
Fundamentals of
Data Science
A New Outlook

ISBN: 978-94-6473-127-9

Typeset by: LATEX.
Printed by: Ipskamp Printing

© 2023, Joris Pries, Leiden, the Netherlands.

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system or transmitted in any form or by any means electronic,
mechanical, photocopying, recording or otherwise, without the prior written
permission of the author.

VRIJE UNIVERSITEIT

Fundamentals of Data Science
A New Outlook

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor of Philosophy aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. J.J.G. Geurts,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de Faculteit der Bètawetenschappen
op maandag 26 juni 2023 om 11.45 uur
in een bijeenkomst van de universiteit,

De Boelelaan 1105

door

Joris Pries

geboren te Houston, Verenigde Staten

promotoren: prof.dr. R.D. van der Mei
prof.dr. S. Bhulai

promotiecommissie: prof.dr. M. Hoogendoorn
dr. E.J. Bekkers
dr. J. Berkhout
prof.dr.ir. G. Jongbloed
prof.dr. F.M. Spieksma

Aan mijn ouders

Door hun zorg werd het pad
voor mijn academische studie
geëffend.

Voor Annemieke en Bas

Voorwoord

Het voorwoord. De openingstitels van mijn proefschrift. Tegenwoordig is
het niet meer gebruikelijk om een film te beginnen met een lange lijst van
acteurs en crewleden, omdat onze aandachtsspanne simpelweg te kort is.
We willen namelijk meteen actie en sensatie. Vandaar dat in nieuwe films
zo’n opsomming vaak te zien is aan het einde van een film. Echter, heb
ik té vaak gezien dat mensen opstonden voordat de aftiteling voorbij was.
Daarom wil ik tóch het geduld van de lezer hier op de proef stellen, omdat
dit proefschrift niet tot stand was gekomen zonder de hulp van anderen. Zij
verdienen de aandacht en waardering.

Allereerst wil ik de schijnwerpers richten op mijn twee promotoren: Rob
van der Mei en Sandjai Bhulai. Vanaf de eerste dag voelde ik mij bij jullie
op mijn gemak. Jullie gaven mij veel vrijheid en spraken vertrouwen uit,
iets dat ik erg waardeerde. Rob, jij kan als geen ander de waarde van
ons onderzoek overbrengen. Sandjai, jij hebt altijd razendsnel door wat
wiskundig het probleem is. Ik wil jullie bedanken voor jullie begeleiding,
humor, en enthousiasme.

Dit proefschrift is voortgekomen uit een gezamenlijk project van het Cen-
trum Wiskunde & Informatica (CWI) en het Ministerie van Binnenlandse
Zaken en Koninkrijksrelaties (MinBZK). Ik wil alle betrokkenen bij MinBZK
bedanken voor hun samenwerking en inzet. Mede hierdoor zal ik deze tijd
nooit vergeten. Dit unieke project kon alleen tot stand komen dankzij

Voorwoord

jullie doorzettingsvermogen, expertise, en overtuiging dat wetenschappelijk
onderzoek doen waardevol is.

Een belangrijk onderdeel van het behalen van het doctoraat is de pro-
motiecommissie, wat te vergelijken valt met een groep filmcritici. Indirect
zorgen zij ervoor dat je het proefschrift zo goed mogelijk wilt maken. Ik
wil hen bedanken voor de tijd en energie die zij hebben gestoken in het
lezen en beoordelen van dit proefschrift. Dit wordt erg gewaardeerd. Ook
ben ik benieuwd naar de discussiepunten die zij zullen opbrengen tijdens de
verdediging.

Twee belangrijke hoofdrolspelers van mijn PhD zijn projectgenoten Jan
Klein en Etienne van de Bijl, waar ik makkelijk een spin-off tv-serie over
zou kunnen schrijven. Zij hebben beiden veel betekend voor mij tijdens
dit traject. Jullie zijn een onuitputbare bron van afleiding, humor, en
gouden ideeën. Een van die ideeën ontstond naar aanleiding van Jan’s
muntje, waardoor we samen mooi onderzoek hebben gedaan. De Engelse
benaming voor een proefschrift ‘dissertation’ komt van een Latijns woord
voor discussie. Iets dat wij veel gedaan hebben de afgelopen vier jaar. Aan
het woord ‘discussie’ zit misschien een negatieve connotatie, maar zo waren
onze discussies niet. We konden het eindeloos hebben over wiskundige, maar
ook totaal niet-wiskundige onderwerpen. Als een groot Wie is de Mol fan
vond ik het heerlijk om met een nog grotere fan (Jan) hierover te sparren.
Etienne kwam ook vaak bij ons de kamer binnenlopen voor een wiskundig
probleem of om gezellig te praten. Ik denk dat juist dit soort ontspanningen,
uiteindelijk mij de ingevingen hebben gegeven voor mijn onderzoek. Ik wil
Jan nog prijzen voor zijn toegankelijkheid en oprechtheid, wat mij overhaalde
om aan dit project te beginnen. Etienne wil ik roemen voor zijn sociale en
organisatorische vaardigheden. Als ‘de man van het volk’ zorgde jij voor sfeer
in de groep door koffiemomenten, feestjes, en groepsuitjes te organiseren. Zo
zou ik nog wel even door kunnen gaan, maar er zijn nog meer mensen die
de aandacht verdienen voordat de lezer afhaakt.

In de loop van de tijd werd de cast van ons project uitgebreid met Arwin
Gansekoele en Britt van Leeuwen. Twee waardevolle toevoegingen, die het
project in de toekomst verder zullen brengen. Britt is organisatorisch sterk,
en Arwin (uit Almere) wist binnen de kortste keren allemaal contacten
te leggen binnen het Ministerie. Ik wil jullie bedanken voor de wekelijkse
meetings en ik kijk uit naar de films die jullie nog zullen maken.

Guus Berkelmans heeft ook een belangrijke rol gespeeld. Je bent wiskundig
ijzersterk en ziet ontzettend snel waar het probleem zit. Meerdere malen

Voorwoord

ben ik jouw kamer in gelopen met een wiskundig probleem of juist een idee,
wat uiteindelijk leidde tot twee hoofdstukken van dit proefschrift. Ik ben
trots op het onderzoek dat wij samen hebben gedaan. Verder was jij als een
echte sociale vlinder bij elke borrel, bijeenkomst, en feestje. Je was er altijd.
Dit vind ik een noemenswaardige goede eigenschap van jou.

Dan zijn er nog een heleboel figuranten, die nog niet zijn genoemd. Zonder
hen, zou de film erg leeg zijn geweest. Daarom wil ik de Stochastics groep
van het CWI (o.l.v. Bert Zwart) en de Analytics & Optimization groep
van de Vrije Universiteit Amsterdam (o.l.v. Ger Koole) bedanken voor alle
tafeltennis-sessies, uitjes, koffiemomenten, lunches en seminars.

Dan rest er nog één belangrijke groep, die essentieel zijn voor het maken
van een film: de crew. Zonder mensen die het decor bouwen, de belichting
regelen, en kostuums ontwerpen, zou het meer hebben geleken op mijn groep
8 musical. Achter de schermen hebben mijn familie, vrienden, en vriendin
hiervoor gezorgd. Zonder de nodige afleiding, ontspanning, en hamburgers,
had ik niet zorgeloos kunnen werken. Hiervoor zal ik ze altijd dankbaar
zijn.

Het was een voorrecht om deze PhD te mogen doen.

Contents

1 Introduction 1

I Fabricating Faces and Labeling Likeness 11

2 Evaluating a Face Generator from a Human Perspective 13
2.1 Introduction . 15
2.2 Datasets . 17
2.3 Methodology . 18
2.4 Analysis . 27
2.5 Discussion and conclusion 35

3 Active Pairwise Distance Learning for Efficient Labeling
of Large Datasets by Human Experts 41
3.1 Introduction . 43
3.2 Active pairwise distance learning 45
3.3 Related research . 47
3.4 Definitions and bounds . 49
3.5 Strategies . 52
3.6 Experimental setup . 59
3.7 Results . 63
3.8 Real world experiment . 69

i

Contents

3.9 Discussion and future research 71
3.10 Summary . 74

II Benchmarking Binary Prediction Models 77

4 The Dutch Draw: Constructing a Universal Baseline for
Binary Prediction Models 79
4.1 Introduction . 81
4.2 Preliminaries . 84
4.3 Dutch Draw . 86
4.4 Dutch Draw in practice . 96
4.5 Discussion and conclusion 97

Appendices 101
4.A Mathematical derivations 101

5 The Optimal Input-Independent Baseline for Binary Clas-
sification: The Dutch Draw 145
5.1 Introduction . 147
5.2 Preliminaries . 148
5.3 Essential conditions . 152
5.4 The Dutch Draw . 156
5.5 Theorem and proof . 158
5.6 Discussion and conclusion 163

III Quantifying the Relationships between Random
Variables 167

6 The Berkelmans-Pries Dependency Function: A Generic
Measure of Dependence between Random Variables 169
6.1 Introduction . 171
6.2 Desired properties of a dependency function 172
6.3 Assessing existing dependency measures 176
6.4 The Berkelmans-Pries dependency function 180
6.5 Properties BP dependency function 184
6.6 Discussion and conclusion 187

Appendices 191
6.A Formulations of UD . 191
6.B Properties UD . 193

ii

Contents

7 The Berkelmans-Pries Feature Importance Method: A
Generic Measure of Informativeness of Features 203
7.1 Introduction . 205
7.2 The Berkelmans-Pries Feature Importance 206
7.3 Properties of BP-FI . 210
7.4 Comparing with existing methods 224
7.5 Discussion and future research 237
7.6 Summary . 243

Appendices 245
7.A Datasets . 245
7.B Tests . 249

Bibliography 253

Summary 275

iii

1

Chapter 1
Introduction

“Okay, Houston, we’ve had a problem many problems here”

1

1

Chapter 1. Introduction

Data is useless without data science. This rapidly developing field aims
to extract knowledge and understanding from any kind of data. It gives
meaning to the bits and bytes in this world. In an age where we have an
abundance of data, techniques from data science have had many success
stories. Understanding what the data tells us is extremely useful for gaining
insights and making predictions. The focus of many data scientists is on
predictive methods for practical applications. Classification and regression
techniques are able to automatically learn from data in order to make
predictions about unseen data. In our research, we examine and improve
underexposed fundamental parts of data science. Furthermore, we swim
against the current, questioning undisputed techniques that are commonly
used, and providing better alternatives. Hence, this dissertation should be
read by any data scientist or analyst.

This dissertation is like a box of chocolates for any mathematician or com-
puter scientist. It consists of six different flavors in the fields of artificial
intelligence, machine learning, statistics, and data analysis. Some flavors are
related, which is why we have partitioned this dissertation into three parts,
each with a unique taste.

The first part of the dissertation is about face generators and active learning.
A face generator is evaluated with a humanlike approach and a pioneering
study is done to improve labeling of pairwise distance datasets that can be
used to advance face recognition and likeness methods.

The second part is about benchmarking binary classification methods, where
we introduce a new baseline approach. This baseline can even be theoretically
derived for most common measures. Furthermore, we prove that it is the
best baseline that does not use any feature values.

The third part consists of two important subjects in data analysis and
statistics. Accurately quantifying how dependent one variable is on another
variable is a fundamental part of many studies. Additionally, determining
how important a feature is for predicting a target variable is crucial for
understanding the data.

Taste is subjective, so some subjects might be more enjoyable to the reader
than others, but every flavor can be tasted individually in the upcoming
six chapters. To help the reader find a preferred taste, we briefly explain
for each chapter what problems are faced and how we contribute to solving
these problems. Nevertheless, we hope that the temptation to eat the entire
box is not resisted, as the reader could discover new tasty flavors.

2

1

Chapter 1. Introduction

Chapter 2: Evaluating a Face Generator from a Human Perspec-
tive

Problem:

The website thispersondoesnotexist.com is truly fascinating, as a new
human face is generated every time the site is refreshed. This face does not
come from someone’s personal photo album. Instead, a model is trained to
create new faces by learning from real images. The quality of these faces is
exciting and scary at the same time. That a model is able to learn how to
generate such realistic images, is in my view truly one of the most impressive
feats of the past years. It is becoming really hard for us humans to distinguish
between a real and a fake face. Whilst reading previous literature about face
generators, one thing became clear: A more humanlike macroscopic approach
could give additional insights into these models. The performance of face
generators is often measured using (intermediate) results of complex models.
However, this does not guarantee that general human attributes (such as age
and gender) are truly learned from the dataset. Do the generated images
have similar human characteristics? The way that a computer ‘sees’ an
image, is not how a human perceives the same picture. A second issue was
raised due to privacy concerns. Are actual ‘new’ faces generated or does a
generated face belong to an individual from the dataset that is used to train
the model? Despite its relevance for practical applications, this has not yet
been investigated in scientific literature.

Contribution:

We introduce a new two-pronged human approach to evaluate face generators,
by predicting human attributes and clustering using face recognition models.
In this research, we focus on the state-of-the-art StyleGAN2, although
our approach can be used to evaluate any face generator. This makes our
approach very general. We show that StyleGAN2 generates images that have
the same attribute distributions as the input dataset. This means that it is
able to learn general human concepts. Furthermore, we find that it generates
faces that often do not belong to persons in the input dataset according to
face recognition models. This is important for practical applications. Finally,
we observe that adding truncation changes the attribute distributions towards
the attributes of the latent variable, which could make it a useful ‘steering
rod’ to generate images with specific characteristics.

3

thispersondoesnotexist.com

1

Chapter 1. Introduction

Chapter 3: Active Pairwise Distance Learning for Efficient Labeling
of Large Datasets by Human Experts

Problem:

In Chapter 2, we use four different facial recognition models to identify if
generated faces belong to existing identities in the training data. Facial
recognition methods are trained using identity datasets, which means that
it is labeled for each image to which identity it belongs. However, this is not
ideal for learning the likeness of two faces, as an identical twin and a total
stranger both do not belong to the same identity, and are therefore dealt
with similarly by these methods. To accurately measure how alike two faces
are, we should ideally make a labeled likeness dataset. However, this is an
extensive task, as labeling all pairwise combinations of faces quickly becomes
infeasible, whereas an identity dataset can be scraped much more easily.
Can the labeling process of a likeness dataset be made more efficient?

Contribution:

To address this issue, we look at a generalization of this problem that we name
Active Pairwise Distance Learning, where the objective is to actively learn
the pairwise distances between all instances. This is a more general problem,
as any distance function could be used (including likeness). Starting with
an unlabeled dataset, each round an expert determines the distance between
one pair of instances. Thus, there is an important choice to make each
round: ‘Which combination of instances is presented to the expert?’ The
objective is to accurately predict all pairwise distances, while minimizing the
workload of the expert. In this research, we establish upper and lower bound
approximations including an update rule. The upper and lower bounds
can be used to select a pair and to predict the final pairwise distance. In
the experiments, we evaluate many domain-independent query strategies.
The observations are therefore general, and the selection strategies are ideal
candidates to function as baseline in future research. We show that using
the criterion max degree consistently ranks among the best strategies. By
using this criterion, the pairwise distances of a new dataset can be labeled
much more efficiently. This chapter is a pioneering contribution to the field
of Active Learning, which opens up a wealth of challenges for follow-up
research.

4

1

Chapter 1. Introduction

Chapter 4: The Dutch Draw: Constructing a Universal Baseline
for Binary Prediction Models

Problem:

A fundamental problem in machine learning is binary classification, where
a model has to predict if an instance should be labeled as zero or one. ‘Is
this a picture of a cat or a dog?’, ‘Is this e-mail normal or spam?’, and
‘Is it going to rain or not?’ are all examples of binary predictions. When
developing a binary prediction model, a baseline method should be used
to provide perspective on the performance of the model. Without a frame
of reference, the performance of a model is essentially meaningless. An
accuracy of 0.9 ‘feels’ high, but could perhaps be easily achieved by a simple
prediction strategy, depending on the dataset. Using a state-of-the-art model
as baseline is a good practice, but can be hard due to parameter selection,
long computational time, and the ‘state-of-the-art’ could change rapidly,
which also make comparisons across different papers difficult.

Contribution:

In this research, we present a universal baseline method for all binary
classification models, named the Dutch Draw (DD). This approach weighs a
specific family of simple classifiers and determines the best classifier to use as
a baseline. We theoretically derive the DD baseline for many commonly used
evaluation measures and show that in most situations it reduces to (almost)
always predicting either zero or one. The DD baseline is useful, as it is
applicable to any binary classification problem, quickly determined without
training or parameter-tuning and insightful conclusions can be drawn from
the comparison. By introducing the DD baseline, we simplify and improve
the evaluation process of any binary classification method.

Chapter 5: The Optimal Input-Independent Baseline for Binary
Classification: The Dutch Draw

Problem:

Comparing to a baseline gives the ability to conclude that a prediction
model is performing better than the baseline. However, by how much? If
the baseline scores 0.4 and the model 0.8, it is not as simple as subtracting
the two scores, as the performance does not have to be linear. This is an
important insight. An increase in performance from 0.8 to 0.9 could be
much harder to achieve than an increase from 0.2 to 0.6. While working on

5

1

Chapter 1. Introduction

the Dutch Draw, we came up with an idea to measure how much better a
performance score is by weighing an oracle and a baseline that does not use
feature values (basically the best guess). An essential part of this approach
is that we establish what the ‘best guess’ actually is. What baseline method
is best suited for this approach?

Contribution:

We examine all binary baseline methods that are independent of feature
values and determine which model is the ‘best’ and why. By identifying which
baseline models are optimal, a crucial selection decision in the evaluation
process is simplified. We prove that the Dutch Draw baseline is the best
input-independent classifier (independent of feature values) for all positional-
invariant measures (independent of sequence order) assuming that the
samples are randomly shuffled. This means that the Dutch Draw baseline is
the optimal baseline under these intuitive requirements and should therefore
be used in practice. This also shows that this baseline is the best option for
our oracle approach, which can be used to provide additional insights into
the performance of binary prediction models.

Chapter 6: The Berkelmans-Pries Dependency Function: A Generic
Measure of Dependence between Random Variables

Problem:

Measuring and quantifying dependencies between random variables (RV’s)
gives critical insights into a dataset. This could reveal important explanatory
relationships. When e.g., a specific disease is highly dependent on some
variable X, it could guide researchers to find out if this can be used to
discover a cure. Additionally, removing uninformative independent features
improves the training of a model. The Pearson correlation coefficient is most
commonly used to quantify dependence between RV’s, even though it is well-
recognized that this measure is essentially a measure for linear dependency
only. Although many attempts have been made to define more generic
dependency measures, there is yet no consensus on a standard, general-
purpose dependency function. Several ideal properties of such a general
function have been proposed, but without much argumentation.

Contribution:

We revise and discuss a list of desired properties for a dependency function.

6

1

Chapter 1. Introduction

Among other things, we identify an important misconception that the
dependency function should be symmetric. Additionally, we introduce a new
dependency function that provably meets all these requirements, whereas
previous dependency functions fail to do so. Our general-purpose dependency
function provides data analysts a powerful means to quantify the level of
dependence between all kinds of variables. Critical insights can be acquired
by using our new dependency function.

Chapter 7: The Berkelmans-Pries Feature Importance Method: A
Generic Measure of Informativeness of Features

Problem:

In Chapter 6, we introduce a function to accurately measure the dependencies
between random variables. However, when predicting a target variable, many
variables could have an influence. Determining how informative each feature
is improves explainability of the dataset. Due to complex interdependencies,
it is unfortunately not as simple as measuring the pairwise dependencies
between features. Feature Importance (FI) methods are specifically designed
to measure the relevance of each feature. These techniques are becoming
more important in recent years due to the need for explainability. For
example, for many applications it is crucial to determine if racist or sexist
biases play a role in the prediction process. FI techniques are becoming
part of the toolbox of every data scientist. Over the years, a plethora of FI
methods have been suggested, without a general consensus on the optimality
of these methods. Even worse, a major problem with evaluating FI methods
is that the ground truth FI is often unknown. This is one of the many reasons
why it is hard to properly interpret the results of an FI method.

Contribution:

We introduce a new global FI approach named the Berkelmans-Pries FI
method, which is a combination of Shapley values and the Berkelmans-Pries
dependency function (as discussed in Chapter 6). We prove that our novel
method has many useful properties, and that it accurately predicts the
correct FI values in cases where the ground truth FI can be derived in an
exact manner. Furthermore, we experimentally show for a large collection
of FI methods that existing methods do not have the same useful properties.
This shows that the Berkelmans-Pries FI method is a really valuable tool
for analyzing datasets with complex interdependencies.

7

1

Chapter 1. Introduction

Publications contained in this dissertation:

• Joris Pries, Sandjai Bhulai, and Rob van der Mei (2022): “Evaluating
a Face Generator from a Human Perspective”. Published in
Machine Learning with Applications. [137]

• Joris Pries, Sandjai Bhulai, and Rob van der Mei (2023): “Active
Pairwise Distance Learning for Efficient Labeling of Large
Datasets by Human Experts”. Accepted for publication in Applied
Intelligence. [136]

• Etienne van de Bijl, Jan Klein, Joris Pries, Sandjai Bhulai, Mark
Hoogendoorn, and Rob van der Mei (2022): “The Dutch Draw: Con-
structing a Universal Baseline for Binary Prediction Models”.
Under revision. [14]

• Joris Pries, Etienne van de Bijl, Jan Klein, Sandjai Bhulai, and
Rob van der Mei (): “The Optimal Input-Independent Baseline
for Binary Classification: The Dutch Draw”. Accepted for
publication in Statistica Neerlandica. [138]

• Guus Berkelmans, Joris Pries, Sandjai Bhulai, and Rob van der Mei
(2023): “The BP Dependency Function: A Generic Measure
of Dependence between Random Variables”. Published in the
Journal of Applied Probability. [13]

• Joris Pries, Guus Berkelmans, Sandjai Bhulai, and Rob van der Mei
(2023): “The Berkelmans-Pries Feature Importance Method:
A Generic Measure of Informativeness of Features”. Submitted
for publication. [135]

Publications not contained in this dissertation:

• Etienne van de Bijl, Jan Klein, Joris Pries, Rob van der Mei, and
Sandjai Bhulai (2022): “Detecting Novel Application Layer Cy-
bervariants using Supervised Learning”. Published in Interna-
tional Journal On Advances in Security. [15]

• Britt van Leeuwen, Arwin Gansekoele, Joris Pries, Etienne van de Bijl,
and Jan Klein (2022): “Explainable Kinship: A Broader View
on the Importance of Facial Features in Kinship Recognition”.
Published in International Journal On Advances in Life Sciences. [102]

8

1

Chapter 1. Introduction

Python implementations:

• The Dutch Draw: [134].

• The Berkelmans-Pries dependency function: [132].

• The Berkelmans-Pries Feature Importance method: [133].

9

Part I
Fabricating Faces and Labeling

Likeness

11

22Chapter 2
Evaluating a Face Generator from a Human

Perspective

Contents

2.1 Introduction . 15

2.2 Datasets . 17

2.3 Methodology . 18

2.4 Analysis . 27

2.5 Discussion and conclusion 35

Based on Joris Pries, Sandjai Bhulai, and Rob van der Mei (2022):
“Evaluating a face generator from a human perspective”.
Published in Machine Learning with Applications. [137]

13

22

Chapter 2. Abstract

Abstract

StyleGAN2 is able to generate very realistic and high-quality
faces of humans using a training set (FFHQ). Instead of using
one of the many commonly used metrics to evaluate the perfor-
mance of a face generator (e.g., FID, IS and P&R), we use a
more humanlike approach providing a different outlook on the
performance of StyleGAN2. The generator within StyleGAN2
tries to learn the distribution of the input dataset. However,
this does not necessarily mean that higher-level human concepts
are preserved. We examine if general human attributes, such
as age and gender, are transferred to the output dataset and if
StyleGAN2 is able to generate actual new persons according to
facial recognition methods. It is crucial for practical implemen-
tations that a face generator not only generates new humans,
but that these humans are not clones of the original identities.
This chapter addresses these questions. Although our approach
can be used for other face generators, we only focused on Style-
GAN2. First, multiple models are used to predict general human
attributes. This shows that the generated images have the same
attribute distributions as the input dataset. However, if trunca-
tion is applied to limit the latent variable space, the attribute
distributions change towards the attributes corresponding with
the latent variable used in truncation. Second, by clustering
using face recognition models, we demonstrate that the gener-
ated images do not belong to an existing person from the input
dataset. Thus, StyleGAN2 is able to generate new persons with
similar human characteristics as the input dataset.

14

22

Chapter 2. 2.1. Introduction

2.1 Introduction

Think of an unknown face. Humans are capable of imagining faces they
have never seen before, combining facial attributes from multiple sources
to create a new identity. Can a machine do the same? By looking at
real images of humans, can it learn how to generate a unique and realistic
face? And if so, are humans still able to distinguish between authentic and
computer-generated faces? These questions are part of a larger quest of
discovering the capabilities and boundaries of machines. Speech, music,
paintings, images, and even videos are among the many things a computer
is now able to generate. The quality of the produced content has increased
rapidly since the introduction of generative adversarial networks (GAN [63]).
Generating realistic faces shows the power, capabilities, and limitations of
these approaches.

In 2019, the successor [84] of the well-known StyleGAN [83] paper was
published. When StyleGAN [83] was released in 2018, it immediately showed
impressive results. At that time, this architecture improved the state-of-the-
art performance considerably by injecting the generator at different stages
with a style-based latent variable. Although humans can still distinguish
between computer-generated and real images, the images look very realistic
at first glance. This is a huge achievement. Especially if one considers that
only since 2017, Karras et al. [82] were able to generate high-resolution
images (1024×1024 pixels). Only small details give away that these images
are not real [185]. The successive paper [84] claims to improve the images
even further, making them even less distinguishable. Their new approach is
called StyleGAN2.

As the name suggests, StyleGAN2 is trained using a generative adversarial
network (GAN) [63]. The basis of this approach is to let two models
compete against each other, making each model better at their specific task.
More specifically, one model tries to generate images that resemble real
faces, whereas the other model tries to distinguish between the real and
the generated images. The generator within StyleGAN2 tries to learn the
distribution of the input images, which is monitored using the metrics FID,
P&R, and PPL. According to these metrics, StyleGAN2 is successful in
learning the input distribution. However, this does not necessarily mean that
higher-level human concepts are preserved. Are the input and generated
images similar from a human perspective?

When a human compares two faces, common measures for evaluating GANs

15

22

Chapter 2. 2.1. Introduction

like FID [70], IS [150] or PPL [83] are not natural, as these measures are
artificially using e.g., a neural network to evaluate the performance. This is
not a human approach, a person would rather compare human characteristics
to evaluate the images. Although it is infeasible to compare a lot of generated
images by hand, a humanlike approach is necessary. Zhou et al. [199] did use
humans to decide whether images generated by StyleGAN were fake or real.
The results showed that StyleGAN was capable of generating faces that were
hard to distinguish by humans from the input images. Our research focuses
on two different aspects: Are human traits transferred from the input to
the output dataset and are the generated images new identities? Lack of
attribute and identity labels tagged by humans for StyleGAN2, leads us
to use existing models that were trained using different humanly labeled
data.

Hence, we take two separate paths to evaluate how well StyleGAN2 performs
from a ‘human’ perspective. First, multiple models are used to predict
general attributes of the images, such as age, gender, and race. In this
way, we can determine if higher-level concepts are preserved. Second, we
examine for multiple face recognition models if the generated images can be
considered to be different persons, compared to the images from the input
dataset.

With this two-pronged approach, we are able to show that the human
attribute distributions are very similar for the input and output dataset,
but the generated images are nonetheless different according to the facial
recognition models. Thus, StyleGAN2 has the best of two worlds. It is able to
copy high-level concepts from the input dataset, whilst still creating different
persons. Furthermore, if truncation (see Section 2.2.1) is used to limit the
latent variable space, the attribute distributions change significantly towards
the attributes corresponding with the latent variable used in truncation. To
our knowledge, this humanly approach to comparing high-level concepts of
facial datasets is new. While we will only use our two-pronged approach for
StyleGAN2, it can also be used to evaluate other face generators.

To summarize, in this chapter we:

• introduce a new two-pronged humanly approach to evaluate face
generators, by predicting human attributes and clustering using face
recognition models;

• show that the state-of-the-art StyleGAN2 generates images that have
the same attribute distributions as the input dataset;

16

22

Chapter 2. 2.2. Datasets

• determine that StyleGAN2 generates faces that often do not belong to
persons in the input dataset according to face recognition models;

• observe that adding truncation to the latent variable space changes
the attribute distributions towards the attributes corresponding with
the latent variable used in truncation.

The remainder of this paper is organized as follows. First, the relevant
datasets are discussed in Section 2.2. Next, in Section 2.3 the methods
are explained that are used to predict facial attributes, embed faces, and
cluster on these embeddings. Furthermore, we also define how a cluster is
evaluated and why clustering is a natural approach. The results are discussed
in Section 2.4. Finally, Section 2.5 summarizes the general findings and
discusses possible future research opportunities.

2.2 Datasets

Karras et al. [84] made three datasets publicly available that are used in this
research: The input dataset (FFHQ), consisting of 70,000 real facial images
(without identity annotation); Two output datasets of StyleGAN2, both
consisting of 100,000 generated images. The only difference in the creation
of these output datasets is the so-called truncation [23, 83, 84] parameter.
All images are high-quality pictures (1024×1024 pixels).

2.2.1 Truncation

To explain how truncation works, it is useful to take a look at the structure
of StyleGAN (see Figure 2.1). Note that there are some differences with
the architecture of StyleGAN2. However, the following core principles still
hold. Some latent variable z ∈ Z from latent space Z goes into a mapping
network f , after it is normalized using pixelwise feature vector normalization
[81]. This results in a different variable w ∈ W such that f(z) = w. W
is the so-called intermediate latent space. Next, the expectation of the
intermediate latent variable is determined by w̄ := Ez∼P (z)[f(z)], where
P (z) is the probability that z is randomly drawn from Z. The authors of
[83] state that w̄ represents “a sort of an average face”.

w̄ is used to truncate the intermediate latent space. Given a w ∈ W,
truncation returns a different intermediate latent variable, denoted w′, such
that w′ = w̄ + ψ · (w − w̄), where ψ ∈ R is called the truncation parameter.
Note that ψ = 1 gives w′ = w, which is the same as not applying truncation
at all. In Figure 2.2, five faces are shown that are generated with w̄ as

17

22

Chapter 2. 2.3. Methodology

intermediate latent variable. This is equivalent to generating images with
ψ = 0. Furthermore, noise is injected in the synthesis network to increase
stochasticity, see Figure 2.1. However, this leads to only minor changes if
the intermediate latent variable is constant. As can be seen in Figure 2.2,
the faces all look very similar.

Figure 2.1: StyleGAN structure: Architecture of the StyleGAN ap-
proach (extracted from [83]). Truncation limits the intermediate latent space
W.

Figure 2.2: Average intermediate latent space: These faces (seeds
0000-0004) are generated using the expected intermediate latent variable w̄.

2.3 Methodology

To compare the input images of a face generator with its output, two separate
paths are taken. First, multiple models are used to predict human attributes.
This allows for a high-level comparison between the different datasets. Are

18

22

Chapter 2. 2.3. Methodology

characteristics, such as age and gender, the same for the input and output
datasets? Secondly, clustering using face recognition models could determine
if the generated faces belong to an existing person from the input dataset.
Do the output datasets consist of different persons, or are they embedded
similarly compared to the input dataset? Combining these two approaches
gives a clear view of the performance of a face generator.

The output of StyleGAN has already been examined to some extent. Karras
et al. [84] evaluated the generated images in order to eliminate artifacts.
For different datasets, FID and PPL was compared between StyleGAN and
StyleGAN2 [83]. Furthermore, efforts have been made to understand and
steer the latent space [159]. By manipulating the latent space, one could
change certain attributes of an image. For example, Shen et al. [159] showed
that it is possible to alter the age, gender, smile, pose, and add or remove
eyeglasses. However, to our knowledge, our humanly approach to comparing
high-level concepts of facial datasets is new. While we will only look at
datasets from StyleGAN2, our two-pronged approach can also be used to
evaluate other face generators. Within our novel approach, existing methods
are used for predicting, embedding and clustering. These methods will all
be discussed in the upcoming sections. A general overview of our proposed
approach can be found in Figure 2.3.

Proposed two-pronged approach

StyleGAN2

Replaceable by
any face generator

FFHQ

Input
dataset

Used for
training

ψ = 0.5

ψ = 1.0

Generated
faces Different

truncation
;

different
output

FFHQ ψ = 0.5

ψ = 1.0

Evaluate perfor-
mance by comparing

Do generated images have similar human attributes?

age · · · gender · · · race

→: Attribute prediction model ·

·

·

·

·

·

·

·

0 50 100

0.00

0.05

0.10

Age (years)

D
en

si
ty Evaluated on:

FFHQ
ψ = 0.5
ψ = 1.0

Group results
by dataset

Do generated faces belong to original identities?

(
x1 · · · x128

)
FaceNet OpenFace

Reduced DeepFace Reduced VGG-Face

Facial embedding used
in face recognition

Cluster using HDBSCAN
& measure purity

Figure 2.3: General concept: A general overview of our proposed two-
pronged approach. Using different truncation parameters, a comparison
is made (with attribute prediction models and facial embedding methods)
between the input and output datasets in order to determine if generated
images have similar human attributes and if they belong to original identities.

19

22

Chapter 2. 2.3. Methodology

2.3.1 Attribute prediction

A face has many characteristics. This leads to a wide variety of attribute
predictions: pose [195], skin color [178], and even attractiveness [190], to
name just a few. We select the following group of features to examine:
age, gender, race, horizontal rotation, and vertical rotation. Note that these
features cover general human concepts, but additional attribution models
can always be added to or removed from this framework. To clarify what we
mean by ‘human concept’, we argue that every identifiable aspect of a face
(or body) that has been given a name can be called a human concept. For
example, the eyebrow is identified by humans as a specific part of the face.
But also, somebody can look young or old. We consider these examples as
‘human concepts’, because we abstract information from a group of pixels
with respect to some convention. In our view, any model that predicts a
general human attribute, trained with humanly labeled data, could give some
insight into the difference between the input and output dataset. Adding
more attribute models does give additional information, but to show how
our approach works, we limit ourselves to the attribute prediction models
that we introduce in the following sections. Note that adding or removing
other attribute prediction models does not affect the results of an individual
attribute model, as each model is assessed separately.

Predicting age, gender, and race

One of the main guiding papers for this research is the Diversity in Faces
paper by Merler et al. [116]. The aim of their research was to create an
annotated dataset in order to improve the accuracy of face recognition and
increase the facial diversity within commonly used datasets. Lack of diversity
could harm the effectiveness of face recognition in practical implementations.
It could even be discriminatory against minorities [25]. Merler et al. [116]
use different models to annotate images from the YFCC-100M dataset [175].
These models predict a plethora of attributes for each face. The same kind
of models, implemented in deepface [153], are used to predict the age, gender,
and race of a person.

However, there is a difference between the implementation of deepface [153]
and the prediction models from [116]. deepface uses the VGG-Face neural
network [126], whereas [116] follows the approach of Rothe et al. [145],
who use the VGG-16 architecture [162]. The VGG-Face network [126] is
specifically trained to recognize faces, whereas the VGG-16 network is trained
with ImageNet [146] by Rothe et al. [145]. ImageNet contains a wide variety
of images, not limited to faces. This is why we decided to follow deepface

20

22

Chapter 2. 2.3. Methodology

and use the VGG-Face network.

For each attribute, a similar procedure is followed. deepface uses a pre-trained
VGG-Face network [126] as the starting point. Only the last few layers are
replaced and retrained to fit the objective. There are some important details
about these models (see [153] for technicalities):

• Counterintuitively, age prediction is not made using regression. Rothe
et al. [145] claim that using classification instead of regression improved
the performance and also stabilized the training process. The output
layer consists of 101 variables, each corresponding to an age in years
(0-100). The last layer has a softmax activation function, which ensures
that the output of the last layer is a probability distribution over the
different output variables. The age is finally predicted by taking the
expectation over these output variables, see Rothe et al. [145].

• Gender prediction is made using two output variables, corresponding
to woman and man.

• For race prediction, a distinction is made between the following races:
Asian, Indian, Black, White, Middle Eastern, and Latino Hispanic.

• deepface uses the haarcascade frontalface default detector from OpenCV
[21] to center, trim, and resize an image. However, it can occur that
the facial detector does not recognize a face. When this happens,
the image is simply omitted from the analysis of the corresponding
attributes.

Serengil and Ozpinar [153] self-reported on the performance of the models.
The mean absolute error of the age model was 4.65 and the accuracy of the
gender model was 97.44% with 96.29% precision and 95.05% recall. However,
the models were not evaluated on the datasets that will be used in this
research, because there exist no annotated labels of these features yet. It is
therefore unclear how well these models perform for the datasets that are
used. Nevertheless, we want to stress the fact that these models are only
used to compare the characteristics of each dataset globally. Even if the
models perform worse (due to domain shift), they can still be insightful for
comparing the datasets.

Predicting horizontal and vertical rotation

To measure the horizontal and vertical rotation, dlib [88] is used. It can
predict the position of 68 general landmarks on a face (see Figure 2.4). These
landmarks can be used to crop an image or measure attributes such as face

21

22

Chapter 2. 2.3. Methodology

and nose width/height. We use the landmarks to estimate the horizontal
and vertical position of a head. It must be noted that these points remain a
prediction. Especially when a head is rotated too much, these predictions
lose accuracy.

Figure 2.4: Dlib landmarks: Dlib predicts the coordinates of these 68
landmarks for each face (extracted from [149]).

There are many ways to estimate the horizontal rotation (yaw) and vertical
rotation (pitch) of a head [22, 45, 195]. However, we are mainly interested in
the differences between the datasets. Therefore, we are not much concerned
about obtaining the best accuracy for each individual image. Thus, we
use a simple concept to estimate the horizontal and vertical rotation, see
Figures 2.5 and 2.6.

Let xi, yi denote the horizontal and vertical position of landmark i, respec-
tively. Observe that when a head rotates sideways, the horizontal distance
between the tip of the nose and the corner of the eyes changes. To scale this
measure properly, this distance is compared with the horizontal distance
between both lateral eye corners. Thus, the fraction

|xright lateral eye corner − xnose tip|
|xright lateral eye corner − xleft lateral eye corner|

(2.1)

is measured to approximate horizontal rotation (see Figure 2.5). When a
head is straight, the tip of the nose is assumed to be in the middle. But,
when it rotates to a side, the fraction becomes smaller or larger, depending
on the side it is rotating towards. Note that this fraction could be used to
approximate the horizontal rotation in degrees using known facial rotations.

22

22

Chapter 2. 2.3. Methodology

However, varying nose shapes and facial asymmetries could influence the
results.

Figure 2.5: Horizontal rotation: Horizontal rotation is measured by
dividing the red bar by the yellow bar (see Equation (2.1)). The positions
of the blue dots are predicted by dlib.

Using a similar key insight, vertical rotation can be measured by comparing
the vertical distance between the nose root and nose tip and the vertical
distance between the nose root and the chin. Thus, the fraction

|ynose root − ynose tip|
|ynose root − ychin|

(2.2)

is measured to approximate the vertical rotation, see Figure 2.6. Note that
this measure is more subjective to personal traits, as nose lengths can vary.
Although this may raise issues for an individual image, we believe that this
method is sufficient for comparing the datasets generally, as individual errors
will not have a large impact on the general comparison.

2.3.2 Facial embedding with face recognition models

Are new individuals created or are the generated images too similar to
individuals from the input dataset? To compare the images from a human
perspective, some kind of facial embedding is necessary. It is imperative
that the dimensionality of each image is reduced. Every image consists of
1024×1024 pixels and each pixel consists of three color values (RGB). Given
the size of these datasets, it is unfeasible to compare the pixels for each
pair of images. Furthermore, a human does not compare two images pixel
by pixel. Instead, one matches facial features such as eyes, nose, hair, and
mouth to evaluate if these two images belong to the same person. This is

23

22

Chapter 2. 2.3. Methodology

Figure 2.6: Vertical rotation: Vertical rotation is measured by dividing
the red bar by the yellow bar (see Equation (2.2)). The positions of the blue
dots are predicted by dlib.

why we decide to use face recognition models, where a face is first embedded
to a point in a latent space, such that distances can be measured between
faces. If two points are close, they are assumed to be similar. In this way,
we can determine if new individuals are created. The four facial embedding
methods used for facial recognition are outlined below.

FaceNet [152] is well suited for our objective. It is a deep convolutional
network that converts an image (160x160 pixels) to a 128-dimensional
vector that lies on the 128-dimensional hypersphere. To find an appropriate
embedding, FaceNet uses a triplet loss function.

OpenFace [7] follows the same concept as FaceNet [152]. It is, however,
open-source and focuses on real-time face recognition. It converts an image
(96×96 pixels) to a 128-dimensional vector that lies on the 128-dimensional
hypersphere.

DeepFace [173] uses 3D face modeling and a large deep neural network to
recognize faces. It converts an image (152×152 pixels) to a 4096-dimensional
vector, which is then used to identify individuals using a classification layer.
Taigman et al. [173] call this vector the “raw face representation feature
vector”. VGG-Face [126] uses the well-known VGG-16 architecture [162]
to specifically train for facial recognition. It converts an image (224×224
pixels) to a 2622-dimensional vector. This model also uses the specific loss
function from FaceNet [152] to train the model for facial recognition.

24

22

Chapter 2. 2.3. Methodology

Dimensionality reduction

The output vector of DeepFace [173] and VGG-Face [126] is too large to
properly cluster on. Therefore, the dimensionality is reduced with singular
value decomposition (SVD) from a 4096- and 2622-dimensional vector to a
128-dimensional vector. Thus enforcing the same dimensions of the output
vector for each embedding method. This dimensionality reduction could
weaken the accuracy of these models, as some information is lost. However, if
there is still a clear distinction between the datasets in this lower dimension,
there must be a similar or larger, difference in the higher dimension. We call
these models Reduced DeepFace and Reduced VGG-Face from now on.

2.3.3 Clustering

Once the faces are embedded using face recognition models, images can be
compared. There are many options, however we will show why clustering
is the most natural approach in our view. In the end, we want to answer
the question if actual new persons are generated. The face recognition
methods enable us to measure the distance between each pair of images.
If the distance between images A and B is below a defined threshold, the
images are considered to be of the same identical person. However, if the
distance between images B and C is also below the threshold, images A, B
and C all belong to the same person and form a cluster. Thus, a clustering
approach naturally arises by this logic. Each cluster of images represents a
single person, according to the face recognition methods.

To investigate if the output dataset contains the same identities as the input
dataset, two combinations are made:

• FFHQ ∪ (ψ = 1): The input dataset combined with the generated
images without truncation;

• FFHQ ∪ (ψ = 0.5): The input dataset combined with the generated
images with truncation.

The clustering is done on the embeddings of these two combinations. Due
to the size of the datasets (170,000 images in total), a clustering method
with few parameters is preferred. Furthermore, there is no or little domain
knowledge of proper parameter values, making most clustering methods too
computationally expensive, as a range of values for the parameters needs to
be evaluated.

This leads to the decision to use HDBSCAN [27]. The idea behind this
algorithm is that instances A and B are neighbors if the distance between

25

22

Chapter 2. 2.3. Methodology

them is less than or equal to ϵ and two instances A and B are in the same
cluster if there exists a sequence of instances from A to B such that each
successive instance is a neighbor of the previous. HDBSCAN allows ϵ to
be altered post-completion. In this research, we use the implementation
of [115] with the Euclidean distance function. Although HDBSCAN has
computational complexity O(n2) [27] with n the number of samples, McInnes
et al. [114] show that HDBSCAN performs reasonably fast for large datasets.
Furthermore, it returns a hierarchical clustering. This is useful to determine
different statistics post-completion. If instead the very similar DBSCAN [50]
is used, some information about the parameter ϵ is necessary. ϵ determines
the neighborhood of each point. The relevant range for ϵ varies greatly for
different embeddings. Without large computational costs, it is possible to
determine the results for different values of ϵ using the hierarchical cluster,
after running HDBSCAN.

HDBSCAN has a single primary input parameter mpts [27]. This parameter
determines if a group of samples is large enough to be considered an actual
cluster. If two images are embedded closely together, they should be able to
form a cluster, as they can belong to the same person. Thus, mpts = 2 is
a natural choice, as it allows all cluster sizes except a cluster containing a
single image.

Cluster evaluation

The goal of clustering is to investigate if the input and output datasets
consist of different individuals. Therefore, purity [112] is used to measure
the intertwinedness of the clustering, as this metric evaluates if subclusters
consist of purely real or generated images. Purity is measured by counting
the samples of the most frequent class in each cluster and dividing by the
total number of samples. More formally, let clustering C of N samples
consist of subclusters Ci for i ∈ {1, . . . ,K}, for some K ∈ N>0. Each sample
j comes from a corresponding dataset labeled lj . For each subcluster Ci, let
di denote the label of the dataset that occurs most frequently, then:

Purity(C) =
1

N
·

K∑
i=1

∑
j∈Ci

1lj=di . (2.3)

If Purity(C) = 1, it means that every subcluster only contains samples of one
class. If there are only two classes, a lower bound of purity is Purity(C) = 0.5,
as in the worst case every subcluster is split 50/50 between the classes.

26

22

Chapter 2. 2.4. Analysis

Baseline purity Note that the upper and lower bound, previously given,
cannot always be achieved. This is dependent on the distribution of the labels
and the structure of a clustering. For example, if there is only one cluster
and the labels are divided 80/20, the purity score will be 0.8. Therefore, a
better baseline is necessary to evaluate how good/bad a purity score of a
clustering is.

Assume that the input and output dataset are sampled from the same
distribution. Then there is no way of telling which image is drawn from
which dataset. For each parameter combination, HDBSCAN returns a cluster
with a certain structure. Each cluster consists of a number of subclusters
all with a corresponding size. If there would be no difference between the
two datasets, it would correspond with randomly assigning each sample
to a position in the cluster. As we have seen before, the structure of the
cluster is important for the purity score. Therefore, we approximate the
expected purity score of a randomly assigned cluster with the same structure
as provided by HDBSCAN. Under the hypothesis that there is no difference
between the datasets, we get an average purity score that is ultimately used
to compare the results. If the results are close to this baseline, it means
that the datasets are very similar. On the other hand, if there is a clear
distinction between the baseline and the results, it would mean that the
datasets are not alike.

2.4 Analysis

The images from the datasets are analyzed in two ways. First, models
are used to predict certain attributes of each face (e.g., gender and age).
This will determine the distribution of these features, which can be used
to compare the datasets globally. Second, multiple embedding methods
are used in combination with a clustering method. By looking inside each
subcluster and evaluating the purity score (see Section 2.3.3), a comparison
between the datasets can be made. The results of both approaches are
discussed below.

2.4.1 Results attributes

For each image in every dataset, models were used to predict the following
attributes: age, gender, race, horizontal rotation, and vertical rotation. The
results are grouped together per dataset. This gives a global overview of
these attributes for each dataset. In particular, we are interested in the
similarity of the distributions. If these distributions are different, it would

27

22

Chapter 2. 2.4. Analysis

suggest that the underlying datasets are in fact different.

Results age

Without truncation (ψ = 1), the age distribution of the generated images
is almost identical to the input dataset (FFHQ), see Figure 2.7. Even the
small peak around 40 years is similar for these two datasets. If truncation
is added (ψ = 0.5), it can be observed that the distribution shifts more
towards the younger age groups.

0 20 40 60 80 100

0.00

0.05

0.10

Age (years)

D
en

si
ty

Evaluated on:
FFHQ
ψ = 0.5
ψ = 1.0

Figure 2.7: Age distribution: Age distribution averaged per dataset.

Results gender

The model returns for both classes (woman and man) a probability value.
The dominant gender is the gender with the highest probability of the
two. Note that without truncation (ψ = 1), the distribution is almost
the same as the input dataset (FFHQ), see Figure 2.8. Whereas with
truncation (ψ = 0.5), relatively more females are generated compared to the
input.

Results race

Table 2.1 shows the average probability mass for each race. Table 2.2 shows
the distribution of the dominant race. This is the class that obtained the
maximum probability given by the model. Without truncation (ψ = 1),
the distribution is very similar to the input dataset (FFHQ). However, if
truncation is added (ψ = 0.5), white is predicted more often.

28

22

Chapter 2. 2.4. Analysis

0.0

0.2

0.4

0.6

0.8

Woman

0.40

Woman

0.51

Woman

0.42

Man

0.60

Man

0.49

Man

0.58

Gender

P
ro

b
ab

il
it
y

FFHQ ψ = 0.5 ψ = 1.0

Figure 2.8: Dominant gender: Probability averaged per dataset that
man or woman gets the highest prediction probability.

Table 2.1: Average probability: Race distribution averaged per dataset.

Race

Dataset Asian Indian Black White Middle
Eastern

Latino
Hispanic

FFHQ 0.1826 0.0425 0.0549 0.4889 0.0965 0.1346
ψ = 0.5 0.0921 0.0198 0.0118 0.6879 0.0805 0.1079
ψ = 1 0.1883 0.0366 0.0579 0.4900 0.0933 0.1339

Table 2.2: Dominant race probability: Probability averaged per dataset
that a race class gets the highest prediction probability.

Race

Dataset Asian Indian Black White Middle
Eastern

Latino
Hispanic

FFHQ 0.1961 0.0183 0.0509 0.5775 0.0513 0.1058
ψ = 0.5 0.1031 0.0034 0.0084 0.7769 0.0346 0.0735
ψ = 1 0.2066 0.0100 0.0552 0.5719 0.0501 0.1062

29

22

Chapter 2. 2.4. Analysis

Results horizontal rotation

As explained by Figure 2.5, the horizontal rotation is measured using the
predicted landmarks of dlib (see Equation (2.1)). In Figure 2.9, it can be
observed that without truncation (ψ = 1), the distribution is nearly identical.
When truncation is added, the distribution narrows to 0.5, which means that
more straight faces are generated or the faces are more symmetric.

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.00

2.00

4.00

6.00

Horizontal rotation

D
en

si
ty

Evaluated on:
FFHQ
ψ = 0.5
ψ = 1.0

Figure 2.9: Horizontal rotation: Horizontal rotation averaged per
dataset, predicted using the landmarks of dlib (see Figure 2.5).

Results vertical rotation

As explained by Figure 2.6, the vertical rotation is measured using the
predicted landmarks of dlib (see Equation (2.2)). Again, the distribution
without truncation (ψ = 1) is identical to the distribution of the input
dataset FFHQ (see Figure 2.10). If truncation is added (ψ = 0.5), the
distribution shifts to the right. There are two possible explanations. First, it
could mean that the generated images are rotated more downwards. Second,
it is possible that the generated images have a longer nose. In Figure 2.11,
the distributions of the nose length can be found. There is a significant shift
when truncation is added (ψ = 0.5). Thus, it can be concluded that the
nose lengths are on average larger for ψ = 0.5.

Failed detections deepface

The models that predict the age, gender, and race were trained using a
specific face detector. When the detector finds a face, it automatically trims
and resizes the image. However, this detector sometimes fails to detect a
face. In this case, the image is simply omitted from the attribute analysis.
Figure 2.12 shows how often the detector is successful. Note that with
truncation (ψ = 0.5) this failure probability decreases drastically. The

30

22

Chapter 2. 2.4. Analysis

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.00

5.00

10.00

15.00

Vertical rotation

D
en

si
ty

Evaluated on:
FFHQ
ψ = 0.5
ψ = 1.0

Figure 2.10: Vertical rotation: Vertical rotation averaged per dataset,
predicted using the landmarks of dlib (see Figure 2.6).

0 50 100 150 200

0.00

1.00

2.00

3.00

·10−2

Nose length (pixels)

D
en

si
ty

Evaluated on:
FFHQ
ψ = 0.5
ψ = 1.0

Figure 2.11: Nose length: Nose length averaged per dataset, estimated
by measuring the distance between the nose root and nose tip.

31

22

Chapter 2. 2.4. Analysis

results for FFHQ and no truncation (ψ = 1) are similar and relatively high.
A failure rate of around 10 percent is rather substantial.

0.0

0.2

0.4

0.6

0.8

1.0

Successful

0.88

Successful

0.9982

Successful

0.90

Error

0.12

Error

0.0018

Error

0.10

Outcome

P
ro

b
ab

il
it
y

FFHQ ψ = 0.5 ψ = 1.0

Figure 2.12: Failure rate deepface detector: Probability averaged per
dataset that the haarcascade detector [21] (used in deepface) fails to detect
a face.

In Figures 2.13a to 2.13c, the first images of each dataset are shown where
the deepface detector fails. Only for ψ = 0.5, it is not really clear why these
images fail. However, we suspect that the following factors contribute to the
general failure of the detector:

• eyewear;

• headwear;

• rotated heads;

• multiple persons;

• young age;

• obstructed eyes;

• structural errors (deformation, glitches, missing parts, etc.).

Note that these are only visual observations and should be investigated
further.

Failed detections dlib

Dlib uses another face detector. The failure rate of this detector is also
measured. As can be seen in Figure 2.15, the failure probability is much

32

22

Chapter 2. 2.4. Analysis

(a) FFHQ (b) ψ = 0.5 (c) ψ = 1.0

Figure 2.13: deepface detector failures: The first images per dataset,
where the deepface detector does not detect a face.

lower compared to Figure 2.12. It is notable that if truncation is added
(ψ = 0.5), the failure probability is even zero. However, the differences
between the probabilities are so small that it is hard to draw any meaningful
conclusions for the different datasets. The failure rate is very small for each
dataset.

In Figures 2.14a and 2.14b, the first images of each dataset are shown, where
the dlib detector fails. Note that for ψ = 0.5, there are no failures. The same
elements we observed in the failures of the deepface detector are prevalent
in the dlib detector failures. However, the dlib detector seems to be more
robust compared to the deepface detector.

2.4.2 Results clustering

In Section 2.3.3, it is discussed why clustering is a natural approach to
determine if the newly generated images belong to an existing person. The
clustering results can be seen in Figure 2.16. Note that different parameter
values of ϵ are relevant for each embedding method. This makes HDBSCAN
[27] very useful, as the parameter value of ϵ can be changed post-computation.
Given the parameters, HDBSCAN returns a cluster. Two measures are of our
interest. First, the number of subclusters within each cluster. This indicates
how many unique persons exist in the data according to the embedding
methods. Second, the purity of a cluster is measured (see Section 2.3.3).
We cluster on the combination of the input dataset (FFHQ) and the output

33

22

Chapter 2. 2.4. Analysis

(a) FFHQ (b) ψ = 1

Figure 2.14: Dlib detector failures: The first images per dataset, where
the dlib detector does not detect a face. ψ = 0.5 resulted in no detection
failures.

0.0

0.2

0.4

0.6

0.8

1.0

Successful

0.9965

Successful

1.00

Successful

0.986

Error

0.0035

Error

0.00

Error

0.014

Outcome

P
ro

b
ab

il
it
y

FFHQ ψ = 0.5 ψ = 1.0

Figure 2.15: Failure rate dlib detector: Probability averaged per
dataset that the frontal face detector (used in dlib) fails to detect a face.

34

22

Chapter 2. 2.5. Discussion and conclusion

dataset with either no truncation (ψ = 1) or with truncation (ψ = 0.5). In
this way, the output dataset can be compared with the input dataset.

For each facial embedding the maximum number of subclusters (Table 2.3)
is determined with mpts = 2 (see Section 2.3.3).

Table 2.3: Maximum subclusters: For each dataset combination and
facial embedding method, the maximum number of subclusters is determined
with mpts = 2.

Dataset combination
Facial embedding FFHQ ∪ (ψ = 1) FFHQ ∪ (ψ = 0.5)

FaceNet 5170 5592
OpenFace 2835 3598
Reduced DeepFace 2885 3153
Reduced VGG-Face 2865 2246

Purity results

The purity results for mpts = 2 are shown in Figure 2.16. The relevant range
for ϵ is chosen based on the number of clusters. Two main conclusions can
be drawn from these graphs. First of all, 7 out of 8 clusterings show a clear
distinction between the baseline and the actual purity score. Only OpenFace
without truncation (ψ = 1) shows no obvious separation. Therefore, it can
be concluded that there is a definite difference between the input and the
output datasets. Thus, the generated images belong to different persons
compared to the input dataset, according to the facial recognition methods.
Second, the gap between the baseline and the actual purity score is much
larger with truncation (ψ = 0.5) than without truncation (ψ = 1.0). Thus,
truncation makes it more likely that a cluster is predominantly real or
generated.

2.5 Discussion and conclusion

We presented a general two-pronged approach that tries to humanly compare
the input and output datasets for a given face generator. However, we
explicitly applied this approach to the state-of-the-art generator StyleGAN2
[84]. We started by comparing the input dataset (FFHQ) and the output
datasets based on their attributes. Multiple models were used to predict

35

22

Chapter 2. 2.5. Discussion and conclusion

0 5 10

0.6

0.8

1

P
ur

it
y/

B
as

el
in

e
pu

ri
ty FaceNet

0 5 10

0.6

0.8

1

FaceNet

0 0.2 0.4 0.6

0.6

0.8

1

P
ur

it
y/

B
as

el
in

e
pu

ri
ty OpenFace

0 0.2 0.4 0.6

0.6

0.8

1

OpenFace

0 20 40 60

0.6

0.8

1

P
ur

it
y/

B
as

el
in

e
pu

ri
ty Reduced DeepFace

0 20 40 60

0.6

0.8

1

Reduced DeepFace

0 0.2 0.4 0.6

0.6

0.8

1

Epsilon

P
ur

it
y/

B
as

el
in

e
pu

ri
ty Reduced VGG-Face

0 0.2 0.4 0.6

0.6

0.8

1

Epsilon

Reduced VGG-Face

0

2,000

4,000

6,000
(1)

(2)

(3)
0

2,000

4,000
(1)

(2)

(3)

N
um

be
r

of
su

bc
lu

st
er

s

0

1,000

2,000

3,000
(1)

(2)

(3)
0

1,000

2,000

3,000

(1)

(2)

(3)

N
um

be
r

of
su

bc
lu

st
er

s

0

1,000

2,000

3,000
(1)(2)

(3)

0

1,000

2,000

3,000

(1) (2)

(3)

N
um

be
r

of
su

bc
lu

st
er

s

0

1,000

2,000
(1)

(2)

(3)
0

1,000

2,000

3,000
(1)(2)

(3)

N
um

be
r

of
su

bc
lu

st
er

s

FFHQ ∪ (ψ = 1.0) FFHQ ∪ (ψ = 0.5)

Figure 2.16: Clustering purity: Using HDBSCAN with mpts = 2, ϵ
determines which clustering is made. The gold line (1) denotes the num-
ber of subclusters of each cluster. The light blue line (2) is the purity
score (see Section 2.3.3). The dark blue line (3) shows the approximated
purity score under the hypothesis that the two datasets are similarly dis-
tributed using 100 simulations (see Section 2.3.3). The left side is the
combination FFHQ ∪ (ψ = 1), whereas the right side is the combination
FFHQ ∪ (ψ = 0.5).

36

22

Chapter 2. 2.5. Discussion and conclusion

attributes (age, gender, race, horizontal, and vertical rotation) for each image.
The results were very clear. The attribute distributions were the same for
the input dataset and the generated images without truncation (ψ = 1).
However, when truncation is added (ψ = 0.5), the attribute distributions shift
significantly towards the attributes corresponding with the latent variable
used in truncation. Although there exist many evaluation measures for
GANs [18], the three most commonly used measures are: Fréchet Inception
Distance (FID), Inception Score (IS), and Precision and Recall (P&R) [19,
161]. FID measures the difference between the input and output images
by embedding them into the feature space of an Inception Net (trained on
ImageNet) [18]. IS also uses the Inception Net to measure the diversity of
the generated images compared to the mean. P&R quantifies how similar the
generated images are to the input dataset and how well the entire training
dataset is covered. Additionally, StyleGAN2 [84] evaluates the perceptual
path length, (PPL) which measures the difference between the VGG-16
embedding [162] of two consecutive images, where a path in the latent space
is subdivided into linear segments [83]. These measures have been used to
evaluate the performance of StyleGAN2 [84]. Thus, the observation that
StyleGAN2 is able to learn the input dataset is not new. It is known that
GANs are able to learn the input distribution, although training sometimes
appears successful, whilst the target distribution is actually far from the
trained distribution [9]. However, it has not previously been shown that
higher-level human concepts are also preserved. It could be that somehow
these measures indirectly assess these human concepts, although this has
not yet been show. We give a direct approach and demonstrates that such
human concepts are indeed preserved, which further strengthens the work
of Karras et al. [84].

In addition, four facial embedding models (FaceNet, OpenFace, Reduced
DeepFace, and Reduced VGG-Face) were used to embed the images. This
allowed us to cluster each combination of input and output dataset. By
determining the purity score, which measures how intertwined each subcluster
is, we were able to show that the generated images are not grouped together
with the input dataset. This means that StyleGAN2 is able to generate
new persons that do not exist in the input dataset, according to the facial
embeddings. Recently, Khodadadeh et al. [85] had a similar idea of using
a face recognition method in combination with StyleGAN2. They used
FaceNet in a loss function to generate faces with StyleGAN2 that belong
to the same identity. Furthermore, they used 35 attribute methods to steer
the latent space in order to generate faces with modified attributes, which is
different compared to our research. The insight that StyleGAN2 is capable

37

22

Chapter 2. 2.5. Discussion and conclusion

of generating new identities is novel and one of the contributions of our
research.

Summarizing, by using a two-pronged humanly approach, consisting of
predicting human attributes (Section 2.3.1) and clustering using face recog-
nition models (Sections 2.3.2 and 2.3.3), the following conclusions can be
drawn:

• The images generated by StyleGAN2 (without truncation) have the
same attribute distributions as the input dataset, according to the
prediction models.

• The generated faces belong with high probability to different persons
compared to the input dataset, according to the clustering using face
recognition models.

• Adding truncation to the latent variable space changes the attribute
distributions towards the attributes corresponding with the latent
variable used in truncation, according to the prediction models.

Generalizing, our approach can also be used for other face generators. It
is not specifically tailored for StyleGAN2. Furthermore, our approach is
modular in the sense that different attribute prediction and facial embedding
methods can be added or removed. It should therefore be used in conjunction
with other evaluation measures such as FID and PPL to give a broader
perspective of the performance of a face generator. It addresses different
questions and concerns compared to previous measures. When our approach,
for example, shows that the generated images belong to identities in the
input dataset, adaptations could be made if this effect is undesirable due to
privacy issues.

2.5.1 Future work

Finally, we address a number of topics for future research. Section 2.4
provides multiple insights that should be explored further. First, note that
the maximum number of subclusters is relatively small (see Table 2.3). Not
more than 5,592 subclusters are formed maximally for a dataset consisting
of 170,000 images. A lot of images are considered to be anomalies, which
means that there is no face that closely resembles theirs. It could be that
either the dataset is too small, due to the wide variety of possible faces, or
the embedding methods are too specific.

Second, truncation ensures that the latent variables lie closer to the expected
intermediate latent variable w̄ (see Section 2.2.1). In the results, the

38

22

Chapter 2. 2.5. Discussion and conclusion

attributes were very similar for the input dataset and the output dataset
without truncation (ψ = 1). However, when truncation is added (ψ = 0.5),
there was a shift in the attribute distributions. Our hypothesis is that this
shift stems from the attribute values of the images generated with w̄ as
intermediate latent variable (see Figure 2.2). Taking the average of the
predicted attribute values for the first 1000 images, generated with w̄, leads
to Table 2.4.

Table 2.4: Attribute predictions w̄: Average predicted attribute values
for 1000 images (seeds 0000-0999) generated with the expected intermediate
latent variable w̄.

Age
(years)

Gender
(prob.)

Race
(prob.) Horizontal rotation Vertical rotation Failed deepface

(prob.)
Failed dlib

(prob.)

23.7

Woman
0.649

Man
0.351

Asian
0.0009

Black
0.0002

Middle
Eastern
0.0006

Indian
0.0002

White
0.9975

Latino
Hispanic

0.0005

0.504 0.345 0 0

Table 2.5: Attribute predictions (ψ = 1): Averaged attribute values of
the output dataset without truncation.

Age
(years)

Gender
(prob.)

Race
(prob.) Horizontal rotation Vertical rotation Failed deepface

(prob.)
Failed dlib

(prob.)

31.6

Woman
0.4158

Man
0.5842

Asian
0.2066

Black
0.0552

Middle
Eastern
0.0501

Indian
0.0100

White
0.5719

Latino
Hispanic

0.1062

0.497 0.306 0.1 0.014

When we examine the differences in the attribute distributions between
truncation (ψ = 0.5) and no truncation (ψ = 1), and compare these with
the difference between Tables 2.4 and 2.5, we see that they coincide. Thus,
we hypothesize that adding truncation focuses the attribute distributions
towards the attribute values belonging to the faces generated with the
expected intermediate latent variable w̄. Karras et al. [84] regulate the
generator to smoothen the perceptual path length of generated images under
small perturbations in the latent space. This could be a reason why the
human attributes are also similar under small perturbations. The hypothesis
can be tested by replacing w̄ in the truncation procedure by a different
intermediate latent variable and investigating the attribute distributions of
the newly generated images. If the hypothesis holds, this method can also
be used to generate images with the desired attributes. Future research is

39

22

Chapter 2. 2.5. Discussion and conclusion

needed to explore how w̄ and the truncation variable influences the attribute
distributions. The attribution methods that were used are all trained
on alternate datasets. It is unclear how well their performance transfers
to the data that is used in this research. Nevertheless, it still provides
the insight that the input and output distributions were similar. Still, it
remains interesting to evaluate how well the models can transfer their learned
knowledge to this dataset. Additionally, the goal of our approach was to
evaluate the generator in a more humanlike way. We decided to use methods
that were trained using humanly labeled data, as it was unfeasible for us to
label this dataset ourselves. However, it remains uncertain how ‘humanlike’
these methods are. Are they actually predicting correct attribute labels for
our datasets? Although this questions is beyond our scope, it is interesting
to evaluate if these models are good at replacing human experts. Lastly, the
facial recognition methods are trained using datasets of real images. The
results showed that the generated images are embedded differently than
the input images. If the facial embedding methods are also trained using
generated faces, a better comparison could possibly be made.

40

333

Chapter 3
Active Pairwise Distance Learning for Efficient
Labeling of Large Datasets by Human Experts

Contents

3.1 Introduction . 43

3.2 Active pairwise distance learning 45

3.3 Related research . 47

3.4 Definitions and bounds . 49

3.5 Strategies . 52

3.6 Experimental setup . 59

3.7 Results . 63

3.8 Real world experiment . 69

3.9 Discussion and future research 71

3.10 Summary . 74

Based on Joris Pries, Sandjai Bhulai, and Rob van der Mei (2023):
“Active pairwise distance learning for efficient labeling of
large datasets by human experts”. Accepted for publication in
Applied Intelligence. [136]

41

333

Chapter 3. Abstract

Abstract

In many machine learning applications, the labeling of datasets
is done by human experts, which is usually time-consuming
in cases of large data sets. This raises the need for methods
to make optimal use of the human expert by selecting model
instances for which the expert opinion is of most added value.
This chapter introduces the problem of active pairwise distance
learning (APDL), where the goal is to actively learn the pairwise
distances between all instances. Any distance function can be
used, which means that APDL techniques can e.g., be used to
determine likeness between faces or similarities between users for
recommender systems. Starting with an unlabeled dataset, each
round an expert determines the distance between one pair of
instances. Thus, there is an important choice to make each round:
‘Which combination of instances is presented to the expert?’
The objective is to accurately predict all pairwise distances,
while minimizing the usage of the expert. In this research,
we establish upper and lower bound approximations (including
an update rule) for the pairwise distances and evaluate many
domain-independent query strategies. The observations from the
experiments are therefore general, and the selection strategies
are ideal candidates to function as baseline in future research.
We show that using the criterion max degree consistently ranks
amongst the best strategies. By using this criterion, the pairwise
distances of a new dataset can be labeled much more efficiently.

42

333

Chapter 3. 3.1. Introduction

3.1 Introduction

A dataset plays a critical part when solving a practical problem using
machine learning (ML). Often, the goal is to predict some target variable
using measured features of other variables. When gathering the data, it
would be ideal if the target variable could be measured. For example,
consider the task of forecasting the outside temperature using multiple other
measurements, such as atmospheric pressure, wind speed and humidity. In
this case, the label (temperature) can be determined efficiently. In other
cases, the labels are not as easily acquired. For example, to predict if a face
is visible in a photograph requires human expertise at some point to label a
dataset. In such cases, human involvement is sometimes necessary, especially
when a model is trained to replicate human knowledge or skills.

Labeling using a human expert is a time-consuming and costly undertaking.
Therefore, efforts should be focused on maximizing the usefulness of the
expert when it is too expensive to label everything. Typical questions are:
‘How should the expert be deployed?’ and ‘Which samples should be labeled?’
These questions are all part of the research field called active learning (AL)
[155]. It is a subfield of ML dedicated to achieving the best prediction
performance with as few labels as possible. To this end, a human expert
can be queried about an instance each round. The expert then determines
a label for this instance, which in turn can be used to update a prediction
model and determine the next query. This cycle continues for a fixed number
of rounds or until some other stopping criterion is met [26, 76, 181].

AL is useful in situations where simply labeling all data instances is too
expensive. For example, suppose we want to label a dataset with many facial
images and we are interested in learning the similarity/likeness between each
combination of faces. If there are M ∈ N>0 faces, then there are already(
M
2

)
=M ·(M−1)/2 pairwise combinations. To label all pairwise similarities

of 1,000 faces would thus already require 499,500 comparisons. For large
datasets, this quickly becomes too costly to label (either time or money
wise), which is why AL techniques have been developed.

A critical aspect in AL is the selection algorithm (the so-called query function)
that determines which samples should be given to the expert. The selection
algorithm can be either pre-trained using other datasets (transfer learning
[62, 201]), or it can be adjusted on-the-fly. AL techniques (almost always)
use feature values to improve the query function, which is commonly some
supervised learning method (e.g., a neural network). Yoo et al. [192] attached

43

333

Chapter 3. 3.1. Introduction

a module to a target network to predict the target losses for unlabeled data.
Klein et al. [90] measured anomaly scores of feature values as guidance
for the query function. Another common selection criterion is some kind
of uncertainty sampling [5], whereby a prediction model is trained using
the labeled data, and applied on the feature values of the unlabeled data.
Uncertain predictions are then queried to the expert.

In this chapter, we investigate an unexplored area within AL, that we call
active pairwise distance learning (APDL). The objective in APDL is to
actively learn the pairwise distances between all instances. Any distance
function can be used, which means that APDL techniques can e.g., be
used to determine likeness between faces or similarities between users for
recommender systems. Furthermore, APDL methods can also be used in
kinship recognition, deep fake detection, anomaly detection, dissimilarity
sampling, and (pairwise) clustering. Studying APDL is therefore valuable
for many research areas. It is important to emphasize that, we will not make
any assumptions in this research about the relevance of the feature values to
these distances (see Section 3.2.2 for more details), which makes our results
highly generic and hence useful in many application areas.

The contribution of this research is three-fold. First, we introduce APDL,
the problem of actively learning the pairwise distances between all instances.
Second, we establish upper and lower bound approximations for the pairwise
distances, and an update rule for these bounds. Third, we identify the best
generic (domain-independent) baseline strategies for practical applications.
This research can be seen as a pioneering contribution to the field of AL,
which is expected to raise many follow-up studies in future research.

The remainder of this chapter is organized as follows. In Section 3.2, we for-
mally introduce APDL and discuss why no assumptions are made about the
feature values. Consequently, we argue that techniques from unsupervised
learning, semi-supervised learning and reinforcement learning are not appli-
cable without these assumptions. Related research is discussed in Section 3.3.
Section 3.4 defines notation for the selection strategies. Furthermore, it
is discussed how each additional pairwise distance will update the upper
and lower approximation bounds for all pairwise distances. A variety of
selection strategies and selection criteria are defined in Section 3.5. Next, the
experimental setup is addressed in Section 3.6. The experiments evaluate the
selection strategies on multiple datasets to find the best performing strategy.
The results of the experiments are discussed in Section 3.7. Section 3.9 gives
an extensive overview of possible future research opportunities and addresses
limitations of the results presented in this chapter. Finally, Section 3.10

44

333

Chapter 3. 3.2. Active pairwise distance learning

summarizes the findings.

3.2 Active pairwise distance learning

3.2.1 Definition of APDL

To start, we formally define active pairwise distance learning (APDL).
Starting with an unlabeled dataset consisting of M instances, the objective
of APDL is to learn as much as possible about the distance between each
pair of instances in T ∈ N>0 rounds. Each round, an expert can be queried
to label exactly one pairwise distance. After T rounds, a final prediction is
made about all pairwise distances. Given a pre-determined loss function L,
the goal is to minimize the loss between the actual pairwise distance matrix
Dtrue and the predicted pairwise distance matrix Dpred. Thus, the target of
any APDL algorithm is to minimize L

(
Dpred,Dtrue).

In general, there are two critical components in APDL: (I) ‘Which pair is
queried each round?’ and (II) ‘How to use this information to make the
best prediction?’ The first question is the main focus of this research. The
general approach of an APDL algorithm can be seen in Algorithm 1.

Algorithm 1 General APDL Algorithm
Input: # samples M , # rounds T , expert labeler Ω
Output: Pairwise distance prediction Dpred

1: for t← 1 to T do
2: Select (i, j) ∈ {1, . . . ,M}2
3: Receive distance d(i, j) from expert Ω
4: end for
5: Make final pairwise distance prediction Dpred

3.2.2 No relevancy assumption

An important assumption that we make in this research is that no assump-
tions are made about the relevance of the feature values to the actual
distance. As a consequence, only techniques that do not use the feature
values are considered. Note that having similar feature values does not
necessarily mean that the underlying distance between two instances is
small. Insufficient features could mean that instances appear close, but are
actually far apart. Having too many features could also be troublesome for
measuring similarity, as instances in a high-dimensional space are often far
away (due to the infamous curse of dimensionality). Furthermore, sufficient

45

333

Chapter 3. 3.2. Active pairwise distance learning

labeled data is required to accurately extract information from the feature
values in order to make good predictions. Especially for high-dimensional
data and complex prediction models, more labeled data is necessary to
properly train the prediction model. Gal et al. [57] even identified the
lack of scalability to high-dimensional data as one of the major remaining
challenges for AL. However, in practice sufficient labeled data is not always
available. In addition, a recent survey [140] stated that “research remains in
its infancy at present, and there is still a long way to go in the future.” A
badly trained prediction model could steer the query selection in the wrong
direction.

Without making any assumption about the relevancy of the feature values
to the pairwise distance makes most known techniques from unsupervised,
semi-supervised and active learning inappropriate. Chapelle et al. [37]
identify in which cases semi-supervised learning is suitable. They determine
the following three assumptions in order to apply semi-supervised learning
techniques:

Smoothness assumption: “If two points x1, x2 in a high-density region
are close, then so should be the corresponding outputs y1, y2.”

Cluster assumption: “If points are in the same cluster, they are likely to
be of the same class.”

Manifold assumption: “The (high-dimensional) data lie (roughly) on a
low-dimensional manifold.”

The smoothness and cluster assumption do not have to hold when the
underlying distance metric (responsible for the actual labels) is very different
from the metric that is used to measure if two points are close and if they
belong to the same cluster. Consider for example determining if cars are
similar using images. If the distance between two images is measured by
comparing them pixel-by-pixel, it is highly likely that only the color of the
car determines if two cars are similar (or even the background). Therefore,
this is not a good approach.

The manifold assumption is important to combat the well-known curse of
dimensionality problem. Without this assumption, a lot of data is necessary
to learn the underlying distribution from the feature values. In such a
situation, it might be better to make no assumptions than being steered in
the wrong direction due to a lack of labeled data.

Techniques from reinforcement learning [171] have similar problems, when
feature values are used. Given a specific dataset, the same action (i.e.,

46

333

Chapter 3. 3.3. Related research

querying the expert about a certain pair) is not repeated. Furthermore,
no state is revisited and the state space can be really large. Thus, some
mapping must be learned from the feature values. This inherently has the
same assumption problems as discussed before.

When not to make relevancy assumption
We identify six situations where it could be useful to make no assumptions
about the relevancy of the feature values to the pairwise distance: (I) when
there is not yet enough labeled data for supervised techniques; (II) when the
underlying metric is unknown and could be too complex to predict using the
given features; (III) when the features are not sufficient; (IV) when there
are too many features; (V) when the model should work across multiple
domains; (VI) as baseline to evaluate techniques that do use feature values.

To elaborate on situation (VI), whenever for example a semi-supervised
technique is developed, it should perform better than any method that does
not use the feature values. Therefore, not using the feature values can be
used to benchmark methods that do use feature values.

Advantages of not using feature values
Not using feature values has its benefits. We list five advantages: (I) the
dimensionality of data is irrelevant; (II) the quality of feature values is
unimportant; (III) no hyper-parameter tuning based on feature values is
needed; (IV) conclusions are not dependent on the application domain;
(V) resulting baselines are ideal to be used as benchmark. As this research
constitutes the first step in APDL, these are the reasons why we decide to
only investigate selection strategies that do not use feature values.

3.3 Related research

To the best of our knowledge, APDL is a new research area within AL.
However, there are related papers, which we will outline below.

APDL is not the same as learning pairwise preferences [75], where the goal
is to make a ranking based on pairwise comparisons. In these pairwise
comparisons, it is decided which sample is more preferable, which is a binary
choice. A might be preferred over B, but it is not labeled by how much,
which is an important distinction. Furthermore, the focus lies more on
determining a good ranking function, not necessarily determining which
samples should be labeled in order to gain the most information. However,
it is closely related and (non-binary) preference / desirability could also be

47

333

Chapter 3. 3.3. Related research

used as a distance metric within APDL.

Dasarathy et al. [42] investigate binary label prediction on a graph. A
non-parametric algorithm is developed to actively learn to predict binary
labels in a graph. The objective for APDL is to learn all pairwise distances,
thus the graph would be fully connected. The main difference with our
research is that binary labels are assumed in [42], whereas we assume that
the labels are generated by a distance metric. On the one hand, it makes the
problem easier, as structure is added to the labels, because properties of a
distance metric need to be satisfied. On the other hand, a label can now be
real-valued and not only binary, which makes prediction much harder.

Actively learning pairwise similarities has also been studied for hierarchical
clusterings [49]. The goal is to infer the hierarchical clustering using as few
similarities as possible. These similarities are not necessarily from a distance
metric, as e.g., the Pearson correlation is used in [49]. The performance is
assessed by evaluating the constructed tree structures. This makes APDL
different, as the objective is to predict all pairwise distances, not to identify
the correct tree structure.

APDL is also closely related to similarity learning and metric learning [99,
184, 197]. These are supervised ML areas, where the goal is to learn from a
labeled dataset a similarity function and a metric, respectively. The task of
face verification is a practical example of these research areas. In [152], the
triplet loss is used to learn a distance function from 0/1-labels to compare
faces. The main difference with APDL is that similarity and metric learning
require a labeled dataset in order to determine a generalized function that
can be used for new samples. The objective in APDL is to gather as much
distance-based information as possible about a fixed dataset, when there
is yet no information about the labels. APDL is thus not concerned about
finding a general function for samples outside the given dataset. APDL
could be used to build the dataset that is later used by techniques from
similarity learning and metric learning.

Metric learning has also been researched in an AL setting. Yang et al.
[191] developed a Bayesian framework to actively learn a distance metric
by selecting the unlabeled pairs with the greatest uncertainty in predicting
whether the pair is in the same equivalence class or not. Kumaran et al.
[96] actively learned a distance metric to identify outlier and boundary
points per class, which are then given to the expert. Even more selection
strategies are explored in [47]. Pasolli et al. [127] used an actively learned
metric to reduce the dimensionality of hyperspectral images and to select

48

333

Chapter 3. 3.4. Definitions and bounds

uncertain samples. Again, the goal in active metric learning is to get a
model to accurately predict if two samples belong to the same class, not to
determine an accurate prediction for pairwise distances. This makes APDL
a fundamentally different problem.

3.4 Definitions and bounds

First, we introduce some notation that is necessary to discuss selection
strategies. As seen in Algorithm 1, in round t a pair of indices ζt := (i, j) is
chosen from M indices and a corresponding distance d(i, j) between these
indices is obtained from the expert. Although it is possible to disregard
previous requests to the expert, it is obvious that previous results should be
taken into account when selecting the next pair of indices. If only to avoid
asking the expert the same pair twice. Therefore, we introduce the notion
of history.

Definition 3.4.1 (History). Name Ht = {((i, j), d(i, j)) : ζτ = (i, j)}τ=1,...,t

the history of all chosen pairs of indices and their corresponding labeled
distance up to and including round t. Furthermore, define H0 := ∅×∅.

Next, we will define what a selection strategy is. A selection strategy for
T rounds consists of T functions that successively determine which pair of
indices is chosen based on the given history.

Definition 3.4.2 (Selection strategy). We call σ a selection strategy if
for each t ∈ {1, . . . , T} it holds that σt : Ht−1 7→ ζt ∈ {1, . . . ,M}2 and
σ = {σt}t=1,...,T .

3.4.1 Expert distance metric

After the selection strategy determines which pair of indices is chosen, the
expert determines the distance between them. An important and strong
assumption we make, is that the expert makes no mistakes and that the
distances originate from an underlying metric d : {1, . . . ,M}2 → [0, dmax],
where dmax ∈ R>0 is the maximum possible distance between two samples.
In most instances, dmax can be estimated or determined. However, when
the maximum distance cannot be bounded from above, consider dmax to be
infinite. In our experiments, the underlying distance metric is the Euclidean
distance between two samples and the expert simply returns the correct
Euclidean distance.

49

333

Chapter 3. 3.4. Definitions and bounds

3.4.2 Approximation bounds

To approximate the true distance between each pair of indices, we can make
use of the fact that the underlying distance function d is a metric, to find
upper and lower bounds. Each metric satisfies, by definition, the triangle
inequality and the subsequent reverse triangle inequality. Denote the upper
and lower bound of (i, j) in round t as Dupp

t (i, j) and Dlow
t (i, j), respectively.

The metric d is symmetric (i.e., d(x, y) = d(y, x)), thus we enforce the upper
and lower bounds to be symmetric as well. Therefore, it must always hold
that Dupp

t (i, j) = Dupp
t (j, i) and Dlow

t (i, j) = Dlow
t (j, i). We will now discuss

how triangle inequalities can be used to update the upper and lower bounds
each time a new distance is obtained from the expert.

Initialization
In the first round, there is no distance information yet. However, as d is a
metric, it must hold that d(i, i) = 0 for each i ∈ {1, . . . ,M}. Furthermore,
using the range of d, the upper and lower bounds are initialized as:

Dupp
1 (i, j) =

{
0 if i = j,

dmax else.

Dlow
1 (i, j) = 0.

Triangle inequality
The triangle inequality states that for all a, b, c ∈ {1, . . . ,M} it must hold
that d(a, c) ≤ d(a, b) + d(b, c) . Expanding on this, for every round t it
follows that

d(a, c) ≤ d(a, b) + d(b, c) ≤ Dupp
t (a, b) +Dupp

t (b, c).

In other words, Dupp
t (a, b) +Dupp

t (b, c) is an upper bound for d(a, c). There-
fore, it must hold that

Dupp
t (a, c) ≤ min {dmax,Dupp

t (a, b) +Dupp
t (b, c)} . (3.1)

Reverse triangle inequality
The reverse triangle inequality states that |d(a, b)− d(b, c)| ≤ d(a, c) for all
a, b, c ∈ {1, . . . ,M}. Now note that

|d(a, b)− d(b, c)| ≥ Dlow
t (a, b)−Dupp

t (b, c),

|d(a, b)− d(b, c)| ≥ Dlow
t (b, c)−Dupp

t (a, b).

50

333

Chapter 3. 3.4. Definitions and bounds

Therefore, this gives a lower bound for (a, c). Thus,

Dlow
t (a, c) ≥ max

{
0,Dlow

t (a, b)−Dupp
t (b, c),Dlow

t (b, c)−Dupp
t (a, b)

}
.

(3.2)

Update rules
In round t, we first set Dlow

t+1 := Dlow
t ,Dupp

t+1 := Dupp
t . After the new distance

d(i, j) is given by the expert, the upper and lower bound collapse to d(i, j),
as it is assumed that the expert makes no mistakes. Thus,

Dlow
t+1(i, j) := d(i, j) =: Dupp

t+1(i, j),

Dlow
t+1(j, i) := d(i, j) =: Dupp

t+1(j, i).

(U1)

This newly acquired information can have an effect on other bounds as
well. For all k ∈ {1, . . . ,M} Equation (3.1) now gives the following update
rules:

Dupp
t+1(i, k) := min

{
dmax,Dupp

t+1(i, j) +D
upp
t+1(j, k)

}
,

Dupp
t+1(j, k) := min

{
dmax,Dupp

t+1(i, j) +D
upp
t+1(i, k)

}
,

Dupp
t+1(k, i) := D

upp
t+1(i, k),

Dupp
t+1(k, j) := D

upp
t+1(j, k).

(U2)

Note that this can lead to multiple updates, as Dupp
t+1(i, k) is updated in the

first line and used in the second, whereas Dupp
t+1(j, k) is used in the first and

updated in the second. For each bound that is now tighter than before, the
same procedure should be repeated. Note that the order of the updates does
not influence the end result as long as the effect of every tighter bound is
evaluated.

Thereafter, lower bounds can be updated using Equation (3.2). The updates
are as follows (for all k ∈ {1, . . . ,M}):

Dlow
t+1(i, k) := max

{
0,Dlow

t+1(i, j)−D
upp
t+1(j, k),D

low
t+1(j, k)−D

upp
t+1(i, j)

}
,

Dlow
t+1(j, k) := max

{
0,Dlow

t+1(i, j)−D
upp
t+1(i, k),D

low
t+1(i, k)−D

upp
t+1(i, j)

}
,

Dlow
t+1(k, i) := Dlow

t+1(i, k),

Dlow
t+1(k, j) := Dlow

t+1(j, k).

(U3)

51

333

Chapter 3. 3.5. Strategies

Again, this can lead to multiple updates, similar to the upper bound updates.
However, it is important to note that a new upper bound can lead to a
new lower bound, but not vice versa. When an upper bound changes (e.g.,
Dupp

t+1(x, y)), Update rules (U2) and (U3) should be evaluated (replacing
(i, j) with (x, y)). Whenever a lower bound changes (e.g., Dlow

t+1(x, y)), only
Update rule (U3) needs to be checked. The entire update procedure is
summarized in Algorithm 2, that should be applied each time a new distance
label is obtained from the expert.

3.5 Strategies

In this section, we discuss the selection strategies that will be evaluated.
As the APDL problem is new, we will investigate relatively straightforward
strategies based on naturally arising criteria to determine the baseline
strategies for future research. Without previous literature, there is yet
no evidence which strategies should perform well. However, we can argue
e.g., that selecting indices, where the upper and lower bound are already
close, is not a good idea. Thus, sometimes we investigate a strategy that
maximizes a criterion, without looking into a strategy that minimizes the
same criterion, or vice versa. On top of the general definition of a strategy (see
Definition 3.4.2), it is necessary to introduce some concepts and definitions
that are used by certain selection strategies.

A selection strategy σ consists of functions σt for t ∈ {1, . . . , T} (see Def-
inition 3.4.2). For all strategies that will be used, it holds that the same
selection criterion is used for each σt. In other words, the strategy does not
change for different rounds.

It is possible that multiple samples satisfy some selection criterion (for
example, the least chosen strategy). If more than one sample is optimal for
the selection criterion, a selection between these samples is made uniformly
at random. The following notation is used for this.

Definition 3.5.1 (Drawn uniformly from set). Let U (A) denote the uniform
distribution over a finite non-empty set A. Thus, when X ∼ U (A) it must
hold that P(X = a) = 1

|A| for each a ∈ A.

Degree

It is also useful to track how often each index is chosen. Note that the
problem can be visualized by a graph. Each sample is a vertex, and an edge
is drawn between a pair of vertices, whenever the expert labels the distance

52

333

Chapter 3. 3.5. Strategies

Algorithm 2 Update upper and lower bounds
Input: Distance d(x, y), indices (x, y), round t
Output: Updated bounds Dupp

t+1 ,Dlow
t+1

Initialization:
1: Dupp

t+1 ← D
upp
t ,Dlow

t+1 ← Dlow
t

2: Dlow
t+1(x, y)← d(x, y), Dlow

t+1(y, x)← d(x, y)
3: Dupp

t+1(x, y)← d(x, y), Dupp
t+1(y, x)← d(x, y)

4: Uupdate ← {(x, y)}, Lupdate ← {(x, y)}

Update upper bounds:
5: while Uupdate ̸= ∅ do
6: Take (i, j) ∈ Uupdate
7: for k ← 1 to M do
8: Update Dupp

t+1 with Update rule (U2)
9: end for

10: for every tighter bound do
11: Add corresponding indices to Uupdate and Lupdate ▷ Every tighter

upper bound could lead to other new upper or lower bounds
12: end for
13: end while
14: Remove duplicates from Lupdate

Update lower bounds:
15: while Lupdate ̸= ∅ do
16: Take (i, j) ∈ Lupdate
17: for k ← 1 to M do
18: Update Dlow

t+1 with Update rule (U3)
19: end for
20: for every tighter bound do
21: Add corresponding indices to Lupdate ▷ Every tighter lower

bound could lead to other new lower bounds
22: end for
23: end while

53

333

Chapter 3. 3.5. Strategies

between these pairs. How often each index is chosen is identical to the degree
(from graph theory) of the corresponding vertex. Let degt(k) denote the
degree of sample k in round t. This can be determined by

degt(k) = |{ζτ = (i, j) : i = k ∨ j = k}τ=1,...,t−1|.

Predicted distance

Let Dpred
t (i, j) be the predicted distance between samples i and j in round

t. We will later show (in Definition 3.6.1 below) how the distance is actually
predicted. Strategies can use these predictions in a selection criterion.

Different kinds of strategies

Next, we divide the selection strategies into two groups, namely simultaneous
and sequential strategies. Behind a simultaneous strategy, there is a singular
selection criterion that determines which pair of indices is selected in round
t out of all possible remaining pairs in

It :=
{
(i, j) ∈ {1, . . . ,M}2 : στ (Hτ−1) /∈ {(i, j), (j, i)}

for all τ ∈ {1, . . . , t− 1}
}
.

For a sequential strategy, the indices are chosen one after the other by two
(possibly different) selection criteria. To this end, if σt(Ht−1) = (i, j), let
σt(Ht−1)1 := i and let σt(Ht−1)2 := j denote the first and second index
respectively. σt(Ht−1)1 is chosen from the remaining first indices, thus
from

Iuniq.
1,t := {i : ∃(i, ·) ∈ It}.

Whenever the first index is chosen, the remaining second indices reduce, as
it is limited by the first chosen index σt(Ht−1)1. The second index is chosen
from

(It | σt(Ht−1)1)
uniq. := {j : ∃(σt(Ht−1)1, j) ∈ It}.

3.5.1 Simultaneous strategies

First, we will discuss the simultaneous strategies, where both indices are
chosen at the same time.

54

333

Chapter 3. 3.5. Strategies

Random pair

Select a pair uniformly at random out of the remaining pairs.

Criterion 1 (Random pair).

σt(Ht−1) ∼ U(It). (3.3)

Max bound gap

Select a pair uniformly at random out of the remaining pairs with the
largest difference between the upper and lower bound of the predicted
distance.

Criterion 2 (Max bound gap).

σt(Ht−1) ∼ U

(
argmax
(i,j)∈It

{
Dupp

t (i, j)−Dlow
t (i, j)

})
. (3.4)

Max combined total bound gap

First, determine for each sample the bound gap with all other samples and
sum these into a combined bound gap. Then, select a pair uniformly at
random out of the remaining pairs with the largest sum of combined bound
gaps.

Criterion 3 (Max combined total bound gap).

σt(Ht−1) ∼ U

(
argmax
(i,j)∈It

{ M∑
k=1

(
Dupp

t (i, k)−Dlow
t (i, k)

+Dupp
t (j, k)−Dlow

t (j, k)
)})

. (3.5)

Max/min total degree

First, determine for each sample the degree, see Section 3.5. Then, select a
pair uniformly at random out of all remaining pairs where the sum of the
individual degrees is maximized/minimized.

Criterion 4 (Max total degree).

σt(Ht−1) ∼ U

(
argmax
(i,j)∈It

{degt(i) + degt(j)}

)
. (3.6)

55

333

Chapter 3. 3.5. Strategies

Criterion 5 (Min total degree).

σt(Ht−1) ∼ U

(
argmin
(i,j)∈It

{degt(i) + degt(j)}

)
. (3.7)

3.5.2 Sequential strategies

Next, we will discuss the sequential strategies, where the second index is
chosen after the first.

Random index

Draw uniformly at random an index out of the unique set of possible
remaining indices.

Criterion 6 (Random index).

σt(Ht−1)1 ∼ U
(
Iuniq.
1,t

)
, (3.8)

σt(Ht−1)2 ∼ U
(
(It | σt(Ht−1)1)

uniq.) . (3.9)

Note that choosing the first and second index using random index is not
equivalent to using the random pair strategy, as random index uses the
unique indices, where random pair does not.

Linked

This strategy can only be applied for the first index. Use the second index
of the previous round as the first index of this round, unless there are no
remaining pairs with this index. In this case and in the first round, choose
the first index uniformly at random from the unique first indices, equivalent
to the random index strategy, see Equation (3.8).

Criterion 7 (Linked).

σt(Ht−1)1 ∼

 U (σt−1(Ht−2)2) if t > 1 and σt−1(Ht−2)2 ∈ Iuniq.
1,t ,

U
(
Iuniq.
1,t

)
else.

(3.10)

56

333

Chapter 3. 3.5. Strategies

Max/min degree

Choose uniformly at random an index with maximum degree (see Section 3.5)
out of the unique set of possible remaining indices.

Criterion 8 (Max degree).

σt(Ht−1)1 ∼ U

argmax
i∈Iuniq.

1,t

{degt(i)}

 , (3.11)

σt(Ht−1)2 ∼ U

(
argmax

j∈(It|σt(Ht−1)1)uniq.
{degt(j)}

)
. (3.12)

Criterion 9 (Min degree).

σt(Ht−1)1 ∼ U

argmin
i∈Iuniq.

1,t

{degt(i)}

 , (3.13)

σt(Ht−1)2 ∼ U

(
argmin

j∈(It|σt(Ht−1)1)uniq.
{degt(j)}

)
. (3.14)

Max total bound gap

First, determine for each sample the bound gap with all other samples and
sum these into a combined bound gap. Then, choose uniformly at random
an index with maximum combined bound gap.

Criterion 10 (Max total bound gap).

σt(Ht−1)1 ∼ U

argmax
i∈Iuniq.

1,t

{
M∑
k=1

(
Dupp

t (i, k)−Dlow
t (i, k)

)} , (3.15)

σt(Ht−1)2 ∼ U

(
argmax

j∈(It|σt(Ht−1)1)uniq.

{
M∑
k=1

(
Dupp

t (j, k)−Dlow
t (j, k)

)})
.

(3.16)

Max previous expected distance

In the first round, this strategy simplifies to the random index strategy
(Section 3.5.2). Thereafter, choose uniformly at random an index out of

57

333

Chapter 3. 3.5. Strategies

the unique set of the possible remaining indices, such that the predicted
distance to the indices of the previous round is maximized.

Criterion 11 (Max previous expected distance).

σt(Ht−1)1 ∼

U
(
argmaxi∈It

{
if t > 1,Dpred

t (σt−1(Ht−2)1, i)

+ Dpred
t (σt−1(Ht−2)2, i)

})
U (It) else.

(3.17)

σt(Ht−1)2 ∼

U
(
argmaxj∈(It|σt(Ht−1)1)uniq.

{
if t > 1,Dpred

t (σt−1(Ht−2)1, j)

+ Dpred
t (σt−1(Ht−2)2, j)

})
U
(
(It | σt(Ht−1)1)

uniq.) else.

(3.18)

Max/min/median expected distance

This strategy can only be applied for the second index. Select uniformly at
random an index out of the unique set of remaining possible indices that
belong to the maximum/minimum/median of the predicted distance (see
Section 3.6.4) to the first index.

Criterion 12 (Max expected distance).

σt(Ht−1)2 ∼ U

(
argmax

j∈(It|σt(Ht−1)1)uniq.

{
Dpred

t (σt(Ht−1)1, j)
})

. (3.19)

Criterion 13 (Min expected distance).

σt(Ht−1)2 ∼ U

(
argmin

j∈(It|σt(Ht−1)1)uniq.

{
Dpred

t (σt(Ht−1)1, j)
})

. (3.20)

Criterion 14 (Median expected distance).

σt(Ht−1)2 ∼ U

(
argmedian

j∈(It|σt(Ht−1)1)uniq.

{
Dpred

t (σt(Ht−1)1, j)
})

. (3.21)

58

333

Chapter 3. 3.6. Experimental setup

3.6 Experimental setup

3.6.1 Strategies

The goal of the experiments is to find which strategies perform well for
which dataset. In Section 3.5, all used criteria are explained and defined.
With simultaneous strategies, an index pair (i, j) is chosen at once. With
sequential strategies, a separate decision is made for the first and second index
sequentially. For example, one strategy uses Criterion 8 (max degree) to select
the first index, and Criterion 9 (min degree) for the second index. In total,
this leads to 5 (simultaneous) + 6 · 8 (sequential) = 53 different strategies
(see Table 3.1). Furthermore, all strategies are stochastic. Therefore, each
strategy is repeated ten times for each dataset. Thereafter, results are
averaged to reduce stochastic outliers. It is desirable that a strategy performs
generally well, not only coincidentally.

3.6.2 Data

To evaluate the performance of different strategies, fourteen two-dimensional
datasets are used. To reduce computational time, the maximum allowed
size of a dataset is 1,000 samples. Whenever a dataset is larger, a subset of
1,000 samples is drawn uniformly at random. The coordinates are scaled
(min-max) for each dataset to be within [0, 1]2. The following datasets are
used, where the number of samples is denoted in round brackets: S1 (1,000),
S2 (1,000), S3 (1,000), S4 (1,000) [52], Unbalance (1,000) [143], Birch2-1
(1,000) [198], Aggregation (788) [61], Compound (399) [196], Pathbased (300),
Spiral (312) [36], D31 (1,000), R15 (600) [177], Jain (373) [77], Flame
(240) [56]. All these datasets are used as clustering benchmarks [53]. A
visualization of these datasets can be seen in Figure 3.1. The Euclidean
distance is used as underlying distance metric for each dataset.

Observe that these datasets are all two-dimensional. In other words, they
have two features. Note that this is not a shortcoming for this experiment,
as it is assumed that features are not relevant for the APDL techniques (see
Section 3.2.2 above). As long as the calculated pairwise distances remain the
same, these datasets could have any dimension. Two-dimensional datasets
were chosen, because they can be visualized easily.

3.6.3 Number of rounds

The number of samples M is dependent on the dataset. Especially for
increasingly large datasets, it is undesirable to keep on labeling until all

59

333

Chapter 3. 3.6. Experimental setup

S1 S2 S3

S4 Aggregation Compound

Pathbased Spiral D31

R15 Jain Flame

Birch2-1 Unbalance

Figure 3.1: Visualization datasets: Each two-dimensional dataset that
is used to test different strategies.

60

333

Chapter 3. 3.6. Experimental setup

labels are given. Namely,
(
M
2

)
= M · (M − 1)/2 pairwise combinations

can be made in total. If e.g., ten percent of the combinations should be
labeled, the total number of rounds T grows exponentially in the number of
samples. This gives much more opportunities to determine good upper and
lower bound approximations for a large dataset compared to a small dataset.
Therefore, we decide to choose the total number of rounds for a dataset in a
linear-growing fashion. A minimum spanning tree (MST) in graph theory is
a subset of edges in an undirected graph, such that all vertices are connected
without any cycles. In total, M − 1 edges are necessary to make an MST
for a graph with M vertices. For each M − 1 labels given by the expert, a
minimum spanning tree could have been formed. Now, let MMST :=M − 1
and define the total number of rounds T as 10 ·MMST . This reflects a
scenario where it is not possible to determine many labels, which will often
be the case in practice.

3.6.4 Performance evaluation of strategies

In order to compare the different strategies, it is important to discuss how
the performance of the strategies is evaluated. Each strategy is applied ten
times on each dataset. Each round a prediction is made by averaging the
upper and lower bound.

Definition 3.6.1 (Predicted distance matrix). Let Dpred
t be the predicted

distance matrix in round t, such that

Dpred
t (i, j) :=

(
Dupp

t (i, j) +Dlow
t (i, j)

)
/2.

Note that if (i, j) was labeled by the expert, it holds that

Dpred
t (i, j) =

(
Dupp

t (i, j) +Dlow
t (i, j)

)
/2 = (d(i, j) + d(i, j)) /2

= d(i, j).

Definition 3.6.2 (True distance matrix). Let Dtrue be the true distance
matrix.

The prediction error between the predicted distance matrix Dpred
t and the

true distance matrix Dtrue can now be calculated. To compare these two
matrices, the mean squared error is used. This leads to the following
definition.

61

333

Chapter 3. 3.6. Experimental setup

Definition 3.6.3 (Prediction error). The error ϵt in round t is determined
as

ϵt =
1

M2

M∑
i=1

M∑
j=1

(
Dtrue(i, j)−Dpred

t (i, j)
)2
.

After collecting all prediction error results, three approaches are undertaken
to compare the performance of each strategy: (I) average performance,
(II) Borda count; (III) area under the curve (AUC). Each approach will now
be explained.

Average performance

To average the prediction error results over different datasets, the error is
determined at predefined rounds, specific for each dataset. As discussed in
Section 3.6.3, the total number of rounds is dependent on the size of the
dataset. Thus, in round i ·MMST with i ∈ {1, . . . , 10}, the prediction error
is determined. Averaging the results for a fixed i produces the final score.
Summarizing, all prediction errors of a single strategy at predefined rounds
are averaged for all ten repetitions and all fourteen datasets.

Borda count

A drawback of the previous approach is that certain datasets might be
harder to predict correctly, making these datasets influence the average
performance heavily, as the prediction error is relatively large, and all
datasets are weighted equally. Thus, Borda count [17] (a voting method)
is used to rank the prediction error of each strategy in the following way.
First, order all strategies based on the prediction error for each dataset
and repetition. The strategy with the highest prediction error gets 1 point.
The second worst gets 2 points. The third highest gets 3 points and so
on. This is done for each dataset and repetition in the predefined rounds
{i ·MMST }i=1,...,10. The final Borda count results are obtained by averaging
over all datasets and repetitions for a fixed round. A higher score indicates
better performance, and the maximum possible score is equal to the total
number of strategies.

Area under the curve

Instead of comparing the results at specified iterations, it is also possible
to evaluate the performance of a strategy by measuring the so-called area

62

333

Chapter 3. 3.7. Results

under the curve (AUC) for each iteration using the trapezoidal rule. For
each strategy, dataset and repetition, the area under the prediction error is
measured up to and including the maximum number of rounds (10 ·MMST).
As the rounds are equally spaced, AUC reduces to

10·MMST−1∑
t=2

ϵt +
ϵ1 + ϵ10·MMST

2
. (3.22)

Note that the AUC is not necessarily bounded by [0,1]. By averaging over
the repetitions, an average AUC score can be derived for each strategy and
dataset. A lower score indicates better performance, as the prediction error
must be minimized and the sooner this is achieved the better. A fictitious
example of how the AUC is measured can be seen in Figure 3.2.

1 2 3 4 5 6
0

50

100

ϵ1 ϵ2
ϵ3

ϵ4 ϵ5 ϵ6

Round

T
ot

al
p
re

d
ic

ti
on

er
ro

r

Figure 3.2: Example AUC: Each round the prediction error is measured.
The AUC of the prediction error is then determined by using the trapezoidal
rule (Equation (3.22)), which adds the area of the golden rectangles. Note
that this is exactly equal to the blue area under the prediction error curve.

3.7 Results

Following the experimental setup from Section 3.6, all 53 strategies outlined
in Section 3.5 are evaluated on fourteen different datasets (see Section 3.6.2).
The results are summarized into three tables: Table 3.1 gives the average
prediction error results (Section 3.6.4); Table 3.2 shows the average Borda
count score for each strategy (Section 3.6.4); Table 3.3 displays the area
under the curve results for each strategy and dataset (Section 3.6.4). These
tables all provide a different angle on the performance of the selection
strategies.

63

333

Chapter 3. 3.7. Results

Table 3.1: Average performance: For each dataset and repetition,
the prediction error of a strategy is averaged in rounds i · MMST with
i ∈ {1, . . . , 10}. The ranking (by column) of each average prediction error
is noted in brackets. Coloring of each column is done linearly between the
worst and baseline (random pair) score and linearly between the baseline
(random pair) and the best score.

Strategy 1 MMST 2 MMST 3 MMST 4 MMST 5 MMST 6 MMST 7 MMST 8 MMST 9 MMST 10 MMST

max degree/max degree 0.040 (02) 0.024 (07) 0.017 (10) 0.012 (10) 0.009 (09) 0.006 (09) 0.005 (12) 0.004 (12) 0.003 (13) 0.003 (13)
max degree/min degree 0.041 (09) 0.024 (09) 0.016 (07) 0.011 (07) 0.008 (06) 0.006 (06) 0.005 (08) 0.004 (18) 0.003 (15) 0.003 (17)
max degree/max exp. dist. 0.040 (03) 0.022 (04) 0.013 (04) 0.009 (04) 0.007 (04) 0.005 (04) 0.004 (05) 0.003 (11) 0.002 (11) 0.002 (11)
max degree/max prev. exp. dist. 0.041 (07) 0.022 (05) 0.014 (06) 0.010 (05) 0.007 (05) 0.006 (05) 0.005 (09) 0.004 (13) 0.003 (14) 0.003 (15)
max degree/max total bound gap 0.041 (08) 0.022 (03) 0.013 (02) 0.008 (02) 0.005 (02) 0.004 (03) 0.003 (03) 0.002 (10) 0.002 (09) 0.001 (09)
max degree/median exp. dist. 0.042 (11) 0.023 (06) 0.014 (05) 0.010 (06) 0.008 (07) 0.006 (07) 0.005 (11) 0.004 (16) 0.003 (17) 0.003 (16)
max degree/min exp. dist. 0.039 (01) 0.032 (13) 0.024 (13) 0.020 (13) 0.017 (14) 0.015 (21) 0.012 (21) 0.010 (21) 0.009 (22) 0.008 (23)
max degree/random index 0.042 (10) 0.025 (12) 0.017 (09) 0.012 (09) 0.009 (11) 0.007 (12) 0.005 (17) 0.005 (19) 0.004 (18) 0.003 (19)
linked/max degree 0.056 (14) 0.024 (08) 0.021 (12) 0.011 (08) 0.010 (12) 0.006 (08) 0.006 (18) 0.004 (17) 0.004 (19) 0.003 (18)
linked/min degree 0.067 (44) 0.054 (29) 0.045 (30) 0.035 (30) 0.026 (31) 0.019 (30) 0.015 (29) 0.012 (29) 0.010 (28) 0.008 (29)
linked/max exp. dist. 0.063 (16) 0.053 (16) 0.043 (17) 0.031 (16) 0.020 (16) 0.012 (15) 0.004 (06) 0.001 (03) 0.000 (02) 0.000 (03)
linked/max prev. exp. dist. 0.063 (21) 0.053 (19) 0.044 (24) 0.033 (25) 0.022 (20) 0.013 (18) 0.005 (14) 0.002 (06) 0.001 (06) 0.000 (06)
linked/max total bound gap 0.067 (42) 0.056 (36) 0.050 (42) 0.041 (39) 0.032 (39) 0.024 (35) 0.018 (33) 0.014 (33) 0.011 (31) 0.009 (31)
linked/median exp. dist. 0.063 (18) 0.058 (48) 0.050 (39) 0.042 (44) 0.036 (48) 0.033 (48) 0.030 (48) 0.029 (48) 0.028 (48) 0.027 (48)
linked/min exp. dist. 0.066 (29) 0.065 (49) 0.063 (49) 0.061 (49) 0.060 (49) 0.059 (49) 0.058 (49) 0.057 (49) 0.057 (49) 0.056 (49)
linked/random index 0.062 (15) 0.053 (18) 0.042 (16) 0.033 (20) 0.025 (26) 0.019 (24) 0.015 (27) 0.012 (30) 0.010 (30) 0.008 (30)
min degree/max degree 0.040 (04) 0.025 (11) 0.018 (11) 0.012 (12) 0.009 (10) 0.007 (11) 0.005 (15) 0.004 (15) 0.003 (12) 0.003 (12)
min degree/min degree 0.067 (43) 0.054 (27) 0.045 (29) 0.034 (29) 0.026 (29) 0.019 (29) 0.015 (26) 0.012 (27) 0.010 (29) 0.008 (27)
min degree/max exp. dist. 0.066 (35) 0.055 (33) 0.044 (23) 0.031 (17) 0.021 (17) 0.011 (14) 0.004 (07) 0.001 (05) 0.001 (07) 0.000 (07)
min degree/max prev. exp. dist. 0.066 (33) 0.056 (40) 0.048 (35) 0.038 (35) 0.030 (34) 0.024 (36) 0.019 (40) 0.016 (42) 0.013 (43) 0.011 (43)
min degree/max total bound gap 0.067 (47) 0.057 (42) 0.050 (43) 0.042 (43) 0.033 (42) 0.026 (45) 0.020 (43) 0.016 (41) 0.013 (41) 0.010 (39)
min degree/median exp. dist. 0.066 (31) 0.054 (22) 0.044 (21) 0.033 (23) 0.025 (23) 0.019 (26) 0.016 (30) 0.013 (31) 0.012 (38) 0.010 (41)
min degree/min exp. dist. 0.067 (53) 0.067 (53) 0.066 (53) 0.066 (53) 0.066 (53) 0.065 (53) 0.065 (53) 0.065 (53) 0.064 (53) 0.064 (53)
min degree/random index 0.066 (30) 0.054 (24) 0.045 (27) 0.034 (28) 0.026 (30) 0.020 (31) 0.015 (28) 0.012 (28) 0.010 (25) 0.008 (25)
max prev. exp. dist./max degree 0.041 (05) 0.022 (02) 0.013 (03) 0.008 (03) 0.005 (03) 0.004 (02) 0.003 (02) 0.002 (09) 0.002 (10) 0.002 (10)
max prev. exp. dist./min degree 0.066 (34) 0.056 (41) 0.048 (34) 0.038 (36) 0.031 (35) 0.024 (38) 0.020 (41) 0.016 (44) 0.013 (44) 0.011 (44)
max prev. exp. dist./max exp. dist. 0.064 (27) 0.054 (25) 0.045 (25) 0.033 (24) 0.022 (19) 0.013 (19) 0.005 (13) 0.001 (04) 0.000 (03) 0.000 (02)
max prev. exp. dist./max prev. exp. dist. 0.064 (28) 0.056 (34) 0.048 (36) 0.039 (37) 0.031 (36) 0.023 (32) 0.016 (32) 0.010 (22) 0.007 (21) 0.005 (20)
max prev. exp. dist./max total bound gap 0.067 (39) 0.058 (46) 0.052 (48) 0.043 (47) 0.035 (46) 0.027 (46) 0.021 (46) 0.016 (45) 0.013 (45) 0.011 (45)
max prev. exp. dist./median exp. dist. 0.064 (26) 0.055 (31) 0.047 (31) 0.038 (34) 0.031 (37) 0.025 (43) 0.022 (47) 0.019 (47) 0.017 (47) 0.015 (47)
max prev. exp. dist./min exp. dist. 0.067 (51) 0.067 (52) 0.066 (52) 0.066 (52) 0.065 (52) 0.065 (52) 0.064 (51) 0.064 (51) 0.064 (51) 0.063 (51)
max prev. exp. dist./random index 0.064 (23) 0.055 (30) 0.047 (33) 0.038 (33) 0.030 (33) 0.023 (34) 0.018 (35) 0.014 (36) 0.011 (34) 0.009 (34)
max total bound gap/max degree 0.041 (06) 0.017 (01) 0.008 (01) 0.005 (01) 0.004 (01) 0.003 (01) 0.002 (01) 0.002 (08) 0.002 (08) 0.001 (08)
max total bound gap/min degree 0.067 (46) 0.057 (43) 0.050 (44) 0.042 (42) 0.033 (43) 0.025 (44) 0.020 (42) 0.016 (40) 0.013 (40) 0.010 (38)
max total bound gap/max exp. dist. 0.067 (38) 0.056 (35) 0.049 (37) 0.037 (31) 0.024 (21) 0.014 (20) 0.006 (19) 0.002 (07) 0.001 (05) 0.000 (05)
max total bound gap/max prev. exp. dist. 0.067 (41) 0.058 (45) 0.052 (47) 0.043 (48) 0.035 (47) 0.027 (47) 0.020 (45) 0.016 (43) 0.013 (42) 0.010 (40)
max total bound gap/max total bound gap 0.067 (49) 0.057 (44) 0.051 (45) 0.043 (45) 0.033 (44) 0.025 (41) 0.019 (38) 0.015 (38) 0.011 (36) 0.009 (36)
max total bound gap/median exp. dist. 0.067 (36) 0.056 (37) 0.050 (38) 0.041 (38) 0.032 (40) 0.025 (40) 0.020 (44) 0.017 (46) 0.015 (46) 0.014 (46)
max total bound gap/min exp. dist. 0.067 (48) 0.066 (50) 0.066 (50) 0.066 (50) 0.065 (50) 0.065 (50) 0.064 (50) 0.064 (50) 0.063 (50) 0.063 (50)
max total bound gap/random index 0.067 (40) 0.056 (38) 0.050 (41) 0.041 (40) 0.032 (38) 0.024 (37) 0.018 (36) 0.014 (35) 0.011 (32) 0.009 (32)
random index/max degree 0.055 (13) 0.041 (14) 0.029 (14) 0.021 (14) 0.016 (13) 0.012 (16) 0.009 (20) 0.007 (20) 0.006 (20) 0.005 (21)
random index/min degree 0.066 (32) 0.054 (23) 0.045 (26) 0.034 (26) 0.025 (27) 0.019 (25) 0.015 (24) 0.012 (23) 0.009 (23) 0.008 (22)
random index/max exp. dist. 0.064 (22) 0.053 (20) 0.042 (15) 0.030 (15) 0.019 (15) 0.010 (13) 0.003 (04) 0.001 (01) 0.000 (04) 0.000 (04)
random index/max prev. exp. dist. 0.064 (24) 0.055 (32) 0.047 (32) 0.037 (32) 0.029 (32) 0.023 (33) 0.018 (34) 0.014 (34) 0.011 (33) 0.009 (33)
random index/max total bound gap 0.067 (37) 0.056 (39) 0.050 (40) 0.041 (41) 0.032 (41) 0.024 (39) 0.019 (37) 0.014 (37) 0.011 (35) 0.009 (35)
random index/median exp. dist. 0.063 (19) 0.053 (21) 0.043 (19) 0.032 (18) 0.025 (22) 0.019 (27) 0.016 (31) 0.013 (32) 0.012 (39) 0.010 (42)
random index/min exp. dist. 0.067 (52) 0.067 (51) 0.066 (51) 0.066 (51) 0.065 (51) 0.065 (51) 0.064 (52) 0.064 (52) 0.064 (52) 0.063 (52)
random index/random index 0.063 (20) 0.053 (15) 0.043 (18) 0.033 (21) 0.025 (24) 0.019 (23) 0.015 (23) 0.012 (24) 0.010 (27) 0.008 (28)
max bound gap 0.064 (25) 0.054 (26) 0.044 (22) 0.032 (19) 0.021 (18) 0.012 (17) 0.005 (10) 0.001 (02) 0.000 (01) 0.000 (01)
max total degree 0.043 (12) 0.025 (10) 0.016 (08) 0.012 (11) 0.009 (08) 0.006 (10) 0.005 (16) 0.004 (14) 0.003 (16) 0.003 (14)
min total degree 0.067 (45) 0.054 (28) 0.045 (28) 0.034 (27) 0.026 (28) 0.019 (28) 0.015 (25) 0.012 (26) 0.010 (26) 0.008 (24)
max combined total bound gap 0.067 (50) 0.058 (47) 0.051 (46) 0.043 (46) 0.034 (45) 0.025 (42) 0.019 (39) 0.015 (39) 0.011 (37) 0.009 (37)
random pair 0.063 (17) 0.053 (17) 0.043 (20) 0.033 (22) 0.025 (25) 0.019 (22) 0.015 (22) 0.012 (25) 0.010 (24) 0.008 (26)

Worst strategy Random pair Best strategy

Coloring by column:

64

333

Chapter 3. 3.7. Results

Table 3.2: Borda count: For each dataset and repetition, Borda count is
used to rank the prediction error of the strategies and averaged in rounds
i ·MMST with i ∈ {1, . . . , 10}. The ranking (by column) of each Borda
count score is noted in brackets. Coloring of each column is done linearly
between the worst and baseline (random pair) score and linearly between
the baseline (random pair) and the best score.

Strategy 1 MMST 2 MMST 3 MMST 4 MMST 5 MMST 6 MMST 7 MMST 8 MMST 9 MMST 10 MMST

max degree/max degree 43.46 (02) 46.62 (06) 46.31 (07) 45.19 (08) 43.91 (08) 42.75 (09) 40.91 (14) 38.84 (14) 38.37 (14) 38.11 (14)
max degree/min degree 40.66 (13) 46.34 (07) 46.10 (10) 45.59 (06) 45.17 (05) 43.00 (06) 40.57 (15) 38.19 (18) 37.83 (15) 37.11 (19)
max degree/max exp. dist. 43.51 (01) 47.64 (02) 48.22 (02) 47.34 (04) 46.90 (04) 45.37 (04) 43.78 (09) 41.74 (11) 41.36 (11) 41.06 (11)
max degree/max prev. exp. dist. 40.16 (14) 46.31 (08) 47.04 (05) 45.94 (05) 44.96 (06) 42.97 (07) 41.30 (12) 39.01 (12) 38.79 (12) 38.28 (13)
max degree/max total bound gap 42.29 (11) 47.13 (04) 47.68 (04) 47.52 (03) 48.19 (03) 47.06 (03) 45.74 (06) 43.69 (10) 43.11 (09) 43.26 (09)
max degree/median exp. dist. 42.34 (09) 46.69 (05) 46.94 (06) 45.37 (07) 43.93 (07) 42.90 (08) 40.94 (13) 38.58 (16) 37.78 (16) 37.99 (15)
max degree/min exp. dist. 43.24 (03) 41.34 (13) 40.09 (13) 37.11 (15) 34.78 (19) 31.71 (21) 29.17 (21) 27.84 (21) 27.58 (22) 26.54 (26)
max degree/random index 42.99 (07) 45.83 (12) 46.21 (08) 44.57 (11) 43.78 (09) 41.44 (14) 39.87 (18) 37.56 (19) 37.66 (18) 37.47 (18)
linked/max degree 42.58 (08) 46.14 (09) 43.04 (12) 44.79 (10) 41.71 (12) 42.57 (10) 39.32 (19) 38.39 (17) 37.01 (19) 37.48 (17)
linked/min degree 13.89 (45) 20.79 (34) 24.35 (34) 27.42 (31) 27.72 (31) 27.12 (29) 26.93 (28) 27.07 (25) 26.97 (26) 26.51 (27)
linked/max exp. dist. 38.21 (16) 35.71 (16) 34.23 (16) 35.76 (16) 38.23 (14) 42.17 (11) 47.11 (03) 50.71 (02) 51.16 (03) 51.29 (03)
linked/max prev. exp. dist. 37.60 (18) 34.09 (18) 29.05 (23) 30.17 (24) 34.40 (20) 39.13 (18) 43.35 (10) 46.46 (06) 47.74 (06) 47.81 (06)
linked/max total bound gap 14.34 (41) 12.41 (44) 11.38 (44) 12.71 (42) 15.25 (39) 17.66 (35) 19.81 (33) 21.41 (31) 22.93 (31) 24.12 (31)
linked/median exp. dist. 37.86 (17) 34.88 (17) 33.81 (19) 28.28 (27) 22.55 (32) 17.09 (38) 11.54 (47) 07.94 (48) 06.32 (48) 06.14 (48)
linked/min exp. dist. 18.53 (35) 11.21 (47) 07.69 (49) 05.49 (49) 04.35 (49) 03.73 (49) 03.59 (50) 03.49 (50) 03.39 (50) 03.38 (51)
linked/random index 38.90 (15) 36.02 (15) 35.28 (15) 32.00 (20) 29.36 (26) 27.19 (28) 26.11 (29) 26.05 (29) 25.69 (30) 25.42 (30)
min degree/max degree 43.01 (06) 45.94 (11) 45.27 (11) 44.14 (12) 43.70 (11) 41.82 (13) 40.36 (17) 38.96 (13) 38.56 (13) 38.40 (12)
min degree/min degree 14.14 (42) 21.27 (33) 24.84 (31) 27.71 (29) 27.88 (29) 27.81 (26) 27.34 (24) 27.03 (26) 26.72 (27) 26.82 (25)
min degree/max exp. dist. 21.81 (29) 23.04 (31) 27.22 (26) 33.44 (17) 36.76 (15) 39.98 (17) 44.06 (08) 46.84 (05) 46.91 (07) 46.43 (07)
min degree/max prev. exp. dist. 20.96 (34) 20.28 (37) 20.19 (37) 19.99 (36) 18.81 (35) 17.20 (37) 16.35 (39) 16.24 (41) 16.46 (41) 16.61 (39)
min degree/max total bound gap 13.29 (47) 12.62 (43) 12.29 (43) 12.34 (44) 12.50 (43) 12.94 (45) 13.34 (42) 14.14 (43) 14.99 (43) 15.60 (41)
min degree/median exp. dist. 21.01 (33) 23.68 (29) 28.20 (24) 31.29 (22) 29.77 (24) 26.88 (30) 23.87 (30) 20.34 (32) 17.09 (39) 14.72 (42)
min degree/min exp. dist. 05.39 (53) 01.86 (53) 01.61 (53) 01.51 (53) 01.49 (53) 01.40 (53) 01.43 (53) 01.44 (53) 01.45 (53) 01.47 (53)
min degree/random index 21.49 (30) 23.05 (30) 25.66 (29) 27.71 (29) 27.74 (30) 27.25 (27) 27.19 (26) 27.28 (24) 27.21 (25) 26.90 (23)
max prev. exp. dist./max degree 43.21 (04) 47.47 (03) 47.84 (03) 48.09 (02) 48.55 (02) 47.88 (02) 46.40 (04) 43.76 (09) 42.84 (10) 42.66 (10)
max prev. exp. dist./min degree 21.46 (31) 20.29 (36) 20.30 (35) 19.91 (37) 18.75 (37) 17.57 (36) 17.04 (38) 17.01 (40) 17.38 (38) 17.51 (38)
max prev. exp. dist./max exp. dist. 31.54 (24) 29.64 (24) 27.73 (25) 29.32 (25) 34.91 (18) 40.27 (16) 45.31 (07) 49.99 (04) 51.44 (02) 51.74 (02)
max prev. exp. dist./max prev. exp. dist. 30.52 (27) 26.53 (28) 20.22 (36) 17.09 (38) 16.27 (38) 17.99 (33) 22.00 (32) 26.03 (30) 28.09 (21) 29.36 (21)
max prev. exp. dist./max total bound gap 14.62 (39) 11.40 (45) 10.76 (46) 10.26 (46) 10.16 (48) 10.49 (48) 11.24 (48) 11.81 (45) 12.46 (45) 12.64 (45)
max prev. exp. dist./median exp. dist. 30.02 (28) 28.54 (26) 25.76 (28) 22.29 (32) 18.78 (36) 15.84 (41) 12.90 (44) 10.39 (46) 08.44 (47) 07.79 (47)
max prev. exp. dist./min exp. dist. 07.80 (51) 02.94 (52) 02.90 (52) 02.96 (52) 03.06 (52) 03.31 (51) 03.30 (51) 03.38 (51) 03.51 (49) 03.50 (49)
max prev. exp. dist./random index 31.28 (25) 28.76 (25) 24.59 (32) 20.96 (34) 18.87 (34) 17.81 (34) 17.79 (36) 18.49 (37) 19.06 (37) 20.40 (37)
max total bound gap/max degree 42.34 (09) 49.59 (01) 51.37 (01) 51.10 (01) 50.51 (01) 49.70 (01) 47.79 (02) 45.59 (08) 44.06 (08) 43.91 (08)
max total bound gap/min degree 13.41 (46) 12.66 (42) 12.32 (42) 12.53 (43) 12.35 (44) 12.71 (46) 13.31 (43) 14.29 (42) 15.00 (42) 15.78 (40)
max total bound gap/max exp. dist. 14.11 (43) 13.06 (39) 14.75 (38) 21.00 (33) 30.49 (21) 37.36 (19) 42.57 (11) 46.46 (06) 48.69 (05) 49.04 (05)
max total bound gap/max prev. exp. dist. 14.58 (40) 11.34 (46) 11.01 (45) 10.49 (45) 10.36 (47) 10.91 (47) 11.58 (46) 12.45 (44) 13.26 (44) 13.55 (44)
max total bound gap/max total bound gap 09.29 (49) 07.44 (48) 08.31 (47) 09.25 (47) 11.72 (45) 13.91 (42) 15.70 (41) 17.39 (39) 19.23 (35) 20.52 (35)
max total bound gap/median exp. dist. 16.00 (36) 13.35 (38) 14.35 (39) 14.64 (39) 14.33 (41) 13.51 (44) 11.68 (45) 09.90 (47) 08.80 (46) 08.23 (46)
max total bound gap/min exp. dist. 12.62 (48) 04.34 (50) 04.16 (50) 03.98 (50) 03.84 (50) 03.72 (50) 03.61 (49) 03.51 (49) 03.34 (52) 03.21 (52)
max total bound gap/random index 15.07 (38) 13.03 (40) 12.48 (40) 13.14 (40) 14.75 (40) 17.09 (39) 18.56 (35) 19.94 (34) 21.00 (32) 21.87 (32)
random index/max degree 41.01 (12) 38.94 (14) 39.03 (14) 37.55 (14) 36.11 (16) 35.06 (20) 33.71 (20) 33.06 (20) 33.14 (20) 33.04 (20)
random index/min degree 21.44 (32) 23.00 (32) 26.15 (27) 28.52 (26) 28.31 (28) 27.96 (23) 27.30 (25) 27.46 (22) 27.58 (22) 27.12 (22)
random index/max exp. dist. 31.72 (21) 32.44 (19) 34.10 (17) 37.59 (13) 40.10 (13) 43.56 (05) 47.88 (01) 50.64 (03) 50.46 (04) 49.96 (04)
random index/max prev. exp. dist. 30.94 (26) 28.54 (26) 24.94 (30) 20.72 (35) 19.06 (33) 18.68 (32) 18.89 (34) 19.34 (35) 20.33 (33) 21.24 (33)
random index/max total bound gap 15.25 (37) 13.02 (41) 12.45 (41) 12.71 (41) 13.61 (42) 15.94 (40) 17.47 (37) 18.74 (36) 19.73 (34) 20.91 (34)
random index/median exp. dist. 31.89 (20) 32.00 (22) 33.86 (18) 33.01 (18) 29.82 (23) 26.51 (31) 23.29 (31) 20.17 (33) 16.83 (40) 14.17 (43)
random index/min exp. dist. 07.36 (52) 03.06 (51) 03.07 (51) 03.09 (51) 03.09 (51) 03.12 (52) 03.19 (52) 03.27 (52) 03.38 (51) 03.49 (50)
random index/random index 32.49 (19) 32.31 (20) 33.79 (20) 32.31 (19) 29.74 (25) 27.91 (24) 27.07 (27) 26.89 (28) 26.67 (28) 26.26 (29)
max bound gap 31.59 (23) 30.11 (23) 29.77 (22) 31.09 (23) 36.02 (17) 40.90 (15) 46.05 (05) 51.18 (01) 52.54 (01) 52.64 (01)
max total degree 43.04 (05) 46.07 (10) 46.17 (09) 44.92 (09) 43.71 (10) 42.01 (12) 40.38 (16) 38.59 (15) 37.70 (17) 37.83 (16)
min total degree 13.90 (44) 20.76 (35) 24.48 (33) 28.05 (28) 28.33 (27) 27.84 (25) 27.66 (22) 27.39 (23) 27.25 (24) 26.86 (24)
max combined total bound gap 09.19 (50) 07.39 (49) 08.14 (48) 09.16 (48) 11.67 (46) 13.89 (43) 15.91 (40) 17.75 (38) 19.19 (36) 20.51 (36)
random pair 31.65 (22) 32.10 (21) 33.49 (21) 31.90 (21) 29.86 (22) 28.38 (22) 27.44 (23) 26.91 (27) 26.55 (29) 26.30 (28)

Worst strategy Random pair Best strategy

Coloring by column:

65

333

Chapter 3. 3.7. Results

Table 3.3: AUC: For each repetition, the area under the curve (AUC)
of the prediction error for a strategy is measured and averaged in rounds
i ·MMST with i ∈ {1, . . . , 10}. The ranking (by column) of each AUC score
is noted in brackets. Coloring of each column is done linearly between the
worst and baseline (random pair) score and linearly between the baseline
(random pair) and the best score.

Strategy aggregation Birch2-1 compound D31 flame jain pathbased R15 s1 s2 s3 s4 spiral Unbalance

max degree/max degree 172.7 (12) 144.3 (06) 046.0 (03) 234.6 (07) 010.6 (08) 055.0 (10) 053.7 (11) 086.4 (04) 204.1 (06) 188.2 (06) 218.4 (12) 144.0 (09) 058.3 (12) 123.5 (04)

max degree/min degree 157.2 (07) 158.2 (10) 056.1 (09) 242.0 (08) 011.0 (10) 048.5 (07) 046.4 (06) 107.7 (12) 208.1 (07) 200.9 (12) 168.8 (03) 151.0 (11) 054.5 (06) 123.9 (06)

max degree/max exp. dist. 134.3 (04) 104.9 (02) 048.5 (05) 201.6 (04) 008.2 (02) 044.2 (04) 040.7 (02) 086.0 (03) 178.1 (04) 153.2 (04) 178.3 (05) 120.9 (03) 048.1 (04) 120.4 (02)

max degree/max prev. exp. dist. 157.0 (06) 115.4 (04) 049.0 (06) 216.4 (05) 010.9 (09) 047.3 (06) 044.3 (05) 091.4 (06) 177.4 (02) 162.4 (05) 174.8 (04) 133.9 (07) 049.1 (05) 123.7 (05)

max degree/max total bound gap 124.1 (03) 107.1 (03) 046.3 (04) 188.6 (02) 008.6 (03) 043.2 (02) 040.8 (03) 088.2 (05) 181.3 (05) 150.5 (03) 162.4 (02) 125.7 (05) 045.1 (02) 120.6 (03)

max degree/median exp. dist. 154.3 (05) 148.2 (08) 053.1 (07) 219.1 (06) 011.3 (11) 045.8 (05) 047.8 (08) 105.0 (10) 210.2 (08) 188.4 (07) 191.7 (08) 144.7 (10) 054.8 (08) 157.5 (11)

max degree/min exp. dist. 220.9 (13) 175.5 (13) 075.4 (13) 344.9 (14) 015.9 (21) 073.7 (14) 089.5 (34) 140.3 (15) 318.1 (14) 286.1 (14) 267.2 (13) 186.8 (13) 072.7 (14) 131.5 (08)

max degree/random index 168.7 (11) 164.4 (12) 057.0 (10) 256.6 (12) 010.1 (06) 053.9 (09) 052.5 (10) 097.7 (07) 219.2 (10) 189.5 (08) 213.8 (10) 132.3 (06) 055.3 (09) 141.3 (10)

linked/max degree 160.2 (09) 156.8 (09) 067.6 (12) 251.1 (11) 011.4 (12) 058.5 (11) 049.9 (09) 102.9 (09) 226.2 (12) 199.1 (11) 217.5 (11) 152.8 (12) 054.8 (07) 234.9 (16)

linked/min degree 298.5 (30) 273.9 (26) 098.9 (26) 489.7 (30) 017.8 (29) 093.6 (28) 083.0 (25) 188.2 (28) 426.8 (27) 370.7 (30) 443.1 (31) 321.6 (29) 099.6 (32) 238.8 (18)

linked/max exp. dist. 238.5 (16) 209.0 (15) 082.3 (16) 408.3 (16) 013.6 (14) 075.6 (16) 063.6 (13) 138.3 (14) 344.6 (17) 298.5 (17) 388.3 (16) 289.0 (16) 075.0 (17) 232.3 (15)

linked/max prev. exp. dist. 250.5 (20) 218.9 (19) 084.2 (18) 421.2 (20) 014.3 (19) 078.3 (20) 069.3 (18) 145.6 (18) 354.6 (18) 312.8 (19) 398.8 (19) 297.0 (18) 077.7 (20) 238.3 (17)

linked/max total bound gap 329.2 (42) 301.8 (37) 109.5 (38) 527.9 (41) 018.7 (39) 104.0 (37) 092.1 (35) 213.2 (36) 467.0 (44) 405.0 (42) 495.2 (42) 362.2 (44) 103.0 (38) 283.1 (31)

linked/median exp. dist. 314.5 (35) 400.5 (48) 137.0 (48) 489.9 (31) 019.8 (48) 121.5 (48) 095.2 (41) 209.0 (34) 431.8 (33) 374.6 (32) 465.1 (33) 330.6 (32) 102.6 (36) 1176.5 (48)

linked/min exp. dist. 474.1 (49) 594.0 (49) 219.9 (49) 718.0 (49) 029.0 (49) 191.7 (49) 158.1 (52) 311.9 (49) 616.2 (49) 540.3 (49) 750.0 (49) 535.5 (49) 145.8 (49) 1445.3 (49)

linked/random index 288.5 (22) 263.2 (22) 095.2 (22) 470.0 (22) 017.5 (23) 091.4 (22) 082.7 (24) 179.7 (22) 413.2 (22) 358.0 (22) 419.9 (21) 305.7 (21) 096.2 (22) 277.2 (30)

min degree/max degree 166.3 (10) 162.1 (11) 053.2 (08) 250.3 (10) 010.0 (05) 059.8 (12) 047.5 (07) 106.0 (11) 210.6 (09) 189.8 (09) 212.5 (09) 137.5 (08) 057.8 (11) 124.8 (07)

min degree/min degree 296.5 (27) 277.4 (30) 099.4 (29) 490.6 (32) 017.8 (25) 094.3 (31) 084.6 (29) 188.7 (29) 427.5 (29) 374.0 (31) 439.6 (29) 318.3 (27) 098.5 (30) 251.6 (26)

min degree/max exp. dist. 246.7 (17) 217.0 (17) 084.6 (20) 413.4 (17) 014.0 (16) 077.5 (17) 070.3 (19) 151.1 (20) 340.6 (16) 296.7 (16) 396.9 (17) 290.8 (17) 075.3 (18) 273.9 (29)

min degree/max prev. exp. dist. 315.5 (36) 292.9 (35) 104.7 (34) 510.2 (38) 018.3 (34) 101.5 (35) 094.6 (37) 219.6 (38) 442.6 (35) 385.2 (34) 475.8 (38) 340.8 (34) 102.0 (35) 410.2 (43)

min degree/max total bound gap 329.1 (41) 306.3 (41) 111.9 (40) 523.0 (39) 018.8 (41) 107.3 (43) 102.0 (48) 249.4 (48) 464.4 (41) 401.2 (41) 504.6 (45) 362.2 (43) 104.5 (39) 317.9 (38)

min degree/median exp. dist. 305.1 (32) 300.4 (36) 100.4 (30) 479.9 (25) 018.3 (35) 094.2 (30) 082.5 (22) 196.3 (32) 428.2 (30) 369.5 (28) 437.5 (27) 313.5 (22) 098.5 (29) 245.3 (22)

min degree/min exp. dist. 488.9 (53) 720.8 (53) 244.0 (53) 739.8 (53) 030.2 (53) 219.4 (53) 158.8 (53) 330.8 (53) 643.1 (53) 551.3 (53) 806.5 (53) 565.6 (53) 152.7 (53) 1638.4 (53)

min degree/random index 299.3 (31) 275.1 (27) 098.9 (27) 487.4 (28) 017.7 (24) 093.7 (29) 082.7 (23) 190.2 (30) 429.8 (32) 376.0 (33) 439.4 (28) 321.9 (30) 098.5 (28) 244.6 (21)

max prev. exp. dist./max degree 122.0 (02) 124.1 (05) 043.8 (02) 197.1 (03) 009.2 (04) 043.5 (03) 044.0 (04) 080.6 (02) 177.7 (03) 142.6 (02) 186.4 (06) 119.3 (02) 047.1 (03) 118.2 (01)

max prev. exp. dist./min degree 316.3 (37) 291.2 (34) 104.9 (35) 504.6 (34) 018.0 (31) 101.1 (34) 093.3 (36) 216.7 (37) 443.9 (36) 389.4 (36) 472.2 (37) 344.3 (38) 101.9 (34) 443.8 (46)

max prev. exp. dist./max exp. dist. 249.7 (19) 222.6 (20) 084.4 (19) 420.5 (19) 014.2 (18) 077.8 (18) 067.8 (17) 147.3 (19) 359.9 (20) 313.7 (20) 403.9 (20) 298.2 (20) 075.9 (19) 249.7 (24)

max prev. exp. dist./max prev. exp. dist. 293.4 (25) 268.7 (25) 115.4 (47) 480.9 (26) 019.4 (46) 102.4 (36) 089.2 (32) 183.7 (24) 416.1 (23) 363.5 (24) 461.7 (32) 343.3 (37) 097.5 (25) 336.1 (42)

max prev. exp. dist./max total bound gap 332.3 (43) 313.2 (43) 112.5 (42) 534.5 (46) 019.5 (47) 108.2 (46) 096.9 (43) 229.6 (45) 479.6 (48) 412.9 (48) 506.7 (47) 366.8 (46) 106.3 (44) 438.2 (45)

max prev. exp. dist./median exp. dist. 321.8 (38) 329.3 (46) 107.1 (36) 507.2 (35) 018.5 (37) 105.9 (40) 094.7 (38) 224.7 (43) 445.1 (37) 389.6 (37) 467.2 (36) 339.3 (33) 105.7 (42) 458.5 (47)

max prev. exp. dist./min exp. dist. 487.6 (51) 718.4 (51) 241.6 (52) 738.0 (52) 030.1 (51) 217.6 (51) 158.0 (51) 328.9 (50) 642.0 (52) 550.6 (52) 802.5 (50) 563.0 (50) 152.0 (52) 1613.6 (51)

max prev. exp. dist./random index 312.4 (34) 289.9 (33) 100.8 (32) 507.9 (36) 018.1 (32) 099.2 (33) 089.0 (31) 208.6 (33) 446.0 (38) 388.8 (35) 466.7 (34) 342.2 (36) 102.7 (37) 304.2 (35)

max total bound gap/max degree 103.3 (01) 093.7 (01) 039.1 (01) 159.1 (01) 007.7 (01) 037.8 (01) 038.4 (01) 074.3 (01) 140.3 (01) 137.9 (01) 143.8 (01) 109.8 (01) 044.7 (01) 139.0 (09)

max total bound gap/min degree 334.2 (47) 305.4 (39) 112.4 (41) 525.7 (40) 018.7 (38) 107.9 (44) 100.3 (47) 249.3 (47) 458.0 (39) 401.0 (40) 500.4 (43) 361.5 (42) 105.4 (41) 320.6 (40)

max total bound gap/max exp. dist. 267.3 (21) 235.7 (21) 091.4 (21) 441.1 (21) 014.8 (20) 084.0 (21) 072.1 (20) 159.4 (21) 372.4 (21) 327.5 (21) 429.6 (25) 316.9 (25) 078.6 (21) 284.4 (32)

max total bound gap/max prev. exp. dist. 332.4 (44) 310.5 (42) 115.3 (46) 530.0 (44) 019.1 (44) 108.0 (45) 098.3 (44) 226.9 (44) 475.0 (46) 408.4 (44) 508.2 (48) 366.2 (45) 107.8 (48) 419.0 (44)

max total bound gap/max total bound gap 337.1 (48) 313.8 (44) 112.8 (43) 538.8 (48) 019.4 (45) 106.6 (41) 096.3 (42) 221.6 (40) 471.2 (45) 410.9 (46) 504.8 (46) 370.4 (48) 106.8 (45) 318.1 (39)

max total bound gap/median exp. dist. 333.6 (46) 349.9 (47) 114.7 (45) 529.0 (43) 018.9 (42) 110.6 (47) 099.8 (46) 238.6 (46) 465.7 (42) 409.7 (45) 491.4 (40) 357.5 (39) 106.9 (46) 314.4 (37)

max total bound gap/min exp. dist. 487.1 (50) 717.1 (50) 240.6 (50) 737.8 (51) 030.0 (50) 217.4 (50) 157.2 (49) 329.0 (51) 641.9 (50) 550.0 (50) 804.0 (52) 564.0 (52) 151.7 (50) 1602.1 (50)

max total bound gap/random index 327.6 (39) 303.0 (38) 108.8 (37) 530.5 (45) 018.4 (36) 105.1 (39) 095.0 (39) 221.0 (39) 462.7 (40) 400.4 (39) 489.6 (39) 359.3 (40) 104.8 (40) 295.6 (34)

random index/max degree 232.9 (14) 216.2 (16) 079.3 (14) 334.2 (13) 013.0 (13) 073.4 (13) 065.0 (15) 136.2 (13) 303.6 (13) 240.1 (13) 268.7 (14) 202.5 (14) 067.6 (13) 260.6 (28)

random index/min degree 297.7 (29) 275.2 (28) 098.7 (25) 487.8 (29) 017.9 (30) 093.3 (27) 084.8 (30) 187.2 (26) 429.2 (31) 369.2 (27) 432.9 (26) 320.8 (28) 098.2 (27) 244.2 (20)

random index/max exp. dist. 236.1 (15) 206.7 (14) 081.1 (15) 400.8 (15) 013.7 (15) 075.2 (15) 065.0 (14) 141.3 (16) 332.3 (15) 294.1 (15) 381.1 (15) 285.0 (15) 072.8 (15) 239.3 (19)

random index/max prev. exp. dist. 307.6 (33) 285.1 (31) 102.9 (33) 509.7 (37) 018.1 (33) 097.5 (32) 089.4 (33) 210.0 (35) 441.8 (34) 390.8 (38) 466.8 (35) 341.0 (35) 101.4 (33) 305.0 (36)

random index/max total bound gap 328.1 (40) 306.2 (40) 110.0 (39) 528.3 (42) 018.7 (40) 104.1 (38) 095.1 (40) 222.0 (41) 466.1 (43) 405.8 (43) 495.2 (41) 360.6 (41) 106.0 (43) 293.4 (33)

random index/median exp. dist. 296.4 (26) 288.9 (32) 100.5 (31) 478.0 (24) 017.8 (26) 091.8 (24) 083.0 (26) 192.8 (31) 421.4 (26) 359.5 (23) 426.6 (24) 313.5 (23) 098.1 (26) 258.8 (27)

random index/min exp. dist. 487.8 (52) 718.5 (52) 241.3 (51) 737.8 (50) 030.1 (52) 217.6 (52) 158.0 (50) 329.3 (52) 641.9 (51) 550.5 (51) 802.8 (51) 563.1 (51) 151.7 (51) 1614.7 (52)

random index/random index 292.5 (24) 264.5 (24) 095.8 (23) 476.2 (23) 017.8 (27) 091.4 (23) 081.4 (21) 183.8 (25) 421.0 (25) 367.8 (26) 425.6 (23) 314.0 (24) 096.9 (23) 224.6 (14)

max bound gap 248.6 (18) 218.0 (18) 084.2 (17) 417.3 (18) 014.1 (17) 078.2 (19) 066.5 (16) 145.5 (17) 354.8 (19) 307.6 (18) 398.5 (18) 298.1 (19) 075.0 (16) 248.9 (23)

max total degree 159.8 (08) 147.1 (07) 062.7 (11) 243.5 (09) 010.3 (07) 049.6 (08) 054.9 (12) 098.6 (08) 220.1 (11) 192.5 (10) 191.4 (07) 121.7 (04) 057.6 (10) 160.9 (12)

min total degree 297.3 (28) 275.2 (29) 099.3 (28) 491.3 (33) 017.8 (28) 092.9 (26) 084.1 (28) 188.1 (27) 426.9 (28) 369.7 (29) 440.9 (30) 321.9 (31) 099.2 (31) 250.8 (25)

max combined total bound gap 332.7 (45) 316.6 (45) 113.8 (44) 536.3 (47) 018.9 (43) 107.0 (42) 098.6 (45) 224.3 (42) 476.2 (47) 412.0 (47) 503.6 (44) 367.2 (47) 106.9 (47) 321.5 (41)

random pair 291.2 (23) 264.2 (23) 096.2 (24) 481.6 (27) 017.4 (22) 092.1 (25) 083.6 (27) 182.9 (23) 417.5 (24) 365.1 (25) 423.8 (22) 317.3 (26) 096.9 (24) 223.5 (13)

Worst strategy Random pair Best strategy

Coloring by column:

66

333

Chapter 3. 3.7. Results

Next, we will discuss the most important observations backed by evidence
from Tables 3.1 to 3.3.

Observation 1. There are better strategies than simply choosing a random
pair.

Evidence: The best rank random pair achieves is 13th in Table 3.3 on the
dataset Unbalance. Often it ranks around the mid-twenties in Tables 3.1
to 3.3. This means that there are (many) strategies that perform better
than random pair.

Observation 2. Max total bound gap / max degree is the best strategy for
earlier rounds.

Evidence: The ranked scores of strategy max total bound gap / max degree
are highlighted in Table 3.4. For rounds 2 ·MMST up to 7 ·MMST , the
strategy ranks the best out of all evaluated strategies. When one has really
limited labeling capabilities, this strategy performs very well across all
datasets. It always has the best AUC score out of all tested strategies,
except for the dataset Unbalance (see Table 3.3).

Table 3.4: Highlighted ranks: The ranks of the strategy max total bound
gap / max degree from Tables 3.1 and 3.2.

1 MMST 2 MMST 3 MMST 4 MMST 5 MMST 6 MMST 7 MMST 8 MMST 9 MMST 10 MMST

Average performance 06 01 01 01 01 01 01 08 08 08
Borda count 09 01 01 01 01 01 02 08 08 08

Observation 3. Max degree is generally a good criterion, especially in the
earlier rounds.

Evidence: In Tables 3.1 to 3.3 a lot of green cells belong to a strategy
with max degree. This means that it performs close to or equal to the best
performance. Thus, it is a good strategy to choose at least one of the indices
based on max degree. Especially in the earlier rounds. In round 3 ·MMST ,
strategies with max degree rank in Table 3.1: (10th, 7th, 4th, 6th, 2nd, 5th,
13th, 9th, 12th, 11th, 3rd, 1st, 14th). Thus, the entire top 14 is filled by
strategies with max degree except for the eight place, which is obtained by
max total degree. This criterion is thus highly effective in the earlier rounds.

Observation 4. Min exp. distance and median exp. distance are bad
criteria.

Evidence: Both min exp. distance and median exp. distance perform
terrible. After 10 · MMST , strategies with min exp. distance and with
median exp. distance are ranked (23rd, 49th, 53rd, 51st, 50th, 52nd) and (16th,

67

333

Chapter 3. 3.7. Results

48th, 41st, 47th, 46th, 42nd), respectively in Table 3.1. Only combining with
max degree can save the performance. Min exp. distance is for all other
combinations colored red in Tables 3.1 to 3.3, which means that it is (or
close to) the worst performance.

Observation 5. Although the prediction is directly dependent on the bound
gap, max bound gap is only a good strategy after > 7 ·MMST rounds.

Evidence: The ranked scores of strategy max bound gap are highlighted
in Table 3.5. In the early rounds (up to 4 ·MMST), this strategy performs
even worse than random pair. After that, it quickly becomes one of the best
performing strategies, even ranking first in the later rounds. Due to the slow
start, the AUC scores are remarkably mediocre, see Table 3.3.

Table 3.5: Highlighted ranks: The ranks of the strategy max bound gap
from Tables 3.1 and 3.2.

1 MMST 2 MMST 3 MMST 4 MMST 5 MMST 6 MMST 7 MMST 8 MMST 9 MMST 10 MMST

Average performance 25 26 22 19 18 17 10 02 01 01
Borda count 23 23 22 23 17 15 05 01 01 01

Observation 6. Max exp. distance is a late bloomer.

Evidence: Whilst min exp. distance and median exp. distance perform
bad, max exp. distance gets increasingly better. Comparing the ranks in
Table 3.1 in round 5 ·MMST with round 10 ·MMST gives:

(
4th 14th 15th 18th 21st 13th

)
↓ ↓ ↓ ↓ ↓ ↓(
11th 3rd 7th 2nd 5th 4th

)
Only max degree / max exp. distance loses terrain. After round 10 ·MMST ,
the top 7 contains five strategies with max exp. distance, which is noteworthy.

Observation 7. Performance is relatively robust across datasets (AUC
scores).

Evidence: In Table 3.3, every strategy has approximately the same color
across datasets. This means that the relative performance is not very
dependent on the dataset. However, Unbalance gives the most deviant
results. This implies that the balancedness of the dataset could influence
the performance of a strategy.

68

333

Chapter 3. 3.8. Real world experiment

3.8 Real world experiment

In order to test if the observations also hold for real world datasets, we also
evaluate the strategies on the cifar10 [92] and mnist [101] datasets. These
datasets consist of images of ten different categories. To limit memory space
and running time, we only take the first 1,000 samples of the training set
for each dataset. The distance between two images is determined by the
Euclidean norm, which was also used in the previous experiments. The
results can be found in Table 3.6, where the average performance is given
(see Section 3.6.4).

Next, we discuss (using Table 3.6) if the observations from Section 3.7 also
hold for these real world datasets. Still, there are many better strategies
than simply choosing a random pair (Observation 1). Max total bound gap
/ max degree also remains the best strategy for earlier rounds (Observation
2), but now the performance falls off after 2 ·MMST rounds. Max degree is
generally a good criterion (Observation 3). The best strategies often use this
criterion. Min exp. distance and median exp. distance are still bad criteria
(Observation 4). But now, max bound gap is not a good strategy even after
> 7 ·MMST rounds (Observation 5). After 10 ·MMST rounds, it ranks 30th,
whilst simply selecting a random pair ranks 20th. Perhaps, this strategy
needs even more rounds to become good. Max exp. distance is also not longer
a late bloomer (Observation 6), as multiple strategies with this criterion rank
higher after 10 ·MMST rounds, then after 5 ·MMST rounds. Furthermore, it
ranks worse after 10 ·MMST rounds compared with the previous experiment.
Perhaps, this strategy also needs more rounds to start blooming. We believe
that the difference could be explained by the dimensionality of the datasets.
The cifar10 and mnist dataset have a higher dimensionality (32× 32× 3)
and (28 × 28), respectively. It is well-known that in higher dimensional
space, most points will be far away. Therefore, dimensionality could play
a role in the distribution of pairwise distances. This in turn, could have
an effect on some strategies such as max bound gap and max exp. distance,
which is why we believe that these strategies may need more time to start
performing well on these datasets. The AUC performance remains relatively
stable for these datasets (Observation 7).

In general, most previous observations still hold for these real world datasets.
Only some strategies that previously performed well in the later rounds, did
not start improving as well on these datasets. It could be that more rounds
are necessary.

69

333

Chapter 3. 3.8. Real world experiment

Table 3.6: Average performance (cifar10 & mnist): For each dataset
(cifar10 & mnist) and repetition, the prediction error of a strategy is averaged
in rounds i ·MMST with i ∈ {1, . . . , 10}. The ranking (by column) of each
average prediction error is noted in brackets. Coloring of each column is done
linearly between the worst and baseline (random pair) score and linearly
between the baseline (random pair) and the best score.

Strategy 1 MMST 2 MMST 3 MMST 4 MMST 5 MMST 6 MMST 7 MMST 8 MMST 9 MMST 10 MMST

max degree/max degree 12.961 (08) 7.957 (05) 6.469 (04) 5.568 (06) 4.905 (03) 4.358 (01) 4.098 (03) 3.891 (04) 3.581 (02) 3.389 (03)
max degree/min degree 12.529 (06) 7.847 (04) 6.328 (01) 5.554 (05) 4.889 (01) 4.567 (04) 4.273 (08) 4.043 (09) 3.823 (09) 3.721 (09)
max degree/max exp. dist. 13.199 (10) 9.023 (10) 6.625 (07) 6.075 (11) 5.400 (11) 5.093 (11) 4.230 (06) 4.030 (08) 3.645 (05) 3.542 (06)
max degree/max prev. exp. dist. 11.332 (04) 8.231 (09) 6.871 (10) 5.695 (08) 4.992 (05) 4.655 (07) 4.449 (10) 4.234 (11) 4.055 (11) 3.910 (12)
max degree/max total bound gap 14.655 (11) 10.614 (13) 6.375 (02) 5.656 (07) 5.105 (07) 4.927 (10) 4.662 (11) 3.930 (05) 3.772 (07) 3.667 (07)
max degree/median exp. dist. 11.391 (05) 7.789 (03) 6.440 (03) 5.425 (04) 4.893 (02) 4.370 (03) 4.033 (01) 3.807 (02) 3.560 (01) 3.413 (04)
max degree/min exp. dist. 12.574 (07) 10.236 (12) 8.898 (13) 7.819 (14) 6.944 (14) 6.603 (14) 5.918 (14) 5.638 (14) 4.881 (13) 4.189 (13)
max degree/random index 13.170 (09) 9.060 (11) 7.501 (12) 5.373 (02) 5.090 (06) 4.620 (05) 4.260 (07) 3.947 (07) 3.794 (08) 3.688 (08)
linked/max degree 17.355 (14) 7.641 (01) 7.075 (11) 5.376 (03) 5.114 (08) 4.367 (02) 4.186 (05) 3.722 (01) 3.628 (03) 3.371 (02)
linked/min degree 20.476 (45) 20.332 (36) 20.074 (34) 19.679 (32) 19.132 (31) 18.451 (28) 17.655 (25) 16.776 (24) 15.839 (24) 14.900 (24)
linked/max exp. dist. 20.436 (17) 20.246 (17) 19.938 (17) 19.520 (17) 18.980 (19) 18.361 (19) 17.676 (28) 16.975 (31) 16.268 (31) 15.571 (31)
linked/max prev. exp. dist. 20.434 (15) 20.230 (16) 19.929 (16) 19.501 (16) 18.992 (20) 18.431 (24) 17.822 (36) 17.181 (36) 16.501 (36) 15.867 (36)
linked/max total bound gap 20.476 (47) 20.323 (29) 20.131 (38) 19.870 (39) 19.524 (40) 19.100 (42) 18.614 (43) 18.078 (43) 17.495 (44) 16.859 (42)
linked/median exp. dist. 20.440 (18) 20.249 (18) 19.942 (18) 19.520 (18) 18.973 (18) 18.368 (21) 17.664 (27) 16.892 (27) 15.931 (26) 14.787 (19)
linked/min exp. dist. 20.459 (29) 20.392 (49) 20.333 (51) 20.284 (51) 20.224 (51) 20.164 (52) 20.113 (53) 20.056 (53) 19.992 (53) 19.929 (53)
linked/random index 20.435 (16) 20.228 (15) 19.896 (15) 19.441 (15) 18.841 (15) 18.129 (15) 17.269 (15) 16.408 (15) 15.505 (15) 14.655 (15)
min degree/max degree 11.146 (03) 8.016 (06) 6.715 (08) 5.297 (01) 4.978 (04) 4.714 (09) 4.067 (02) 3.873 (03) 3.655 (06) 3.367 (01)
min degree/min degree 20.475 (44) 20.333 (38) 20.079 (37) 19.688 (35) 19.143 (33) 18.457 (29) 17.646 (23) 16.751 (22) 15.819 (22) 14.883 (22)
min degree/max exp. dist. 20.469 (31) 20.324 (30) 20.064 (29) 19.669 (29) 19.126 (30) 18.441 (27) 17.635 (21) 16.785 (25) 15.910 (25) 15.044 (26)
min degree/max prev. exp. dist. 20.470 (34) 20.328 (35) 20.074 (35) 19.698 (37) 19.187 (37) 18.535 (36) 17.785 (32) 16.970 (30) 16.133 (29) 15.323 (29)
min degree/max total bound gap 20.476 (46) 20.347 (39) 20.152 (44) 19.895 (46) 19.571 (46) 19.181 (47) 18.734 (48) 18.235 (48) 17.694 (48) 17.125 (48)
min degree/median exp. dist. 20.469 (33) 20.326 (33) 20.073 (32) 19.687 (34) 19.144 (34) 18.465 (31) 17.655 (26) 16.745 (21) 15.729 (18) 14.671 (16)
min degree/min exp. dist. 20.482 (53) 20.426 (53) 20.366 (53) 20.306 (53) 20.239 (53) 20.174 (53) 20.101 (52) 20.031 (52) 19.957 (52) 19.890 (52)
min degree/random index 20.471 (35) 20.328 (34) 20.071 (31) 19.678 (31) 19.135 (32) 18.435 (25) 17.639 (22) 16.744 (20) 15.804 (21) 14.889 (23)
max prev. exp. dist./max degree 11.034 (02) 8.138 (08) 6.758 (09) 6.105 (12) 5.294 (10) 4.657 (08) 4.172 (04) 3.934 (06) 3.633 (04) 3.481 (05)
max prev. exp. dist./min degree 20.468 (30) 20.326 (32) 20.074 (33) 19.691 (36) 19.171 (36) 18.525 (35) 17.758 (30) 16.957 (28) 16.117 (28) 15.318 (28)
max prev. exp. dist./max exp. dist. 20.457 (27) 20.291 (27) 20.009 (26) 19.593 (25) 19.068 (25) 18.458 (30) 17.791 (34) 17.111 (34) 16.443 (35) 15.798 (35)
max prev. exp. dist./max prev. exp. dist. 20.456 (25) 20.285 (24) 20.000 (24) 19.600 (26) 19.114 (28) 18.536 (37) 17.913 (37) 17.273 (37) 16.630 (37) 15.988 (37)
max prev. exp. dist./max total bound gap 20.474 (36) 20.350 (43) 20.151 (43) 19.879 (42) 19.535 (43) 19.108 (43) 18.609 (41) 18.066 (41) 17.486 (42) 16.863 (43)
max prev. exp. dist./median exp. dist. 20.453 (19) 20.277 (19) 19.989 (20) 19.577 (23) 19.057 (24) 18.440 (26) 17.786 (33) 17.078 (33) 16.364 (33) 15.599 (32)
max prev. exp. dist./min exp. dist. 20.477 (50) 20.407 (50) 20.328 (49) 20.246 (49) 20.151 (49) 20.049 (49) 19.943 (49) 19.832 (50) 19.705 (50) 19.577 (50)
max prev. exp. dist./random index 20.459 (28) 20.298 (28) 20.022 (28) 19.624 (28) 19.106 (27) 18.468 (32) 17.768 (31) 17.059 (32) 16.323 (32) 15.624 (33)
max total bound gap/max degree 10.005 (01) 7.721 (02) 6.537 (06) 6.005 (10) 5.709 (12) 5.496 (13) 5.312 (13) 5.175 (13) 5.066 (14) 4.977 (14)
max total bound gap/min degree 20.476 (49) 20.347 (41) 20.154 (45) 19.891 (45) 19.559 (45) 19.164 (45) 18.709 (47) 18.201 (47) 17.656 (47) 17.070 (47)
max total bound gap/max exp. dist. 20.474 (39) 20.351 (45) 20.157 (46) 19.879 (43) 19.525 (41) 19.095 (40) 18.606 (40) 18.065 (40) 17.459 (40) 16.816 (40)
max total bound gap/max prev. exp. dist. 20.474 (38) 20.347 (40) 20.149 (41) 19.879 (44) 19.540 (44) 19.117 (44) 18.618 (44) 18.084 (44) 17.493 (43) 16.875 (44)
max total bound gap/max total bound gap 20.474 (37) 20.357 (48) 20.170 (47) 19.912 (48) 19.578 (47) 19.182 (48) 18.706 (46) 18.177 (46) 17.591 (46) 16.967 (46)
max total bound gap/median exp. dist. 20.476 (48) 20.351 (44) 20.148 (39) 19.869 (38) 19.515 (39) 19.085 (38) 18.587 (38) 18.030 (38) 17.432 (38) 16.783 (38)
max total bound gap/min exp. dist. 20.479 (52) 20.422 (52) 20.362 (52) 20.297 (52) 20.227 (52) 20.158 (51) 20.081 (51) 20.008 (51) 19.931 (51) 19.852 (51)
max total bound gap/random index 20.475 (41) 20.347 (42) 20.148 (40) 19.871 (40) 19.512 (38) 19.087 (39) 18.594 (39) 18.037 (39) 17.448 (39) 16.804 (39)
random index/max degree 16.248 (13) 11.815 (14) 8.985 (14) 7.204 (13) 6.047 (13) 5.294 (12) 4.745 (12) 4.374 (12) 4.089 (12) 3.876 (11)
random index/min degree 20.469 (32) 20.324 (31) 20.068 (30) 19.675 (30) 19.122 (29) 18.425 (23) 17.607 (19) 16.722 (19) 15.792 (20) 14.879 (21)
random index/max exp. dist. 20.456 (26) 20.284 (23) 20.002 (25) 19.585 (24) 19.035 (23) 18.361 (20) 17.611 (20) 16.812 (26) 16.031 (27) 15.269 (27)
random index/max prev. exp. dist. 20.455 (22) 20.290 (26) 20.014 (27) 19.607 (27) 19.088 (26) 18.480 (34) 17.815 (35) 17.127 (35) 16.418 (34) 15.721 (34)
random index/max total bound gap 20.475 (42) 20.352 (46) 20.151 (42) 19.875 (41) 19.528 (42) 19.098 (41) 18.610 (42) 18.066 (42) 17.467 (41) 16.825 (41)
random index/median exp. dist. 20.455 (20) 20.281 (20) 19.984 (19) 19.556 (20) 18.967 (17) 18.284 (17) 17.510 (18) 16.675 (18) 15.709 (17) 14.689 (17)
random index/min exp. dist. 20.477 (51) 20.410 (51) 20.332 (50) 20.250 (50) 20.157 (50) 20.061 (50) 19.948 (50) 19.829 (49) 19.700 (49) 19.570 (49)
random index/random index 20.456 (23) 20.287 (25) 19.997 (23) 19.552 (19) 18.965 (16) 18.260 (16) 17.443 (16) 16.555 (16) 15.619 (16) 14.699 (18)
max bound gap 20.456 (24) 20.283 (21) 19.997 (22) 19.574 (22) 19.029 (22) 18.369 (22) 17.680 (29) 16.962 (29) 16.228 (30) 15.524 (30)
max total degree 14.995 (12) 8.042 (07) 6.510 (05) 5.781 (09) 5.247 (09) 4.631 (06) 4.363 (09) 4.140 (10) 3.903 (10) 3.742 (10)
min total degree 20.475 (43) 20.332 (37) 20.075 (36) 19.686 (33) 19.149 (35) 18.473 (33) 17.654 (24) 16.759 (23) 15.834 (23) 14.903 (25)
max combined total bound gap 20.474 (40) 20.356 (47) 20.171 (48) 19.909 (47) 19.579 (48) 19.176 (46) 18.701 (45) 18.166 (45) 17.581 (45) 16.946 (45)
random pair 20.455 (21) 20.284 (22) 19.994 (21) 19.566 (21) 18.993 (21) 18.298 (18) 17.495 (17) 16.644 (17) 15.733 (19) 14.819 (20)

Worst strategy Random pair Best strategy

Coloring by column:

70

333

Chapter 3. 3.9. Discussion and future research

3.8.1 Performance max degree

An important observation from both Section 3.7 and Table 3.6, is that max
degree is a good criterion. The best performing methods often include this
criterion. We briefly want to discuss why we believe that choosing a sample
that has been already chosen often (max degree) is beneficial. In order to
predict the actual distance, a lower and upper bound is established using
the triangle inequality (Section 3.4.2). When the distance is labeled between
i and j, the triangle inequality can be used to derive information about
the distances between i and k if the distance between j and k is known.
Therefore, labeling a sample with the highest degree, gives a lot of possible
triangle inequality combinations that can be made, which could provide
much information. This is why we believe that this criterion performs really
well.

3.9 Discussion and future research

This research can be viewed as a pioneering contribution and is a significant
first step in APDL. Below we elaborate on both the shortcomings of the
approach proposed, and the related challenges for further research.

Perfect expert: It is assumed that the expert does not make any mistake
in determining the distance between two instances. This is a common, yet
unreasonably optimistic, assumption in AL research. Settles [156] states
that “we have often assumed that there is a single infallible annotator whose
labels can be trusted” and views this assumption as one of the six practical
challenges for AL. How to deal with a noisy expert remains a critical research
problem. A way of mitigating the mistakes of the expert in APDL is to
allow some ϵ-boundary around the labels and incorporating this into the
approximation bounds. Still, there are many more ways to deal with an
imperfect expert, which should be investigated. Using properties of a metric,
mistakes can be spotted and reevaluated.

Underlying distance metric: In all experiments, the Euclidean distance
was used as underlying distance metric. This might affect the conclusions that
were drawn, as alternative distance metrics might be favorable for different
strategies. In future research, this could be investigated by changing the
underlying distance metric and evaluating if the same strategies are always
performing the best.

Complex strategies: In our research, we have examined many selection
algorithms based on straightforward criteria. Newer and more complex

71

333

Chapter 3. 3.9. Discussion and future research

strategies could be developed, reducing the prediction error even more.
Consider for example mixing strategies, where one strategy works well in the
beginning (e.g., max total bound gap / max degree) and switch to another
strategy (e.g., max bound gap) that works better later on. Another way,
would be to select each round a specific strategy with a certain probability.
Additionally, transfer learning [62, 201] can be applied to train an even
more advanced model (e.g., a neural network) using labeled datasets. Such a
model can be trained to choose a good strategy at a specific time, where the
new prediction error can be used to either reward or penalize the selection.
If the chosen strategy selected a pair that gave a lot of insight, the model
can be updated to select this strategy more often in similar cases. When
properly trained, the model could be applied to new datasets to determine
the selection strategy. Whether this is a good approach, depends on the
ability of the model to transfer the learned information over to the new
dataset.

Running time: In this research, we have used straightforward criteria that
are easy to compute. However, when more complex strategies are designed,
running time could start to play a role. The importance of running time is
mostly task dependent. The cost of coming up with the next query should
be balanced with the cost of the labeling done by the expert. We consider
APDL to be particularly useful in situations where the expert can only be
queried a limited number of times (due to high costs). However, running time
is something that should be considered in future work when more complex
strategies are used. When a strategy is too hard to compute, approximation
algorithms could be developed. The average running time of each strategy
can be seen in Table 3.7. We believe that the difference in running time
can mostly be explained by the following phenomenon. When there are
more samples that satisfy the selection criterion, a random selection is made
between these samples. This function takes more time, when there are
more samples to choose from. Consider, for example, the difference between
random index / max degree and random index / min degree that take on
average 685 and 978 seconds, respectively. There are considerably more
samples with the same minimum degree compared to the maximum degree.
In Table 3.7, we observe that strategies consistently are slower when they
have more samples that satisfy the criterion.

Space complexity: In the experiments, at most M = 1,000 samples
were used, as this already leads to 499,500 different pairs. To store the
approximation bounds for each pair, O(M2) is necessary. This can quickly
become infeasible for large M . Although rather time expensive, these

72

333

Chapter 3. 3.9. Discussion and future research

Table 3.7: Average running time: The total running time of each
strategy averaged over all repetitions and datasets (including cifar10 &
mnist). The ranking is noted in brackets. Coloring is done linearly between
the worst and best score.

Strategy Time (s) Strategy Time (s) Strategy Time (s)
max degree/max degree 0720 (16) max degree/min degree 0729 (19) max degree/max exp. dist. 0678 (09)
max degree/max prev. exp. dist. 0741 (20) max degree/max total bound gap 0701 (13) max degree/median exp. dist. 0681 (11)
max degree/min exp. dist. 0706 (14) max degree/random index 0678 (10) linked/max degree 0722 (18)
linked/min degree 1009 (41) linked/max exp. dist. 1247 (49) linked/max prev. exp. dist. 1170 (47)
linked/max total bound gap 0947 (36) linked/median exp. dist. 0915 (32) linked/min exp. dist. 0583 (05)
linked/random index 0995 (40) min degree/max degree 0751 (21) min degree/min degree 1052 (45)
min degree/max exp. dist. 1228 (48) min degree/max prev. exp. dist. 0889 (27) min degree/max total bound gap 0891 (29)
min degree/median exp. dist. 1070 (46) min degree/min exp. dist. 0583 (04) min degree/random index 1022 (43)
max prev. exp. dist./max degree 0710 (15) max prev. exp. dist./min degree 0902 (30) max prev. exp. dist./max exp. dist. 1303 (51)
max prev. exp. dist./max prev. exp. dist. 1352 (53) max prev. exp. dist./max total bound gap 0868 (24) max prev. exp. dist./median exp. dist. 0828 (22)
max prev. exp. dist./min exp. dist. 0606 (07) max prev. exp. dist./random index 0944 (35) max total bound gap/max degree 0661 (08)
max total bound gap/min degree 0921 (34) max total bound gap/max exp. dist. 1274 (50) max total bound gap/max prev. exp. dist. 0882 (26)
max total bound gap/max total bound gap 0917 (33) max total bound gap/median exp. dist. 0837 (23) max total bound gap/min exp. dist. 0575 (02)
max total bound gap/random index 0889 (28) random index/max degree 0685 (12) random index/min degree 0978 (39)
random index/max exp. dist. 1321 (52) random index/max prev. exp. dist. 0878 (25) random index/max total bound gap 0911 (31)
random index/median exp. dist. 0960 (38) random index/min exp. dist. 0577 (03) random index/random index 0956 (37)
max bound gap 1017 (42) max total degree 0720 (17) min total degree 1044 (44)
max combined total bound gap 0598 (06) random pair 0563 (01)

Worst strategy Best strategy

Coloring:

approximation bounds could be calculated every time they are needed. Yet,
for large problems, a better solution is necessary. A major insight of this
research is that choosing based on max degree consistently performs well.
This criterion does not use any information from the approximation bounds,
which is why this is ideal for large problems, as the approximation bounds
are only necessary for the final predictions. More research is necessary to
optimize large APDL problems.

Using feature values: It was assumed in Section 3.2.2 that no feature
values should be used. In this way, the observations from this research are
not dependent on the application domain. Furthermore, if new methods
are developed that do use feature values, our tested selection strategies can
function as a good baseline. Adding information (using the feature values)
should only increase the performance of an APDL method. Thus, when
a model is performing worse than any one of our suggested strategies, it
should be considered as a major warning sign. Additionally, during the
APDL process, a model could be used to evaluate if the feature values could
help the prediction. If so, feature values could be introduced into the query
selection after some rounds.

73

333

Chapter 3. 3.10. Summary

Gaining insight: Demystifying AL can give us critical insights. Which
samples are useful to query? Can we understand why? Can we explain why
certain selection algorithms perform better? Is the clusteredness/balanced-
ness of a dataset relevant? Are there better indicators for the usefulness of
a sample query? Answering these kinds of questions could lead to better
performing models.

Error reduction rate: The reduction rate in prediction error instigates
many exciting research opportunities. Can guarantees be derived about
the speed with which the prediction error converges for certain strategies?
It would be especially useful for practical applications to know how many
labels should be gathered to get at most a prediction error of δ > 0. To
derive such a guarantee, either theoretical proof or substantial numerical
evidence is necessary. Additionally, the effect of a tight or loose initial upper
bound for the maximum distance on the convergence speed could also be
investigated.

Additional application: We think that APDL can also be used to de-
termine the complexity of a dataset. When a strategy needs more rounds
to attain a certain prediction error, the dataset might be more complex,
as it is harder to learn the pairwise distances. In this way, APDL can
even be useful for fully labeled datasets. Which strategies to use and how
complexity is exactly quantified with APDL are all interesting subjects for
future research.

Prediction model: Recall that there are two critical components in APDL,
namely ‘Which pair is queried each round?’ and ‘How to use this information
to make the best prediction?’ The focus of our research was to answer the
first question. To make a prediction of a distance, we used the upper
and lower bound approximation and took the average as prediction (see
Definition 3.6.1). Therein lies a large opportunity for improvement, as a
more advanced prediction model could improve the final prediction as well
as the query selection. Using a tuned weighted average of the upper and
lower approximation could already perform better.

3.10 Summary

We started by introducing the problem of APDL, where the goal is to actively
learn the pairwise distances between all instances. We established upper
and lower bound approximations using properties of a distance function.
Furthermore, we presented an update rule that automatically updates the
upper and lower bounds using the newest labeled distance. Then, we provided

74

333

Chapter 3. 3.10. Summary

fourteen selection criteria, which gave us 53 query strategies combined.
These strategies do not use feature values, making the observations from
the experiments domain-independent. This makes these selection strategies
ideal candidates for a baseline in future research.

The experiments led to valuable new insights. These observations were tested
by evaluating all strategies on two real world datasets (cifar10 & mnist).
We found multiple strategies that perform better than simply randomly
selecting a pair (Observation 1). This shows that it is indeed possible to
‘smartly’ select the indices. We determined that the performance of the
strategies was not very dependent on the datasets (Observation 7). The
performance only changed somewhat in a highly unbalanced case. We
identified max degree to be a consistently good criterion. In Section 3.8.1,
we explained why we believe that this criterion is useful. Consequently,
we also discovered which strategies should not be chosen due to general
bad performance (Observation 4). Choosing the right selection strategy
could potentially save many hours and resources. The findings from the
experiments are not dependent on the dimensionality of the data or (noisy)
feature values, as feature values were not taken into account. However, more
dimensions could lead to higher sparsity (curse of dimensionality), which is
why a mix of sparse and dense datasets were used.

75

Part II
Benchmarking Binary

Prediction Models

77

4444

Chapter 4
The Dutch Draw: Constructing a Universal

Baseline for Binary Prediction Models

Contents

4.1 Introduction . 81

4.2 Preliminaries . 84

4.3 Dutch Draw . 86

4.4 Dutch Draw in practice . 96

4.5 Discussion and conclusion 97

4.A Mathematical derivations 101

Based on Etienne van de Bijl, Jan Klein, Joris Pries, Sandjai Bhulai,
Mark Hoogendoorn, and Rob van der Mei (2022): “The Dutch
Draw: Constructing a universal baseline for binary prediction
models”. Under revision. [14]

79

4444

Chapter 4. Abstract

Abstract

Novel prediction methods should always be compared to a base-
line to know how well they perform. Without this frame of
reference, the performance score of a model is basically mean-
ingless. What does it mean when a model achieves an F1 of
0.8 on a test set? A proper baseline is needed to evaluate the
‘goodness’ of a performance score. Comparing with the latest
state-of-the-art model is usually insightful. However, being state-
of-the-art can change rapidly when newer models are developed.
Contrary to an advanced model, a simple dummy classifier could
be used. However, the latter could be beaten too easily, making
the comparison less valuable. Furthermore, most existing base-
lines are stochastic and need to be computed repeatedly to get a
reliable expected performance, which could be computationally
expensive. We present a universal baseline method for all binary
classification models, named the Dutch Draw (DD). This ap-
proach weighs simple classifiers and determines the best classifier
to use as a baseline. We theoretically derive the DD baseline
for many commonly used evaluation measures and show that in
most situations it reduces to (almost) always predicting either
zero or one. Summarizing, the DD baseline is: (1) general, as it
is applicable to any binary classification problems; (2) simple, as
it is quickly determined without training or parameter-tuning;
(3) informative, as insightful conclusions can be drawn from the
results. The DD baseline serves two purposes. First, to enable
comparisons across research papers by this robust and universal
baseline. Secondly, to provide a sanity check during the develop-
ment process of a prediction model. It is a major warning sign
when a model does not outperform the DD baseline.

80

4444

Chapter 4. 4.1. Introduction

4.1 Introduction

A typical data science project can be crudely simplified to the following
steps: (1) comprehending the problem context, (2) understanding the data,
(3) preparing the data, (4) modeling, (5) evaluating the model, and (6)
deploying the model [189]. Before deploying a new model, it should be
tested whether it meets certain predefined success criteria. A baseline plays
an essential role in this evaluation, as it gives an indication of the actual
performance of a model.

However, which baseline should be selected? A good baseline is desirable,
but what explicitly makes a baseline ‘good’? Comparing with the latest
state-of-the-art model is usually insightful. However, being state-of-the-art
can change rapidly when newer models are developed. Reproducibility of a
model is also often a problem, because code is not published or large amounts
of computational resources are required to retrain the model. Furthermore,
most existing baselines are stochastic and need to be computed repeatedly
to get a reliable expected performance, which could be computationally
expensive. These aspects make it hard or even impossible to compare older
results with newer research. Nevertheless, it is important to stress that the
comparison with a state-of-the-art model still has merit. However, we are
pleading for an additional universal baseline that can be computed quickly
(without the need for training) and can make it possible to compare results
across research domains and papers. With that aim in mind, we outline
three principal properties that any universal baseline should have: generality,
simplicity, and informativeness.

Generality In research, a new model is commonly compared to a limited
number of existing models that are used in the same field. Although these
are usually carefully selected, they are still subjectively chosen. Take binary
classification, in which the objective is to label each observation either zero or
one. Here, one could already select a decision tree [119], random forest [40],
variants of naive Bayes [182], k-nearest neighbors [1], support vector machine
[157], neural network [170], or logistic regression model [154] to evaluate
the performance. These models are often trained specifically for a problem
instance with parameters tuned for optimal performance in that specific case.
Hence, these methods are not general. One could not take a decision tree
that is used for determining bankruptcy [119] and use it as a baseline for a
pathological voice detection problem [122]. At least structural adaptations

81

4444

Chapter 4. 4.1. Introduction

and retraining are necessary. A good standard baseline should be applicable
to all binary classification problems, irrespective of the domain.

Simplicity A universal baseline should not be too complex. But, it
is hard to determine for a measure if a baseline is too complex or not.
Essentially, two components are critical in our view: (1) computational
time and (2) explainability. It is necessary for practical applications that
the baseline can be determined relatively fast. For example, training a
neural network many times to generate an average baseline or optimizing the
parameters of a certain model could take too much valuable time. Secondly, if
a baseline is very complex, it can be harder to draw meaningful conclusions. Is
it expected that a new model is outperformed by this ingeniously complicated
baseline, or is it exactly what one would expect? This leads to the last
property of a good standard baseline.

Informativeness A baseline should be informative. When a method
achieves a score higher or lower than the baseline, clear conclusions need
to be drawn. Is it obvious that the baseline should be beaten? Consider
the athletic event high jump, where an athlete needs to jump over a bar
at a specific height. If the bar is set too low, anyone can jump over it. If
the bar is too high, no one makes it. Both situations do not give us any
additional information to distinguish a professional athlete from a regular
amateur. The bar should be placed at a height where the professional could
obviously beat it, but the amateur can not. Drawing from this analogy, a
baseline should be obviously beaten by any developed model. If not, this
should be considered a major warning sign.

Our research focuses on finding such a general, simple and informative
baseline for binary classification problems. However, the three properties
should also hold for constructing baselines in other supervised learning
problems, such as multiclass classification and regression. Two methods
that immediately come to mind are dummy classifiers and optimal threshold
classifiers. They could be ideal candidates for our additional universal
baseline.

Dummy classifier A dummy classifier is a non-learning model that makes
predictions following a simple set of rules. For example, always predicting
the most frequent class label or predicting each class with some probability.
A dummy classifier is simple and general, but it is not always informative.
The information gained by performing better than a simple dummy classifier

82

4444

Chapter 4. 4.1. Introduction

can even be zero. With the plethora of dummy classifiers, the selection of
one of those classifiers is also arbitrary and questionable.

Optimal threshold classifier Koyejo et al. [91] determined for a large
family of binary performance measures that the optimal classifier consists
of a sign function with a threshold tailored to each specific measure. To
determine the optimal classifier, it is necessary to know or approximate
P(Y = 1|X = x), which is the probability that the binary label Y is 1
given the features X = x. Lipton et al. [106] had a similar approach, but
they only focused on the F1 score. The conditional probabilities need to
be learned from training data. However, this leads to arbitrary selections,
as a model is necessary to approximate these probabilities. It is a clever
approach, but unfortunately, there is no clear-cut best approximation model
for different research domains. If the approximation model is not accurate,
the optimal classifier is based on wrong information, which makes it hard to
draw meaningful conclusions from this approach.

Both the dummy classifier and the optimal threshold classifier have their
strengths and weaknesses. In this chapter, we introduce a novel baseline
approach, named the Dutch Draw (DD). The DD eliminates these weak-
nesses, whilst keeping their strengths. The DD can be seen as a dummy
classifier on steroids. Instead of arbitrarily choosing a dummy classifier, we
mathematically derive which classifier, from a family of classifiers, has the
best expected performance. Also, this expected performance can be directly
determined, making it really fast to obtain the baseline. The DD baseline
is: (1) applicable to any binary classification problem; (2) reproducible;
(3) simple; (4) parameter-free; (5) more informative than any single dummy
baseline; (6) and an explainable minimal requirement for any new model.
This makes the DD an ideal candidate for a universal baseline in binary
classification.

Our contributions are as follows: (1) we introduce the DD and explain
why this method produces a universal baseline that is general, simple and
informative for any binary classification problem; (2) we provide the mathe-
matical properties of the DD for many evaluation measures and summarize
them in several tables; (3) we demonstrate how the DD baseline can be
used in practice to identify when models should definitely be reconsidered;
(4) and we made the DD available in a Python package [134].

83

4444

Chapter 4. 4.2. Preliminaries

4.2 Preliminaries

Before formulating the DD, we need to introduce necessary notation, and
simultaneously, provide elementary information on binary classification. This
is required to explain how binary models are evaluated. Then, we discuss
how performance measures are constructed for binary classification and we
examine the ones that are most commonly used.

4.2.1 Binary classification

The goal of binary classification is to learn (from a dataset) the relationship
between the input variables and the binary output variable. When the
dataset consists of M ∈ N>0 observations, let M := {1, . . . ,M} be the
set of observation indices. Each instance, denoted by xi, has K ∈ N>0

explanatory feature values. These features can be categorical or numerical.
Without loss of generality, we assume that xi ∈ RK for all i ∈M. Moreover,
each observation has a corresponding output value yi ∈ {0, 1}. Now, let
X := [x1 . . .xM]T ∈ RM×K denote the matrix with all observations and
their explanatory feature values and let y = (y1, . . . , yM) ∈ {0, 1}M be the
response vector. The complete dataset is then represented by (X,y). We
call the observations with response value 1 ‘positive’, while the observations
with response value 0 are ‘negative’. Let P denote the number of positives
and N the number of negatives. Note that by definition P +N =M must
hold.

4.2.2 Evaluation measures

An evaluation measure quantifies the prediction performance of a trained
model. We categorize the evaluation measures into two groups: base measures
and performance measures [28]. Since there are two possible values for both
the predicted and the true classes in binary classification, there are four
base measures: the number of True Positives (TP), False Positives (FP),
False Negatives (FN) and True Negatives (TN). Performance measures are
a function of one or more these four base measures. To shorten notation,
let P̂ := TP + FP and N̂ := TN + FN denote the number of positively and
negatively predicted instances respectively.

All considered performance measures and base measures are shown in Ta-
ble 4.1. Also their abbreviations, possibly alternative names, their definitions
and corresponding codomains are presented in Table 4.1. The codomains
show in what set the measure can theoretically take values (without consid-
ering the exact values of P , N , P̂ and N̂). In Section 4.3, the case-specific

84

4444

Chapter 4. 4.2. Preliminaries

codomains are provided when we discuss the evaluation measures in more
detail. Finally, note that the list is not exhaustive, but it contains most of
the commonly used evaluation measures.

Table 4.1: Definitions and codomains of evaluation measures

Measure Definition Codomain

True Positives (TP) TP N0

True Negatives (TN) TN N0

False Negatives (FN) FN N0

False Positives (FP) FP N0

True Positive Rate (TPR), Recall, Sensitivity TPR = TP
P [0, 1]

True Negative Rate (TNR), Specificity, Selectivity TNR = TN
N [0, 1]

False Negative Rate (FNR), Miss Rate FNR = FN
P [0, 1]

False Positive Rate (FPR), Fall-out FPR = FP
N [0, 1]

Positive Predictive Value (PPV), Precision PPV = TP
P̂

[0, 1]

Negative Predictive Value (NPV) NPV = TN
N̂

[0, 1]

False Discovery Rate (FDR) FDR = FP
P̂

[0, 1]

False Omission Rate (FOR) FOR = FN
N̂

[0, 1]

Fβ score (Fβ) Fβ = (1 + β2)/
(

1
PPV + β2

TPR

)
[0, 1]

Youden’s J Statistic/Index (J), (Bookmaker) Informedness J = TPR + TNR− 1 [−1, 1]

Markedness (MK) MK = PPV + NPV− 1 [−1, 1]

Accuracy (Acc) Acc = TP+TN
M [0, 1]

Balanced Accuracy (BAcc) BAcc = 1
2(TPR + TNR) [0, 1]

Matthews Correlation Coefficient (MCC) MCC = TP·TN−FP·FN√
P̂ ·N̂ ·P·N

[−1, 1]

Cohen’s Kappa (κ) κ = Po−Pe
1−Pe

, with Po = Acc,Pe =
P̂ ·P+N̂ ·N

M2 [−1, 1]

Fowlkes-Mallows Index (FM), G-mean 1 FM =
√

TPR · PPV [0, 1]

G-mean 2 (G(2)) G(2) =
√

TPR · TNR [0, 1]

Prevalence Threshold (PT) PT =
√

TPR·FPR−FPR
TPR−FPR [0, 1]

Threat Score (TS), Critical Success Index TS = TP
P+FP [0, 1]

Ill-defined measures

Not every evaluation measure is well-defined. Often, the problem occurs
due to division by zero. For example, the True Positive Rate (TPR) defined
as TPR = TP/P cannot be calculated whenever P = 0. Therefore, we
have made assumptions for the allowed values of P , N , P̂ , and N̂ . These
are shown in Table 4.2. One exception is the Prevalence Threshold (PT)

85

4444

Chapter 4. 4.3. Dutch Draw

[11], where the denominator is zero if TPR is equal to the False Positive
Rate (defined as FPR = FP/N). Depending on the classifier, this situation
could occur regularly. Therefore, PT is omitted throughout the rest of this
research.

Table 4.2: Assumptions on domains P , N , P̂ and N̂ : Some measures
are not defined if P , N , P̂ or N̂ is equal to zero. These domain requirements
are therefore necessary (always M > 0).

Domain requirement for:

Measure P N P̂ N̂

TP, TN, FN, FP, Acc, κ - - - -

TPR, FNR, TS > 0 - - -

TNR, FPR - > 0 - -

PPV, FDR - - > 0 -

NPV, FOR - - - > 0

Fβ , FM > 0 - > 0 -

J, BAcc, G(2) > 0 > 0 - -

MK - - > 0 > 0

MCC > 0 > 0 > 0 > 0

4.3 Dutch Draw

In this section, we introduce the Dutch Draw (DD) framework and discuss
how this method is able to provide a universal baseline for any evaluation
measure. This baseline is general, simple, and informative, which is crucial
for a good baseline, as we explained in Section 4.1. First, we provide the
family of DD classifiers, and thereafter we explain how the optimal classifier
generates the baseline.

4.3.1 Dutch Draw classifiers

The goal of our research is to provide a universal baseline for any evaluation
measure in binary classification. The DD baseline comes from choosing the
best DD classifier. Before we discuss what ‘best’ actually entails, we have to
define the DD classifier in general. This is the function σθ : RM×K → {0, 1}M
with input an evaluation dataset with M observations and K feature values
per observation. The function generates the predictions for these observations
by outputting a vector of M binary predictions. It is described in words

86

4444

Chapter 4. 4.3. Dutch Draw

as:

σθ(X) :={take a random sample without replacement of size ⌊M · θ⌉
of rows from X and assign 1 to these observations and 0

to the remaining rows}.

Here, ⌊·⌉ is the function that rounds its argument to the nearest integer. The
parameter θ ∈ [0, 1] controls what percentage of observations are predicted
as positive. The mathematical definition of σθ is given by:

σθ(X) := (1E(i))i∈M with E ⊆M uniformly drawn s.t. |E| = ⌊M · θ⌉,

with (1E(i))i∈M the vector with ones in the positions in E and zeroes
elsewhere. Note that a classifier σθ does not learn from the features in the
data, just as a dummy classifier. The set of all DD classifiers {σθ : θ ∈ [0, 1]}
is the complete family of models that classify a random sample of any size
as positive.

Given a DD classifier, the number of predicted positives P̂ depends on θ
and is given by P̂θ := ⌊M · θ⌉ and the number of predicted negatives is
N̂θ :=M −⌊M · θ⌉. To be specific, these two numbers are integers, and thus,
different values of θ can lead to the same value of P̂θ. Therefore, we introduce
the parameter θ∗ := ⌊M ·θ⌉

M as the discretized version of θ. Furthermore, we
define:

Θ∗ :=

{
⌊M · θ⌉
M

: θ ∈ [0, 1]

}
=

{
0,

1

M
, . . . ,

M − 1

M
, 1

}
as the set of all unique values that θ∗ can obtain for all θ ∈ [0, 1].

Next, we derive mathematical properties of the DD classifier for every
evaluation measure in Table 4.1 (except PT). Note that the DD is stochastic,
thus we examine the distribution of the evaluation measure. Furthermore,
we also determine the range and expectation of a DD classifier.

Distribution

The distributions of the base measures (see Section 4.2.2) are directly deter-
mined by σθ. Consider for example TP: the number of positive observations
that are also predicted to be positive. In a dataset of M observations with
P labeled positive, ⌊M · θ⌉ random observations are predicted as positive in

87

4444

Chapter 4. 4.3. Dutch Draw

the DD approach. This implies that TPθ is hypergeometrically distributed
with parameters M , P and ⌊M · θ⌉, as the classifier randomly draws ⌊M · θ⌉
samples without replacement from a population of size M , where P samples
are labeled positive. Thus:

P(TPθ = s) =

(Ps)·(

M−P
⌊M·θ⌉−s)

(M
⌊M·θ⌉)

if s ∈ D(TPθ),

0 else,

where D(TPθ) is the domain of TPθ. The definition of this domain is given
in Equation (4.1).

The other three base measures are also hypergeometrically distributed
following similar reasoning. This leads to:

TPθ ∼ Hypergeometric(M,P, ⌊M · θ⌉),

FPθ ∼ Hypergeometric(M,N, ⌊M · θ⌉),

FNθ ∼ Hypergeometric(M,P,M − ⌊M · θ⌉),

TNθ ∼ Hypergeometric(M,N,M − ⌊M · θ⌉).

Note that these random variables are not independent. In fact, they can all
be written in terms of TPθ. This is a crucial effect of the DD approach, as it
reduces the formulations to only a function of a single variable. Consequently,
most evaluation measures can be written as a linear combination of only
TPθ. With only one random variable, theoretical derivations and optimal
classifiers can be determined. As mentioned before, TPθ + FNθ = P and
TNθ +FPθ = N =M − P , and we also have TPθ +FPθ = ⌊M · θ⌉, because
this denotes the total number of positively predicted observations. These
three identities are linear in TPθ, thus each base measure can be written in
the form Xθ (a, b) := a ·TPθ + b with a, b ∈ R. Additionally, let fXθ

(a, b) be
the probability distribution of Xθ (a, b). Then, by combining the identities,
we get:

TPθ = TPθ, (B1)

FPθ = P̂θ − TPθ, (B2)

FNθ = P − TPθ, (B3)

TNθ = N − P̂θ + TPθ, (B4)

88

4444

Chapter 4. 4.3. Dutch Draw

with P̂θ := ⌊M · θ⌉.

Example: distribution Fβ score To illustrate how the probability
function fXθ

(a, b) can directly be derived, we consider the Fβ score F(β)
θ [39].

It is the weighted harmonic average between the True Positive Rate (TPRθ)
and the Positive Predictive Value (PPVθ). The latter two performance
measures are discussed extensively in Sections 4.A.5 and 4.A.9, respectively.
The Fβ score balances predicting the actual positive observations correctly
(TPRθ) and being cautious in predicting observations as positive (PPVθ).
The factor β > 0 indicates how much more TPRθ is weighted compared to
PPVθ. The Fβ score is commonly defined as:

F(β)
θ =

1 + β2

1
PPVθ

+ β2

TPRθ

.

By substituting PPVθ and TPRθ by their definitions (see Table 4.1) and
using Equations (B1) and (B2), we get:

F(β)
θ =

(1 + β2)TPθ

β2 · P + ⌊M · θ⌉
.

Since PPVθ is only defined when P̂θ = ⌊M · θ⌉ > 0 and TPRθ is only
defined when P > 0, we need for F(β)

θ that both these restrictions hold. The
definition of F(β)

θ is linear in TPθ and can therefore be formulated as:

F(β)
θ = Xθ

(
1 + β2

β2 · P + ⌊M · θ⌉
, 0

)
.

Range

The values that Xθ (a, b) can attain depends on a and b, and the domain
of TPθ. Without restriction, the maximum number that TPθ can be is P .
Then, all positive observations are also predicted to be positive. However,
when θ is small enough such that ⌊M ·θ⌉ < P , then only ⌊M ·θ⌉ observations
are predicted as positive. Consequently, TPθ can only reach the value ⌊M ·θ⌉
in this case. Hence, in general, the upper bound of the domain of TPθ is
min{P, ⌊M · θ⌉}. The same reasoning holds for the lower bound: when
θ is small enough, the minimum number of TPθ is 0, since all positive
observations can be predicted as negative. However, when θ gets large

89

4444

Chapter 4. 4.3. Dutch Draw

enough, positive observations have to be predicted positive even if all M −P
negative observations are predicted positive. Thus, in general, the lower
bound of the domain is max{0, ⌊M · θ⌉ − (M − P)}. Now, let D(TPθ) be
the domain of TPθ, then:

D(TPθ) :=
{
i ∈ N0 : max{0,

⌊M · θ⌉ − (M − P)} ≤ i ≤ min{P, ⌊M · θ⌉}
}
. (4.1)

Consequently, the range of Xθ (a, b) is given by

R (Xθ (a, b)) := {a · i+ b}i∈D(TPθ)
. (R)

Expectation

The introduction of Xθ (a, b) allows us to write its expected value in terms
of a and b. This statistic is required to calculate the actual baseline. Since
TPθ has a Hypergeometric(M,P, ⌊M · θ⌉) distribution, its expected value is
known and given by

E[TPθ] =
⌊M · θ⌉
M

· P.

Next, we obtain the following general definition for the expectation of
Xθ (a, b) by

E[Xθ (a, b)] = a · E[TPθ] + b = a · ⌊M · θ⌉
M

· P + b. (□)

This rule is consistently used to determine the expectation for each mea-
sure.

Example: expectation Fβ score To demonstrate how the expectation
is calculated for a performance measure, we again consider F(β)

θ .

It is linear in TPθ with a = (1 + β2)/(β2 · P + ⌊M · θ⌉) and b = 0, and so,
its expectation is given by:

E[F(β)
θ] = E

[
Xθ

(
1 + β2

β2 · P + ⌊M · θ⌉
, 0

)]
(□)
=

1 + β2

β2 · P + ⌊M · θ⌉
· E[TPθ] + 0

=
⌊M · θ⌉ · P · (1 + β2)

M · (β2 · P + ⌊M · θ⌉)
=

(1 + β2) · P · θ∗

β2 · P +M · θ∗
. (4.2)

90

4444

Chapter 4. 4.3. Dutch Draw

A full overview of the distribution and mean of all considered base and
performance measures is given in Table 4.3. All the calculations performed
to derive the corresponding distributions and expectations are provided in
Appendix A.

4.3.2 Optimal Dutch Draw classifier

Next, we discuss how the DD baseline will ultimately be derived. In order
to do so, an overview is presented in Figure 4.1. Starting with the definition
of the DD classifiers in Section 4.3.1 and determining their expectations for
commonly used measures (see Table 4.3), we are now able to identify the
optimal DD classifier. Given a performance measure and dataset, the optimal
DD classifier is found by optimizing (taking the minimum or maximum of)
the associated expectation for θ ∈ [0, 1].

§4.3.1

All DD classifiers

Table 4.3
Expectations of
all DD classifiers

§4.3.2

Optimal DD classifier
Table 4.4

DD baseline

(1)

(2)

(3)

Figure 4.1: Road to DD baseline: This is an overview of how the DD
baseline is determined. (1) all expectations are derived; (2) the expectation
is maximized/minimized; (3) the performance of the best DD classifier is
the DD baseline.

Dutch Draw baseline

The optimal DD classifiers and the corresponding DD baseline can be found
in Table 4.4. For many performance measures, it is optimal to always predict
positive or negative. In some cases, this is not allowed due to ill-defined
measures. Then, it is often optimal to only predict one sample differently.
For several other measures, almost all parameter values give the optimal
baseline. Next, we give an example to illustrate how the results of Table 4.4
are derived.

Example: DD baseline for the Fβ score To determine the DD baseline,
the extreme values of the expectation E[F(β)

θ] need to be identified. To do

91

4444

Chapter 4. 4.3. Dutch Draw

Table 4.3: Properties of performance measures for a DD classifier:
Expectation and distribution of each performance measure for a DD classifier
σθ with θ∗ = ⌊M ·θ⌉

M .

Distribution fXθ
(a, b)

Measure Expectation a b

TP θ∗ · P 1 0

TN (1− θ∗) (M − P) 1 M − P −M · θ∗

FN (1− θ∗)P −1 P

FP θ∗ (M − P) −1 M · θ∗

TPR θ∗ 1
P 0

TNR 1− θ∗ 1
M−P 1− M ·θ∗

M−P

FNR 1− θ∗ − 1
P 1

FPR θ∗ − 1
M−P

M ·θ∗
M−P

PPV P
M

1
M ·θ∗ 0

NPV 1− P
M

1
M(1−θ∗) 1− P

M(1−θ∗)

FDR 1− P
M − 1

M ·θ∗ 1

FOR P
M − 1

M(1−θ∗)
P

M(1−θ∗)

Fβ
(1+β2)θ∗·P
β2·P+M ·θ∗

1+β2

β2·P+M ·θ∗ 0

J 0 M
P (M−P) −M ·θ∗

M−P

MK 0 1
M ·θ∗(1−θ∗) − P

M(1−θ∗)

Acc (1−θ∗)(M−P)+θ∗·P
M

2
M 1− θ∗ − P

M

BAcc 1
2

M
2P (M−P)

1
2 −

M ·θ∗
2(M−P)

MCC 0 1√
P (M−P)θ∗(1−θ∗)

−
√
P ·θ∗√

(M−P)(1−θ∗)

κ 0 2
P (1−θ∗)+(M−P)θ∗ − 2θ∗·P

P (1−θ∗)+(M−P)θ∗

FM
√

θ∗·P
M

1√
P ·M ·θ∗ 0

G(2) - Nonlinear in TPθ Nonlinear in TPθ

TS - Nonlinear in TPθ Nonlinear in TPθ

92

4444

Chapter 4. 4.3. Dutch Draw

this, examine the following function f : [0, 1]→ [0, 1] defined as:

f(t) =
(1 + β2) · P · t
β2 · P +M · t

.

The relationship between f and E[F(β)
θ] is given as f(⌊M · θ⌉/M) = E[F(β)

θ].
To find the extreme values, we have to look at the derivative of f :

df(t)

dt
=

β2(1 + β2) · P 2

(β2 · P +M · t)2
.

It is strictly positive for all t in its domain, thus f is strictly increasing in t.
This means E[F(β)

θ] is non-decreasing in θ and also in θ∗, because the term
θ∗ = ⌊M · θ⌉/M is non-decreasing in θ. Hence, the extreme values of the
expectation of F(β)

θ are its border values:

min
θ∈[1/(2M),1]

{
E[F(β)

θ]
}
= min

θ∈[1/(2M),1]

{
(1 + β2) · P · ⌊M · θ⌉
M · (β2 · P + ⌊M · θ⌉)

}

=
(1 + β2) · P
M(β2 · P + 1)

,

max
θ∈[1/(2M),1]

{
E[F(β)

θ]
}
= max

θ∈[1/(2M),1]

{
(1 + β2) · P · ⌊M · θ⌉
M · (β2 · P + ⌊M · θ⌉)

}

=
(1 + β2) · P
β2 · P +M

.

Note that ⌊M · θ⌉ > 0 is a restriction for F(β)
θ , and hence the optima are

taken over the interval [1/(2M), 1]. Furthermore, the optimization values

93

4444

Chapter 4. 4.3. Dutch Draw

θmin and θmax for the extreme values are given by

θmin ∈ argmin
θ∈[1/(2M),1]

{
E[F(β)

θ]
}
= argmin

θ∈[1/(2M),1]

{
⌊M · θ⌉

β2 · P + ⌊M · θ⌉

}

=

{
[12 , 1] if M = 1[

1
2M , 3

2M

)
if M > 1,

θmax ∈ argmax
θ∈[1/(2M),1]

{
E[F(β)

θ]
}
= argmax

θ∈[1/(2M),1]

{
⌊M · θ⌉

β2 · P + ⌊M · θ⌉

}

=

[
1− 1

2M
, 1

]
,

respectively. Following this reasoning, the discrete forms θ∗min and θ∗max are
given by

θ∗min ∈ argmin
θ∗∈Θ∗\{0}

{
E[F(β)

θ∗]
}
= argmin

θ∗∈Θ∗\{0}

{
θ∗

β2 · P +M · θ∗

}
=

{
1

M

}
,

θ∗max ∈ argmax
θ∗∈Θ∗\{0}

{
E[F(β)

θ∗]
}
= argmax

θ∗∈Θ∗\{0}

{
θ∗

β2 · P +M · θ∗

}
= {1}.

The smallest E[F(β)
θ] is obtained when all observations except one are

predicted negative, while predicting everything positive yields the largest
E[F(β)

θ].

Non-linear performance measures We have shown that the DD baseline
is straightforward for performance measures that can be written in linear
terms of TPθ. However, there are measures, such as the G(2)

θ , where this is
not possible. This could make it hard to derive a closed-form expression for
the maximum expectation. Previously, we have seen in Table 4.4 that θ∗ = 0

or θ∗ = 1 was often optimal. Examining G(2)
θ closer, shows that simply

selecting θ∗ = 0 or θ∗ = 1 would result in the worst possible score. To show
that the optimal parameter is less straightforward in this case, we show the
optimal θ∗max in Figure 4.2 for a fixed M and increasing P . This shows that
θ = 0.5 is not always the optimal value. The optimal value is significantly
different when P ≪ N or P ≫ N . We believe that this can be explained
by the following reasoning: Observe that G(2) =

√
TPR · TNR is zero when

94

4444

Chapter 4. 4.3. Dutch Draw

Table 4.4: DD baseline: For many evaluation measures, the minimum
and maximum expected score of all allowed DD classifiers is determined,
which is the DD baseline. In this table, the baselines and the optimizing
parameters are given. “-” denotes that no closed-form expression was found.

Measure max{E} Θ⋆
max := argmax{E} min{E} Θ⋆

min := argmin{E}

TP P {1} 0 {0}

TN M − P {0} 0 {1}

FN P {0} 0 {1}

FP M − P {1} 0 {0}

TPR 1 {1} 0 {0}

TNR 1 {0} 0 {1}

FNR 1 {0} 0 {1}

FPR 1 {1} 0 {0}

PPV P
M Θ∗ \ {0} P

M Θ∗ \ {0}

NPV 1− P
M Θ∗ \ {1} 1− P

M Θ∗ \ {1}

FDR 1− P
M Θ∗ \ {0} 1− P

M Θ∗ \ {0}

FOR P
M Θ∗ \ {1} P

M Θ∗ \ {1}

Fβ
(1+β2)·P
β2·P+M

{1} (1+β2)·P
M(β2·P+1)

{
1
M

}
J 0 Θ∗ 0 Θ∗

MK 0 Θ∗ \ {0, 1} 0 Θ∗ \ {0, 1}

Acc max
{

P
M , 1− P

M

}
{[P < M

2]}
2 min

{
P
M , 1− P

M

}
{[P > M

2]}
2

BAcc 1
2 Θ∗ 1

2 Θ∗

MCC 0 Θ∗ \ {0, 1} 0 Θ∗ \ {0, 1}

κ 0 Θ∗ 3 0 Θ∗ 3

FM
√

P
M {1}

√
P

M { 1
M }

G(2) - - 0 {0, 1}

TS P
M {1} 0 {0}

2 If P = M
2 , then Θ∗. Note that Iverson brackets are used to simplify notation.

3 If P =M , then Θ∗ \ {1}.

95

4444

Chapter 4. 4.4. Dutch Draw in practice

either TPR or TNR is zero, which is the minimum score. When there are
few positive labels, it must therefore be prevented that all these samples
are falsely predicted negative, which is why θ∗max is increased. The reverse
holds when there are only a few negative samples. The Dutch Draw baseline
can still be derived for non-linear performance measures by determining the
expectations of all DD classifiers. However, this can be greatly improved in
future research (see Section 4.5).

0 10 20 30 40 50

0.4

0.5

0.6

P

θ

θ∗max

Figure 4.2: Non-trivial θ∗max for G(2)
θ For each P ∈ {1, . . . , 49}, the

optimal θ∗max is derived for the performance measure G(2)
θ with a dataset

consisting of P positive and 50− P negative samples. This shows that the
optimal value is not straightforward.

4.4 Dutch Draw in practice

Now that we have established how to derive the DD baseline, it is time to
see how the Dutch Draw could be used in practice. A data scientist (DS) is
given a dataset (Cleveland heart disease) to predict whether patients have
a heart disease given several feature values. The DS randomly splits the
dataset into a training (90%) and test set (10%) and chooses the F1 measure
to evaluate how well a model performs. The Dutch Draw baseline (of the
test set) immediately provides a performance reference (0.735) for any model
that the DS is going to use. The DS trains two common machine learning
algorithms (decision tree and k-nearest neighbors) with default parameters
in scikit-learn [128]. To get a good estimation of the expected performance,
an average is taken over 10 iterations. They achieve an average score of
0.727 and 0.710, respectively, which are worse than the Dutch Draw baseline
(0.735). This is a major warning sign. Although the decision tree performed
better than k-nearest neighbors, it should still not be used. Thus, the DS
decides to train three other models (logistic regression, random forest, and

96

4444

Chapter 4. 4.5. Discussion and conclusion

Gaussian naive Bayes), which end up performing better than the baseline.
The DS decides to use the logistic regression model in practice, as this model
achieves the highest score and beats the Dutch Draw baseline. An overview
of the performance of these five models and the baseline is shown in Table 4.5
(including other performance measures).

4.4.1 Example: Cleveland Heart Disease

The objective of this dataset is to predict whether patients have a heart
disease given several feature values. In order to do so, we used five commonly
used machine learning algorithms to perform this binary classification task:
logistic regression, decision tree, random forest, k-nearest neighbors, and
Gaussian naive Bayes. These algorithms all had their default parameters in
scikit-learn [128]. The dataset was randomly split in a training (90%) and
test set (10%). Table 4.5 shows the corresponding performance results.

Before applying a newly developed model to actual patients, its performance
should at least be better than the DD baseline, as the latter does not learn
anything from the feature values of the data. In Table 4.5, we see that
some methods fail to beat the baseline and should therefore be reconsidered.
For example, decision tree and k-nearest neighbors underperform for the
Fβ score (FBETA), Fowlkes-Mallows Index (FM), and Threat Score (TS).
Note that the two methods were not trained to be optimal for the selected
performance measures, whereas the DD does take the performance measure
into account. However, this does not make the comparison unfair, since they
are not competing for being the best prediction method. After all, the DD
baseline is a minimal requirement for any new binary classification method.
Even though a model is optimized for, say, the Accuracy, its performance
should still beat the DD baseline for the F1 score, as both the Accuracy
and F1 score provide indications of the overall prediction performance. To
conclude, this example shows how the DD can be used in practice and why
it is valuable in the evaluation process.

4.5 Discussion and conclusion

In this research, we have proposed a new baseline methodology named
the Dutch Draw (DD). The DD baseline is: (1) applicable to any binary
classification problem; (2) reproducible; (3) simple; (4) parameter-free;
(5) more informative than any single dummy baseline; (6) and an explainable
minimal requirement for any new model. We have shown that for most
commonly used measures the DD baseline can be theoretically determined

97

4444

Chapter 4. 4.5. Discussion and conclusion

Table 4.5: Comparing performance to the DD baseline: The average
result (10 iterations) of five standard machine learning algorithms (decision
tree (DT), k-nearest neighbors (KNN), logistic regression (LR), random
forest (RF), and Gaussian naive Bayes (GNB)) on the Cleveland Heart
Disease dataset for many commonly used performance measures. The first
two columns are the minimal and maximal DD baseline (DDB). The cases,
where the baseline is not beaten, are in bold. Note that all performance
measures (except FDR and FOR) are maximized in these comparisons.

Model
Measure DDB-min DDB-max DT KNN LR RF GNB
PPV 0.581 0.581 0.800 0.846 0.941 1.000 0.882
NPV 0.419 0.419 0.625 0.611 0.857 0.867 0.786
FDR 0.419 0.419 0.200 0.154 0.059 0.000 0.118
FOR 0.581 0.581 0.375 0.389 0.143 0.133 0.214
ACC 0.419 0.581 0.710 0.710 0.903 0.935 0.839
BACC 0.500 0.500 0.718 0.729 0.906 0.944 0.840
FBETA 0.061 0.735 0.727 0.710 0.914 0.941 0.857
MCC 0.000 0.000 0.430 0.457 0.805 0.878 0.674
J 0.000 0.000 0.436 0.457 0.812 0.889 0.679
MK 0.000 0.000 0.425 0.457 0.798 0.867 0.668
KAPPA 0.000 0.000 0.422 0.434 0.803 0.870 0.672
FM 0.137 0.762 0.730 0.719 0.915 0.943 0.857
G2 0.000 0.500 0.716 0.719 0.906 0.943 0.840
TS 0.000 0.581 0.571 0.550 0.842 0.889 0.750

Minimum
range

Maximum
range

Coloring:

98

4444

Chapter 4. 4.5. Discussion and conclusion

(see Table 4.4). When the baseline cannot be derived directly, it can be
identified quickly by computation. For most performance measures, the DD
baseline reduces to one of the following three cases: (I) always predicting
positive or negative; (II) always predicting positive or negative, except for
one instance; (III) any DD classifier, except maybe for θ∗ = 0 or θ∗ = 1.
However, there are exceptions to these three cases, as we have seen in
Figure 4.2. This showed that the DD does not always reduce to one of the
three previously mentioned cases and does not always give straightforward
results.

By introducing the DD baseline, we have simplified and improved the
evaluation process of new binary classification methods. We consider it a
minimal requirement for any novel model to at least beat the DD baseline.
When this does not happen, the question is raised how much a new method
has even learned from the data, since the DD baseline is derived from dummy
classifiers. When the novel model has beaten the DD baseline, it should
still be compared to a state-of-the-art method in that specific domain to
obtain additional insights. In Section 4.4, we have shown how the DD should
be used in practice and that commonly used approaches such as k-nearest
neighbors and a decision tree can underperform. Hence, using the Dutch
Draw as a general, simple and informative baseline should be the new gold
standard in any binary model evaluation process.

4.5.1 Further research

Our baseline is a stepping stone for further research, where multiple avenues
should be explored. We discuss four possible research directions.

Firstly, we are now able to determine whether a binary classification model
performs better than a universal baseline. However, we do not yet know
how much it performs better (or worse). For example, let the baseline have
a score of 0.5 and a new model a score of 0.9. How much better is the latter
score? It could be that a tiny bit of extra information easily pushes the score
from 0.5 to 0.9. Or, it is possible that a model needs a lot of information to
understand the intricacies of the problem, making it quite difficult to reach
a score of 0.9. Thus, it is necessary to quantify how hard it is to reach any
score. Also, when another model is added that achieves a score of 0.91, can
the difference in performance of these models be quantified? Is it only a
slightly better model or is it a leap forward?

Secondly, our DD baseline could be used to construct new standardized
evaluation measures from their original versions. The advantage of these

99

Chapter 4. 4.5. Discussion and conclusion

new measures would be that the interpretation of their scores is independent
of the number of positive and negative observations in the dataset. In other
words, the DD baseline would already be incorporated in the new measure,
such that comparing a score to the baseline is not necessary anymore. There
are many ways how the DD baseline can be used to scale a measure. Let
∆max and ∆min denote the maximum and minimum Dutch Draw baseline,
respectively. As an example, a measure µ with range [µmin, µmax] that needs
to be maximized can be rescaled by

µrescaled =

−1 if µ ≤ ∆min,

µ−∆max

∆max−∆min
if ∆min ≤ µ ≤ ∆max,

µ−∆max

µmax−∆max
else.

Everything below the lowest Dutch Draw baseline (∆min) gets value −1,
because every Dutch Draw classifier is then performing better. This should
be a major warning sign. A score between ∆min and ∆max is rescaled to
[−1, 0]. This value indicates that the performance is still worse than the
best Dutch Draw baseline. All scores above ∆max are scaled to [0, 1]. In this
case, the performance at least performed better than the best Dutch Draw
baseline.

Thirdly, another natural extension would be to drop the binary assumption
and consider multiclass classification. This is more complicated than it seems,
because not every multiclass evaluation measure follows automatically from
its binary counterpart. However, we expect that for most multiclass measures
it is again optimal to always predict a single specific class.

Fourthly, for some (less straightforward) performance measures, the DD
baseline is derived by examining the expectations of all DD classifiers. Thus,
faster techniques should be developed for large applications. Insights could
greatly improve the computation time. For example, we conjecture for G(2)

θ

that θ∗max ∈ [0, 12], when P > N and θ∗max ∈ [12 , 1], when P < N . This
already reduces the search domain by half. Proving convexity could also
make it easier to derive the optimal value. Decreasing the computational
time could be essential for some large applications and should therefore be
investigated.

As a final note, we have published the code for the DD, such that the reader
can easily implement the baseline into their binary classification problems
[134].

100

44444

Appendix (Chapter 4)

4.A Mathematical derivations

This section contains the complete theoretical analysis that is used to gather
the information presented in Sections 4.2 and 4.3, and more specifically,
Tables 4.2 to 4.4. Each subsection is dedicated to one of the evaluation
measures. The following definitions are frequently used throughout this
section:

Xθ (a, b) := a · TPθ + b with a, b ∈ R,

fXθ
(a, b) := probability distribution of Xθ (a, b).

An overview of the entire Appendix can be viewed in Table 4.A.1.

Table 4.A.1: Overview of the Appendix: Each measure is discussed in
the corresponding section in the Appendix.

Measure TP TN FN FP TPR TNR FNR FPR PPV NPV FDR FOR

Section 4.A.1 4.A.2 4.A.3 4.A.4 4.A.5 4.A.6 4.A.7 4.A.8 4.A.9 4.A.10 4.A.11 4.A.12

Measure Fβ J MK Acc BAcc MCC κ FM G(2) PT TS

Section 4.A.13 4.A.14 4.A.15 4.A.16 4.A.17 4.A.18 4.A.19 4.A.20 4.A.21 4.A.22 4.A.23

4.A.1 Number of True Positives

The number of True Positives TPθ is one of the four base measures that
are introduced in Section 4.2.2. This measure indicates how many of the

101

44444

Chapter 4. 4.A. Mathematical derivations

predicted positive observations are actually positive. Under the DD method-
ology, each evaluation measure can be written in terms of TPθ.

Definition and distribution

Since we want to formulate each measure in terms of TPθ, we have for
TPθ:

TPθ
(B1)
= Xθ (1, 0) ∼ fXθ

(1, 0) .

The range of this base measure depends on θ. Therefore, Equation (R) yields
the range of this measure:

TPθ ∈ R (Xθ (1, 0)) .

Expectation

The expectation of TPθ using the DD is given by

E[TPθ] = E[Xθ (1, 0)]
(□)
=
⌊M · θ⌉
M

· P = θ∗ · P. (4.3)

Optimal baselines

The DD baseline is given by the optimal expectation. Equation (4.3) shows
that the expected value depends on the parameter θ. Therefore, either the
minimum or maximum of the expectation yields the baseline. They are
given by

min
θ∈[0,1]

{E[TPθ]} = P · min
θ∈[0,1]

{
⌊M · θ⌉
M

}
= 0,

max
θ∈[0,1]

{E[TPθ]} = P · max
θ∈[0,1]

{
⌊M · θ⌉
M

}
= P.

The values of θ ∈ [0, 1] that minimize or maximize the expected value are
θmin and θmax, respectively, and are defined as

θmin ∈ argmin
θ∈[0,1]

{E[TPθ]} = argmin
θ∈[0,1]

{
⌊M · θ⌉
M

}
=

[
0,

1

2M

)
,

θmax ∈ argmax
θ∈[0,1]

{E[TPθ]} = argmax
θ∈[0,1]

{
⌊M · θ⌉
M

}
=

[
1− 1

2M
, 1

]
.

102

44444

Chapter 4. 4.A. Mathematical derivations

Equivalently, the discrete optimizers θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ are deter-
mined by

θ∗min ∈ argmin
θ∗∈Θ∗

{E[TPθ∗]} = argmin
θ∗∈Θ∗

{θ∗} = {0},

θ∗max ∈ argmax
θ∗∈Θ∗

{E[TPθ∗]} = argmax
θ∗∈Θ∗

{θ∗} = {1}.

4.A.2 Number of True Negatives

The number of True Negatives TNθ is also one of the four base measures
and is introduced in Section 4.2.2. This base measure counts the number of
negative predicted instances that are actually negative.

Definition and distribution

Since we want to formulate each measure in terms of TPθ, we have for
TNθ:

TNθ =M − P − ⌊M · θ⌉+ TPθ,

which corresponds to Equation (B4). Furthermore,

TNθ
(B4)
= Xθ (1,M − P − ⌊M · θ⌉) ∼ fXθ

(1,M − P − ⌊M · θ⌉) ,

and for its range

TNθ

(R)
∈ R (Xθ (1,M − P − ⌊M · θ⌉)) .

Expectation

TNθ is linear in TPθ with slope a = 1 and intercept b =M − P − ⌊M · θ⌉,
so its expectation is given by

E[TNθ] = E [Xθ (1,M − P − ⌊M · θ⌉)]
(□)
= 1 · E[TPθ] +M − P − ⌊M · θ⌉

=

(
1− ⌊M · θ⌉

M

)
(M − P) = (1− θ∗) (M − P) .

103

44444

Chapter 4. 4.A. Mathematical derivations

Optimal baselines

To determine the range of the expectation of TNθ, and hence, obtain base-
lines, its extreme values are calculated:

min
θ∈[0,1]

{E[TNθ]} = (M − P) min
θ∈[0,1]

{
1− ⌊M · θ⌉

M

}
= 0,

max
θ∈[0,1]

{E[TNθ]} = (M − P) max
θ∈[0,1]

{
1− ⌊M · θ⌉

M

}
=M − P.

The associated optimization values θmin ∈ [0, 1] and θmax ∈ [0, 1] are

θmin ∈ argmin
θ∈[0,1]

{E[TNθ]} = argmin
θ∈[0,1]

{
1− ⌊M · θ⌉

M

}
=

[
1− 1

2M
, 1

]
,

θmax ∈ argmax
θ∈[0,1]

{E[TNθ]} = argmax
θ∈[0,1]

{
1− ⌊M · θ⌉

M

}
=

[
0,

1

2M

)
.

The discrete equivalents θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ are then determined
by

θ∗min ∈ argmin
θ∗∈Θ∗

{E[TNθ∗]} = argmin
θ∗∈Θ∗

{1− θ∗} = {1},

θ∗max ∈ argmax
θ∗∈Θ∗

{E[TNθ∗]} = argmax
θ∗∈Θ∗

{1− θ∗} = {0}.

4.A.3 Number of False Negatives

The number of False Negatives FNθ is one of the four base measures that
are introduced in Section 4.2.2. This base measure counts the number of
mistakes made by predicting instances negative while the actual labels are
positive.

Definition and distribution

Equation (B3) shows that FNθ can be expressed in terms of TPθ:

FNθ
(B3)
= P − TPθ = Xθ (−1, P) ∼ fXθ

(−1, P) ,

and for its range:

FNθ

(R)
∈ R (Xθ (−1, P)) .

104

44444

Chapter 4. 4.A. Mathematical derivations

Expectation

As Equation (B3) shows, FNθ is linear in TPθ with slope a = −1 and
intercept b = P . Hence, the expectation of FNθ is given by

E[FNθ] = E[Xθ (−1, P)]
(□)
= −1 · E[TPθ] + P =

(
1− ⌊M · θ⌉

M

)
· P

= (1− θ∗) · P.

Optimal baselines

The range of the expectation of FNθ determines the baselines. The extreme
values are given by

min
θ∈[0,1]

{E[FNθ]} = P · min
θ∈[0,1]

{
1− ⌊M · θ⌉

M

}
= 0,

max
θ∈[0,1]

{E[FNθ]} = P · max
θ∈[0,1]

{
1− ⌊M · θ⌉

M

}
= P.

The associated optimization values θmin ∈ [0, 1] and θmax ∈ [0, 1] are
then

θmin ∈ argmin
θ∈[0,1]

{E[FNθ]} = argmin
θ∈[0,1]

{
1− ⌊M · θ⌉

M

}
=

[
1− 1

2M
, 1

]
,

θmax ∈ argmax
θ∈[0,1]

{E[FNθ]} = argmax
θ∈[0,1]

{
1− ⌊M · θ⌉

M

}
=

[
0,

1

2M

)
,

respectively. The discrete versions θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of the optimizers
are as follows:

θ∗min ∈ argmin
θ∗∈Θ∗

{E[FNθ∗]} = argmin
θ∗∈Θ∗

{1− θ∗} = {1},

θ∗max ∈ argmax
θ∗∈Θ∗

{E[FNθ∗]} = argmax
θ∗∈Θ∗

{1− θ∗} = {0}.

4.A.4 Number of False Positives

The number of False Positives FPθ is one of the four base measures that
we discussed in Section 4.2.2. This base measure counts the number of
mistakes made by predicting instances positive while the actual labels are
negative.

105

44444

Chapter 4. 4.A. Mathematical derivations

Definition and distribution

Each base measure can be expressed in terms of TPθ, thus we have for
FPθ:

FPθ
(B2)
= ⌊M · θ⌉ − TPθ = Xθ (−1, ⌊M · θ⌉) ∼ fXθ

(−1, ⌊M · θ⌉) ,

and for its range:

FPθ

(R)
∈ R (Xθ (−1, ⌊M · θ⌉)) .

Expectation

As Equation (B2) shows, FPθ is linear in TPθ with slope a = −1 and
intercept b = ⌊M · θ⌉, thus the expectation of FPθ is defined as

E[FPθ] = E[Xθ (−1, ⌊M · θ⌉)]
(□)
= −1 · E[TPθ] + ⌊M · θ⌉

=
⌊M · θ⌉
M

· (M − P) = θ∗ · (M − P) .

Optimal baselines

The baselines of FPθ are given by the extreme values of its expectation.
Hence:

min
θ∈[0,1]

{E[FPθ]} = (M − P) min
θ∈[0,1]

{
⌊M · θ⌉
M

}
= 0,

max
θ∈[0,1]

{E[FPθ]} = (M − P) max
θ∈[0,1]

{
⌊M · θ⌉
M

}
=M − P.

The corresponding optimization values θmin ∈ [0, 1] and θmax ∈ [0, 1]
are

θmin ∈ argmin
θ∈[0,1]

{E[FPθ]} = argmin
θ∈[0,1]

{
⌊M · θ⌉
M

}
=

[
0,

1

2M

)
,

θmax ∈ argmax
θ∈[0,1]

{E[FPθ]} = argmax
θ∈[0,1]

{
⌊M · θ⌉
M

}
=

[
1− 1

2M
, 1

]
.

106

44444

Chapter 4. 4.A. Mathematical derivations

The discrete versions θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of the optimization values
are determined by

θ∗min ∈ argmin
θ∗∈Θ∗

{E[FPθ∗]} = argmin
θ∗∈Θ∗

{θ∗} = {0},

θ∗max ∈ argmax
θ∗∈Θ∗

{E[FPθ∗]} = argmax
θ∗∈Θ∗

{θ∗} = {1}.

4.A.5 True Positive Rate

The True Positive Rate TPRθ, Recall, or Sensitivity is the performance
measure that presents the fraction of positive observations that are correctly
predicted. This makes it a fundamental performance measure in binary
classification.

Definition and distribution

The True Positive Rate is commonly defined as

TPRθ =
TPθ

P
. (4.4)

Hence, P > 0 should hold, otherwise the denominator is zero. Now, TPRθ

is linear in TPθ and can therefore be written as

TPRθ = Xθ

(
1

P
, 0

)
∼ fXθ

(
1

P
, 0

)
, (4.5)

and for its range:

TPRθ

(R)
∈ R

(
Xθ

(
1

P
, 0

))
.

Expectation

Since TPRθ is linear in TPθ with slope a = 1/P and intercept b = 0, its
expectation is

E[TPRθ] = E
[
Xθ

(
1

P
, 0

)]
(□)
=

1

P
· E[TPθ] + 0 =

⌊M · θ⌉
M

= θ∗.

107

44444

Chapter 4. 4.A. Mathematical derivations

Optimal baselines

The range of the expectation of TPRθ directly determines the baselines. The
extreme values are given by

min
θ∈[0,1]

{E[TPRθ]} = min
θ∈[0,1]

{
⌊M · θ⌉
M

}
= 0,

max
θ∈[0,1]

{E[TPRθ]} = max
θ∈[0,1]

{
⌊M · θ⌉
M

}
= 1.

Furthermore, the corresponding optimization values θmin ∈ [0, 1] and θmax ∈
[0, 1] are given by

θmin ∈ argmin
θ∈[0,1]

{E[TPRθ]} = argmin
θ∈[0,1]

{
⌊M · θ⌉
M

}
=

[
0,

1

2M

)
,

θmax ∈ argmax
θ∈[0,1]

{E[TPRθ]} = argmax
θ∈[0,1]

{
⌊M · θ⌉
M

}
=

[
1− 1

2M
, 1

]
.

The discrete versions θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of the optimizers are
then

θ∗min ∈ argmin
θ∗∈Θ∗

{E[TPRθ∗]} = argmin
θ∗∈Θ∗

{θ∗} = {0},

θ∗max ∈ argmax
θ∗∈Θ∗

{E[TPRθ∗]} = argmax
θ∗∈Θ∗

{θ∗} = {1},

respectively.

4.A.6 True Negative Rate

The True Negative Rate TNRθ, Specificity, or Selectivity is the measure
that shows how relatively well the negative observations are correctly pre-
dicted. Hence, this performance measure is a fundamental measure in binary
classification.

Definition and distribution

The True Negative Rate is commonly defined as

TNRθ =
TNθ

N
.

108

44444

Chapter 4. 4.A. Mathematical derivations

Hence, N :=M −P > 0 should hold, otherwise the denominator is zero. By
using Equation (B4), TNRθ can be rewritten as

TNRθ =
M − P − ⌊M · θ⌉+ TPθ

M − P
= 1− ⌊M · θ⌉ − TPθ

M − P
.

Hence, it is linear in TPθ and can therefore be written as

TNRθ = Xθ

(
1

M − P
, 1− ⌊M · θ⌉

M − P

)
∼ fXθ

(
1

M − P
, 1− ⌊M · θ⌉

M − P

)
,

(4.6)
and for its range:

TNRθ

(R)
∈ R

(
Xθ

(
1

M − P
, 1− ⌊M · θ⌉

M − P

))
.

Expectation

Since TNRθ is linear in TPθ in terms of Xθ (a, b) with slope a = 1/ (M − P)
and intercept b = 1− ⌊M · θ⌉/ (M − P), its expectation is

E[TNRθ] = E
[
Xθ

(
1

M − P
, 1− ⌊M · θ⌉

M − P

)]
(□)
=

1

M − P
· E[TPθ] + 1− ⌊M · θ⌉

M − P
= 1− ⌊M · θ⌉

M
= 1− θ∗.

Optimal baselines

The extreme values of the expectation of TNRθ determine the baselines.
The range is given by

min
θ∈[0,1]

{E[TNRθ]} = min
θ∈[0,1]

{
1− ⌊M · θ⌉

M

}
= 0,

max
θ∈[0,1]

{E[TNRθ]} = max
θ∈[0,1]

{
1− ⌊M · θ⌉

M

}
= 1.

109

44444

Chapter 4. 4.A. Mathematical derivations

Moreover, the optimization values θmin ∈ [0, 1] and θmax ∈ [0, 1] correspond-
ing to the extreme values are defined as

θmin ∈ argmin
θ∈[0,1]

{E[TNRθ]} = argmin
θ∈[0,1]

{
1− ⌊M · θ⌉

M

}
=

[
1− 1

2M
, 1

]
,

θmax ∈ argmax
θ∈[0,1]

{E[TNRθ]} = argmax
θ∈[0,1]

{
1− ⌊M · θ⌉

M

}
=

[
0,

1

2M

)
,

respectively. The discrete versions θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of the optimizers
are given by

θ∗min ∈ argmin
θ∗∈Θ∗

{E[TNRθ∗]} = argmin
θ∗∈Θ∗

{1− θ∗} = {1},

θ∗max ∈ argmax
θ∗∈Θ∗

{E[TNRθ∗]} = argmax
θ∗∈Θ∗

{1− θ∗} = {0}.

4.A.7 False Negative Rate

The False Negative Rate FNRθ or Miss Rate is the performance measure that
indicates the relative number of incorrectly predicted positive observations.
Therefore, it can be seen as the counterpart to the True Positive Rate that
is discussed in Section 4.A.5.

Definition and distribution

The False Negative Rate is commonly defined as

FNRθ =
FNθ

P
.

Hence, P > 0 should hold, otherwise the denominator is zero. With the aid
of Equation (B3), FNRθ can be reformulated to

FNRθ =
P − TPθ

P
= 1− TPθ

P
.

Thus, it is linear in TPθ and can therefore be written as

FNRθ = Xθ

(
− 1

P
, 1

)
∼ fXθ

(
− 1

P
, 1

)
,

and for its range:

FNRθ

(R)
∈ R

(
Xθ

(
− 1

P
, 1

))
.

110

44444

Chapter 4. 4.A. Mathematical derivations

Expectation

Because FNRθ is linear in TPθ with slope a = −1/P and intercept b = 1,
its expectation is

E[FNRθ] = E
[
Xθ

(
− 1

P
, 1

)]
(□)
= − 1

P
· E[TPθ] + 1 = 1− ⌊M · θ⌉

M
= 1− θ∗.

Optimal baselines

The range of the expectation of FNRθ determines the baselines. The extreme
values are given by:

min
θ∈[0,1]

{E[FNRθ]} = min
θ∈[0,1]

{
1− ⌊M · θ⌉

M

}
= 0,

max
θ∈[0,1]

{E[FNRθ]} = max
θ∈[0,1]

{
1− ⌊M · θ⌉

M

}
= 1.

Furthermore, the optimizers θmin ∈ [0, 1] and θmax ∈ [0, 1] for the extreme
values are as follows:

θmin ∈ argmin
θ∈[0,1]

{E[FNRθ]} = argmin
θ∈[0,1]

{
1− ⌊M · θ⌉

M

}
=

[
1− 1

2M
, 1

]
,

θmax ∈ argmax
θ∈[0,1]

{E[FNRθ]} = argmax
θ∈[0,1]

{
1− ⌊M · θ⌉

M

}
=

[
0,

1

2M

)
,

respectively. The discrete versions θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of the optimiza-
tion values are then:

θ∗min ∈ argmin
θ∗∈Θ∗

{E[FNRθ∗]} = argmin
θ∗∈Θ∗

{1− θ∗} = {1},

θ∗max ∈ argmax
θ∗∈Θ∗

{E[FNRθ∗]} = argmax
θ∗∈Θ∗

{1− θ∗} = {0}.

4.A.8 False Positive Rate

The False Positive Rate FPRθ or Fall-out is the performance measure that
shows the fraction of incorrectly predicted negative observations. Hence, it
can be seen as the counterpart to the True Negative Rate that is introduced
in Section 4.A.6.

111

44444

Chapter 4. 4.A. Mathematical derivations

Definition and distribution

The False Positive Rate is commonly defined as

FPRθ =
FPθ

N
.

Hence, N := M − P should hold, otherwise the denominator is zero. By
using Equation (B2), FPRθ can be restated as

FPRθ =
⌊M · θ⌉ − TPθ

M − P
. (4.7)

Note that it is linear in TPθ and can therefore be written as

FPRθ = Xθ

(
− 1

M − P
,
⌊M · θ⌉
M − P

)
∼ fXθ

(
− 1

M − P
,
⌊M · θ⌉
M − P

)
,

with range:

FPRθ

(R)
∈ R

(
Xθ

(
− 1

M − P
,
⌊M · θ⌉
M − P

))
.

Expectation

Since FPRθ is linear in TPθ with slope a = −1/ (M − P) and intercept
b = ⌊M · θ⌉/ (M − P), its expectation is given by

E[FPRθ] = E
[
Xθ

(
− 1

M − P
,
⌊M · θ⌉
M − P

)]
(□)
= − 1

M − P
· E[TPθ] +

⌊M · θ⌉
M − P

=
⌊M · θ⌉
M

= θ∗.

Optimal baselines

The extreme values of the expectation of FPRθ determine the baselines. The
range is given by

min
θ∈[0,1]

{E[FPRθ]} = min
θ∈[0,1]

{
⌊M · θ⌉
M

}
= 0,

max
θ∈[0,1]

{E[FPRθ]} = max
θ∈[0,1]

{
⌊M · θ⌉
M

}
= 1.

112

44444

Chapter 4. 4.A. Mathematical derivations

Moreover, the optimizers θmin ∈ [0, 1] and θmax ∈ [0, 1] for the extreme
values are determined by

θmin ∈ argmin
θ∈[0,1]

{E[FPRθ]} = argmin
θ∈[0,1]

{
⌊M · θ⌉
M

}
=

[
0,

1

2M

)
,

θmax ∈ argmax
θ∈[0,1]

{E[FPRθ]} = argmax
θ∈[0,1]

{
⌊M · θ⌉
M

}
=

[
1− 1

2M
, 1

]
,

respectively. The discrete forms θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of these are
then

θ∗min ∈ argmin
θ∗∈Θ∗

{E[FNRθ∗]} = argmin
θ∗∈Θ∗

{θ∗} = {0},

θ∗max ∈ argmax
θ∗∈Θ∗

{E[FNRθ∗]} = argmax
θ∗∈Θ∗

{θ∗} = {1}.

4.A.9 Positive Predictive Value

The Positive Predictive Value PPVθ or Precision is the performance measure
that considers the fraction of all positively predicted observations that are
in fact positive. Therefore, it provides an indication of how cautious the
model is in assigning positive predictions. A large value means the model is
cautious in predicting observations as positive, while a small value means
the opposite.

Definition and distribution

The Positive Predictive Value is commonly defined as

PPVθ =
TPθ

TPθ + FPθ
. (4.8)

By using Equations (B1) and (B2), this definition can be reformulated
to

PPVθ =
TPθ

⌊M · θ⌉
.

Note that this performance measure is only defined whenever ⌊M · θ⌉ > 0,
otherwise the denominator is zero. Therefore, we assume specifically for

113

44444

Chapter 4. 4.A. Mathematical derivations

PPVθ that θ ≥ 1
2M . The definition of PPVθ is linear in TPθ and can thus

be formulated as

PPVθ = Xθ

(
1

⌊M · θ⌉
, 0

)
∼ fXθ

(
1

⌊M · θ⌉
, 0

)
, (4.9)

with range:

PPVθ

(R)
∈ R

(
Xθ

(
1

⌊M · θ⌉
, 0

))
.

Expectation

Because PPVθ is linear in TPθ with slope a = 1/⌊M · θ⌉ and intercept b = 0,
its expectation is

E[PPVθ] = E
[
Xθ

(
1

⌊M · θ⌉
, 0

)]
(□)
=

1

⌊M · θ⌉
· E[TPθ] + 0 =

P

M
.

Optimal baselines

The baselines are determined by the extreme values of the expectation of
PPVθ:

min
θ∈[1/(2M),1]

{E[PPVθ]} =
P

M
,

max
θ∈[1/(2M),1]

{E[PPVθ]} =
P

M
,

because the expectation does not depend on θ. Hence, the optimization
values θmin and θmax are simply all allowed values for θ:

θmin = θmax ∈
[

1

2M
, 1

]
.

Consequently, the discrete versions θ∗min and θ∗max of these optimizers are in
the set of all allowed discrete values:

θ∗min = θ∗max ∈ Θ∗ \ {0}.

114

44444

Chapter 4. 4.A. Mathematical derivations

4.A.10 Negative Predictive Value

The Negative Predictive Value NPVθ is the performance measure that indi-
cates the fraction of all negatively predicted observations that are in fact
negative. Hence, it shows how cautious the model is in assigning nega-
tive predictions. A large value means the model is cautious in predicting
observations negatively, while a small value means the opposite.

Definition and distribution

The Negative Predictive Value is commonly defined as

NPVθ =
TNθ

TNθ + FNθ
.

With the help of Equations (B3) and (B4), this definition can be rewritten
as

NPVθ = 1− P − TPθ

M − ⌊M · θ⌉
.

Note that this performance measure is only defined whenever ⌊M · θ⌉ < M ,
otherwise the denominator is zero. Therefore, we assume specifically for
NPVθ that θ < 1 − 1

2M . The definition of NPVθ is linear in TPθ and can
thus be formulated as

NPVθ = Xθ

(
1

M − ⌊M · θ⌉
, 1− P

M − ⌊M · θ⌉

)
∼ fXθ

(
1

M − ⌊M · θ⌉
, 1− P

M − ⌊M · θ⌉

)
, (4.10)

with range:

NPVθ

(R)
∈ R

(
Xθ

(
1

M − ⌊M · θ⌉
, 1− P

M − ⌊M · θ⌉

))
.

115

44444

Chapter 4. 4.A. Mathematical derivations

Expectation

Since NPVθ is linear in TPθ with slope a = 1/(M − ⌊M · θ⌉) and intercept
b = 1− P/(M − ⌊M · θ⌉), its expectation is given by

E[NPVθ] = E
[
Xθ

(
1

M − ⌊M · θ⌉
, 1− P

M − ⌊M · θ⌉

)]
(□)
=

1

M − ⌊M · θ⌉
· E[TPθ] + 1− P

M − ⌊M · θ⌉
= 1− P

M
.

Optimal baselines

The extreme values of the expectation of NPVθ determine the baselines.
They are given by

min
θ∈[0,1−1/(2M))

{E[NPVθ]} = 1− P

M
,

max
θ∈[0,1−1/(2M))

{E[NPVθ]} = 1− P

M
,

because the expectation does not depend on θ. Consequently, the optimiza-
tion values θmin and θmax are all allowed values for θ:

θmin = θmax ∈
[
0, 1− 1

2M

)
.

This also means the discrete forms θ∗min and θ∗max of the optimizers are in
the set of all allowed discrete values:

θ∗min = θ∗max ∈ Θ∗ \ {1}.

4.A.11 False Discovery Rate

The False Discovery Rate FDRθ is the performance measure that looks at
the fraction of positively predicted observations that are actually negative.
Therefore, it can be seen as the counterpart to the Positive Predictive Value
that we discuss in Section 4.A.9. Consequently, a small value means the
model is cautious in predicting observations as positive, while a large value
means the opposite.

116

44444

Chapter 4. 4.A. Mathematical derivations

Definition and distribution

The False Discovery Rate is commonly defined as

FDRθ =
FPθ

TPθ + FPθ
= 1− PPVθ.

With the help of Equation (4.9), this definition can be rewritten as

FDRθ = 1− TPθ

⌊M · θ⌉
.

Note that this performance measure is only defined whenever ⌊M · θ⌉ > 0,
otherwise the denominator is zero. Therefore, we assume specifically for
FDRθ that θ > 1

2M . The definition of FDRθ is linear in TPθ and can thus
be formulated as

FDRθ = Xθ

(
− 1

⌊M · θ⌉
, 1

)
∼ fXθ

(
− 1

⌊M · θ⌉
, 1

)
,

with range:

FDRθ

(R)
∈ R

(
Xθ

(
− 1

⌊M · θ⌉
, 1

))
.

Expectation

Since FDRθ is linear in TPθ with slope a = −1/⌊M · θ⌉ and intercept b = 1,
its expectation is given by

E[FDRθ] = E
[
Xθ

(
− 1

⌊M · θ⌉
, 1

)]
(□)
= − 1

⌊M · θ⌉
· E[TPθ] + 1 = 1− P

M
.

Optimal baselines

The extreme values of the expectation of FDRθ determine the baselines. Its
range is given by

min
θ∈(1/(2M),1]

{E[FDRθ]} = 1− P

M
,

max
θ∈(1/(2M),1]

{E[FDRθ]} = 1− P

M
,

117

44444

Chapter 4. 4.A. Mathematical derivations

because the expectation does not depend on θ. Consequently, the optimiza-
tion values θmin and θmax are all allowed values for θ:

θmin = θmax ∈
(

1

2M
, 1

]
.

This also means the discrete forms θ∗min and θ∗max of the optimizers are in
the set of all allowed discrete values:

θ∗min = θ∗max ∈ Θ∗ \ {0}.

4.A.12 False Omission Rate

The False Omission Rate FORθ is the performance measure that considers
the fraction of observations that are predicted negative, but are in fact
positive. Hence, it can be seen as the counterpart to the Negative Predictive
Value that is introduced in Section 4.A.10. As a consequence, a small value
means the model is cautious is predicting observations negatively, while a
large value means the opposite.

Definition and distribution

The False Omission Rate is commonly defined as

FORθ =
FNθ

TNθ + FNθ
.

With the aid of Equation (B3), this can be reformulated to

FORθ =
P − TPθ

M − ⌊M · θ⌉
.

Note that this performance measure is only defined whenever ⌊M · θ⌉ < M ,
otherwise the denominator is zero. Therefore, we assume specifically for
FORθ that θ < 1− 1

2M . Now, FORθ is linear in TPθ and can therefore be
written as

FORθ = Xθ

(
− 1

M − ⌊M · θ⌉
,

P

M − ⌊M · θ⌉

)
∼ fXθ

(
− 1

M − ⌊M · θ⌉
,

P

M − ⌊M · θ⌉

)
,

with range:

FORθ

(R)
∈ R

(
Xθ

(
− 1

M − ⌊M · θ⌉
,

P

M − ⌊M · θ⌉

))
.

118

44444

Chapter 4. 4.A. Mathematical derivations

Expectation

Because FORθ is linear in TPθ with slope a = −1/(M − ⌊M · θ⌉) and
intercept b = P/(M − ⌊M · θ⌉), its expectation is

E[FORθ] = E
[
Xθ

(
− 1

M − ⌊M · θ⌉
,

P

M − ⌊M · θ⌉

)]
(□)
= − 1

M − ⌊M · θ⌉
· E[TPθ] +

P

M − ⌊M · θ⌉
=

P

M
.

Optimal baselines

The range of the expectation of FORθ determines the baselines. The extreme
values are defined as

min
θ∈[0,1−1/(2M))

{E[FORθ]} =
P

M
,

max
θ∈[0,1−1/(2M))

{E[FORθ]} =
P

M
,

because the expectation does not depend on θ. Consequently, the optimiza-
tion values θmin and θmax are all allowed values for θ:

θmin = θmax ∈
[
0, 1− 1

2M

)
.

This also means the discrete forms θ∗min and θ∗max of the optimizers are in
the set of all allowed discrete values:

θ∗min = θ∗max ∈ Θ∗ \ {1}.

4.A.13 Fβ Score

The Fβ score F(β)
θ was introduced by Chinchor [39]. It is the weighted

harmonic average between the True Positive Rate (TPRθ) and the Positive
Predictive Value (PPVθ). These two performance measures are discussed
extensively in Sections 4.A.5 and 4.A.9, respectively, and their summarized
results are shown in Tables 4.3 and 4.4. The Fβ score balances predicting
the actual positive observations correctly (TPRθ) and being cautious in
predicting observations as positive (PPVθ). The factor β > 0 indicates how
much more TPRθ is weighted compared to PPVθ.

119

44444

Chapter 4. 4.A. Mathematical derivations

Definition and distribution

The Fβ score is commonly defined as

F(β)
θ =

1 + β2

1
PPVθ

+ β2

TPRθ

.

By using the definitions of TPRθ and PPVθ in Equations (4.4) and (4.8),
F(β)
θ can be formulated in terms of the base measures:

F(β)
θ =

(1 + β2) · TPθ

β2 · P + TPθ + FPθ

Equations (B1) and (B2) allow us to write the formulation above in terms
of only TPθ:

F(β)
θ =

(1 + β2) · TPθ

β2 · P + ⌊M · θ⌉
.

Note that P > 0 and ⌊M · θ⌉ > 0, otherwise TPRθ or PPVθ is not defined,
and hence, F(β)

θ is not defined. Now, F(β)
θ is linear in TPθ and can be

formulated as

F(β)
θ = Xθ

(
1 + β2

β2 · P + ⌊M · θ⌉
, 0

)
,

with range:

F(β)
θ

(R)
∈ R

(
Xθ

(
1 + β2

β2 · P + ⌊M · θ⌉
, 0

))
.

Expectation

Because F(β)
θ is linear in TPθ with slope a = (1 + β2)/(β2P + ⌊M · θ⌉) and

intercept b = 0, its expectation is given by

E[F(β)
θ] = E

[
Xθ

(
1 + β2

β2 · P + ⌊M · θ⌉
, 0

)]
(□)
=

1 + β2

β2 · P + ⌊M · θ⌉
· E[TPθ] + 0

=
⌊M · θ⌉ · P · (1 + β2)

M · (β2 · P + ⌊M · θ⌉)
=

(1 + β2) · P · θ∗

β2 · P +M · θ∗
. (4.11)

120

44444

Chapter 4. 4.A. Mathematical derivations

Optimal baselines

To determine the extreme values of the expectation of F(β)
θ , and therefore the

baselines, the derivative of the function f : [0, 1]→ [0, 1] defined as

f(t) =
(1 + β2) · P · t
β2 · P +M · t

is calculated. First note that E[F(β)
θ] = f(⌊M · θ⌉/M). The derivative is

given by

df(t)

dt
=

β2(1 + β2) · P 2

(β2 · P +M · t)2
.

It is strictly positive for all t in its domain, thus f is strictly increasing in t.
This means E[F(β)

θ] given in Equation (4.11) is non-decreasing in both θ and
θ∗. This is because the term ⌊M · θ⌉/M is non-decreasing in θ. Hence, the
extreme values of the expectation of F(β)

θ are its border values:

min
θ∈[1/(2M),1]

{
E[F(β)

θ]
}
= min

θ∈[1/(2M),1]

{
(1 + β2) · P · ⌊M · θ⌉
M(β2 · P + ⌊M · θ⌉)

}
=

(1 + β2) · P
M(β2 · P + 1)

,

max
θ∈[1/(2M),1]

{
E[F(β)

θ]
}
= max

θ∈[1/(2M),1]

{
(1 + β2) · P · ⌊M · θ⌉
M(β2 · P + ⌊M · θ⌉)

}
=
(1 + β2) · P
β2 · P +M

.

Consequently, the optimization values θmin and θmax for the extreme values
are given by

θmin ∈ argmin
θ∈[1/(2M),1]

{
E[F(β)

θ]
}
= argmin

θ∈[1/(2M),1]

{
⌊M · θ⌉

β2 · P + ⌊M · θ⌉

}

=

{
[12 , 1] if M = 1[

1
2M , 3

2M

)
if M > 1,

θmax ∈ argmax
θ∈[1/(2M),1]

{
E[F(β)

θ]
}
= argmax

θ∈[1/(2M),1]

{
⌊M · θ⌉

β2 · P + ⌊M · θ⌉

}

=

{
[12 , 1] if M = 1[
1− 1

2M , 1
]

if M > 1,

121

44444

Chapter 4. 4.A. Mathematical derivations

respectively. Following this reasoning, the discrete forms θ∗min and θ∗max are
given by

θ∗min ∈ argmin
θ∗∈Θ∗\{0}

{
E[F(β)

θ∗]
}
= argmin

θ∗∈Θ∗\{0}

{
θ∗

β2 · P +M · θ∗

}
=

{
1

M

}
,

θ∗max ∈ argmax
θ∗∈Θ∗\{0}

{
E[F(β)

θ∗]
}
= argmax

θ∗∈Θ∗\{0}

{
θ∗

β2 · P +M · θ∗

}
= {1}.

4.A.14 Youden’s J Statistic

The Youden’s J Statistic Jθ, Youden’s Index, or (Bookmaker) Informedness
was introduced by Youden [193] to capture the performance of a diagnostic
test as a single statistic. It incorporates both the True Positive Rate and
the True Negative Rate, which are discussed in Sections 4.A.5 and 4.A.6,
respectively. Youden’s J Statistic shows how well the model is able to
correctly predict both the positive as the negative observations.

Definition and distribution

The Youden’s J Statistic is commonly defined as

Jθ = TPRθ + TNRθ − 1.

By using Equations (4.5) and (4.6), which provide the definitions of TPRθ

and TNRθ in terms of TPθ, the definition of Jθ can be reformulated as

Jθ =
M · TPθ − P · ⌊M · θ⌉

P (M − P)
.

Because TPRθ needs P > 0, and TNRθ needs N > 0, we have both these
assumptions for Jθ. Consequently, M > 1. Now, Jθ is linear in TPθ and can
therefore be written as

Jθ = Xθ

(
M

P (M − P)
,−⌊M · θ⌉

M − P

)
∼ fXθ

(
M

P (M − P)
,−⌊M · θ⌉

M − P

)
,

with range:

Jθ
(R)
∈ R

(
Xθ

(
M

P (M − P)
,−⌊M · θ⌉

M − P

))
.

122

44444

Chapter 4. 4.A. Mathematical derivations

Expectation

Since Jθ is linear in TPθ with slope a = M/(P (M − P)) and intercept
b = −⌊M · θ⌉/ (M − P), its expectation is given by

E[Jθ]=E
[
Xθ

(
M

P (M − P)
,−⌊M · θ⌉

M − P

)]
(□)
=

M

P (M − P)
· E[TPθ]−

⌊M · θ⌉
M − P

= 0.

Optimal baselines

The extreme values of the expectation of Jθ determine the baselines. They
are given by

min
θ∈[0,1]

{E[Jθ]} = 0,

max
θ∈[0,1]

{E[Jθ]} = 0,

because the expected value does not depend on θ. Consequently, the opti-
mization values θmin and θmax can be any value in the domain of θ:

θmin = θmax ∈ [0, 1].

This also holds for the discrete forms θ∗min and θ∗max of the optimizers:

θ∗min = θ∗max ∈ Θ∗.

4.A.15 Markedness

The Markedness MKθ or deltaP is a performance measure that is mostly used
in linguistics and social sciences. It combines both the Positive Predictive
Value and the Negative Predictive Value. These two measures are discussed
in Sections 4.A.9 and 4.A.10, respectively. The Markedness indicates how
cautious the model is in predicting observations as positive and also how
cautious it is in predicting them as negative.

Definition and distribution

The Markedness is commonly defined as

MKθ = PPVθ + NPVθ − 1.

123

44444

Chapter 4. 4.A. Mathematical derivations

This definition of MKθ can be reformulated in terms of TPθ by using
Equations (4.9) and (4.10):

MKθ =
M · TPθ − P · ⌊M · θ⌉
⌊M · θ⌉(M − ⌊M · θ⌉)

.

Note that MKθ is only defined for M > 1 and θ ∈ [1/(2M), 1 − 1/(2M)),
otherwise the denominator becomes zero. The assumption M > 1 automati-
cally follows from the assumptions P̂ > 0 and N̂ > 0, which hold for PPVθ

and NPVθ, respectively. In other words, there is at least one observation
predicted positive and at least one predicted negative, thus M > 1. Now,
MKθ is linear in TPθ and can therefore be written as

MKθ = Xθ

(
M

⌊M · θ⌉(M − ⌊M · θ⌉)
,− P

M − ⌊M · θ⌉

)
∼ fXθ

(
M

⌊M · θ⌉(M − ⌊M · θ⌉)
,− P

M − ⌊M · θ⌉

)
,

with range:

MKθ

(R)
∈ R

(
Xθ

(
M

⌊M · θ⌉(M − ⌊M · θ⌉)
,− P

M − ⌊M · θ⌉

))
.

Expectation

By using slope a =M/(⌊M · θ⌉(M − ⌊M · θ⌉)) and intercept b = −P/(M −
⌊M · θ⌉), the expectation of MKθ can be calculated:

E[MKθ] = E
[
Xθ

(
M

⌊M · θ⌉(M − ⌊M · θ⌉)
,− P

M − ⌊M · θ⌉

)]
(□)
=

M

⌊M · θ⌉(M − ⌊M · θ⌉)
· E[TPθ]−

P

M − ⌊M · θ⌉
= 0.

Optimal baselines

The extreme values of the expectation of MKθ determine the baselines. Its
range is given by:

min
θ∈[1/(2M),1−1/(2M))

{E[MKθ]} = 0,

max
θ∈[1/(2M),1−1/(2M))

{E[MKθ]} = 0,

124

44444

Chapter 4. 4.A. Mathematical derivations

since the expected value does not depend on θ. Therefore, the optimization
values θmin and θmax are in the set of allowed values for θ:

θmin = θmax ∈
[

1

2M
, 1− 1

2M

)
.

This also means the discrete forms θ∗min and θ∗max of the optimizers are in
the set of the allowed discrete values:

θ∗min = θ∗max ∈ Θ∗ \ {0, 1}.

4.A.16 Accuracy

The Accuracy Accθ is the performance measure that assesses how good the
model is in correctly predicting the observations without making a distinction
between positive or negative observations.

Definition and distribution

The Accuracy is commonly defined as

Accθ =
TPθ + TNθ

M
.

By using Equation (B4), this can be restated as

Accθ =
2 · TPθ +M − P − ⌊M · θ⌉

M
.

Note that it is linear in TPθ and can therefore be written as

Accθ = Xθ

(
2

M
,
M − P − ⌊M · θ⌉

M

)
∼ fXθ

(
2

M
,
M − P − ⌊M · θ⌉

M

)
,

(4.12)
with range:

Accθ
(R)
∈ R

(
Xθ

(
2

M
,
M − P − ⌊M · θ⌉

M

))
.

125

44444

Chapter 4. 4.A. Mathematical derivations

Expectation

Since Accθ is linear in TPθ with slope a = 2/M and intercept b = (M −
P − ⌊M · θ⌉)/M , its expectation can be derived:

E[Accθ] = E
[
Xθ

(
2

M
,
M − P − ⌊M · θ⌉

M

)]
(□)
=

2

M
· E[TPθ] +

M − P − ⌊M · θ⌉
M

=
(M − ⌊M · θ⌉) (M − P) + ⌊M · θ⌉ · P

M2

=
(1− θ∗) (M − P) + θ∗ · P

M
. (4.13)

Optimal baselines

The range of the expectation of Accθ directly determines the baselines.
To determine the extreme values of Accθ, the derivative of the function
f : [0, 1]→ [0, 1] defined as

f(t) =
(1− t) (M − P) + P · t

M

is calculated. First, note that E[Accθ] = f(⌊M · θ⌉/M). The derivative is
given by

df(t)

dt
=

2P −M
M

.

It does not depend on t, but whether the derivative is positive or negative
depends on P and M . Whenever P > M

2 , then f is strictly increasing
for all t in its domain. If P < M

2 , then f is strictly decreasing. When
P = M

2 , f is constant. Consequently, the same holds for E[Accθ] given in
Equation (4.13). This is because the term ⌊M · θ⌉/M is non-decreasing in θ.
Thus, the extreme values of the expectation of Accθ are given by

min
θ∈[0,1]

{E[Accθ]} =

{
P
M if P < M

2

1− P
M if P ≥ M

2

= min

{
P

M
, 1− P

M

}
,

max
θ∈[0,1]

{E[Accθ]} =

{
1− P

M if P < M
2

P
M if P ≥ M

2

= max

{
P

M
, 1− P

M

}
.

126

44444

Chapter 4. 4.A. Mathematical derivations

This means that the optimization values θmin ∈ [0, 1] and θmax ∈ [0, 1] for
these extreme values respectively are given by

θmin ∈ argmin
θ∈[0,1]

{E[Accθ]} =

[
1− 1

2M , 1
]

if P < M
2

[0, 1] if P = M
2[

0, 1
2M

)
if P > M

2 ,

(4.14)

θmax ∈ argmax
θ∈[0,1]

{E[Accθ]} =

[
0, 1

2M

)
if P < M

2

[0, 1] if P = M
2[

1− 1
2M , 1

]
if P > M

2 .

(4.15)

Consequently, the discrete versions θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of the optimiz-
ers are given by

θ∗min ∈ argmin
θ∗∈Θ∗

{E[Accθ∗]} =

{1} if P < M

2

Θ∗ if P = M
2

{0} if P > M
2 ,

(4.16)

θ∗max ∈ argmax
θ∗∈Θ∗

{E[Accθ∗]} =

{0} if P < M

2

Θ∗ if P = M
2

{1} if P > M
2 ,

(4.17)

respectively.

4.A.17 Balanced Accuracy

The Balanced Accuracy BAccθ is the mean of the True Positive Rate and True
Negative Rate, which are discussed in Sections 4.A.5 and 4.A.6. It determines
how good the model is in correctly predicting the positive observations and
in correctly predicting the negative observations on average.

Definition and distribution

The Balanced Accuracy is commonly defined as

BAccθ =
1

2
· (TPRθ + TNRθ).

127

44444

Chapter 4. 4.A. Mathematical derivations

By using Equations (4.5) and (4.6), this can be reformulated as

BAccθ =
1

2

(
TPθ

P
+ 1− ⌊M · θ⌉ − TPθ

M − P

)

=
M · TPθ

2P (M − P)
+
M − P − ⌊M · θ⌉

2 (M − P)
.

Note that P > 0 and N > 0 should hold, otherwise TPRθ or TNRθ is not
defined. Consequently, M > 1. Note that BAccθ is linear in TPθ and can
therefore be written as

BAccθ = Xθ

(
M

2P (M − P)
,
M − P − ⌊M · θ⌉

2 (M − P)

)
∼ fXθ

(
M

2P (M − P)
,
M − P − ⌊M · θ⌉

2 (M − P)

)
,

with range:

BAccθ
(R)
∈ R

(
Xθ

(
M

2P (M − P)
,
M − P − ⌊M · θ⌉

2 (M − P)

))
.

Expectation

BAccθ is linear in TPθ with slope a = M/(2P (M − P)) and intercept
b = (M −P −⌊M ·θ⌉)/(2 (M − P)), so its expectation can be derived:

E[BAccθ] = E
[
Xθ

(
M

2P (M − P)
,
M − P − ⌊M · θ⌉

2 (M − P)

)]
(□)
=

M

2P (M − P)
· E[TPθ] +

M − P − ⌊M · θ⌉
2 (M − P)

=
1

2
.

Optimal baselines

The baselines are directly determined by the ranges of the expectation
of BAccθ. Since the expectation is constant, its extreme values are the
same:

min
θ∈[0,1]

{E[BAccθ]} =
1

2
,

max
θ∈[0,1]

{E[BAccθ]} =
1

2
.

128

44444

Chapter 4. 4.A. Mathematical derivations

This means that the optimization values θmin ∈ [0, 1] and θmax ∈ [0, 1] for
these extreme values respectively are simply

θmin ∈ argmin
θ∈[0,1]

{E[BAccθ]} = [0, 1],

θmax ∈ argmax
θ∈[0,1]

{E[BAccθ]} = [0, 1].

Consequently, the discrete versions θ∗min ∈ Θ∗ and θ∗max ∈ Θ∗ of the optimiz-
ers are given by

θ∗min ∈ argmin
θ∗∈Θ∗

{E[Accθ∗]} = Θ∗,

θ∗max ∈ argmax
θ∗∈Θ∗

{E[Accθ∗]} = Θ∗,

respectively.

4.A.18 Matthews Correlation Coefficient

The Matthews Correlation Coefficient MCCθ was established by Matthews
[113]. However, its definition is identical to that of the Yule phi coefficient,
which was introduced by Yule [194]. The performance measure can be seen
as the correlation coefficient between the actual and predicted classes. Hence,
it is one of the few measures that lies in [−1, 1] instead of [0, 1].

Definition and distribution

The Matthews Correlation Coefficient is commonly defined as

MCCθ =
TPθ · TNθ − FNθ · FPθ√

(TPθ + FPθ)(TPθ + FNθ)(TNθ + FPθ)(TNθ + FNθ)
.

By using Equations (B2) and (B4), this definition can be reformulated
as

MCCθ =
M · TPθ − P · ⌊M · θ⌉√

⌊M · θ⌉ · P (M − P) (M − ⌊M · θ⌉)
. (4.18)

As Table 4.2 shows, the assumptions P > 0, N > 0, P̂ := ⌊M · θ⌉ > 0, and
N̂ :=M − ⌊M · θ⌉ > 0 must hold. If one of these assumptions is violated,
then the denominator in Equation (4.18) is zero, and MCCθ is not defined.

129

44444

Chapter 4. 4.A. Mathematical derivations

Therefore, we have for MCCθ that 1
2M ≤ θ < 1 − 1

2M and M > 1. Next,
to improve readability we introduce the variable C(M,P, θ) to replace the
denominator in Equation (4.18):

C(M,P, θ) :=
√
⌊M · θ⌉ · P (M − P) (M − ⌊M · θ⌉).

The definition of MCCθ is linear in TPθ and can thus be formulated as

MCCθ = Xθ

(
M

C(M,P, θ)
,
−P · ⌊M · θ⌉
C(M,P, θ)

)
∼ fXθ

(
M

C(M,P, θ)
,
−P · ⌊M · θ⌉
C(M,P, θ)

)
,

with range:

MCCθ

(R)
∈ R

(
Xθ

(
M

C(M,P, θ)
,
−P · ⌊M · θ⌉
C(M,P, θ)

))
.

Expectation

MCCθ is linear in TPθ with slope a = M/C(M,P, θ) and intercept b =
−P · ⌊M · θ⌉/C(M,P, θ), so its expectation can be derived from Equa-
tion (□):

E[MCCθ] = E
[
Xθ

(
M

C(M,P, θ)
,
−P · ⌊M · θ⌉
C(M,P, θ)

)]
(□)
=

M

C(M,P, θ)
· E[TPθ]−

P · ⌊M · θ⌉
C(M,P, θ)

= 0.

Optimal baselines

The baselines are directly determined by the ranges of the expectation
of MCCθ. Since the expectation is constant, its extreme values are the
same:

min
θ∈[1/(2M),1−1/(2M))

{E[MCCθ]} = 0,

max
θ∈[1/(2M),1−1/(2M))

{E[MCCθ]} = 0.

130

44444

Chapter 4. 4.A. Mathematical derivations

This means that the optimization values θmin and θmax for these extreme
values respectively are simply:

θmin = θmax ∈
[

1

2M
, 1− 1

2M

)
.

Consequently, the discrete versions θ∗min and θ∗max of the optimizers are given
by:

θ∗min = θ∗max ∈ Θ∗ \ {0, 1}.

4.A.19 Cohen’s Kappa

Cohen’s Kappa κθ is a less straightforward performance measure than the
other measures that we discuss in this research. It is used to quantify the
inter-rater reliability for two raters of categorical observations [98]. In our
case, we compare the first rater, which is the DD classifier, with the perfect
rater, which assigns the true label to each observation.

Definition and distribution

Although there are several definitions for Cohen’s Kappa, here we choose
the following:

κθ =
P θ
o − P θ

e

1− P θ
e

,

with P θ
o the Accuracy Accθ as defined in Section 4.A.16 and P θ

e the proba-
bility that the shuffle approach assigns the true label by chance. These two
values can be expressed in terms of the base measures as follows:

P θ
o = Accθ =

TPθ + TNθ

M
,

P θ
e =

(TPθ + FPθ) · P + (TNθ + FNθ) (M − P)
M2

.

By using Equations (4.12) and (B1) to (B4) the above can be rewritten
as

P θ
o =

2 · TPθ +M − P − ⌊M · θ⌉
M

,

P θ
e =

⌊M · θ⌉ · P + (M − ⌊M · θ⌉) (M − P)
M2

.

131

44444

Chapter 4. 4.A. Mathematical derivations

Note that for κθ to be well-defined, we need 1−P θ
e ̸= 0. In other words,

⌊M · θ⌉ · P + (M − ⌊M · θ⌉) (M − P) ̸=M2.

This simplifies to

⌊M · θ⌉
M

̸= P

2P −M
. (4.19)

The left-hand side is by definition in the interval [0, 1]. For the right-hand
side to be in that interval, we firstly need P/(2P−M) ≥ 0. Since P ≥ 0, that
means 2P −M > 0, and hence, P > M

2 . Secondly, P/(2P −M) ≤ 1. Since
we know P > M

2 , we obtain P ≥ M . This inequality reduces to P = M ,
because P is always at most M . Whenever P =M , then Equation (4.19)
becomes

⌊M · θ⌉
M

̸= 1.

To summarize, when P < M , then all θ ∈ [0, 1] are allowed in κθ, but when
P =M , then θ < 1− 1/(2M).

Now, by using P θ
o and P θ

e in the definition of Cohen’s Kappa, we ob-
tain:

κθ =
2 ·M · TPθ − 2 · ⌊M · θ⌉ · P

P (M − ⌊M · θ⌉) + (M − P) ⌊M · θ⌉
.

To improve readability, we introduce the variables aκθ
and bκθ

defined
as

aκθ
=

2M

P (M − ⌊M · θ⌉) + (M − P) ⌊M · θ⌉

bκθ
= − 2 · ⌊M · θ⌉ · P

P (M − ⌊M · θ⌉) + (M − P) ⌊M · θ⌉
.

Hence, κθ is linear in TPθ and can be written as

κθ = Xθ (aκθ
, bκθ

) ∼ fXθ
(aκθ

, bκθ
) ,

with range:

κθ
(R)
∈ R (Xθ (aκθ

, bκθ
)) .

132

44444

Chapter 4. 4.A. Mathematical derivations

Expectation

As Cohen’s Kappa is linear in TPθ, its expectation can be derived:

E[κθ] = E [Xθ (aκθ
, bκθ

)]
(□)
= aκθ

· E[TPθ] + bκθ

=
2 · ⌊M · θ⌉ · P

P (M − ⌊M · θ⌉) + (M − P) ⌊M · θ⌉

− 2 · ⌊M · θ⌉ · P
P (M − ⌊M · θ⌉) + (M − P) ⌊M · θ⌉

= 0.

Optimal baselines

The baselines are directly determined by the ranges of the expectation of κθ.
Since the expectation is constant, its extreme values are the same:{

minθ∈[0,1] {E[κθ]} = 0 if P < M

minθ∈[0,1−1/(2M)) {E[κθ]} = 0 if P =M ,{
maxθ∈[0,1] {E[κθ]} = 0 if P < M

maxθ∈[0,1−1/(2M)) {E[κθ]} = 0 if P =M .

This means that the optimization values θmin and θmax for these extreme
values respectively are simply all allowed values:{

θmin = θmax ∈ [0, 1] if P < M

θmin = θmax ∈
[
0, 1− 1

2M

]
if P =M .

Consequently, the discrete versions θ∗min and θ∗max of the optimizers are given
by {

θ∗min = θ∗max ∈ Θ∗ if P < M

θ∗min = θ∗max ∈ Θ∗ \ {1} if P =M .

133

44444

Chapter 4. 4.A. Mathematical derivations

4.A.20 Fowlkes-Mallows Index

The Fowlkes-Mallows Index FMθ or G-mean 1 was introduced by [51]
as a way to calculate the similarity between two clusterings. It is the
geometric average between the True Positive Rate (TPRθ) and Positive
Predictive Value (PPVθ), which are discussed in Sections 4.A.5 and 4.A.9,
respectively. It offers a balance between correctly predicting the actual
positive observations (TPRθ) and being cautious in predicting observations
as positive (PPVθ).

Definition and distribution

The Fowlkes-Mallows Index is commonly defined as

FMθ =
√

TPRθ · PPVθ.

By using the definitions of TPRθ and PPVθ in terms of TPθ in, respectively,
Equations (4.5) and (4.9), we obtain:

FMθ =
TPθ√

P · ⌊M · θ⌉
.

Since TPRθ is only defined when P > 0 and PPVθ only when P̂ := ⌊M ·θ⌉ >
0, also FMθ has these assumptions. Therefore, θ ≥ 1

2M . The definition of
FMθ is linear in TPθ and can thus be formulated as

FMθ = Xθ

(
1√

P · ⌊M · θ⌉
, 0

)
∼ fXθ

(
1√

P · ⌊M · θ⌉
, 0

)
,

with range:

FMθ

(R)
∈ R

(
Xθ

(
1√

P · ⌊M · θ⌉
, 0

))
.

Expectation

Because FMθ is linear in TPθ with slope a = 1/
√
P · ⌊M · θ⌉ and intercept

b = 0, its expectation is

E[FMθ] = E

[
Xθ

(
1√

P · ⌊M · θ⌉
, 0

)]
(□)
=

1√
P · ⌊M · θ⌉

· E[TPθ] + 0

=

√
P · ⌊M · θ⌉

M
=

√
θ∗ · P
M

.

134

44444

Chapter 4. 4.A. Mathematical derivations

Optimal baselines

The extreme values of the expectation of FMθ determine the baselines. They
are given by:

min
θ∈[1/(2M),1]

{E[FMθ]} = min
θ∈[1/(2M),1]

{√
P · ⌊M · θ⌉

M

}
=

√
P

M
,

max
θ∈[1/(2M),1]

{E[FMθ]} = max
θ∈[1/(2M),1]

{√
P · ⌊M · θ⌉

M

}
=

√
P

M
,

because the expectation is a non-decreasing function in θ. Note that the
minimum and maximum are equal to each other when M = 1. Consequently,
the optimizers θmin and θmax for the extreme values are determined by:

θmin ∈ argmin
θ∈[1/(2M),1]

{E[FMθ]} = argmin
θ∈[1/(2M),1]

{√
P · ⌊M · θ⌉

M

}

=

{ [
1

2M , 1
]

if M = 1[
1

2M , 3
2M

)
if M > 1,

θmax ∈ argmax
θ∈[1/(2M),1]

{E[FMθ]} = argmax
θ∈[1/(2M),1]

{√
P · ⌊M · θ⌉

M

}

=

{ [
1

2M , 1
]

if M = 1[
1− 1

2M , 1
]

if M > 1,

respectively. The discrete forms θ∗min and θ∗max of these are given by:

θ∗min ∈ argmin
θ∗∈Θ∗\{0}

{E[FMθ∗]} = argmin
θ∗∈Θ∗\{0}

{√
θ∗ · P
M

}
=

{
1

M

}
,

θ∗max ∈ argmax
θ∗∈Θ∗\{0}

{E[FMθ∗]} = argmax
θ∗∈Θ∗\{0}

{√
θ∗ · P
M

}
= {1}.

135

44444

Chapter 4. 4.A. Mathematical derivations

4.A.21 G-mean 2

The G-mean 2 G(2)
θ was established by [94]. This performance measure is the

geometric average between the True Positive Rate (TPRθ) and True Negative
Rate (TNRθ), which we discuss in Sections 4.A.5 and 4.A.6, respectively.
Hence, it balances correctly predicting the positive observations and correctly
predicting the negative observations.

Definition and distribution

The G-mean 2 is defined as

G(2)
θ =

√
TPRθ · TNRθ.

Since TPRθ needs the assumption P > 0 and TNRθ needs N :=M −P > 0,
we have these restrictions also for G(2)

θ . Consequently, M > 1. Now, by
using the definitions of TPRθ and TNRθ in terms of TPθ in, respectively,
Equations (4.5) and (4.6), we obtain:

G(2)
θ =

√
TPθ · (M − P − ⌊M · θ⌉) + TP2

θ

P (M − P)
.

This function is not a linear function of TPθ, and hence, we cannot write it
in the form Xθ (a, b) = a · TPθ + b for some variables a, b ∈ R.

Expectation

Since G(2)
θ is not linear in TPθ, we cannot easily use the expectation of TPθ

to determine that for G(2)
θ . However, we are able to determine the second

136

44444

Chapter 4. 4.A. Mathematical derivations

moment of G(2)
θ :

E
[(

G(2)
θ

)2]
=
M − P − ⌊M · θ⌉

P (M − P)
· E[TPθ] +

1

P (M − P)
· E[TP2

θ]

=
M − P − ⌊M · θ⌉

P (M − P)
· ⌊M · θ⌉

M
· P

+
1

P (M − P)
·
(
Var[TPθ] + E[TPθ]

2
)

=
(M − P − ⌊M · θ⌉) · ⌊M · θ⌉

M (M − P)

+

⌊M ·θ⌉(M−⌊M ·θ⌉)P (M−P)
M2(M−1)

+
(
⌊M ·θ⌉
M · P

)2
P (M − P)

=
⌊M · θ⌉ · (M − ⌊M · θ⌉)

M(M − 1)
= θ∗ · (1− θ∗) · M

M − 1
.

Remark that the distribution of TPθ is known, thus the expectation of G(2)
θ

can always be numerically calculated.

Optimal baselines

Since the function φ : R→ R≥0 given by φ(x) = x2 is a convex function, we
have by Jensen’s inequality that

E[G(2)
θ]2 ≤ E

[(
G(2)

θ

)2]
= θ∗ (1− θ∗) M

M − 1
.

This means that

E[G(2)
θ] ≤

√
θ∗ (1− θ∗) M

M − 1
.

Therefore, whenever θ∗ ∈ {0, 1}, then E[G(2)
θ] ≤ 0. Since G(2)

θ ≥ 0, it must
hold that E[G(2)

θ] = 0. Hence, the set {0, 1} contains minimizers for E[G(2)
θ].

The continuous version of this set is the interval [0, 1/(2M))∪ [1−1/(2M), 1].

137

44444

Chapter 4. 4.A. Mathematical derivations

To show that this interval contains the only possible values for the minimizers,
consider the definition for the expectation of G(2)

θ :

E
[
G(2)

θ

]
=

∑
k∈D(TPθ)

√
k · ((M − P)− (⌊M · θ⌉ − k))

P (M − P)
· P(TPθ = k),

where D(TPθ) is the domain of TPθ, i.e., the set of values k such that
P(TPθ = k) > 0. Now, let θ be such that 1/(2M) ≤ θ < 1 − 1/(2M).
Furthermore, consider the summand S(θ)

k corresponding to k = min{P, ⌊M ·
θ⌉} ∈ D(TPθ):

S
(θ)
k=min{P,⌊M ·θ⌉} =

√

M−⌊M ·θ⌉
M−P · P(TPθ = P) if P ≤ ⌊M · θ⌉√

⌊M ·θ⌉
P · P(TPθ = ⌊M · θ⌉) if P > ⌊M · θ⌉,

which is strictly positive in both cases. Hence, there is at least one term in
the summation in the definition of E

[
G(2)

θ

]
that is larger than 0, thus the

expectation is strictly positive for 1/(2M) ≤ θ < 1− 1/(2M). Consequently,
the minimization values θmin ∈ [0, 1] are

θmin ∈ argmin
θ∈[0,1]

{
E[G(2)

θ]
}
=

[
0,

1

2M

)
∪
[
1− 1

2M
, 1

]
.

Following this reasoning, the discrete form θ∗min ∈ Θ∗ is given by

θ∗min ∈ argmin
θ∗∈Θ∗

{
E[G(2)

θ]
}
= {0, 1}.

4.A.22 Prevalence Threshold (PT)

A relatively new performance measure named Prevalence Threshold (PTθ)
was introduced by [11]. We could not find many articles that use this
measure, but it is included for completeness. However, this performance
measure has an inherent problem that eliminates the possibility to determine
all statistics.

Definition and distribution

The Prevalence Threshold PTθ is commonly defined as

PTθ =

√
TPRθ · FPRθ − FPRθ

TPRθ − FPRθ
.

138

44444

Chapter 4. 4.A. Mathematical derivations

By using the definitions of TPRθ and FPRθ in terms of TPθ (see Equa-
tions (4.5) and (4.7)), we obtain:

PTθ =

√
P · (M − P) · TPθ · (⌊M · θ⌉ − TPθ)− P (⌊M · θ⌉ − TPθ)

M · TPθ − P · ⌊M · θ⌉
.

(4.20)

It is clear that this performance measure is not a linear function of TPθ,
therefore we cannot easily calculate its expectation. However, there are more
fundamental problems with PTθ.

Division by Zero

Equation (4.20) shows that PTθ is a problematic measure. When is the
denominator zero? This happens when TPθ = (⌊M · θ⌉/M) · P . In this
case, the fraction is undefined, as the denominator is zero. Furthermore,
also the numerator is zero in that case. The number of True Positives TPθ

can attain the value (⌊M · θ⌉/M) · P = θ∗ · P whenever the latter is also an
integer. For example, this always happens for θ∗ ∈ {0, 1}. But even when
θ∗ ∈ Θ∗ \ {0, 1}, PTθ is still only safe to use when M and P are coprime,
i.e., when the only positive integer that is a divisor of both of them is 1.
Otherwise, there are always values of θ∗ ∈ Θ∗ \ {0, 1} that cause θ∗ · P to
be an integer and therefore PTθ to be undefined when TPθ attains that
value.

One solution would be to say PTθ := c, c ∈ [0, 1], whenever both the
numerator and denominator are zero. However, this c is arbitrary and
directly influences the optimization of the expectation. This makes the
optimal parameter values dependent on c, which is beyond the scope of
this chapter. Thus, no statistics are derived for the Prevalence Threshold
PTθ.

4.A.23 Threat Score (TS) / Critical Success Index
(CSI)

The Threat Score [125] TSθ or Critical Success Index [151] is a performance
measure that is used for evaluation of forecasting binary weather events: it
either happens in a specific location or it does not. It was already used in 1884
to evaluate the prediction of tornadoes [151]. The Threat Score is the ratio
of successful event forecasts (TPθ) to the total number of positive predictions
(TPθ + FPθ) and the number of events that were missed (FNθ).

139

44444

Chapter 4. 4.A. Mathematical derivations

Definition and distribution

The Threat Score is thus defined as

TSθ =
TPθ

TPθ + FPθ + FNθ
.

By using Equations (B2) and (B3), this definition can be reformulated
as

TSθ =
TPθ

P + ⌊M · θ⌉ − TPθ
.

Note that TSθ is well-defined whenever P > 0. The definition of TSθ is
not linear in TPθ, and so there are no a, b ∈ R such that we can write the
definition as Xθ (a, b).

Expectation

Because TSθ is not linear in TPθ, determining the expectation is less straight-
forward than for other performance measures. The definition of the expecta-
tion is

E[TSθ] =
∑

k∈D(TPθ)

k

P + ⌊M · θ⌉ − k
· P(TPθ = k).

Unfortunately, we cannot explicitly solve this sum, but it can be calculated
numerically.

Optimal baselines

Although no explicit formula can be given for the expectation, we are able
to calculate the extreme values of the expectation and the corresponding
optimizers.

Minimal baseline Firstly, we show that θmin ∈ [0, 1
2M) constitutes a

minimum and that there are no θ outside this interval also yielding this
minimum. To this end,

E[TSθmin] =
∑

k∈D(TSθmin)

k

P + 0− k
· P(TSθmin = k) = 0,

140

44444

Chapter 4. 4.A. Mathematical derivations

because D(TSθmin) = {0}. This is the lowest possible value, since TSθ is a
non-negative performance measure, and hence, E[TSθ] ≥ 0 for any θ ∈ [0, 1].
Now, let θ′ ≥ 1

2M , then there exists a k′ > 0 such that P(TPθ′ = k′) > 0.
Consequently, E[TSθ′] > 0 and this means the interval [0, 1

2M) contains the
only values that constitute the minimum. In summary,

min
θ∈[0,1]

{E[TSθ]} = 0,

θmin ∈ argmin
θ∈[0,1]

{E[TSθ]} =
[
0,

1

2M

)
.

Since θ∗min is the discretization of θmin it corresponds to 0. More pre-
cisely:

θ∗min ∈ argmin
θ∗∈Θ∗

{E[TSθ∗]} = {0}.

Maximal baseline Secondly, to determine the maximum of E[TSθ] and
the corresponding parameter θmax, we determine an upper bound for the
expectation, show that this value is attained for a specific interval and that
there is no θ outside this interval also yielding this value. To do this, assume
that ⌊M · θ⌉ > 0. This makes sense, because ⌊M · θ⌉ = 0 implies θ < 1/(2M)
and such a θ would yield the minimum 0. Now,

E[TSθ] =
∑

k∈D(TPθ)

k

P + ⌊M · θ⌉ − k
· P(TPθ = k)

≤
∑

k∈D(TPθ)

k

P + ⌊M · θ⌉ − P
· P(TPθ = k)

=
1

⌊M · θ⌉
∑

k∈D(TPθ)

k · P(TPθ = k) =
E[TPθ]

⌊M · θ⌉
(□)
=

P

M
.

Next, let θmax ∈ [1− 1/(2M), 1], then

E[TSθmax] =

P∑
k=M−(M−P)

k

P +M − k
· P(TPθmax = k)

=
P

P +M − P
· P(TPθmax = P) =

P

M
,

141

44444

Chapter 4. 4.A. Mathematical derivations

because P(TPθmax = P) = 1. Hence, the upper bound is attained for
θmax ∈ [1− 1/(2M), 1], and thus, θmax is a maximizer.

Now, specifically for P = 1, we show that the interval of maximizers is
actually [1/(2M), 1]. Thus, let θ ∈ [1/(2M), 1−1/(2M)), then 0 < ⌊M ·θ⌉ <
M and

E[TSθ] =

min{1,⌊M ·θ⌉}∑
k=max{0,⌊M ·θ⌉−(M−1)}

k

1 + ⌊M · θ⌉ − k
· P(TPθ = k)

=
0

1 + ⌊M · θ⌉ − 0
· P(TPθ = 0) +

1

1 + ⌊M · θ⌉ − 1
· P(TPθ = 1)

=
1

⌊M · θ⌉
· P(TPθ = 1)

=
1

⌊M · θ⌉
·

((1
1

)(
M−1

⌊M ·θ⌉−1

)(
M

⌊M ·θ⌉
))

=
1

M
,

which is exactly the upper bound E[TSθmax] = P/M for P = 1.

Next, to show that the maximizers are only in [1 − 1/(2M), 1] for P > 1,
assume there is a θ′ < 1− 1

2M that also yields the maximum. Hence, there
is a k′ ∈ D(TPθ′) with 0 < k′ < P such that P(TPθ′ = k′). This means
that

142

44444

Chapter 4. 4.A. Mathematical derivations

E[TSθ′] =
∑

k∈D(TPθ′)

k

P + ⌊M · θ′⌉ − k
· P(TPθ′ = k)

=
k′

P + ⌊M · θ′⌉ − k′
· P(TPθ′ = k′)

+
∑

k∈D(TPθ′)\{k′}

k

P + ⌊M · θ′⌉ − k
· P(TPθ′ = k)

≤ k′

P + ⌊M · θ′⌉ − (P − 1)
· P(TPθ′ = k′)

+
∑

k∈D(TPθ′)\{k′}

k

P + ⌊M · θ′⌉ − P
· P(TPθ′ = k)

=
k′

⌊M · θ′⌉+ 1
P(TPθ′ = k′) +

∑
k∈D(TPθ′)\{k′}

k

⌊M · θ′⌉
P(TPθ′ = k)

<
k′

⌊M · θ′⌉
· P(TPθ′ = k′) +

∑
k∈D(TPθ′)\{k′}

k

⌊M · θ′⌉
· P(TPθ′ = k)

=
1

⌊M · θ′⌉
∑

k∈D(TPθ′)

k · P(TPθ′ = k) =
P

M
.

Hence, there is a strict inequality E[TSθ′] <
P
M and this means θ′ is not a

maximizer of the expectation. Consequently, the maximizers are only in the
interval [1− 1/(2M), 1] for P > 1. In summary:

max
θ∈[0,1]

{E[TSθ]} =
P

M
,

θmax ∈ argmax
θ∈[0,1]

{E[TSθ]} =

{ [
1

2M , 1
]

if P = 1[
1− 1

2M , 1
]

if P > 1.

Since θ∗max is the discretization of θmax, we obtain:

θ∗max ∈ argmax
θ∗∈Θ∗

{E[TSθ∗]} =
{

Θ∗ \ {0} if P = 1
{1} if P > 1.

143

555555

Chapter 5
The Optimal Input-Independent Baseline for

Binary Classification: The Dutch Draw

Contents

5.1 Introduction . 147

5.2 Preliminaries . 148

5.3 Essential conditions . 152

5.4 The Dutch Draw . 156

5.5 Theorem and proof . 158

5.6 Discussion and conclusion 163

Based on Joris Pries, Etienne van de Bijl, Jan Klein, Sandjai Bhulai,
and Rob van der Mei (): “The optimal input-independent base-
line for binary classification: The Dutch Draw”. Accepted for
publication in Statistica Neerlandica. [138]

145

555555

Chapter 5. Abstract

Abstract

Before any binary classification model is taken into practice, it
is important to validate its performance on a proper test set.
Without a frame of reference given by a baseline method, it
is impossible to determine if a score is ‘good’ or ‘bad’. The
goal of this chapter is to examine all baseline methods that are
independent of feature values and determine which model is the
‘best’ and why. By identifying which baseline models are optimal,
a crucial selection decision in the evaluation process is simplified.
We prove that the recently proposed Dutch Draw baseline is the
best input-independent classifier (independent of feature values)
for all positional-invariant measures (independent of sequence
order) assuming that the samples are randomly shuffled. This
means that the Dutch Draw baseline is the optimal baseline
under these intuitive requirements and should therefore be used
in practice.

146

555555

Chapter 5. 5.1. Introduction

5.1 Introduction

A binary classification model is trying to answer the following question:
Should the instance be labeled as zero or one? This question might seem
simple, but there are many practical applications for binary classification,
ranging from predicting confirmed COVID-19 cases [130], detecting malicious
intrusions [103] to determining if a runner is fatigued or not [24]. Whenever
a classification model is developed for a practical application, it is important
to validate the performance on a test set. However, a baseline is necessary to
put the achieved performance in perspective. Without this frame of reference,
only partial conclusions can be drawn from the results. An accuracy of 0.9
indicates that 90% of all predictions are correct. But it could be that the
model actually did not learn anything and such a high accuracy can already
be achieved by predicting only zeros. To put the performance in perspective,
it should therefore be compared with some meaningful benchmark method,
preferably with a state-of-the-art model.

Nevertheless, many state-of-the-art methods are instance-specific. They
can rapidly change and often involve many fine-tuned parameters. Thus,
as a necessary additional check in the development process, Van de Bijl
et al. [14] plead for a supplementary baseline that is general, simple, and
informative. This is used to test if the new model truly performs better
than a simple model. It should be considered a major warning sign when
a model is outperformed by e.g., a weighted coin flip. The model can use
information about the feature values of a sample, yet it is outperformed by
a model that does not even consider these values. Is the model then actually
learning something productive?

A theoretical approach for binary classification is proposed in [14] based on
Dutch Draw classifiers. Such a classifier draws uniformly at random (u.a.r.)
a subset out of all samples, and labels these 1, and the rest 0. The size of
the drawn subset is optimized to obtain the optimal expected performance,
which is the Dutch Draw baseline. For most commonly used performance
measures, a closed-form expression is given [14].

However, there are infinitely many ways to construct a baseline. We only
investigate prediction models that do not take any information from the
features into account, as this will result in a more general and simple baseline.
We call these models input-independent. Irrespective of the input, the way
that such a model predicts remains the same. Any newly developed model
should at least beat the performance of these kinds of models, as an input-

147

555555

Chapter 5. 5.2. Preliminaries

independent model cannot exploit patterns in the data to predict the labels
more accurately. However, sometimes a model can get lucky by accidentally
predicting the labels perfectly for a specific order of the labels. The order of
the samples should not influence the ‘optimality’ of a model. This is why
we introduce the notion of permutation-optimality. Furthermore, the order
of the samples should not change the outcome of the performance measure
(positional-invariant). This is not a strict condition, as most commonly used
measures have this property. Under these restrictions, we prove that the
Dutch Draw baseline is permutation-optimal out of all input-independent
classifiers for any positional-invariant measure.

To summarize, in this chapter we:

• determine natural requirements for a general, informative and simple
baseline;

• prove that the Dutch Draw baseline is the optimal baseline under these
requirements.

These contributions improve the evaluation process of any new binary
classification method.

The remainder of this chapter is organized as follows. First, the necessary
preliminaries and notations are discussed in Section 5.2. Next, in Section 5.3
we determine requirements for a general, simple and informative baseline.
Furthermore, we formally define what optimality entails under these require-
ments. In Section 5.4, an alternative definition for the Dutch Draw classifiers
is given, which is necessary for the main proof. In Section 5.5, we prove that
the Dutch Draw baseline is optimal. Finally, Section 5.6 summarizes the
general findings and discusses possible future research opportunities.

5.2 Preliminaries

Next, we introduce some concepts and notations to lay the foundation for the
main proof. First, binary classifiers (Section 5.2.1) and performance measures
(Section 5.2.2) for binary classification are discussed. Then, properties of
permutations are examined in Section 5.2.3, which will play a crucial role in
the proof of the main result.

5.2.1 Binary classifiers

To find a good baseline for a binary classification model, we first have to
discuss what a binary classifier actually is. To this end, let X be the feature

148

555555

Chapter 5. 5.2. Preliminaries

space (think e.g., Rd). Normally, a binary classifier is defined as a function
h : X ×R→ {0, 1} that maps feature values to zero or one, where the second
input is used to model stochasticity. However, this classifier only classifies
one sample at a time. Instead, we are interested in classifiers that classify
multiple samples simultaneously :

hM : XM × R→ {0, 1}M ,

where M ∈ N>0 denotes the number of samples that are classified. This gives
classifiers the ability to precisely predict k out of M samples positive. Note
that a single sample classifier h can simply be extended to classify M samples
simultaneously by applying the classifier for each sample individually:

hM : ((x1, . . . , xM), r) 7→ (h(x1, r), . . . , h(xM , r)) .

Note that r ∈ R can be viewed as a random seed. Let HM be the set of all
binary classifiers that classify M samples at the same time.

Example of a binary classifier

An example of a binary classifier is a coin toss, where each sample is classified
by throwing a coin and determining on which side it lands. Let θ ∈ [0, 1] be
the probability that the coin lands head, and 1− θ for tails. Assuming that
head and tails are classified by 1 and 0 respectively, we get:

hsingle
coin (·, r) :=

{
1 with probability θ,

0 with probability 1− θ.

ClassifyingM samples by repeatedly throwing coins can be achieved by:

hcoin : ((x1, . . . , xM), r) 7→
(
hsingle

coin (x1, r), . . . , h
single
coin (xM , r)

)
.

5.2.2 Performance measures for binary classification

To assess the effectiveness of a binary classification model, it is necessary
to choose a performance measure, which quantifies how much the pre-
dicted labels agree with the actual labels. Namely, each sample indexed
by i has feature values xi ∈ X and a corresponding label yi ∈ {0, 1}.

149

555555

Chapter 5. 5.2. Preliminaries

Let X := (x1 . . .xM) ∈ XM be the combined feature values of M sam-
ples. Furthermore, let Y = (y1, . . . , yM) denote the corresponding la-
bels. A performance measure for binary classification is then defined as
µ : {0, 1}M × {0, 1}M → R, where the first entry of µ is the predictions
made by the classifier and the second entry is the corresponding labels. The
performance of classifier hM can now be written as: µ(hM (X, r),Y).

Example of a performance measure

An example of a performance measure for binary classification is accuracy
(µacc). It is defined as the total number of correctly classified samples divided
by the total number of samples. For any hM (X, r) = (ŷ1, . . . , ŷM) ∈ {0, 1}M
and Y = (y1, . . . , yM) ∈ {0, 1}M , it holds that

µacc (hM (X, r),Y) =

∑M
i=1 1{ŷi=yi}

M
.

Undefined cases

Some measures are undefined for specific combinations of hM (X, r) and Y.
Take for example the true positive rate [174], which is the number of correctly
predicted positives divided by the total number of actual positives. When
there are no actual positives, the measure is ill-defined, as it divides by zero.
Less obvious, the measure negative predictive value [174] is undefined when no
negatives are predicted, as it is defined as the number of correctly predicted
negatives divided by the total number of predicted negatives. Assigning
a constant value C to undefined cases solves many issues. However, this
can make it desirable for a classifier to always predict labels that lead to a
previously undefined measure in order to minimize the measure. Therefore,
we redefine µ from now on for every Ŷ,Y ∈ {0, 1}M to be equal to a specific
constant Cundef, when µ(Ŷ,Y) was undefined. We make a distinction for
each objective (maximizing/minimizing). Let

Cundef :=

{
maxŶ,Y∈{0,1}M µ(Ŷ,Y) if minimizing,

minŶ,Y∈{0,1}M µ(Ŷ,Y) if maximizing.

It is therefore always disadvantageous for a classifier to predict a previously
undefined case. By defining Cundef in this way, we do not have to omit such
classifiers from our analysis.

150

555555

Chapter 5. 5.2. Preliminaries

5.2.3 Permutations

To determine which binary classifier is considered to be the ‘best’, we define
permutation-optimality in Section 5.3.3, which uses permutations to define
‘optimality’. In this section, we examine properties of permutations that
are used in the main proof (see Section 5.5). A permutation is a bijective
function from a set to itself [46]. This means that a permutation is not a
reordered list; it is a function that determines where each element should be
rearranged to.

Let SM denote the set of all permutations of a set of size M , also called the
symmetric group. More formally,

SM :=
{
π : {1, . . . ,M} → {1, . . . ,M} s.t. {π(i)}Mi=1 = {1, . . . ,M}

}
.

Example of symmetric group

Using the Cauchy one-line notation [34], all possible permutations of three
elements are given by

(
1 2 3

)
,
(
1 3 2

)
,
(
2 1 3

)
,(

2 3 1
)
,
(
3 1 2

)
,
(
3 2 1

)
.

The permutation
(
2 3 1

)
sends the first element to the second position,

the second element to the third position and the third element to the first
position.

Sample-wise permutations

To apply permutations to a matrix, we discuss sample-wise permutations.
For every M ×K dimensional matrix X = (x1 . . .xM), let Xπ denote the
sample-wise permutation under π. Thus,

Xπ :=
(
xπ(1) . . .xπ(M)

)
,

with K ∈ N>0 the number of features. This means that the matrix X is
reordered by row.

151

555555

Chapter 5. 5.3. Essential conditions

Properties of permutations

Next, we outline some properties of SM that are used in the proof of the main
result. SM is a group with the composition of functions as group operator
(denoted by ◦), thus the group axioms must hold [10, 46]. This means that
there exists an identity element id ∈ SM such that for all π ∈ SM :

id ◦ π = π = π ◦ id.

Furthermore, for every π ∈ SM , there exists a unique inverse element
π−1 ∈ SM such that

π ◦ π−1 = id = π−1 ◦ π.

Thus, for each permutation, there exists an inverse permutation that reverses
the change of order of the permutation, which is used in Section 5.5. As
each inverse is unique and also contained in SM , it follows that

{π ∈ SM} = {π−1 : π ∈ SM}, (5.1)

which means that the set of all permutations is the same as the set of
all inverses of these permutations. Thus, taking an expectation over all
permutations in SM is the same as taking the expectation over all inverse
permutations of permutations in SM . This is used in the proof of the main
result in Section 5.5.

5.3 Essential conditions

To prove that the optimal Dutch Draw classifier yields the ‘optimal’ baseline,
we first have to define ‘optimality’. When is a baseline considered to be
optimal? To determine this, the following two questions must be answered:
(1) which methods do we compare and (2) how do we compare them? To this
end, we define the notion of input-independent classifiers, positional-invariant
measures, and permutation-optimality.

5.3.1 Input-independent classifier

Any binary classifier can be used as a baseline. However, any good standard-
ized baseline should be general, simple, and informative [14]. Thus, it needs
to be applicable to any domain, quick to train and clearly still beatable.

152

555555

Chapter 5. 5.3. Essential conditions

To this end, we investigate all models that do not take any feature values
into account, as they meet these three requirements. Without considering
feature values, they can be applied to any domain. Furthermore, they do not
require any training, because they cannot learn the relationship between the
feature values and the corresponding labels. This makes them also clearly
still beatable, as any newly developed model should leverage the information
from the feature values to make better predictions.

A binary classifier hM ∈ HM is named input-independent if for all feature
values Xi,Xj ∈ XM and r ∈ R it holds that:

hM (Xi, r) = hM (Xj , r) =: hM (r),

where the notation of hM (r) is chosen to visualize that the classifier hM
is not dependent on the input. By this definition, an input-independent
classifier is not dependent on feature values or even the feature domains.
Let Hi.i.

M = {hM ∈ HM : hM is input-independent} be the set of all input-
independent binary classifiers. A newly developed model, that was optimized
using the same performance measure, should always beat the performance of
an input-independent model, as it gains information from the feature values.
Otherwise, the model was not able to exploit this extra information to make
better predictions.

Example of an input-independent classifier

The coin flip (see Section 5.2.1) is by definition input-independent. The
feature values have no influence on the probability distribution of the coin.
Thus, for any (x1, . . . , xM) ∈ XM ,(

hsingle
coin (x1), . . . , h

single
coin (xM)

)
=
(
hsingle

coin (·), . . . , hsingle
coin (·)

)
.

5.3.2 Positional-invariant measure

To assess the performance of a method, a measure needs to be chosen.
Reasonably, the order of the samples should not change the outcome of
this measure. If a measure has this property, we call it positional-invariant.
More formally, a measure µ is positional-invariant if for every permutation
π ∈ SM and for all hM (X),Y ∈ {0, 1}M it holds that:

µ (hM (X, r),Y) = µ(hM (X, r)π,Yπ). (5.2)

153

555555

Chapter 5. 5.3. Essential conditions

This means that any reordering of the coupled predicted and actual labels
does not affect the performance score.

This is not a hard restriction, as most measures have this property. Note
for example that the number of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN) are all positional-invariant.
Most commonly used measures are a function of these four measures [163],
making them also positional-invariant.

Example of a non-positional-invariant measure

Nonetheless, it is possible to define measures that are not positional-invariant.
For example, take the measure

λ : {0, 1}M × {0, 1}M → R, (a = (a1, . . . , aM), b) 7→ a1,

which is dependent on the first position of the prediction, as

λ

((
0
1

)
,

(
1
0

))
= 0,

λ

((
1
0

)
,

(
0
1

))
= 1.

5.3.3 Defining optimality

To find the ‘optimal’ baseline, it is first essential to specify what ‘optimality’
entails.

Optimal classifier

A binary classifier does not need to have a deterministic outcome. Thus,
due to stochasticity, we consider a classifier to be optimal if it minimizes/-
maximizes the expected performance out of all considered binary classifiers
(denoted by H̃M). This means, that we have to average the performance
over all r ∈ R. Whether optimization means minimization or maximization
depends on the objective of the problem. So:

hmin
M ∈ argmin

hM∈H̃M

{Er∈R [µ(hM (X, r),Y)]} , (5.3)

hmax
M ∈ argmax

hM∈H̃M

{Er∈R [µ(hM (X, r),Y)]} . (5.4)

154

555555

Chapter 5. 5.3. Essential conditions

For example, when the goal is to maximize the accuracy, then hmax
M is an

optimal baseline out of all other baselines in H̃M . Note that there could be
multiple different optimal baselines.

Trivial optimal solution

However, this definition of ‘optimality’ leads to a trivial optimal solution,
when we consider all input-independent classifiers (H̃M = Hi.i.

M). Take the
deterministic classifier

h̃max
M (·, r) := Ŷmax ∈ argmax

Ŷ∈{0,1}M
µ(Ŷ,Y),

which always predicts a vector Ŷmax that maximizes the measure µ. Note
that h̃max

M is clearly input-independent (see Section 5.3.1), thus h̃max
M ∈ Hi.i.

M .
Furthermore, it holds that

max
hM∈H̃M

{
EhM (X) [µ(hM (X),Y)]

}
≤ max

Ŷ∈{0,1}M
µ(Ŷ,Y)

= Eh̃max
M (r)

[
µ(h̃max

M (r),Y)
]
.

In other words, the expected performance of h̃max
M is always higher or equal

compared to any other classifier. Thus, h̃max
M is considered to be optimal

(see Equation (5.4)). The same holds for minimization with

h̃min
M (r) := Ŷmin ∈ argmin

Ŷ∈{0,1}M
µ(Ŷ,Y).

Essentially, a perfect prediction can always be made by an input-independent
classifier, using the actual labels and the performance measure. Consider
for example the commonly used performance measure: accuracy, which is
maximized if the prediction Ŷ = Y. A classifier h̃max

M that always predicts
Y, is thus optimal for these given labels. This shows that an extension to
the definition of ‘optimality’ should be considered.

Permutation-optimality

The optimal property (see Equations (5.3) and (5.4)) is not really insightful
when we consider all deterministic classifiers, as the perfect prediction is
always made by one of them. Similarly, a broken clock gives the correct time

155

555555

Chapter 5. 5.4. The Dutch Draw

twice a day, but should not be used to determine the time. Therefore, we
introduce a new optimality condition named permutation-optimality.

It is often assumed that the test set is randomly shuffled. Therefore, we
introduce the notion of permutation-optimality. Instead of being optimal
for the distinct order that the feature values and corresponding labels are
given in, now all permutations of the samples are considered. A classifier is
permutation-optimal if it minimizes/maximizes the expected performance for
a random permutation of the test set out of all considered binary classifiers
(H̃M). Thus,

hmin
M ∈ argmin

hM∈H̃M

{
Eπ∼U(SM) [Er∈R [µ(hM (Xπ, r),Yπ)]]

}
, (5.5)

hmax
M ∈ argmax

hM∈H̃M

{
Eπ∼U(SM) [Er∈R [µ(hM (Xπ, r),Yπ)]]

}
. (5.6)

5.4 The Dutch Draw

A Dutch Draw classifier is defined in [14] for θ ∈ [0, 1], as

σθ(X, ·) := (1E(i))i∈{1,...M} with E ⊆ {1, . . .M}

drawn u.a.r. such that |E| = ⌊M · θ⌉. (5.7)

In other words, the classifier draws u.a.r. a subset E of size ⌊M ·θ⌉ out of all
samples, which it then labels as 1, while the rest is labeled 0. In this section,
we introduce an alternative definition, that is used in the main proof, and
show that all Dutch Draw classifiers are input-independent.

5.4.1 Alternative definition

Instead of the definition in Equation (5.7), we introduce an alternative
definition for the Dutch Draw classifiers to simplify the proof of the main
result. Given a binary vector (y1, . . . , yM) ∈ {0, 1}M of length M , note that
the number of ones it contains can be counted by taking the sum

∑M
i=1 yi.

Next, we define sets of binary vectors (of the same length) that contain the
same number of ones. For all j ∈ {0, . . . ,M}, define

Yj :=

{
Ŷ = (y1, . . . , yM) ∈ {0, 1}M s.t.

M∑
i=1

yi = j

}
. (5.8)

156

555555

Chapter 5. 5.4. The Dutch Draw

In other words, Yj contains all binary vectors of length M with exactly j
ones and M − j zeros. For example, for M = 4 it holds that

Y0 = {(0, 0, 0, 0)},

Y1 = {(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)},

Y2 = {(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0)},

Y3 = {(0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)},

Y4 = {(1, 1, 1, 1)}.

A Dutch Draw classifier selects u.a.r. E out of M samples and labels these
as one, and the rest zero. Note that this is the same as taking u.a.r. a vector
from YE . To simplify notation, let U(A) denote the uniform distribution
over a finite set A. Thus, when X ∼ U(A) it must hold that P(X = a) = 1

|A|
for each a ∈ A. Now, a Dutch Draw classifier σθ can be rewritten as

σθ(X, ·) := Ŷ with Ŷ ∼ U
(
Y⌊M ·θ⌉

)
. (5.9)

Put differently, a Dutch Draw classifier σθ chooses u.a.r. a vector with exactly
⌊M · θ⌉ ones as prediction out of all vectors with ⌊M · θ⌉ ones (Y⌊M ·θ⌉). This
alternative definition simplifies the proof of the main result.

5.4.2 Input-independence

Next, we discuss why all Dutch Draw classifiers are input-independent (see
Section 5.3.1). Note that a Dutch Draw classifier σθ is independent of feature
values, as it is only dependent on θ and M , see Equation (5.9). In other
words, any Dutch Draw classifier is by definition input-independent. Instead
of σθ(X, r), we can therefore write σθ(r). To conclude, for every θ ∈ [0, 1]
it holds that σθ ∈ Hi.i.

M , which is the set of all input-independent binary
classifiers.

5.4.3 Optimal Dutch Draw classifier

The optimal Dutch Draw classifier σθopt is determined by minimizing/max-
imizing the expected performance for the parameter θ out of all allowed
parameter values Θ [14]. Note that some measures are undefined for certain
predictions, thus Θ is not always equal to [0, 1]. Take e.g., the measure

157

555555

Chapter 5. 5.5. Theorem and proof

precision [174], which is defined as the number of true positives divided
by the total number of predicted positives. Therefore, if no positives are
predicted, the measure becomes undefined (division by zero). By adapting
each measure according to Section 5.2.2, all undefined cases are resolved and
Θ = [0, 1] always holds.

Using the alternative definition of the Dutch Draw classifier (see Equa-
tion (5.9)), we obtain:

θ∗min ∈ argmin
θ∈[0,1]

{
EŶ∼U(Y⌊M·θ⌉)

[
µ(Ŷ,Y)

]}
, (5.10)

θ∗max ∈ argmax
θ∈[0,1]

{
EŶ∼U(Y⌊M·θ⌉)

[
µ(Ŷ,Y)

]}
. (5.11)

Depending on the objective, either σθ∗min
or σθ∗max is an optimal Dutch Draw

classifier.

5.5 Theorem and proof

After defining input-independence (Section 5.3.1), positional-invariance (Sec-
tion 5.3.2), permutation-optimality (Section 5.3.3), and introducing an al-
ternative formulation for the Dutch Draw classifier, all ingredients for the
following theorem are present.

Theorem 5.5.1 (Main result). The optimal Dutch Draw classifier σθopt is
permutation-optimal out of all input-independent classifiers (Hi.i.

M), for any
positional-invariant measure µ. In other words:

σθ∗min
∈ argmin

hM∈Hi.i.
M

{
Eπ∼U(SM) [Er∈R [µ(hM (Xπ, r),Yπ)]]

}
, (5.12)

σθ∗max
∈ argmax

hM∈Hi.i.
M

{
Eπ∼U(SM) [Er∈R [µ(hM (Xπ, r),Yπ)]]

}
. (5.13)

This means that the optimal Dutch Draw classifier is the best general, simple,
and informative baseline.

Intuition behind proof An input-independent classifier cannot learn the
actual label from feature values. The predictions are therefore arbitrary. By

158

555555

Chapter 5. 5.5. Theorem and proof

averaging the performance over all permutations of the dataset (permutation-
optimal), it is only relevant how many labels are predicted to be zero (or one)
by the classifier, as the performance measure is not dependent on the order
(positional-invariance). The optimal Dutch Draw classifier is determined
by optimizing the number of predicted zeros and ones, which makes this
baseline permutation-optimal.

Proof. Let hM ∈ Hi.i.
M be an input-independent classifier and let µ be a

positional-invariant measure, the classifier is permutation-optimal if it mini-
mizes/maximizes the expected performance under a random permutation
of the test set out of all input-independent classifiers (see Equations (5.5)
and (5.6)).

For any input-independent classifier hM , it holds that

Er∈R [µ(hM (Xπ, r),Yπ)] = Er∈R [µ(hM (r),Yπ)] . (5.14)

The input Xπ is not relevant for the classification, and can thus be omitted.

In total, there are 2M unique possible predictions in {0, 1}M . Denote these
distinct vectors by Ŷ1, . . . , Ŷ2M such that

⋃2M

i=1 Ŷi = {0, 1}M . Next, the
expectation in Equation (5.14) can be written out by:

Er∈R [µ(hM (r),Yπ)] =
2M∑
i=1

P(hM (·) = Ŷi) · µ(Ŷi,Yπ). (5.15)

As we need to proof permutation-optimality, we have to take the expectation
of Equation (5.15) over all permutations. Using linearity of expectation
gives:

Eπ∼U(SM)

 2M∑
i=1

P(hM (·) = Ŷi) · µ(Ŷi,Yπ)

=

2M∑
i=1

P(hM (·) = Ŷi) · Eπ∼U(SM)

[
µ(Ŷi,Yπ)

]
. (5.16)

Instead of taking the expectation of a sum, we now take the sum of expecta-
tions.

159

555555

Chapter 5. 5.5. Theorem and proof

The measure µ is positional-invariant, thus using Equation (5.2) gives

µ(Ŷi,Yπ) = µ((Ŷi)π−1 , (Yπ)π−1) = µ((Ŷi)π−1 ,Y). (5.17)

Applying a permutation does not change a positional-invariant measure µ.
In this case, we apply the inverse permutation π−1 to retrieve Y.

Because of Equation (5.17), it therefore also holds that

Eπ∼U(SM)

[
µ(Ŷi,Yπ)

]
= Eπ∼U(SM)

[
µ((Ŷi)π−1 ,Y)

]
. (5.18)

Equation (5.1) shows that the set of all inverse permutations is the same as
the set of all permutations. Given that the permutations are drawn u.a.r.,
taking the expectation over all the inverse permutations is the same as
taking the expectation over all permutations. When permutation π is drawn
u.a.r., it namely holds that P(π = s) = P(π = s−1) = 1

|SM | for all s ∈ SM .
Therefore,

Eπ∼U(SM)

[
µ((Ŷi)π−1 ,Y)

]
=
∑
s∈SM

(
µ((Ŷi)s−1 ,Y) · P(π = s)

)

=
∑
s∈SM

(
µ((Ŷi)s−1 ,Y) · P(π = s−1)

)

= Eπ∼U(SM)

[
µ((Ŷi)π,Y)

]
. (5.19)

Thus, π−1 can be replaced with π in Equation (5.18).

Recall that Yj is the set of all binary vectors of length M with j ones
(see Equation (5.8)). Furthermore, note that applying a u.a.r. chosen
permutation π ∈ SM on Ŷi ∈ Yj is the same as selecting u.a.r. Ŷ ∈ Yj as
outcome, because for every Ŷ⋆ ∈ Yj it holds that

P
(
(Ŷi)π = Ŷ⋆

)
=

1

|Yj |
with π ∼ U (SM) ,

and

P
(
Ŷ = Ŷ⋆

)
=

1

|Yj |
with Ŷ ∼ U (Yj) .

160

555555

Chapter 5. 5.5. Theorem and proof

Let |Ŷi| denote the number of ones in Ŷi. Now, we can rewrite the expec-
tation Eπ∼U(SM) [·] over all permutations into an expectation over a u.a.r.
drawn vector with the same number of ones, by

Eπ∼U(SM)

[
µ((Ŷi)π,Y)

]
= E

Ŷ∼U
(
Y|Ŷi|

) [µ(Ŷ,Y)
]
. (5.20)

Using Equations (5.18) to (5.20) in combination with Equation (5.16) gives

2M∑
i=1

P(hM (·) = Ŷi) · Eπ∼U(SM)

[
µ(Ŷi,Yπ)

]

=
2M∑
i=1

P(hM (·) = Ŷi) · EŶ∼U
(
Y|Ŷi|

) [µ(Ŷ,Y)
]
.

We have now eliminated all permutations from the equation. Note that the
expectation in the right-hand side is the same for each Ŷi ∈ Yj . In other
words, the expectation is the same for two vectors, when they have the same
number of ones. Grouping the vectors with the same number of ones, gives

2M∑
i=1

P(hM (·) = Ŷi) · EŶ∼U
(
Y|Ŷi|

) [µ(Ŷ,Y)
]

=

M∑
j=0

P(hM (·) ∈ Yj) · EŶ∼U(Yj)

[
µ(Ŷ,Y)

]
.

Instead of summing over all possible binary vectors Ŷi ∈ {0, 1}M , all vectors
with the same number of ones are grouped together, as they have the same
expectation. All probability mass of the grouped vectors is also added up.
Note, that it is thus only relevant for a classifier in which group Yj the
prediction hM (·) belongs.

For any j ∈ {0, . . . ,M} it holds that EŶ∼U(Yj)

[
µ(Ŷ,Y)

]
is bounded by

minimizing/maximizing over all possible values of j. Thus,

EŶ∼U(Yj)

[
µ(Ŷ,Y)

]
≥ min

j′∈{0,...,M}
EŶ∼U(Yj′)

[
µ(Ŷ,Y)

]
, (5.21)

EŶ∼U(Yj)

[
µ(Ŷ,Y)

]
≤ max

j′∈{0,...,M}
EŶ∼U(Yj′)

[
µ(Ŷ,Y)

]
. (5.22)

161

555555

Chapter 5. 5.5. Theorem and proof

Observe that
∑M

j=0 P(hM (·) ∈ Yj) = 1 and P(hM (·) ∈ Yj) ≥ 0 hold for each
j, therefore it follows using Equations (5.21) and (5.22) that

M∑
j=0

P(hM (·) ∈ Yj) · EŶ∼U(Yj)

[
µ(Ŷ,Y)

]
≥ min

j′∈{0,...,M}
EŶ∼U(Yj′)

[
µ(Ŷ,Y)

]
,

M∑
j=0

P(hM (·) ∈ Yj) · EŶ∼U(Yj)

[
µ(Ŷ,Y)

]
≤ max

j′∈{0,...,M}
EŶ∼U(Yj′)

[
µ(Ŷ,Y)

]
.

Consequently, we have found a lower and upper bound for Equations (5.12)
and (5.13), respectively. Namely,

min
hM∈Hi.i.

M

{
Eπ∼U(SM) [Er∈R [µ(hM (Xπ, r),Yπ)]]

}
≥ min

j∈{0,...,M}

{
EŶ∼U(Yj)

µ(Ŷ,Y)
}
, (5.23)

max
hM∈Hi.i.

M

{
Eπ∼U(SM) [Er∈R [µ(hM (Xπ, r),Yπ)]]

}
≤ max

j∈{0,...,M}

{
EŶ∼U(Yj)

µ(Ŷ,Y)
}
. (5.24)

Equality only holds for any classifier hM ∈ Hi.i.
M , when all probability mass

is given to the set of minimizers and maximizers of
{
EŶ∼U(Yj)

µ(Ŷ,Y)
}
,

respectively. In other words, the minimum can only be attained if∑
jmin∈argminj∈{0,...,M}

{
E
Ŷ∼U(Yj)

µ(Ŷ,Y)

}P(hM (·) ∈ Yjmin) = 1, (5.25)

and the maximum only if∑
jmax∈argmaxj∈{0,...,M}

{
E
Ŷ∼U(Yj)

µ(Ŷ,Y)

}P(hM (·) ∈ Yjmax) = 1. (5.26)

A classifier hM ∈ Hi.i.
M can therefore only attain the minimum/maximum

if all predictions belong to a group Yj or possibly multiple groups that all
minimize/maximize the expectation (depending on the objective).

162

555555

Chapter 5. 5.6. Discussion and conclusion

Remember that the Dutch Draw selects the optimal classifier based on
Equations (5.10) and (5.11), which leads to

⌊M · θ∗min⌉ ∈ argmin
j∈{0,...,M}

{
EŶ∼U(Yj)

[
µ(Ŷ,Y)

]}
,

⌊M · θ∗max⌉ ∈ argmax
j∈{0,...,M}

{
EŶ∼U(Yj)

[
µ(Ŷ,Y)

]}
.

Combining this with the alternative definition of the Dutch Draw (Equa-
tion (5.9)) directly gives that∑

jmin∈argminj∈{0,...,M}

{
E
Ŷ∼U(Yj)

µ(Ŷ,Y)

}P(σθ∗min
(·) ∈ Yjmin) = 1,

∑
jmax∈argmaxj∈{0,...,M}

{
E
Ŷ∼U(Yj)

µ(Ŷ,Y)

}P(σθ∗max(·) ∈ Yjmax) = 1.

This shows in combination with Equations (5.25) and (5.26) that the optimal
Dutch Draw classifier actually attains the bound given in Equations (5.23)
and (5.24). It now follows that,

σθ∗min
∈ argmin

hM∈Hi.i.
M

{
Eπ∼U(SM) [Er∈R [µ(hM (Xπ, r),Yπ)]]

}
,

σθ∗max ∈ argmax
hM∈Hi.i.

M

{
Eπ∼U(SM) [Er∈R [µ(hM (Xπ, r),Yπ)]]

}
.

Thus, we can conclude that the optimal Dutch Draw classifier attains the min-
imum/maximum expected performance and is therefore permutation-optimal
for all input-independent classifiers with a positional-invariant measure.

5.6 Discussion and conclusion

A baseline is crucial to assess the performance of a prediction model. How-
ever, there are infinitely many ways to devise a baseline method. As a
necessary check in the development process, Van de Bijl et al. [14] plead for
a supplementary baseline that is general, simple, and informative. In this
chapter, we have therefore examined all baselines that are independent of

163

555555

Chapter 5. 5.6. Discussion and conclusion

feature values, which makes them general and relatively simple. Addition-
ally, these baselines are also informative, as it should be considered a major
warning sign when a newly developed model is outperformed by a model
that does not take any feature values into account. We have shown that,
out of all input-independent binary classifiers, the Dutch Draw baseline is
permutation-optimal for any positional-invariant measure. Our findings im-
prove the evaluation process of any new binary classification method, as we
have proven that the Dutch Draw baseline is ideal to gauge the performance
score of a newly developed model.

Next, we discuss two points that could be considered an ‘unfair’ advantage
for the Dutch Draw baseline. First of all, we have considered classifiers that
predict M labels simultaneously. This gives classifiers a potential advantage
over classifying each sample sequentially, as e.g., exactly k out of M samples
can be labeled positive. This can only be done sequentially when a classifier
is allowed to track previous predictions or to change based on the number
of classifications it has made. Even with this advantage, we believe that all
input-independent models still remain clearly beatable by a newly developed
model.

Secondly, the Dutch Draw baseline can be derived for most commonly used
measures without any additional knowledge about the number of positive
labels P . Nonetheless, it was shown in [14] that the Dutch Draw baseline can
only be calculated for the measure accuracy when it is known if P ≥M/2
holds. If the distribution of the training set is the same as the test set,
the training set can be used to determine whether P ≥ M/2 is likely to
hold. Furthermore, a domain expert could estimate whether it is likely
that a dataset contains more positives than negatives. Take for example
a cybersecurity dataset, where there are often significantly less harmful
instances and more normal instances [186]. There are thus many ways to
estimate if P ≥M/2 holds. Nevertheless, even if the Dutch Draw baseline
uses this information (only for the accuracy), we believe that any newly
developed model should still beat the Dutch Draw baseline, as it does not
use any feature values to improve prediction.

Finally, we address future research opportunities. In this chapter, we have
only considered binary classification. A natural extension would be to also
consider multiclass classification [65], probabilistic classification, or regression
(between [0, 1]). Is a strategy similar to the Dutch Draw optimal in these
cases? Can a closed-form expression of the optimal baseline be derived? We
believe that the three introduced properties (namely, input-independent,
order-invariant, and average-permutation-optimal) are still relevant for these

164

555555

Chapter 5. 5.6. Discussion and conclusion

problems. This could help identify what kind of classifier is considered to be
optimal. Van de Bijl et al. [14] stated that the Dutch Draw baseline could
be used to scale existing measures. This research provides more motivation
to scale measures with the Dutch Draw baseline and not by using any other
input-independent classifier. Yet, it could still be investigated how each
measure should be scaled in order to maximize the explainability behind a
performance score.

165

Part III
Quantifying the Relationships
between Random Variables

167

6666666

Chapter 6
The Berkelmans-Pries Dependency Function: A

Generic Measure of Dependence between
Random Variables

Contents

6.1 Introduction . 171

6.2 Desired properties of a dependency function 172

6.3 Assessing existing dependency measures 176

6.4 The Berkelmans-Pries dependency function 180

6.5 Properties BP dependency function 184

6.6 Discussion and conclusion 187

6.A Formulations of UD . 191

6.B Properties UD . 193

Based on Guus Berkelmans, Joris Pries, Sandjai Bhulai, and Rob
van der Mei (2023): “The BP dependency function: A generic
measure of dependence between random variables”. Published
in the Journal of Applied Probability. [13]

169

6666666

Chapter 6. Abstract

Abstract

Measuring and quantifying dependencies between random vari-
ables (RV’s) can give critical insights into a dataset. Typical
questions are: ‘Do underlying relationships exist?’, ‘Are some
variables redundant?’, and ‘Is some target variable Y highly or
weakly dependent on variable X?’ Interestingly, despite the evi-
dent need for a general-purpose measure of dependency between
RV’s, common practice of data analysis is that most data analysts
use the Pearson correlation coefficient to quantify dependence
between RV’s, while it is well-recognized that the correlation
coefficient is essentially a measure for linear dependency only.
Although many attempts have been made to define more generic
dependency measures, there is yet no consensus on a standard,
general-purpose dependency function. In fact, several ideal prop-
erties of a dependency function have been proposed, but without
much argumentation. Motivated by this, in this chapter we will
discuss and revise the list of desired properties and propose a
new dependency function that meets all these requirements. This
general-purpose dependency function provides data analysts a
powerful means to quantify the level of dependence between
variables. To this end, we also provide Python code to determine
the dependency function for use in practice.

170

6666666

Chapter 6. 6.1. Introduction

6.1 Introduction

In as early as 1958, Kruskal [93] stated that “There are infinitely many
possible measures of association, and it sometimes seems that almost as
many have been proposed at one time or another.” Many years later, even
more dependency measures have been suggested. Yet, and rather surprisingly,
there still does not exist consensus on a general dependency function. Often
the statement ‘Y is dependent on X’ means that Y is not independent of
X. However, there are different levels of dependency. For example, random
variable (RV) Y can be fully determined by RV X (i.e., Y (ω) = f(X(ω))
for all ω ∈ Ω and for a measurable function f), or only partially.

But how should we quantify how much Y is dependent on X? Intuitively,
and assuming that the dependency measure is normalized to the interval
[0,1], one would say that if Y is fully determined by X then the dependency
of Y w.r.t. X is as strong as possible, and so the dependency measure should
be 1. On the other side of the spectrum, if X and Y are independent, then
the dependency measure should be 0; and vice versa, it is desirable that
dependence 0 implies that X and Y are stochastically independent. Note
that the commonly used Pearson correlation coefficient does not meet these
requirements. In fact, many examples exists where Y is fully determined by
X while the correlation is zero.

Taking a step back, why is it actually useful to examine dependencies in a
dataset? Measuring dependencies between the variables can lead to critical
insights, which will lead to improved data analysis. First of all, it can reveal
important explanatory relationships. How do certain variables interact?
If catching a specific disease is highly dependent on the feature value of
variable X, research should be done to investigate if this information can be
exploited to reduce the number of patients with this disease. For example,
if hospitalization time is dependent on a healthy lifestyle, measures can be
taken to try to improve the overall fitness of a population. Dependencies can
therefore function as an actionable steering rod. It is however important to
keep in mind that dependency does not always mean causality. Dependency
relations can also occur due to mere coincidence or as a byproduct of another
process.

Dependencies can also be used for dimensionality reduction. If Y is highly
dependent on X, not much information is lost when only X is used in the
dataset. In this way, redundant variables or variables that provide little

171

6666666

Chapter 6. 6.2. Desired properties of a dependency function

additional information, can be removed to reduce the dimensionality of the
dataset. With fewer dimensions, models can be trained more efficiently.

In these situations a dependency function can be very useful. However,
finding the proper dependency function can be hard, as many attempts
have already been made. In fact, most of us have a ‘gut feeling’ for what a
dependency function should entail. To make this feeling more mathematically
sound, Rényi [141] proposed a list of ideal properties for a dependency
function. A long list of follow-up papers (see the references in Table 6.2.1
below) use this list as the basis for a wish list, making only minor changes
to it, adding or removing some properties.

In view of the above, the contribution of this research is threefold:

• We determine a new list of ideal properties for a dependency function;
• We present a new dependency function and show that it fulfills all

requirements;
• We provide Python code to determine the dependency function for the

discrete and continuous case [132].

The remainder of this chapter is organized as follows. In Section 6.2, we
summarize which ideal properties have been stated in previous literature. By
critically assessing these properties, we derive a new list of ideal properties
for a dependency function (see Table 6.2.2), which lays the foundation for
a new search for a general-purpose dependency function. In Section 6.3,
the properties are checked for existing methods, and we conclude that there
does not yet exist a dependency function that has all desired properties.
Faced by this, in Section 6.4 we define a new dependency function and
show in Section 6.5 that this function meets all the desired properties.
Finally, Section 6.6 outlines the general findings and addresses possible
future research opportunities.

6.2 Desired properties of a dependency function

What properties should an ideal dependency function have? In this section,
we summarize previously suggested properties. Often, these characteristics
are posed without much argumentation. Therefore, we analyze and discuss
which properties are actually ideal and which properties are to be believed
not relevant, or even wrong.

In Table 6.2.1, a summary is given of (twenty-two) ‘ideal properties’ found
in previous literature, grouped into five different categories. We denote these
by I.1-22. From these properties we derive a new set of desirable properties

172

6666666

Chapter 6. 6.2. Desired properties of a dependency function

denoted by II.1-8, see Table 6.2.2. Next, we discuss the properties suggested
in previous literature and how the new list is derived from them.

Desired property II.1 (Asymmetry):
At first glance, it seems obvious that a dependency function should adhere to
property I.13 and be symmetric. However, this is a common misconception
for the dependency function. Y can be fully dependent on X, but this does
not mean that X is fully dependent on Y . Lancaster [100] indirectly touched
upon this same point by defining mutual complete dependence. First it is
stated that Y is completely dependent on X if Y = f(X). X and Y are
called mutually completely dependent if X is completely dependent on Y
and vice versa. Thus, this indirectly shows that dependence should not
necessarily be symmetric, otherwise the extra definition would be redundant.
In [100] the following great asymmetric example was given.

Example 6.2.1. Let X ∼ U(0, 1) be uniformly distributed and let Y = −1
if X ≤ 1

2 and Y = 1 if X > 1
2 .

Then, Y is fully dependent on X, but not vice versa. To drive this point
home even more, we give another asymmetric example.

Example 6.2.2. X is uniformly randomly drawn out of {1, 2, 3, 4} and
Y := X mod 2.

Y is fully dependent onX, because givenX the value of Y is deterministically
known. On the other hand, X is not completely known given Y . Note
that Y = 1 still leaves the possibility for X = 1 or X = 3. Thus, when
assessing the dependency between variable X and variable Y , Y is fully
dependent on X, whereas X is not fully dependent on Y . In other words,
Dep (X,Y) ̸= Dep (Y,X).

In conclusion, an ideal dependency function should not always be symmetric.
To emphasize this point even further, we change the notation of the depen-
dency function. Instead of Dep (X,Y), we will denote Dep (Y |X) for how
much Y is dependent on X. Based by this, property I.13 is changed into
II.1.

Desired property II.2 (Range):
An ideal dependency function should be scaled to the interval [0, 1]. Other-
wise, it can be very hard to draw meaningful conclusions from a dependency
score without a known maximum or minimum. What would a score of
4.23 mean without any information about the possible range? Therefore,
property I.1 is retained. A special note on the range for the well-known
Pearson correlation coefficient [131], which is [−1, 1]: The negative or posi-

173

6666666

Chapter 6. 6.2. Desired properties of a dependency function

tive sign denotes the direction of the linear correlation. When examining
more complex relationships, it is unclear what ‘direction’ entails. We believe
that a dependency function should measure by how much variable Y is
dependent on X, and not necessarily in which way. In summary, we require:
0 ≤ Dep (Y |X) ≤ 1.

Desired property II.3 (Independence and dependency 0):
If Y is independent of X, it should hold that the dependency achieves the
lowest possible value, namely zero. Otherwise, it is vague what a dependency
score lower than the dependency between two independent variables means.
A major issue of the commonly used Pearson correlation coefficient, is that
zero correlation does not imply independence. This makes it complicated to
derive conclusions from a correlation score. Furthermore, note that if Y is
independent of X, it should automatically hold that X is also independent
of Y . In this case, X and Y are independent, because otherwise some
dependency relation should exist. Thus, we require: Dep (Y |X) = 0 ⇐⇒
X and Y are independent.

Desired property II.4 (Functional dependence and dependency 1):
If Y is strictly dependent on X (and thus fully determined by X), the
highest possible value should be attained. It is otherwise unclear what a
higher dependency would mean. However, it is too restrictive to demand
that the dependency is only 1 if Y is strictly dependent on X. Rényi [141]
stated “It seems at the first sight natural to postulate that δ(ξ, η) = 1
only if there is a strict dependence of the mentioned type between ξ and
η, but this condition is rather restrictive, and it is better to leave it out”.
Take, for example, Y ∼ U(−1, 1) and X := Y 2. Knowing X reduces
the infinite set of possible values for Y to only two

(
±
√
X
)
, whereas it

would reduce to one if Y was fully determined by X. It would be really
restrictive to enforce Dep (Y |X) < 1, as there is only an infinitesimal
difference compared to the strictly dependent case. Summarizing, we require:
Y = f(X)→ Dep (Y |X) = 1.

Desired property II.5 (Unambiguity):
Kruskal [93] stated “It is important to recognize that the question ‘Which
single measure of association should I use?,’ is often unimportant. There
may be no reason why two or more measures should not be used; the
point I stress is that, whichever ones are used, they should have clear-cut
population interpretations.” It is very important that a dependency score
leaves no room for ambiguity. The results should stroke with our natural
expectation. Therefore, we introduce a new requirement based on a simple
example: suppose we have a number of independent RV’s and observe one of

174

6666666

Chapter 6. 6.2. Desired properties of a dependency function

these at random. The dependency of each random variable on the observed
variable should be equal to the probability it is picked. More formally, let
Y1, Y2, . . . , YN , S be independent variables with S a selection variable s.t.
P(S = i) = pi and

∑N
i=1 pi = 1. When X is defined as X =

∑N
i=1 1S=i · Yi,

it should hold that Dep (Yi|X) = pi for all i ∈ {1, . . . , N}. Simply said, the
dependency function should give desired results in specific situations, where
we can argue what the outcome should be. This is one of these cases.

Desired property II.6 (Generally applicable):
Our aim is to find a general dependency function, which we denote by
Dep(X|Y). This function must be able to handle all kinds of variables:
continuous, discrete, and categorical (even nominal). These types of variables
occur frequently in a dataset. A general dependency function should be
able to measure the dependency of a categorical variable Y on a continuous
variable X. Stricter than I.9-12, we want a single dependency function that
is applicable to any combination of these variables.

There is one exception to this generality. In the case that Y is almost surely
constant it is completely independent as well as completely determined by
X. Arguing what the value of a dependency function should be in this case
is a bit similar to arguing the value of 0

0 . Therefore, we argue that in this
case it should be either undefined or return some value that represents the
fact that Y is almost surely constant (for example −1 since this cannot be
normally attained).

Desired property II.7 (Invariance under isomorphisms):
Properties I.14-20 discuss when the dependency function should be invariant.
Most are only meant for variables with an ordering, as ‘strictly increasing’,
’translation’ and ’scaling’ are otherwise ill-defined. As the dependency
function should be able to handle nominal variables, we assume that the
dependency is invariant under isomorphisms, see II.7. Note that this is a
stronger assumption than I.14-20. Compare Example 6.2.2 with the following
example.

Example 6.2.3. Let X ′ be uniformly randomly drawn out of {◦,△,□,♢}
and Y ′ = ♣ if X ′ ∈ {◦,□} and Y ′ = ♠ if X ′ ∈ {△,♢}.

It should hold that Dep (Y |X)=Dep (Y ′|X ′) and Dep (X|Y)=Dep (X ′|Y ′),
as the relationship between the variables is the same (only altered using iso-
morphisms). So, for any isomorphisms f and g we require Dep (g(Y)|f(X))=
Dep (Y |X) .

175

6666666

Chapter 6. 6.3. Assessing existing dependency measures

Desired property II.8 (Non-increasing under functions of X):
Additionally, Dep (Y |X) should not increase if a measurable function f
is applied to X since any dependence on f(X) corresponds to a depen-
dence on X (but not necessarily the other way around). The information
gained from knowing X can only be reduced, never increased by applying a
function.

However, though it might be natural to expect the same for functions applied
to Y , consider once again Example 6.2.2 (but with X and Y switched around)
and the following 2 functions: f1(Y) := Y mod 2 and f2(Y) :=

⌈
Y
2

⌉
. Then

f1(Y) is completely predicted by X and should therefore have a dependency
of 1 while f2(Y) is independent of X and should therefore have a dependency
of 0. So the dependency should be free to increase or decrease for functions
applied to Y . To conclude, for any measurable function f we require:
Dep (Y |f(X)) ≤ Dep (Y |X) .

Exclusion of Pearson correlation coefficient as a special case:
According to properties I.21-22, when X and Y are normally distributed the
dependency function should coincide with or be a function of the Pearson
correlation coefficient. However, these properties lack a good argumentation
for why this would be ideal. It is not obvious why this would be a necessary
condition. Even more, there are many known problems and pitfalls with
the correlation coefficient [48, 78], so it seems undesirable to force an ideal
dependency function to reduce to a function of the correlation coefficient,
when the variables are normally distributed. This is why we leave these
properties out.

6.3 Assessment of the desired properties for exist-
ing dependency measures

In this section, we assess whether existing dependency functions have the
properties listed above. In doing so, we limit this section to the most
commonly used dependency measures. Table 6.3.1 shows which properties
each investigated measure adheres to.

Although the desired properties listed in Table 6.2.2 seem not too restrictive,
many dependency measures fail to have many of these properties. One of
the most commonly used dependency measures, the Pearson correlation

176

6666666

Chapter 6. 6.3. Assessing existing dependency measures

Table 6.2.1: Desirable properties literature: A summary of desirable
properties for a dependency function stated in previous literature.

Property group Property Article(s)

I.1. 0 ≤ Dep (X,Y) ≤ 1
[4, 48, 66, 68, 79,
141, 142, 168,
172]

I.2. Dep (X,Y) = 0⇐ X and Y are independent [66, 79, 142]

I.3. Dep (X,Y) = 0⇒ X and Y are independent [172]

I.4. Dep (X,Y) = 0⇔ X and Y are independent [4, 48, 68, 121,
141, 168]

I.5. Dep (X,Y) = 1⇔ Y = LX with probability 1, where L is
a similarity transformation [121]

I.6. Dep (X,Y) = 1⇐ X and Y are strictly dependent [4, 66, 141, 142]

I.7. Dep (X,Y) = 1⇔ X and Y are comonotonic or
countermonotonic [48]

Range

I.8. Dep (X,Y) = 1⇔ X and Y are strictly dependent [68]

I.9. Dep (X,Y) is defined for any X,Y where both are not
constant [68, 121, 141]

I.10. Well-defined for both continuous and discrete variables [66]

I.11. Defined for both categorical and continuous variables;
and for ordinal categorical variables for which there may be
underlying continuous variables

[79]General

I.12. There is a close relationship between the measure for the
continuous variables and the measure for the discretization of
the variables

[79]

Symmetric I.13. Dep (X,Y) = Dep (Y,X)
[4, 48, 141, 142,
168]

I.14. Dep (f(X), g(Y)) = Dep (X,Y) with f, g strictly
monotonic functions [4]

I.15. Dep (f(X), Y) = Dep (X,Y) with f : R→ R strictly
monotonic on the range of X [48]

I.16. Dep (f(X), f(Y)) = Dep (X,Y) with f continuous and
strictly increasing [66, 168]

I.17. Dep (f(X), g(Y)) = Dep (X,Y) if f(·), g(·) map the real
axis in a one-to-one way onto itself [79, 141]

I.18. Dep (X,Y) is invariant with respect to all similarity
transformations [121]

I.19. Dep (X,Y) is invariant with respect to translation and
scaling [168]

Applying function
to argument

I.20. Dep (X,Y) is scale invariant [172]

I.21. Dep (X,Y) is a function of the Pearson correlation if the
joint distribution of X and Y is normal [4, 66, 172]Behavior normal

distribution
I.22. Dep (X,Y) = |ρ(X,Y)| if the joint distribution of X and
Y is normal, where ρ is the Pearson correlation [79, 141]

177

6666666

Chapter 6. 6.3. Assessing existing dependency measures

Table 6.2.2: Revised list of desirable properties: New list of desirable
properties for a dependency function.

Property group Property

Asymmetric II.1. There exist RV’s X,Y such that Dep (Y |X) ̸= Dep (X|Y).

II.2. 0 ≤ Dep (Y |X) ≤ 1 for all RV’s X and Y .

II.3. Dep (Y |X) = 0⇔ X and Y are independent.

II.4. Dep (Y |X) = 1⇐ Y is strictly dependent on X.Intuitive

II.5. If Y1, Y2, . . . , YN , S independent with P(S ∈ [N]) = 1, P(S = i) = pi
and X = YS then Dep (Yi|X) = pi must hold.

General II.6. Applicable for any combination of continuous, discrete and
categorical RV’s X,Y , where Y is not a.s. constant.

II.7. Dep (g(Y)|f(X)) = Dep (Y |X) for any isomorphisms f, g.
Functions

II.8. Dep (Y |f(X)) ≤ Dep (Y |X) for any measurable function f .

coefficient, does not even satisfy any one of the desirable properties. Fur-
thermore, almost all measures are not asymmetric. The one measure that
comes closes to fulfilling all requirements, is the uncertainty coefficient [131].
This is a normalized asymmetric variant of the mutual information [131],
where the discrete variant is defined as

CXY =
I(X,Y)

H(Y)
=

∑
x,y pX,Y (x, y) log

(
pX,Y (x,y)

pX(x)·pY (y)

)
−
∑

y pY (y) log(pY (y))
,

where H(Y) is the entropy of Y and I(X,Y) is the mutual information of
X and Y . Note that we use the following notation pX(x) = P(X = x),
pY (y) = P(Y = y), and pX,Y (x, y) = P(X = x, Y = y) throughout the
chapter. In addition, for a set H we define pX(H) = P(X ∈ H) (and
similarly for pY and pX,Y).

However, the uncertainty coefficient does not satisfy properties II.5 and
II.6. For example, if Y ∼ U(0, 1) is uniformly drawn, the entropy of Y

178

6666666

Chapter 6. 6.3. Assessing existing dependency measures

becomes:

H(Y) = −
∫ 1

0
fY (y) ln (fY (y)) dy

= −
∫ 1

0
1 · ln (1) dy

= 0.

Thus, for any X, the uncertainty coefficient is now undefined (division by
zero). Therefore, the uncertainty coefficient is not as generally applicable as
property II.6 requires.

Two other measures that satisfy many (but not all) properties are mutual
dependence [4] and maximal correlation [58]. Mutual dependence is defined
as the Hellinger distance [69] dh between the joint distribution and the
product of the marginal distributions, defined as follows (cf. [4]):

d(X,Y) ≜ dh(fXY (x, y), fX(x) · fY (y)). (6.1)

Maximal correlation is defined as (cf. [141]):

S(X,Y) = sup
f,g

R(f(X), g(Y)), (6.2)

where R is the Pearson correlation coefficient, and where f, g are Borel
measurable functions, such that R(f(X), g(Y)) is defined [141].

Clearly, Equations (6.1) and (6.2) are symmetric. The joint distribution
and the product of the marginal distributions does not change by switching
X and Y . Furthermore, the Pearson correlation coefficient is symmetric,
making the maximal correlation also symmetric. Therefore, both measures
do not have property II.1.

There are two more measures (one of which is a variation of the other) which
satisfy many (but not all) properties, and additionally closely resemble
the measure we intend to propose. Namely, the strong mixing coefficient
[20]

α(X,Y) = sup
A∈EX ,B∈EY

{|µX,Y (A×B)− µX(A)µY (B)|} ,

179

6666666

Chapter 6. 6.4. The Berkelmans-Pries dependency function

and it’s relaxation, the β-mixing coefficient [20]

β(X,Y) = sup

1

2

I∑
i=1

J∑
j=1

|(µX,Y (Ai ×Bj)− µX(Ai)µY (Bj))|

 ,

where the supremum is taken over all finite partitions (A1, A2, . . . , AI) and
(B1, B2, . . . , BJ) of EX and EY with Ai ∈ EX and Bj ∈ EY . However, these
measures fail the properties II.1, II.4, and II.5.

Table 6.3.1: Assessment of properties: Properties of previous depen-
dencies functions (✓= satisfied, ✗= not satisfied). See [12] for the proofs.

Asymmetric Intuitive General Functions

Measure II.1 II.2 II.3 II.4 II.5 II.6 II.7 II.8

Pearson correlation coefficient [131] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Spearman’s rank correlation coefficient [131] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Kendall rank correlation coefficient [131] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Mutual information [131] ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓

Uncertainty coefficient [131] ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

Total correlation [183] ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓

Mutual dependence [4] ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓

∆L1 [29] ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓

∆SD [29] ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

∆ST [29] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Monotone correlation [87] ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Maximal correlation [58] ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓

Distance correlation [172] ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Maximum canonical correlation (first) [72] ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Strong mixing coefficient [20] ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓

β-mixing coefficient [20] ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓

6.4 The Berkelmans-Pries dependency
function

After devising a new list of ideal properties (see Table 6.2.2) and showing
that these properties are not fulfilled by existing dependency functions (see
Table 6.3.1), we will now introduce a new dependency function that will
meet all requirements. Throughout, we will refer to this function as the
Berkelmans-Pries (BP) dependency function.

180

6666666

Chapter 6. 6.4. The Berkelmans-Pries dependency function

The key question surely is: What is dependency? Although this question
deserves an elaborate philosophical study, we believe that measuring the
dependency of Y on X, is essentially measuring how much the distribution of
Y changes on average based on the knowledge of X, divided by the maximum
possible change. This is the key insight, where the BP dependency function
is based on. To measure this, we first have to determine the difference
between the distribution of Y with and without conditioning on the value of
X times the probability that X takes on this value in Section 6.4.1. Secondly,
we have to measure what the maximum possible change in probability mass
is, which is used to properly scale the dependency function and make it
asymmetric (see Section 6.4.2).

6.4.1 Definition expected absolute change in distribution

We start by measuring the expected absolute change in distribution (UD),
which is the difference between the distribution of Y with and without
conditioning on the value of X times the probability that X takes on this
value. For discrete RV’s, we obtain the following definition.

Definition 6.4.1 (Discrete UD). For any discrete RV’s X and Y ,

UD (X,Y) :=
∑
x

pX(x) ·
∑
y

∣∣pY |X=x(y)− pY (y)
∣∣ .

More explicit formulations of UD for specific combinations of RV’s are given
in Section 6.A. For example, when X and Y remain discrete and take values
in EX and EY , respectively, it can equivalently be defined as:

UD (X,Y) := 2 sup
A⊂EX×EY

 ∑
(x,y)∈A

(pX,Y (x, y)− pX(x) · pY (y))

 .

Similarly, for continuous RV’s, we obtain the following definition for UD.

Definition 6.4.2 (Continuous UD). For any continuous RV’s X and Y ,

UD (X,Y) :=

∫
R

∫
R
|fX,Y (x, y)− fX(x)fY (y)|dydx.

Note that this is the same as ∆L1 [29].

In the general case, UD is defined in the following manner.

181

6666666

Chapter 6. 6.4. The Berkelmans-Pries dependency function

Definition 6.4.3 (General UD). For any X : (Ω,F , µ)→ (EX , E(X)) and
Y : (Ω,F , µ)→ (EY , E(Y)), UD is defined as

UD (X,Y) := 2 sup
A∈E(X)

⊗
E(Y)

{
µ(X,Y)(A)− (µX × µY)(A)

}
,

where E(X)
⊗
E(Y) is the σ-algebra generated by the sets C × D with

C ∈ E(X) and D ∈ E(Y). Furthermore, µ(X,Y) denotes the joint probability
measure on E(X)

⊗
E(Y) and µX × µY is the product measure.

6.4.2 Maximum UD given Y

Next, we have to determine the maximum of UD for a fixed Y in order to
scale the dependency function to [0, 1]. To this end, we prove that for a
given Y :

X fully determines Y ⇒ UD (X,Y) ≥ UD
(
X ′, Y

)
,

for any RV X ′.

The full proof for the general case is given in Section 6.B.4, which uses the
upper bound determined in Section 6.B.3. However, we will show the discrete
case here to give some intuition about the proof. We define the following
helpful set Cy := {x|pX,Y (x, y) ≥ pX(x) · pY (y)}, which leads to

UD (X,Y) = 2
∑
y

(pX,Y (Cy × {y})− pX(Cy) · pY (y))

≤ 2
∑
y

(min {pX(Cy), pY (y)} − pX(Cy) · pY (y))

= 2
∑
y

(min {pX(Cy) · (1− pY (y)), (1− pX(Cy)) · pY (y)})

≤ 2
∑
y

(pY (y) · (1− pY (y)))

= 2
∑
y

(
pY (y)− pY (y)2

)
= 2 · (1−

∑
y

pY (y)
2),

182

6666666

Chapter 6. 6.4. The Berkelmans-Pries dependency function

with equality iff both inequalities are equalities. Which occurs iff for all y it
holds that pX,Y (Cy × {y}) = pX(Cy) = pY (y). So we have equality when
for all y the set Cy has the property that x ∈ Cy iff Y = y. Or equivalently
Y = f(X) for some function f . Thus,

UD(X,Y) ≤ 2 · (1−
∑
y

pY (y)
2),

with equality iff Y = f(X) for some function f .

Note that this holds for every X that fully determines Y . In particular, for
X := Y it now follows that

UD (Y, Y) = 2 · (1−
∑
y

pY (y)
2) ≥ UD

(
X ′, Y

)
,

for any RV X ′.

6.4.3 Definition Berkelmans-Pries dependency
function

Finally, we can define the BP dependency function to measure how much Y
is dependent on X. We call a random variable Y non-trivial if EY is not an
atom and trivial when EY is an atom (in most practical cases this is the
same as a random variable being a.s. constant).

Definition 6.4.4 (BP dependency function). For any RV’s X and Y the
Berkelmans-Pries dependency function is defined as

Dep (Y |X) :=

{
UD(X,Y)
UD(Y,Y) if Y is non-trivial,

undefined if Y is trivial.

This is the difference between the distribution of Y with and without condi-
tioning on the value of X times the probability that X takes on this value
divided by the largest possible difference for an arbitrary X ′. Note that
UD (Y, Y) = 0 if and only if Y is almost surely constant (see Section 6.B.4),
which leads to division by zero. However, we previously argued in Section 6.2
that if Y is almost surely constant, it is completely independent as well as
completely determined by X. It should therefore be undefined.

183

6666666

Chapter 6. 6.5. Properties BP dependency function

6.5 Properties of the Berkelmans-Pries dependency
function

Next, we show that our new BP dependency function satisfies all requirements
from Table 6.2.2. To this end, we use properties of UD (see Section 6.B) to
derive properties II.1-8.

Property II.1 (Asymmetry): Observe that it holds for Example 6.2.1
that UD (X,Y) = 1, UD (X,X) = 2, and UD (Y, Y) = 1. Thus,

Dep (Y |X) =
UD (X,Y)

UD (Y, Y)
= 1,

Dep (X|Y) =
UD (X,Y)

UD (X,X)
=

1

2
.

Therefore, we see that Dep (Y |X) ≠ Dep (X|Y) for this example, thus
making the BP dependency asymmetric.

Property II.2 (Range): In Section 6.B.2, we show that for every X,Y
it holds that UD (X,Y) ≥ 0. Furthermore, in Section 6.B.3 we prove that
UD (X,Y) ≤ 2

(
1−

∑
y∈dY µY ({y})

2
)

for all RV’s X. In Section 6.B.4 we
show for almost all cases that this bound is tight for UD (Y, Y). Thus, it
must hold that 0 ≤ UD (X,Y) ≤ UD (Y, Y) and it then immediately follows
that 0 ≤ Dep (Y |X) ≤ 1.

Property II.3 (Independence and dependency 0): In Section 6.B.2,
we prove that

UD (X,Y) = 0⇔ X and Y are independent.

Furthermore, observe that Dep (Y |X) = 0 if and only if UD (X,Y) = 0.
Thus,

Dep (Y |X) = 0⇔ X and Y are independent.

Property II.4 (Functional dependence and dependency 1): In Sec-
tion 6.B.4, we show that if X fully determines Y and X ′ is any RV we have
that UD (X,Y) ≥ UD (X ′, Y). This holds in particular for X := Y . Thus,
if X fully determines Y it follows that UD (X,Y) = UD (Y, Y), so

Dep (Y |X) =
UD (X,Y)

UD (Y, Y)
= 1.

184

6666666

Chapter 6. 6.5. Properties BP dependency function

In conclusion: if there exists a measurable function f such that Y = f(X),
then Dep (Y |X) = 1

Property II.5 (Unambiguity): We show the result for discrete RV’s
below. For the proof of the general case see Section 6.B.5. Let E be
the range of the independent Y1, Y2, . . . , YN . By definition, it holds that
P(X = x) =

∑
j P(Yj = x) · P(S = j). Thus, for all i ∈ {1, . . . N} we

have

UD (X,Yi) = 2 sup
A⊂E×E

 ∑
(x,y)∈A

(P(X = x, Yi = y)− P(X = x)P(Yi = y))

= 2 sup
A⊂E×E

{ ∑
(x,y)∈A

(∑
j

P(Yj = x, Yi = y, S = j)

− P(X = x)P(Yi = y)
)}

= 2 sup
A⊂E×E

{ ∑
(x,y)∈A

(∑
j ̸=i

P(Yj = x)P(Yi = y)P(S = j)

+ P(Yi = x, Yi = y)P(S = i)

−
∑
j

P(Yj = x)P(S = j)P(Yi = y)
)}

= 2 sup
A⊂E×E

{ ∑
(x,y)∈A

(
piP(Yi = x, Yi = y)

− piP(Yi = x)P(Yi = y)
)}

= pi ·UD (Yi, Yi) .

185

6666666

Chapter 6. 6.5. Properties BP dependency function

This leads to

Dep (Yi|X) =
UD (X,Yi)

UD (Yi, Yi)
=
pi ·UD (Yi, Yi)

UD (Yi, Yi)
= pi.

Therefore, we can conclude that property II.5 holds.

Property II.6 (Generally applicable): The BP dependency measure
can be applied for any combination of continuous, discrete and categorical
variables. It can handle arbitrary many RV’s as input by combining them.
Thus, the BP dependency function is generally applicable.

Property II.7 (Invariance under isomorphisms): In Section 6.B.6, we
prove that applying a measurable function to X or Y does not increase UD.
Thus, it must hold for all isomorphisms f, g that

UD (X,Y) = UD
(
f−1(f(X)), g−1(g(Y))

)
≤ UD (f(X), g(Y))

≤ UD (X,Y) .

Therefore, all inequalities are actually equalities. In other words,

UD (f(X), g(Y)) = UD (X,Y) .

It now immediately follows for the BP dependency measure that

Dep (g(Y)|f(X)) =
UD (f(X), g(Y))

UD (g(Y), g(Y))

=
UD (X,Y)

UD (Y, Y)

= Dep (Y |X) ,

thus Property II.7 is satisfied.

Desired property II.8 (Non-increasing under functions of X): In
Section 6.B.6, we prove that transforming X or Y using a measurable
function does not increase UD. In other words, for any measurable function
f , it holds that

UD (f(X), Y) ≤ UD (X,Y) .

186

6666666

Chapter 6. 6.6. Discussion and conclusion

Consequently, Property II.8 holds for the BP dependency function, as

Dep (Y |f(X)) =
UD (f(X), Y)

UD (Y, Y)

≤ UD (X,Y)

UD (Y, Y)

= Dep (Y |X) .

6.6 Discussion and conclusion

Motivated by the need to measure and quantify the level dependence between
random variables, we have proposed a general-purpose dependency function.
The function meets an extensive list of important and desired properties, and
can be viewed as a powerful alternative to the classical Pearson correlation
coefficient, which is often used by data analysts today.

Whilst it is recommended to use our new dependency function, it is important
to understand the limitations and potential pitfalls of the new dependency
function. Below we elaborate on these aspects.

The underlying probability density function of a RV is often unknown in
practice; instead, a set of outcomes is observed. These samples can then
be used (in a simple manner) to approximate any discrete distribution.
However, this is generally not the case for continuous variables. There are
mainly two categories for dealing with continuous variables: either (1) the
observed samples are combined using kernel functions into a continuous
function (kernel density estimation [64]), or (2) the continuous variable is
reduced to a discrete variable using data binning. The new dependency
measure can be applied thereafter.

A main issue is that the dependency measure is dependent of parameter
choices of either kernel density estimation or data binning. To illustrate
this, we conduct the following experiment: Let X ∼ U(0, 1) and define
Y = X + ϵ with ϵ ∼ N (0, 0.1). Next, we draw 5,000 samples of X and
ϵ and determine each corresponding Y . For kernel density estimation, we
use Gaussian kernels with constant bandwidth. The result of varying the
bandwidth on the dependency score can be seen in Figure 6.6.1a. With data
binning, both X and Y are binned using bins with fixed size. Increasing
or decreasing the number of bins changes the size of the bins. The impact

187

6666666

Chapter 6. 6.6. Discussion and conclusion

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

Bandwidth

B
P

d
ep

en
d
en

cy

(a) Kernel density estimation

1 125 250 375 500

0.7

0.8

0.9

1.0

Number of bins

B
P

d
ep

en
d
en

cy

(b) Data binning

Figure 6.6.1: Problematic parameter selection: Influence of chosen
bandwidth (a) / number of bins (b) on the dependency score Dep (Y |X)
with 5,000 samples of X ∼ U(0, 1) and Y = X + ϵ with ϵ ∼ N (0, 0.1).

of changing the number of bins on the dependency score, can be seen in
Figure 6.6.1b.

The main observation from Figures 6.6.1a and 6.6.1b is that the selection of
the parameters is important. In the case of the kernel density estimation, we
see the traditional trade-off between over-fitting when the bandwidth is too
small and under-fitting when the bandwidth is too large. On the other hand,
with data binning, we see different behavior: Having too few bins seems to
overestimate the dependency score and as bins increase the estimator of
the dependency score decreases up to a certain point, where-after it starts
increasing again. The bottom of the curve seems to be marginally higher
than the true dependency score of 0.621.

This observation raises a range of interesting questions for future research.
For example, are the dependency scores estimated by binning consistently
higher than the true dependency? Is there a correction that can be applied
to get an unbiased estimator? Is the minimum of this curve an asymp-
totically consistent estimator? Which binning algorithms give the closest
approximation of the true dependency?

An interesting observation, with respect to kernel density estimation, is that
it appears that at a bandwidth of 0.1 the estimator of the dependency score
is close to the true dependency score of approximately 0.621. However, this
parameter choice could only be made if the underlying probability process
was known a priori.

Yet, there is another challenge with kernel density estimation, when X
consists of many variables or feature values. Each time Y is conditioned

188

Chapter 6. 6.6. Discussion and conclusion

on a different value of X, either the density needs to be estimated again or
the estimation of the joint distribution needs to be integrated. Both can
rapidly become very time-consuming. When using data binning, it suffices
to bin the data once. Furthermore, no integration is required making it
much faster. Therefore, our current recommendation would be to bin the
data and not use kernel density estimation.

Another exciting research avenue would be to fundamentally explore the
set of functions that satisfy all desired dependency properties. Is the BP
dependency the only measure that fulfills all conditions? If there exist
two solutions, can we derive a new solution by smartly combining them?
Without property II.5 any order-preserving bijection of [0, 1] with itself
would preserve all properties when applied to a solution. However, property
II.5 does restrict the solution space. It remains an open problem if this is
restrictive enough to result in a unique solution: the BP dependency.

189

66666666

66666666

Appendix (Chapter 6)

Notation

The following general notation is used throughout this appendix. Let X
and Y be RV’s, such that X : (Ω,F ,P) → (EX , EX) and Y : (Ω,F ,P) →
(EY , EY). Next, we define the following measures. Let µX(A) := P(X−1(A))
and µY (A) := P(Y −1(A)) be measures induced by X and Y on (EX , EX)
and (EY , EY), respectively. Furthermore, let µX,Y and µX ×µY be the joint
and product measure, defined by µX,Y (A) := P({ω ∈ Ω|(X(ω), Y (ω)) ∈ A})
and (µX × µY)(A × B) := µX(A)µY (B) on (EX × EY , EX

⊗
EY), respec-

tively.

6.A Formulations of expected absolute change in
distribution

In this appendix, we give multiple formulations of the expected absolute
change in distribution (UD). Depending on the type of RV’s, these formula-
tions can be used.

191

66666666

Chapter 6. 6.A. Formulations of UD

6.A.1 General case:

For any X, Y the UD is defined as

UD (X,Y) := sup
A∈E(X)

⊗
E(Y)

{
µ(X,Y)(A)− (µX × µY)(A)

}
+ sup

B∈E(X)
⊗

E(Y)

{
(µX × µY)(B)− µ(X,Y)(B)

}

= 2 sup
A∈E(X)

⊗
E(Y)

{
µ(X,Y)(A)− (µX × µY)(A)

}
. (6.3)

6.A.2 Discrete RV’s only:

When X,Y are discrete RV’s, Equation (6.3) simplifies into

UD (X,Y) :=
∑
x,y

|pX,Y (x, y)− pX(x) · pY (y)| ,

or equivalently

UD (X,Y) :=
∑
x

pX(x) ·
∑
y

∣∣pY |X=x(y)− pY (y)
∣∣ .

Similarly, when X and Y take values in EX and EY , respectively, Equa-
tion (6.3) becomes

UD (X,Y) := sup
A⊂EX×EY

 ∑
(x,y)∈A

(pX,Y (x, y)− pX(x)pY (y))

+ sup

A⊂EX×EY

 ∑
(x,y)∈A

(pX(x)pY (y)− pX,Y (x, y))

= 2 sup
A⊂EX×EY

 ∑
(x,y)∈A

(pX,Y (x, y)− pX(x)pY (y))

 .

192

66666666

Chapter 6. 6.B. Properties UD

6.A.3 Continuous RV’s only:

When X,Y are continuous RV’s, Equation (6.3) becomes

UD (X,Y) :=

∫
R

∫
R
|fX,Y (x, y)− fX(x)fY (y)|dydx,

or equivalently

UD (X,Y) :=

∫
R
fX(x)

∫
R
|fY |X=x(y)− fY (y)|dydx.

Another formulation (more measure theoretical) would be:

UD (X,Y) := 2 · sup
A∈B(R2)

{∫
A
(fX,Y (x, y)− fX(x)fY (y))dydx

}
.

6.A.4 Mix of discrete and continuous:

When X is discrete and Y is continuous, Equation (6.3) reduces to

UD (X,Y) :=
∑
x

pX(x)

∫
y
|fY |X=x(y)− fY (y)|dy.

Vice versa, ifX is continuous and Y is discrete, Equation (6.3) becomes

UD (X,Y) :=

∫
x
fX(x)

∑
y

|pY |X=x(y)− pY (y)|dx.

6.B Properties of expected absolute change in dis-
tribution

In this appendix, we prove properties of the function UD that are used in
Section 6.5 to show that the BP dependency measure satisfies all properties
in Table 6.2.2.

193

66666666

Chapter 6. 6.B. Properties UD

6.B.1 Symmetry UD:

For the proofs below it is useful to show that UD (X,Y) is symmetric i.e.
UD (X,Y) = UD (Y,X) for every X,Y .

It directly follows from the definition, as

UD (X,Y) = 2 sup
A∈EX

⊗
EY

{
µ(X,Y)(A)− (µX × µY)(A)

}
= 2 sup

A∈EY
⊗

EX

{
µ(Y,X)(A)− (µY × µX)(A)

}
= UD (Y,X) .

6.B.2 Independence and UD = 0:

Since we are considering a measure of dependence it is useful to know what
the conditions for independence are. Below we will show that we have
independence of X and Y if and only if UD (X,Y) = 0.

Note that

UD (X,Y) = sup
A∈EX

⊗
EY

{
µ(X,Y)(A)− (µX × µY)(A)

}
+ sup

B∈EX
⊗

EY

{
(µX × µY)(B)− µ(X,Y)(B)

}

≥
(
µ(X,Y)(EX × EY)− (µX × µY)(EX × EY)

)
+
(
(µX × µY)(EX × EY)− µ(X,Y)(EX × EY)

)
= 0,

with equality if and only if µ(X,Y) = µX × µY on EX
⊗
EY , so if and only if

X and Y are independent. So in conclusion properties i) and ii) below are
equivalent:

(i) X and Y are independent random variables,

(ii) UD (X,Y) = 0.

194

66666666

Chapter 6. 6.B. Properties UD

6.B.3 Upper bound for a given Y :

To scale the dependency function it is useful to know what the range of
UD (X,Y) is for a given random variable Y . We already know it is lower
bounded by 0 (see Section 6.B.2). However, we have not yet established
an upper bound. What follows down below is a derivation of the upper
bound.

A µY -atom A is a set such that µY (A) > 0 and for any B ⊂ A we have
µY (B) ∈ {0, µY (A)}. Consider the following equivalence relation ∼ on the
µY -atoms characterized by S ∼ T if and only if µY (S△T) = 0. Then let I
be a set containing exactly one representative from each equivalence class.
Note that I is countable, so we can enumerate the elements A1, A2, A3
Additionally, for any A,B ∈ I we have that µY (A ∩B) = 0.

Next, we define Bi := Ai \
⋃i−1

j=1Aj to obtain a set of disjoint µY -atoms. In
what follows we assume I to be infinite, but the proof works exactly the
same for finite I when you replace ∞ with |I|.

Let E∗
Y := EY \

⋃∞
j=1Bj , so that the Bj ’s and the E∗

Y form a partition of EY .
Furthermore, let bj := µY (Bj) be the probabilities of being in the individual
atoms in I (and therefore the sizes corresponding to the equivalence classes
of atoms). It now holds for any RV X that:

UD (X,Y) = 2 sup
A∈EX

⊗
EY
{µX,Y (A)− (µX × µY)(A)}

≤ 2 sup
A∈EX

⊗
EY

{
µX,Y (A ∩ (EX × E∗

Y))

− (µX × µY) (A ∩ (EX × E∗
Y))

}

+ 2 sup
A∈EX

⊗
EY

{ ∞∑
j=1

(
µX,Y (A ∩ (EX ×Bj))

− (µX × µY) (A ∩ (EX ×Bj))
)}

.

(6.4)

Now note that the first term is at most µY (E∗
Y) = 1−

∑∞
i=1 bi. To bound

195

66666666

Chapter 6. 6.B. Properties UD

the second term, we examine each individual term of the summation. First
we note that the set of finite unions of ‘rectangles’ (Cartesian products of
elements in EX and EY):

R :=

{
C ∈ EX

⊗
EY
∣∣∣ ∃k ∈ N s.t. C =

k⋃
i=1

(Ai ×Bi)

with ∀i : Ai ∈ EX ∧Bi ∈ EY

}

is an algebra. Therefore, for any D ∈ EX
⊗
EY and ϵ > 0, there exists a

Dϵ ∈ R such that ν(Dϵ△D) < ϵ, where ν := µX,Y + (µX ×µY). Specifically
for A ∩ (EX ×Bj) and ϵ > 0, there exists a Bj,ϵ ∈ R such that ν(Bj,ϵ△A ∩
(EX ×Bj)) < ϵ and Bj,ϵ ⊂ EX ×Bj holds, since intersecting with this set
only decreases the expression whilst remaining in R.

Thus, we have that

|µX,Y (A ∩ (EX ×Bj))− µX,Y (Bj,ϵ)|

+ |(µX × µY)(A ∩ (EX ×Bj))− (µX × µY)(Bj,ϵ)| < ϵ.

Therefore, it must hold that

µX,Y (A ∩ (EX ×Bj))− (µX × µY)(A ∩ (EX ×Bj))

≤ µX,Y (Bj,ϵ)− (µX × µY)(Bj,ϵ) + ϵ. (6.5)

Since Bj,ϵ is a finite union of ‘rectangles’, we can also write it as a finite
union of k disjoint ‘rectangles such that Bj,ϵ =

⋃k
i=1 Si × Ti with Si ∈ EX

and Ti ∈ EY for all i. The upper bound in Equation (6.5) without ϵ can now
be written as

µX,Y (Bj,ϵ)− (µX × µY)(Bj,ϵ) =

k∑
i=1

(µX,Y (Si × Ti)− (µX × µY)(Si × Ti)) .

For all i it holds that Ti ⊂ Bj which means that either µY (Ti) = 0 or
µY (Ti) = bj , since Bj is an atom of size bj . This allows us to separate the

196

66666666

Chapter 6. 6.B. Properties UD

sum

k∑
i=1

(µX,Y (Si × Ti)− (µX × µY)(Si × Ti))

=
∑

i:µY (Ti)=0

(µX,Y (Si × Ti)− (µX(Si)× µY (Ti))

+
∑

i:µY (Ti)=bj

(µX,Y (Si × Ti)− (µX(Si)× µY (Ti)) = ⋆.

The first sum is equal to zero, since µX,Y (Si×Ti) ≤ µY (Ti) = 0. The second
sum is upper bounded by µX,Y (Si × Ti) ≤ µX,Y (Si × Bj). By defining
S′ =

⋃
i:µY (Ti)=bj

Si, we obtain

⋆ ≤ 0 +
∑

i:µY (Ti)=bj

(µX,Y (Si ×Bj)− bj · µX(Si))

= µX,Y (S
′ ×Bj)− bj · µx(S′)

≤ min
{
(1− bj) · µX(S′), bj · (1− µX(S′))

}
≤ bj − b2j .

But, since this is true for any ϵ > 0, it holds that Equation (6.5) be-
comes

µX,Y (A ∩ (EX ×Bj))− (µX × µY)(A ∩ (EX ×Bj)) ≤ bj − b2j .

Plugging this back into Equation (6.4) gives

197

66666666

Chapter 6. 6.B. Properties UD

UD (X,Y) ≤ 2 sup
A∈EX

⊗
EY

{
µX,Y (A ∩ (EX × E∗

Y))

− (µX × µY)(A ∩ (EX × E∗
Y))
}

+ 2 sup
A∈EX

⊗
EY

{ ∞∑
j=1

(
µX,Y (A ∩ (EX ×Bj))

− (µX × µY)(A ∩ (EX ×Bj))
)}

≤ 2

(
1−

∞∑
i=1

bi

)
+ 2 ·

∞∑
j=1

(bj − b2j)

= 2

(
1−

∞∑
i=1

b2i

)
.

Note that in the continuous case the summation is equal to 0. The upper
bound simply becomes 2. In the discrete case, where EY is the set in which
Y takes it’s values, the expression becomes

UD (X,Y) ≤ 2

1−
∑
i∈EY

P(Y = i)2

 .

6.B.4 Functional dependence attains maximum UD:

Since we established an upper bound in Section 6.B.3, the next step is to
check whether this bound is actually attainable. What follows is a proof
that this bound is achieved for any random variable X for which it holds
that Y = f(X) for some measurable function f .

Let Y = f(X) for some measurable function f , then µX(f−1(C)) = µY (C)
for all C ∈ EY . Let the µY -atoms Bj and E∗

Y be the same as in Section 6.B.3.
Since E∗

Y contains no atoms, for every ϵ > 0 there exists a partition T1, . . . , Tk
for some k ∈ N such that µY (Ti) < ϵ for all i ∈ {1, . . . , k}. Next, consider the

198

66666666

Chapter 6. 6.B. Properties UD

set K =
⋃

i

(
f−1(Ti)× Ti

)
∪
⋃

j

(
f−1(Bj)×Bj

)
. It now follows that

UD (X,Y) = 2 sup
A∈EY

⊗
EY
{µX,Y (A)− (µX × µY)(A)}

≥ 2 (µX,Y (K)− (µX × µY)(K))

= 2

(∑
i

(
µX,Y

(
f−1(Ti)× Ti

)
− µX

(
f−1(Ti)

)
µY (Ti)

)
+
∑
j

(
µX,Y

(
f−1(Bj)×Bj

)
− µX

(
f−1(Bj)

)
µY (Bj)

))

≥ 2

∑
i

(µY (Ti)− ϵ · µY (Ti)) +
∑
j

(
bj − b2j

)

= 2

1−
∑
j

bj

− ϵ ·
1−

∑
j

bj

+
∑
j

(
bj − b2j

) .

But, since this holds for any ϵ > 0 we have

UD (X,Y) ≥ 2 ·

1−
∑
j

b2j

 .

As this is also the upper bound from Section 6.B.3, equality must hold. Thus,
we can conclude that UD (X,Y) is maximal for Y if Y = f(X), in particular
if X = Y . It also follows that for any measurable function f and RV’s
X1, X2, Y with Y = f(X1), it must hold that UD (X1, Y) ≥ UD (X2, Y).
Note that a corollary of this proof is that UD (Y, Y) = 0 if and only if there
exists a µY -atom Bi with µY (Bi) = 1, or in other words there are no events
that occur with a probability strictly between 0 and 1.

6.B.5 Unambiguity:

In Section 6.5, we show for discrete RV’s that property II.5 holds. In this
section, we prove the general case. Let Y1, . . . , YN and S be independent

199

66666666

Chapter 6. 6.B. Properties UD

RV’s where S takes values in 1, . . . , N with P(S = i) = pi. Finally, define
X := YS . Then we will show that Dep (Yi|X) = pi.

Let E be the σ-algebra on which the independent Yi are defined. Then
we have µX,Yi,S(A × {j}) = µYj ,Yi(A) · µS({j}) = pj · µYj ,Yi(A) for all j.
Additionally, we have µX(A) =

∑
j pj · µYj (A). Lastly, due to independence

for i ̸= j we have µYj ,Yi = µYj × µYi . Combining this, gives

UD (X,Yi) = 2 sup
A∈E×E

{µX,Yi(A)− (µX × µYi)(A)}

= 2 sup
A∈E×E

∑
j

µX,Yi,S(A× {j})−
∑
j

pj(µYj × µYi)(A)

= 2 sup

A∈E×E

∑
j

pj
(
µYj ,Yi(A)− (µYj × µYi)(A)

)
= 2 sup

A∈E×E
{pi (µYi,Yi(A)− (µYi × µYi)(A))}

= pi ·UD (Yi, Yi) .

6.B.6 Measurable functions never increase UD:

Next, we prove another useful property of UD: applying a measurable
function to one of the variables does not increase the UD. Let f : (EX , EX)→
(EX′ , EX′) be a measurable function. Note that h : EX × EY → EX′ × EY

with h(x, y) := (f(x), y) is measurable. Now it follows that

UD (f(X), Y) = 2 sup
A∈EX′

⊗
EY

{
µ(f(X),Y)(A)− (µf(X) × µY)(A)

}
= 2 sup

A∈EX′
⊗

EY

{
µ(X,Y)(h

−1(A))− (µX × µY)(h−1(A))
}
,

with h−1(A) ∈ EX
⊗
EY . Thus,

UD (f(X), Y) ≤ 2 sup
A∈EX

⊗
EY

{
µ(X,Y)(A)− (µX × µY)(A)

}
= UD (X,Y) .

200

66666666

Chapter 6. 6.B. Properties UD

In Section 6.B.1, it is proven that UD is symmetric. Therefore, it also holds
for g : EY → EY ′ , that

UD (X, g(Y)) ≤ UD (X,Y) .

201

777777777

Chapter 7
The Berkelmans-Pries Feature Importance

Method: A Generic Measure of Informativeness
of Features

Contents

7.1 Introduction . 205

7.2 The Berkelmans-Pries Feature Importance 206

7.3 Properties of BP-FI . 210

7.4 Comparing with existing methods 224

7.5 Discussion and future research 237

7.6 Summary . 243

7.A Datasets . 245

7.B Tests . 249

Based on Joris Pries, Guus Berkelmans, Sandjai Bhulai, and Rob van
der Mei (2023): “The Berkelmans-Pries Feature Importance
method: A generic measure of informativeness of features”.
Submitted for publication. [135]

203

777777777

Chapter 7. Abstract

Abstract

Over the past few years, the use of machine learning models
has emerged as a generic and powerful means for prediction
purposes. At the same time, there is a growing demand for
interpretability of prediction models. To determine which features
of a dataset are important to predict a target variable Y , a
Feature Importance (FI) method can be used. By quantifying
how important each feature is for predicting Y , irrelevant features
can be identified and removed, which could increase the speed
and accuracy of a model, and moreover, important features can
be discovered, which could lead to valuable insights. A major
problem with evaluating FI methods, is that the ground truth
FI is often unknown. As a consequence, existing FI methods do
not give the exact correct FI values. This is one of the many
reasons why it can be hard to properly interpret the results of
an FI method. Motivated by this, we introduce a new global
approach named the Berkelmans-Pries FI method, which is
based on a combination of Shapley values and the Berkelmans-
Pries dependency function. We prove that our method has many
useful properties, and accurately predicts the correct FI values
for several cases where the ground truth FI can be derived in
an exact manner. We experimentally show for a large collection
of FI methods (468) that existing methods do not have the
same useful properties. This shows that the Berkelmans-Pries
FI method is a highly valuable tool for analyzing datasets with
complex interdependencies.

204

777777777

Chapter 7. 7.1. Introduction

7.1 Introduction

How important are you? This is a question that researchers (especially data
scientists) have wondered for many years. Researchers need to understand
how important a random variable (RV) X is for determining Y . Which
features are important for predicting the weather? Can indicators be found
as symptoms for a specific disease? Can redundant variables be discarded
to increase performance? These kinds of questions are relevant in almost
any research area. Especially nowadays, as the rise of machine learning
models generates the need to demystify prediction models. Altmann et al. [6]
state that “In life sciences, interpretability of machine learning models is as
important as their prediction accuracy.” Although this might not hold for all
research areas, interpretability is very useful. Knowing how predictions are
made and why, is crucial for adapting these methods in everyday life.

Determining Feature Importance (FI) is the art of discovering the importance
of each featureXi when predicting Y . The following two cases are particularly
useful. (I) Finding variables that are not important: redundant variables
can be discovered using FI methods. Irrelevant features could degrade the
performance of a prediction model due to high dimensionality and irrelevant
information [89]. Eliminating redundant features could therefore increase
both the speed and the accuracy of a prediction model. (II) Finding variables
that are important: important features could reveal underlying structures
that give valuable insights. Observing that variable X is important for
predicting Y could steer research efforts into the right direction. Although
it is critical to keep in mind that high FI does not mean causation. However,
FI values do, for example, “enable an anaesthesiologist to better formulate
a diagnosis by knowing which attributes of the patient and procedure
contributed to the current risk predicted” [111]. In this way, an FI method
can have really meaningful impact.

Over the years, many FI methods have been suggested, which results in
a wide range of FI values for the same dataset. For example, stochastic
methods do not even repeatedly predict the same FI values. This makes
interpretation difficult. Examine e.g., a result of Fryer et al. [55], where one
measure assigns an FI of 3.19 to a variable, whereas another method gives the
same variable an FI value of 0.265. This raises a lot of questions: ‘Which FI
method is correct?’, ’Is this variable deemed important?’, and more generally
‘What information does this give us?’. To assess the performance of an FI
method, the ground truth should be known, which is often not the case [2,

205

777777777

Chapter 7. 7.2. The Berkelmans-Pries Feature Importance

71, 176, 200]. Therefore, when FI methods were developed, the focus has
not yet lied on predicting the exact correct FI values. Additionally, many FI
methods do not have desirable properties. For example, two features that
contain the same amount of information should get the same FI. We later
show that this is often not the case.

To improve interpretability, we introduce a new FI method called Berkelmans-
Pries FI method, which is based on Shapley values [158] and the Berkelmans-
Pries dependency function [13]. Multiple existing methods already use
Shapley values, which has been shown to give many nice properties. However,
by additionally using the Berkelmans-Pries dependency function, even
more useful properties are obtained. Notably, we prove that this approach
accurately predicts the FI in some cases where the ground truth FI can
be derived in an exact manner. By combining Shapley values and the
Berkelmans-Pries dependency function a powerful FI method is created.
This research is an important step forward for the field of FI, because of the
following reasons:

• We introduce a new FI method;

• We prove multiple useful properties of this method;

• We provide some cases where the ground truth FI can be derived in
an exact manner;

• We prove for these cases that our FI method accurately predicts the
correct FI;

• We obtain the largest collection of existing FI methods;

• We test if these methods adhere to the same properties, which shows
that no method comes close to fulfilling all the useful properties;

• We provide Python code to determine the FI values [133].

7.2 The Berkelmans-Pries Feature Importance

Kruskal [93] stated that “There are infinitely many possible measures of
association, and it sometimes seems that almost as many have been pro-
posed at one time or another.” Although this quote was about dependency
functions, it could just as well have been about FI methods. Over the
years, many FI methods have been suggested, but it remains unclear which
method should be used when and why [71]. In this section, we propose yet
another new FI method named the Berkelmans-Pries FI method (BP-FI).

206

777777777

Chapter 7. 7.2. The Berkelmans-Pries Feature Importance

Although it is certainly subjective what it is that someone wants from an FI
method, we show in Section 7.3 that BP-FI has many useful and intuitive
properties. The BP-FI method is based on two key elements: (1) Shapley
values and (2) the Berkelmans-Pries dependency function. We will discuss
these components first to clarify how the BP-FI method works.

7.2.1 Shapley value approach

The Shapley value is a unique game-theoretical way to assign value to each
player participating in a multiplayer game based on four axioms [158]. This
concept is widely used in FI methods, as it can be naturally adapted to
determine how important (value) each feature (player) is for predicting a
target variable (game). Let Nvars be the number of features, then the Shapley
value of feature i is defined by

ϕi(v) =
∑

S⊆{1,...,Nvars}\{i}

|S|! · (Nvars − |S| − 1)!

Nvars!
· (v(S ∪ {i})− v(S)) ,

(7.1)

where v(S) can be interpreted as the ‘worth’ of the coalition S [158]. The
principle behind this formulation can also be explained in words: For every
possible sequence of features up to feature i, the added value of feature i is
the difference between the worth before it was included (i.e., v(S)) and after
(i.e., v(S ∪ {i})). Averaging these added values over all possible sequences
of features gives the final Shapley value for feature i.

SHAP There are multiple existing FI methods that use Shapley values
[43, 55, 110], which immediately ensures some useful properties. The most
famous of these methods is SHAP [110]. This method is widely used for
local explanations (see Section 7.4.1). To measure the local FI for a specific
sample x and a prediction model f , the conditional expectation is used as
characteristic function (i.e., v in Equation (7.1)). Let x = (x1, x2, . . . , xNvars),
where xi is the feature value of feature i, then SHAP FI values can be
determined using:

vx(S) := Ez [f(z)|zi = xi for all i ∈ S, where z = (z1, . . . , zNvars)] . (7.2)

Observe that the characteristic function vx is defined locally for each x.
To get global FI values, an average can be taken over all local FI values.
Our novel FI method uses a different characteristic function, namely the

207

777777777

Chapter 7. 7.2. The Berkelmans-Pries Feature Importance

Berkelmans-Pries dependency function. This leads to many additional
useful properties. Furthermore, the focus of this research is not on local
explanations, but global FI values.

7.2.2 Berkelmans-Pries dependency function

A new dependency measure, called the Berkelmans-Pries (BP) dependency
function, was introduced in [13], which is used in the formulation of the
BP-FI method. It is shown that the BP dependency function satisfies a list
of desirable properties, whereas existing dependency measures did not. It has
a measure-theoretical formulation, but this reduces to a simpler and more
intuitive version when all variables are discrete [13]. We want to highlight
this formulation to give some intuition behind the BP dependency function.
It is given by

Dep (Y |X) :=

UD(X,Y)
UD(Y,Y) if Y is not a.s. constant,

undefined if Y is a.s. constant,
(7.3)

where (in the discrete case) it holds that

UD (X,Y) :=
∑
x

pX(x) ·
∑
y

∣∣pY |X=x(y)− pY (y)
∣∣ . (7.4)

The BP dependency measure can be interpreted in the following manner.
The numerator is the expected absolute difference between the distribution
of Y and the distribution of Y given X. If Y is highly dependent on X, the
distribution changes as knowing X gives information about Y , whereas if Y
is independent of X, there is no difference between these two distributions.
The denominator is the maximal possible change in distribution of Y for any
variable, which is used to standardize the dependency function. Note that
the BP dependency function is asymmetric: Dep (Y |X) is the dependency
of Y on X, not vice versa. Due to the many desirable properties, the BP
dependency function is used for the BP-FI.

7.2.3 Berkelmans-Pries FI method

One crucial component of translating the game-theoretical approach of Shap-
ley values to the domain of FI is choosing the function v in Equation (7.1).
This function assigns for each set of features S a value v(S) that characterizes
the ‘worth’ of the set S. How this function is defined, has a critical impact

208

777777777

Chapter 7. 7.2. The Berkelmans-Pries Feature Importance

on the resulting FI. We choose to define the ‘worth’ of a set S to be the BP
dependency of Y on the set S, which is denoted by Dep (Y |S) [13]. Here,
Dep (Y |S) = Dep (Y |ZS(D)) where D denotes the entire dataset with all
features and ZS(D) is the reduction of the dataset to include only the subset
of features S. Let Ωfeat be the set of all feature variables. Now, for every
S ⊆ Ωfeat, we define:

v(S) := Dep (Y |S) . (7.5)

In other words, the value of set S is exactly how dependent the target variable
Y is on the features in S. The difference v(S ∪ {i})− v(S) in Equation (7.1)
can now be viewed as the increase in dependency of Y on the set of features,
when feature i is also known. The resulting Shapley values using the BP
dependency function as characteristic function are defined to be the BP-FI
outcome. For each feature i, we get:

FI(i) :=
∑

S⊆Ωfeat\{i}

|S|! · (Nvars − |S| − 1)!

Nvars!
· (v(S ∪ {i})− v(S))

=
∑

S⊆Ωfeat\{i}

|S|! · (Nvars − |S| − 1)!

Nvars!
· (Dep (Y |S ∪ {i})−Dep (Y |S)) .

(7.6)

Abbreviated notation improves readability of upcoming derivations, which
is why we define

w(S,Nvars) :=
|S|! · (Nvars − |S| − 1)!

Nvars!
, (N1)

D(X,Y, S) := Dep (Y |S ∪ {X})−Dep (Y |S) . (N2)

Note that when Y is almost surely constant (i.e., P(Y = y) = 1), Dep (Y |S)
is undefined for any feature set S (see Equation (7.3)). We argue that it is
natural to assume that FI(i) is also undefined, as every feature attributes
everything and nothing at the same time. In the remainder of this chapter,
we assume that Y is not a.s. constant.

209

777777777

Chapter 7. 7.3. Properties of BP-FI

7.3 Properties of the Berkelmans-Pries Feature Im-
portance

Recall that it is hard to evaluate FI methods, as the ground truth FI is often
unknown [2, 71, 176, 200]. With this in mind, we want to show that the
BP-FI method has many desirable properties. We also give some synthetic
cases where the BP-FI method gives a natural expected outcome. The BP-FI
method is stooled on Shapley values, which are a unique solution based
on four axioms [188]. These axioms already give many characteristics that
are preferable for an FI method. Additionally, using the BP dependency
function ensures that it has extra desirable properties. In this section, we
prove properties of the BP-FI method and discuss why these are relevant
and useful.

Property 1 (Efficiency). The sum of all FI scores is equal to the total
dependency of Y on all features:∑

i∈Ωfeat

FI(i) = Dep (Y |Ωfeat) .

Proof. Shapley values are efficient, meaning that all the value is distributed
among the players. Thus,∑

i∈Ωfeat

FI(i) = v(Ωfeat) = Dep (Y |Ωfeat) .

Relevance. With our approach, we try to answer the question ‘How much
did each feature contribute to the total dependency?’. The total ‘payoff’ is
in our case the total dependency. It is therefore natural to divide the entire
payoff (but not more than that) amongst all features.

Corollary 1.1. If adding a RV X to the dataset does not give any additional
information (i.e., Dep (Y |Ωfeat ∪X) = Dep (Y |Ωfeat)), then the sum of all
FI remains the same.

Proof. This directly follows from Property 1.

Relevance. If the collective knowledge remains the same, the same amount
of credit is available to be divided amongst the features. Only when new
information is added, an increase in combined credit is warranted. A direct
result of this corollary is that adding a clone (i.e., Xclone := X) of a variable
X to the dataset will never increase the total sum of FI.

210

777777777

Chapter 7. 7.3. Properties of BP-FI

Property 2 (Symmetry). When it holds for every S ⊆ Ωfeat \ {i, j} that
Dep (Y |S ∪ {i}) = Dep (Y |S ∪ {j}), then FI(i) = FI(j).

Proof. Shapley values are symmetric, meaning that if v(S ∪ {i}) = v(S ∪
{j}) for every S ⊆ Ωfeat \ {i, j}, it follows that FI(i) = FI(j). Thus, it
automatically follows that BP-FI is also symmetric.

Relevance. If two variables are interchangeable, meaning that they always
contribute equally to the dependency, it is only sensible that they obtain
the same FI. This is a desirable property for an FI method, as two features
that contribute equally should obtain the same FI.

Property 3 (Range). For any RV X, it holds that FI(X) ∈ [0, 1].

Proof. The BP dependency function is non-increasing under functions of X
[13], which means that for any measurable function f it holds that

Dep (Y |f(X)) ≤ Dep (Y |X) .

Take f := ZS , which is the function that reduces D to the subset of features
in S. Using the non-increasing property of BP dependency function, it
follows that:

Dep (Y |S) = Dep (Y |ZS(D)) = Dep
(
Y |ZS(ZS∪{i}(D))

)
≤ Dep

(
Y |ZS∪{i}(D)

)
= Dep (Y |S ∪ {i}) .

(7.7)

Examining Equation (7.6), we observe that every FI value must be greater
or equal to zero, as Dep (Y |S ∪ {i})−Dep (Y |S) ≥ 0.

One of the properties of the BP dependency function is that for any X,Y
it holds that Dep (Y |X) ∈ [0, 1] [13]. Using Property 1, the sum of all FI
values must therefore be in [0, 1], as

∑
i∈Ωfeat

FI(i) = Dep (Y |Ωfeat) ∈ [0, 1].
This gives an upper bound for the FI values, which is why we can now
conclude that FI(X) ∈ [0, 1] for any RV X.

Relevance. It is essential for interpretability that an FI method is bounded
by known bounds. For example, an FI score of 4.2 cannot be interpreted
properly, when the upper or lower bound is unknown.

Property 4 (Bounds). Every FI(X) with X ∈ Ωfeat is bounded by

Dep (Y |X)

Nvars
≤ FI(X) ≤ Dep (Y |Ωfeat) .

211

777777777

Chapter 7. 7.3. Properties of BP-FI

Proof. The upper bound follows from Properties 1 and 3, as

Dep (Y |Ωfeat) =
∑

i∈Ωfeat

FI(i) ≥ FI(X),

where the last inequality follows since FI(i) ∈ [0, 1] for all i ∈ Ωfeat.

The lower bound can be established using the inequality from Equation (7.7)
within Equation (7.6). This gives (using Notation (N1))

FI(X) =
∑

S⊆Ωfeat\{X}

w(S,Nvars) ·
(
Dep (Y |S ∪ {X})−Dep (Y |S)

)

≥ w(0, Nvars) · (Dep (Y |∅ ∪ {X})−Dep (Y |∅))

=
0! · (Nvars − 0− 1)!

Nvars!
·Dep (Y |X)

=
Dep (Y |X)

Nvars
.

Relevance. These bounds are useful for upcoming proofs.

Property 5 (Zero FI). For any RV X, it holds that

FI(X) = 0⇔ Dep (Y |S ∪ {X}) = Dep (Y |S) for all S ∈ Ωfeat \ {X}.

Proof. ⇐: When Dep (Y |S ∪ {X}) = Dep (Y |S) for all S ∈ Ωfeat \ {X}, it
immediately follows from Equation (7.6) (with Notation (N1)) that

FI(X) =
∑

S⊆Ωfeat\{X}

w(S,Nvars) ·
(
Dep (Y |S ∪ {X})−Dep (Y |S)

)

=
∑

S⊆Ωfeat\{X}

|S|! · (Nvars − |S| − 1)!

Nvars!
· 0

= 0.

⇒: Assume that FI(X) = 0 holds. It follows from the proof of Property 3
that Dep (Y |S ∪ {X}) − Dep (Y |S) ≥ 0 for every S ⊆ Ωfeat \ {X}. Let

212

777777777

Chapter 7. 7.3. Properties of BP-FI

S∗ ∈ Ωfeat \ {X} be given such that Dep (Y |S∗ ∪ {X}) − Dep (Y |S∗) > 0.
It follows from Equation (7.6) (with Notation (N1)) that

FI(X) =
∑

S⊆Ωfeat\{X}

w(S,Nvars) ·
(
Dep (Y |S ∪ {X})−Dep (Y |S)

)
≥ w(S∗, Nvars) · (Dep (Y |S∗ ∪ {X})−Dep (Y |S∗))

=
|S∗|! · (Nvars − |S∗| − 1)!

Nvars!
· (Dep (Y |S∗ ∪ {X})−Dep (Y |S∗))

> 0.

This gives a contradiction with the assumption that FI(X) = 0, thus it is
not possible that such an S∗ exists. This means that Dep (Y |S ∪ {X}) =
Dep (Y |S) for all S ∈ Ωfeat \ {X}.

Relevance. When a feature never contributes any information, it is only
fair that it does not receive any FI. The feature can be removed from the
dataset, as it has no effect on the target variable. On the other hand, when
a feature has an FI of zero, it would be unfair to this feature if it does in
fact contribute information somewhere. It should then be rewarded some
FI, albeit small it should be larger than zero.

Null-independence The property that a feature receives zero FI, when
Dep (Y |S ∪ {X}) = Dep (Y |S) for all S ∈ Ωfeat\{X}, is the same notion as a
null player in game theory. Berkelmans et al. [13] show that Dep (Y |X) = 0,
when Y is independent of X. To be a null player requires a stricter definition
of independence, which we call null-independence. Y is null-independent on
X if Dep (Y |S ∪ {X}) = Dep (Y |S) for all S ∈ Ωfeat \ {X}. In other words,
X is null-independent if and only if FI(X) = 0.

Corollary 5.1. Independent feature ̸⇒ null-independent feature.

Proof. Take e.g., the dataset consisting of two binary features X1, X2 ∼
U({0, 1}) and a target variable Y = X1 · (1 − X2) + X2 · (1 − X1) which
is the XOR of X1 and X2. Individually, the variables do not give any
information about Y , whereas collectively they fully determine Y . In the
proof of Property 15, we show that this leads to FI(X1) = FI(X2) = 1

2 ,
whilst Dep (Y |X1) = Dep (Y |X2) = 0. Thus, X1 and X2 are independent,
but not null-independent.

213

777777777

Chapter 7. 7.3. Properties of BP-FI

Corollary 5.2. Independent feature ⇐ null-independent feature.

Proof. When X is null-independent, it holds that FI(X) = 0. Using Prop-
erty 4, we obtain

0 = FI(X) ≥ Dep (Y |X)

Nvars
⇔ Dep (Y |X) = 0.

Thus, when X is null-independent, it is also independent.

Corollary 5.3. Almost surely constant variables get zero FI.

Proof. If X is almost surely constant (i.e., P(X = x) = 1), it immediately
follows that Dep (Y |S ∪ {X}) = Dep (Y |S) for any S ⊆ Ωfeat \ {X}, as the
distribution of Y is not affected by X.

Property 6 (FI equal to one). When FI(X) = 1, it holds that Dep (Y |X) =
1 and all other features are null-independent.

Proof. As the BP dependency function is bounded by [0, 1] [13], it follows
from Property 1 that

∑
i∈Ωfeat

FI(i) ≤ 1. Noting that each FI must be in
[0, 1] due to Property 3, we find that

FI(X) = 1⇒ FI(X ′) = 0 for all X ′ ∈ Ωfeat \ {X}.

Thus, all other features have to be null-independent. Next, we show that
Dep (Y |X) = 1 must also hold, when FI(X) = 1. Assume that Dep (Y |X) <
1. Using Equation (7.6) (with Notations (N1) and (N2)) we find that

1 = FI(X) =
∑

S⊆Ωfeat\{X}

w(S,Nvars) ·D(X,Y, S)

=
∑

S⊆Ωfeat\{X}:|S|>0

(w(S,Nvars) ·D(X,Y, S)) + w(∅, Nvars) ·D(X,Y,∅)

≤
∑

S⊆Ωfeat\{X}:|S|>0

(w(S,Nvars) · (1− 0)) + w(∅, Nvars) · (Dep (Y |X)− 0)

= ⋆

214

777777777

Chapter 7. 7.3. Properties of BP-FI

Note that the last step follows from the range of the BP dependency func-
tion (i.e., [0, 1]). The largest possible addition is when Dep (Y |S ∪ {X})−
Dep (Y |S) = 1− 0 = 1. We then get

⋆ <
∑

S⊆Ωfeat\{X}

w(S,Nvars)

=

Nvars−1∑
k=0

(
Nvars − 1

k

)
· k! · (Nvars − k − 1)!

Nvars!

=

Nvars−1∑
k=0

(Nvars − 1)!

k! · (Nvars − 1− k)!
· k! · (Nvars − k − 1)!

Nvars!

=

Nvars−1∑
k=0

1

Nvars

= 1.

This result gives a contradiction, as 1 < 1 cannot be true, which means that
Dep (Y |X) = 1.

Relevance. When a variable gets an FI of one, the rest of the variables
should be zero. Additionally, it should mean that this variable contains the
necessary information to fully determine Y , which is why Dep (Y |X) = 1
should hold.

Property 7. Dep (Y |X) = 1 ̸⇒ FI(X) = 1.

Proof. As counterexample, examine the case where there are multiple vari-
ables that fully determine Y . Properties 1 and 3 must still hold. Thus, if FI
is one for every variable that fully determines Y , we get∑

i∈Ωfeat

FI(i) ≥ 1 + 1 ̸= 1 = Dep (Y |Ωfeat) ,

which is a contradiction.

Relevance. This property is important for interpretation of the FI score.
When FI(X) ̸= 1, it cannot be automatically concluded that Y is not fully
determined by X.

215

777777777

Chapter 7. 7.3. Properties of BP-FI

If Y is fully determined by X, we call X fully informative, as it gives all
information that is necessary to determine Y .

Property 8 (Max FI when fully informative). If X is fully informative, it
holds that FI(i) ≤ FI(X) for any i ∈ Ωfeat.

Proof. Assume that there exists a feature i such that FI(i) > FI(X), when
Y is fully determined by X. To attain a higher FI, somewhere in the sum of
Equation (7.6), a higher gain must be made by i compared to X. Observe
that for any S ⊆ Ωfeat \ {i,X} it holds that

Dep (Y |S ∪ {i})−Dep (Y |S) ≤ 1−Dep (Y |S)

= Dep (Y |S ∪ {X})−Dep (Y |S) .

For any S ⊆ Ωfeat \ {i} with X ∈ S, it holds that

Dep (Y |S ∪ {i})−Dep (Y |S) = Dep (Y |S ∪ {i})− 1

= 0.

The last step follows from Equation (7.7), as the dependency function is
increasing, thus Dep (Y |S ∪ {i}) = 1. In other words, no possible gain can
be achieved with respect to X in the Shapley values. Therefore, it cannot
hold that FI(i) > FI(X).

Relevance. Whenever a variable fully determines Y , it should attain the
highest FI. What would an FI higher than such a score mean? It gives more
information than the maximal information? When this property would not
hold, it would result in a confusing and difficult interpretation process.

Property 9 (Limiting the outcome space). For any measurable function f
and RV X, replacing X with f(X) never increases the assigned FI to this
variable.

Proof. The BP dependency function is non-increasing under functions of X
[13]. This means that for any measurable function g, it holds that

Dep (Y |g(X)) ≤ Dep (Y |X) .

Choose g to be the function that maps the union of any feature set S and
the original RV X to the union of S and the replacement f(X). In other

216

777777777

Chapter 7. 7.3. Properties of BP-FI

words g(S ∪ {X}) = S ∪ {f(X)} for any feature set S. It then follows that:

Dep (Y |S ∪ {f(X)}) = Dep (Y |g(S ∪ {X})) ≤ Dep (Y |S ∪ {X}) ,

and

Dep (Y |S ∪ {f(X)})−Dep (Y |S) ≤ Dep (Y |S ∪ {X})−Dep (Y |S)

for any S ⊆ Ωfeat \ {X}. Thus, using Equation (7.6), we can conclude that
replacing X with f(X) never increases the assigned FI.

Relevance. This is an important observation for preprocessing. Whenever
a variable is binned, it would receive less (or equal) FI when less bins are
used. It could also potentially provide a useful upper bound, when the FI is
already known before replacing X with f(X).

Corollary 9.1. For any measurable function f and RV X, when X = f(X ′)
for another RV X ′, replacing feature X by feature X ′ will never decrease
the assigned FI.

Proof. When X = f(X ′) holds, it follows again (similar to Property 9) that

Dep (Y |S ∪ {X}) = Dep
(
Y |S ∪ {f(X ′)}

)
≤ Dep

(
Y |S ∪ {X ′}

)
for any S ⊆ Ωfeat \ {X}. Therefore, using Equation (7.6), observe that
replacing X with X ′ never decreases the assigned FI.

Shapley values have additional properties when the characteristic function v
is subadditive and/or superadditive [158]. We show that our function, defined
by Equation (7.5), is neither.

Property 10 (Neither subadditive nor superadditive). Our characteristic
function v(S) = Dep (Y |S) is neither subadditive nor superadditive.

Proof. Consider the following two counterexamples.

Counterexample subadditive: A function f is subadditive if for any S, T ∈ Ωfeat
it holds that

f(S ∪ T) ≤ f(S) + f(T).

Examine the dataset consisting of two binary features X1, X2 ∼ U({0, 1})
and a target variable Y = X1 · (1−X2) +X2 · (1−X1) which is the XOR of

217

777777777

Chapter 7. 7.3. Properties of BP-FI

X1 and X2. Both X1 and X2 do not individually give any new information
about the distribution of Y , thus v(X1) = v(X2) = 0 (see properties of the
BP dependency function [13]). However, collectively they fully determine
Y and thus v(X1 ∪ X2) = 1. We can therefore conclude that v is not
subadditive, as

v(X1 ∪X2) = 1 ̸≤ 0 + 0 = v(X1) + v(X2).

Counterexample superadditive: A function f is superadditive if for any
S, T ∈ Ωfeat it holds that

f(S ∪ T) ≥ f(S) + f(T).

Consider the dataset consisting of two binary features X ∼ U({0, 1}) and a
clone Xclone := X, where the target variable Y is defined as Y := X. Note
that both X and Xclone fully determine Y , thus v(X) = v(Xclone) = 1 (see
properties of the BP dependency function [13]). Combining X and Xclone

also fully determines Y , which leads to:

v(X ∪Xclone) = 1 ̸≥ 1 + 1 = v(X) + v(Xclone).

Thus, v is also not superadditive.

Relevance. If the characteristic function v is subadditive, it would hold that
FI(X) ≤ v(X) for any X ∈ Ωfeat. When v is superadditive, it follows that
FI(X) ≥ v(X) for any X ∈ Ωfeat. This is sometimes also referred to as
individual rationality, which means that no player receives less, than what
he could get on his own. This makes sense in a game-theoretic scenario
with human players that can decide to not play when one could gain more
by not cooperating. In our case, features do not have a free will, which
makes this property not necessary. The above proof shows that v is in our
case neither subadditive nor superadditive, which is why we cannot use their
corresponding bounds.

Property 11 (Adding features can increase FI). When an extra feature is
added to the dataset, the FI of X can increase.

Proof. Consider the previously mentioned XOR dataset, where X1, X2 ∼
U({0, 1}) and Y = X1 · (1−X2) +X2 · (1−X1). If at first, X2 was not in
the dataset, the FI of X1 would be zero, as Dep (Y |X1) = 0. However, if
X2 is added to the dataset, the FI of X1 increases to 1

2 (see Property 15).
The FI of a feature can thus increase if another feature is added.

218

777777777

Chapter 7. 7.3. Properties of BP-FI

Property 12 (Adding features can decrease FI). When an extra feature is
added to the dataset, the FI of X can decrease.

Proof. Consider the dataset given by X ∼ U({0, 1}) and Y := X. It im-
mediately follows that FI(X) = 1. However, when a clone is introduced
(Xclone := X), it holds that FI(X) = FI(Xclone), because of Property 8.
Additionally, it follows from Property 1 that FI(X) + FI(Xclone) = 1. Thus,
FI(X) = 1

2 , and the FI of a variable can therefore be decreased if another
variable is added.

Relevance. It is important to observe that the FI of a variable is dependent
on the other features (Properties 11 and 12). Adding or removing features
could change the FI, which one needs to be aware of.

Property 13 (Cloning does not increase FI). For any RV X ∈ Ωfeat, adding
an identical variable Xclone := X (cloning) to the dataset, does not increase
the FI of X.

Proof. Let FIwith clone(X) denote the FI of X after the clone Xclone is added.
Using Equation (7.6) (with Notations (N1) and (N2)), we find

FIwith clone(X)=
∑

S⊆Ωfeat∪{Xclone}\{X}

w(S,Nvars + 1) ·D(X,Y, S)

(a)
=

∑
S⊆Ωfeat∪{Xclone}\{X}:Xclone∈S

w(S,Nvars + 1) ·D(X,Y, S)

+
∑

S⊆Ωfeat∪{Xclone}\{X}:Xclone ̸∈S

w(S,Nvars + 1) ·D(X,Y, S)

(b)
=

∑
S⊆Ωfeat∪{Xclone}\{X}:Xclone∈S

w(S,Nvars + 1) · 0

+
∑

S⊆Ωfeat∪{Xclone}\{X}:Xclone ̸∈S

w(S,Nvars + 1) ·D(X,Y, S)

=
∑

S⊆Ωfeat\{X}

w(S,Nvars + 1) ·D(X,Y, S).

219

777777777

Chapter 7. 7.3. Properties of BP-FI

Equality (a) follows by splitting the sum over all subsets of Ωfeat∪{Xclone}\
{X} whether Xclone is part of the subset or not. Adding X to a subset that
already contains the clone Xclone does not change the BP dependency func-
tion, which is why Equality (b) follows. The takeaway from this derivation
is that the sum over all subsets S ⊆ Ωfeat ∪ {Xclone} \ {X} reduces to the
sum over S ⊆ Ωfeat \ {X}.

Comparing the new FIwith clone(X) with the original FI(X) gives

FI(X)− FIwith clone(X) =
∑

S⊆Ωfeat\{X}

w(S,Nvars) ·D(X,Y, S)

−
∑

S⊆Ωfeat\{X}

w(S,Nvars + 1) ·D(X,Y, S).

Using Notation (N1), we find that

w(S,Nvars + 1)

w(S,Nvars)
=

|S|!·(Nvars+1−|S|−1)!
(Nvars+1)!

|S|!·(Nvars−|S|−1)!
Nvars!

=
Nvars − |S|
Nvars + 1

< 1,

thus FI(X) − FIwith clone(X) ≥ 0 with equality if and only if FI(X) = 0.
Therefore, we can conclude that cloning a variable cannot increase the FI of
X and will decrease the FI when X is not null-independent.

Relevance. We consider this a natural property of a good FI method, as no
logical reason can be found why adding the exact same information would
lead to an increase in FI for the original variable. The information a variable
contains only becomes less valuable, as it becomes common knowledge.

Property 14 (Order does not change FI). The order of the features does not
affect the individually assigned FI. Consider the datasets [X1, X2, . . . , XNvars]
and [Z1, Z2, . . . , ZNvars], where Zπ(i) = Xi for some permutation π. It holds
that FI(Xi) = FI(Zπ(i)) for any i ∈ {1, . . . , Nvars}.

Proof. Note that the order of features nowhere plays a roll in the definition
of BP-FI (Equation (7.6)). The BP dependency function is also independent
of the given order, which is why this property trivially holds.

Relevance. This is a very natural property of a good FI. Consider what
would happen if the FI is dependent on the order in the dataset. Should all
possible orders be evaluated and averaged to receive a final FI? We cannot
find any arguments why someone should want FI to be dependent on the
order of features.

220

777777777

Chapter 7. 7.3. Properties of BP-FI

Datasets

Next, we consider a few datasets, where we derive the theoretical outcome for
the BP-FI. These datasets are also used in Section 7.4.3 to test FI methods.
It is very hard to evaluate FI methods, as the ground truth is often unknown.
However, we believe that the FI outcomes on these datasets are all natural
and defendable. However, it remains subjective what one considers to be
the ‘correct’ FI values.

Property 15 (XOR dataset). Consider the following dataset consisting of
two binary features X1, X2 ∼ U({0, 1}) and a target variable Y = X1 · (1−
X2) +X2 · (1−X1) which is the XOR of X1 and X2. It holds that

FI(X1) = FI(X2) =
1

2
.

Proof. Observe that Dep (Y |X1) = Dep (Y |X2) = 0 and Dep (Y |X1 ∪X2) =
1. With Equation (7.6), it follows that

FI(X1) =
∑

S⊆{1,2}\X1

|S|! · (1− |S|)!
2!

· (Dep (Y |S ∪X1)−Dep (Y |S))

=
|{∅}|! · (1− |{∅}|)!

2!
· (Dep (Y |{∅} ∪X1)−Dep (Y |{∅}))

+
|{X2}|! · (1− |{X2}|)!

2!
· (Dep (Y |X1 ∪X2)−Dep (Y |X2))

=
1

2
· (Dep (Y |X1)− 0) +

1

2
· (Dep (Y |X1 ∪X2)−Dep (Y |X2))

=
1

2
· 0 + 1

2
· (1− 0)

=
1

2
.

Using Property 1, it follows that FI(X2) = 1− FI(X1) =
1
2 .

Relevance. This XOR formula is discussed and used to test FI methods
in [55]. However, they only test for equality (FI(X1) = FI(X2)), not the
specific value. Due to symmetry, we would also argue that both X1 and

221

777777777

Chapter 7. 7.3. Properties of BP-FI

X2 should get the same FI, as they fulfill the same role. Together, they
fully determine Y , which is why the total FI should be one (see Property 6).
Dividing this equally amongst the two variables, gives a logical desirable FI
outcome of 1

2 for each variable.

Property 16 (Probability dataset). Consider the following dataset consist-
ing of Y = ⌊XS/2⌋ and Xi = Zi + (S − 1) with Zi ∼ U ({0, 2}) for i = 1, 2
and P(S = 1) = p, P(S = 2) = 1− p. It holds that

FI(X1) = p and FI(X2) = 1− p.

Proof. Observe that by Equation (7.4)

UD (X1, Y) =
∑

x1∈{0,1,2,3}

pX1(x1) ·
∑

y∈{0,1}

∣∣pY |X1=x1
(y)− pY (y)

∣∣

=
∑

x1∈{0,2}

pX1(x1) ·
∑

y∈{0,1}

∣∣∣∣pY |X1=x1
(y)− 1

2

∣∣∣∣
+

∑
x1∈{1,3}

pX1(x1) ·
∑

y∈{0,1}

∣∣∣∣pY |X1=x1
(y)− 1

2

∣∣∣∣

=
∑

x1∈{0,2}

p

2
·
(∣∣∣∣1− 1

2

∣∣∣∣+ ∣∣∣∣0− 1

2

∣∣∣∣)

+
∑

x1∈{1,3}

1− p
2
·
∑

y∈{0,1}

|pY (y)− pY (y)|

= p.

Similarly, it follows that UD (X2, Y) = 1− p.

UD (Y, Y) =
∑

y′∈{0,1}

pY (y
′) ·

∑
y∈{0,1}

∣∣pY |Y=y′(y)− pY (y)
∣∣

=
∑

y′∈{0,1}

1

2
·
(∣∣∣∣1− 1

2

∣∣∣∣+ ∣∣∣∣0− 1

2

∣∣∣∣)

= 1.

222

777777777

Chapter 7. 7.3. Properties of BP-FI

From Equation (7.3), it follows that Dep (Y |X1) = p and Dep (Y |X2) =
1− p. Additionally, note that knowing X1 and X2 fully determines Y , thus
Dep (Y |X1 ∪X2) = 1. With Equation (7.6), we now find

FI(X1) =
∑

S⊆{X1,X2}\X1

|S|! · (1− |S|)!
2!

· (Dep (Y |S ∪X1)−Dep (Y |S))

=
|{∅}|! · (1− |{∅}|)!

2!
· (Dep (Y |{∅} ∪X1)−Dep (Y |{∅}))

+
|{X2}|! · (1− |{X2}|)!

2!
· (Dep (Y |X1 ∪X2)−Dep (Y |X2))

=
1

2
· (Dep (Y |X1)− 0) +

1

2
· (Dep (Y |X1 ∪X2)−Dep (Y |X2))

=
1

2
· (p− 0) +

1

2
· (1− (1− p))

=
p

2
+
p

2
= p.

Using Property 1, it follows that FI(X2) = 1− FI(X1) = 1− p.

Relevance. At first glance, it is not immediately clear why these FI values
are natural, which is why we discuss this dataset in more detail. S can be
considered a selection parameter that determines if X1 or X2 is used for Y
with probability p and 1− p, respectively. Xi is constructed in such a way
that it is uniformly drawn from {0, 2} or {1, 3} depending on S. However,
as Y = ⌊XS/2⌋, it holds that XS = 0 and XS = 1 give the same outcome
for Y . The same holds for XS = 2 and XS = 3. Therefore, note that the
distribution of Y is independent of the selection parameter S. Knowing X1

gives the following information. First, S can be derived from the value of
X1. When X1 ∈ {0, 2} it must hold that S = 1, and if X1 ∈ {1, 3} it follows
that S = 2. Second, when S = 1 it means that Y is fully determined by X1.
If S = 2, knowing that X1 = 1 or X1 = 3 does not provide any additional
information about Y . With probability p knowing X1 will fully determine
Y , whereas with probability 1− p, it will provide no information about the
distribution of Y . The outcome FI(X1) = p, is therefore very natural. The
same argumentation applies for X2, which leads to FI(X2) = 1− p.

223

777777777

Chapter 7. 7.4. Comparing with existing methods

7.4 Comparing with existing methods

In the previous section, we showed that BP-FI has many desirable properties.
Next, we evaluate for a large collection of FI methods if the properties hold
for several synthetic datasets. Note that these datasets can only be used
as counterexample, not as proof of a property. First, we discuss the in
Section 7.4.1 the FI methods that are investigated. Second, we give the
datasets (Section 7.4.2) and explain how they are used to test the properties
(Section 7.4.3). The results are discussed in Section 7.4.4.

7.4.1 Alternative FI methods

A wide range of FI methods have been suggested for all kinds of situations.
It is therefore first necessary to discuss the major categorical differences
between them.

Global vs. local An important distinction to make for FI methods is
whether they are constructed for local or global explanations. Global FI
methods give an importance score for each feature over the entire dataset,
whereas local FI methods explain which variables were important for a single
example [59]. The global and local scores do not have to coincide: “features
that are globally important may not be important in the local context,
and vice versa” [144]. This research is focussed on global FI methods, but
sometimes a local FI approach can be averaged out to obtain a global FI.
For example, in [109] a local FI method is introduced called Tree SHAP. It
is also used globally, by averaging the absolute values of the local FI.

Model-specific vs. model-agnostic A distinction within FI methods
can be made between model-specific and -agnostic methods. Model-specific
methods aim to find the FI using a prediction model such as a neural network
or random forest, whereas model-agnostic methods do not use a prediction
model. The BP-FI is model-agnostic, which therefore gives insights into the
dataset. Whenever a model-specific method is used, the focus lies more on
gaining information about the prediction model, not the dataset. In our
tests, we use both model-specific and -agnostic methods.

Classification vs. regression Depending on the exact dataset, the target
variable is either categorical or numerical, which is precisely the difference
between classification and regression. Not all existing FI methods can handle
both cases. In this research, we generate synthetic classification datasets, so
we only examine FI methods that are intended for these cases. An additional

224

777777777

Chapter 7. 7.4. Comparing with existing methods

problem with regression datasets, is that continuous variables need to be
converted to discrete bins. This conversion could drastically change the FI
scores, which makes it harder to draw fair conclusions.

Collection We have gathered the largest known collection of FI methods
from various sources [3, 8, 16, 31, 35, 38, 41, 55, 59, 67, 73, 95, 110, 118, 123,
128, 129, 139, 147, 148, 179, 180] or implemented them ourselves. This has
been done with the following policy: Whenever code of a classification FI
method was available in R or Python or the implementation was relatively
straightforward, it was added to the collection. This resulted in 196 base
methods and 468 total methods, as some base methods can be combined with
multiple machine learning approaches or selection objectives, see Table 7.4.1.
However, beware that most methods also contain additional parameters,
which are not investigated in this research. The default values for these
parameters are always used.

7.4.2 Synthetic datasets

Next, we briefly discuss the datasets that are used to test the properties
described in Section 7.3 for alternative FI methods. In Section 7.A, we
introduce each dataset and explain how they are generated. To draw fair
conclusions, the datasets are not drawn randomly, but fixed. To give an
example of how we do generate a dataset, we examine Dataset 1 Binary
system (see Section 7.A), where the target variable Y is defined as Y :=∑3

i=1 2
i−1 ·Xi with Xi ∼ U ({0, 1}) for all i ∈ {1, 2, 3}. To get interpretable

results, we draw each combination of X and Y values the same number
of times. An example can be seen in Table 7.4.2. For most datasets, we
draw 1,000 samples in total. However Datasets 6 and 7 consist of 2,000
samples to ensure null-independence. The datasets have been selected to be
computationally inexpensive and to test many properties (see Section 7.4.3)
with a limited number of datasets. An overview of the generated datasets
can be found in Table 7.4.3 including the corresponding outcome of BP-FI.
Section 7.A provides more technical details about the features and target
variables.

7.4.3 Property evaluation

In Section 7.4.1, we gathered a collection of existing FI methods. In this
section, we evaluate if these FI methods have the same desirable and proven
properties of the BP-FI method (see Section 7.3). Due to the sheer number
of FI methods (468), it is unfeasible to prove each property for every method.

225

777777777

Chapter 7. 7.4. Comparing with existing methods

Table 7.4.1: All evaluated FI methods: List of all FI methods that
are evaluated in the experiments. The methods with superscript work in
combination with multiple options: Logistic RegressionI, II, III, RidgeI, II, Linear
RegressionI, II, LassoI, II, SGD ClassifierI, III, MLP ClassifierI, II, K Neighbors ClassifierI, II,
Gradient Boosting ClassifierI, II, IV, AdaBoost ClassifierI, II, Gaussian NBI, II, Bernoulli
NBI, II, Linear Discriminant AnalysisI, II, Decision Tree ClassifierI, II, IV, V, Random
Forest ClassifierI, II, IV, V, SVCI, CatBoost ClassifierI, II, LGBM ClassifierI, II, IV, XGB
ClassifierI, II, IV, VII, XGBRF ClassifierI, II, IV, VII, ExtraTree ClassifierIV, V, ExtraTrees
ClassifierIV, V, plsdaVI, splsdaVI, giniVIII, entropyVIII, NN1IX, NN2IX. This leads to
a total of 468 FI methods from various sources [3, 8, 16, 31, 35, 38, 41,
55, 59, 67, 73, 95, 110, 118, 123, 128, 129, 139, 147, 148, 179, 180] or
self-implemented.

Feature Importance Methods

1. AdaBoost Classifier 2. Random Forest ClassifierVIII 3. Extra Trees ClassifierVIII 4. Gradient Boosting Classifier
5. SVR absolute weights 6. EL absolute weights 7. Permutation Importance ClassifierI 8. PCA sum
9. PCA weighted 10. chi2 11. f classif 12. mutual info classif
13. KL divergence 14. R Mutual Information 15. Fisher Score 16. FeatureVec
17. R Varimp Classifier 18. R PIMP Classifier 19. Treeinterpreter ClassifierV 20. DIFFI
21. Tree ClassifierIV 22. Linear ClassifierIII 23. Permutation ClassifierI 24. Partition ClassifierI

25. Sampling ClassifierI 26. Kernel ClassifierI 27. Exact ClassifierI 28. RFI ClassifierI

29. CFI ClassifierI 30. Sum ClassifierVI 31. Weighted X ClassifierVI 32. Weighted Y ClassifierVI

33. f oneway 34. alexandergovern 35. pearsonr 36. spearmanr
37. pointbiserialr 38. kendalltau 39. weightedtau 40. somersd
41. linregress 42. siegelslopes 43. theilslopes 44. multiscale graphcorr
45. booster weightVII 46. booster gainVII 47. booster coverVII 48. snn
49. knn 50. bayesglm 51. lssvmRadial 52. rocc
53. ownn 54. ORFpls 55. rFerns 56. treebag
57. RRF 58. svmRadial 59. ctree2 60. evtree
61. pda 62. rpart 63. cforest 64. svmLinear
65. xyf 66. C5.0Tree 67. avNNet 68. kknn
69. svmRadialCost 70. gaussprRadial 71. FH.GBML 72. svmLinear2
73. bstSm 74. LogitBoost 75. wsrf 76. plr
77. xgbLinear 78. rf 79. null 80. protoclass
81. monmlp 82. Rborist 83. mlpWeightDecay 84. svmRadialWeights
85. mlpML 86. ctree 87. loclda 88. sdwd
89. mlpWeightDecayML 90. svmRadialSigma 91. bstTree 92. dnn
93. ordinalRF 94. pda2 95. BstLm 96. RRFglobal
97. mlp 98. rpart1SE 99. pcaNNet 100. ORFsvm
101. parRF 102. rpart2 103. gaussprPoly 104. C5.0Rules
105. rda 106. rbfDDA 107. multinom 108. gaussprLinear
109. svmPoly 110. knn 111. treebag 112. RRF
113. ctree2 114. evtree 115. pda 116. rpart
117. cforest 118. xyf 119. C5.0Tree 120. kknn
121. gaussprRadial 122. LogitBoost 123. wsrf 124. xgbLinear
125. rf 126. null 127. monmlp 128. Rborist
129. mlpWeightDecay 130. mlpML 131. ctree 132. mlpWeightDecayML
133. dnn 134. pda2 135. RRFglobal 136. mlp
137. rpart1SE 138. parRF 139. rpart2 140. gaussprPoly
141. C5.0Rules 142. rbfDDA 143. multinom 144. gaussprLinear
145. binaryConsistency 146. chiSquared 147. cramer 148. gainRatio
149. giniIndex 150. IEConsistency 151. IEPConsistency 152. mutualInformation
153. roughsetConsistency 154. ReliefFeatureSetMeasure 155. symmetricalUncertain 156. IteratedEstimatorII

157. PermutationEstimatorII 158. KernelEstimatorII 159. SignEstimatorII 160. ShapleyI

161. BanzhafI 162. RF 163. GarsonIX 164. VIANNIX

165. LOFOIX 166. Relief 167. ReliefF 168. RReliefF
169. fit criterion measure 170. f ratio measure 171. gini index 172. su measure
173. spearman corr 174. pearson corr 175. fechner corr 176. kendall corr
177. chi2 measure 178. anova 179. laplacian score 180. information gain
181. modified t score 182. MIM 183. MRMR 184. JMI
185. CIFE 186. CMIM 187. ICAP 188. DCSF
189. CFR 190. MRI 191. IWFS 192. NDFS
193. RFS 194. SPEC 195. MCFS 196. UDFS
197. R2 198. DC 199. BCDC 200. AIDC
201. HSIC 202. BP-FI

Legend
1-12 sklearn [128] 13-20 Additional methods [3, 31, 35, 59, 73, 118, 139, 148] 21-27 shap explainer [110]

28-29 Relative feature importance [16] 30-32 R vip [67] 33-44 scipy stats [180]
45-47 booster classifier [38] 48-109 R caret classifier [95] 110-144 R firm classifier [67]

145-155 R FSinR Classifier [8] 156-159 Sage Classifier [41] 160-161 QII Averaged Classifier [179]
162-165 Rebelosa Classifier [147] 166-168 Relief Classifier [123] 169-196 ITMO [129]
197-201 Sunnies [55] 202 BP-FI -

226

777777777

Chapter 7. 7.4. Comparing with existing methods

Table 7.4.2: Fixed draw: Example of how the datasets are drawn.
Instead of drawing each possible outcome uniformly at random, we draw
each combination an equal fixed number of times.

Outcome # Drawn
X1 X2 X3 Y Fixed Uniform

0 0 0 0 125 133
0 0 1 4 125 129
0 1 0 2 125 121
0 1 1 6 125 109
1 0 0 1 125 136
1 0 1 5 125 124
1 1 0 3 125 115
1 1 1 7 125 133

Instead, we devise tests to find counterexamples of these properties using
generated datasets (see Section 7.4.2). Due to the number of tests (18), we
only discuss the parts that are not straightforward, as most test directly
measure the corresponding property. An overview of each test can be found
in Section 7.B. A summary of the tests can be found in Table 7.4.4, where
it is outlined for each test which property is tested on which datasets.

Computational errors To allow for computational errors, we tolerate
a margin of ϵ = 0.01 in each test. If, e.g., an FI value should be zero, a
score of 0.01 or −0.01 is still considered a pass, whereas an FI value of
0.05 is counted as a fail. Usually, this works in the favor of the FI method.
However, in Test 9 we evaluate if the FI method assigns zero FI to variables
that are not null-independent. In this case, we consider |FI(X)| ≤ ϵ to be
zero, as the datasets are constructed in such a way that variables are either
null-independent or far from being null-independent.

Running time We limit the running time to one hour per dataset on an
i7-12700K processor, whilst four algorithms are running simultaneously. The
datasets consist of a small number of features with a very limited outcome
space and the number of samples is either 1,000 or 2,000, which is why one
hour is a reasonable amount of time.

NaN or infinite values In some cases, an FI method assigns NaN or
±∞ to a feature. How we handle these values depends on the test. E.g., we
consider NaN to fall outside the range [0, 1] (Tests 4 and 55), but when we
evaluate if the sum of FI values remains stable (Test 2) or if two symmetric

227

777777777

Chapter 7. 7.4. Comparing with existing methods

T
ab

le
7.4.3:

O
verview

of
d
atasets:

A
n

overview
of

the
generated

datasets
and

the
corresponding

B
P

-F
I

outcom
e.

T
he

details
of

these
datasets

can
be

found
in

Section
7.A

.T
hey

are
used

to
evaluate

if
existing

F
I

m
ethods

adhere
to

the
sam

e
properties

as
B

P
-F

I
(see

Section
7.4.3).

D
ataset

V
ariab

les
B

P
-F

I
ou

tcom
e

B
in

ary
system

1.
-

base
(X

1 ,X
2 ,X

3)
(0.333

,0
.333

,0
.333)

2.
-

clone
(X

clone
1

,X
1 ,X

2 ,X
3)

(0.202
,0
.202

,0
.298

,0
.298)

3.
-

clone
+

1x
fully

info.
(X

clone
1

,X
1 ,X

2 ,X
3 ,X

full
4

)
(0.148

,0
.148

,0
.183

,0
.183

,0
.338)

4.
-

clone
+

2x
fully

info.
(X

clone
1

,X
1 ,X

2 ,X
3 ,X

full
4
,X

full
5

)
(0.117

,0
.117

,0
.136

,0
.136

,0
.248

,0
.248)

5.
-

clone
+

2x
fully

info.
(different

order)
(X

3 ,X
full
4
,X

full
5
,X

clone
1

,X
1 ,X

2)
(0.136

,0
.248

,0
.248

,0
.117

,0
.117

,0
.136)

N
u
ll-in

d
ep

en
d
ent

system
6.

-
base

(X
null-indep.
1

,X
null-indep.
2

,X
null-indep.
3

)
(0.000

,0
.000

,0
.000)

7.
-

constant
variable

(X
null-indep.
1

,X
null-indep.
2

,X
null-indep.
3

,X
const,

null-indep.
4

)
(0.000

,0
.000

,0
.000

,0
.000)

In
creasin

g
b
in

s
8.

-
base

(X
bins=

1
0

1
,X

bins=
5
0

2
,X

bins=
1
,0
0
0
,

full
3

)
(0.297

,0
.342

,0
.361)

9.
-

m
ore

variables
(X

bins=
1
0

1
,X

bins=
2
0

2
,X

bins=
5
0

3
,X

bins=
1
0
0

4
,X

bins=
1
,0
0
0
,

full
5

)
(0.179

,0
.193

,0
.204

,0
.208

,0
.216)

10.
-

clone
(different

order)
(X

bins=
1
,0
0
0
,

full
3

,X
bins=

5
0

2
,X

bins=
1
0

1
,X

clone,
full

3
)

(0.262
,0
.253

,0
.223

,0
.262)

D
ep

en
d
ent

system
11.

-
1x

fully
info.

(X
full
1
,X

null-indep.
2

,X
null-indep.
3

)
(1.000

,0
.000

,0
.000)

12.
-

2x
fully

info.
(X

full
1
,X

full
2
,X

null-indep.
3

)
(0.500

,0
.500

,0
.000)

13.
-

3x
fully

info.
(X

full
1
,X

full
2
,X

full
3

)
(0.333

,0
.333

,0
.333)

X
O

R
d
ataset

14.
-

base
(X

1 ,X
2)

(0.500
,0
.500)

15.
-

single
variable

(X
null-indep.
1

)
(0.000)

16.
-

clone
(X

clone
1

,X
1 ,X

2)
(0.167

,0
.167

,0
.667)

17.
-

null-independent
(X

1 ,X
2 ,X

null-indep.
3

)
(0.500

,0
.500

,0
.000)

P
rob

ab
ility

d
ataset

18-28.
-

for
p
∈
{0,0.1,...,1}

(X
1 ,X

2)
(p
,1
−
p
)

228

777777777

Chapter 7. 7.4. Comparing with existing methods

T
ab

le
7.

4.
4:

O
ve

rv
ie

w
of

ex
p
er

im
en

ts
:

To
ev

al
ua

te
if

ex
is

ti
ng

F
I

m
et

ho
ds

ha
ve

th
e

sa
m

e
pr

op
er

ti
es

as
th

e
B

P
-F

I,
w

e
us

e
th

e
te

st
s

fr
om

Se
ct

io
n

7.
B

on
th

e
da

ta
se

ts
fr

om
Se

ct
io

n
7.

A
.✓

m
ea

ns
th

at
th

e
te

st
is

pe
rf

or
m

ed
on

th
is

da
ta

se
t.

↕(
i)

de
no

te
s

th
at

th
is

da
ta

se
t

is
us

ed
as

ba
se

lin
e

or
in

co
nj

un
ct

io
n

w
it

h
da

ta
se

t
i.

T
he

de
ta

ils
of

th
e

te
st

s
an

d
da

ta
se

ts
ca

n
be

fo
un

d
in

th
e

ap
pe

nd
ix

.

T
es

t
E
va

lu
at

es
:

D
at

as
et

(S
ec

ti
on

7.
A

)
(S

ec
ti

on
7.

B
)

P
ro

pe
rt

y/
C

or
ol

la
ry

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

1
1

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

2
1.

1
↕(

2-
5)

✓
✓

✓
✓

↕(
7)

✓
↕(

9-
10

)
✓

✓
↕(

12
-1

3)
✓

✓
↕(

16
-1

7)
✓

✓

3
2

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓

4
3

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

5
3

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

6
4

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

7
4

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

8
5

✓
✓

✓
✓

✓
✓

✓
✓

9
5

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

10
6

✓

11
8

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓

12
9

✓
✓

✓

13
11

↕(
2)

✓
↕(

3)
✓

↕(
4)

✓
↕(

7)
✓

↕(
9-

10
)

✓
✓

✓
↕(

16
-1

7)
↕(

14
)

✓
✓

14
12

↕(
2)

✓
↕(

3)
✓

↕(
4)

✓
↕(

7)
✓

↕(
9-

10
)

✓
✓

✓
↕(

16
-1

7)
↕(

14
)

✓
✓

15
13

↕(
2)

✓
↕(

10
)

✓
↕(

16
)

✓

16
14

↕(
5)

✓
↕(

28
)

↕(
27

)
↕(

26
)

↕(
25

)
↕(

24
)

✓
✓

✓
✓

✓

17
15

✓
✓

18
16

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓

229

777777777

Chapter 7. 7.4. Comparing with existing methods

features receive the same FI (Test 3), we consider twice NaN or twice ±∞
to be the same.

Property 9 (Limiting the outcome space) Property 9 states that
applying any measurable function f to a RV X cannot increase the FI.
In other words, FI(X) ≥ FI(f(X)) holds. This property is tested using
Datasets 8 to 10 (see Table 7.4.4). These datasets contain variables that are
the outcome of binning the target variable using different number of bins.
This is how Property 9 is tested, as it should hold that FI(Xi) ≥ FI(Xj),
whenever Xi has more bins than Xj .

Properties 11 and 12 (Adding features can increase/decrease FI)
In all other tests, the goal is to find a counterexample of the property.
However, Tests 13 and 14 are designed to evaluate if a feature gets an
increased/decreased FI when a feature is added. This increase/decrease
should be more than ϵ. The datasets are chosen in such a way that both an
increase and decrease could occur (according to the BP-FI). Only for these
tests, we consider the test failed if no counterexample (increase/decrease) is
found.

7.4.4 Evaluation results

An overview of the general results can be seen in Table 7.4.5, where the
number of methods that pass and fail is given per test. Next, we highlight
additional insights into the results of the experiments.

Best performing methods The top 20 FI methods that pass the most
tests are given in Table 7.4.6. Out of 18 tests, the BP-FI passes all tests,
which is as expected as we have proven in Section 7.3 that the BP-FI actually
has these properties. Classifiers from R FSinR Classifier and ITMO fill
11 of the top 20 spots. Out of 11 R FSinR Classifier methods, six are
in the top 20, which is quite remarkable. However, observe that the gap
between the BP-FI method and the second best method is 18 − 11 = 7
passed tests. Additionally, 424 out of 468 methods fail more than half of
the tests. Figure 7.4.1 shows how frequently each number of passed tests
occurs. A detailed overview of where each top 20 method fails, can be seen
in Table 7.4.5. Note again that in Tests 13 and 14 it is considered a fail if
adding features never increase or decrease the FI, respectively. It could be
that these methods are in fact capable of increasing or decreasing, but for
some reason do not with our datasets. Strikingly, most of these methods
perform bad on the datasets with a desirable outcome (Tests 17 and 18).

230

777777777

Chapter 7. 7.4. Comparing with existing methods

Adding a variable without additional information (Test 2), also often leads
to a change in total FI.

Table 7.4.5: Overview of the results: Each FI method is evaluated using
the tests outlined in Section 7.B, which evaluates if the method adheres to
the same properties as the BP-FI (see Section 7.3). This table summarizes
out of 468 FI methods how many pass or fail the test. A distinction is made
for the top 20 passing methods. Failing the test means that a counterexample
is found. Note that passing the test does not ‘prove’ that the FI method
actually has the property. No result indicates that the test could not be
executed, because the running time of the FI method was too long or an
error occurred.

Test
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Overall
Passed 1 92 45 438 200 97 132 283 97 31 141 241 243 314 365 172 13 5
Failed 466 369 421 29 267 370 335 184 370 413 326 98 216 145 58 288 421 459

No result 1 7 2 1 1 1 1 1 1 24 1 129 9 9 45 8 34 4

Top 20
Passed 1 10 15 20 19 7 18 18 2 13 17 20 4 6 20 17 2 4
Failed 19 10 5 0 1 13 2 2 18 7 3 0 16 14 0 3 17 16

No result 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Test 1 In this test, it is evaluated if the sum of FI values is the same as
the sum for BP-FI. At first, this seems a rather strict requirement. However,
it holds for all datasets that were used that Dep (Y |Ωfeat) is either zero
or one. Thus, we essentially evaluate if the sum of FI is equal to one,
when all variables collectively fully determine Y and zero if all variables are
null-independent. The tests show that no FI method is able to pass this
test, except for the BP-FI. To highlight some of the methods that came
close: 162. Rebelosa Classifier RF, 2. Random Forest Classifier entropy, 2.
Random Forest Classifier gini only fail for the datasets where the sum should
be zero (because of null-independence) and 1. AdaBoost Classifier only
does not pass on three of the four datasets based on the XOR function (see
Section 7.A), where the sum should be one, but was zero instead. FI method
51. lssvmRadial came closest with two fails. For the null-independent
datasets (Datasets 6 and 7), it gives each feature an FI of 0.5, making the
sum larger than zero.

Test 2 In Figure 7.4.2, a breakdown is given of where the sum of the
FI values is unstable. The most errors are made with the Binary system

231

777777777

Chapter 7. 7.4. Comparing with existing methods

Table 7.4.6: Top 20: Out of 468 FI methods, these 20 methods pass the
18 tests given in Section 7.B the most often. These tests are designed to
examine if an FI method adheres to the same properties as the BP-FI , given
in Section 7.3. Passed means that the datasets from Section 7.A do not
give a counterexample. Certainly, this does not mean that the FI method is
proven to actually have this property. Failed means that a counterexample
was found. No result indicates that the test could not be executed, because
the running time of the FI method was too long or an error occurred.

Combined result:
Method # Passed # Failed # No result

202. BP-FI 18 0 0
147. cramer 11 7 0
148. gainRatio 11 7 0
153. roughsetConsistency 11 7 0
155. symmetricalUncertain 11 7 0
172. su measure 11 7 0
88. sdwd 10 7 1
3. Extra Trees Classifier 10 8 0

116. rpart 10 8 0
126. null 10 8 0
145. binaryConsistency 10 8 0
152. mutualInformation 10 8 0
161. Banzhaf Ridge 10 8 0
197. R2 10 8 0
162. RF 10 8 0
166. Relief 10 8 0
173. spearman corr 10 8 0
188. DCSF 10 8 0
189. CFR 10 8 0
191. IWFS 10 8 0

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Passed tests

Fr
eq

u
en

cy

BP-FI

1000000
5

13

25

747878

101

57

24

741

Figure 7.4.1: Frequency of total passed test: Histogram of the number
of passed tests (out of 18) for the 468 FI methods.

232

777777777

Chapter 7. 7.4. Comparing with existing methods

datasets, when a fully informative feature is added. In total, 92 methods
passed the test, whereas 369 failed. From these 369 methods, 279 fail with
at least one increase of the sum, whereas 232 methods fail with at least one
decrease. An alarming number of FI methods thus assign significantly more
or less FI when a variable is added that does not contain any additional
information. More or less credit is given out, whilst the collective knowledge
is stable and does not warrant an increase or decrease in credit. Additionally,
when the initial and final sum both contain a NaN value, it is considered as
a pass. Three out of 92 would have not passed without this rule. If only the
initial or the final sum contained NaN, it is considered a fail, because the
sum is not the same. Only five methods fail solely by this rule: 15. Fisher
Score, 11. f classif, 178. anova, 179. laplacian score and 192. NDFS.

0

50

100

150

200

250

300

1↕2 1↕3 1↕4 1↕5 6↕7 8↕9 8↕10 11↕12 11↕13 14↕16 14↕17
Compared datasets

#
U

n
st

ab
le

su
m

F
I

188

302 311 299

163
190

95

203 194

124 117

Figure 7.4.2: Unstable sum FI: Whenever a variable is added that does
not give any additional information, the sum of all FI should remain stable.
For each comparison, we determine how often this is not the case out of 468
FI methods.

Test 11 Figure 7.4.3 shows how often each variable is within an ϵ-bound
of the largest FI in the dataset. Fully informative variables should attain
the largest FI, according to Property 8. In total, we observe that the fully
informative variables are often the largest FI with respect to the other
variables. However, there still remain many cases where they are not. 326 FI
methods fail this test, thus definitively not having Property 8. This makes
interpretation difficult, when a variable can get more FI than a variable which
fully determines the target variable. What does it mean, when a variable is
more important than a variable that gives perfect information?

233

777777777

Chapter 7. 7.4. Comparing with existing methods

Variables within dataset (i)

#
V

ar
ia

b
le

in
a
rg

m
a
x

0

50

100

150

200

250

300

350

400

450

500 Theoretical maximum: 468 (# FI methods)

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

Figure 7.4.3: Argmax FI: For each variable in every dataset, we determine
how often it receives the largest FI (within an ϵ-bound for ϵ = 0.01) with
respect to the other variables in the dataset. Fully informative variables
should attain the largest FI (see Property 8). All fully informative variables
are shaded in the figure.

Tests 10, 17, and 18 These tests all evaluate if the FI method assigns
a specific value to a feature. From Table 7.4.5, we observe that not many
methods are able to pass these tests. This is not surprising, as they have
not been thoroughly tested yet to give a specific value. This is one of the
important contributions of this research, which is why we want to elaborate
on the attempts that have been made in previous research. A lot of synthetic
datasets for FI have been proposed [2, 3, 6, 16, 30, 32, 44, 54, 55, 60, 71, 74,
80, 86, 104, 107–109, 117, 120, 124, 160, 164, 165, 169, 176, 187, 200, 202],
but no specific desirable FI values were given. Most commonly, synthetic
datasets are generated to evaluate the ability of an FI method to find noisy
features [6, 30, 60, 71, 74, 80, 104, 160, 165, 169, 187, 200]. The common
general concept of such a dataset is that the target variable is independent
of certain variables. The FI values are commonly evaluated by comparing
the FI values of independent variables with dependent variables with the
goal to establish if the FI method is able to find independent variables. If
the FI method actually predicts the exact desirable FI is not considered.
Next, we highlight the papers where some comment about the desired FI is
made. Lundberg et al. [109] give two similar datasets, where one variable
increases in importance. They evaluate multiple FI methods to see if the
same behavior is reflected in the outcome of these methods. This shows that
some commonly used methods could assign lower importance to a variable,

234

777777777

Chapter 7. 7.4. Comparing with existing methods

when it should actually be increasing. Giles et al. [60] also design multiple
artificial datasets to represent different scenarios, where comments are made
about which variables should obtain more FI. Sundararajan et al. [169]
remark that if every feature value is unique, that all variables get equal
attributions for an FI method (CES) even if the function is not symmetric in
the variables. If a tiny amount of noise is added to each feature, all features
would get identical attributions. However, no assessment is done on the
validity of this outcome. Owen et al. [124] give the following example. Let
f(x1, x2) = 106x1 + x2 with x1 = 106x2, where they argue that, despite the
larger variance of x1, both variables are equally important, as the function
can be written as a function of x1 alone, but also only as a function of
x2. Although we have previously seen that ‘written as a function of’ is
not a good criterion (due to dependencies), we agree with the authors that
the FI should be equal. Another example is given by Owen et al. [124],
where P(x1 = 0, x2 = 0, y = y0) = p0, P(x1 = 1, x2 = 0, y = y1) = p1, and
P(x1 = 0, x2 = 1, y = y2) = p2 are the possible outcomes. If p0 = 0, it is
stated in [124] that the Shapley relative importance of x1 is 1

2 , which is “what
it must be because there is then a bijection between x1 and x2”. This is an
interesting observation, as most papers do not comment about the validity
of an outcome. Additionally, when y1 = y2 (and y0 ≠ y1), Owen et al. [124]
argue that the most important variable, is the one with the largest variance.
Fryer et al. [55] also create a binary XOR dataset (see Dataset 14). They
evaluate seven FI methods for this specific dataset. The role of X1 and X2

is symmetric, thus the assigned FI should also be identical. It is shown that
six out of seven methods do indeed give a symmetrical result. However, the
exact FI value varies greatly. SHAP gives FI of 3.19, whereas Shapley DC
assigns 0.265 as FI. Only symmetry is checked, not the accuracy of the FI
method. In conclusion, existing research was not focussed on predicting the
exact accurate FI values. It is therefore not surprising that FI methods fail
these accuracy tests so often. Table 7.4.7 outlines in more detail how often
the variables are assigned an FI value outside an ϵ-bound (with ϵ = 0.01)
of the desired outcome. With Dataset 11, the FI methods mostly struggle
with assigning 1 to the fully informative variable. In total, 413 methods
failed Test 10. For Datasets 14 and 17, the two XOR variables fail about
as often. Comparing these two datasets, it is interesting to note that the
XOR variables fail more often, when a null-independent variable is added.
In total, 421 methods failed Test 17. Test 18 is hard, as the FI method
should assign the correct values for all probability datasets (see Section 7.A).
Only five methods are able to pass this test: 152. mutualInformation, 153.
roughsetConsistency, 162. RF, 175. fechner corr, and 202. BP-FI. These five

235

777777777

Chapter 7. 7.4. Comparing with existing methods

methods also pass Test 10. However, besides BP-FI, there is only one method
that also satisfies Test 17, which is 162. RF. The other three methods all
assign only zeros for Datasets 14 and 17, not identifying the value that the
XOR variables hold, when their information is combined. In Figure 7.4.4, a
breakdown is given for each probability dataset how often FI methods fail.
An unexpected result, is that the dataset with probability p < 1

2 and the
dataset with probability 1− p do not fail as often. Consistently, p < 1

2 fails
less often than its counterpart 1− p, although the datasets are the same up
to a reordering of the features and the samples. This effect can also be seen
in Table 7.4.7.

Table 7.4.7: Specific outcomes: Tests 10, 17, and 18 all evaluate if an
FI method gives a specific outcome for certain dataset. In this table, it is
outlined how often each variable of these datasets is assigned a value outside
an ϵ-bound (with ϵ = 0.01) of the desired outcome.

Non desirable outcome

not NaN NaNDataset Desirable
outcome

X1 X2 X3 X1 X2 X3

11 (1, 0, 0) 360 89 88 4 4 4

14 (0.5, 0.5) 353 351 - 5 5 -

17 (0.5, 0.5, 0) 369 364 90 5 5 5

18 (0, 1) 82 352 - 4 4 -

19 (0.1, 0.9) 412 434 - 3 3 -

20 (0.2, 0.8) 434 438 - 3 3 -

21 (0.3, 0.7) 435 441 - 3 3 -

22 (0.4, 0.6) 439 436 - 3 3 -

23 (0.5, 0.5) 423 422 - 3 3 -

24 (0.6, 0.4) 448 447 - 3 3 -

25 (0.7, 0.3) 449 446 - 3 3 -

26 (0.8, 0.2) 446 444 - 3 3 -

27 (0.9, 0.1) 444 435 - 3 3 -

28 (1, 0) 352 86 - 5 5 -

236

777777777

Chapter 7. 7.5. Discussion and future research

0

300

350

400

450

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability dataset (p)

F
re

qu
en

cy
fa

il
ed

399

438 441 445 442
427

451 453 450 450

405

Figure 7.4.4: Breakdown Test 18 per dataset: In Test 18 an FI
method needs to assign the correct FI values for every probability dataset
(see Section 7.A). In this figure, we breakdown per dataset how often an FI
method fails.

No result Focussing on the no result row of Table 7.4.5, there is one base
method named 158. KernelEstimator in combination with Lasso that in all
cases did not work or exceeded running time. The large number of no results
in Test 12 stem mostly from slow running times on the three datasets that
are used in the test. At least 63 methods were too slow for each dataset,
which automatically means that the test cannot be executed.

7.5 Discussion and future research

Whilst it is recommended to use our new FI method, it is important to
understand the limitations and potential pitfalls. Below we elaborate on
both the shortcomings of the approach proposed, and the related challenges
for further research. We start by discussing by some matters that one needs
to be aware of when applying the BP-FI (Section 7.5.1). Next, we discuss
some choices that were made for the experiments in Section 7.5.2. Finally,
we elaborate on other possible research avenues in Section 7.5.3.

7.5.1 Creating awareness

Binning Berkelmans et al. [13] explained that the way in which continuous
data is discretized can have a considerable effect on the BP dependency
function, which is why all datasets that were used in our research are discrete.

237

777777777

Chapter 7. 7.5. Discussion and future research

If a feature has too many unique values (due to poor binning), it will receive
a higher FI from BP-FI, as more information can be stored in the unique
values (see Property 9). On the other hand, when too few bins are chosen,
an important feature can receive low FI, as the information is lost due to
the binning. Future research should investigate and test which binning
algorithms give the closest results to the underlying FI.

Too few samples Consider the following dataset: Xi, Y ∼ U ({0, 1, . . . , 9})
i.i.d. for i ∈ {1, . . . , 5}. Note that all features are null-independent, as Y
is just uniformly drawn without considering the features in any way. If
nsamples =∞, the desired outcome would therefore be (0, 0, 0, 0, 0). However,
when not enough samples are given in the dataset, the features will get
nonzero FI. Considering that the total number of different feature values is
105, combining all features does actually give information about Y , when
nsamples ≪ 105. For any possible combination of features, it is unlikely that
it occurs more than once in the dataset. Therefore, knowing all feature
values would (almost surely) determine the value of Y . Property 1 gives
that the sum of all FI should therefore be one. All feature variables are also
symmetric (Property 2), which is why the desired outcome is (15 ,

1
5 ,

1
5 ,

1
5 ,

1
5)

instead. This example shows that one should be aware of the influence of
the number of samples on the resulting FI. Variables that do not influence
Y can still contain information, when not enough samples are provided. In
this way, insufficient samples could lead to wrong conclusions, if one is not
wary of this phenomenon.

Counterintuitive dependency case The Berkelmans-Pries dependency
of Y on X measures how much probability mass of Y is shifted by knowing
X. However, two similar shifts in probability mass could lead to differ-
ent predictive power. To explain this, we examine the following dataset.
X1, X2 ∼ U ({0, 1}) with

P(Y = y|X1 = x1, X2 = x2) =

1/4 if (x2, y) = (0, 0),

3/4 if (x2, y) = (0, 1),

5/8 if (x1, x2, y) = (0, 1, 0),

3/8 if (x1, x2, y) = (0, 1, 1),

7/8 if (x1, x2, y) = (1, 1, 0),

1/8 if (x1, x2, y) = (1, 1, 1).

Knowing the value of X2 shifts the distribution of Y . Before, Y was split
50/50, but when the value of X2 is known, the labels are either split 25/75

238

777777777

Chapter 7. 7.5. Discussion and future research

or 75/25, depending on the value of X2. Knowing X1 gives even more
information, as e.g., knowing X1 = X2 = 1 makes it more likely that Y = 0.
However, the shift in distribution of Y is the same for knowing only X2

and X1 combined with X2, which results in Dep (Y |X2) = Dep (Y |X1 ∪X2).
This is a counterintuitive result. Globally, knowing X2 or X1 ∪X2 gives the
same shift in distribution, but locally we can predict Y much better if we
know X1 as well. We are unsure how this effects the BP-FI. In this case, it
follows that FI(X1 ∪X2) > FI(X2), which is desirable. It is not unthinkable
that a solution can be found to modify the dependency function in order
to get a more intuitive result for such a case. Think e.g., of a different
distance metric, that incorporates the local accuracy given the feature values
or a conditional variant, which not only tests for independence, but also for
conditional independence. These are all critical research paths that should
be investigated.

Using FI for feature selection Feature selection (FS) is “the problem
of choosing a small subset of features that ideally is necessary and sufficient
to describe the target concept” [89]. Basically, the objective is to find a
subset of all features that gives the best performance for a given model,
as larger feature sets could decrease the accuracy of a model [97]. Many
FI methods actually stem from a FS procedure. However, it is important
to stress that high FI means that it should automatically be selected as
feature. Shared knowledge with other features could render the feature less
useful than expected. The other way around, low FI features should not
automatically be discarded. In combination with other features, it could
still give some additional insights that other features are not able to provide.
Calculation of BP-FI values could also provide insight into which group
of K features Y is most dependent on. To derive the result of BP-FI, all
dependencies of Y on a subset S ⊆ Ωfeat are determined. If only K variables
are selected, it is natural to choose

S∗
K ∈ argmax

S⊆Ωfeat:|S|=K
{Dep (Y |S)}.

These values are stored as an intermediate step in BP-FI, thus S∗
K can be

derived quickly thereafter.

Larger outcome space leads to higher FI We have proven that a
larger outcome space can never lead to a decrease in FI for BP-FI. This
means, that features with more possible outcomes are more likely to attain
a higher FI, depending on the distribution. There is a difference between

239

777777777

Chapter 7. 7.5. Discussion and future research

a feature that has many possible outcomes that are almost never attained,
and a feature where many possible outcomes are regularly observed. We do
not find this property undesirable, as some articles suggest [166, 200], as
we would argue that a feature can contain more information by storing the
information in additional outcomes, which would lead to an non-decreasing
FI.

7.5.2 Experimental design choices

Regression To avoid binning issues, we only considered classification
models and datasets. There are many more regression FI methods, that
should be considered in a similar fashion. However, to draw clear and
accurate conclusions, it is first necessary to understand how binning affects
the results. Sometimes counterintuitive results can occur due to binning,
that are not necessarily wrong. In such a case, it is crucial that the FI
method is not depreciated.

Runtime In the experiments, it could happen that an FI method had
no result, due to an excessive runtime or incompatible FI scores. The
maximum runtime for each algorithm was set to one hour per dataset on
an i7-12700K processor with 4 algorithms running simultaneously. The
maximum runtime was necessary due to the sheer number of FI methods
and datasets. Running four algorithms in parallel could unfairly penalize
the runtime, as the processor is sometimes limited by other algorithms. In
some occurrences, other parallel processes were already finished, which could
potentially lower the runtime of an algorithm. There is a potential risk
here, that accurate (but slow) FI methods are not showing up in the results.
However, our synthetic datasets are relatively small with respect to the
number of samples and the number of features, and we argue that one hour
should be reasonable. Depending on the use case, sometimes a long time
can be used to determine an FI value, whereas in other cases it could be
essential to determine it rather quickly. Especially for larger datasets, it
could even be unfeasible to run some FI methods. BP-FI uses Shapley values,
which are exponentially harder to compute when the number of features
grow. Approximation algorithms should be developed to faster estimate the
true BP-FI outcome. Quick approximations could be useful if the runtime
is much faster and the approximation is decent enough. Already, multiple
papers have suggested approaches to approximate Shapley values faster [2,
33, 80, 105, 167]. These approaches save time, but at what cost? A study
could be done to find the best FI method given a dataset and an allowed
running time.

240

777777777

Chapter 7. 7.5. Discussion and future research

Stochasticity methods One factor we did not incorporate, is the stochas-
ticity of some FI methods. Some methods do not predict the same FI values,
when it is repeatedly used. As example, 79. rf predicted for Dataset 3 (12.1,
11.7, 17.9, 15.2, 37.7) rounded to the first decimal. Running the method
again gives a different result: (11.4, 12.0, 17.4, 15.6, 37.1), as this method
uses a stochastic random forest. In principle, it is undesirable that an FI
method is stochastic, as we believe that there should be a unique assignment
of FI given a dataset. Due to the number of FI methods and datasets, we
did not repeat and averaged each FI method. This would however give a
better view on the performance of stochastic FI methods.

Parameter tuning All FI methods were used with default parameter
values. Different parameter values could lead to more or less failed tests.
However, the ideal parameter setting is not known beforehand, making it
necessary to search a wide range of parameters. This was not the focus of
our research, but future research could try to understand and learn which
parameter values should be chosen for a given dataset.

Ranking FI methods In Table 7.4.6, the 20 FI methods that passed
the most tests were highlighted. However, it is important to stress that not
every test is equally difficult. Depending on the user, some properties could
be more or less relevant. It is e.g., much harder to accurately predict the
specific values for 11 datasets (Test 18), than to always predict non-negatively
(Test 4). Every test is weighed equally, but this does not necessarily represent
the difficulty of passing each test accurately. However, we note that 175.
fechner corr is the only FI method that passed Test 18, that ended up outside
the top 20. We stress that we focussed on finding out if FI methods adhere to
the properties, not necessarily finding the best and most fair ranking.

7.5.3 Additional matters

Global vs. local BP-FI is designed to determine the FI globally. However,
another important research area focusses on local explanations. These
explanations should provide information about why a specific sample has a
certain target value instead of a different value. They provide the necessary
interpretability that is increasingly demanded for practical applications. This
could give insights for questions like: ‘If my income would be higher, could I
get a bigger loan?’, ‘Does race play a role in this prediction?’, and ‘For this
automated machine learning decision, what were the critical factors?’. Many
local FI methods have been proposed, and some even use Shapley values.
A structured review should be made about all proposed local methods,

241

777777777

Chapter 7. 7.5. Discussion and future research

similar to our approach for global FI methods to find which local FI methods
actually produce accurate explanations.

BP-FI can be modified to provide local explanations. For example, we can
make the characteristic function localized in the following way. Let YS,z be
Y restricted to the event that Xi = zi for i /∈ S, let us similarly define XS,z.
Then, we can define a localized characteristic function by:

vz(S) := Dep (YS,z|XS,z) . (7.8)

When dealing with continuous data, assuming equality could be too strict.
In this case, a precision vector parameter ϵ can be used, where we define
YS,z,ϵ to be Y restricted to the event that |Xi− zi| ≤ ϵi for i /∈ S, and in the
same way we define XS,z,ϵ. We then get the following localized characteristic
function:

vz,ϵ(S) := Dep (YS,z,ϵ|XS,z,ϵ) .

Additionally, there are at least two possible ways how BP-FI can be adapted
to be used for local explanations if some distance function d(i, j) and pa-
rameter δ are available to determine if sample j is close enough to i to be
considered ‘local’. We can (I) discard all samples where d(i, j) > δ and/or
(II) generate samples, such that d(i, j) ≤ δ for all generated samples. Then,
we can use BP-FI on the remaining samples and/or the generated samples,
which would give local FI. Note that there should still be enough samples, as
we have previously discussed that too few samples could lead to different FI
outcomes. However, there are many more ways how BP-FI can be modified
to be used for local explanations.

Model-specific FI BP-FI is in principle model-agnostic, as the FI is
determined of the dataset, not the FI for a prediction model. However,
BP-FI can still provide insights for any specific model. By replacing the
target variable with the predicted outcomes of the model, we can apply
BP-FI to this new dataset, which gives insight into which features are useful
in the prediction model. Additionally, one can compare these FI results
with the original FI (before replacing the target variable with the predicted
outcomes) to see in what way the model changed the FI.

Additional properties In this research, we have proven properties of BP-
FI. However, an in-depth study could lead to finding more useful properties.
This holds both for BP-FI as well as the dependency function it is based

242

Chapter 7. 7.6. Summary

on. Applying isomorphisms e.g., does not change the dependency function.
Therefore, the BP-FI is also stable under isomorphisms. Understanding what
properties BP-FI has is a double-edged sword. Finding useful properties
shows the power of BP-FI and finding undesirable behavior could lead to a
future improvement.

Additional datasets Ground truths are often unknown for FI. In this
research, we have given two kinds of datasets where the desirable outcomes
are natural. It would however, be useful to create a larger collection of
datasets both for global and local FI with an exact ground truth. We
recognize that this could be a tall order, but we believe that it is essential
to further improve FI methods.

Human labeling In some articles [110, 144], humans are used to evaluate
explanations. An intriguing question to investigate is if humans are good
at predicting FI. The BP-FI can be used as baseline to validate the values
that are given by the participants. Are humans able to identify the correct
order of FI? Even more difficult, can they predict close to the actual FI
values?

7.6 Summary

We started by introducing a novel FI method named Berkelmans-Pries FI
(BP-FI), which combines Shapley values and the Berkelmans-Pries depen-
dency function [13]. In Section 7.3, we proved many useful properties of
BP-FI. We discussed which FI methods already exist and introduced datasets
to evaluate if these methods adhere to the same properties. In Section 7.4.3,
we explain how the properties are tested. The results show that BP-FI is able
to pass many more tests than any other FI method from a large collection of
FI methods (468), which is a significant step forwards. Most methods have
not previously been tested to give exact results due to missing ground truths.
In this research, we provide several specific datasets, where the desired FI
can be derived. From the tests, it follows that previous methods are not able
to accurately predict the desired FI values. In Section 7.5, we extensively
discussed the shortcomings of this chapter, and the challenges for further
research. There are many challenging research opportunities that should be
explored to further improve interpretability and explainability of datasets
and machine learning models.

243

7777777777

7777777777

Appendix (Chapter 7)

7.A Datasets

In this appendix, we discuss how the datasets are generated that are used
in the experiments. We use fixed draw instead of uniformly random to draw
each dataset exactly according to its distribution. This is done to remove
stochasticity from the dataset in order to get precise and interpretable results.
An example of the difference between fixed draw and uniformly random can
be seen in Table 7.4.2. The datasets consist of 1,000 samples, except for
Datasets 6 and 7 which contains 2,000 samples to ensure null-independence.
The datasets are designed to be computationally inexpensive, whilst still
being able to test many properties (see Section 7.4.3). Below, we outline the
formulas that are used to generate the datasets and give the corresponding
FI values of our novel method BP-FI.

Dataset 1: Binary system
Feature variable(s): Xi ∼ U ({0, 1}) i.i.d. for i ∈ {1, 2, 3}
Target variable: Y :=

∑3
i=1 2

i−1 ·Xi.
Order: (X1, X2, X3).
BP-FI: (0.333, 0.333, 0.333).

Dataset 2: Binary system with clone
Feature variable(s): Xi ∼ U ({0, 1}) i.i.d. for i ∈ {1, 2, 3} and
Xclone

1 := X1.
Target variable: Y :=

∑3
i=1 2

i−1 ·Xi.
Order: (Xclone

1 , X1, X2, X3).
BP-FI: (0.202, 0.202, 0.298, 0.298).

245

7777777777

Chapter 7. 7.A. Datasets

Dataset 3: Binary system with clone and one fully informa-
tive variable
Feature variable(s): Xi ∼ U ({0, 1}) i.i.d. for i ∈ {1, 2, 3} and
Xclone

1 := X1 and X full
4 := Y 2.

Target variable: Y :=
∑3

i=1 2
i−1 ·Xi.

Order: (Xclone
1 , X1, X2, X3, X

full
4).

BP-FI: (0.148, 0.148, 0.183, 0.183, 0.338).

Dataset 4: Binary system with clone and two fully informa-
tive variables
Feature variable(s): Xi ∼ U ({0, 1}) i.i.d. for i ∈ {1, 2, 3} and
Xclone

1 := X1 and X full
4 := Y 2, X full

5 := Y 3.
Target variable: Y :=

∑3
i=1 2

i−1 ·Xi.
Order: (Xclone

1 , X1, X2, X3, X
full
4 , X full

5).
BP-FI: (0.117, 0.117, 0.136, 0.136, 0.248, 0.248).

Dataset 5: Binary system with clone and two fully informa-
tive variables different order
Feature variable(s): Xi ∼ U ({0, 1}) i.i.d. for i ∈ {1, 2, 3} and
Xclone

1 := X1 and X full
4 := Y 2, X full

5 := Y 3.
Target variable: Y :=

∑3
i=1 2

i−1 ·Xi.
Order: (X3, X

full
4 , X full

5 , Xclone
1 , X1, X2).

BP-FI: (0.136, 0.248, 0.248, 0.117, 0.117, 0.136).

Dataset 6: Null-independent system
Feature variable(s): Xnull-indep.

i ∼ U ({0, 1}) i.i.d. for i ∈ {1, 2, 3}.
Target variable: Y ∼ U ({0, 1}).
Order: (Xnull-indep.

1 , Xnull-indep.
2 , Xnull-indep.

3).
BP-FI: (0.000, 0.000, 0.000).

Dataset 7: Null-independent system with constant variable
Feature variable(s): Xnull-indep.

i ∼ U ({0, 1}) i.i.d. for i ∈ {1, 2, 3} and
Xconst, null-indep.

4 := 1.
Target variable: Y ∼ U ({0, 1}).
Order: (Xnull-indep.

1 , Xnull-indep.
2 , Xnull-indep.

3 , Xconst, null-indep.
4).

BP-FI: (0.000, 0.000, 0.000, 0.000).

246

7777777777

Chapter 7. 7.A. Datasets

Dataset 8: Uniform system increasing bins
Feature variable(s): Let Li := {0, 1/(i − 1), . . . , 1} be an equally
spaced set. Define:

Xbins=10
1 := argmax

x1∈L10

{Y ≥ x1},

Xbins=50
2 := argmax

x2∈L50

{Y ≥ x2},

Xbins=1,000, full
3 := argmax

x3∈L1,000

{Y ≥ x3}.

Target variable: Y ∼ U (L1,000).
Order: (Xbins=10

1 , Xbins=50
2 , Xbins=1,000, full

3).
BP-FI: (0.297, 0.342, 0.361).

Dataset 9: Uniform system increasing bins more variables
Feature variable(s): Let Li := {0, 1/(i − 1), . . . , 1} be an equally
spaced set. Define:

Xbins=10
1 := argmax

x1∈L10

{Y ≥ x1},

Xbins=20
2 := argmax

x2∈L20

{Y ≥ x2},

Xbins=50
3 := argmax

x3∈L50

{Y ≥ x3},

Xbins=100
4 := argmax

x4∈L100

{Y ≥ x4},

Xbins=1,000, full
5 := argmax

x5∈L1,000

{Y ≥ x5}.

Target variable: Y ∼ U (L1,000).
Order: (Xbins=10

1 , Xbins=20
2 , Xbins=50

3 , Xbins=100
4 , Xbins=1,000, full

5).
BP-FI: (0.179, 0.193, 0.204, 0.208, 0.216).

247

7777777777

Chapter 7. 7.A. Datasets

Dataset 10: Uniform system increasing bins with clone dif-
ferent order
Feature variable(s): Let Li := {0, 1/(i − 1), . . . , 1} be an equally
spaced set. Define:

Xbins=10
1 := argmax

x1∈L10

{Y ≥ x1},

Xbins=50
2 := argmax

x2∈L50

{Y ≥ x2},

Xbins=1,000, full
3 := argmax

x3∈L1,000

{Y ≥ x3},

Xclone, full
3 := Xbins=1,000, full

3 .

Target variable: Y ∼ U (L1,000).
Order: (Xbins=1,000, full

3 , Xbins=50
2 , Xbins=10

1 , Xclone, full
3).

BP-FI: (0.262, 0.253, 0.223, 0.262).

Dataset 11: Dependent system: 1x fully informative variable
Feature variable(s): X full

1 , Xnull-indep.
2 , Xnull-indep.

3 ∼ U ({1, 2}).
Target variable: Y := X full

1 .
Order: (X full

1 , Xnull-indep.
2 , Xnull-indep.

3).
BP-FI: (1.000, 0.000, 0.000).

Dataset 12: Dependent system: 2x fully informative variable
Feature variable(s): X full

1 , Xnull-indep.
3 ∼ U ({1, 2}) and X full

2 := Y 2.
Target variable: Y := X full

1 .
Order: (X full

1 , X full
2 , Xnull-indep.

3).
BP-FI: (0.500, 0.500, 0.000).

Dataset 13: Dependent system: 3x fully informative variable
Feature variable(s): X full

1 ∼ U ({1, 2}) and X full
2 := Y 2, X full

3 := Y 3.
Target variable: Y := X full

1 .
Order: (X full

1 , X full
2 , X full

3).
BP-FI: (0.333, 0.333, 0.333).

Dataset 14: XOR dataset
Feature variable(s): X1, X2 ∼ U ({1, 2}).
Target variable: Y := X1 · (1−X2) +X2 · (1−X1).
Order: (X1, X2).
BP-FI: (0.500, 0.500).

248

7777777777

Chapter 7. 7.B. Tests

Dataset 15: XOR dataset one variable
Feature variable(s): Xnull-indep.

1 ∼ U ({1, 2}).
Target variable: Y := Xnull-indep.

1 · (1 − X2) + X2 · (1 − Xnull-indep.
1)

with X2 ∼ U ({1, 2}).
Order: (Xnull-indep.

1).
BP-FI: (0.000).

Dataset 16: XOR dataset with clone
Feature variable(s): X1, X2 ∼ U ({1, 2}) and Xclone

1 := X1.
Target variable: Y := X1 · (1−X2) +X2 · (1−X1).
Order: (Xclone

1 , X1, X2).
BP-FI: (0.167, 0.167, 0.667).

Dataset 17: XOR dataset with null independent
Feature variable(s): X1, X2 ∼ U ({1, 2}) and Xnull-indep.

3 ∼ U ({0, 3}).
Target variable: Y := X1 · (1−X2) +X2 · (1−X1).
Order: (X1, X2, X

null-indep.
3).

BP-FI: (0.500, 0.500, 0.000).

Dataset 18-28: Probability datasets
Feature variable(s): Xi = Zi+S with Zi ∼ U ({0, 2}) i.i.d. for i = 1, 2
and P(S = 1) = p, P(S = 2) = 1− p.
Target variable: Y = ⌊XS/2⌋.
Order: (X1, X2).
BP-FI: (p, 1− p).

7.B Tests

This appendix gives an overview of the tests that are used for each FI
method to evaluate if they adhere to the properties given in Section 7.3.
Most tests are straightforward, but additional explanations are given in
Section 7.4.3.

Test 1: Efficiency sum BP-FI
Evaluates: Property 1.
Explanation: We evaluate if the sum of all FI is equal to the sum of
the Berkelmans-Pries dependency function of Y on all features. When
an FI value of NaN or infinite is assigned, the sum is automatically
not equal to the sum for BP-FI.

249

7777777777

Chapter 7. 7.B. Tests

Test 2: Efficiency stable
Evaluates: Corollary 1.1.
Explanation: Whenever a variable is added to a dataset, we examine
if the sum of all FI changes. If a variable does not give any additional
information compared to the other variables, the sum of all FI should
stay the same.

Test 3: Symmetry
Evaluates: Property 2.
Explanation: In some datasets, there are symmetrical variables (see
Property 2). We determine for all symmetrical variables if they receive
identical FI.

Test 4: Range (lower)
Evaluates: Property 3.
Explanation: We examine for all FI outcomes if they are greater or
equal to zero.

Test 5: Range (upper)
Evaluates: Property 3.
Explanation: We examine for all FI outcomes if they are smaller or
equal to one.

Test 6: Bounds BP-FI (lower)
Evaluates: Property 4.
Explanation: We evaluate if the bounds given in Property 4 also hold
for other FI methods. Every FI(X) with X ∈ Ωfeat can be lower
bounded for BP-FI by Dep(Y |X)

Nvars
≤ FI(X).

Test 7: Bounds BP-FI (upper)
Evaluates: Property 4.
Explanation: We evaluate if the bounds given in Property 4 also hold
for other FI methods. Every FI(X) with X ∈ Ωfeat can be upper
bounded for BP-FI by X ≤ Dep (Y |Ωfeat) .

Test 8: Null-independent implies zero FI
Evaluates: Property 5.
Explanation: In some datasets, there are null-independent variables.
In these cases, we investigate if they also receive zero FI.

Test 9: Zero FI implies null-independent
Evaluates: Property 5.
Explanation: When a variable gets zero FI, it should hold that such
a feature is null-independent.

250

7777777777

Chapter 7. 7.B. Tests

Test 10: One fully informative, two null-independent
Evaluates: Property 6.
Explanation: feature importance: appendix: datasets) consists of a
fully dependent target variable Y := X full

1 and two null-independent
variables Xnull-indep.

2 , Xnull-indep.
3 . We test if FI(X full

1) = 1 and
FI(Xnull-indep.

2) = FI(Xnull-indep.
3) = 0.

Test 11: Fully informative variable in argmax FI
Evaluates: Property 8.
Explanation: Whenever a fully informative feature exists in a dataset,
there should not be a feature that attains a higher FI.

Test 12: Limiting the outcome space
Evaluates: Property 9.
Explanation: To evaluate if applying a measurable function f to
a RV X could increase the FI, we examine the datasets where the
same RV is binned using different bins. The binning can be viewed
as applying a function f . Whenever less bins are used, the FI should
not increase.

Test 13: Adding features can increase FI
Evaluates: Property 11.
Explanation: Whenever a feature is added to a dataset, we examine
if this ever increases the FI of an original variable. If the FI never
increases, we consider this a fail.

Test 14: Adding features can decrease FI
Evaluates: Property 12.
Explanation: Whenever a feature is added to a dataset, we examine
if this ever decreases the FI of an original variable. If the FI never
decreases, we consider this a fail.

Test 15: Cloning does not increase FI
Evaluates: Property 13.
Explanation: We evaluate if adding a clone to a dataset increase the
FI of the original variable.

Test 16: Order does not change FI
Evaluates: Property 14.
Explanation: We check if the order of the variables changes the
assigned FI.

251

7777777777

Chapter 7. 7.B. Tests

Test 17: Outcome XOR
Evaluates: Property 15.
Explanation: This test evaluates the specific outcome of two datasets.
For Dataset 14 the desired outcome is (1/2, 1/2) and (1/2, 1/2, 0) for
Dataset 17. An FI method fails this test when one of the FI values
falls outside the ϵ-bound of the desired outcome.
Test 18: Outcome probability datasets
Evaluates: Property 16.
Explanation: This test evaluates the specific outcomes of all probabil-
ity datasets (Datasets 18 to 28). The desired outcome for probability
p is (p, 1− p). An FI method fails this test when one of the FI values
falls outside the ϵ-bound of the desired outcome.

252

B

Bibliography

[1] R. de A. Araújo, A. L. Oliveira, and S. Meira. “A morphological
neural network for binary classification problems”. In: Engineering
Applications of Artificial Intelligence 65 (Oct. 2017), pages 12–28.
doi: https://doi.org/10.1016/j.engappai.2017.07.014.

[2] K. Aas, M. Jullum, and A. Løland. “Explaining individual predic-
tions when features are dependent: More accurate approximations to
Shapley values”. In: Artificial Intelligence 298 (2021), page 103502.
issn: 0004-3702. doi: https://doi.org/10.1016/j.artint.2021.
103502. url: https://www.sciencedirect.com/science/article/
pii/S0004370221000539.

[3] N. Abe and M. Kudo. “Entropy criterion for classifier-independent
feature selection”. In: Knowledge-Based Intelligent Information and
Engineering Systems. Edited by R. Khosla, R. J. Howlett, and L. C.
Jain. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pages 689–
695. isbn: 978-3-540-31997-9.

[4] R. Agarwal, P. Sacre, and S. V. Sarma. Mutual dependence: A novel
method for computing dependencies between random variables. 2015.
arXiv: 1506.00673.

[5] C. Aggarwal, X. Kong, Q. Gu, J. Han, and P. Yu. “Active learning: A
survey”. English (US). In: Data Classification. Edited by C. Aggarwal.
Publisher Copyright: © 2015 by Taylor & Francis Group, LLC.

253

https://doi.org/https://doi.org/10.1016/j.engappai.2017.07.014
https://doi.org/https://doi.org/10.1016/j.artint.2021.103502
https://doi.org/https://doi.org/10.1016/j.artint.2021.103502
https://www.sciencedirect.com/science/article/pii/S0004370221000539
https://www.sciencedirect.com/science/article/pii/S0004370221000539
https://arxiv.org/abs/1506.00673

B

Bibliography

CRC Press, Jan. 2014, pages 571–605. isbn: 9781466586741. doi:
10.1201/b17320.

[6] A. Altmann, L. Toloşi, O. Sander, and T. Lengauer. “Permutation
importance: A corrected feature importance measure”. In: Bioinfor-
matics 26.10 (Apr. 2010), pages 1340–1347. issn: 1367-4803. doi:
10.1093/bioinformatics/btq134. eprint: https://academic.oup.com/
bioinformatics/article- pdf/26/10/1340/16892402/btq134.pdf.
url: https://doi.org/10.1093/bioinformatics/btq134.

[7] B. Amos, B. Ludwiczuk, and M. Satyanarayanan. OpenFace: A
general-purpose face recognition library with mobile applications. Tech-
nical report. CMU-CS-16-118, CMU School of Computer Science,
2016.

[8] F. Aragón-Royón, A. Jiménez-Vílchez, A. Arauzo-Azofra, and J. M.
Benítez. FSinR: An exhaustive package for feature selection. 2020.
doi: 10.48550/ARXIV.2002.10330. url: https://arxiv.org/abs/
2002.10330.

[9] S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang. “Generalization
and equilibrium in generative adversarial nets (GANs)”. In: CoRR
abs/1703.00573 (2017). arXiv: 1703.00573. url: http://arxiv.org/
abs/1703.00573.

[10] M. Artin. Algebra. 2nd. Pearson Education, 2011.
[11] J. Balayla. “Prevalence threshold (ϕe) and the geometry of screening

curves”. In: PLoS ONE 15.10 (Oct. 2020). Edited by A. D. Hutson,
e0240215. doi: https://doi.org/10.1371/journal.pone.0240215.

[12] G. Berkelmans. “Turing and Van Gogh walk into a bar”. PhD thesis.
Vrije Universiteit, 2023.

[13] G. Berkelmans, S. Bhulai, R. van der mei, and J. Pries. “The
Berkelmans-Pries dependency function: A generic measure of depen-
dence between random variables”. In: Journal of Applied Probability
(2023), pages 1–21. doi: 10.1017/jpr.2022.118.

[14] E. van de Bijl, J. Klein, J. Pries, S. Bhulai, M. Hoogendoorn, and
R. van der Mei. The Dutch Draw: Constructing a universal baseline
for binary prediction models. 2022. doi: 10.48550/ARXIV.2203.13084.
url: https://arxiv.org/abs/2203.13084.

[15] E. van de Bijl, J. Klein, J. Pries, R. van der Mei, and S. Bhu-
lai. “Detecting novel application layer cybervariants using super-
vised learning”. In: International Journal On Advances in Security
15.3 & 4 (2022), pages 75 –85. issn: 1942-2636. url: http://www.
iariajournals.org/security/.

254

https://doi.org/10.1201/b17320
https://doi.org/10.1093/bioinformatics/btq134
https://academic.oup.com/bioinformatics/article-pdf/26/10/1340/16892402/btq134.pdf
https://academic.oup.com/bioinformatics/article-pdf/26/10/1340/16892402/btq134.pdf
https://doi.org/10.1093/bioinformatics/btq134
https://doi.org/10.48550/ARXIV.2002.10330
https://arxiv.org/abs/2002.10330
https://arxiv.org/abs/2002.10330
https://arxiv.org/abs/1703.00573
http://arxiv.org/abs/1703.00573
http://arxiv.org/abs/1703.00573
https://doi.org/https://doi.org/10.1371/journal.pone.0240215
https://doi.org/10.1017/jpr.2022.118
https://doi.org/10.48550/ARXIV.2203.13084
https://arxiv.org/abs/2203.13084
http://www.iariajournals.org/security/
http://www.iariajournals.org/security/

B

Bibliography

[16] A. del Bimbo, R. Cucchiara, S. Sclaroff, G. M. Farinella, T. Mei, M.
Bertini, H. J. Escalante, and R. Vezzani, editors. Pattern Recognition.
ICPR International Workshops and Challenges. Springer International
Publishing, 2021. doi: 10.1007/978-3-030-68787-8. url: https:
//doi.org/10.1007%2F978-3-030-68787-8.

[17] J.-C. de Borda. “Mémoire sur les élections au scrutin”. In: Histoire
de l’Académie Royale des Sciences (1781).

[18] A. Borji. Pros and cons of GAN evaluation measures. 2018. doi: 10.
48550/ARXIV.1802.03446. url: https://arxiv.org/abs/1802.03446.

[19] A. Borji. Pros and cons of GAN evaluation measures: New develop-
ments. 2021. doi: 10.48550/ARXIV.2103.09396. url: https://arxiv.
org/abs/2103.09396.

[20] R. C. Bradley. “Basic properties of strong mixing conditions. A survey
and some open questions”. In: Probability Surveys 2.none (2005),
pages 107 –144. doi: 10.1214/154957805100000104. url: https://
doi.org/10.1214/154957805100000104.

[21] G. Bradski. “The OpenCV library”. In: Dr. Dobb’s Journal of Software
Tools (2000).

[22] M. D. Breitenstein, D. Kuettel, T. Weise, L. van Gool, and H. Pfis-
ter. “Real-time face pose estimation from single range images”. In:
IEEE Conference on Computer Vision and Pattern Recognition. 2008,
pages 1–8.

[23] A. Brock, J. Donahue, and K. Simonyan. Large scale GAN training
for high fidelity natural image synthesis. 2018. arXiv: 1809.11096.

[24] C. Buckley, M. O’Reilly, D. Whelan, A. V. Farrell, L. Clark, V.
Longo, M. Gilchrist, and B. Caulfield. “Binary classification of running
fatigue using a single inertial measurement unit”. In: 2017 IEEE
14th International Conference on Wearable and Implantable Body
Sensor Networks (BSN). 2017, pages 197–201. doi: 10.1109/BSN.
2017.7936040.

[25] J. Buolamwini and T. Gebru. “Gender shades: Intersectional accuracy
disparities in commercial gender classification”. In: Proceedings of the
1st Conference on Fairness, Accountability and Transparency. Edited
by S. A. Friedler and C. Wilson. Volume 81. Proceedings of Machine
Learning Research. New York, NY, USA: PMLR, Feb. 2018, pages 77–
91. url: http://proceedings.mlr.press/v81/buolamwini18a.html.

[26] M. W. Callaghan and F. Müller-Hansen. “Statistical stopping crite-
ria for automated screening in systematic reviews”. In: Systematic
Reviews 9.1 (Nov. 2020), page 273. issn: 2046-4053. doi: 10.1186/

255

https://doi.org/10.1007/978-3-030-68787-8
https://doi.org/10.1007%2F978-3-030-68787-8
https://doi.org/10.1007%2F978-3-030-68787-8
https://doi.org/10.48550/ARXIV.1802.03446
https://doi.org/10.48550/ARXIV.1802.03446
https://arxiv.org/abs/1802.03446
https://doi.org/10.48550/ARXIV.2103.09396
https://arxiv.org/abs/2103.09396
https://arxiv.org/abs/2103.09396
https://doi.org/10.1214/154957805100000104
https://doi.org/10.1214/154957805100000104
https://doi.org/10.1214/154957805100000104
https://arxiv.org/abs/1809.11096
https://doi.org/10.1109/BSN.2017.7936040
https://doi.org/10.1109/BSN.2017.7936040
http://proceedings.mlr.press/v81/buolamwini18a.html
https://doi.org/10.1186/s13643-020-01521-4
https://doi.org/10.1186/s13643-020-01521-4
https://doi.org/10.1186/s13643-020-01521-4

B

Bibliography

s13643-020-01521-4. url: https://doi.org/10.1186/s13643-020-
01521-4.

[27] R. J. G. B. Campello, D. Moulavi, A. Zimek, and J. Sander. “Hi-
erarchical density estimates for data clustering, visualization, and
outlier detection”. In: ACM Transactions on Knowledge Discovery
from Data 10.1 (July 2015). issn: 1556-4681. doi: 10.1145/2733381.
url: https://doi.org/10.1145/2733381.

[28] G. Canbek, S. Sagiroglu, T. T. Temizel, and N. Baykal. “Binary clas-
sification performance measures/metrics: A comprehensive visualized
roadmap to gain new insights”. In: 2017 International Conference on
Computer Science and Engineering (UBMK). IEEE, Oct. 2017. doi:
https://doi.org/10.1109/ubmk.2017.8093539.

[29] L. Capitani, L. Bagnato, and A. Punzo. “Testing serial independence
via density-based measures of divergence”. In: Methodology And Com-
puting In Applied Probability 16 (Aug. 2014), pages 627–641. doi:
10.1007/s11009-013-9320-4.

[30] M. Carletti, C. Masiero, A. Beghi, and G. A. Susto. “Explainable
machine learning in industry 4.0: Evaluating feature importance in
anomaly detection to enable root cause analysis”. In: 2019 IEEE
International Conference on Systems, Man and Cybernetics (SMC).
2019, pages 21–26. doi: 10.1109/SMC.2019.8913901.

[31] M. Carletti, M. Terzi, and G. A. Susto. Interpretable anomaly de-
tection with DIFFI: Depth-based isolation forest feature importance.
2020. doi: 10.48550/ARXIV.2007.11117. url: https://arxiv.org/
abs/2007.11117.

[32] G. Casalicchio, C. Molnar, and B. Bischl. “Visualizing the feature
importance for black box models”. In: Machine Learning and Knowl-
edge Discovery in Databases. Edited by M. Berlingerio, F. Bonchi,
T. Gärtner, N. Hurley, and G. Ifrim. Cham: Springer International
Publishing, 2019, pages 655–670. isbn: 978-3-030-10925-7.

[33] J. Castro, D. Gómez, and J. Tejada. “Polynomial calculation of
the Shapley value based on sampling”. In: Computers & Operations
Research 36.5 (2009). Selected papers presented at the Tenth Interna-
tional Symposium on Locational Decisions (ISOLDE X), pages 1726–
1730. issn: 0305-0548. doi: https://doi.org/10.1016/j.cor.2008.
04.004. url: https://www.sciencedirect.com/science/article/
pii/S0305054808000804.

[34] A.-L. Cauchy. “Mémoire sur le nombre des valeurs qu’une fonction
peut acquérir lorsqu’on y permute de toutes les maniéres possibles

256

https://doi.org/10.1186/s13643-020-01521-4
https://doi.org/10.1186/s13643-020-01521-4
https://doi.org/10.1186/s13643-020-01521-4
https://doi.org/10.1186/s13643-020-01521-4
https://doi.org/10.1186/s13643-020-01521-4
https://doi.org/10.1186/s13643-020-01521-4
https://doi.org/10.1186/s13643-020-01521-4
https://doi.org/10.1186/s13643-020-01521-4
https://doi.org/10.1186/s13643-020-01521-4
https://doi.org/10.1186/s13643-020-01521-4
https://doi.org/10.1145/2733381
https://doi.org/10.1145/2733381
https://doi.org/https://doi.org/10.1109/ubmk.2017.8093539
https://doi.org/10.1007/s11009-013-9320-4
https://doi.org/10.1109/SMC.2019.8913901
https://doi.org/10.48550/ARXIV.2007.11117
https://arxiv.org/abs/2007.11117
https://arxiv.org/abs/2007.11117
https://doi.org/https://doi.org/10.1016/j.cor.2008.04.004
https://doi.org/https://doi.org/10.1016/j.cor.2008.04.004
https://www.sciencedirect.com/science/article/pii/S0305054808000804
https://www.sciencedirect.com/science/article/pii/S0305054808000804

B

Bibliography

les quantités qu’elle Renferme”. In: Journal de l’École polytechnique
(1815).

[35] E. Celik. vita: Variable importance testing approaches. R package
version 1.0.0. 2015. url: https://CRAN.R-project.org/package=vita.

[36] H. Chang and D.-Y. Yeung. “Robust path-based spectral clustering”.
In: Pattern Recognition 41.1 (2008), pages 191–203. issn: 0031-
3203. doi: https : / / doi . org / 10 . 1016 / j . patcog . 2007 . 04 . 010.
url: https : / / www . sciencedirect . com / science / article / pii /
S0031320307002038.

[37] O. Chapelle, B. Schlkopf, and A. Zien. “Semi-supervised learning”.
In: IEEE Transactions on Neural Networks 20 (2006).

[38] T. Chen and C. Guestrin. “XGBoost: A scalable tree boosting system”.
In: Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. KDD ’16. San Francisco,
California, USA: ACM, 2016, pages 785–794. isbn: 978-1-4503-4232-2.
doi: 10.1145/2939672.2939785. url: http://doi.acm.org/10.1145/
2939672.2939785.

[39] N. Chinchor. “MUC-4 evaluation metrics”. In: Proceedings of the 4th
Conference on Message Understanding. MUC4 ’92. McLean, Virginia:
Association for Computational Linguistics, 1992, pages 22–29. isbn:
1558602739. doi: https://doi.org/10.3115/1072064.1072067.

[40] R. Couronné, P. Probst, and A.-L. Boulesteix. “Random forest versus
logistic regression: A large-scale benchmark experiment”. In: BMC
Bioinformatics 19.1 (July 2018). doi: https://doi.org/10.1186/
s12859-018-2264-5.

[41] I. Covert, S. M. Lundberg, and S.-I. Lee. “Understanding global fea-
ture contributions with additive importance measures”. In: Advances
in Neural Information Processing Systems. Edited by H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin. Volume 33. Curran
Associates, Inc., 2020, pages 17212–17223. url: https://proceedings.
neurips.cc/paper/2020/file/c7bf0b7c1a86d5eb3be2c722cf2cf746-
Paper.pdf.

[42] G. Dasarathy, R. Nowak, and X. Zhu. “S2: An efficient graph based
active learning algorithm with application to nonparametric classifi-
cation”. In: Proceedings of The 28th Conference on Learning Theory.
Edited by P. Grünwald, E. Hazan, and S. Kale. Volume 40. Pro-
ceedings of Machine Learning Research. Paris, France: PMLR, July
2015, pages 503–522. url: https://proceedings.mlr.press/v40/
Dasarathy15.html.

257

https://CRAN.R-project.org/package=vita
https://doi.org/https://doi.org/10.1016/j.patcog.2007.04.010
https://www.sciencedirect.com/science/article/pii/S0031320307002038
https://www.sciencedirect.com/science/article/pii/S0031320307002038
https://doi.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
https://doi.org/https://doi.org/10.3115/1072064.1072067
https://doi.org/https://doi.org/10.1186/s12859-018-2264-5
https://doi.org/https://doi.org/10.1186/s12859-018-2264-5
https://proceedings.neurips.cc/paper/2020/file/c7bf0b7c1a86d5eb3be2c722cf2cf746-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c7bf0b7c1a86d5eb3be2c722cf2cf746-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c7bf0b7c1a86d5eb3be2c722cf2cf746-Paper.pdf
https://proceedings.mlr.press/v40/Dasarathy15.html
https://proceedings.mlr.press/v40/Dasarathy15.html

B

Bibliography

[43] A. Datta, S. Sen, and Y. Zick. “Algorithmic transparency via Quan-
titative Input Influence: Theory and experiments with learning sys-
tems”. In: 2016 IEEE Symposium on Security and Privacy (SP). 2016,
pages 598–617. doi: 10.1109/SP.2016.42.

[44] K. Dhamdhere, A. Agarwal, and M. Sundararajan. “The Shapley
Taylor interaction index”. In: Proceedings of the 37th International
Conference on Machine Learning. ICML’20. JMLR.org, 2020.

[45] J. M. Díaz Barros, B. Mirbach, F. Garcia, K. Varanasi, and D.
Stricker. “Real-time head pose estimation by tracking and detection
of keypoints and facial landmarks”. In: Computer Vision, Imaging and
Computer Graphics Theory and Applications. Edited by D. Bechmann,
M. Chessa, A. P. Cláudio, F. Imai, A. Kerren, P. Richard, A. Telea,
and A. Tremeau. Cham: Springer International Publishing, 2019,
pages 326–349. isbn: 978-3-030-26756-8.

[46] J. D. Dixon and B. Mortimer. Permutation Groups. Volume 163.
Springer Science & Business Media, 1996. doi: https://doi.org/10.
1007/978-1-4612-0731-3.

[47] S. Ebert, M. Fritz, and B. Schiele. “Active metric learning for object
recognition”. In: Pattern Recognition. Edited by A. Pinz, T. Pock, H.
Bischof, and F. Leberl. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pages 327–336. isbn: 978-3-642-32717-9.

[48] P. Embrechts, A. J. McNeil, and D. Straumann. “Correlation and de-
pendence in risk management: Properties and pitfalls”. In: Risk Man-
agement: Value at Risk and Beyond. Cambridge: Cambridge Univer-
sity Press, 2002, pages 176–223. doi: 10.1017/CBO9780511615337.008.

[49] B. Eriksson, G. Dasarathy, A. Singh, and R. Nowak. “Active clus-
tering: Robust and efficient hierarchical clustering using adaptively
selected similarities”. In: Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics. Edited by G.
Gordon, D. Dunson, and M. Dudík. Volume 15. Proceedings of Ma-
chine Learning Research. Fort Lauderdale, FL, USA: PMLR, Apr.
2011, pages 260–268. url: https://proceedings.mlr.press/v15/
eriksson11a.html.

[50] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. “A density-based
algorithm for discovering clusters in large spatial databases with
noise”. In: AAAI Press, 1996, pages 226–231.

[51] E. B. Fowlkes and C. L. Mallows. “A method for comparing two
hierarchical clusterings”. In: Journal of the American Statistical As-
sociation 78.383 (Sept. 1983), pages 553–569. doi: https://doi.org/
10.1080/01621459.1983.10478008.

258

https://doi.org/10.1109/SP.2016.42
https://doi.org/https://doi.org/10.1007/978-1-4612-0731-3
https://doi.org/https://doi.org/10.1007/978-1-4612-0731-3
https://doi.org/10.1017/CBO9780511615337.008
https://proceedings.mlr.press/v15/eriksson11a.html
https://proceedings.mlr.press/v15/eriksson11a.html
https://doi.org/https://doi.org/10.1080/01621459.1983.10478008
https://doi.org/https://doi.org/10.1080/01621459.1983.10478008

B

Bibliography

[52] P. Fränti and O. Virmajoki. “Iterative shrinking method for clustering
problems”. In: Pattern Recognition 39.5 (2006), pages 761–765. doi:
10.1016/j.patcog.2005.09.012. url: http://dx.doi.org/10.1016/
j.patcog.2005.09.012.

[53] P. Fränti and S. Sieranoja. K-means properties on six clustering
benchmark datasets. 2018. url: http://cs.uef.fi/sipu/datasets/.

[54] C. Frye, C. Rowat, and I. Feige. “Asymmetric Shapley values: In-
corporating causal knowledge into model-agnostic explainability”. In:
Proceedings of the 34th International Conference on Neural Informa-
tion Processing Systems. NIPS’20. Vancouver, BC, Canada: Curran
Associates Inc., 2020. isbn: 9781713829546.

[55] D. V. Fryer, I. Strumke, and H. Nguyen. “Model independent feature
attributions: Shapley values that uncover non-linear dependencies”.
In: PeerJ Computer Science 7 (2021), e582.

[56] L. Fu and E. Medico. “FLAME, a novel fuzzy clustering method for
the analysis of DNA microarray data”. In: BMC Bioinformatics 8.1
(Jan. 2007), page 3. issn: 1471-2105. doi: 10.1186/1471-2105-8-3.
url: https://doi.org/10.1186/1471-2105-8-3.

[57] Y. Gal, R. Islam, and Z. Ghahramani. “Deep Bayesian active learning
with image data”. In: Proceedings of the 34th International Confer-
ence on Machine Learning. Edited by D. Precup and Y. W. Teh.
Volume 70. Proceedings of Machine Learning Research. PMLR, Aug.
2017, pages 1183–1192. url: https://proceedings.mlr.press/v70/
gal17a.html.

[58] H. Gebelein. “Das statistische problem der korrelation als variations-
und eigenwertproblem und sein zusammenhang mit der ausgleich-
srechnung”. In: ZAMM - Journal of Applied Mathematics and Me-
chanics / Zeitschrift für Angewandte Mathematik und Mechanik 21
(6 Jan. 1941), pages 364–379. issn: 1521-4001. doi: 10.1002/ZAMM.
19410210604. url: https://onlinelibrary.wiley.com/doi/abs/10.
1002/zamm.19410210604.

[59] A. Ghorbani, D. Berenbaum, M. Ivgi, Y. Dafna, and J. Y. Zou.
“Beyond importance scores: Interpreting tabular ml by visualizing
feature semantics”. In: Information 13.1 (2022). issn: 2078-2489.
doi: 10.3390/info13010015. url: https://www.mdpi.com/2078-
2489/13/1/15.

[60] O. Giles et al. Faking feature importance: A cautionary tale on the use
of differentially-private synthetic data. 2022. doi: 10.48550/ARXIV.
2203.01363. url: https://arxiv.org/abs/2203.01363.

259

https://doi.org/10.1016/j.patcog.2005.09.012
http://dx.doi.org/10.1016/j.patcog.2005.09.012
http://dx.doi.org/10.1016/j.patcog.2005.09.012
http://cs.uef.fi/sipu/datasets/
https://doi.org/10.1186/1471-2105-8-3
https://doi.org/10.1186/1471-2105-8-3
https://proceedings.mlr.press/v70/gal17a.html
https://proceedings.mlr.press/v70/gal17a.html
https://doi.org/10.1002/ZAMM.19410210604
https://doi.org/10.1002/ZAMM.19410210604
https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19410210604
https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19410210604
https://doi.org/10.3390/info13010015
https://www.mdpi.com/2078-2489/13/1/15
https://www.mdpi.com/2078-2489/13/1/15
https://doi.org/10.48550/ARXIV.2203.01363
https://doi.org/10.48550/ARXIV.2203.01363
https://arxiv.org/abs/2203.01363

B

Bibliography

[61] A. Gionis, H. Mannila, and P. Tsaparas. “Clustering aggregation”.
In: ACM Transactions on Knowledge Discovery from Data 1.1 (Mar.
2007), 4–es. issn: 1556-4681. doi: 10.1145/1217299.1217303. url:
https://doi.org/10.1145/1217299.1217303.

[62] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[63] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. “Generative adversarial nets”.
In: Advances in Neural Information Processing Systems 27. Edited
by Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger. Curran Associates, Inc., 2014, pages 2672–2680.
url: http://papers.nips.cc/paper/5423-generative-adversarial-
nets.pdf.

[64] A. Gramacki. Nonparametric Kernel Density Estimation and Its
Computational Aspects. 1st. New York: Springer Publishing Company,
Incorporated, 2017. isbn: 3319716875.

[65] M. Grandini, E. Bagli, and G. Visani. Metrics for multi-class classifi-
cation: An overview. 2020. arXiv: 2008.05756.

[66] C. W. Granger, E. Maasoumi, and J. Racine. “A dependence metric for
possibly nonlinear processes”. In: Journal of Time Series Analysis 25.5
(2004), pages 649–669. doi: https://doi.org/10.1111/j.1467-9892.
2004.01866.x. eprint: https://onlinelibrary.wiley.com/doi/pdf/
10.1111/j.1467-9892.2004.01866.x. url: https://onlinelibrary.
wiley.com/doi/abs/10.1111/j.1467-9892.2004.01866.x.

[67] B. M. Greenwell and B. C. Boehmke. “Variable importance plots—An
introduction to the vip package”. In: The R Journal 12.1 (2020),
pages 343–366. url: https://doi.org/10.32614/RJ-2020-013.

[68] A. Gretton, R. Herbrich, A. Smola, O. Bousquet, and B. Schölkopf.
“Kernel methods for measuring independence”. In: Journal of Machine
Learning Research 6.70 (2005), pages 2075–2129. url: http://jmlr.
org/papers/v6/gretton05a.html.

[69] E. Hellinger. “Neue begründung der theorie quadratischer formen
von unendlichvielen veränderlichen.” In: Journal für die reine und
angewandte Mathematik 1909.136 (1909), pages 210–271. doi: doi:
10.1515/crll.1909.136.210. url: https://doi.org/10.1515/crll.
1909.136.210.

[70] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, G. Klambauer,
and S. Hochreiter. “GANs trained by a two time-scale update rule
converge to a Nash equilibrium”. In: CoRR abs/1706.08500 (2017).
arXiv: 1706.08500. url: http://arxiv.org/abs/1706.08500.

260

https://doi.org/10.1145/1217299.1217303
https://doi.org/10.1145/1217299.1217303
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://arxiv.org/abs/2008.05756
https://doi.org/https://doi.org/10.1111/j.1467-9892.2004.01866.x
https://doi.org/https://doi.org/10.1111/j.1467-9892.2004.01866.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9892.2004.01866.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9892.2004.01866.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9892.2004.01866.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9892.2004.01866.x
https://doi.org/10.32614/RJ-2020-013
http://jmlr.org/papers/v6/gretton05a.html
http://jmlr.org/papers/v6/gretton05a.html
https://doi.org/doi:10.1515/crll.1909.136.210
https://doi.org/doi:10.1515/crll.1909.136.210
https://doi.org/10.1515/crll.1909.136.210
https://doi.org/10.1515/crll.1909.136.210
https://arxiv.org/abs/1706.08500
http://arxiv.org/abs/1706.08500

B

Bibliography

[71] S. Hooker, D. Erhan, P.-J. Kindermans, and B. Kim. “A benchmark for
interpretability methods in deep neural networks”. In: Proceedings of
the 33rd International Conference on Neural Information Processing
Systems. Red Hook, NY, USA: Curran Associates Inc., 2019.

[72] H. Hotelling. “Relations between two sets of variates”. In: Biometrika
28.3/4 (1936), pages 321–377. issn: 00063444. url: http://www.
jstor.org/stable/2333955 (visited on 06/02/2022).

[73] T. Hothorn and A. Zeileis. “partykit: A modular toolkit for recur-
sive partytioning in R”. In: Journal of Machine Learning Research
16 (2015), pages 3905–3909. url: https://jmlr.org/papers/v16/
hothorn15a.html.

[74] V. A. Huynh-Thu, Y. Saeys, L. Wehenkel, and P. Geurts. “Statistical
interpretation of machine learning-based feature importance scores
for biomarker discovery”. en. In: Bioinformatics 28.13 (Apr. 2012),
pages 1766–1774.

[75] E. Hüllermeier, J. Fürnkranz, W. Cheng, and K. Brinker. “Label rank-
ing by learning pairwise preferences”. In: Artificial Intelligence 172.16
(2008), pages 1897–1916. issn: 0004-3702. doi: https://doi.org/10.
1016/j.artint.2008.08.002. url: https://www.sciencedirect.com/
science/article/pii/S000437020800101X.

[76] H. Ishibashi and H. Hino. “Stopping criterion for active learning based
on deterministic generalization bounds”. In: Proceedings of the Twenty
Third International Conference on Artificial Intelligence and Statistics.
Edited by S. Chiappa and R. Calandra. Volume 108. Proceedings of
Machine Learning Research. PMLR, Aug. 2020, pages 386–397. url:
https://proceedings.mlr.press/v108/ishibashi20a.html.

[77] A. K. Jain and M. H. C. Law. “Data clustering: A user’s dilemma”.
In: Pattern Recognition and Machine Intelligence. Edited by S. K.
Pal, S. Bandyopadhyay, and S. Biswas. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pages 1–10. isbn: 978-3-540-32420-1.

[78] R. J. Janse, T. Hoekstra, K. J. Jager, C. Zoccali, G. Tripepi, F. W.
Dekker, and M. van Diepen. “Conducting correlation analysis: Impor-
tant limitations and pitfalls”. In: Clinical Kidney Journal 14.11 (May
2021), pages 2332–2337. issn: 2048-8505. doi: 10.1093/ckj/sfab085.
eprint: https://academic.oup.com/ckj/article-pdf/14/11/2332/
41100015/sfab085.pdf. url: https://doi.org/10.1093/ckj/sfab085.

[79] H. Joe. “Relative entropy measures of multivariate dependence”.
In: Journal of the American Statistical Association 84.405 (1989),
pages 157–164. issn: 01621459. url: http://www.jstor.org/stable/
2289859 (visited on 12/06/2022).

261

http://www.jstor.org/stable/2333955
http://www.jstor.org/stable/2333955
https://jmlr.org/papers/v16/hothorn15a.html
https://jmlr.org/papers/v16/hothorn15a.html
https://doi.org/https://doi.org/10.1016/j.artint.2008.08.002
https://doi.org/https://doi.org/10.1016/j.artint.2008.08.002
https://www.sciencedirect.com/science/article/pii/S000437020800101X
https://www.sciencedirect.com/science/article/pii/S000437020800101X
https://proceedings.mlr.press/v108/ishibashi20a.html
https://doi.org/10.1093/ckj/sfab085
https://academic.oup.com/ckj/article-pdf/14/11/2332/41100015/sfab085.pdf
https://academic.oup.com/ckj/article-pdf/14/11/2332/41100015/sfab085.pdf
https://doi.org/10.1093/ckj/sfab085
http://www.jstor.org/stable/2289859
http://www.jstor.org/stable/2289859

B

Bibliography

[80] P. V. Johnsen, I. Strümke, S. Riemer-Sørensen, A. T. DeWan, and
M. Langaas. Inferring feature importance with uncertainties in high-
dimensional data. 2021. doi: 10.48550/ARXIV.2109.00855. url:
https://arxiv.org/abs/2109.00855.

[81] T. Karras. Network architectures used in the StyleGAN paper. https:
//tinyurl.com/3a62xnaa. 2019.

[82] T. Karras, T. Aila, S. Laine, and J. Lehtinen. “Progressive growing
of gans for improved quality, stability, and variation”. In: CoRR
abs/1710.10196 (2017). arXiv: 1710.10196. url: http://arxiv.org/
abs/1710.10196.

[83] T. Karras, S. Laine, and T. Aila. “A style-based generator architecture
for generative adversarial networks”. In: CoRR abs/1812.04948 (2018).
arXiv: 1812.04948. url: http://arxiv.org/abs/1812.04948.

[84] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila.
“Analyzing and improving the image quality of StyleGAN”. In: CoRR
abs/1912.04958 (2019).

[85] S. Khodadadeh, S. Ghadar, S. Motiian, W.-A. Lin, L. Bölöni, and R.
Kalarot. “Latent to latent: A learned mapper for identity preserving
editing of multiple face attributes in StyleGAN-generated images”. In:
Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV). Jan. 2022, pages 3184–3192.

[86] S. Khodadadian, M. Nafea, A. Ghassami, and N. Kiyavash. Infor-
mation theoretic measures for fairness-aware feature selection. 2021.
doi: 10.48550/ARXIV.2106.00772. url: https://arxiv.org/abs/
2106.00772.

[87] G. Kimeldorf and A. R. Sampson. “Monotone dependence”. In: The
Annals of Statistics 6.4 (1978), pages 895–903. issn: 00905364. url:
http://www.jstor.org/stable/2958865.

[88] D. E. King. “Dlib-ml: A machine learning toolkit”. In: Journal of
Machine Learning Research 10 (2009), pages 1755–1758.

[89] K. Kira and L. A. Rendell. “A practical approach to feature selec-
tion”. In: Proceedings of the Ninth International Workshop on Machine
Learning. ML92. Aberdeen, Scotland, United Kingdom: Morgan Kauf-
mann Publishers Inc., 1992, pages 249–256.

[90] J. Klein, S. Bhulai, M. Hoogendoorn, and R. Van der Mei. “Plusmine:
Dynamic active learning with semi-supervised learning for automatic
classification”. In: 2021 IEEE/WIC/ACM International Conference
on Web Intelligence (2021).

[91] O. Koyejo, N. Natarajan, P. Ravikumar, and I. S. Dhillon. “Consistent
binary classification with generalized performance metrics”. In: Pro-

262

https://doi.org/10.48550/ARXIV.2109.00855
https://arxiv.org/abs/2109.00855
https://tinyurl.com/3a62xnaa
https://tinyurl.com/3a62xnaa
https://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1812.04948
https://doi.org/10.48550/ARXIV.2106.00772
https://arxiv.org/abs/2106.00772
https://arxiv.org/abs/2106.00772
http://www.jstor.org/stable/2958865

B

Bibliography

ceedings of the 27th International Conference on Neural Information
Processing Systems - Volume 2. NIPS’14. Montreal, Canada: MIT
Press, 2014, pages 2744–2752.

[92] A. Krizhevsky and G. Hinton. Learning multiple layers of features
from tiny images. Technical report 0. Toronto, Ontario: University of
Toronto, 2009.

[93] W. H. Kruskal. “Ordinal measures of association”. In: Journal of the
American Statistical Association 53.284 (1958), pages 814–861. issn:
01621459. url: http://www.jstor.org/stable/2281954 (visited on
11/01/2022).

[94] M. Kubat, R. C. Holte, and S. Matwin. “Machine learning for the
detection of oil spills in satellite radar images”. In: Machine Learning
30.2/3 (1998), pages 195–215. doi: https://doi.org/10.1023/a:
1007452223027.

[95] M. Kuhn. caret: Classification and regression training. R package
version 6.0-92. 2022. url: https://CRAN.R-project.org/package=
caret.

[96] K. Kumaran, D. Papageorgiou, Y. Chang, M. Li, and M. Takáč. Active
metric learning for supervised classification. 2018. arXiv: 1803.10647.

[97] M. B. Kursa and W. R. Rudnicki. “Feature selection with the Boruta
package”. In: Journal of Statistical Software 36 (11 Sept. 2010),
pages 1–13. issn: 1548-7660. doi: 10.18637/JSS.V036.I11. url:
https://www.jstatsoft.org/index.php/jss/article/view/v036i11.

[98] T. O. Kvålseth. “Note on Cohen’s kappa”. In: Psychological Reports
65.1 (Aug. 1989), pages 223–226. doi: https://doi.org/10.2466/
pr0.1989.65.1.223.

[99] M. Köstinger, M. Hirzer, P. Wohlhart, P. M. Roth, and H. Bischof.
“Large scale metric learning from equivalence constraints”. In: 2012
IEEE Conference on Computer Vision and Pattern Recognition. 2012,
pages 2288–2295. doi: 10.1109/CVPR.2012.6247939.

[100] H. O. Lancaster. “Correlation and complete dependence of random
variables”. In: The Annals of Mathematical Statistics 34.4 (1963),
pages 1315–1321. issn: 00034851. url: http://www.jstor.org/
stable/2238342.

[101] Y. LeCun, C. Cortes, and C. Burges. “MNIST handwritten digit
database”. In: ATT Labs [Online]. Available: http://yann.lecun.
com/exdb/mnist 2 (2010).

[102] B. van Leeuwen, A. Gansekoele, J. Pries, E. van de Bijl, and J.
Klein. “Explainable kinship: A broader view on the importance of
facial features in kinship recognition”. In: International Journal On

263

http://www.jstor.org/stable/2281954
https://doi.org/https://doi.org/10.1023/a:1007452223027
https://doi.org/https://doi.org/10.1023/a:1007452223027
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
https://arxiv.org/abs/1803.10647
https://doi.org/10.18637/JSS.V036.I11
https://www.jstatsoft.org/index.php/jss/article/view/v036i11
https://doi.org/https://doi.org/10.2466/pr0.1989.65.1.223
https://doi.org/https://doi.org/10.2466/pr0.1989.65.1.223
https://doi.org/10.1109/CVPR.2012.6247939
http://www.jstor.org/stable/2238342
http://www.jstor.org/stable/2238342
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist

B

Bibliography

Advances in Life Sciences 14.3 & 4 (2022), pages 89 –99. issn: 1942-
2660. url: http://www.iariajournals.org/life_sciences/.

[103] L. Li, Y. Yu, S. Bai, Y. Hou, and X. Chen. “An effective two-step
intrusion detection approach based on binary classification and k-NN”.
In: IEEE Access 6 (2018), pages 12060–12073. doi: 10.1109/ACCESS.
2017.2787719.

[104] X. Li, Y. Wang, S. Basu, K. Kumbier, and B. Yu. “A debiased MDI
feature importance measure for random forests”. In: Proceedings of
the 33rd International Conference on Neural Information Processing
Systems. Red Hook, NY, USA: Curran Associates Inc., 2019.

[105] S. Lipovetsky and M. Conklin. “Analysis of regression in game theory
approach”. In: Applied Stochastic Models in Business and Industry
17.4 (2001), pages 319–330. doi: https://doi.org/10.1002/asmb.446.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/asmb.
446. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/
asmb.446.

[106] Z. C. Lipton, C. Elkan, and B. Naryanaswamy. “Optimal thresholding
of classifiers to maximize F1 measure”. In: Machine Learning and
Knowledge Discovery in Databases. Edited by T. Calders, F. Esposito,
E. Hüllermeier, and R. Meo. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pages 225–239. isbn: 978-3-662-44851-9.

[107] Y. Y. Lu, Y. Fan, J. Lv, and W. S. Noble. DeepPINK: Reproducible
feature selection in deep neural networks. 2018. doi: 10.48550/ARXIV.
1809.01185. url: https://arxiv.org/abs/1809.01185.

[108] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin,
B. Nair, R. Katz, J. Himmelfarb, N. Bansal, and S.-I. Lee. “From
local explanations to global understanding with explainable AI for
trees”. In: Nature Machine Intelligence 2.1 (Jan. 2020), pages 56–67.
issn: 2522-5839. doi: 10.1038/s42256- 019- 0138- 9. url: https:
//doi.org/10.1038/s42256-019-0138-9.

[109] S. M. Lundberg, G. G. Erion, and S.-I. Lee. Consistent individualized
feature attribution for tree ensembles. 2018. doi: 10.48550/ARXIV.
1802.03888. url: https://arxiv.org/abs/1802.03888.

[110] S. M. Lundberg and S.-I. Lee. “A unified approach to interpreting
model predictions”. In: Proceedings of the 31st International Con-
ference on Neural Information Processing Systems. NIPS’17. Long
Beach, California, USA: Curran Associates Inc., 2017, pages 476–4777.
isbn: 9781510860964.

264

http://www.iariajournals.org/life_sciences/
https://doi.org/10.1109/ACCESS.2017.2787719
https://doi.org/10.1109/ACCESS.2017.2787719
https://doi.org/https://doi.org/10.1002/asmb.446
https://onlinelibrary.wiley.com/doi/pdf/10.1002/asmb.446
https://onlinelibrary.wiley.com/doi/pdf/10.1002/asmb.446
https://onlinelibrary.wiley.com/doi/abs/10.1002/asmb.446
https://onlinelibrary.wiley.com/doi/abs/10.1002/asmb.446
https://doi.org/10.48550/ARXIV.1809.01185
https://doi.org/10.48550/ARXIV.1809.01185
https://arxiv.org/abs/1809.01185
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.48550/ARXIV.1802.03888
https://doi.org/10.48550/ARXIV.1802.03888
https://arxiv.org/abs/1802.03888

B

Bibliography

[111] S. M. Lundberg et al. “Explainable machine-learning predictions for
the prevention of hypoxaemia during surgery”. en. In: Nat Biomed
Eng 2.10 (Oct. 2018), pages 749–760.

[112] C. D. Manning, P. Raghavan, and H. SchÃ¼tze. Introduction to
Information Retrieval. Cambridge, UK: Cambridge University Press,
2008. isbn: 978-0-521-86571-5. url: http://nlp.stanford.edu/IR-
book/information-retrieval-book.html.

[113] B. Matthews. “Comparison of the predicted and observed secondary
structure of T4 phage lysozyme”. In: Biochimica et Biophysica Acta
(BBA) - Protein Structure 405.2 (Oct. 1975), pages 442–451. doi:
https://doi.org/10.1016/0005-2795(75)90109-9.

[114] L. McInnes, J. Healy, and S. Astels. Benchmarking Performance and
Scaling of Python Clustering Algorithms. 2016. url: https://hdbscan.
readthedocs.io/en/latest/performance_and_scalability.html.

[115] L. McInnes, J. Healy, and S. Astels. “hdbscan: Hierarchical density
based clustering”. In: The Journal of Open Source Software 2.11 (Mar.
2017). doi: 10.21105/joss.00205. url: https://doi.org/10.21105%
2Fjoss.00205.

[116] M. Merler, N. K. Ratha, R. S. Feris, and J. R. Smith. “Diversity
in faces”. In: CoRR abs/1901.10436 (2019). arXiv: 1901.10436. url:
http://arxiv.org/abs/1901.10436.

[117] L. Merrick and A. Taly. “The explanation game: Explaining machine
learning models using Shapley values”. In: Machine Learning and
Knowledge Extraction. Edited by A. Holzinger, P. Kieseberg, A. M.
Tjoa, and E. Weippl. Cham: Springer International Publishing, 2020,
pages 17–38. isbn: 978-3-030-57321-8.

[118] P. E. Meyer. infotheo: Information-theoretic measures. R package
version 1.2.0.1. 2022. url: https://CRAN.R-project.org/package=
infotheo.

[119] J. H. Min and C. Jeong. “A binary classification method for
bankruptcy prediction”. In: Expert Systems with Applications 36.3
(Apr. 2009), pages 5256–5263. doi: https://doi.org/10.1016/j.
eswa.2008.06.073.

[120] C. Molnar, G. König, B. Bischl, and G. Casalicchio. Model-agnostic
feature importance and effects with dependent features – A conditional
subgroup approach. 2020. doi: 10.48550/ARXIV.2006.04628. url:
https://arxiv.org/abs/2006.04628.

[121] T. F. Móri and G. J. Székely. “Four simple axioms of dependence
measures”. In: Metrika 82.1 (Jan. 2019), pages 1–16. issn: 1435-926X.

265

http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
https://doi.org/https://doi.org/10.1016/0005-2795(75)90109-9
https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html
https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html
https://doi.org/10.21105/joss.00205
https://doi.org/10.21105%2Fjoss.00205
https://doi.org/10.21105%2Fjoss.00205
https://arxiv.org/abs/1901.10436
http://arxiv.org/abs/1901.10436
https://CRAN.R-project.org/package=infotheo
https://CRAN.R-project.org/package=infotheo
https://doi.org/https://doi.org/10.1016/j.eswa.2008.06.073
https://doi.org/https://doi.org/10.1016/j.eswa.2008.06.073
https://doi.org/10.48550/ARXIV.2006.04628
https://arxiv.org/abs/2006.04628

B

Bibliography

doi: 10.1007/s00184-018-0670-3. url: https://doi.org/10.1007/
s00184-018-0670-3.

[122] G. Muhammad and M. Melhem. “Pathological voice detection and
binary classification using MPEG-7 audio features”. In: Biomedical
Signal Processing and Control 11 (May 2014), pages 1–9. doi: https:
//doi.org/10.1016/j.bspc.2014.02.001.

[123] A. Mungo. sklearn-relief. Python package version 1.0.0b2. Dec. 2017.
url: https://libraries.io/pypi/sklearn-relief.

[124] A. B. Owen and C. Prieur. “On Shapley value for measuring impor-
tance of dependent inputs”. In: SIAM/ASA Journal on Uncertainty
Quantification 5.1 (2017), pages 986–1002. doi: 10.1137/16M1097717.
eprint: https://doi.org/10.1137/16M1097717. url: https://doi.
org/10.1137/16M1097717.

[125] W. Palmer and R. Allen. “Note on the accuracy of forecasts concerning
the rain problem”. In: U.S. Weather Bureau manuscript (1949).

[126] O. M. Parkhi, A. Vedaldi, and A. Zisserman. “Deep face recognition”.
In: Proceedings of the British Machine Vision Conference (BMVC).
Edited by M. W. J. Xianghua Xie and G. K. L. Tam. BMVA Press,
Sept. 2015, pages 41.1–41.12. isbn: 1-901725-53-7. doi: 10.5244/C.
29.41. url: https://dx.doi.org/10.5244/C.29.41.

[127] E. Pasolli, H. L. Yang, and M. M. Crawford. “Active-metric learn-
ing for classification of remotely sensed hyperspectral images”. In:
IEEE Transactions on Geoscience and Remote Sensing 54.4 (2016),
pages 1925–1939. doi: 10.1109/TGRS.2015.2490482.

[128] F. Pedregosa et al. “Scikit-learn: Machine learning in Python”. In:
Journal of Machine Learning Research 12 (2011), pages 2825–2830.

[129] N. Pilnenskiy. ITMO-FS. Python package version 0.3.3. Aug. 2020.
url: https://pypi.org/project/ITMO-FS/.

[130] B. Pirouz, S. Shaffiee Haghshenas, S. Shaffiee Haghshenas, and P.
Piro. “Investigating a serious challenge in the sustainable development
process: Analysis of confirmed cases of COVID-19 (new type of
coronavirus) through a binary classification using artificial intelligence
and regression analysis”. In: Sustainability 12.6 (2020). issn: 2071-
1050. doi: 10.3390/su12062427. url: https://www.mdpi.com/2071-
1050/12/6/2427.

[131] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery. Numerical Recipes 3rd Edition: The Art of Scientific Com-
puting. 3rd edition. USA: Cambridge University Press, 2007. isbn:
0521880688.

266

https://doi.org/10.1007/s00184-018-0670-3
https://doi.org/10.1007/s00184-018-0670-3
https://doi.org/10.1007/s00184-018-0670-3
https://doi.org/https://doi.org/10.1016/j.bspc.2014.02.001
https://doi.org/https://doi.org/10.1016/j.bspc.2014.02.001
https://libraries.io/pypi/sklearn-relief
https://doi.org/10.1137/16M1097717
https://doi.org/10.1137/16M1097717
https://doi.org/10.1137/16M1097717
https://doi.org/10.1137/16M1097717
https://doi.org/10.5244/C.29.41
https://doi.org/10.5244/C.29.41
https://dx.doi.org/10.5244/C.29.41
https://doi.org/10.1109/TGRS.2015.2490482
https://pypi.org/project/ITMO-FS/
https://doi.org/10.3390/su12062427
https://www.mdpi.com/2071-1050/12/6/2427
https://www.mdpi.com/2071-1050/12/6/2427

B

Bibliography

[132] J. Pries. The bp dependency package. https://github.com/joris-
pries/BP-Dependency. 2023.

[133] J. Pries. The bp feature importance package. https://github.com/
joris-pries/BP-Feature-Importance. 2023.

[134] J. Pries. The DutchDraw package. https://github.com/joris-pries/
DutchDraw. 2023.

[135] J. Pries, G. Berkelmans, S. Bhulai, and R. van der Mei. The
Berkelmans-Pries Feature Importance method: A generic measure of
informativeness of features. 2023. doi: 10.48550/ARXIV.2301.04740.
url: https://arxiv.org/abs/2301.04740.

[136] J. Pries, S. Bhulai, and R. van der Mei. “Active pairwise distance
learning for efficient labeling of large datasets by human experts”. In:
Applied Intelligence (2023). doi: 10.1007/s10489-023-04516-5.

[137] J. Pries, S. Bhulai, and R. van der Mei. “Evaluating a face generator
from a human perspective”. In: Machine Learning with Applications
10 (2022), page 100412. issn: 2666-8270. doi: https://doi.org/10.
1016/j.mlwa.2022.100412. url: https://www.sciencedirect.com/
science/article/pii/S2666827022000871.

[138] J. Pries, E. van de Bijl, J. Klein, S. Bhulai, and R. van der Mei.
The optimal input-independent baseline for binary classification: The
Dutch Draw. doi: https://doi.org/10.1111/stan.12297. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/stan.12297.
url: https://onlinelibrary.wiley.com/doi/abs/10.1111/stan.
12297.

[139] Python implementation of Fisher score computing attribute impor-
tance. https://www.codestudyblog.com/cs2112pyc/1223230432.html.
Accessed: 2022-09-26.

[140] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, B. B. Gupta, X. Chen,
and X. Wang. “A survey of deep active learning”. In: ACM Comput.
Surv. 54.9 (Oct. 2021). issn: 0360-0300. doi: 10.1145/3472291. url:
https://doi.org/10.1145/3472291.

[141] A. Rényi. “On measures of dependence”. In: Acta Mathematica
Academiae Scientiarum Hungarica 10.3 (Sept. 1959), pages 441–451.
issn: 1588-2632. doi: 10.1007/BF02024507. url: https://doi.org/
10.1007/BF02024507.

[142] D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman, G.
McVean, P. J. Turnbaugh, E. S. Lander, M. Mitzenmacher, and P. C.
Sabeti. “Detecting novel associations in large data sets”. In: Science
334.6062 (Dec. 2011), pages 518–1524.

267

https://github.com/joris-pries/BP-Dependency
https://github.com/joris-pries/BP-Dependency
https://github.com/joris-pries/BP-Feature-Importance
https://github.com/joris-pries/BP-Feature-Importance
https://github.com/joris-pries/DutchDraw
https://github.com/joris-pries/DutchDraw
https://doi.org/10.48550/ARXIV.2301.04740
https://arxiv.org/abs/2301.04740
https://doi.org/10.1007/s10489-023-04516-5
https://doi.org/https://doi.org/10.1016/j.mlwa.2022.100412
https://doi.org/https://doi.org/10.1016/j.mlwa.2022.100412
https://www.sciencedirect.com/science/article/pii/S2666827022000871
https://www.sciencedirect.com/science/article/pii/S2666827022000871
https://doi.org/https://doi.org/10.1111/stan.12297
https://onlinelibrary.wiley.com/doi/pdf/10.1111/stan.12297
https://onlinelibrary.wiley.com/doi/abs/10.1111/stan.12297
https://onlinelibrary.wiley.com/doi/abs/10.1111/stan.12297
https://www.codestudyblog.com/cs2112pyc/1223230432.html
https://doi.org/10.1145/3472291
https://doi.org/10.1145/3472291
https://doi.org/10.1007/BF02024507
https://doi.org/10.1007/BF02024507
https://doi.org/10.1007/BF02024507

B

Bibliography

[143] M. Rezaei and P. Fränti. “Set-matching methods for external cluster
validity”. In: IEEE Trans. on Knowledge and Data Engineering 28.8
(2016), pages 2173–2186.

[144] M. T. Ribeiro, S. Singh, and C. Guestrin. ““Why should I trust
you?”: Explaining the predictions of any classifier”. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’16. San Francisco, California,
USA: Association for Computing Machinery, 2016, pages 1135–1144.
isbn: 9781450342322. doi: 10.1145/2939672.2939778. url: https:
//doi.org/10.1145/2939672.2939778.

[145] R. Rothe, R. Timofte, and L. Van Gool. “Deep expectation of real
and apparent age from a single image without facial landmarks”.
In: International Journal of Computer Vision 126.2 (Apr. 2018),
pages 144–157. issn: 1573-1405. doi: 10.1007/s11263-016-0940-3.
url: https://doi.org/10.1007/s11263-016-0940-3.

[146] O. Russakovsky et al. “ImageNet large scale visual recognition chal-
lenge”. In: International Journal of Computer Vision 115.3 (Apr.
2015). issn: 1573-1405. doi: 10.1007/s11263- 015- 0816- y. url:
http://dx.doi.org/10.1007/s11263-015-0816-y.

[147] C. R. de Sá. “Variance-based feature importance in neural networks”.
In: Discovery Science. Edited by P. Kralj Novak, T. Šmuc, and S.
Džeroski. Cham: Springer International Publishing, 2019, pages 306–
315. isbn: 978-3-030-33778-0.

[148] A. Saabas. TreeInterpreter. Jan. 2021. url: https://pypi.org/
project/treeinterpreter/.

[149] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic. “300
Faces in-the-wild challenge: The first facial landmark localization
challenge”. In: 2013 IEEE International Conference on Computer
Vision Workshops. 2013, pages 397–403.

[150] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford,
X. Chen, and X. Chen. “Improved techniques for training GANs”. In:
Advances in Neural Information Processing Systems. Edited by D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett. Volume 29. Cur-
ran Associates, Inc., 2016. url: https://proceedings.neurips.cc/
paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf.

[151] J. T. Schaefer. “The critical success index as an indicator of warning
skill”. In: Weather and Forecasting 5.4 (Dec. 1990), pages 570–575.
doi: https://doi.org/10.1175/1520-0434(1990)005<0570:tcsiaa>
2.0.co;2.

268

https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1007/s11263-016-0940-3
https://doi.org/10.1007/s11263-016-0940-3
https://doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
https://pypi.org/project/treeinterpreter/
https://pypi.org/project/treeinterpreter/
https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://doi.org/https://doi.org/10.1175/1520-0434(1990)005<0570:tcsiaa>2.0.co;2
https://doi.org/https://doi.org/10.1175/1520-0434(1990)005<0570:tcsiaa>2.0.co;2

B

Bibliography

[152] F. Schroff, D. Kalenichenko, and J. Philbin. “FaceNet: A unified em-
bedding for face recognition and clustering”. In: CoRR abs/1503.03832
(2015). arXiv: 1503.03832. url: http://arxiv.org/abs/1503.03832.

[153] S. I. Serengil and A. Ozpinar. “LightFace: A hybrid deep face recog-
nition framework”. In: 2020 Innovations in Intelligent Systems and
Applications Conference (ASYU). IEEE. 2020, pages 23–27. doi:
10.1109/ASYU50717.2020.9259802.

[154] G. Sergioli, R. Giuntini, and H. Freytes. “A new quantum approach
to binary classification”. In: PLoS ONE 14.5 (May 2019). Edited by
A. Lund, e0216224. doi: https://doi.org/10.1371/journal.pone.
0216224.

[155] B. Settles. Active learning literature survey. Computer Sciences Tech-
nical Report 1648. University of Wisconsin–Madison, 2009.

[156] B. Settles. “From theories to queries: Active learning in practice”. In:
Active Learning and Experimental Design workshop In conjunction
with AISTATS 2010. Edited by I. Guyon, G. Cawley, G. Dror, V.
Lemaire, and A. Statnikov. Volume 16. Proceedings of Machine
Learning Research. Sardinia, Italy: PMLR, May 2011, pages 1–18.
url: https://proceedings.mlr.press/v16/settles11a.html.

[157] H. R. Shahraki, S. Pourahmad, and N. Zare. “K important neighbors:
A novel approach to binary classification in high dimensional data”.
In: BioMed Research International 2017 (2017), pages 1–9. doi:
https://doi.org/10.1155/2017/7560807.

[158] L. S. Shapley and A. E. Roth, editors. The Shapley Value: Essays in
Honor of Lloyd S. Shapley. Cambridge [Cambridgeshire] ; New York:
Cambridge University Press, 1988. isbn: 9780521361774.

[159] Y. Shen, C. Yang, X. Tang, and B. Zhou. InterFaceGAN: Interpreting
the disentangled face representation learned by GANs. 2020. arXiv:
2005.09635.

[160] K. Shin, T. Kuboyama, T. Hashimoto, and D. Shepard. “sCWC/sLCC:
Highly scalable feature selection algorithms”. In: Information 8.4
(2017), page 159.

[161] K. Shmelkov, C. Schmid, and K. Alahari. “How good is my GAN?” In:
Computer Vision – ECCV 2018. Edited by V. Ferrari, M. Hebert, C.
Sminchisescu, and Y. Weiss. Cham: Springer International Publishing,
2018, pages 218–234. isbn: 978-3-030-01216-8.

[162] K. Simonyan and A. Zisserman. Very deep convolutional networks
for large-scale image recognition. 2014. arXiv: 1409.1556.

[163] M. Sokolova and G. Lapalme. “A systematic analysis of perfor-
mance measures for classification tasks”. In: Information Processing

269

https://arxiv.org/abs/1503.03832
http://arxiv.org/abs/1503.03832
https://doi.org/10.1109/ASYU50717.2020.9259802
https://doi.org/https://doi.org/10.1371/journal.pone.0216224
https://doi.org/https://doi.org/10.1371/journal.pone.0216224
https://proceedings.mlr.press/v16/settles11a.html
https://doi.org/https://doi.org/10.1155/2017/7560807
https://arxiv.org/abs/2005.09635
https://arxiv.org/abs/1409.1556

B

Bibliography

& Management 45.4 (2009), pages 427–437. issn: 0306-4573. doi:
https://doi.org/10.1016/j.ipm.2009.03.002. url: https://www.
sciencedirect.com/science/article/pii/S0306457309000259.

[164] E. Song, B. L. Nelson, and J. Staum. “Shapley effects for global
sensitivity analysis: Theory and computation”. In: SIAM/ASA Jour-
nal on Uncertainty Quantification 4.1 (2016), pages 1060–1083. doi:
10.1137/15M1048070. eprint: https://doi.org/10.1137/15M1048070.
url: https://doi.org/10.1137/15M1048070.

[165] S. Stijven, W. Minnebo, K. Vladislavleva, and N. e. Krasnogor. “Sep-
arating the wheat from the chaff: On feature selection and feature
importance in regression random forests and symbolic regression”.
eng. In: (2011). url: http://lib.ugent.be/catalog/pug01:3198359.

[166] C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn. “Bias in
random forest variable importance measures: Illustrations, sources
and a solution”. en. In: BMC Bioinformatics 8 (Jan. 2007), page 25.

[167] E. Štrumbelj and I. Kononenko. “Explaining prediction models and
individual predictions with feature contributions”. In: Knowledge and
Information Systems 41.3 (Dec. 2014), pages 647–665. issn: 0219-
3116. doi: 10.1007/s10115-013-0679-x. url: https://doi.org/10.
1007/s10115-013-0679-x.

[168] M. Sugiyama and K. M. Borgwardt. “Measuring statistical depen-
dence via the mutual information dimension”. In: Proceedings of the
Twenty-Third International Joint Conference on Artificial Intelli-
gence. IJCAI ’13. Beijing, China: AAAI Press, 2013, pages 1692–1698.
isbn: 9781577356332.

[169] M. Sundararajan and A. Najmi. “The many Shapley values for
model explanation”. In: Proceedings of the 37th International Con-
ference on Machine Learning. Edited by H. D. III and A. Singh.
Volume 119. Proceedings of Machine Learning Research. PMLR, July
2020, pages 9269–9278. url: https://proceedings.mlr.press/v119/
sundararajan20b.html.

[170] G. G. Sundarkumar and V. Ravi. “Malware detection by text and data
mining”. In: 2013 IEEE International Conference on Computational
Intelligence and Computing Research. IEEE, Dec. 2013, pages 1–6.
doi: https://doi.org/10.1109/iccic.2013.6724229.

[171] R. S. Sutton and A. G. Barto. Reinforcement Learning: An In-
troduction. Cambridge, MA, USA: A Bradford Book, 2018. isbn:
0262039249.

270

https://doi.org/https://doi.org/10.1016/j.ipm.2009.03.002
https://www.sciencedirect.com/science/article/pii/S0306457309000259
https://www.sciencedirect.com/science/article/pii/S0306457309000259
https://doi.org/10.1137/15M1048070
https://doi.org/10.1137/15M1048070
https://doi.org/10.1137/15M1048070
http://lib.ugent.be/catalog/pug01:3198359
https://doi.org/10.1007/s10115-013-0679-x
https://doi.org/10.1007/s10115-013-0679-x
https://doi.org/10.1007/s10115-013-0679-x
https://proceedings.mlr.press/v119/sundararajan20b.html
https://proceedings.mlr.press/v119/sundararajan20b.html
https://doi.org/https://doi.org/10.1109/iccic.2013.6724229

B

Bibliography

[172] G. J. Székely and M. L. Rizzo. “Brownian distance covariance”. In: The
Annals of Applied Statistics 3.4 (Dec. 2009), pages 1236–1265. doi:
10.1214/09-AOAS312. url: https://doi.org/10.1214/09-AOAS312.

[173] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. “DeepFace: Closing
the gap to human-level performance in face verification”. In: 2014
IEEE Conference on Computer Vision and Pattern Recognition. 2014,
pages 1701–1708.

[174] A. Tharwat. “Classification assessment methods”. In: Applied Com-
puting and Informatics 17.1 (Jan. 2021), pages 168–192. doi: 10.
1016/j.aci.2018.08.003. url: https://doi.org/10.1016/j.aci.
2018.08.003.

[175] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D.
Poland, D. Borth, and L.-J. Li. “YFCC100M”. In: Communications
of the ACM 59.2 (Jan. 2016), pages 64–73. issn: 1557-7317. doi:
10.1145/2812802. url: http://dx.doi.org/10.1145/2812802.

[176] S. Tonekaboni, S. Joshi, K. Campbell, D. K. Duvenaud, and A.
Goldenberg. “What went wrong and when? Instance-wise feature
importance for time-series black-box models”. In: Advances in Neural
Information Processing Systems. Edited by H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin. Volume 33. Curran Associates,
Inc., 2020, pages 799–809. url: https://proceedings.neurips.cc/
paper/2020/file/08fa43588c2571ade19bc0fa5936e028-Paper.pdf.

[177] C. Veenman, M. Reinders, and E. Backer. “A maximum variance
cluster algorithm”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 24.9 (2002), pages 1273–1280. doi: 10.1109/
TPAMI.2002.1033218.

[178] V. Vezhnevets, V. Sazonov, and A. Andreeva. “A survey on pixel-based
skin color detection techniques”. In: IN PROC. GRAPHICON-2003.
2003, pages 85–92.

[179] H. X. Vinh. QII tool. Python package version 0.1.3. Feb. 2019. url:
https://pypi.org/project/qii-tool/.

[180] P. Virtanen et al. “SciPy 1.0: Fundamental algorithms for scientific
computing in Python”. In: Nature Methods 17 (2020). Python package
version 1.8.0, pages 261–272. doi: 10.1038/s41592-019-0686-2.

[181] A. Vlachos. “A stopping criterion for active learning”. In: Computer
Speech & Language 22.3 (2008), pages 295–312. issn: 0885-2308. doi:
https://doi.org/10.1016/j.csl.2007.12.001. url: https://www.
sciencedirect.com/science/article/pii/S088523080700068X.

[182] S. Wang and C. Manning. “Baselines and bigrams: Simple, good
sentiment and topic classification”. In: Proceedings of the 50th Annual

271

https://doi.org/10.1214/09-AOAS312
https://doi.org/10.1214/09-AOAS312
https://doi.org/10.1016/j.aci.2018.08.003
https://doi.org/10.1016/j.aci.2018.08.003
https://doi.org/10.1016/j.aci.2018.08.003
https://doi.org/10.1016/j.aci.2018.08.003
https://doi.org/10.1145/2812802
http://dx.doi.org/10.1145/2812802
https://proceedings.neurips.cc/paper/2020/file/08fa43588c2571ade19bc0fa5936e028-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/08fa43588c2571ade19bc0fa5936e028-Paper.pdf
https://doi.org/10.1109/TPAMI.2002.1033218
https://doi.org/10.1109/TPAMI.2002.1033218
https://pypi.org/project/qii-tool/
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/https://doi.org/10.1016/j.csl.2007.12.001
https://www.sciencedirect.com/science/article/pii/S088523080700068X
https://www.sciencedirect.com/science/article/pii/S088523080700068X

B

Bibliography

Meeting of the Association for Computational Linguistics (Volume
2: Short Papers). Jeju Island, Korea: Association for Computational
Linguistics, July 2012, pages 90–94. url: https://www.aclweb.org/
anthology/P12-2018.

[183] S. Watanabe. “Information theoretical analysis of multivariate cor-
relation”. In: IBM Journal of Research and Development 4.1 (1960),
pages 66–82. doi: 10.1147/rd.41.0066.

[184] K. Q. Weinberger and L. K. Saul. “Distance metric learning for large
margin nearest neighbor classification”. In: J. Mach. Learn. Res. 10
(June 2009), pages 207–244. issn: 1532-4435.

[185] J. West and C. Bergstrom. Which face is real? 2019. url: http:
//www.whichfaceisreal.com/learn.html.

[186] C. Wheelus, E. Bou-Harb, and X. Zhu. “Tackling class imbalance in
cyber security datasets”. In: 2018 IEEE International Conference on
Information Reuse and Integration (IRI). 2018, pages 229–232. doi:
10.1109/IRI.2018.00041.

[187] B. D. Williamson and J. Feng. “Efficient nonparametric statistical
inference on population feature importance using Shapley values”. en.
In: Proc Mach Learn Res 119 (July 2020), pages 10282–10291.

[188] E. Winter. “The Shapley value”. In: Handbook of Game Theory with
Economic Applications. Edited by R. Aumann and S. Hart. 1st edition.
Volume 3. Elsevier, 2002. Chapter 53, pages 2025–2054. url: https:
//EconPapers.repec.org/RePEc:eee:gamchp:3-53.

[189] R. Wirth and J. Hipp. “CRISP-DM: Towards a standard process
model for data mining”. In: Proceedings of the 4th International
Conference on the Practical Applications of Knowledge Discovery
and Data Mining (Jan. 2000). url: http://cs.unibo.it/~danilo.
montesi/CBD/Beatriz/10.1.1.198.5133.pdf.

[190] J. Xu, L. Jin, L. Liang, Z. Feng, D. Xie, and H. Mao. “Facial at-
tractiveness prediction using psychologically inspired convolutional
neural network (PI-CNN)”. In: 2017 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). 2017,
pages 1657–1661.

[191] L. Yang, R. Jin, and R. Sukthankar. “Bayesian active distance metric
learning”. In: CoRR abs/1206.5283 (2012). arXiv: 1206.5283. url:
http://arxiv.org/abs/1206.5283.

[192] D. Yoo and I. S. Kweon. “Learning loss for active learning”. In: CoRR
abs/1905.03677 (2019). arXiv: 1905.03677. url: http://arxiv.org/
abs/1905.03677.

272

https://www.aclweb.org/anthology/P12-2018
https://www.aclweb.org/anthology/P12-2018
https://doi.org/10.1147/rd.41.0066
http://www.whichfaceisreal.com/learn.html
http://www.whichfaceisreal.com/learn.html
https://doi.org/10.1109/IRI.2018.00041
https://EconPapers.repec.org/RePEc:eee:gamchp:3-53
https://EconPapers.repec.org/RePEc:eee:gamchp:3-53
http://cs.unibo.it/~danilo.montesi/CBD/Beatriz/10.1.1.198.5133.pdf
http://cs.unibo.it/~danilo.montesi/CBD/Beatriz/10.1.1.198.5133.pdf
https://arxiv.org/abs/1206.5283
http://arxiv.org/abs/1206.5283
https://arxiv.org/abs/1905.03677
http://arxiv.org/abs/1905.03677
http://arxiv.org/abs/1905.03677

Bibliography

[193] W. J. Youden. “Index for rating diagnostic tests”. In: Cancer 3.1
(1950), pages 32–35. doi: https://doi.org/10.1002/1097-0142(1950)
3:1<32::aid-cncr2820030106>3.0.co;2-3.

[194] G. U. Yule. “On the methods of measuring association between two
attributes”. In: Journal of the Royal Statistical Society 75.6 (May
1912), page 579. doi: https://doi.org/10.2307/2340126.

[195] Yuxiao Hu, Longbin Chen, Yi Zhou, and Hongjiang Zhang. “Esti-
mating face pose by facial asymmetry and geometry”. In: Sixth IEEE
International Conference on Automatic Face and Gesture Recognition,
2004. Proceedings. 2004, pages 651–656.

[196] C. Zahn. “Graph-theoretical methods for detecting and describing
gestalt clusters”. In: IEEE Transactions on Computers C-20.1 (1971),
pages 68–86. doi: 10.1109/T-C.1971.223083.

[197] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang. “Bit-scalable deep
hashing with regularized similarity learning for image retrieval and
person re-identification”. In: IEEE Transactions on Image Processing
24.12 (2015), pages 4766–4779. doi: 10.1109/TIP.2015.2467315.

[198] T. Zhang, R. Ramakrishnan, and M. Livny. “BIRCH: A new data clus-
tering algorithm and its applications”. In: Data Mining and Knowledge
Discovery 1.2 (1997), pages 141–182.

[199] S. Zhou, M. L. Gordon, R. Krishna, A. Narcomey, L. Fei-Fei, and M. S.
Bernstein. HYPE: A benchmark for human eye perceptual evaluation
of generative models. 2019. doi: 10.48550/ARXIV.1904.01121. url:
https://arxiv.org/abs/1904.01121.

[200] Z. Zhou and G. Hooker. “Unbiased measurement of feature impor-
tance in tree-based methods”. In: ACM Transactions on Knowl-
edge Discovery from Data 15.2 (Jan. 2021). issn: 1556-4681. doi:
10.1145/3429445. url: https://doi.org/10.1145/3429445.

[201] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He.
“A comprehensive survey on transfer learning”. In: Proceedings of the
IEEE 109.1 (2021), pages 43–76. doi: 10.1109/JPROC.2020.3004555.

[202] A. Zien, N. Krämer, S. Sonnenburg, and G. Rätsch. “The feature
importance ranking measure”. In: Machine Learning and Knowledge
Discovery in Databases. Edited by W. Buntine, M. Grobelnik, D.
Mladenić, and J. Shawe-Taylor. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pages 694–709. isbn: 978-3-642-04174-7.

273

https://doi.org/https://doi.org/10.1002/1097-0142(1950)3:1<32::aid-cncr2820030106>3.0.co;2-3
https://doi.org/https://doi.org/10.1002/1097-0142(1950)3:1<32::aid-cncr2820030106>3.0.co;2-3
https://doi.org/https://doi.org/10.2307/2340126
https://doi.org/10.1109/T-C.1971.223083
https://doi.org/10.1109/TIP.2015.2467315
https://doi.org/10.48550/ARXIV.1904.01121
https://arxiv.org/abs/1904.01121
https://doi.org/10.1145/3429445
https://doi.org/10.1145/3429445
https://doi.org/10.1109/JPROC.2020.3004555

BS

Summary

Data. A single word that could contain a lot of information. A driving
force behind the internet, decision-making, and scientific discoveries. Since
the beginning of my PhD, more than 500,000 research articles that contain
this word (in the abstract) have been added to the database of Elsevier
(a scientific publisher). Data is valuable, as long as you have the right
techniques to extract information out of the bits and bytes. Data science
is the scientific field in which these invaluable tools are developed with
the goal to extract information, to understand the data, and to use the
acquired knowledge to make predictions. In this dissertation, we strive to
solve general problems that are a fundamental yet underexposed part of
data science. We question commonly used techniques and develop better
alternatives. Our research gives practitioners the means to gain accurate
insights and draw meaningful conclusions.

Next, we summarize our research and explain the value of our contributions
per chapter. We have tried to limit the use of technical terms to make
these parts more accessible. Nevertheless, we also highlight possible future
research opportunities for the advanced reader. Science is a never-ending
relay race, which is why we hope to inspire the reader to pick up one of our
many batons.

275

BS

Summary

Chapter 2: Evaluating a Face Generator from a Human Perspec-
tive

Summary:

Chapter 2 is about evaluating face generators. These are models, trained with
computers, that are able to create images of human faces. They are becoming
shockingly good at generating realistic pictures, by observing and learning
from a limited dataset of facial images. The underlying mechanisms and
models are truly fascinating, as they can also be used to generate, for example,
new paintings in the style of Van Gogh. It is becoming increasingly hard to
distinguish between authentic and computer-generated images. How ‘well’ a
face generator works, is assessed using performance measures. A shortcoming
of current measures is that they often measure complex intermediate results,
whereas a more humanlike macroscopic approach could provide additional
insights. In Chapter 2, we have introduced such an approach to answer
the following two questions for any face generator: (I) Are general human
attributes, such as age and gender, learned and transferred from the data?
For example, when the model is trained on a lot of images with brown-haired
persons, do the generated images also have brown hair? (II) Are the
generated faces actually new or do they belong to existing persons from the
data?

Utility:

Our approach showed that a well-known face generator (StyleGAN2) is
able to learn and transfer the human attributes from the data that is used
to train this model (I). Furthermore, new faces are generated according
to face recognition methods (II). It is important for practical applications
that the generated faces do not belong to identities from the dataset due to
privacy concerns. These insights provide a deeper understanding into the
performance of face generators. This further strengthens the impressiveness
of StyleGAN2. It is important to note that our approach is not limited to a
single model and could be applied to any face generator. More generally, we
believe that humans are in the end essential for assessing the performance
of generative methods. By providing a different outlook, we hope that our
research instigates novel approaches that advance the field of generative
methods.

276

BS

Summary

Research opportunities:

We believe that it is important, when developing a new face generator, to
determine whether the generated faces match the training images too closely.
This can even be evaluated during the training phase by integrating face
recognition methods to penalize resemblance. Furthermore, face recognition
methods should also be trained using generated faces to improve their
performance. A generated identity could be created by using closely distanced
latent points. To produce an image with specific human attributes, we
observed that truncation could be used. However, when a face needs to be
generated that looks like someone, we preferably need a method to measure
likeness. Face recognition methods could be utilized, but these are not
trained for this purpose. Finding a good likeness measure would improve
practical applicability of face generators.

Chapter 3: Active Pairwise Distance Learning for Efficient Labeling
of Large Datasets by Human Experts

Summary:

Generating a random face is impressive, but generating a face that looks
like someone is more difficult. Somehow, the likeness should be assessed.
In Chapter 3, we lay the foundation for training a likeness model. Face
recognition methods are traditionally trained using identity datasets. This
means that for each image in the dataset, it is known to which identity
it belongs. However, no information is given about the likeness between
two images. A picture of your identical twin is dealt with the same as an
image of a total stranger, as they are both not you. This is undesirable for
measuring likeness. Ideally, there should be a dataset where the likeness
between each pair of images is determined. Attaining such a dataset is,
however, very labor-intensive, as there are many possible pairs. To overcome
this problem, we introduce and investigate a novel problem withing the
field of Active Learning named active pairwise distance learning (APDL),
where the objective is to gather as much information as possible about all
pairwise distances, while only labeling a limited number of pairs. The goal
is thus to determine an accurate approximation, while reducing the workload.
Each round, a pair is considered by an expert that determines the label.
Herein lies an important choice and opportunity: Which pair is selected? In
Chapter 3, we consider many feature-independent selection strategies and
evaluate their performance.

277

BS

Summary

Utility:

We have introduced the APDL problem, which is not limited to the likeness
measure. Any distance function can be used. We have established upper and
lower bound approximations using general properties of a distance function.
We have also shown how these bounds can be updated each time the expert
labels an additional pair. We have examined many strategies, which showed
that: (I) there are better strategies than simply randomly selecting a pair and
(II) selecting with a specific criterion (max degree) consistently performed
well. In other words, selecting an instance that was already chosen many
times provides a lot of information. We chose to investigate strategies that
did not use any feature values and used many datasets in order to find
general results. As such, the best performing strategies should be used
as baselines for future research. Already, using these strategies could save
many hours and resources, as the labels can be accurately approximated
quicker.

Research opportunities:

Our research is a pioneering contribution, which is why we have also exten-
sively discussed many opportunities for fruitful future research in Chapter 3.
However, we highlight some of them here. We assumed that the expert was
perfect, which means that no mistake was made in the labeling. However,
errors are often easily made in practice, which means that an imperfect
expert should be considered. We have already provided suggestions how to
deal with such an expert, but we believe that assuming a flawed expert is
the key to many future use cases. Furthermore, new complex strategies and
improved prediction methods could advance the effectiveness even further.
Finally, techniques from APDL could be used to quantify the complexity of
a dataset. If more rounds are necessary to approximate the true distances
between each pair, it could indicate that the dataset is more complex.

Chapter 4: The Dutch Draw: Constructing a Universal Baseline
for Binary Prediction Models

Summary:

In Chapter 4, we introduce a new baseline for binary prediction methods.
Binary classification is a fundamental problem within data science, where
the goal is to accurately predict if an instance belongs either to class zero
or one. As simple as this may seems, it has many applications, and it is a

278

BS

Summary

stepping stone for more complex classification problems. To explain why a
baseline is necessary, we look at the following example. Consider a dataset of
images, where some are fake and others are real. When a model is developed
to automatically determine this, we measure how well it is able to do so. An
accuracy of 0.9 seems high, as this means that the model was correct in 90%
of the cases. However, the dataset might be imbalanced and consists of 95%
real and 5% fake images, which means that always predicting real might
already result in an accuracy of 0.95. In light of this new information, the
model’s performance of 0.9 does not seem so good anymore. It is important
to have a baseline result in order to give perspective and meaning to a
performance score. In Chapter 4, we construct a novel baseline, which can
be determined theoretically for most common performance measures.

Utility:

Our baseline (Dutch Draw) can be theoretically derived for most commonly
used measures. This eliminates the need for parameter-tuning and training
of the baseline. It is reproducible, simple, and always applicable. It should
therefore become a standard practice to use and report the Dutch Draw
baseline, as it is an explainable minimal requirement for any model. However,
this does not exempt any practitioner from using a state-of-the-art model,
but it does simplify and improve the development and evaluation process of
a new binary classification method. It should be considered a major warning
sign when a model fails to beat our baseline.

Research opportunities:

A natural extension to Chapter 4 would be to investigate the multiclass
setting, where the number of different classes is not limited to two. We
believe that similar behavior would be observed. It is, however, likely that
the baseline is more easily beatable. Furthermore, more performance mea-
sures could be investigated in order to find explicit theoretical formulations.
We were not able to find such a formulation for G(2)

θ , which is why this
measure should be examined further. If no direct formulation could be found,
approximation algorithms could be designed to find the optimal baseline
quickly.

279

BS

Summary

Chapter 5: The Optimal Input-Independent Baseline for Binary
Classification: The Dutch Draw

Summary:

In Chapter 4, we have introduced a baseline for binary prediction models.
This baseline shines in simplicity, as it does not use feature values. Never-
theless, there are other baselines that have this same property. In Chapter 5,
we compare these baselines in order to find the ‘best’ baseline. To do this,
we first have to establish what ‘best’ actually entails. For all commonly
used performance measures, we prove that the Dutch Draw baseline is the
optimal baseline, assuming that the dataset is shuffled randomly. This is a
natural assumption, as the order is irrelevant for most datasets.

Utility:

Our findings in Chapter 5 provide a strong argument to use the Dutch
Draw baseline over any other input-independent baseline, as it achieves the
best score. Chapter 5 is therefore a stepping stone for future research. An
example of this, is our own approach we named the Dutch Oracle, which
greatly improves the interpretability of a performance score. The Dutch
Draw baseline gives a reference point for the performance, but it does not
supply additional desirable information when beaten. Namely, when two
models achieve a score of 0.7 and 0.8, respectively, and the baseline is 0.4,
we can conclude that both models have beaten the baseline. However, we
would ideally also quantify how much better the score of 0.8 is compared to
0.7. This is not as simple as taking the difference, due to nonlinearity of
performance measures. We want to measure how much ‘true knowledge’ is
acquired. The Dutch Oracle weighs an oracle that knows all labels with the
‘best guess’ Dutch Draw baseline. In this way, we can measure how much
weight is contributed to the oracle to achieve a specific score. Chapter 5
shows that we should use the Dutch Draw baseline as ‘best guess’ in this
approach.

Research opportunities:

We have already highlighted a way to use the optimal baseline for another
method (the Dutch Oracle). Yet, more opportunities to utilize the optimal
baseline should be investigated. The Dutch Draw baseline could be used
to standardize evaluation measures by incorporating the baseline in the
performance measure. Furthermore, a natural extension is to examine

280

BS

Summary

multiclass classification and determine an optimal baseline in a similar
fashion.

Chapter 6: The Berkelmans-Pries Dependency Function: A Generic
Measure of Dependence between Random Variables

Summary:

Measuring dependency is an important technique to gain insight into a
dataset. Are variables related in some shape or form? Does knowing the
values of one variable, give information about the values of another variable?
These are all highly relevant questions in many research areas (think e.g.,
medicine, psychology, and finance). It is therefore important to accurately
measure dependency, as it can lead to significant discoveries. Finding factors
that signify an illness, depression, or a stock market crash could keep you
healthy, happy, and possibly rich. However, commonly used measures have
many known flaws, making it, for example, possible that something that
is fully dependent is classified as independent. This makes interpreting
the dependency score difficult. In Chapter 6, we start from scratch by
determining a list of desirable properties. How would a dependency function
behave ideally? We show that the commonly used methods do not satisfy
all requirements. Therefore, we introduce a new dependency function that
does have all these useful properties, which we prove.

Utility:

As previously discussed, accurately measuring dependencies is highly relevant
in many research fields. This makes the BP dependency function truly
impactful on a global scale. It is a powerful tool that should be used by any
data scientist to find and assess relationships between variables. Instead of
simply giving yet another new dependency function, we revised the list of
desirable properties and found misconceptions in previous literature. For
example, we show that a dependency function should be asymmetrical, which
was often undisputed. Our novel method eliminates common flaws of previous
measures and has many desirable properties. Nevertheless, we do not argue
that all other dependency measures should be disregarded. Instead, it is
important to know the limitations when using a measure. What conclusions
can and cannot be drawn? Additionally, we believe that it is essential for
the dependency function to formulate what properties are desired and why.
This line of reasoning could be used in other domains.

281

BS

Summary

Research opportunities:

A remaining challenge for generally applying the BP dependency function
is how continuous data should be handled. Kernel density estimation and
data binning are two types of approaches, but choice of parameter values
could result in significantly different dependencies. As such, it should
be investigated which parameter selection algorithms lead to the most
accurate dependency score. Additionally, more useful properties of the BP
dependency function could be derived. A dataset is only a representation
of the true underlying distribution. It should therefore be investigated
how close the BP dependency of the dataset is to the dependency of the
underlying distribution. Tight upper and lower bound approximations for
the BP dependency of the underlying distribution would be very valuable
for practical applications.

Chapter 7: The Berkelmans-Pries Feature Importance Method: A
Generic Measure of Informativeness of Features

Summary:

Datasets are often used to make predictions. How this should be done is an
important research area within data science. First, the objective was to make
accurate predictions, which resulted in many recent success stories. Now, the
goal becomes to make predictions that can be explained. When important
decisions are made by a computer, we must be able to explain why the
decision was made. One essential approach is to measure Feature Importance
(FI), which quantifies the contribution of each feature. It analyzes which
components of the data are relevant and irrelevant for making accurate
predictions. If a feature is important, it is deemed to play a crucial role.
This could give useful insights into which features actually matter. It can
also be used to check for hidden biases. Does race or gender play a role
in the predictions? Although this information might not explicitly be in
the dataset, it could still indirectly affect other variables (think e.g., postal
code). When a feature is unimportant, it can be removed from the dataset.
This can improve both the speed and the performance of a model. Many FI
methods have been suggested, but it can be hard to interpret the results due
to many limitations. In Chapter 7, we introduce a new FI method based on
game theory and the Berkelmans-Pries dependency function (see Chapter 6).
Furthermore, we prove that our approach has a lot of useful properties.
For example, previous FI methods have not been tested on exactness, as
it is hard to find datasets where the exact FI is known. We show that our

282

BS

Summary

approach accurately predicts the FI in some cases where the ground truth
FI can be derived in an exact manner. Experimentally testing if previous
methods adhere to the same properties shows that they fail to do so, which
demonstrates the potential of our FI method.

Utility:

The BP-FI has many desirable properties, which makes it an extremely
useful tool for gaining insights into a dataset. As such, it can and should
be used in many different research areas. Additionally, we provide a few
cases where the desired FI outcome could be determined in an exact manner.
This is an important step forward in this field, as no such datasets were
previously suggested. We show that many existing methods do not attain
the desirable outcome, whereas our FI method does. Chapter 7 is the first
time that many FI methods are structurally compared and evaluated.

Research opportunities:

A significant step could be made in finding ways to quickly determine
Shapley values for datasets with many features or at least identifying good
approximation algorithms for the Berkelmans-Pries feature importance (BP-
FI). This would allow BP-FI to be feasibly used in additional applications.
We have also observed that having too few samples could skew the FI values
compared with the true underlying distribution. Ideally, mathematical
bounds should be derived to determine how many samples are necessary to
approximate the underlying distribution. We have proven many properties
of BP-FI, yet we are certain that proving new properties could lead to even
more insights. Also, more datasets should be identified where the desired
behavior of an FI method can be derived. This could strengthen our beliefs
in BP-FI or lead to new FI methods that perform even better. This is
especially important for local FI methods, which could also be considered
as the next frontier. These methods are particularly useful when a single
prediction needs to be explained. We have suggested ways to adapt the
global BP-FI to use as a local method. Yet, more datasets with desirable
outcomes could quantify the quality of the local explanations.

283

BS

Summary

Final remark

In the introduction (see Chapter 1), we have compared this dissertation with
a box of chocolates. It contains many different topics in the field of data
science, each with a unique taste. We hope that the reader found a tasty
chocolate and tried to experiment with unknown flavors, acquiring a new
taste or even coming up with an own new flavor. To those who yearn for
more chocolate, know that in our modern society it can be delivered within
ten minutes.

284

	Introduction
	I Fabricating Faces and Labeling Likeness
	Evaluating a Face Generator from a Human Perspective
	Introduction
	Datasets
	Methodology
	Analysis
	Discussion and conclusion

	Active Pairwise Distance Learning for Efficient Labeling of Large Datasets by Human Experts
	Introduction
	Active pairwise distance learning
	Related research
	Definitions and bounds
	Strategies
	Experimental setup
	Results
	Real world experiment
	Discussion and future research
	Summary

	II Benchmarking Binary Prediction Models
	The Dutch Draw: Constructing a Universal Baseline for Binary Prediction Models
	Introduction
	Preliminaries
	Dutch Draw
	Dutch Draw in practice
	Discussion and conclusion

	Appendices
	Mathematical derivations

	The Optimal Input-Independent Baseline for Binary Classification: The Dutch Draw
	Introduction
	Preliminaries
	Essential conditions
	The Dutch Draw
	Theorem and proof
	Discussion and conclusion

	III Quantifying the Relationships between Random Variables
	The Berkelmans-Pries Dependency Function: A Generic Measure of Dependence between Random Variables
	Introduction
	Desired properties of a dependency function
	Assessing existing dependency measures
	The Berkelmans-Pries dependency function
	Properties BP dependency function
	Discussion and conclusion

	Appendices
	Formulations of UD
	Properties UD

	The Berkelmans-Pries Feature Importance Method: A Generic Measure of Informativeness of Features
	Introduction
	The Berkelmans-Pries Feature Importance
	Properties of BP-FI
	Comparing with existing methods
	Discussion and future research
	Summary
	Appendices
	Datasets
	Tests

	Bibliography

	Summary

