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Abstract We develop E-variables for testing whether two or more data streams come from the
same source or not, and more generally, whether the difference between the sources is larger than
some minimal effect size. These E-variables lead to exact, nonasymptotic tests that remain safe,
i.e. keep their type-I error guarantees, under flexible sampling scenarios such as optional stopping
and continuation. In special cases our E-variables also have an optimal ‘growth’ property under
the alternative. While the construction is generic, we illustrate it through the special case of
k × 2 contingency tables, where we also allow for the incorporation of different restrictions on a
composite alternative. Comparison to p-value analysis in simulations and a real-world example
show that E-variables, through their flexibility, often allow for early stopping of data collection —
thereby retaining similar power as classical methods — while also retaining the option of extending
or combining data afterwards.

Keywords E-values, Hypothesis testing, Sequential test, Type-I error control, Composite hypothesis,
Test martingale
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1 Introduction

We develop hypothesis tests that are robust under flexible sampling scenarios, in which one is
allowed to engage in optional continuation and optional stopping. We focus on the setting with
data coming from several groups, the goal being to test whether the underlying distributions are all
the same or not. Since it considerably simplifies notation and treatment, we focus on two-sample
tests throughout the paper, pointing out at the relevant places how to extend our results to the
k-sample setting for k > 2. Our methods are based on E–variables and test martingales. While
to some extent going back as far as Darling and Robbins (1967), interest in these concepts has
exploded only very recently, in part in relation to the ongoing replicability crisis in the applied
sciences (Howard et al., 2021; Ramdas et al., 2020; Vovk and Wang, 2021; Shafer, 2021; Grünwald
et al., 2022; Pace and Salvan, 2019; Manole and Ramdas, 2021; Henzi and Ziegel, 2021).

Thus, suppose we collect samples from two distinct groups, denoted a and b. In both groups,
data are i.i.d. and come in sequentially — even though, as explained underneath (1.1) below, our
approach can also be fruitfully used in the fixed design case. We thus have two data streams,
Y1,a, Y2,a, . . . i.i.d. ∼ Pθa and Y1,b, Y2,b, . . . i.i.d. ∼ Pθb with θa, θb ∈ Θ, {Pθ : θ ∈ Θ} representing
some parameterized underlying family of distributions, all assumed to have a probability density
or mass function denoted by pθ on some outcome space Y. We will use notation P(θa,θb) (density
p(θa,θb)) to represent the joint distribution of both streams. We consider a testing scenario, in which
the null hypothesis H0 expresses that θa = θb and the alternative H1 expresses that d(θa, θb) > δ
for some divergence measure d and some effect size δ ≥ 0. We design a family of tests for this
scenario that preserve type-I error guarantees under optional stopping. Hence, if the level α-test
is performed and the null hypothesis holds true, the probability that the null will ever be rejected
is bounded by α. Our tests can be implemented, and are exact, for arbitrary {Pθ : θ ∈ Θ} and in
combination with arbitrary divergence measures d. To our knowledge such a general construction is
entirely new. For purposes of illustration and insight we choose to apply it to a very simple, classical
problem: 2×2 contingency tables, with, in Section 5, an extension to k×2 tables. As is well-known
(for completeness we provide simulations demonstrating this in the supporting information), if a
standard fixed-design method for this scenario, the p-value resulting from Fisher’s exact test, is
(ab)used with optional stopping, the type-I error blows up. In contrast, our tests retain type-I error
guarantee while, due to the optional stopping, having power competitive with Fisher’s p-value. In
fact, in the k × 2 application (but not in general) our test has a GRO1 (growth-rate optimal)
property, GRO being the analogue of ’optimal power’ in our optional continuation setting.

Our test depends on the choice of a prior distribution on the alternative H1 = {P(θa,θb) :
(θa, θb) ∈ Θ1} with Θ1 ⊂ {(θa, θb) : θa, θb ∈ Θ}. The choice of prior does not affect the type-I error
safety guarantee, hence it is fine, even from a frequentist point of view, if such a prior is chosen
based on vague prior knowledge. Still, the prior affects how fast one will tend to reject the null if
it is indeed false. For the case that no clear prior knowledge is available, one may use the prior

1Nonstandard abbreviations: GRO: growth-rate optimal; REGROW: relative growth-rate optimality in worst-case
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that is optimal in terms of the relative GRO criterion; again the resulting test also has good power
properties.

E–Variable Perspective; Block-wise Approach; Optional Continuation In its simplest
form, an E-variable is a nonnegative random variable S such that under all distributions P in the
null hypothesis,

EP [S] ≤ 1. (1.1)

Our test works by first designing E-variables for a single block of data, and then later extending
these to sequences of blocks Y(1), Y(2), . . . by multiplication. A block is a set of data consisting of
na outcomes in group a and nb outcomes in group b, for some pre-specified na and nb. The na and
nb used for the j-th block Y(j) are allowed to depend on past data, but they must be fixed before
the first observation in block j occurs (this rule can be loosened to some extent, see Section 2.1).

At each point in time, the running product of block E-variables observed so far is itself an
E-variable, and the random process of the products is known as a test martingale. An E-variable-based
test at level α is then a test with, in combination with any stopping rule τ , reports ‘reject’ if and
only if the product of E-values corresponding to all blocks that were observed so far and have already
been completed, is larger than 1/α. The full definition of τ may, and often will, be unknown to the
user — the user only needs to get the signal to stop and can then report the product E-variable. A
classical paired one-sample test corresponds to the special case with na = nb = 1 and data coming
in in the order a, b, a, b, . . ..

We can combine E-variables from different trials that share a common null (but may be defined
relative to a different alternative) by multiplication, and still retain type-I error control. If we used
p-values rather than E-variables we would have to resort to e.g. Fisher’s method for combining
p-values, which, in contrast to multiplication of e-values, is invalid if there is a dependency between
the (decision to perform) tests. With E-variables, such dependencies pose no problems for error
control. Thus, in our setting, even if the design (i.e. na and nb) is fixed in advance and optional
stopping plays no role, we might still want to use the E-variable based tests described in this
paper rather than a classic p-value based approach, since it allows us to do optional continuation
over many experiments/studies (essentially, doing a meta-analysis (Ter Schure et al., 2021)) while
keeping type-I error control.

E-variables and test martingales are explained in more detail in Section 1.1 below, but we
refer to Grünwald et al. (2022); Shafer (2021) for an extensive introduction to E-variables, their
use in ‘optional continuation’ over several studies, and their enlightening betting interpretation.
The general story that emerges from these papers as well as, for example, (Vovk and Wang,
2021; Ramdas et al., 2020) is that E-variables and test martingales are the ‘right’ generalization of
likelihood ratios to the case that both H0 and H1 can be composite and combination of data from
several trials may be required.
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Relevance Even in this age of big data and huge models, simple tests for comparing two
populations are still used as heavily as ever in clinical trials, psychological studies and so on —
areas heavily plagued by the reproducibility crisis (Pace and Salvan, 2019). In a by-now notorious
questionnaire (John et al., 2012), more than 55% of the interviewed psychologists admitted to the
practice of ‘adding data until the results look good’. While classical methods lose their type-I error
guarantee if one does this (Figure S3.1 in Appendix S3 in the Supporting Material), E–value based
tests allow for it, while, due to the option of stopping early, remaining competitive in terms of
sample sizes needed to obtain a desired power. We illustrate the practical advantage of our test
in Section 6 using the recent real-world example of the SWEPIS trial which was stopped early for
harm (Wennerholm et al., 2019). Their analysis being based on a p-value (by definition designed
for fixed sampling plan), the question whether there was indeed sufficient evidence available to stop
early is very hard to answer, since the sampling plan was not followed so that the p-value that led
them to stop was by definition incorrectly calculated. This also makes it very difficult to combine
the test results with results from earlier or future data while keeping anything like error control.
We show that with our E–value based methodology we would have obtained sufficient evidence
to stop for harm after the same number of events had occurred. Additionally, this E–value, even
though based on a stopped trial, can be effortlessly combined with E–values from other trials while
retaining error guarantees. Also, our results are of interest beyond mere testing: the E–variables
we develop in this paper can be used to obtain anytime-valid confidence intervals (Howard et al.,
2021) that also remain valid under optional stopping. We will report on this extension elsewhere.

SWEPIS summarized its data as a 2 × 2 contingency table. In Section 3 and 4 we refine our
generic test to the 2×2and k×2 model. An advantage of focusing on this simple setting is that it is
arguably the simplest and clearest example in which there is a nuisance parameter (the proportion
under the null) that does not admit a group invariance. Nuisance parameters that satisfy such an
invariance (such as the variance in the t-test, or the grand mean in the two-sample t-test) are quite
straightforward to turn into E–variables and test martingales via the method of maximal invariants,
as explained by Grünwald et al. (2022) and already put into practice by e.g. Robbins (1970); Lai
(1976). The present paper shows that the proportion under the null can also be handled in a clean
and simple manner. As explained below, the resulting instantiated 2× 2 test appears to be quite
different from existing sequential and Bayesian approaches. Thus, more than 85 years after the lady
tasting tea, we are able to still say something quite new about the age-old problem of contingency
table testing.

Related Work A sequential test for the 2×2 setting has been suggested as early as 1947 by Wald
in his seminal (Wald, 1947) . Wald’s test can be turned into a product of E-variables and would
then be safe to use under optional stopping. Yet, as explained in Section 7.2, in the 2×2 setting the
resulting E-variables do not grow as fast as the ones introduced here, and the underlying idea does
not generalize to arbitrary models or effect size notions. Other earlier approaches (e.g. (Siegmund,
2013, Section V.2)) are based on asymptotic approximations. In contrast, our E–variable based
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tests are exact and nonasymptotic. In fact our tests are more closely related to, yet still different
from, Bayes factor tests: in the case of simple null hypotheses, E–variable based tests coincide with
Bayes factors (Grünwald et al., 2022). However, in the 2 × 2 setting the null is not simple, and
while the Bayes factor is a ratio of two Bayes marginal likelihoods, our E–variables are ratios of
more general, ‘prequential’ (Dawid, 1984) likelihood ratios. In some special cases, the numerator
is still a Bayes marginal likelihood, but the denominator, in the 2 × 2 setting, almost never is
(Section 2.2) . Thus, while similar in ‘look’, our approach is in the end quite different from the
default Bayes factors for tests of two proportions that were proposed by Kass and Vaidyanathan
(1992) and by Jamil et al. (2017), the latter based on early work by Gunel and Dickey (1974).
To illustrate, in Appendix S2 (Supplementary Material) we show that none of the variants of the
Gunel-Dickey Bayes factor that are applicable in our set-up yield valid E-variables.

Another, very recent, approach that bears some similarity to ours are the two-sample tests from
Manole and Ramdas (2021). They focus on a nonparametric setting and their test martingales
satisfy optimality properties as the sample size gets large. Instead, we focus on the parametric case
and, for this case, manage to derive E-variables that are equal to or closely approximate the optimal
(as measured according to the GRO criterion) E-variables, thus optimizing for the small-sample
case (in principle, our tests could be used in a nonparametric setting as well, but since they rely
on using a prior on the alternative, the test martingales of Manole and Ramdas (2021) might be
easier to use in that case). Another general nonparametric two-sample approach with a sequential
flavor (but without optional stopping error guarantees) is Lhéritier and Cazals (2018).

Contents In the remainder of this introductory section, we formally introduce E-variables, optional
stopping and the concept of GRO-optimality. In Section 2 we propose our generic E-variable for
tests of two streams in general and investigate when it has the GRO property. In Sections 3 and
4 we specifically show how these general E-variables can be applied in the setting of a test of two
proportions, with and without restrictions on the alternative hypothesis. In Sections 5 and 6 we
provide, through simulations and a real-world example, comparisons of various E-variables and
Fisher’s exact test with respect to GRO and power. In Section 7 we compare our generic approach
to other E-variables one might define for this problem, including the ones based on Wald’s section
test. We end with a conclusion. All proofs are in the appendix.

1.1 E-Variables and Test Martingales, Safety and Optimality

We first need to extend the notion of E-variable to random processes:

Definition 1. Let {Y(j)}j∈N, with all Y(j) taking values in some set Y, represent a discrete-time
random process. Let H0 be a collection of distributions for the process {Y(j)}j∈N. For all j ∈ N,

let S(j) be a non-negative random variable that is adapted to σ(Y (j)), with Y (j) = (Y(1), . . . , Y(j)),

i.e. there exists a function s such that S(j) = s(Y (j)).
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1. We say that S(j) is an E–variable for Y(j) conditionally on Y (j−1) if for all P ∈ H0,

EP

[
S(j) | Y(1), . . . , Y(j−1)

]
≤ 1. (1.2)

That is, for each y(j−1) ∈ Yj−1, all P0 ∈ H0, (1.1) holds with S = s(y(1), . . . , y(j−1), Y(j)) and

P set to P0 | Y (j−1) = y(j−1).

2. If, for each j, S(j) is an E-variable conditional on Y(1), . . . , Y(j−1), then we call the process
{S(j)}j∈N a sequential E-variable process relative to the given H0 and {Y(j)}j∈N and we call

{S(m)}m∈N with S(m) =
∏m
j=1 S(j) the corresponding test martingale.

Henceforth, we omit the phrase ‘relative to H0 and {Y(j)}j∈N’ whenever it is clear from the
context. By the tower property of conditional expectation, one verifies that for any process of
conditional E-variables {S(j)}j∈N, we have for all m that the product S(m) is itself an ‘unconditional’

E-variable as in (1.1), i.e. EP [S(m)] ≤ 1 for all P ∈ H0. Definition 1 adapts and slightly modifies
terminology from (Shafer et al., 2011). As follows from that paper, in standard martingale
terminology, what we call a test martingale is a non-negative supermartingale relative to the
filtration induced by {Y(j)}j∈N, with starting value 1.

Safety The interest in E-variables and test martingales derives from the fact that we have type-I
error control irrespective of the stopping rule used: for any test martingale {S(j)}j∈N, Ville’s
inequality (Shafer, 2021) tells us that, for all 0 < α ≤ 1, P ∈ H0,

P (there exists j such that S(j) ≥ 1/α) ≤ α. (1.3)

Thus, if we measure evidence against the null hypothesis after observing j data units by S(j), and
we reject the null hypothesis if S(j) ≥ 1/α, then our type-I error will be bounded by α, no matter
what stopping rule we used for determining j. We thus have type-I error control even if we use the
most aggressive stopping rule compatible with this scenario, where we stop at the first j at which
S(j) ≥ 1/α (or we run out of data, or money to generate new data). We also have type-I error
control if the actual stopping rule is unknown to us, or determined by external factors independent
of the data Y(j).

We will call any test based on {S(j)}j∈N and a (potentially unknown) stopping time τ that,
after stopping, rejects iff S(τ) ≥ 1/α a level α-test that is safe under optional stopping, or simply
a safe test.

Example 1. Let P0 and Q be any two distributions for the process Y(1), Y(2), . . ., and letH0 = {P0}
represent a simple null. Let S(m) denote the likelihood ratio for m outcomes and S(j) its constituent
factors, i.e.

S(m) =
q(Y (m))

p0(Y (m))
=

m∏
j=1

S(j) with S(j) =
q(Y(j) | Y (j−1))

p0(Y(j) | Y (j−1))
(1.4)
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where q(y(m) | y(m−1)) denotes the conditional density corresponding to Q and p0(y(m) | y(m−1)) the
one corresponding to P0 with respect to a common underlying measure. Then the likelihood ratio
process {S(m)}m∈N constitutes a test martingale, and the process of past-conditional likelihoods
{S(j)} is a sequential E-variable process relative to H0. This can be immediately verified by

directly calculating the conditional expectation of S(j) given Y (j−1), noticing that the densities

p0(Y(j)|Y (j−1)) cancel in the calculation.

GRO-Optimality, Simple H1 Just like for p-values, the definition of E-variables only requires
explicit specification of H0, not of an alternative hypothesis H1. H1 becomes crucial once we
distinguish between ‘good’ and ‘bad’ E-variables: E-variables have been designed to remain small,
with high probability, under the null H0. But if H1 rather than H0 is true, then ‘good’ E-variables
should produce evidence (grow — because the larger the E-variable, the closer we are to rejecting
the null) against H0 as fast as possible. To make this precise, first consider simple (singleton)
H1 = {Q}. We start with the one-outcome setting of (1.1), i.e. we look at a single E-variable S(j)

in isolation for a single outcome Y(j). Its optimality is measured in terms of

EQ[logS(j)], (1.5)

and the E-variable which maximizes this quantity among all E-variables that can be written as
functions of Y(j) (i.e. non-negative random variables satisfying (1.1)), assuming it exists, is called
the Growth Rate Optimal E-variable for Y(j) relative to Q, or simply ‘Q-GRO for Y(j)’, and denoted

as Sgro(Q),(j) More generally, E-variable S(m) is called growth rate optimal relative to Q for Y (m),

or simply Q-GRO for Y (m), if, among all (unconditional) E–variables that can be written as a
function of Y (m), it maximizes

EQ[logS(m)]. (1.6)

We will denote this E–variable, if it exists, by S
(m)
gro(Q). The idea to maximize (1.6) goes back to

Kelly (1956); the GRO-terminology is from Grünwald et al. (2022). The larger an E–variable or
test martingale tends to be under the alternative, the better it scores in the GRO sense. Of course,
the same would still hold if we were to replace the logarithm by another strictly increasing function.
But there are various compelling reasons for why one should take a logarithm here — see Grünwald
et al. (2022); Shafer (2021). One interesting reason, not explicitly covered by these two papers, was
already given by Breiman (1961) and is explained in detail by (Ter Schure et al., 2021, Appendix
B.1): the Q-GRO test martingale is also the test martingale which minimizes the expected number
of data points needed before the null can be rejected if we use the test with the aggressive stopping
rule described before (reject at the smallest j such that S(j) ≥ 1/α). Thus, using the Q-GRO test
martingale is quite analogous to employing a test that maximizes power. One can also directly see
that both notions must be connected by noting that GRO implies optimizing the expectation of
logS(j) whereas power at fixed sample size j is the probability that logS(j) is larger than − logα.
Note that we cannot directly use power in designing tests, since the notion of power requires a
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fixed sampling plan, which we will usually not have: we may not want or not be able to stop at the
first j such that we can reject — for example, we might want to stop early for harm (Section 6),
or we might want to lower α if the first few outcomes look very promising. So we will measure
optimality in terms of GRO instead, but for practical usefulness we do hope that, in cases where
we do follow the sampling plan above (stop as soon as S(j) ≥ 1/α)), our power remains reasonable.
This is suggested by Breiman’s observation above, but we want to check it nevertheless. Such a
check is done successfully for the 2× 2 model in Section 5.

In ‘nice’ cases, the Q-GRO E–variable (1.6) for m outcomes can be obtained by multiplying the
individual Q-GRO E–variables:

Proposition 1. Let H1 = {Q} be simple and H0 be potentially composite, and ‘nondegenerate’ in
the sense that for some P ∈ H0, D(Q‖P ) < ∞, D(·‖·) denoting the KL divergence. Suppose the
following condition holds (with q, p the density of Q and P , respectively):

There exists a P ∈ H0 such that S(1) = q(Y(1))/p(Y(1)) is an E–variable. (1.7)

Then S(1) = Sgro(Q),(1) is the Q-GRO E-variable for Y(1). An E-variable of this form automatically
exists if H0 is simple. If we further assume that Y(1), Y(2), . . . are i.i.d. according to all distributions

in H0 ∪ H1, then S
(m)
gro(Q) =

∏m
j=1 Sgro(Q),(j), i.e. the Q-GRO optimal (unconditional) E-variable

for Y (m) is the product of the individual Q-GRO optimal E-variables.

If Condition (1.7) holds and Y(1), Y(2), . . . are i.i.d. according to all distributions in H0 ∪H1, it

thus makes sense to define the Q-GRO test martingale to be the test martingale (S
(j)
gro(Q))j∈N. We

will then have that Sgro(Q),(j) = sQ(Y(j)) for a fixed function sQ : Y → R+
0 .

Example 2. [Simple H1 and Simple H0] Consider H1 = {Q} and simple H0 = {P0} and
arbitraryQ′ such that the Y(j) are i.i.d. according to P,Q andQ′. Then S(j) = q′(Y(j))/p0(Y(j)) is an
E-variable for Y(j), irrespective of the definition ofQ′, by the same argument as in Example 1. By the
Proposition above, the Q-GRO E-variable for Y(j) is given by setting q′ = q. Then EQ[Sgro(Q),(j)] =
EY(j)∼Q[log q(Y(j))/p0(Y(j))] also coincides with the KL divergence between Q and P0.

In Section 2 (Theorem 1) we develop functions sQ (denoted s(·;na, nb, θ∗a, θ∗b ) there) for simple
H1 = {Q} so that SQ,(1) = sQ(Y(1)) is an E–variable even thoughH0 is composite and not convex, so
that Proposition 1 does not apply. Since we invariably assume the Y(j) are i.i.d., SQ,(j) := sQ(Y(j))

is an E–variable as well and with S
(m)
Q :=

∏m
j=1 SQ,(j), (S

(m)
Q )m∈N is a test martingale. The

construction works for the general setting of two data streams discussed in the introduction, and
for some special H0 (even though composite and nonconvex), the SQ,(j) will in fact be Q-GRO

and (S
(m)
Q )m∈N will be the Q-GRO test martingale. These include the H0 that arise in the 2 × 2

setting, our main application. For other H0, the E− variables SQ,(j) will not necessarily have
the Q-GRO-property; they are designed to have (1.6) large, but it may be even larger for other
E-variables.
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GRO and Composite H1 In case H1 is composite, no direct analogue of the GRO-criterion
for designing E-variables exists, since it is not clear under what distribution Q ∈ H1 we should
maximize (1.6). In this paper, we deal with this situation by learning Q from the data in a
Bayesian fashion. It is now convenient to write H1 = {Pθ : θ ∈ Θ1} in a parameterized manner
(accordingly, henceforth we shall write θ1-GRO E-variable instead of Pθ1-GRO E–variable and
Sgro(θ),(j) instead of Sgro(Pθ),(j)). We will assume i.i.d. data, thus, if H1 were true, then data
would be i.i.d. ∼ Pθ∗1 for some θ∗1 ∈ Θ1. Starting with a distribution W on Θ1, i.e. a prior,

at each point in time j, we determine the Bayesian posterior W | Y (j−1) and use the Bayes
predictive PW |Y (j−1) :=

∫
Θ1
PθdW (θ | Y (j−1)) as an estimate for the ‘true’ Pθ∗1 . As is well-known,

under conditions on W and H1 (which, if H1 is finite-dimensional parametric, are very mild), the
posterior will concentrate around θ∗ and hence PW |Y (j−1) will resemble Pθ∗1 more and more, with
very high probability, as more data becomes available.

At each point in time j, we use our current estimate PW |Y (j−1) to design a conditional E-variable
S(j). On an informal level, as long as PW |Y (j−1) converges to the ‘true’ Pθ∗1 , the S(j) will in fact also
start to more and more resemble the E–variables Sgro(θ∗1),(j) we designed for H1 = {Pθ∗1} and which
were designed to have a large expected growth under the ‘true’ Pθ∗1 . Assuming the convergence
happens fast, we have that

EY (m)∼Pθ∗1

logS
(m)
gro(θ∗1) − log

m∏
j=1

S(j)

 (1.8)

is small, i.e. we may expect that the test martingale
∏m
j=1 S(j) grows not much slower than

S
(m)
gro(θ∗1) =

∏m
j=1 Sgro(θ∗1),(j), the best test martingale (maximizing EY (m)∼Pθ∗1

[logS] over all E-variables

S for Y (m)) we could have used if we had known the true Pθ∗1 all along.

2 Two-Stream Safe Tests

Consider the two-stream setting introduced in the beginning of the paper. To formalize it further,
we introduce calendar time t = 1, 2, . . . and corresponding random variables Vt and Gt: at each t,
we obtain an outcome Vt in Y in group Gt ∈ {a, b}. Importantly though, at this point we make no
assumptions about the relative ordering of outcomes from the two groups. At time t, we have that
ta, the number of a’s that are observed so far, and tb, the number of b’s observed so far, satisfy
ta + tb = t, but subject to this constraint we allow them coming in any order, e.g. first all a’s, or
first all b’s, or interleaved. For example, with ta = 3 and tb = 2, we might have V1 = Y1,a, V2 =
Y2,a, V3 = Y3,a, V4 = Y1,b, V5 = Y2,b (all as come first, G1 = G2 = G3 = a,G4 = G5 = b) but also,
for example V1 = Y1,a, V2 = Y1,b, V3 = Y2,a, V4 = Y3,a, V5 = Y2,b.

We thus have that the (marginal) probability of the first t = ta + tb outcomes, given that ta of
these are in group a and tb in group b, and writing yt = (y1, . . . , yt), is given by the probability
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density (or mass function)

pθa,θb(y
ta
a , y

tb
b ) := pθa(ytaa )pθb(y

tb
b ) =

ta∏
t=1

pθa(yt,a)

tb∏
t=1

pθb(yt,b). (2.1)

To indicate that random vector (Y ta
a , Y tb

b ) := (Y1,a . . . , Yta,a, Y1,b, . . . , Ytb,b) has a distribution represented

by (2.1) we write ‘Y ta
a , Y tb

b ∼ Pθ∗a,θ∗b ’.
According to the null hypothesis H0 = {Pθa,θb : (θa, θb) ∈ Θ0}, Θ0 = {(θ, θ) : θ ∈ Θ}, both

processes coincide. Thus, we have that θ∗a = θ∗b = θ0 for some θ0 ∈ Θ and then the density of data
ytaa , y

tb
b is given by pθ0(y1,a, . . . , yta,a, y1,b, . . . , ytb,b).

2.1 A generic E-variable for 2-stream–blocks

We first consider the case in which the alternative hypothesis is simple: Θ1 = {θ1} for some fixed
θ1 = (θ∗a, θ

∗
b ) ∈ Θ2. Consider a fixed sample size of size n, and assume that we will observe a block

of na outcomes in group a and nb outcomes in group b. In this case, we can define an E-variable as
the likelihood ratio between pθ∗a,θ∗b and a carefully chosen distribution that is a product of mixtures
of distributions from Θ0: for na, nb ∈ N, n := na + nb and ynaa = (y1,a, . . . , yna,a) ∈ Yna and
ynbb = (y1,b, . . . , ynb,b) ∈ Ynb , we define:

s(ynaa , ynbb ;na, nb, θ
∗
a, θ
∗
b ) :=

pθ∗a(ynaa )∏na
i=1

(
na
n pθ∗a(yi,a) + nb

n pθ∗b (yi,a)
) · pθ∗b (ynbb )∏nb

i=1

(
na
n pθ∗a(yi,b) + nb

n pθ∗b (yi,b)
) . (2.2)

Theorem 1. The random variable S[na,nb,θ∗a,θ
∗
b ] := s(Y na

a , Y nb
b ;na, nb, θ

∗
a, θ
∗
b ) is an E-variable, i.e.

we have:
sup
θ∈Θ

EV n∼Pθ [s(V n;na, nb, θ
∗
a, θ
∗
b )] ≤ 1.

Moreover, if {Pθ : θ ∈ Θ} is a convex set of distributions, then S[na,nb,θ∗a,θ
∗
b ] is the (θ∗a, θ

∗
b )-GRO

E-variable: for any non-negative function s′ on Yna+nb satisfying supθ∈Θ EV n∼Pθ [s′(V n)] ≤ 1, we
have:

EY naa ,Y
nb
b ∼Pθ∗a,θ∗b

[log s(Y na
a , Y nb

b ;na, nb, θ
∗
a, θ
∗
b )] ≥ EY naa ,Y

nb
b ∼Pθ∗a,θ∗b

[log s′(Y na
a , Y nb

b )].

Crucially, in the second part of the theorem, we do not require convexity of H0, a set of
distributions over Yna+nb (ifH0 were convex, the GRO property would already follow automatically
(Koolen and Grünwald, 2021)), but instead of {Pθ : θ ∈ Θ}, a set of distributions on Y. In the
2×2 case H0 is not convex, since the set of i.i.d. Bernoulli distributions over na+nb > 1 outcomes
is not convex; but {Pθ : θ ∈ Θ} is just the Bernoulli model on one outcome, which is convex, so
that in this setting, we get the GRO E-variable.
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To illustrate, consider the basic case in which data comes in in fixed batches Y(1), Y(2), . . ., with
each batch Y(j) = ((Y(j−1)na+1,a, Y(j−1)na+2,a, . . . , Yjna,a) , (Y(j−1)nb+1,b, Y(j−1)nb+2,b, . . . , Yjnb,b)),
having exactly na outcomes in group a and nb outcomes in group b, and let n = na + nb. This
case would obtain, for example, in a sequential clinical trial in which patients come in one by one,
each odd patient is given the treatment and each even patient is given the placebo. Then n = 2,
na = nb = 1. We may then measure the evidence against the null hypothesis by the product
E-value

S
(m)
[na,nb,θ∗a,θ

∗
b ]

:=
m∏
j=1

S(j),[na,nb,θ∗a,θ
∗
b ] ; S(j),[na,nb,θ∗a,θ

∗
b ] := s(Y(j);na, nb, θ

∗
a, θ
∗
b ). (2.3)

By Ville’s inequality (1.3), the probability under any distribution in the null that there is an m

with S
(m)
[na,nb,θ∗a,θ

∗
b ] larger than 1/α, is bounded by α, hence, type-I error guarantees are preserved

under optional stopping if we perform the test based on {S(m)
[na,nb,θ∗a,θ

∗
b ]}m∈N as defined underneath

(1.3), as long as we stop between and not ‘within’ batches (if we stop within a batch, the E-variable

S
(m)
[na,nb,θ∗a,θ

∗
b ] is undefined).

If the data do not come in batches of equal size, we may proceed as follows. First, we need
to fix some na ≥ 1 and nb ≥ 1 of our own choice. The treatment below will give valid E-variables
irrespective of our choice of na and nb, but it will be seen that some choices are much more
reasonable (will lead to much more evidence against the null, if the null is false) than others.

Thus, fix na and nb, set n = na+nb. At each time t, we will have observed, so far, some number
ta of outcomes in group a, and tb in group b. Now let mt be the largest m such that mna ≤ ta and
mnb ≤ tb. Now, for m = 1, 2, . . ., define Y(m) as above. At any given time t, Y(1), Y(2), . . . , Y(mt)

will have been observed, and there may be a number n′j remaining observations in group j ∈ {a, b}
so that either n′a < na or n′b < nb or both. Since the {Y(j)}j∈N determine a test martingale in the
sense of Definition 1, optional stopping while preserving type-I error guarantees is then possible at
any point in time t, as long as the E-variable is calculated as (2.3) above for m = mt, thus ignoring
the final n′a + n′b outcomes.

How should na and nb be chosen in practice? For example, consider a variation of the clinical
trial setting above in which the treatment-control assignment is randomized: for each incoming
patient, a fair coin is flipped to decide treatment (a) or placebo (b). Then at any given time the
number of patients in group a and b will not be precisely equal, but if we choose na = nb = 1 as
above it is highly unlikely that the amount of data we have to ignore at any given time t is very
large. Similarly, if Gt, the group membership of the t-th observation is itself i.i.d. according to
some distribution P ∗, we might have some idea of the probability p∗(a) assigned to group a; if
p∗(a) = 2/5 (say), we would choose na = 2, nb = 3.

We can add a significant amount of extra flexibility by allowing for variable group sizes, i.e.,
the chosen na and nb may depend on the past. For this, we introduce a function f :

⋃
t≥0 Yt ×

{0, 1}t → {stop-block,continue} that, at each point in time t, decides whether the current
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block should end (f(V t, Gt) = stop-block) or not (f(V t, Gt) = continue). As long as the value
of this function does not depend on the actual outcomes Vt observed after the last block that was
completed, all requirements for having a test martingale and thus for safe optional stopping are
met. For example, suppose that on data V1, G1, V2, G2, . . . , Vt, Gt observed so-far, f has output
stop-block at m occasions, the last time at t′ = t − k for some k > 0. Then f(t) is allowed to
depend on Y (m) and Gt, but for any fixed Y (m) = y(m), Gt = gt, for all yk, y′k ∈ Yk, we must have
f((y(m), yk), gt) = f((y(m), y′k), gt). In this way, one can in principle learn p∗(a) from the data,
changing group sizes na and nb flexibly as data come in. For simplicity, we have not followed this
approach here, but all our results readily extend to this case.

Extension to k-sample streams It is entirely straightforward to extend (2.2) to the scenario
where we do not compare 2, but k i.i.d. data streams. Indeed, in the appendix we state and
prove the generalization of Theorem 1 to k data streams. We again consider some fixed ~θ =
(θa, θb, ..., θk) ∈ Θk. The probability of the first t =

∑k
g=1 tg outcomes is now given by the density

or mass function p~θ := pθa(ytaa )pθa(ytbb )...pθk(ytkk ). We now need to fix the k group outcome numbers
~n := (na, nb, ..., nk) in advance, which allows us to define the extended E-variable as a function of
the data ~yn = (ynaa , ynbb , ..., y

nk
k ), with n =

∑k
g=1 ng:

s(~yn;~n, ~θ∗) :=
k∏
g=1

pθ∗g (y
ng
g )∏ng

i=1

(∑k
g′=1

ng′
n pθ∗g′

(yi,g)
) , (2.4)

for testing the null where θa = θb = ... = θk; it is again GRO if {Pθ : θ ∈ Θ} is convex. We now
return to the notationally simpler 2-sample case except for a short example of an application of
this extension as a flexible and exact alternative to the chi-square test in section 5.

2.2 The generic E-variable with Bayesian alternative

Now fix some prior W1 with density w1 on the alternative Θ1 ⊆ Θ2. We can trivially extend
the definition of our generic E–variable relative to singleton (θ∗a, θ

∗
b ) to an E–variable relative to

arbitrary prior W1 on (θ∗a, θ
∗
b ): define pW1,a(y) :=

∫
pθa(y)dW1(θa), the integration being over the

marginal prior distribution over θa, and similarly, pW1,b(y) :=
∫
pθb(y)dW1(θb). Then, as a corollary

of Theorem 1,

s(ynaa , ynbb ;na, nb,W1) := ∏na
i=1 pW1,a(yi,a)∏na

i=1

(
na
n pW1,a(yi,a) + nb

n pW1,b
(yi,a)

) · ∏nb
i=1 pW1,b

(yi,b)∏nb
i=1

(
na
n pW1,a(yi,b) + nb

n pW1,b
(yi,b)

) . (2.5)

is itself also an E–variable, as follows from applying Theorem 1 with a ‘meta’-set of distributions,
which is possible since we made no assumptions at all on the set Θ in Theorem 1: we replace Θ by
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W(Θ), the set of distributions on Θ; we replace the background set of distributions {pθ : θ ∈ Θ}
by the set of distributions {pW : W ∈ W(Θ)}; we replace the simple H1 = {Pθ∗a,θ∗b } by a ‘simple’
H′1 = {PWa,Wb

} for some distributions Wa and Wb on Θ. Such W1-based generic E–variables can be
used to learn the parameters θ∗a, θ

∗
b as more data in both streams come in, and this is how we will

use them in a sequential context with optional stopping. Thus, assume again that data comes in
batches Y(1), Y(2), . . . with each Y(j) consisting of na outcomes in group a and nb outcomes in group
b (generalization to flexible group sizes changing in time and depending on the past as described
at the end of Section 2.1 is straightforward). We start with some prior W1 for the first batch Y(1)

but we now use, for the j-th batch Y(j), the Bayesian posterior W1 | Y (j−1) as prior to define the
j-th E–variable with:

S
(m)
[na,nb,W1]

:=
m∏
j=1

S(j),[na,nb,W1] ; S(j),[na,nb,W1] := s(Y(j);na, nb,W1|Y (j−1)). (2.6)

Again, {S(j),[na,nb,W1]}j∈N is a sequential E–variable process, so testing based on the corresponding
test martingale is safe under optional stopping by (1.3). If data are sampled from some alternative
hypothesis (θ∗a, θ

∗
b ), then as data accumulates, the posteriorW1 will, with high probability, concentrate

narrowly around (θ∗a, θ
∗
b ) and so S(j),[na,nb,W1] will behave more and more similarly to the ‘best’

(θ∗a, θ
∗
b ) E-variable. Still, with the exception of a special case we indicate below, in general we

cannot expect it to be the W1-GRO E-variable. But we are not particularly concerned by this: our
experiments in Section 5 indicate that, at least in the 2× 2 table setting, it behaves quite well in
terms of power, which is often the main practical interest.

Simplification when {Pθ : θ ∈ Θ} is Convex and Y is finite Denoting W1,g|Y (m) as the
marginal posterior for θg, for g ∈ {a, b}, we can rewrite (2.6) as

S
(m)
[na,nb,W1] =

m∏
j=1

∏na
i=1 pW1,a|Y (j−1)(Y(j−1)na+i,a)

∏nb
i=1 pW1,b|Y (j−1)(Y(j−1)nb+i,b)∏

g∈{a,b}
∏ng
i=1

(
na
n pW1,a|Y (j−1)(Y(j−1)ng+i,g) + nb

n pW1,b|Y (j−1)(Y(j−1)ng+i,g)
)

if {Pθ : θ ∈ Θ} convex, Y finite
=

m∏
j=1

na∏
i=1

pW1,a|Y (j−1)(Y(j−1)na+i,a)

pθ̆0|Y (j−1)(Y(j−1)na+i,a)

nb∏
i=1

pW1,b|Y (j−1)(Y(j−1)nb+i,b)

pθ̆0|Y (j−1)(Y(j−1)nb+i,b)
(2.7)

with θ̆0|Y (j−1) ∈ Θ s.t. pθ̆0|Y (j−1) = (na/n)pW1,a|Y (j−1)+(nb/n)pW1,b|Y (j−1) , the existence of θ̆0|Y (j−1)

being guaranteed if {Pθ : θ ∈ Θ} is convex and the sample space is finite (for then, by Carathéodory’s
Theorem, for any distribution W on Θ there is a distribution W ′ on Θ with finite support such
that pW = pW ′ , and by convexity, there is θ◦ such that pW ′ = pθ◦). This rewrite will enable several
additional results for such Θ.

Connection to Bayes Factors Consider W1 such that θa and θb are independent under W1

with marginal distributions Wa and Wb, and now further take na = nb = 1. By basic telescoping,
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and using that, if independent under the prior, θa and θb must also be independent under the
posterior, we can then further rewrite (2.6) as∫

pθa(Y m
a )dWa(θa)

∫
pθb(Y

m
b )dWb(θb)∏m

j=1

∏
g∈{a,b}

(
1
2pW1,a|Y (j−1)(Yj,g) + 1

2pW1,b|Y (j−1)(Yj,g)
) if {Pθ : θ ∈ Θ} convex

= (2.8)

∫
pθa(Y m

a )dWa(θa)
∫
pθb(Y

m
b )dWb(θb)∏m

j=1

∏
g∈{a,b} pθ̆0|Y (j−1)(Yj,g)

(2.9)

where the equality holds if {Pθ : θ ∈ Θ0} is convex and Y is finite so that (2.7) holds. As seen from
(2.8), even without finiteness or convexity, the numerator of the generic product E–value is now
equal to the Bayesian marginal likelihood of the data based on prior W1. Thus, in this special
case (i.e. na = nb = 1, prior independence; the derivation breaks down if these do not hold), if the
denominator could also be written as a Bayes marginal likelihood, then our E-variable would really
be a Bayes factor. Yet, even if {Pθ : θ ∈ Θ} is convex, it cannot be written in this way, though it
is very ‘close’: each of the m factors in the denominator in (2.9) is the product density function
of two identical distributions for one outcome, and Proposition 2 shows that, in the special case
of the 2 × 2 model with Wa and Wb independent beta priors, this distribution may itself be the
Bayes predictive distribution obtained by equipping Θ0 with another beta prior. Still, for a real
Bayes factor corresponding to H0, for each j, the two outcomes Yj,a, Yj,b in the j-th block would
not be independent given Y (j−1), whereas in (2.9) they are, so we may conclude that in general,
our e-variables are not equivalent to any Bayes factor.

3 Safe tests for Two Proportions

We assume the setting above and, for now, assume that both streams are Bernoulli. This will
substantially simplify the formulae. Thus, Θ = [0, 1] and (2.1) now specializes to

pθa,θb(y
ta
a , y

tb
b ) := pθa(y1,a, . . . , yta,a)pθb(y1,b, . . . , ytb,b) = θta1a (1− θa)ta−ta1θtb1b (1− θb)tb−tb1 . (3.1)

with ta1 the number of outcomes 1 in stream a among the first ta ones, and tb1 the number of
outcomes 1 in stream b among the first tb ones. According to the null hypothesis, we have that
θ∗a = θ∗b = θ0 for some θ0 ∈ Θ = [0, 1]. (3.1) now simplifies to:

pθ0(ytaa , y
tb
b ) := θt10 (1− θ0)t0 ,

with t1 the number of ones in the sequence yta+tb = y1, . . . , yta+tb , and similarly for t0.
We now run through the results of the previous section for this instantiation of our test. Again,

we start with the case of a simple H1 = {Pθ∗a,θ∗b }. (2.2) can now be written as:

s(ynaa , ynbb ;na, nb, θ
∗
a, θ
∗
b ) :=

pθ∗a(ynaa )

pθ0(ynaa )
·
pθ∗b (ynbb )

pθ0(ynbb )
, where θ0 =

na
n
θ∗a +

nb
n
θ∗b . (3.2)
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Theorem 1 tells us that this is an E-variable. Since {Pθ : θ ∈ Θ}, the Bernoulli model, is convex,
the theorem also tells us that in this case the generic E-variable with simple alternative is always
(θ∗a, θ

∗
b )-GRO.

We now turn to the generic E–variable relative to arbitrary prior W1. For the Bernoulli model
the Bayes posterior predictive distribution is itself a Bernoulli distribution, with its parameter
equal to the posterior mean. Therefore, while the generic E–variable relative to prior W1 is still
given by (2.5), this now simplifies to:

s(ynaa , ynbb ;na, nb,W1) = s(ynaa , ynbb ;na, nb, θ
∗
a, θ
∗
b ) for θ∗g = Eθg∼W1 [θg], g ∈ {a, b}. (3.3)

Combining this with (2.7) we infer that

S
(m)
[na,nb,W1] =

m∏
j=1

na∏
i=1

pθ̆a|Y (j−1)(Y(j−1)na+i,a)

pθ̆0|Y (j−1)(Y(j−1)na+i,a)

nb∏
i=1

pθ̆b|Y (j−1)(Y(j−1)nb+i,b)

pθ̆0|Y (j−1)(Y(j−1)nb+i,b)
(3.4)

where θ̆a|Y (j−1) = Eθa∼W |Y (j−1) [θa] and θ̆b|Y (j−1) = Eθb∼W |Y (j−1) [θb] and θ̆0|Y (j−1) = (na/n)θ̆a |
Y (j−1) + (nb/n)θ̆b | Y (j−1).

Simplified Calculations with Independent Beta Priors Now take the special case in which
θa and θb are independent under the prior W1 with marginals Wa and Wb. In this case, θa and θb
are also independent under the posterior, and we can simplify θ̆a|Y (j−1) = E

θa∼Wa|Y (j−1)na
a

[θa], the

expectation of θa under the posterior Wa given all data so far in group a, and similarly for group
b. Using beta priors, this expectation is easy to calculate and we get:

Proposition 2. Let θa, θb be independent under W1, with marginals Wa and Wb respectively.
Suppose that these are beta priors with parameters (αa, βa) and (αb, βb) respectively. Then, upon

defining Ua =
∑(j−1)na

i=1 Yi,a, Ub =
∑(j−1)nb

i=1 Yi,b, U =
∑(j−1)n

i=1 (Yi,a + Yi,b) we have that θ̆a, θ̆b, θ̆0 as

above satisfy: θ̆a|Y (j−1) = (Ua+αa)/((j−1)na+αa+βa), θ̆b|Y (j−1) = (Ub+αb)/((j−1)nb+αb+βb)
respectively, and θ̆0|Y (j−1) is as further above. In the special case that we fix the prior parameters
in the groups proportional to the group size fraction κ := nb/na, i.e we fix αb = καa, βb = κβa, the
expression for θ̆0 simplifies to θ̆0|Y (j−1) = (U + (1 + κ)αa)/((j − 1)n+ (1 + κ)αa + (1 + κ)βa).

4 (Un)Restricted Composite H1 in the 2× 2 setting

In this section we describe the main instantiations of the 2 × 2 stream testing scenario that are
relevant in practice. These differ in the choice of H1: the choice can be fully unrestricted (we
simply want to find whether there is any discrepancy from H0 at all); restricted in terms of effect
size; or restricted because we have prior knowledge about either θ∗a or θ∗b . We consider each in turn,
the second and third scenario in a separate subsection. Section 5 provides extensive numerical
simulations for all three scenarios.
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In the first scenario, a researcher wants to perform a two-sided test ; they simply aim to find any
discrepancy from H0 if it exists, with no restrictions are placed on H1. In this case, if we choose
W1 as independent beta priors on θa and θb, we can simply proceed as described in Proposition
2 above, taking a beta prior for simplicity. We will develop a reasonable ‘default’ choice for the
hyper parameters by experiment in Section 5.

4.1 Dealing with Effect Sizes

In the second scenario we really want to test H0 against a restricted H1 consisting of those
hypotheses that have a certain minimal effect size δ. This would then be a one-sided test. For
example, a researcher might know that a new treatment must cure at least a certain number of
patients more compared to a control treatment to provide a clinically relevant treatment effect δ.
In this case, H1 could be restricted to either of the sets Θ(δ) or Θ+(δ), where

Θ(δ) =
{
θ ∈ [0, 1]2 : d(θ) = δ

}
; Θ+(δ) =

{{
θ ∈ [0, 1]2 : d(θ) ≥ δ

}
if δ > 0{

θ ∈ [0, 1]2 : d(θ) ≤ δ
}

if δ < 0,
(4.1)

where we set d((θa, θb)) = θb − θa. A second notion of effect size that often will be applicable in
this sort of research is the log odds ratio between θb and θa, with restricted parameter space again
given by (4.1) but d set to

d((θa, θb)) = log

(
θb

1− θb
· 1− θa

θa

)
. (4.2)

These are the two effect size notions that will feature in our experiments. An illustration of both
divergence measures and the resulting restricted parameter spaces is given in Figure 1.

A third popular notion of effect size, the relative risk, behaves, for small θa and δ > 0, very
similarly to the odds ratio, and will therefore not be separately considered in our experiments.

If we pick H1 restrict to Θ(δ′), then we could simply use the beta prior mentioned before with
support conditioned on this set. What about the more realistic case of a H1 with δ ∈ Θ+(δ′)? A
first, intuitive (and certainly defensible) approach would be to use a prior W ′1 that is spread out
over Θ+(δ′), e.g. (if δ′ > 0) the beta prior as above conditioned on δ ≥ δ. However, in terms of
the GRO criterion, there are good reasons to still use a prior W ∗1 that puts all prior mass on Θ(δ′),
the boundary of the real parameter space Θ(δ+). Namely, for the resulting E-variable process

S
(1)
[na,nb,W

∗
1 ], S

(2)
[na,nb,W

∗
1 ], . . ., it holds for every m that

for all (θa, θb) with d((θa, θb)) > δ′, EY (m)∼P(θa,θb)
[logS

(m)
[na,nb,W

∗
1 ]] ≥

min
θ∈Θ(δ′)

EY (m)∼Pθ [logS
(m)
[na,nb,W

∗
1 ]]. (4.3)

Thus, we might want to use the prior W ∗1 also if δ can be more extreme than δ′, since if δ is actually
more extreme, the expected (log-) evidence against H0 using W ∗1 (even though designed for δ′) will
actually get larger anyway.
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(a) d((θa, θb)) = θb − θa (b) d((θb, θa)) = log
[

θb
1−θb

1−θa
θa

]
Figure 1: Examples of restricted alternative hypothesis parameter spaces for several values of two
divergence measures; the difference between group means and the log odds ratio. Θ0 denotes the
null hypothesis parameter space; Θ+

1 (δ) the restricted alternative hypothesis parameter space.

The advantage of the first approach is that it will lead to much higher GROwth (EP(θa,θb)
[logS

(m)
[na,nb,W

′
1]

]

much larger than EP(θa,θb)
[logS

(m)
[na,nb,W

∗
1 ]]) if we are ‘lucky’ and |d(θa, θb)| � |δ′|. The price to pay

is that it will lead to somewhat smaller growth if d((θa, θb)) is (still arger than but) close to δ′

(experiments omitted). It is easy to see why: the prior W ′1 must spread out its mass over a much
larger subset of [0, 1]2 than W ∗1 . Therefore, the E-variables based on W ′1 will perform somewhat
worse than those based on W ∗1 if the data are sampled from a point (θ∗a, θ

∗
b ) in the support of W ∗1 ,

simply because W ∗1 gives much larger prior support in a neighborhood of (θ∗a, θ
∗
b ). For this reason,

and also because it is computationally a lot simpler, we decided to focus our experiments on the
second approach rather than the first.

Calculating the prior and posterior for restricted H1 For both notions of effect size, θa
and θb can no longer be independent for any prior on Θ(δ). Hence, the prior and posterior do
not longer admit the composition in terms of beta densities as in Proposition 2. For example,
when putting a prior on Θ(δ) with the additive effect size notion, we know the new domain of θa
would be [0, 1 − δ]. θb is completely determined by θa and δ in this case. We will still use a beta
prior on Θ(δ) and calculate posteriors by a numerical approach, explained in Appendix S1 of the
Supplementary Material.
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4.2 Working with Restrictions on event rate

In practice, researchers often already have estimates of the occurrence rate of events in the control
group in their experiments; for example, estimates of the proportion of patients that recover from
a disease under standard care are known, and researchers investigate whether the proportion of
recovered patients is higher in a group receiving an experimental treatment. This restriction on θa
can be incorporated in the E-variable. This incorporation becomes especially easy if H1 is already
restricted to a set Θ+(δ′) with minimal relevant effect size δ′. For then Θ(δ′) contains just one
point (θ∗a, θ

∗
b ) (in the case of the linear effect size, this is (θa, θa+δ)), and the E–variable constructed

according to the guidelines of the previous subsection, which puts all its mass on δ′ even though
we allow δ ≥ δ′, would be the generic E–variable corresponding to putting prior mass 1 on (θ∗a, θ

∗
b ).

5 Illustration via Simulated Data

In this section, we illustrate properties of our E-variables for 2 × 2 application through simulated
data, generated with our software package publicly available through Github (Ly et al., 2020).
First, we determine a reasonable choice of beta prior hyper-parameter to use in (3.4) in terms of
the GRO-criterion. Thereafter, we show by more simulations that our proposal for the beta prior
hyper-parameter based on GRO also performs well in terms of power (recall from Section 1.1 that
while we cannot optimize for power directly, we do want procedures with reasonable power). Finally,
we compare the power of our E-variable with this default prior choice and different restrictions on
H1 to Fisher’s exact test.

REGROW For simplicity, in all our experiments we will invariably set the beta prior hyper-parameters
to αa = αb = βa = βb = γ for some γ > 0 (recall that any such choice leads to a valid E-variable).
We will aim for the γ that minimizes (1.8) in the worst-case over all θ∗1 ∈ [0, 1]2, thereby following
the REGROW (relative growth-rate optimality in worst-case) criterion of Grünwald et al. (2022),
who give a minimax regret motivation for this choice. In essence, the prior minimizing, among
all distributions over [0, 1]2, the maximum of (1.8) over all θ∗1 can be viewed as the prior that
allows us to learn θ∗1 as fast as possible (based on a minimal sample) in the worst-case. Here we are
contented to adopt a sub-optimal but computationally convenient prior by restricting the minimum
to be over a 1-dimensional family of beta priors with hyper parameter γ. We find the minimizing
γ by experiment: results are depicted in Figure 2. It depends on m, which is unknown in advance,
but for large m, in the setting with na = nb = 1, it converges to γ ≈ 0.18, and this is the value
we will take as our default choice — our experiments below indicate that it remains a good choice,
also when our main concern is power, and also under restrictions on H1.

Power Whereas GROwth is the natural performance measure in experiments that may always
be continued at some point in the future, traditionally oriented researchers may be more interested
in power. The question is then whether the optimal asymptotic choice γ ≈ 0.18 in terms of the
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(a) minγ regretS
(m) (b) arg minγ regretS

(m)

Figure 2: Minimized regret w.r.t. Beta prior hyperparameter γ for the two-sample stream E-variable
for two proporions (3.3). Relative growth rate (see (1.8)) was estimated through 10000 simulations
and regret was calculated as the maximum over θ∗1.

relative GRO property for unrestricted H1 is also the optimal choice in terms of power (which is
usually considered in combination with some minimal effect size, i.e. a restrictedH1). The following
experiment shows that by and large it is. For simplicity we only illustrate the case na = nb = 1 and
a desired power of 0.8. For various effect sizes δ, and various values of γ, we first determined the
smallest sample size (number of blocks) m such that, under optional stopping up until and including
m, the power is ≥ 0.8 in the worst case over all (θa, θb) with δ = θb−θa. Here by ‘optional stopping

up until and including m’, we mean ‘we stop and reject the null iff S
(m′)
[na,nb,W[γ]

> α−1 for some

m′ ∈ {1, 2, . . . ,m}, and we stop and accept the null if this is not the case (so m is the maximal
sample size we consider)’. We call this m the worst-case sample size needed for 80% power at
effect size δ with prior parameter γ. The reason for calling it worst-case is that in practice, by
engaging in optional stopping with a fixed maximal sample size, the expected sample size of this

procedure is smaller: if, for m′ < m, we already have S
(m′)
[na,nb,W[γ]

> α−1 then we stop and reject

early; if not, we go on until we have seen m blocks and then stop (and reject iff S
(m)
[na,nb,W[γ]

> α−1).

We thus performed two simulation experiments: first, to estimate the worst-case sample size (at
α = 0.05), and second, to estimate the expected sample size. Again, the estimates were obtained
by re-simulating a sequence of data blocks K times for a large number of K, making sure the bias
and variance of the estimates were sufficiently small. In Figure 3 results of these experiments are
depicted. We make two observations: first, almost no difference in sample sizes to plan for between
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(a) m on log scale (b) m, identity

Figure 3: In 2000 simulations, the (natural logarithm of) the number of data blocks m (“sample
sizes”) needed for achieving 80% power while testing at α = 0.05 for distributions with varying
group means and varying differences between group means were estimated for different beta prior
parameter values.

γ = 0.18 and γ = 0.05 was observed for distributions with small expected sample sizes (represented
by the triangles and the dots, which overlap for most data points), and other values of γ obtained
smaller power, indicating that the relative growth-optimal γ = 0.18 could in practice be used as a
default setting for our E-variable — and as a consequence, we recommend it as such. Second, in the
rightmost panel we see that for distributions with very small relative differences between θa and θb,
e.g. P0.5,0.58, values of γ higher than 0.18 yielded a higher power, whereas for such δ, the relative
GROW criterion was optimized for γ = 0.18 for the corresponding (very large) stopping times in
our simulation experiments. This is not surprising given what is known for simple H0 = {Pθ0}:
when testing a point null θ0 with a 1-dimensional exponential family alternative, safe tests based
on Bayes factors with standard Bayesian (e.g. Gaussian or conjugate) priors do not obtain optimal
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power in an asymptotic sense: they reject if |θ̂ − θ0|2 & (log n)/n (with θ̂ denoting the MLE;
see the example on Z-tests by Grünwald et al. (2022)) whereas based on nonstandard ‘switching’
(van der Pas and Grünwald, 2018) or ‘stitching’ methods (Howard et al., 2021), corresponding
to special priors with densities going to infinity as effect size goes to 0, one can get rejection if
|θ̂ − θ0|2 & (log log n)/n. However, there is a significant price to pay in terms of the constants
hidden in the asymptotics, and in practice, ‘standard’ priors may very well perform better at all
but very large sample sizes (Maillard, 2019). Given that the higher γ, the more the beta prior
behaves like a switch prior, we conjecture that what we see in Figure 3(b) at very small δ is a
version of the switching/stitching phenomenon with a composite null; since it only kicks in at very
large sample sizes, we prefer γ = 0.18 as the default choice after all.

Finally, we compared the performance of our E-variables with the “default” beta priors with
γ = 0.18 with their classical counterpart, Fisher’s exact test. We show that with Fisher’s exact
test, type-I error probability guarantee is lost, whereas with the E-variables it remains bounded
— since these results are exactly as would be expected from the theory they have been placed
in the supplementary material (Figure S3.1 in Appendix S3 in the Supporting Material). In the
main text below, we compare worst-case and expected stopping times of the E-variables with- and
without restrictions on H1 for sample sizes one would need to plan for when analyzing experiment
results with Fisher’s exact test; see Figure 4. We noticed that the expected sample sizes achieved
under optional stopping with the E-variable with unrestricted H1 were very similar to the sample
sizes needed to plan for with Fisher’s exact test. When using a correctly specified restriction on H1

(the leftmost data points in the second and third subfigures), this expected number of samples is
even considerably lower than the sample size to plan for with Fisher’s exact test. However, under
misspecification, when the difference or log odds ratio used in the design of the E-variable turns out
to be a lot smaller than the real difference present in the data generating machinery, one should
expect to collect more samples (the data points towards the right in the second subfigure). This
effect would disappear if we were to put a prior on the full Θ+(δ) rather than the boundary Θ(δ),
at the price of slightly worse behaviour in the well-specified case when data is sampled from Θ(δ).

Note that in Figure 4 we used the default beta prior parameters γ = 0.18 found optimal for the
unrestricted case for the restricted cases as well; some first experiments revealed that changing the
prior parameter values did not lead to significant changes in power for the restricted E-variables
(results not shown). We do however offer the possibility in our software package (Ly et al., 2020) to
run similar experiments for users to determine the optimal prior parameter γ for a given expected
sample size and Θ(+)(δ′).

Beyond Two-Stream Data: Safe Tests for K Proportions We also compared the performance
of the extended version of our E-variable for k Bernoulli data streams to the corresponding classical,
nonsequential counterpart, the chi-square test (McHugh, 2013). In this setting, we have a k × 2
contingency table test, where we test whether k Bernoulli data streams come from the same source.
The extension of (3.4) to k data streams analogously to (2.4) is straightforward. Our E-variable
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Figure 4: Estimates from 1000 simulations of worst-case and expected sample sizes for achieving
80% power estimated for three types of E-variables with different restrictions on H1, and the sample
size to plan for with Fisher’s exact test. Hypothesized effect sizes were 0.04 for the E-variables with
prior information on the absolute difference and were converted equivalently for the log odds ratio
prior information case, and we set γ = 0.18 for the beta priors.

with uniform priors significantly outperforms the chi-square test for small sample sizes and large
effect sizes (see Figure 5), probably explained by the fact that the chi-square test is not exact, but
the E-variable is. For expected cell counts smaller than 5 the chi-square test should not be used,
reflected in an increased number of samples needed for similar power (McHugh, 2013).

6 Illustration via Real World Data

We will now demonstrate the approach through a real-world example: the SWEPIS study on labor
induction (Wennerholm et al., 2019). Wagenmakers and Ly (2020) have used this example before
to illustrate how using single p-values to make decisions can hide valuable information in research
data.

In the SWEPIS study, two groups of pregnant women were followed. In the first group labor
was induced at 41 weeks, and in the second labor was induced after 42 weeks. The study was
stopped early, as 6 cases of stillbirth were observed in the 42-weeks group (at nb = 1379), as
compared to 0 in the 41-weeks group (at na = 1381). These data yield a significant Fisher’s exact
test, P ≈ 0.015, for testing that the number of stillbirths in the 42-weeks group is higher, when
(wrongly) assuming that na and nb were fixed in advance to the above values.

If we had used E-variables for continuously analyzing this data, would we then have found
evidence for superiority of the 41 weeks approach, and would we have stopped the study earlier?
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Figure 5: Estimates from 1000 simulations of worst-case and expected sample sizes for achieving
80% power estimated for testing with the k-stream E-variable, and the sample size to plan for with
the chi-square test. Data were simulated with balanced data blocks, ~n = (1, 1, 1, 1) and ~θ was set
as an equally spaced grid from θa = 0.1 to θk = θa + δmax. We set γ = 1 for the beta priors.
We see that for large enough δmax, the expected sample size becomes significantly smaller than
the fixed sample size needed for the chi-squared test, overtaking it at approximately δmax = 0.45,
which really means that one third of the times the effect size is 0.15, one third it is 0.3 and one
third 0.45. At these δ, the expected sample size for our 2-stream E-variable is still larger than the
fixed number needed for Fisher’s exact test.

As the E-variables we propose are not exchangeable, i.e. their values change under permutations of
the data sequences, a direct comparison to the results of the SWEPIS study is not possible as the
exact data stream is not available. To simulate a “real-time” scenario equivalent to the SWEPIS
study, we assume we collect a total of 1380 data blocks, with na = nb = 1, with a total of 2760
observations. We already know that in group a, 0 events are observed. In group b, 6 events are
observed, of which we know that the last event was observed in data block 1380, directly before
the study was stopped. Hence, we can simulate the “real-time” data by permuting the indices of
the observations in group b in the 1379 first data blocks.

Four different approaches for analyzing the data with E-variables were explored: without
any restriction on H1, with a restriction based on the additive divergence measure (the minimal
difference between the groups), with a restriction based on the log odds ratio, and with a restriction
on the event rate in the control group and on the minimal difference. The minimal difference, log
odds ratio and event rate used were chosen based on a large recent meta-analysis on stillbirths
(Muglu et al., 2019); we used δ = 0.00318 as a restriction on the difference between the groups,
log(2) for the log odds ratio and 0.0001 as the event rate. For all E-variables, the default beta prior
hyperparameters with γ = 0.18 as earlier were used.
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In Figure 6 the spread of the evidence collected with the four types of E-variables in 1000
simulations analogous to the SWEPIS setting is depicted. Because the observed effect size was
higher than expected, E-values obtained with the (too low) restriction on the effect size were
lower than the E-values obtained with the E-variable without restrictions. Adding the restriction
on the event rate increased the E-values, and in all 1000 simulations, the SWEPIS study would
have been stopped before the occurrence of the sixth stillbirth. Figure 6 also depicts results of a
second simulation experiment, where we sampled 1000 data streams from P0,6/1380 and recorded the
stopping times while analyzing the streams with the four E-variables with different restrictions on
H1. With the E-variables without restriction, or with a restriction on the event rate and difference
between the groups, we would have often stopped data collection earlier than in the SWEPIS
setting.

We can thus conclude that, would the monitoring of the study have been performed with
E-variables instead of p-values, first of all we would have collected correct evidence for a higher
proportion of stillbirths in the 42-weeks group, and second, the degree of evidence is quite similar
to that collected with the (incorrectly determined) p-value: both are significant at the 0.05 level.
Wagemakers and Ly with their method also found evidence for the existence of a difference between
the two groups, but not nearly of the same degree: they reported Bayes factors that varied,
depending on the choice of the prior, between 1 and 5.4 (note that whenever we reject, our product
of E-values, which like a Bayes factor can be thought of as a prequential likelihood ratio, must
be ≥ 20). A possible explanation for this difference could be that the Bayes factors used for
collecting evidence in their study are not designed for analyzing stream data. As we also saw in
our experiments, choosing the wrong prior or restriction on H1 can make a large difference for the
evidence collected. These results show that when planning a prospective study, using E-variables
for analysis could, through their flexibility, contribute to earlier evidence collection compared to
existing methods.
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(a) Simulated E-values in SWEPIS setting, stopping at m = 1380 or
when E ≥ 20

(b) Simulated stopping times in setting with continuing until E ≥ 20

Figure 6: Spread of E-values and stopping times observed with safe analysis of 1000 simulations of
data streams analogous to the SWEPIS scenario, with four different types of restrictions on H1.

7 Other E-Variables for Two Data Streams

7.1 The GRO E-variable for some Exponential and Location Families

The simplification (3.2) shows that in the Bernoulli case with simple Θ1 = {(θ∗a, θ∗b )}, we can take
in our denominator pθ0 with θ0 = na

n θ
∗
a + nb

n θ
∗
b — which can also be interpreted as the distribution
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in the null corresponding to a mixture of the means, rather than the mixture of two distributions
in the null. The Bernoulli model is a special case of 1-parameter exponential families which can all
be parameterized in terms of their means so that Θ ⊂ R and EPθ [Y ] = θ; this is also possible for
some location families that are not of exponential form. This suggests that, for all such models,
instead of (2.2) we might also consider the likelihood ratio (3.2). For the Bernoulli model, both
definitions will coincide, but for general 1-parameter exponential families they do not since their
corresponding set of densities is not convex. The question is now whether (3.2) defines an E-variable
for general exponential families. It turns out that the answer is no in general, but yes in some
special cases. For a negative example, consider the case with Θ = R+ representing the family
of exponential distributions in their mean-value parameterization, i.e. pθ(y) = λ exp(−λy) with
λ = 1/θ and take na = nb = 1. A simple calculation shows that for any θ∗a 6= θ∗b ∈ Θ, we
have limθ→∞EYa,Yb i.i.d.∼Pθ [pθ∗a(Ya)pθ∗b (Yb)/p(θ∗a+θ∗b )/2(Ya, Yb)] =∞. The negative binomial families
provide, by a similar calculation, another negative example. For a positive example, consider the
case with Θ = R representing the Gaussian location family with fixed variance 1 and again take
na = nb = 1. A simple calculation shows that (3.2) is equal to the likelihood ratio for testing
whether the difference Z = Ya − Yb is a Gaussian with variance

√
2 with either mean 0 or mean

θb − θa. This is in fact the standard paired-sample Z-test that would normally be advised in this
situation. In fact it is the GRO E-variable for this situation:

Proposition 3. Let {Pθ : θ ∈ Θ} represent a family of probability distributions with densities pθ,
with Θ a convex set in Rk for some k ≥ 1. For any θ∗a, θ

∗
b ∈ Θ we have: if (3.2) is an E-variable

for Θ1 = {(θ∗a, θ∗b )} then it is the GRO E-variable for Θ1 = {(θ∗a, θ∗b )}.

The proof is immediate from Proposition 1. The proposition implies that in the special cases
in which (3.2) does provide an E-variable, it is to be preferred (achieves better growth) above
our original construction (2.2). (2.2) has the advantage that it provides an E-variable relative to
arbitrary models. We plan to study the cases in which (3.2) can be used instead in future work.

7.2 The Conditional E-variable for Tests of Two Proportions

Wald (1947) proposed a 2-sample sequential probability ratio test (SPRT) for the 2 × 2 setting.
Since SPRTs can be written in terms of products of E-variables (although products of E-variables
often do not give SPRTs; see the discussion by Grünwald et al. (2022)), let us see what E-variables
Wald’s test corresponds to. The setting is restricted to size-2 blocks with na = nb = 1. We measure
effect size with d the log-odds ratio (4.2) and consider an alternative with a d(θa, θb) that is at
least some given δ. Using that, for all (θa, θb) ∈ (0, 1)2, z ∈ {0, 1, 2}, the conditional probability
mass function pθa,θb(Ya, Yb |

∑
Ya + Yb = z) only depends on the log-odds ratio, we can write it,

as qδ(ya, yb|z) where qδ is a probability mass function whose definition depends on (θa, θb) only via
δ = d((θa, θb)). We then take as our E-variable Scond,δ := qδ(Ya, Yb | Ya + Yb)/q0(Ya, Yb | Ya + Yb).
Since the conditional distribution q0(Ya, Yb | Z) is the same for all distributions in the null, this
conditional likelihood gives an E-variable and can be used instead of our generic E-variable. Since for
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this Bernoulli case, our E-variable is in fact GRO, we would expect this new conditional E-variable
to perform worse in terms of GRO (and for the reasons given in Section 1.1 also in terms of the
amount of data needed before one can reject at a desired power), and experiments (not reported
here) confirm that it indeed performs slightly worse for δ close to 0, and substantially worse for
larger δ. This is already suggested by the fact that, unlike the GRO E-variable, Scond,δ takes on
value 1 whenever ya = yb, effectively ignoring data blocks in which both outcomes are the same.
Another disadvantage is that it can only be used in combination with effect size given by the odds
ratio or any monotonic transformation thereof; whereas the GRO E-variable can also be combined
with the difference θb − θa or any other desirable notion of effect size.

8 Conclusion

We have established E-variables and test martingales for the general two-i.i.d.-data streams problem.
We have demonstrated, using theory, simulations and a real-world example that, for tests of two
proportions, by choosing an appropriate prior on Θ1, the method can be made competitive with
classical methods that do not allow for optional stopping. Whereas in this paper, we have focused
on testing, our E-variables can also be extended to get anytime-valid confidence sequences (Howard
et al., 2021; Lai, 1976), i.e. confidence sequences for effect sizes that are valid even under optional
stopping. This requires us to first extend the testing to scenarios with δ ≥ δ1 vs. δ ≤ δ0 for δ0 6= 0,
that is, null hypotheses with θa 6= θb. We will report on this extension elsewhere. Our work also
suggests a question for future work that is practically relevant, easy to state but hard to answer:
to what extent do our findings generalize to logistic regression?
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Lhéritier, A. and Cazals, F. (2018). A sequential non-parametric multivariate two-sample test.
IEEE Transactions on Information Theory, 64(5):3361–3370.

Ly, A., Turner, R., and Ter Schure, J. (2020). R-package safestats. install in
R by devtools::install github("AlexanderLyNL/safestats", ref = "logrank",

build vignettes = TRUE).

Maillard, O.-A. (2019). Mathematics of statistical sequential decision making. Thèse de
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Appendix: Proofs

The proofs below repeatedly use Theorem 1 of Grünwald et al. (2022) and a direct corollary (called
Corollary 2 by Grünwald et al. (2022)), which we re-state here, for convenience, combined as a
single statement. We use the notation adopted later in the paper: for H0 = {Pθ : θ ∈ Θ0} and, for
W a distribution on Θ0, we write PW =

∫
PθdW (θ).

Theorem (Theorem 1 of Grünwald et al. (2022)) Let Y be a random variable taking values
in a set Y. Suppose Q is a probability distribution for Y with density q that is strictly positive on
all of Y and let H0 = {Pθ : θ ∈ Θ0} be a set of distributions for Y where each Pθ has density pθ.
Let W0 be the set all distributions on Θ0. Assume infW0∈W0(Θ0)D(Q‖PW0) < ∞. Then (a) there
exists a (potentially sub-) distribution P ∗0 with density p∗0 such that

S∗ :=
q(Y )

p∗0(Y )

is an E-variable (p∗0 is called the Reverse Information Projection (RIPr) of q onto {pW : W ∈ W0}
(Li, 1999; Li and Barron, 2000; Grünwald et al., 2019)). Moreover, (b), S∗ satisfies

sup
S∈E(Θ0)

EY∼Q[logS] = EY∼Q[logS∗] = inf
W0∈W0(Θ0)

D(Q‖PW0) = D(Q‖P ∗0 ). (8.1)
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and is thus the Q-GRO E-variable for Y . If the minimum is achieved by some W ∗0 , i.e. D(Q‖P ∗0 ) =
D(Q‖PW ∗0 ), then P ∗0 = PW ∗0 . Moreover, (c), if there exists an E-variable S of the form q(Y )/pW0(Y )
for some W0 ∈ W0 then W0 must achieve the infimum in (8.1) and S must be essentially equal to
S∗ in the sense that for all P ∈ H0 ∪{Q}, P (S∗ = q(Y )/pW0(Y )) = 1. Similarly (d), if there exists
a W ∗0 ∈ W0 that achieves the infimum in (8.1) then S = q(Y )/pW ∗0 (Y ) is an E-variable and S is
again essentially equal to S∗.

8.1 Proof of Propositions

Proof of Proposition 1 Below we state and prove a slight generalization of Proposition 1.

Proposition 4. Let H1 = {Q} be a singleton and let H0 = {Pθ : θ ∈ Θ0} be such that for some
distribution W on Θ0, D(Q‖PW ) < ∞. For general θ ∈ Θ0 and distributions W on Θ0, define
Sθ,(j) := q(Y(j))/pθ(Y(j)) and SW,(j) = q(Y(j))/pW (Y(j)). We have:

1. Suppose there exists a distribution W on Θ0 such that SW,(1) is an E-variable. Then SW,(1)

is the Q-GRO E-variable for Y(1). In particular, if W puts mass 1 on a particular θ◦ ∈ Θ0,
then SW,(1) = Sθ◦,(1) is the Q-GRO E-variable.

2. If Θ0 = {θ0} is simple then, with the prior W0 putting mass 1 on θ0, SW0,(1) = Sθ0,(1) is an
E-variable and hence, by the above, also the Q-GRO E-variable.

3. If, for some θ◦ ∈ Θ0, Sθ◦,(1) is an E-variable and we further assume that Y(1), Y(2), . . . are

i.i.d. according to all distributions in H0 ∪ H1, then S
(m)
gro(Q) =

∏m
j=1 Sθ◦,(j); that is, the

Q-GRO optimal (unconditional) E-variable for Y (m) is the product of the individual Q-GRO
optimal E-variables.

Proof. Part 1 The theorem above, part (b), implies, with Y = Y(1), that some Q-GRO E-variable
S∗ for Y(1) exists. Part (c) then implies that we can take S∗ to be equal to SW,(1). This implies
the statement.

Part 2 is immediate. Part 3 We assume that Sθ◦,(1) is an E–variable. Then the i.i.d. assumption

implies that S
(m)
θ◦ :=

∏m
j=1 Sθ◦,(j) =

∏
q(Y(j))/pθ◦(Y(j)) is also an E-variable. But (Grünwald et al.,

2019, Theorem 1), part (c) as stated above implies (by taking a distribution W putting mass 1 on

θ) that for H0 for which data are i.i.d., for each m ≥ 1, that if a θ ∈ Θ0 exists such that S
(m)
θ is an

E-variable, then S
(m)
θ must be the Q-GRO E-variable for Y (m). This proves the statement.

Proof of Proposition 2 The formulae for θ̆a|Y (j−1) and θ̆b|Y (j−1) are standard expressions for
the Bayes predictive distribution based on the given beta priors; we omit further details. As to
the expression for θ̆0|Y (j−1) in terms of κ = nb/na: Straightforward rewriting gives, for general
αa, αb, βa, βb:

θ̆0|Y (j−1) =
1

1 + κ
θ̆a|Y (j−1) +

κ

1 + κ
θ̆b|Y (j−1). (8.2)
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If we plug in the expressions for θ̆a|Y (j−1), θ̆b|Y (j−1) and we instantiate to αb = καa, and βb = κβa,
this becomes

θ̆0|Y (j−1) =
1

1 + κ

Ua + αa
na(j − 1) + αa + βa

+
κ

1 + κ

Ub + αb
κ(na(j − 1) + αa + βa)

=
1

1 + κ

Ua + Ub + (1 + κ)αa
na(j − 1) + αa + βa

=
U + (1 + κ)αa

n(j − 1) + (1 + κ)αa + (1 + κ)βa
,

which is what we had to prove.

8.2 Proof of Theorem 1

We first restate Theorem 1 in its extended version that holds for k ≥ 2 data streams. Let ~n =
(n1, . . . , nk), n =

∑k
g=1 ng,

~θ = (θa, . . . , θk) ∈ Θk and ~yn be as above (2.4). We use ‘~Y n ∼ Pθ∗ ’ as
an abbreviation for ‘ Y n1

1 ∼ Pθ∗1 ; . . . ;Y nk
k ∼ Pθ∗k ’.

Theorem 1. Let

s(~yn;~n, ~θ∗) :=

k∏
g=1

pθ∗g (y
ng
g )∏ng

i=1

(∑k
g′=1

ng′
n pθ∗g′

(yi,g)
) .

The random variable S
[~n,~θ∗] := s(~Y n;~n, ~θ∗) is an E-variable, i.e. we have:

sup
θ∈Θ

EV n∼Pθ

[
s(V n;~n, ~θ∗)

]
≤ 1.

Moreover, if {Pθ : θ ∈ Θ} is a convex set of distributions, then S
[~n,~θ∗] is the (~θ∗)-GRO E-variable:

for any non-negative function s′ on Yn satisfying supθ∈Θ EV n∼Pθ [s′(V n)] ≤ 1, we have:

E~Y n∼Pθ∗
[log s(~Y n;~n, ~θ∗)] ≥ E~Y n∼Pθ∗

[log s′(~Y n)].

Proof of Theorem 1 The following fact plays a central role in the proof:

Fact For g ∈ (1, ..., k), let ng ∈ N, n :=
∑k

g=1 ng and let ug ∈ R+. Suppose that
∑k

g=1 ngug ≤ n.

Then
∏k
g=1 u

ng
g ≤ 1.

This result follows from the following standard generalization of Young’s inequality to k numbers:
for any k numbers u1, . . . , uk ∈ R+

0 and any k nonnegative numbers p1, . . . , pk with
∑k

g=1 pg = 1,

we have
∏k
g=1 u

pg
g ≤

∑k
g=1 pgug. Applying this with pg = ng/n to ug and ng as above, we get∏k

g=1 u
ng/n
g ≤

∑k
g=1(ngug)/n ≤ 1, and the result follows by exponentiating to the power n.
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Part 1 For y ∈ Y, set set p◦(y) :=
∑k

g=1(ng/n)pθ∗g (y) and p◦(ym) =
∏m
i=1 p

◦(yi). For all θ ∈ Θ we
have:

EV n∼Pθ

[
s(V n;~n, ~θ∗)

]
=

k∏
g=1

EY
ng
g ∼Pθ

[
pθ∗g (Y

ng
g )

p◦(Y
ng
g )

]
=

k∏
g=1

(
EY∼Pθ

[
pθ∗g (Y )

p◦(Y )

])ng
. (8.3)

We also have

k∑
g=1

ng
n

EY∼Pθ

[
pθ∗g (Y )

p◦(Y )

]
= EY∼Pθ

 k∑
g=1

ng
n
·

pθ∗g (Y )∑k
g′=1

ng′
n pθ∗g′

(Y )

 = 1. (8.4)

The result now follows by combining (8.3) with (8.4) using the Fact further above.
Part 2 By convexity of {Pθ : θ ∈ Θ}, there exists θ◦ ∈ Θ such that pθ◦ =

∑k
g=1(ng/n)pθ∗g and

then the numerator in (2.2) can we rewritten as pθ◦(~y). The GRO-property is now an immediate
consequence of Proposition 4, Part 1.

34



Supporting Information

Appendix S1 Numerical approach to calculating E-variables for
restricted H1

In this subsection we describe how we propose to approximate the beta prior and posterior on the
restricted H1 with parameter space Θ(δ), as defined in (4.1). Note that we limit ourselves to δ > 0
in this detailed description; for δ < 0 one can apply an entirely equivalent approach, with an extra
term in the reparameterization. We define

ζ =

{
δ if d((θa, θb)) = θb − θa,
0 if d((θa, θb)) = log-odds-ratio(θa, θb),

such that we have θa ∈ (0, 1 − ζ) and in both cases, θb is completely determined by θa: θb =
d−1(δ; θa). Hence, our density estimation problem now becomes one-dimensional, which enables us
to put a discretized prior on the restricted parameter space.

First, we discretize the parameter space Θa to a grid (a vector) with precision K,K ∈ (0, 1− ζ)
and 1/K ∈ N+: θ̄a = (K, 2K, 3K, . . . , 1− ζ). Then, we reparameterize θa = (1 − ζ)ρ, with
ρ ∈ (0, 1). Then, we have ρ̄ = (K/(1− ζ), 2K/(1− ζ), . . . , 1) . For the discretized grid ρ̄, we
compute the prior W = Beta(α, β) densities and normalize them, which also gives us the discretized
densities for each θia ∈ θ̄a (with i ∈ (1, 2, . . . , 1/K)):

πα,β,ζ(θ
i
a) =

Beta( θia
1−ζ ;α, β)∑ 1

K
k=1 Beta( θka

1−ζ ;α, β)
.

For all elements of θ̄a, the corresponding θb is retrieved and the likelihood of incoming data points
pθa,θb(Y

(j−1)) is calculated. We can then estimate the posterior density of θia ∈ θ̄a:

p(θia|Y (j−1)) =
πα,β,ζ(θ

i
a)pθia,θib

(Y (j−1))∑ 1
K
k=1 πα,β,ζ(θ

k
a)pθka ,θkb

(Y (j−1))
.

We can then estimate θ̆a|Y (j−1) = Eθa∼W |Y (j−1) [θa] as
∑ 1

K
i=1 p(θ

i
a|Y (j−1))θia, and θ̆b|Y (j−1) =

d−1(δ; θa|Y (j−1)).
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Appendix S2 The Gunel-Dickey Bayes Factors do not give rise to
E–variables

Sampling scheme Fixed parameters Bayes factor (10) for 2x2 table

Poisson none 8(n+1)(n1+1)
(n+4)(n+2)

[
na1!nb1!na0!nb0!n!
(n1+1)!n0!na!nb!

]
Joint multinomial n 6(n+1)(n1+1)

(n+3)(n+2)

[
na1!nb1!na0!nb0!n!
(n1+1)!n0!na!nb!

]
Independent multinomial na, nb

( nn1)

( nana1)(
nb
nb1

)
(n+1)

(na+1)(nb+1)

Hypergeometric na, nb, n1
na1!nb1!na0!nb0!n!∏

i∈{a,b,0,1}(ni+Ini=min(na,nb,n0,n1))!

Table 1: Overview of (objective) Bayes factors for contingency table testing provided by Gunel and
Dickey (1974) and Jamil et al. (2017).

We will not consider the hypergeometric and joint multinomial scenarios for this paper, where
the number of successes n1 is fixed, as they do not match the block-wise data design in this paper.
The Bayes factor for the Poisson sampling scheme is not an E-variable, as the expectation under
the null hypothesis with Poisson distributions on individual cell counts exceeds 1 for rates λ ≥ 1:

Enrc∼Poisson(λrc) [BF10(Na1, Nb1, Na0, Nb0)] =
∞∑

na1=0

. . .

∞∑
nb0=0

πλa1(na1) . . . πλb0(nb0)BF10(na1, nb1, na0, nb0) =

8

exp(λa1 + . . .+ λb0)

∞∑
na1=0

. . .
∞∑

nb0=0

λna1a1 . . . λnb0b0

(n+ 1)(n1 + 1)

(n+ 4)(n+ 2)

n!

(n1 + 1)!n0!na!nb!
,

as illustrated numerically in Figure S2.1 for increasing limits for the sums
∑maxnrc

nrc=1 .
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(a) The Gunel-Dickey Bayes
factor for the Poisson sampling
scheme is not an E-variable:∑maxnrc

na1=0 . . .
∑maxnrc

nb0=0 πλa1(na1) . . . πλb0
(nb0)BF10(na1, nb1, na0, nb0)

for various maxnrc and λrc.

(b) The Gunel-Dickey Bayes factor
for the independent multinominal
sampling scheme is not an E-variable:
ENa1,Nb1∼Binomial(θ) [BF10(Na1, Nb1|na, nb)]
for various choices of θ and ng.

Figure S2.1: GD

For the independent multinomial sampling scheme, let, without loss of generality, na < nb. We
get, with n0 = n− n1,

ENa1,Nb1∼Binomial(θ) [BF10(Na1, Nb1|na, nb)] =
na∑

na1=0

nb∑
nb1=0

(
na
na1

)(
nb
nb1

)
θn1(1− θ)n0

(
n
n1

)(
na
na1

)(
nb
nb1

) (n+ 1)

(na + 1)(nb + 1)
=

(n+ 1)

(na + 1)(nb + 1)

na∑
na1=0

nb∑
nb1=0

(
n

n1

)
θn1(1− θ)n0

Numerical simulations show that, for a range of choices for n, na and θ this exceeds 1; see Figure
S2.1.
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Appendix S3 Type-I error guarantee under optional stopping

Type-I Error In Figure S3.1 type-I error rates of several E-variables and Fisher’s exact test
estimated through a simulation experiment are depicted. 2000 samples of length 1000 were drawn
according to a Bernoulli(0.1) distribution to represent 1000 data streams in two groups. After
each complete block m ∈ {1, . . . , 1000} an E-value or p-value was calculated and the proportion of
rejected experiments up until m with each test type was recorded. As the stream lengths increase,
the type-I error rate under (incorrectly applied) optional stopping with Fisher’s exact test increases
quickly. The type-I error rate of the E-variables remains bounded.

Figure S3.1: Type-I error rates for various E-variables and Fisher’s exact test under optional
stopping estimated with 1000 simulations of two Bernoulli(0.1) data streams of length 1000, with
na = nb = 1. Significance level α = 0.05 was used (grey dashed line). For the safe tests, beta prior
parameter values used were γ = αa = βa = αb = βb = 1/2 (γ = 0.18 gave comparable results). For
the E-variables with restrictions on H1, we used δ = 0.05 and θa = 0.1.
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