
The One Hundred Year Web
Steven Pemberton

Centrum Wiskunde & Informatica Amsterdam, The Netherlands
steven.pemberton@cwi.nl

ABSTRACT
The year 2023 marks the thirty-second anniversary of the World
Wide Web being announced.

In the intervening years, the web has become an essential part
of the fabric of society. Part of that is that huge amounts of infor-
mation that used to be available (only) on paper is now available
(only) electronically. One of the dangers of this is that owners of
information often treat the data as ephemeral, and delete old infor-
mation once it becomes out of date. As a result society is at risk of
losing large parts of its history.

So it is time to assess how we use the web, how it has been
designed, and what we should do to ensure that in one hundred
years time (and beyond) we will still be able to access, and read,
what we are now producing. We can still read 100 year-old books;
that should not be any diferent for the web.

This paper takes a historical view of the web, and discusses the
web from its early days: why it was successful compared with other
similar systems emerging at the time, the things it did right, the
mistakes that were made, and how it has developed to the web
we know today, to what extent it meets the requirements needed
for such an essential part of society’s infrastructure, and what still
needs to be done.

CCS CONCEPTS
• Social and professional topics → Professional topics; History of
computing; History of software; • Information systems → World
Wide Web; Web data description languages; Markup languages; •
General and reference → Cross-computing tools and techniques;
Design.

KEYWORDS
World Wide Web, History, Design, Declarative principles, Markup,
HTML, XML, XHTML, HTML5, Ephemera, Longevity, Data conser-
vancy

ACM Reference Format:
Steven Pemberton. 2023. The One Hundred Year Web. In Companion Pro-
ceedings of the ACM Web Conference 2023 (WWW ’23 Companion), April
30–May 04, 2023, Austin, TX, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3543873.3585578

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs International 4.0 License.

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9419-2/23/04.
https://doi.org/10.1145/3543873.3585578

1 THE WEB OF THE LONG NOW
New College, Oxford, built in 1379, has a dining hall with huge
oak beams in the roof. At a given point, they discovered the beams
needed replacing. But where do you fnd oak beams? So they ap-
proached the University forester, and asked him.

"Which college are you from?" he asked, "New College"
they replied. "Well, I’ve got your trees".

It turns out that around the time that New College was built,
they planted new trees to be ready for when they would need them
[3].

We don’t see that sort of attitude much these days.
This paper addresses the history and development of the web,

how it has progressed, and what we need still to do, amongst other
things to ensure longevity of its content.

2 THE ORIGINAL WEB
The year 2023 marks the thirty-second anniversary of the World
Wide Web being announced: on 6 August 1991, Tim Berners-Lee
posted a short summary of the World Wide Web project to an
internet newsgroup inviting collaborators; the frst web servers had
been made publicly available a few months earlier [9] .

The web had been made possible by the internet becoming open
and international, after the frst open internet node outside of North
America was installed at the CWI in Amsterdam, the Netherlands
in November 1988 [6]. Two spin-ofs were created to extend the
internet into the rest of Europe. On that day in 1988, public com-
puting itself was barely thirty years old: in 1957 a computer had
been installed for the frst time in a municipality, as it happens in
Norwich, UK [16].

In many ways, the original web was not revolutionary: hyper-
text programs that could do similar things already existed. What
the original web did was create the right combination of existing
elements:

• a hypertext foundation
• connected to the internet
• using a simple and easy-to-implement protocol very similar
to the existing FTP protocol

• separating document formats from the delivery methods
• using an existing markup methodology (SGML) that was
easy to understand and use, even for non-technical people

• allowing the combination of existing internet delivery mech-
anisms and formats so that people could leverage their exist-
ing online content for their frst web site,

and possibly the most important one:
• giving it all away for free.

The major innovation was the URL [17], which allowed you to
combine documents from a plethora of sources into a single web
page.

642

https://doi.org/10.1145/3543873.3585578
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3543873.3585578
mailto:steven.pemberton@cwi.nl
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543873.3585578&domain=pdf&date_stamp=2023-04-30

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA Steven Pemberton

Another major property was that it was based on declarative
principles.

3 THE DECLARATIVE PRINCIPLE
We learn in school what numbers are, and how to add, subtract, mul-
tiply and divide them. These are all procedural methods. However,
when we get to square roots, we are only told:

The square root of a number is another number that
multiplied by itself gives the original number.

This is a declarative defnition. It tells you what something is, it
tells you how to recognise it, but it doesn’t tell you how to calculate
it. Most people know what a square root is, but very few people
leave school knowing how to calculate one.

Now consider a procedural defnition of square root:

function f a:
{

x ← a
x' ← (a + 1) ÷ 2
eps ← 1.19209290e-07
while abs(x − x') > eps × x:
{

x ← x'
x' ← ((a ÷ x') + x') ÷ 2

}
return x'
}

This defnition raises many questions, not least of which is What
does it even do? But other questions include: Under what conditions
does it work? How does it do it? What is the theory behind it? Is it
correct? Can I prove it? Under what conditions may I replace it, or
parts of it with something else?

In fact, even if you know the theory, it is hard to determine how
it is used in this code, because the code has been optimised by un-
rolling the loop once, and pre-evaluating some constant expressions.
The issue is that the solution is very far from the problem state-
ment; this is one of the reasons that documentation is so important
in programming. In a nutshell, the advantages of the declarative
approach are that it is:

• (Much) shorter
• Easier to understand
• Independent of implementation
• Less likely to contain errors
• Easier to see it is correct
• Tractable.

4 DECLARATIVE MARKUP
One of the strengths of the original web was its declarative markup:
although there were some mistakes, the markup largely specifed
the role of the elements, rather than how they should appear. For
instance, an h1 was a top-level heading with no a priori requirement
that it be displayed in any particular way, larger or in bold. It just
stated its purpose.

Mistakes included hr (horizontal rule), and elements like b and i
for bold and italic, which specify a visual property rather than a
purpose, but most of the structure was purely declarative.

This has a number of advantages, including machine and modal-
ity independence: you can just as easily ’display’ such a document
with a voice-reader as on a screen, without having to use heuristics
to guess what is intended.

The poster-child of HTML declarative markup is the <a> ele-
ment:

My Talk

This single line compactly encapsulates a lot of behaviour in-
cluding

• what the link looks like
• what to do when you hover over the link
• activating the link in several ways
• what to do with the result
• hooks for presentation changes.

Doing this procedurally in program code would be a lot of work.

5 STYLE SHEETS
Another advantage of declarative markup is that since display prop-
erties are not baked in to the language you can use style sheets to
control the display properties of a document, without altering the
document itself.

In fact one of the frst activities of the newly-created W3C was
to add style-sheets as quickly as possible to undo the damage being
done by the browser manufacturers, who were unilaterally adding
visually-oriented elements to HTML, such as font, and blink.

The result, CSS, is another example of a successful declarative
approach [4].

When W3C started the CSS activity, Netscape, at the time the
leading browser, declined to join, saying that they had a better
solution, JSSS, based on Javascript – in other words a procedural
rather than declarative approach. Instead of the declarative CSS

h1 { font-size: 20pt }

you would use script to say

document.tags.H1.fontSize = "20pt";

The entry on Wikipedia remarks:
"JSSS lacked the various CSS selector features, support-
ing only simple tag name, class and id selectors. On the
other hand, since it is written using a complete program-
ming language, stylesheets can include highly complex
dynamic calculations and conditional processing." [12]

6 IMPLEMENTERS AS DESIGNERS
Implementers tend in general not to be great designers, because of
their tendency to focus on the implementation needs rather than
the user needs. For example, the original HTML surprisingly did not
have facilities for embedding images into documents, so they were
added by the implementers of the frst really successful browser,
Mosaic.

Unfortunately, they didn’t do a great job. They added a single
element to embed an image at that location in
the code. This has two regrettable, related, disadvantages: frstly,
there is no failure fallback, and secondly there is no alternative for
non-visual environments.

643

The One Hundred Year Web WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA

A better design would have allowed the element to have content
to be used in fallback cases. For instance

A cat, sitting on a mat.

If the outer img should fail for whatever reason (the resource
unavailable, the browser not supporting png images, or it being
a non-visual browser), the nested img would be tried, and if that
failed, the text would be used. The advantage of such a design to
visually impaired users of the web should be obvious. When png
images were introduced on the web, their usage was held back for
a long time because of the lack of such a mechanism: authors had
to wait until a critical mass of browsers were available that could
display the new image type before they could start using them,
creating the conditions for a potential vicious circle of them not
being used because there were no implementations, and not being
implemented because there were no users.

We have already mentioned the unfortunate blink and font ele-
ments that were introduced by the implementers, and we should
not let that excrescence the frameset, with its security and usability
problems, go unmentioned either.

7 HTML 4
One of the early tasks of the nascent W3C was to try and undo the
damage being inficted on the web by the implementors. By then
there were two warring browsers both adding new things, often
incompatible, and without consulting the community. The W3C
result was HTML4, a compromise between the diferent browsers,
but with a clear development path [10].

Examples of compromises that had to be made are HTML events
which have have both a capture and bubble phase, since the two
main browsers did it diferently, and that the meta element not
having content, but a content attribute instead, because one of the
browsers incorrectly displayed content in the head.

HTML4 came in three versions:

• Strict, indicating the future direction, and disallowing many
of the inappropriate elements;

• Transitional, in which the deprecated elements were allowed;
• Frameset, where frame elements were allowed.

HTML4 also properly used SGML, so that HTML documents
could be read and produced by existing SGML processors. However,
it was observed that SGML was overly complex for the task, and an
activity was started to defne a simpler version of SGML, a subset,
which became XML [23].

8 XML
XML had a big advantage as markup language, namely that it would
be possible to create documents that combined markup languages
from diferent domains. This meant that domain experts could
design (sub-)languages for their domain, that with proper design
would be combinable with other markup languages. Examples of
these domains included graphics (SVG), Mathematics (MathML),

Multimedia (SMIL), and Forms (XForms), although there were other
domains including semantics, and interaction events.

The advantages of such modularity should be obvious to anyone
who has programmed: they allow you to specify a thin interface
between the modules, and then design the modules independently.
It also implied the need for an XML version of HTML, so that it
could be part of this combinatorial activity, which became XHTML
[24].

9 XHTML
The frst version of XHTML was produced surprisingly quickly.
There was wide-scale agreement on a need, and there were few
decisions to be made, given that it was just to be a diferent serial-
ization of the same structures from HTML4. There were similarly
three versions as with HTML4, but with a clear indication that only
strict would be further developed.

The fact that using XML allowed the mixing of namespaces
in a single document was widely misunderstood, and there were
complaints that XHTML added no elements, but it in fact added
enormous amounts of functionality.

For instance, the image below is an example from 2002 of a single
document (that ran in browsers already) combining XHTML, SVG
and MathML [27] .

Also at this time there came a demand for variants of XHTML
to serve particular needs. Notable examples are XHTML Basic [2],
a smaller version for small devices such as mobile phones, and
XHTML Print [19] for use with printers specifcally for devices that
were unable to load device drivers for printers.

To avoid problems of divergence, a modularisation mechanism
for XHTML was devised [14], with corresponding modules, so that
to defne a new variant of XHTML, you only needed to specify
which modules you needed, and you had your language, with guar-
anteed consistency across the variants, and if an error was later

644

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA Steven Pemberton

corrected in a module, all the variants that used that module would
automatically be updated.

Consequently, a modularised version of XHTML was created,
XHTML 1.1 [25], but only in a strict version, with only slight dif-
ferences with XHTML 1.0 strict. This approach meant that when a
version of XHTML was required with RDFa added, it was a simple
matter of creating a module for RDFa, and publishing.

10 XHTML2
After XHTML 1.1, a new efort was started to make XHTML more
consistent, clear up some historical glitches (such as the empty meta
element, and no fall-back for images), and address new required
functionality, such as better metadata and forms. This was to be
XHTML2 [26].

Unfortunately, before it was ready, the group was closed by W3C
management, despite the membership having voted for it to be
retained.

The modules that the group were working on were moved to
other groups to continue development, such as ARIA [1], RDFa
[20], and XForms [22].

11 HTML5: A NEW WEB, BY PROGRAMMERS,
FOR PROGRAMMERS

At that point HTML was taken on a completely diferent path,
driven entirely by implementers, with little reference to users, pred-
icated on procedural methods, disregarding the fundamental design
principles of the web, and eschewing modularity, essentially turn-
ing HTML into a monolithic programming environment, namely
HTML5 [11].

11.1 Design
Much of HTML5 is not designed in the normal sense of the word,
although a design principles document was published [7].

One of the design principles quoted was "Pave the Cowpaths",
"Cowpaths" being a rather derogatory term for what in design
circles is normally referred to as "Desire Paths". This is a design-
principle used in architecture: when you build a campus or estate,
don’t pave the paths, but wait and see where people actually walk,
so you can see where they need paths.

But the design document got it wrong:

"When a practice is already widespread among authors,
consider adopting it rather than forbidding it or in-
venting something new. Authors already use the

syntax as opposed to
 in HTML and there is no
harm done by allowing that to be used."

This however is not "Paving the cowpaths", which would be
more like noticing that huge numbers of sites have a navigation
drop-down, and supporting that natively.

But even "Paving the cowpaths" is not necessarily a good design
practice in itself. Cows are not designers. Cowpaths are data. If you
pave cowpaths, you are setting in stone the behaviours caused by
the design decisions of the past. Cowpaths tell you where the cows
want to go, not how they want to get there. If they have to take a
path round a swamp to get to the meadow, then maybe it would be

a better idea to drain the swamp, or build a bridge over it, rather
than paving the path they take round it.

Paving cowpaths is a bad design principle in the way that it
was applied. It can be a good design principle, but they apparently
misunderstood it.

11.2 Faulty Cowpath-based Design
As an example, the HTML5 group spidered millions of pages, and
then on the basis of that data decided what should be excluded
from HTML5. This is exactly the opposite to "paving the cowpaths":
it is putting fences across cowpaths that are used by fewer cows
than some other paths, and even goes against their own proclaimed
design principles.

As an example, take the @rev attribute.
<link rel="next" href="chap2.html"/>
<link rev="prev" href="chap2.html"/>

@rel and @rev are complementary attributes, they are a pair,
like +/-, up/down, left/right.

The HTML5 group decided that not enough people were using
@rev, and so removed it. This breaks backwards compatibility, and
puts a fence before those who do need to use it. This is doubly bad
in the light of another of their design principles: "Support Existing
Content".

11.3 Irritated by Colon Disease
For years, the wider community on the web had agreed to use a
colon (:) to separate a name from the identifcation of the vocabulary
it comes from. A colon was a legal name character, and so it was
chosen to be backwards compatible, but in some environments
could be interpreted in a new way. For instance, xml:lang was an
attribute that could be used on any XML-based markup language to
identify the (natural) language being used in the contained content.

But for some reason a new separator was developed for HTML5:
the hyphen. For instance:
<div role="searchbox"

aria-labelledby="label"
aria-placeholder="MM-DD-YYYY">03-14-1879</div>

apparently re-inventing namespaces.
This also went against another of their design principles: Do not

Reinvent the Wheel.

11.4 Reinventing the Wheel
Despite not reinventing things being one of the design principles,
nevertheless that precept wasn’t followed. As has been noted:

"The amount of “not invented here” mentality that [per-
vades] the modern HTML5 spec is odious. Accessibility
in HTML5 isn’t being decided by experts. Process, when
challenged through W3C guidelines, is defended as be-
ing “not like the old ways”, in essence slapping the W3C
in the face. Ian’s made it clear he won’t play by the rules.
When well-meaning experts carefully announce their
opposing positions and desire for some form of closing
the gaps, Ian and the inner circle constantly express how
they don’t understand." [5]

645

The One Hundred Year Web WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA

"Not invented here" (NIH) syndrome is often warned against in
design books. For instance:

"Four social dynamics appear to underlie NIH:

• Belief that internal capabilities are superior to external ones.
• Fear of of losing control.
• Desire for credit and status.
• Signifcant emotional and fnancial investment in internal
initiatives." [13]

Many groups had already solved problems that HTML5 should
have used, but HTML5 decided to reinvent, usually with worse
results, since they were for areas that they were not experts in.

11.5 Not Invented Here: Microdata
To take an example, consider RDFa. This came as the result of the
question: How should you represent general metadata in HTML?

In 2003 a cross-working-group task force was created of inter-
ested parties to address the problem. This produced in 2004 a frst
working draft of RDFa, which in 2008 fnally became the RDFa
Recommendation [20], representing more than 5 years of work,
consensus, and agreement on how metadata should be represented
in HTML and related technologies.

Then a year later in 2009 the HTML5 group created Microdata
out of the blue [15], with no warning, and no discussion or consul-
tation, clearly copied from RDFa (it used the same attributes), but
diferent, and less capable. This created a lot of confusion in the web
community, muddying the Semantic web area. In 2013 Microdata
was abandoned, by which time the whole semantic area had been
damaged. Microdata has since been periodically revived.

11.6 Forward compatibility: Empty elements
One major improvement that XML introduced was a new notation
for empty elements:
. This one simple change meant that you
could parse a document without a DTD or Schema; you could parse
any document without knowledge of the elements involved, which
made the parser forward-compatible. Incomprehensibly, HTML5
dropped the requirement for this notation (probably because of
Irritated by Colon Disease), meaning that a processor now has to
know which elements are empty, and making it impossible to add
new empty elements to HTML (since it would break compatibility).

11.7 Programming
One of the problems of HTML5’s dependency on programming to
solve their design problems, and using Javascript as the basis of
functionality, is that standardisation has become compromised.

As an example take CSS presentation mode which allows you
to specify how any document should be formatted when doing a
presentation. Alas, HTML5 has taken the approach that you can do
this better in Javascript: no browser supports Presentation Mode
any more, and consequently numerous Javascript packages have
emerged to do presentation instead. But they are all diferent! This
means that you have to choose one of the available packages, and
format your slides according to the requirements of that package.
However, if that package is no longer supported, or doesn’t run
on a new browser, or the licence changes and you have to change

to another package, you are forced to change all your documents.
There is no standardisation.

Efectively, programmers are now doing the document design,
so all the documents become proprietary, and there is no interop-
erability, which is the whole point of standards. This is also why
there are so few new elements in HTML5: they haven’t done any
design, and instead said "if you need anything, you can always do
it in Javascript".

11.8 Frameworks
Another aspect of this is that instead of the HTML5 group design-
ing HTML, frameworks have emerged, so that now we have some
twenty-odd versions of HTML instead of just the one. To use facili-
ties you need, you have to decide which framework to use, all of
which are single-sourced, and diferent, and hope that it stays alive,
remains supported, works on all available browsers, and that they
don’t change the licencing agreement, because otherwise you are
going to have to rewrite your whole website.

"What favor of Javascript are you going to use? Are you
gonna use a transpiler? From what language? Grunt?
Gulp? Bower? Yeoman? Browserify? Webpack? Babel?
Common.js? Amd? Angular? Ember? Linting? What am
I talking about? Am I mixing things up? Am I confused?"

"Talking to the community about my “analysis paral-
ysis loop” caused by the excessive amount of available
tools to choose from and to investigate resulted in the
community suggesting to try out, spend time, learn and
investigate four more technologies that I haven’t even
considered in the frst place. Good job, Javascript!" [18]

The use of frameworks has created bloat, slowed the web, and
limited accessibility. To look at the web-page of one single tweet
of 140 characters, you have to download just under a megabyte.
It’s 5200 lines of HTML before you even get to the fve Javascript
packages. The whole of James Joyce’s Ulysses is only half as long
again.

"Because of #GDPR, USA Today decided to run a sepa-
rate version of their website for EU users, which has all
the tracking scripts and ads removed. The site seemed
very fast, so I did a performance audit. How fast the
internet could be without all the junk! It went from a
5.2MB download to 500KB and a load time of more than
45 seconds to 3 seconds, from 124 (!) JavaScript fles to
0, and from a total of more than 500 requests to 34." [8]
"Many developers who have grown up only using frame-
works have a total lack of understanding about the
fundamentals of HTML, such as valid and semantic
markup ... This is of great concern as semantic markup
is one of the core principles of an accessible web." [21]

11.9 Complexity
Finally, HTML5 has become so complex, that implementers have
found it hard to implement. This has led to an impoverishment of
the browser landscape, several browsers, even Microsoft!, having
given up trying and instead just put a new wrapper around Google’s
Chrome browser.

646

https://Common.js

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA

This is regrettable, giving a single player a disproportional power
over the web, and risking turning the web into a monoculture.

12 CONCLUSION
A sustainable web needs Modularity, Extensibility, Accessibility, and
Standardisation, based on Declarative Principles. A 100 year web is
needed because it is the way now that information is distributed.
The web pages that are being created now need to be readable in 100
years time, just as 100-year-old books are still readable. Requiring
a web-page to depend on a particular 100-year-old implementation
of Javascript and a framework which hasn’t been supported for
70 years and of which the creators are all dead is not in any sense
future-proof.

The web started of as a simple, easy-to-use, easy-to-write-for
infrastructure. Programmers, having taken over HTML, have re-
modelled it in their own image, and made it complicated, hard to
implement, and hard to write for, excluding many potential creators.

Hopefully, in the not-too-distant future, the web community can
come together again to try and undo the damage being inficted on
the web by the implementors, and bring it back to its declarative
roots. At least declarative markup is easier to keep alive because it
is independent of implementation!

REFERENCES
[1] James Craig et al. (eds), 2014, Accessible Rich Internet Applications (WAI-ARIA)

1.0, W3C, https://www.w3.org/TR/wai-aria-1.0/
[2] Mark Baker et al. (eds), 2000, XHTML Basic, W3C, https://www.w3.org/TR/2000/

REC-xhtml-basic-20001219/
[3] Stewart Brand, 1993, How Buildings Learn, Viking Press, ISBN 0140139966
[4] H,W, Lie et al, (eds), 1996, Cascading Style Sheets, level 1, W3C, https://www.w3.

org/TR/REC-CSS1/
[5] Kyle Weems, 2009, Behold Leviathan, Confused, http://cssquirrel.com/blog/2009/

08/03/behold-leviathan-confused/
[6] CWI, 2018, CWI celebrates 30 years of Open Internet in Europe, https://www.

cwi.nl/news/2018/cwi-celebrates-30-year-of-open-internet-in-europe

Steven Pemberton

[7] Anne van Kesteren et al. (eds), 2007, HTML Design Principles, W3C, https://www.
w3.org/TR/html-design-principles/

[8] Marcel Freinbichler. 2018, Tweet, https://twitter.com/fr3ino/status/
1000166112615714816

[9] History of the World Wide Web, Wikipedia, https://en.wikipedia.org/wiki/
History_of_the_World_Wide_Web

[10] Dave Raggett et al. (eds), 1997, HTML 4.0 Specifcation, W3C, https://www.w3.
org/TR/REC-html40-971218/

[11] WHATWG, 2022, HTML5, WHATWG, https://html.spec.whatwg.org/multipage/
[12] Wikipedia, JavaScript Style Sheets, https://en.wikipedia.org/wiki/JavaScript_

Style_Sheets
[13] William Lidwell et al., 2010, Universal Principles of Design, Rockport Publishers,

ISBN 1-59253-587-9
[14] Murray Altheim et al. (eds), 2001, Modularization of XHTML, W3C, https://www.

w3.org/TR/2001/REC-xhtml-modularization-20010410/
[15] Ian Hickson (ed.), 2010, HTML Microdata, W3C, https://www.w3.org/TR/2010/

WD-microdata-20100304/
[16] Norwich Record Ofce, 2016, The Norwich Computer, 1957, https://

norfolkrecordofceblog.org/2016/04/29/the-norwich-computer-1957/
[17] Steven Pemberton, 2020, On the design of the URL, in Proc. Declarative Amster-

dam 2020, Amsterdam, The Netherlands, https://declarative.amsterdam/article?
doi=da.2020.pemberton.design

[18] ‘pistacchio’, 2016, I’m a web developer and I’ve been stuck with the simplest
app for the last 10 days, Medium, https://medium.com/@pistacchio/i-m-a-web-
developer-and-i-ve-been-stuck-with-the-simplest-app-for-the-last-10-days-
fb5c50917df#.i7o9ivu3x

[19] Melinda Grant et al. (eds), 2006, XHTML-Print, W3C, https://www.w3.org/TR/
2006/REC-xhtml-print-20060920/

[20] Ben Adida et al. (eds)., 2008, RDFa in XHTML: Syntax and Processing, W3C,
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/

[21] Russ Weakley, 2015, Front End Frameworks - are they accessible? Slideshare, https:
//www.slideshare.net/maxdesign/front-end-frameworks-are-they-accessible

[22] John M. Boyer (ed.), 2009, XForms 1.1, W3C, https://www.w3.org/TR/xforms11/
[23] Tim Bray et al. (eds), 1998, Extensible Markup Language (XML) 1.0 http://www.

w3.org/TR/1998/REC-xml-19980210
[24] Steven Pemberton et al. (eds), 2000, XHTML™ 1.0: The Extensible HyperText

Markup Language, W3C, http://www.w3.org/TR/2000/REC-xhtml1-20000126
[25] Murray Altheim et al. (eds), 2001, XHTML™ 1.1 - Module-based XHTML, W3C,

https://www.w3.org/TR/2001/REC-xhtml11-20010531/
[26] Mark Birbeck et al. (eds.), 2010, XHTML 2.0, W3C, https://www.w3.org/TR/2010/

NOTE-xhtml2-20101216/
[27] 石川雅康(ISHIKAWA Masayasu), 2002, An XHTML + MathML + SVG Profle,

W3C, https://www.w3.org/TR/XHTMLplusMathMLplusSVG/

647

https://www.w3.org/TR/wai-aria-1.0/
https://www.w3.org/TR/2000/REC-xhtml-basic-20001219/
https://www.w3.org/TR/2000/REC-xhtml-basic-20001219/
https://www.w3.org/TR/REC-CSS1/
https://www.w3.org/TR/REC-CSS1/
http://cssquirrel.com/blog/2009/08/03/behold-leviathan-confused/
http://cssquirrel.com/blog/2009/08/03/behold-leviathan-confused/
https://www.cwi.nl/news/2018/cwi-celebrates-30-year-of-open-internet-in-europe
https://www.cwi.nl/news/2018/cwi-celebrates-30-year-of-open-internet-in-europe
https://www.w3.org/TR/html-design-principles/
https://www.w3.org/TR/html-design-principles/
https://twitter.com/fr3ino/status/1000166112615714816
https://twitter.com/fr3ino/status/1000166112615714816
https://en.wikipedia.org/wiki/History_of_the_World_Wide_Web
https://en.wikipedia.org/wiki/History_of_the_World_Wide_Web
https://www.w3.org/TR/REC-html40-971218/
https://www.w3.org/TR/REC-html40-971218/
https://html.spec.whatwg.org/multipage/
https://en.wikipedia.org/wiki/JavaScript_Style_Sheets
https://en.wikipedia.org/wiki/JavaScript_Style_Sheets
https://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/
https://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/
https://www.w3.org/TR/2010/WD-microdata-20100304/
https://www.w3.org/TR/2010/WD-microdata-20100304/
https://norfolkrecordofficeblog.org/2016/04/29/the-norwich-computer-1957/
https://norfolkrecordofficeblog.org/2016/04/29/the-norwich-computer-1957/
https://declarative.amsterdam/article?doi=da.2020.pemberton.design
https://declarative.amsterdam/article?doi=da.2020.pemberton.design
https://medium.com/@pistacchio/i-m-a-web-developer-and-i-ve-been-stuck-with-the-simplest-app-for-the-last-10-days-fb5c50917df#.i7o9ivu3x
https://medium.com/@pistacchio/i-m-a-web-developer-and-i-ve-been-stuck-with-the-simplest-app-for-the-last-10-days-fb5c50917df#.i7o9ivu3x
https://medium.com/@pistacchio/i-m-a-web-developer-and-i-ve-been-stuck-with-the-simplest-app-for-the-last-10-days-fb5c50917df#.i7o9ivu3x
https://www.w3.org/TR/2006/REC-xhtml-print-20060920/
https://www.w3.org/TR/2006/REC-xhtml-print-20060920/
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/
https://www.slideshare.net/maxdesign/front-end-frameworks-are-they-accessible
https://www.slideshare.net/maxdesign/front-end-frameworks-are-they-accessible
https://www.w3.org/TR/xforms11/
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/2000/REC-xhtml1-20000126
https://www.w3.org/TR/2001/REC-xhtml11-20010531/
https://www.w3.org/TR/2010/NOTE-xhtml2-20101216/
https://www.w3.org/TR/2010/NOTE-xhtml2-20101216/
https://www.w3.org/TR/XHTMLplusMathMLplusSVG/

	Abstract
	1 THE WEB OF THE LONG NOW
	2 THE ORIGINAL WEB
	3 THE DECLARATIVE PRINCIPLE
	4 DECLARATIVE MARKUP
	5 STYLE SHEETS
	6 IMPLEMENTERS AS DESIGNERS
	7 HTML 4
	8 XML
	9 XHTML
	10 XHTML2
	11 HTML5: A NEW WEB, BY PROGRAMMERS, FOR PROGRAMMERS
	11.1 Design
	11.2 Faulty Cowpath-based Design
	11.3 Irritated by Colon Disease
	11.4 Reinventing the Wheel
	11.5 Not Invented Here: Microdata
	11.6 Forward compatibility: Empty elements
	11.7 Programming
	11.8 Frameworks
	11.9 Complexity

	12 CONCLUSION
	References

