WRI can become very large, as the matrix bandwidth of * *+P P A A  and the condition 

number significantly increases with the model size.  

In summary, by including measurement and theoretical uncertainties in the inversion, WRI 

can reduce the non-linearity of the inversion problem. However, how to best determine the 

theoretical covariance matrix and reduce the expensive computational cost of equation 6 remain 

challenges for WRI. 

An alternative formulation of WRI 

In this section, an alternative formulation for WRI with measurement and theoretical 

uncertainties is derived. This reformulation takes the form of conventional FWI with a medium-

dependent residual weight (WRI in the FWI form, FWRI). First, based on the WRI method, 

considering measurement and theoretical uncertainties, the formulations of SEFWI can be 

obtained by introducing a new source-like variable: 

 ( )i i i= −r A m u q . (8) 
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Note that r  is not the same as 
p
. r represents the extended source mainly used for the following 

derivation, and 
p
 is the existing unknown variable. The inversion problem of equation 5 becomes 

(van Leeuwen, 2019): 

 2 21

,
min ( ) ( )

pm
i i i i i

i

−


+ − +

r m
P A m r q d r . 

(9) 

Equation 9 brings us a new relation between WRI and EFWI: different choices for 
p  lead 

to other kinds of extended FWI methods. For example, if 1

p

−  becomes a function of the source 

distance in the frequency domain, we will have the objective function of the source extended FWI 

(Equation 10 in Huang et al., 2018). Furthermore, the connection of the above two methods above 

will help us define the theoretical covariance matrix. More details will be discussed in the 

following section. Note that Equations 8 and 9 are derived from measurement and theoretical 

uncertainties containing probability-related variables (covariance matrices), which are slightly 

different from Wang et al. (2016). 

Through algebra (see Appendix B for more details), we can show that equation 9 is 

equivalent to an objective function in the traditional FWI form with a medium-dependent weight 

(van Leeuwen, 2019): 

 2
1

( )
( ) ( )

i m
i i i

i

 −

 +
= −

m
m P A m q d , 

(10) 

with 

 * 1 1 *( ) ( ( ) ( ))i i p i

− − = m P A m A m P . (11) 
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Compared to equation 5, the reformulated expressions (equations 10 and 11), referring to 

as the FWRI, indicate that the influences of measurement and theoretical uncertainties for 

inversion can be considered as the weight function or the data-domain Hessian matrix in the 

traditional FWI (Gholami et al., 2021b). However, both the measurement and theoretical 

uncertainties satisfy the identity are usually described by the diagonal covariance matrices in 

existing methods. In addition, the new formula of WRI shows another strategy for applying WRI 

in the time domain by avoiding the calculation of augmented wave equations. The large-scale data 

domain Hessian matrix in the time domain FWRI can be computed by some fast approximation 

algorithms (Yuzhao et al., 2022). 

Remarkably, the gradient of the new objective function with respect to the model 

parameters has a simple expression, similar to that of conventional FWI:  

 * *

0 0 0 0( ) 2 2
i i i i

i


 

 = − +
 


A A

m u v v w
m m

, 
(12) 

in which: 

 1

0i i

−=u A q , (13) 

 1

0 0i ip

−= w A v , (14) 

 1 * 1 1 1 *

0 ( ) ( ( ) ) ( ( ) ) ( )
i

ii i m i i i i

− − − −=  + − =v PA m PA m q d PA h , (15) 

where 1( ( ) )i m

−=  +h m h  is the weighted residual and 1( )i i i

−= −h PA m q d  is the classical FWI 

residual. Both terms in gradient of the FWRI are susceptible to cycle-skipping issue and robust to 

non-physical data due to the weight residual (Yuzhao et al., 2022). Specifically, the second term 

in equation 10 appears as the wave path from the receiver to the reflector, which provides low-
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wavenumber model updates. Moreover, the FWRI can be readily adapted to the standard FWI 

workflow. We will introduce the fully detailed FWRI algorithm after discussing the definition of 

the theoretical covariance matrix and the computation of the weighted residual. 

Theoretical covariance matrix  

To accurately solve equation 10, we first need to define two covariance matrices that 

describe theoretical and measurement uncertainties, respectively. Since the measurement 

uncertainty is caused by unpredictable environment factors, which is highly random in nature, it 

can be represented by the identity covariance matrix m m = I . Therefore, in the following, we 

concentrate on how to define the theoretical covariance matrix. 

In principle, the definition of the theoretical covariance matrix is arbitrary since statistical 

testing of seismic inversion is impractical. However, for the following reasons, we can provide a 

reasonable definition that maintains the advantages of WRI while being computationally efficient.  

First, the theoretical covariance matrix is utilized to evaluate the uncertainties of the wave 

equation we used in the inversion compared to the actual situation. Since no statistical definition 

can be given, choosing known variables as the theoretical covariance matrix is relatively 

appropriate. Furthermore, the analysis of equation 9, namely the derivation of the SEFWI by 

defining a function related to the source (source distance annihilator), also indicates that the related 

variables of the source, i.e., source location and source frequency spectrum, can be used as the 

definition of the theoretical covariance matrix. 

Furthermore, we can divide the weight function by defining the theoretical covariance 

matrix as a random variable and its transpose:   
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 1 1 *( ) ( ( ) )( ( ) )i i i

− − =m PA m b PA m b , (16) 

where   

 *

p =bb . (17) 

It can be seen that the weight function consists of forward modeling excited by b . Intuitively, 

letting =b q  allows us to dispense with additional forward modeling of the weight function.  

Therefore, we propose a theoretical covariance matrix definition from a limited selection 

based on the above analysis: *

p i i =q q . Note that the theoretical covariance matrix defined is not 

invertible. However, we are solving equation 10, and the proposed method still holds as long as 

the weight function is invertible. Furthermore, we demonstrate that this definition is similar in 

some respects to other definitions and also brings computational advantages. However, we 

acknowledge that other forms of the theoretical covariance matrix may existed and provide same 

benefits. Note that our definition of the theoretical covariance matrix does not jeopardize the 

correlations that form the data domain Hessian, since we are only replacing the source of the Green 

function or forward modeling to avoid additional modeling calculations. 

To compare the theoretical covariance matrices and the weight function, a numerical 

experiment is carried out to illustrate their differences and connections based on different 

definitions. The test model is a constant velocity model of 210m 210m  with 10m spatial 

sampling. The source is located at a depth of 20m and horizontally at 100m. The theoretical 

covariance matrix, noise distributions, and weight functions are plotted in Figures 1, 2, and 3, 

respectively.  
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Figure 1a shows the diagonal matrix 
p  = I , the theoretical covariance matrix definition 

in traditional WRI. The corresponding theoretical noise distribution (Figure 2a) is random. Figure 

1b shows the proposed theoretical covariance matrix *

p =qq , which contains only one non-zero 

element at the source location, consistent with theoretical noise (Figure 2b). Figure 1c shows the 

source distance annihilator ( ) 2

2,
1/ ( )p i si i

 = −x x‖ ‖  proposed by Huang et al. (2018). The 

corresponding theoretical noise in Figure 2c decreases as the distance between the source location 

and the model point increases. As shown in Figures 1 and 2, the theoretical noise associated with 

the theoretical covariance matrix in the traditional WRI is randomly distributed, while the 

theoretical noise and the theoretical covariance matrix based on the other two definitions are highly 

correlated. By comparing the theoretical covariance matrix and the corresponding noise, we can 

presume that our definition is a limiting case of the source distance annihilator definition; that is, 

only the value at the true source location is considered.  

Next, we show the weight functions corresponding to different definitions in Figure 3 to 

demonstrate how different definitions directly affect the inversion. The weight function of 

traditional WRI (Figure 3a) and SEFWI (Figure 3c) are similar, and the energy is uniformly 

diffused from the center to the outside. The weight function corresponding to the definition we 

proposed is not uniform. Although it also radiates from the center, the energy of the center point 

(source location) is still more vital than that of other points. Moreover, this feature is consistent 

with the above conclusion that *

p i i =q q  is an extreme case of a source-distance annihilator. 

Furthermore, Figure 3 demonstrates the similarity between the conventional WRI and SEFWI in 

a novel way by comparing the weight functions. 



Geophysics   14 

Note that in SEFWI, the source distance annihilator is used to shrink the extended source. 

In our framework, the source distance annihilator is an invariant variable (theoretical variance 

matrix) used to describe the theoretical uncertainty. It only exhibits model-dependent 

characteristics when operating on the extended source, while the proposed covariance matrix 

definition is the same as the source distance annihilator. Moreover, we have only discussed the 

definition of the theoretical covariance matrix; the solutions for WRI, FWRI, and SEFWI are still 

different. Nonetheless, according to the above definitions, they can be solved under the framework 

presented in our previous section, albeit at a relatively high computational cost. For example, the 

computation of SEFWI would involve forward modeling of a vector with elements 

21/i i ss = −x x‖ ‖ .  

In conclusion, we show that by giving different theoretical covariance matrix definitions, 

different inversion methods can be derived from equation 9. The theoretical analysis and numerical 

comparisons show that our definition of the theoretical covariance matrix that is more 

computationally efficient than others. Our definition of the theoretical covariance matrix in terms 

of the source-dependent variables can also be cross-verified by the WRI mechanism (Gholami et 

al., 2021a), which states that the kinematic errors generated during the wavefield reconstruction 

can be compensated by the extended sources. It should be noted that, in addition to our definition, 

other types of source-related variables can also be used to define the theoretical covariance matrix 

and thus develop other inversion algorithms. 

Algorithm  

In addition to the theoretical covariance matrix, the calculation of weighted residual must 

be solved before introducing the proposed FWRI algorithm with the 
*

qq  definition. As mentioned 
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previously, the computation of the weighted residual is a multidimensional deconvolution problem， 

and the weight function is the data domain Hessian when the theoretical covariance matrix defaults 

to the unit diagonal matrix. Approximations are widely used to in extended WRI methods 

involving source and data inversion to avoid direct computation of the data domain Hessian, due 

to its large scale (Aghamiry et al., 2019; Gholami et al., 2021b). For example, in Gholami et al. 

(2021b), the data domain Hessian was approximated as an update step in the data inversion step to 

facilitate computation. 

In the frequency domain, one can choose the LSQR method or gradient descent method to 

calculate the weighted residual. However, as with most computations involving the Hessian, the 

accuracy of the weighted residual cannot be guaranteed due to the poor conditioning of the Hessian. 

Here we let the sampled wavefield be written as: 

 1

i i i

−=
p

u PA q . (18) 

According to our definition, the weight term can be written as: 

 1 * 1( ( ) ) ( )m i m i i− − + = +
p p

m I u u . (19) 

Considering its unique form and using the Sherman-Morrison identity gives us: 

 * 1

1 1

* 1
( ( ) ) ( )

1

i i m

m i m

i m i






−

− −

−
 + = +

+

p p

p p

u u
m I

u u
. 

(20) 

Therefore, calculating the weighted residual h  becomes relatively easy and affordable: 

for each shot and frequency, the size of Equation 20 is the square of the number of receivers. Now 
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we can employ Algorithm 1 to execute the proposed method. Compared with traditional FWI, 

FWRI requires limited additional computations to calculate residual and gradients.  

To quantitively evaluate the computational efficiency of the proposed FWRI, numerical 

experiments are conducted using FWI, WRI, and the -based FWRI, respectively, with a Dell 

Vostro-5390 laptop equipped with i7-8565U and 8 GB RAM. All experiments are carried out using 

one source and twenty receivers for a single frequency. 

The computational comparisons of the traditional FWI, WRI, the FWRI with the identity 

matrix, and the proposed -based FWRI are shown in Table 1. The standard FWI workflow involves 

forward modeling based on the current model, adjoint source, computation for the adjoint state, 

and gradient calculation. Moreover, compared to FWI, WRI does not need to calculate the adjoint 

source, and its adjoint state calculation is simple. In contrast, forward modeling in WRI is essential 

to solving an augmented wave equation, which requires considerable memory due to the wide 

bandwidth. 

The calculation of the FWRI with the identity covariance matrix becomes much more 

complicated than that of the WRI and FWI: in the adjoint source calculations, the weight function 

and its inverse need to be calculated. The adjoint state requires additional forward modeling. In 

contrast, the computation of the 
*

qq -based FWRI is much simpler since the Sherman–Morrison 

formula can be used to obtain adjoint source without additional forward modeling. 

Moreover, the number of PDE that need to be solved using each method when calculating 

the model updates is also provided for comparison. For a more accurate comparison, we separate 

the solutions of the PDE (i.e., the standard wave equation) and the augmented wave equation 
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(AWE). The AWE solver requires more memory and is more time-consuming than the PDE solver 

due to the wider bandwidth. Moreover, the calculation of AWE is unstable due to the large 

condition number. 

In this case, traditional FWI requires 2 PDE solvers, while traditional WRI requires 1 AWE 

solver. Due to the * *−
A P  in wh , FWRI with an identity covariance matrix requires 3 receiverN+  

PDE solvers, where receiverN  PDE solvers come from the explicit inversion of the matrix * *−
A P . 

In contrast, 
*

qq -based FWRI requires only 2 PDE solvers, meaning that the proposed method 

based on the given theoretical covariance matrix definition is equivalent to FWI in terms of 

computational cost.  

Compared with other extended inversion methods, according to our theoretical covariance 

matrix description, SEFWI requires an additional PDE solution or forward modeling excited by 

21/i i ss = −x x‖ ‖ . In addition, a WRI-dual method proposed by Rizzuti et al., (2019, 2021) requires 

4 PDE solvers. 

As mentioned above, PDE solvers and AWE solvers have different computational costs 

and memory requirements that are related to the computational area or model size. To visualize 

the computational cost of four methods, we plot their computational time for a single iteration at 

different model sizes in Figure 4. The test is based on a constant model of square matrix size. The 

X labels in Figure 4 indicate the number of grid points in one direction.  

With the increase in grid points, the time required to complete WRI and identity matrix-

based FWRI grows very fast, while FWI and 
*

qq -based FWRI show relatively slow growth, 

indicating that the former methods are more time-consuming. In particular, the solution time of 
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identity matrix-based FWRI is the most time-consuming due to its receiverN  PDE solver 

requirement, as described above. However, we draw this curve for reference only, as it is not the 

priority of this test. The two nearly identical curves representing FWI and 
*

qq -based FWRI also 

support our above claim that 
*

qq -based FWRI is computationally equivalent to FWI. 

 

 

NUMERICAL TESTS 

The wave equation is discretized by a 9-point discretization of the 2D Helmholtz operator 

with an absorbing condition, and the optimization problem is solved by the L-BFGS (Fabien et al., 

2017) iteration method. 

Non-linearity 

This test supports our claim that the weight function-based FWRI is less prone to falling 

into a local minimum by incorporating uncertainties into the inversion. That is, the effect of the 

theoretical uncertainties we introduced above on the inversion is mainly manifested as cycle-

skipping caused by poor initial models. As previously mentioned, defining the theoretical 

covariance matrix as a unit diagonal matrix will lead to traditional WRI, and van Leeuwen and 

Herrmann (2013, 2015) have discussed its reduced non-linearity. Here, we will investigate the 

non-linearity of FWRI with a defined theoretical covariance matrix 
*

qq . 
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More specifically, a constant velocity is used to simulate data which serves as input to the 

objective function calculation a constant velocity is considered the input of misfit functions, and 

the actual velocity is 2000m/ sc = . A single source of 5Hz , and 201 receivers, both at a depth of 

25m, is used for the test. We scan the velocity from 1750m/ s  to 2250m/ s  to calculate the 

objective function. 

Figure 5 show the comparison of misfit functions. It clearly shows the reduced non-

linearity of the proposed method: the objective function with the weight function (red line) has no 

local minimum in the velocity range considered. It directly converges to the actual global minimum, 

while the objective function of the traditional FWI (blue line) presents three secondary minima 

and a global minimum. We also plot the SEFWI result (green line) because it is only different from 

the FWRI in the covariance matrix. Numerical experiments show that it also has good convexity. 

Camembert model 

To demonstrate the robustness of the FWRI, we apply the proposed method to the 

Camembert model (Gauthier et al., 1986), which includes circular anomaly (Figure 6a). The model 

contains 101 101  grid points, and the grid spacing in both directions is 10 m. The velocity of the 

anomaly is 2600m/ s , and the homogeneous background is 2000m/ s .  

We use transmissions to perform the inversion; in this case, we will have sufficient 

information to recover the large-scale anomaly. Therefore, the acquisition consists of 9 sources 

evenly distributed on the surface and 50 receivers located at the bottom. The inversion starts from 

the homogeneous background model, performed by frequency slices, and the corresponding 

inversion frequency band is [4,12]Hz with an interval of 1Hz .  



Geophysics   20 

The inversion models obtained using FWI, WRI, and FWRI are shown in Figures 6b, 6c, 

and 6d, respectively. The WRI method is basically the same as the FWRI method but has a 

different covariance matrix. Considering the computational cost, we apply conventional WRI in 

the following tests rather than the FWRI with an identity theoretical covariance matrix. The FWI 

result is far from the accurate model; only the top and bottom of the abnormal body that can 

generate the waveform are accurately restored. Moreover, part of the low-frequency models is also 

recovered due to the transmissions. The central part of the anomaly is hardly inverted. However, 

the WRI and FWRI methods provide accurate results, and both models are close to the ground 

truth and accurately invert the large anomaly. 

BP model  

Finally, we evaluate the 
*

qq -based FWRI method with part of the BP model (Figure 7a; 

Billette and Brandsberg, 2005) based on a flawed initial model (Figure 7b). We use a Gaussian 

filter with vertical and horizontal lengths of 1500 m to smooth the real model to obtain the initial 

model. The size of the selected BP model is 160 387 , with a grid interval of 25m. A total of 38 

shots are simulated on the surface, with receivers evenly distributed in 250 m intervals at the 

surface with a maximum offset of 9675m.  The inversion is performed frequency-by-frequency, 

and the frequency band is  [3,12]Hz with a 0.5Hz  frequency interval. 

In addition, we add very little Gaussian noise (Signal-to-noise ratio, SNR=0.5) with the 

same covariance matrix for all frequency data to emphasize model or theoretical uncertainties. 

Traditional FWI, WRI, and 
*

qq -based FWRI are performed for comparison. 
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The inverted velocities are shown in Figure 8. Figure 8a is the FWI result. Due to the wrong 

initial velocity, the inverted velocity of FWI contains some artifacts and is far away from the true 

model. Figure 8c shows the FWRI method with defined covariance matrix 
*

qq , which slightly 

differs from the WRI result (Figure 8b). We can see that both methods accurately recovered the 

salt body, which demonstrates that the proposed approach and the well-defined theoretical 

covariance matrix can handle an inversion problem with strong non-linearity. However, the subsalt 

structure on the left cannot be recovered accurately from these two methods due to the limited 

illumination caused by the salt structure. However, considering the computational cost, FWRI is 

an excellent alternative to WRI. 

 

 

DISCUSSION 

It is noted that measurement and theoretical uncertainties can reduce the non-linearity of 

the inversion through the weight term or Hessian matrix. Since there is no need to calculate the 

augmented wave equation, FWRI can be applied to the time domain, and the influence of 

theoretical uncertainties on the inversion can be further intuitively analyzed by using variables 

such as the time domain wavefield. However, due to some computational issues related to the 

weight function, the proposed method cannot currently be used efficiently in the time domain. 

Specifically, the scale of the data domain Hessian matrix in the time domain is Nt Nr Nt Nr    

( Nt  represents the travel time, and Nr  is the receiver number). This large-scale characteristic of 

the Hessian makes it challenging to perform calculations in the time domain directly. The 
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Sherman-Morrison identities used to compute the weight function hold theoretically in both the 

time and frequency domains. Due to the large scale ( Nt Nr Nt Nr   ) of *

i ip p
u u  or equation 20, 

calculating the weight function in the time domain requires a large amount of memory or a 

significant lengthy computational time, even from the perspective of the total calculation of FWI. 

A cost-efficient time-domain solution for WRI and its weighted residual is under study. 

Furthermore, as shown by Louboutin et al. (2020), traditional WRI can provide reliable 

inversion results when inaccurate forward operators are used. The theoretical analysis shows that 

the proposed method and the definition of theoretical variance can maintain this robustness. More 

specifically, when we adopt the definition of 
*

qq , the data domain Hessian matrix is essentially a 

matrix composed of 
*( )Pu Pu , and the calculation of the weighted residual becomes 

*( ) =Pu Pu h h . When the original residual contains other responses that the wave equation cannot 

describe, the calculation of the weight function and weighted residual will reduce the weight of 

these data. In this case, subsequent gradient computations are less affected by non-physical data.  

 

CONCLUSION 

We have derived an alternative formula for extended full-waveform inversion from 

wavefield reconstruction inversion with measurement and theoretical uncertainties. The derivation 

of the new formula shows that different theoretical covariance matrix definitions in WRI 

correspond to different extended FWI methods (e. g., source extended FWI). By choosing the 

theoretical covariance matrix as low rank, we obtain a computationally feasible method for the 

extended FWI. Several experiments have been described to illustrate the effectiveness of the 
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proposed method. Testing the Camembert model emphasizes the validity of the defined theoretical 

covariance matrix. BP model tests show that the new method preserves the robustness of WRI and 

has the ability to handle non-linear problems. 

Future research will focus on searching for more effective choices for the theoretical 

covariance matrix. Although the approximation of the forward operator indicates a method of 

estimating the covariance matrix, it is necessary to further study the choice of different theoretical 

covariance matrices and their influence on the inversion.   
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APPENDIX A 

In this section, we derive equation 5 from the work of Tarantola (2005). The shot index i  

was omitted for ease of notation. 

Define the joint probability density   describing the correlations that correspond to our 

physical theory, together with the inherent uncertainties of the theory as: 

                            ( , ) ( | ) ( )  = Mu m u m m ,                                                  (A-1) 

where m  is the model parameters, u  denotes the wavefield,    is the conditional probability 

density, and M  represents the prior information of the model parameters. 

Assuming the prior information of the model is constant and the conditional probability 

density is a Gaussian probability density with 0=pμ : 

           
* 11

( | ) ( ( ( ) ) ( ( ) ))
2

p

− = − −  −u m exp A m u q A m u q .                            (A-2) 

The measurement uncertainties can be described by a Gaussian probability density 

( ) ( ) =D Dd Pu  centered at d : 

                 
* 11

( ) ( ( ) ( ))
2

m −= − −  −D d exp Pu d Pu d .                                       (A-3) 

These two states of information are combined to produce the posterior state of information: 

                           ( , ) ( | ) ( ) =  Dd m u m d .                                                   (A-4) 
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The posterior information in the model space is given by the marginal probability density: 

                       ( ) ( | ) ( )d = M D
D

m u m d d ,                                               (A-5) 

which gives a maximum a posteriori (MAP) problem: 

* 1 * 11 1
( ) ( ( ( ) ) ( ( ) )) ( ( ) ( ))

2 2
p m

− − = − −  − − −  −M m exp A m u q A m u q exp Pu d Pu d , (A-6) 

which is equivalent to equation 5. 

APPENDIX B 

This appendix provides mathematical proof of FWI formed WRI. To derive equations 10 

and 11, we need to define a new wavefield f : 

                                                      1−=f A r ,                                                        (B-1) 

where A  is the forward operator and r  is the source defined by equation 8. Using h  to represent 

the residual: 

                                                    
1−= −h d PA q ,                                                   (B-2) 

where d   is the observed data, P  is the sampling operator, and q  denotes the source used for 

modeling and inversion. Note that we omit the shot index i  for to simplify notion. The objective 

function equation 9 becomes: 

                                           
2 2

min
m p 

− +Pf h Af ,                                             (B-3) 
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with f  defined as: 

                                  * 1 * 1 * 1( )m p m

− − −=  +  f P P A A P h ,                                            (B-4) 

                     * 1 1 * * * 1 1 1( ) ( ( ) )p p m

− − − − −=   +f A A P P A A P h .                                   (B-5) 

The first definition can be obtained directly from equation B-3, while the second definition 

follows from the matrix identity (6.525) in Tarantola (2005). 

Thus, we can write: 

                                  1( )( ( ) )m

−=  +Pf m m h ,                                              (B-6) 

                               * * 1( ( ) )p mA− −=  +Af P m h ,                                            (B-7) 

with ( ) m  defined in equation 11. This yields: 

                       
2 * 1 1( ( ) ) ( )( ( ) )

p
m m

− −


=  +   +Af h m m m h ,                         (B-8) 

      
2 * 1 * 1 1( ( )( ( ) ) ) ( ( )( ( ) ) )

m
m m m

− − −


− =   + −    + −Pf h h m m I m m I h .     (B-9) 

Assembling all the terms and factoring out 1( ( )) m

− +m , we obtain: 

                      * 1 1( ) ( ( ) ) ( ( ) )( ( ) )m m m − −=  +  +  +m h m m m h .                 (B-10) 

The above equation reduces to 

                                         * 1( ) ( ( ) )m −=  +m h m h ,                                     (B-11) 
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which is our result. Note that there is no stand-alone inverse operation for the projector P  

or 
p , which are always calculated in the form 

1−
PA s  or its adjoint 

1 *( )−
PA s . 

APPENDIX C 

The gradient can be expressed as: 

1 * 1 1( )
( ) ( ( ) ) ( ( ) ) ( ( ) )i i i i m i i i

i

 − − − 
= = −  + −

 


m
g m P A m q d m P A m q d

m m
,       (C-1) 

where g  is the gradient,   is the objective function, m  denotes the model parameters, and P  is 

the sampling operator, A  denotes the forward operator, q  is the source, and d  is the observed 

data. ( ( ) )i m + m   is the weight function as defined in equation 11. 

This expression may be derived using the quotient-rule for matrix-differentiation: 

                                                  1 1 1− − − = − A A AA .                                            (C-2) 

For the first term, we have: 

               
1 * 1 1 * 1 * 1 *( ) ( ) ( ) ( )i i i i i i i A
− − − − −  

− = − = −
  

A A
P A q d P A A q A q P

m m m
.     (C-3) 

For the second term, we have: 

                            
1 * 1 1( ) ( ( ) ) ( )i i i i m i i i

− − −
−  + −


P A q d m P A q d

m
,                    (C-4) 

in which 
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1 1 1( )
( ( ) ) ( ( ) ) ( ( ) )i

i m i m i m

− − −
 + = −  +  +

 

m
m m m

m m
,      (C-5) 

                          
* 1 1 * * 1 1 *( )

( ) ( )i
i p i i p i

− − − −  
=  = 

  

m
P A A P P A A P

m m m
,             (C-6) 

and 

                  
* 1 1 * 1 1 * 1 * 1 1( ) ( ) ( )( )p p p p

− − − − − − − 
 = −   

 
A A A A A A A A

m m
.                   (C-7) 

We have: 

   
* 1 1 * 1 * 1 1 1 * * 1 1 *( ) ( )( )p p p p p p

− − − − − − − − − − 
−    = −   

 

A
A A A A A A A A A A A

m m
,           (C-8) 

                        
1 * * 1 1 * 1 1 *

p p p p

− − − − − − − − 
−    = − 

 

A A
A A A A A A A A

m m
.                    (C-9) 

Finally, we obtain: 

                 
1 1 * * 1 1 1 *( )

( ) ( )i p i i p iP− − − − − −  
= −  = − 

  

m A A
P A A A P P A A A

m m m
.             (C-10) 
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