
Ilaria Castellani and Alceste Scalas (Ed.): 14th Workshop

on Programming Language Approaches to Concurrency and

Communication-cEntric Software (PLACES 2023).

EPTCS 378, 2023, pp. 49–60, doi:10.4204/EPTCS.378.5

© T. Smeele & S. Jongmans

This work is licensed under the

Creative Commons Attribution License.

Choreographic Programming of Isolated Transactions

Ton Smeele

Open University of the Netherlands
Heerlen, the Netherlands

Sung-Shik Jongmans

Open University of the Netherlands
Heerlen, the Netherlands

Centrum Wiskunde & Informatica (CWI)
Amsterdam, the Netherlands

ssj@ou.nl

Implementing distributed systems is hard; choreographic programming aims to make it easier. In this

paper, we present the design of a new choreographic programming language that supports isolated

transactions among overlapping sets of processes. The first idea is to track for every variable which

processes are permitted to use it. The second idea is to use model checking to prove isolation.

1 Introduction

1.1 Background: Choreographic Programming

G

L1 L2 · · · Ln

global program:

projection:

local programs:

Figure 1: Method

Implementing distributed systems is hard; choreographic program-

ming aims to make it easier [8, 10, 37]. Figure 1 shows the idea.

Initially, a distributed system is written as a global program G

(“the choreography”). It implements the behaviour of all processes

collectively, in a sequential programming style (easy to write, but

hard to run as a distributed system). For instance, the following global program implements a distributed

system in which, first, a data object is communicated from Alice to Bob, and second, its hash.

Gab = (a."foo"_b.x) ; (a.hash :=md5("foo")) ; (a.hash_b.y)

Here, p.e_q.y and q.y :=e express inter-process communication and intra-process computation. Com-

munication p.e_q.y implements the output of the value of expression e at process p and the correspond-

ing input into variable y at process q; the transport is asynchronous, reliable, and FIFO. Computation

q.y :=e implements the storage of the value of expression e in variable y at process q.

Subsequently, the distributed system is run as a family of local programs L1, . . . ,Ln, automatically

extracted from the global program through projection. The local programs implement the behaviour of

each process individually, in a parallel programming style (easy to run as a distributed system, but hard

to write). For instance, the following local programs implement Alice and Bob:

La = (ab!"foo") ; (a.hash :=md5("foo")) ; (ab!hash) Lb = (ab?x) ; (ab?y)

Here, send pq!e and receive pq?y implement an output and an input through the channel from p to q.

The keystone assurance of choreographic programming is operational equivalence: methodically, a

global program and its family of local programs are assured to have the same behaviour. To prove prop-

erties of families of local programs, operational equivalence allows us to prove them of global programs

instead. This is typically simpler. A premier example of such a property is absence of deadlocks.

Choreographic programming originated with Carbone et al. [7, 8] (using binary session types [31])

and with Carbone and Montesi [10, 37] (using multiparty session types [32]); substantial progress has

been made since. Montesi and Yoshida developed a theory of compositional choreographic programming

http://dx.doi.org/10.4204/EPTCS.378.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

50 Choreographic Programming of Isolated Transactions

that supports open distributed systems [38]; Carbone et al. studied connections between choreographic

programming and linear logic [6,11]; Dalla Preda et al. combined choreographic programming with dy-

namic adaptation [39–41]; Cruz-Filipe and Montesi developed a minimal Turing-complete language of

global programs [21]; Cruz-Filipe et al. and Kjær et al. presented techniques to extract global programs

from families of local programs [17, 35]; Giallorenzo et al. studied a correspondence between choreo-

graphic programming and multitier languages [27]; Jongmans and Van den Bos combined choreographic

programming with deductive verification [34]; Hirsch and Garg and Cruz-Filipe et al. developed func-

tional choreographic programming languages [16, 30]. Other work includes results on case studies [18],

procedural abstractions [20], asynchronous communication [19], polyadic communication [22, 29], im-

plementability [26], and formalisation/mechanisation in Coq [23,24,30]. These theoretical developments

are supported in practice by several tools [4, 10, 27, 40, 41].

1.2 Open Problem: Isolated Transactions

Suppose we need to implement a distributed system that fulfils the following requirements:

1. A data object and its hash are communicated from both Alice and Carol, in parallel, to Bob.

2. Either Alice’s data object and its hash are eventually stored at Bob, or Carol’s (but no mixture).

Requirement 1 can readily be fulfilled in a choreographic programming language with parallel composi-

tion (free interleaving), as demonstrated in the following global program:

Gv1
acb

= G§1.1
ab

‖ Gcb Gcb = (c."bar"_b.x) ; (c.hash :=md5("bar")) ; (c.hash_b.y)

In contrast, requirement 2 cannot be fulfilled in any choreographic programming language that we know

of (i.e., none of the choreographic programming languages cited in §1.1 seem to be capable of it). What

is needed, is a mechanism to run Gab and Gcb as isolated transactions.

One possibility is to enrich the language with the standard non-deterministic choice operator +. In

that case, the system can be implemented as (Gab ; Gcb) + (Gcb ; Gab). However, such an approach,

in which parallel compositions are explicitly expanded into choices, generally leads to exponentially

sized global programs (in the number of transactions), while obscuring the intention of the system. For

instance, if Dave were added as a third client of Bob, we need to write the following global program:

Gv1
abcd

= (Gab ; ((Gcb ; Gdb) + (Gdb ; Gcb))) +

(Gcb ; ((Gab ; Gdb) + (Gdb ; Gab))) +

(Gdb ; ((Gab ; Gcb) + (Gcb ; Gab)))

Gdb = (d."baz"_b.x) ;

(d.hash :=md5("baz")) ;

(d.hash_b.y)

Moreover, if we want to allow independent segments of transactions, which use disjoint sets of variables,

to overlap to improve performance (i.e., their interleaved execution would not break isolation), then

programmability is further complicated with the non-deterministic choice approach.

To avoid these issues, we propose a more fine-grained approach in this paper that supports eventual

consistency while allowing for interleaved execution of isolated transactions. Instead of manually imple-

menting isolated transactions by enumerating admissible sequences of communications, in our approach,

isolation emerges out of explicit programming language support.

1.3 Contributions of This Paper

We present the design of a new choreographic programming language that supports isolated transactions.

The first idea is to track for each variable which processes are permitted to use it. Initially, each

process is permitted to use each variable. Subsequently, process p can acquire exclusive permission

T. Smeele & S. Jongmans 51

to use variable y of process q. When granted, each usage of y by not-p is blocked until p releases

its exclusive permission. Management of usage permissions is transparant to the programmer; it is a

feature of the programming language. The following global programs demonstrate the syntax and fulfil

requirement 2 in §1.2:

Gv2
acb

= ((a acq b.x) ; G§1.1
ab

; (a rel b.x)) ‖ ((c acq b.x) ; G§1.2
cb

; (c rel b.x))

Gv2
acdb

= Gv2
acb

‖ ((d acq b.x) ; G§1.2
db

; (d rel b.x))

We note that Gv2
acdb

is compositionally constructed out of Gv2
acb

, without the need to refer to sub-programs

Gab and Gcb; this is not possible when parallel compositions are explicitly expanded into choices.

Thus, the idea of tracking usage permissions—and blocking those usages that are forbidden—enables

the programmer to write more compact global programs, intended to better preserve the intention of the

system. However:

– This feature does not guarantee isolation by itself; it is just a means to achieve it. In other words, a

separate mechanism is still needed to check isolation and guarantee it is preserved by projection.

– “Blocking those usages that are forbidden” also has an adverse side-effect: processes that compete

to acquire permission to use the same variables can deadlock. For instance, the following global

program implements a system in which Alice tries to acquire permission to use variables x and y

of Bob, while Carol tries to acquire permission to use the same variables, but in reverse:

(a acq b.x ; a acq b.y ; · · ·) ‖ (c acq b.y ; c acq b.x ; · · ·)

A deadlock arises when Alice acquires permission to use x, while Carol acquires permission to

use y, so neither one of them can acquire permission to use a second variable.1

To address these points, the second idea of this paper is to specify properties, such as isolation and

absence of deadlocks, in temporal logic and use model checking to prove that they are satisfied. We

believe this combination with choreographic programming is new.

2 The Design

systems (§2.6)

programs (§2.3) stores (§2.4) channels (§2.5)

actions (§2.2)

names (§2.1) data (§2.1)

Figure 2: Design

We define a language in which both global pro-

grams and families of local programs can be ex-

pressed. Figure 2 shows the design. It has four

layers: every system is defined in terms of pro-

grams (either a single global one, or multiple local

ones), stores (one for every process), and channels

(one between every pair of processes); every program, store, or channel is defined in terms of actions,

process/channel names, and data; every action is itself defined in terms of names and data, too.

2.1 Names and Data

First, we define: the syntax of names (Definition 1); the syntax of data (Definition 2). As the topic of

interest is “processes that communicate”, instead of “data that are communicated”, we omit most details.

1We note that this is a different source of deadlock than the communication deadlocks that choreographic programming

traditionally avoids (i.e., waiting for a message that is never sent).

52 Choreographic Programming of Isolated Transactions

Definition 1. Let R = {a,b,c, . . .} denote the set of process names, ranged over by p,q,r. Let R×R \
{(r,r) | r ∈ R} denote the set of channel names.

Definition 2. Let X= { ,x,y,z, . . .} denote the set of variables, ranged over by x,y,z. Let V= {unit,
true,false,0,1,2, . . . ,acq,rel} denote the set of values, ranged over by u,v,w. Let E denote the set

of expressions, ranged over by E; it is defined as follows:

E ::= x
∣

∣ u
∣

∣ E1 ==E2

∣

∣ ~E
∣

∣ E1 &&E2

∣

∣ E1 +E2

∣

∣ · · ·

Symbol is a special variable that loses all data written to it, similar to /dev/null in Unix. Symbols

acq and rel are special values to control usage permissions of variables (§2.4).

2.2 Actions

Next, we define: the syntax of actions that processes can execute (Definition 3); functions to retrieve the

“subject” and the “object” of an action (Definition 4). The subject is the process that executes an action;

the object is the channel through which an action is executed, if any.

Definition 3. Let A denote the set of actions, ranged over by α ; it is defined as follows:

α ::= p.E
∣

∣ q.y :=E
∣

∣ pq!E
∣

∣ pq?E
∣

∣

τ

Action p.E implements a test of expression E at process p. Action q.y :=E implements an assignment of

the value of expression E to variable y at process q. Actions pq!E and pq?E implement an asynchronous

send and receive of the value of expression E from process p to process q. Action τ implements idling.

Definition 4. Let subj(α) and obj(α) denote the subject and the object of α ; they are defined as follows:

subj(p.E) = p

subj(pq!E) = p

subj(q.y :=E) = q

subj(pq?y) = q

obj(pq!E) = pq

obj(pq?E) = pq

2.3 Programs

Next, we define: the syntax of programs (Definition 5); a function to extract local programs from a global

program (Definition 6); the operational semantics of programs (Definition 7).

Definition 5. Let P denote the set of programs, ranged over by P,G,L; it is defined as follows:

P ::= 1
∣

∣ α
∣

∣ P1 + P2

∣

∣ P1 ‖ P2

∣

∣ P1 ; P2

Program 1 implements an empty execution. Program P1 + P2 implements a choice between P1 and P2.

Program P1 ‖ P2 implements an interleaving of P1 and P2. Program P1 ; P2 implements a sequence of P1

and P2. Furthermore, we use the following shorthand notation:

p.E _q.y instead of pq!E ; pq?y

p acq q.y instead of (p.acq_q.y) ; (q.unit_ p.)

p acq q.[y1, . . . ,yn] instead of p acq q.y1 ; · · · ; p acq q.yn

p rel q.y instead of p.rel_q.y

p rel q.[y1, . . . ,yn] instead of p rel q.y1 ; · · · ; p rel q.yn

if p.e P1 P2 instead of (p.E ; P1) + (p.~E ; P2)

A program is global if at least two subjects occur in it; it is local if it at most one subject occurs in it.

A local program for process r can be extracted from global program G through projection. The idea is to

replace every action in G of which r is not the subject with τ.

Definition 6. Let P ↾ r denote the projection of P onto r; it is induced by the following equations:

T. Smeele & S. Jongmans 53

α
α
−→ 1

P1
α
−→ P′

1

P1 + P2
α
−→ P′

1

P2
α
−→ P′

2

P1 + P2
α
−→ P′

2

P1
α
−→ P′

1

P1 ‖ P2
α
−→ P′

1 ‖ P2

P2
α
−→ P′

2

P1 ‖ P2
α
−→ P1 ‖ P′

2

P1
α
−→ P′

1

P1 ; P2
α
−→ P′

1 ; P2

subj(α) /∈ {subj(α̂) | P1 → ··· →
α̂
−→} P2

α
−→ P′

2

P1 ; P2
α
−→ P′

2

(a) Programs. Let → ··· → denote a sequence of 0-or-more reductions.

SJEKp = true

S
p.E

−−−−→
p.true

S

SJEKq = v

S
q.y :=E
−−−−→
q.y := v

S[y 7→ v]q

SJEKp = u

S
pq!E
−−−→
pq!u

S S
pq?y
−−→
pq?v

S[y 7→ v]p S
τ

−→
τ

S

(b) Stores

C −→
p.v

C C −−−−→
q.y := v

C

|~v|< n

(~v,n) −−→
pq!u

(u·~v,n) (~u·v,n) −−→
pq?v

(~u,n) C −→
τ

C

(c) Channels

P
α
−→ P′

{P}∪P
α
−→ {P′}∪P

S
α
−→
¯
α

S′ subj(α) = r

{subj(α) 7→ S}∪S
α
−→
¯
α

{subj(α) 7→ S′}∪S

C −→
¯
α

C′ obj(
¯
α) = pq

{pq 7→C}∪C −→
¯
α

{pq 7→C′}∪C

P
α
−→ P ′ S

α
−→
¯
α

S ′ C −→
¯
α

C′

(P,S,C)
α
−→
¯
α

(P ′,S ′,C′)

(d) Systems

Figure 3: Operational semantics

α ↾ subj(α) = α

α ↾ r = τ if: r 6= subj(α)

1 ↾ r = 1

P1 ◦ P2 ↾ r = (P1 ↾ r) ◦ (P2 ↾ r) if: ◦ ∈ {+,‖, ;}

We define the operational semantics of programs through a labelled reduction relation.

Definition 7. Let P
α
−→ P′ denote reduction from P to P′ with α ; it is defined in Figure 3a.

Most rules are standard. The only special rule is the second rule for sequencing: it allows sequences

of actions to be executed out-of-order, so long as they are executed at different processes (i.e., they are

independent; insisting on a sequential order would be unreasonable in a parallel environment). That

is, the left premise of the rule entails that the subject of α does not occur in P1 (cf. the operational

semantics of global multiparty session types). For instance, in a.x :=5 ; b.y :=6, the assignments at

Alice and Bob may be executed out-of-order. In contrast, in a.x :=5 ; a.x+1_b.y, the assignment and

the communication must be executed in-order.

54 Choreographic Programming of Isolated Transactions

2.4 Stores

Next, we define: the syntax of stores (Definition 8); functions to read expressions from a store and write

values to it (Definition 9); the operational semantics of stores (Definition 10).

Definition 8. Let S= (X\{ })⇀ (V×2R) denote the set of stores, ranged over by S.

Storage S(x) = (u,R) means that variable x has value u, and that the processes in R are permitted to use

it. Typically, R ∈ {R}∪{{r} | r ∈ R}: either every process is permitted to use x (if R = R), or only one

process (if R = {r} for some r ∈R). Every process has its own store, but through communications, other

processes can use it, too.

Definition 9. Let SJEKr and S[y 7→ v]r denote the read of E in S by r and the write of v to y in S by r;

they are defined as follows:

SJxKr = u if: S(x) = (u,R) and r ∈ R

SJuKr = u

S[7→ v]r = S

S[y 7→ v]r = {x 7→ S(x) | x 6= y}∪

{y 7→ (v,R)} if: acq 6= v 6= rel

{y 7→ (u,{r})} if: acq= v 6= rel

{y 7→ (u,R)} if: acq 6= v = rel

if: y 6= and S(y) = (u,R) and r ∈ R

SJE1 ==E2Kr = . . .

SJ~EKr = . . .

SJE1 &&E2Kr = . . .

SJE1 +E2Kr = . . .
...

...
...

Writes S[y 7→ acq]r and S[y 7→ rel]r mean that process r tries to acquire or release exclusive permission to

use y, without changing the value; it succeeds only if r already has permission (possibly non-exclusive).

The crux of the definition is that SJEKr and S[y 7→ v]r are undefined when r is not permitted to use

a variable that occurs in E or y. Such undefinedness is leveraged in the operational semantics of stores

(next definition). We note that SJEKr is also undefined when operations are performed on sub-expressions

of incompatible types. For instance, SJ5 + trueKr is undefined. A type system can be used to catch such

errors statically; this is orthogonal to the aim of this paper.

We define the operational semantics of stores through a labelled reduction relation. Every reduction

has two labels: an action (written above the arrow) and the “ground” version of the action (written

below). In the ground version, every expression is replaced by its value, if any.

Definition 10. Let S
α
−→
¯
α

S′ denote reduction from S to S′ with α and
¯
α ; it is defined in Figure 3b.

The first rule states that a test p.E is executed on a store by reading E , if the value of E is true, and if

p has enough permissions. The second rule states that an assignment q.y :=E is executed by reading E ,

and by writing the value of E to y, if q has enough permissions. The third rule states that a send pq!E

is executed by reading E , if p has enough permissions. The fourth rule states that a receive pq?y and

its ground version pq?v are executed by writing v to y, if p has permission to use y (not q; essentially,

we treat receives as remote assignments). If a process does not have enough permissions for a rule to be

applicable, the store cannot reduce, so the action is blocked.

2.5 Channels

Next, we define: the syntax of channels (Definition 11); the operational semantics (Definition 12).

Henceforth, we write ~u for a list of values, and we write v·~u and ~u·v for prefixing and suffixing.

Definition 11. Let C= V
∗×{0,1,2, . . . ,∞} denote a set of channels, ranged over by C.

T. Smeele & S. Jongmans 55

Channel (~u,n) means that its n-capacity buffer contains the values in ~u; the buffer is reliable and FIFO.

We define the operational semantics of channels through a labelled reduction relation. As channels

contain values, every reduction has one label: a ground action (written below the arrow).

Definition 12. Let C −→
¯
α

C′ denote reduction from C to C′ with
¯
α ; it is defined in Figure 3c.

The first and second rule state that a test and an assignment are executed on a channel without really

using it. The third rule states that a send is executed by enqueueing a value to the buffer, if it is not full.

The fourth rule states that a receive is executed by dequeueing a value from the buffer, if it is not empty.

Henceforth, we omit reduction labels when they do not matter.

2.6 Systems

Last, we define: the syntax of systems (Definition 13); the operational semantics (Definition 14); opera-

tional equivalence (Definition 15)

Definition 13. Let PPP= 2P \{ /0} denote the set of (non-empty) sets of programs, ranged over by P. Let

SSS= R⇀ S denote the set of families of stores, ranged over by S . Let CCC = R×R⇀ C denote the set of

families of channels, ranged over by C. Let PPP×SSS×CCC denote the set of systems, ranged over by D.

System (P,S,C) means that the program(s) in P, the stores in S , and the channels in C are executed

together. It is well-formed if there exists a set of processes R = {r1, . . . ,rn} such that the domain of S is

R (every process has a store), and the domain of C is R×R (every pair of processes has a channel), and:

P ∈ {{P} | P is global and every subject that occurs in P occurs in R}∪

{{P1, . . . ,Pn} | for each 1 ≤ i ≤ n, Pri
is local and every subject that occurs in Pri

is ri}

We define the operational semantics of systems through a labelled reduction relation.

Definition 14. Let (P,S,C)
α
−→
¯
α

(P,S,C)′ denote reduction from (P,S,C) to (P,S,C) with α and
¯
α ; it

is defined in Figure 3d.

The first, second, and third rule lift reduction from individual programs, stores, and channels to sets of

programs, families of stores, and families of channels. The fourth rule connects them together.

Two systems are operationally equivalent if they have the same behaviour. We formalise “having

the same behaviour” in terms of branching bisimilarity [28] (in contrast to trace equivalence as usual),

because: it is insensitive to idling; it preserves the validity of formulas in many temporal logics (including

LTL, CTL, CTL∗, and µ-calculus, subject to conditions), which we require to specify properties of global

programs. Two systems (resp. processes, stores, channels, sets of processes, families of stores, families

of channels) are branching bisimilar iff they can repeatedly mimic each other’s reductions, modulo idling.

Definition 15. Let {≈1,≈2, . . .} denote the set of branching bisimulations, ranged over by ≈; it is defined

as follows, coinductively:

• for each D1
τ

−→
τ

∗ D†
1

α
−→
¯
α

D‡
1

τ

−→
τ

∗ D′
1, for some D2

τ

−→
τ

∗ D†
2

α
−→
¯
α

D‡
2

τ

−→
τ

∗ D′
2, D†

1 ≈D†
2, D‡

1 ≈D‡
2, D′

1 ≈D′
2

• for each D2
τ

−→
τ

∗ D†
2

α
−→
¯
α

D‡
2

τ

−→
τ

∗ D′
2, for some D1

τ

−→
τ

∗ D†
1

α
−→
¯
α

D‡
1

τ

−→
τ

∗ D′
1, D†

1 ≈D†
2, D‡

1 ≈D‡
2, D′

1 ≈D′
2

D1 ≈D2

Let ≡=≈1 ∪≈2 ∪ ·· · denote operational equivalence (i.e., the largest branching bisimulation).

56 Choreographic Programming of Isolated Transactions

The following proposition states that operational equivalence of sets of programs implies that of the

systems they constitute. Specifically, if P is a global program, and if {P} ≡ {P ↾ r | r is a subject of P},

then the local programs extracted from P have the same behaviour as P in any initial stores and channels.

In the absence of loops, as in this paper, checking P1 ≡P2 is clearly decidable; in the presence of loops,

it is not. We leave decidable approximations of ≡ (e.g., well-formedness conditions on the syntax of

choices, as usual) for future work, when we extend our work with loops.

Proposition 1. For all S,C, if P1 ≡ P2, then (P1,S,C)≡ (P2,S,C).

2.7 Properties

To prove properties, we adopt a state-based temporal logic in the style of CTL [25]. We are primarily

interested in two classes of properties (although other classes may be specified, too): isolation of transac-

tions and absence of deadlock; our logic has special predicates to formulate such properties. The need to

explicitly prove absence of deadlock arises from the fact that systems in this paper are not deadlock-free

by construction. For instance, any system that consists of the following program can deadlock (elabora-

tion of the last example in §1.3):

Gv3
acb

= ((a acq b.[x,y]) ; G§1.1
ab

; (a rel b.[x,y])) ‖ ((c acq b.[y,x]) ; G§1.2
cb

; (c rel b.[x,y]))

The problem is that Alice acquires x and y (in that order), while Carol acquires y and x (in that order).

Definition 16. Let F denote the set of formulas, ranged over by ϕ ; it is defined as follows:

ϕ ::= ⊤
∣

∣ ¬ϕ
∣

∣ ϕ1 ∧ϕ2

∣

∣ EG(ϕ)
∣

∣ EU(ϕ1,ϕ2)
∣

∣ p.E
∣

∣ AXq.y(ϕ)
∣

∣ dead

Formula ⊤ specifies truth. Formulas ¬ϕ and ϕ1 ∧ϕ2 specify negation and conjunction. Formula EG(ϕ)
specifies that, in some branch, ϕ is always true. Formula EU(ϕ1,ϕ2) specifies that, in some branch, ϕ1

is true until ϕ2 is true. Formula p.E specifies proposition E at p. Formula AXq.y(ϕ) specifies that ϕ

is true next if variable y at process q was changed. Formula dead specifies the presence of deadlock.

Furthermore, we use the following shorthand notation (standard):

⊥ instead of ¬⊤

φ1 ∨φ2 instead of ¬(¬φ1 ∧¬φ2)

AG(ϕ) instead of EU(⊤,¬ϕ)

AU(ϕ1,ϕ2) instead of ¬(EU(¬ϕ2,¬(ϕ1 ∨ϕ2))∨EG(¬ϕ2))

Definition 17. Let D |= ϕ denote entailment of ϕ by D; it is defined as follows:

D |=⊤

D 6|= ϕ

D |= ¬ϕ

D |= ϕ1 D |= ϕ2

D |= ϕ1 ∧ϕ2

D −→D′ D |= ϕ D′ |= EG(ϕ)

D |= EG(ϕ)

D |= ϕ2

D |= EU(ϕ1,ϕ2)

D −→D′ D |= ϕ1 D′ |= EU(ϕ1,ϕ2)

D |= EU(ϕ1,ϕ2)

S
p.E

−−−−→
p.true

S

(P,S,C) |= p.E

for each (P,S,C) −→ (P ′,S ′,C′)
if S(q)(y) 6= S ′(q)(y), then (P ′,S ′,C′) |= ϕ

(P,S,C) |= AXq.y(ϕ)

P −→
(P,S,C) 6→

(P,S,C) |= dead

The rules on the first two lines are the standard ones for CTL. The first rule on the third line states that a

proposition is true if the corresponding test succeeds. The second rule on the third line states that every

reduction that changes variable y at process q must make ϕ true. The third rule on the third line states that

the presence of deadlock is true if the set of programs can reduce, but the system cannot (i.e., program

reduction is blocked by stores and/or channels).

T. Smeele & S. Jongmans 57

In the absence of loops, as in this paper, the model checking problem is decidable: it is straight-

forward to adapt classical model checking algorithms for CTL (e.g., Clarke et al. [13]) to also support

our formulas p.E , AXq.y(ϕ), and dead. If a global program G satisfies operational equivalence, then it

suffices to model check the system that consists of G instead of model checking the system that consists

of G’s projections; the former is generally much more efficient as the state space of G’s projections can

be exponentially larger than that of G (due to τ-reductions of the projections).

2.8 Examples

We end this section with some examples. Let:

S = {a 7→ {hash 7→ 0},b 7→ {x 7→ "",y 7→ 0},c 7→ {hash 7→ 0}}

C = {pq 7→ (ǫ,∞) | p,q ∈ {a,b,c} and p 6= q}

In words, S is an initial family of stores (for Alice, Bob, and Carol) in which all variables have default

values, while C is an initial family of empty channels (between Alice, Bob, and Carol). Furthermore, in

addition to Gv1
acb

in §1.2, Gv2
acb

in §1.3, and Gv3
acb

in §2.7, let:

Gv4
acb

= ((a acq b.x) ; G§1.1
ab

; (a rel b.x)) ‖ G§1.2
cb

Gv5
acb

= (G§1.1
ab

; G§1.2
cb

) + (G§1.2
cb

; G§1.1
ab

)

– Regarding isolation of transactions, the property to be proved can be specified as follows:

ϕ = AG(AXb.x(AU(AXb.x(⊥)∧AXb.y(⊥),AXb.y(b.(md5(x)== y)))))

That is: in all branches, always (AG), if x is changed at Bob (AXb.x), it is not changed again

(AXb.x(⊥)) until y is changed at Bob (AXb.y) such that x and y are consistent (b.(md5(x) == y)).

System ({Gv1
acb

},S,C) violates ϕ , as informally explained in §1.2. System ({Gv2
acb

},S,C) satisfies

ϕ , as Alice and Carol acquire exclusive permission to use x and y at Bob. System ({Gv3
acb

},S,C)
also satisfies ϕ : when the system does deadlock, it does so before x at Bob is changed; when it does

not deadlock, Alice and Carol acquire exclusive permission. System ({Gv4
acb

},S,C) violates ϕ :

while G§1.1
ab

runs as an isolated transaction (as Alice does acquire exclusive permission), G§1.2
cb

is not

(as Carol does not). System ({Gv5
acb

},S,C) satisfies ϕ , too, but it violates operational equivalence.

– Regarding absence of deadlocks, the property to be proved can be specified as ϕ = AG(¬dead).
Systems ({Gv1

acb
},S,C), ({Gv2

acb
},S,C), ({Gv4

acb
},S,C), and ({Gv5

acb
},S,C) satisfy ϕ . In contrast,

system ({Gv3
acb

},S,C) violates ϕ .

3 Conclusion

3.1 Related Work

Advances in choreographic programming were cited in §1.1. Outside choreographic programming, clos-

est to our work are mechanisms in the literature on session types to assure mutual exclusion. In the

literature on binary session types, mutual exclusion and related patterns are supported in the work of

Balzer et al. [1] (without deadlock freedom) and by Balzer et al. and Kokke et al. [2, 36] (with deadlock

freedom) in the form of typing disciplines for linear and shared channels. In the literature multiparty

session types, mutual exclusion is supported in the work of Voinea et al. [42] in the form of a typing

discipline for linear and shared channels in the special case when multiple processes together implement

a single role. More generally, parallel composition has been studied in the context of multiparty session

typing in several ways: through static interleaving of types (e.g., [32,33]); through dynamic interleaving

of programs (e.g., [3, 14]); through a combination of those two (e.g., in the form of nesting [9, 12]).

58 Choreographic Programming of Isolated Transactions

3.2 This Work

We presented the design of a new choreographic programming language that supports isolated transac-

tions among overlapping sets of processes. The first idea was to track for every variable which processes

are permitted to use it. The second idea was to use model checking to prove isolation. This paper is our

first one in which we pursue these ideas. We believe there is plenty of room to explore alternative designs

and/or refine our work as presented. Examples include new primitives in the choreographic programming

language to implement programs and new modalities in the temporal logic to specify properties.

3.3 Future Work

On the theoretical side, we see three main avenues. First, we aim to extend the choreographic pro-

gramming language with primitives that guarantee isolation and absence of deadlocks by construction.

One possible design is a primitive of the form “isolate P” that implements P as an isolated transaction.

The challenge is to define the operational semantics such that exclusive permission of variables is auto-

matically acquired as late as possible, and released as soon as possible, while avoiding deadlocks (e.g.,

by imposing a total order on variables). Second, we aim to study an extension of our choreographic

programming language with loops. Third, we aim to investigate symbolic methods to prove properties.

On the practical side, we are now developing a proof-of-concept implementation of the design in the

form of a compiler from our choreographic programming language to mCRL2 [5, 15]. On input of a

global program, the compiler extracts a family of local programs through projection and translates both

the global program and its family to mCRL2 specifications. Using the mCRL2 toolset, we can then check

properties of the global program (µ-calculus versions of our CTL formulas) and operational equivalence.

References

[1] Stephanie Balzer & Frank Pfenning (2017): Manifest sharing with session types. Proc. ACM Program. Lang.

1(ICFP), pp. 37:1–37:29, doi:10.1145/3110281.

[2] Stephanie Balzer, Bernardo Toninho & Frank Pfenning (2019): Manifest Deadlock-Freedom for Shared Ses-

sion Types. In: ESOP, Lecture Notes in Computer Science 11423, Springer, pp. 611–639, doi:10.1007/

978-3-030-17184-1_22.

[3] Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-Ciancaglini & Nobuko

Yoshida (2008): Global Progress in Dynamically Interleaved Multiparty Sessions. In: CONCUR, Lecture

Notes in Computer Science 5201, Springer, pp. 418–433, doi:10.1007/978-3-540-85361-9_33.

[4] Petra van den Bos & Sung-Shik Jongmans (2023): VeyMont: Parallelising Verified Programs Instead of

Verifying Parallel Programs. In: FM, Lecture Notes in Computer Science 14000, Springer, pp. 321–339,

doi:10.1007/978-3-031-27481-7_19.

[5] Olav Bunte, Jan Friso Groote, Jeroen J. A. Keiren, Maurice Laveaux, Thomas Neele, Erik P. de Vink, Wieger

Wesselink, Anton Wijs & Tim A. C. Willemse (2019): The mCRL2 Toolset for Analysing Concurrent Systems

- Improvements in Expressivity and Usability. In: TACAS (2), Lecture Notes in Computer Science 11428,

Springer, pp. 21–39, doi:10.1007/978-3-030-17465-1_2.

[6] Marco Carbone, Luı́s Cruz-Filipe, Fabrizio Montesi & Agata Murawska (2018): Multiparty Classical Chore-

ographies. In: LOPSTR, Lecture Notes in Computer Science 11408, Springer, pp. 59–76, doi:10.1007/

978-3-030-13838-7_4.

[7] Marco Carbone, Kohei Honda & Nobuko Yoshida (2007): Structured Communication-Centred Programming

for Web Services. In: ESOP, Lecture Notes in Computer Science 4421, Springer, pp. 2–17, doi:10.1007/

978-3-540-71316-6_2.

https://doi.org/10.1145/3110281
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-031-27481-7_19
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-13838-7_4
https://doi.org/10.1007/978-3-030-13838-7_4
https://doi.org/10.1007/978-3-540-71316-6_2
https://doi.org/10.1007/978-3-540-71316-6_2

T. Smeele & S. Jongmans 59

[8] Marco Carbone, Kohei Honda & Nobuko Yoshida (2012): Structured Communication-Centered Program-

ming for Web Services. ACM Trans. Program. Lang. Syst. 34(2), pp. 8:1–8:78, doi:10.1145/2220365.

2220367.

[9] Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann & Philip Wadler (2016): Coherence

Generalises Duality: A Logical Explanation of Multiparty Session Types. In: CONCUR, LIPIcs 59, Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, pp. 33:1–33:15, doi:10.4230/LIPIcs.CONCUR.2016.33.

[10] Marco Carbone & Fabrizio Montesi (2013): Deadlock-freedom-by-design: multiparty asynchronous global

programming. In: POPL, ACM, pp. 263–274, doi:10.1145/2429069.2429101.

[11] Marco Carbone, Fabrizio Montesi & Carsten Schürmann (2018): Choreographies, logically. Distributed

Comput. 31(1), pp. 51–67, doi:10.1007/s00446-017-0295-1.

[12] Marco Carbone, Fabrizio Montesi, Carsten Schürmann & Nobuko Yoshida (2017): Multiparty session types

as coherence proofs. Acta Informatica 54(3), pp. 243–269, doi:10.1007/s00236-016-0285-y.

[13] Edmund M. Clarke, E. Allen Emerson & A. Prasad Sistla (1986): Automatic Verification of Finite-State

Concurrent Systems Using Temporal Logic Specifications. ACM Trans. Program. Lang. Syst. 8(2), pp. 244–

263, doi:10.1145/5397.5399.

[14] Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida & Luca Padovani (2016): Global progress

for dynamically interleaved multiparty sessions. Mathematical Structures in Computer Science 26(2), pp.

238–302, doi:10.1017/S0960129514000188.

[15] Sjoerd Cranen, Jan Friso Groote, Jeroen J. A. Keiren, Frank P. M. Stappers, Erik P. de Vink, Wieger Wesselink

& Tim A. C. Willemse (2013): An Overview of the mCRL2 Toolset and Its Recent Advances. In: TACAS,

Lecture Notes in Computer Science 7795, Springer, pp. 199–213, doi:10.1007/978-3-642-36742-7_15.

[16] Luı́s Cruz-Filipe, Eva Graversen, Lovro Lugovic, Fabrizio Montesi & Marco Peressotti (2022): Functional

Choreographic Programming. In: ICTAC, Lecture Notes in Computer Science 13572, Springer, pp. 212–237,

doi:10.1007/978-3-031-17715-6_15.

[17] Luı́s Cruz-Filipe, Kim S. Larsen & Fabrizio Montesi (2017): The Paths to Choreography Extraction. In: FoS-

SaCS, Lecture Notes in Computer Science 10203, pp. 424–440, doi:10.1007/978-3-662-54458-7_25.

[18] Luı́s Cruz-Filipe & Fabrizio Montesi (2016): Choreographies in Practice. In: FORTE, Lecture Notes in

Computer Science 9688, Springer, pp. 114–123, doi:10.1007/978-3-319-39570-8_8.

[19] Luı́s Cruz-Filipe & Fabrizio Montesi (2017): Encoding asynchrony in choreographies. In: SAC, ACM, pp.

1175–1177, doi:10.1145/3019612.3019901.

[20] Luı́s Cruz-Filipe & Fabrizio Montesi (2017): Procedural Choreographic Programming. In: FORTE, Lecture

Notes in Computer Science 10321, Springer, pp. 92–107, doi:10.1007/978-3-319-60225-7_7.

[21] Luı́s Cruz-Filipe & Fabrizio Montesi (2020): A core model for choreographic programming. Theor. Comput.

Sci. 802, pp. 38–66, doi:10.1016/j.tcs.2019.07.005.

[22] Luı́s Cruz-Filipe, Fabrizio Montesi & Marco Peressotti (2018): Communications in choreographies, revisited.

In: SAC, ACM, pp. 1248–1255, doi:10.1145/3167132.3167267.

[23] Luı́s Cruz-Filipe, Fabrizio Montesi & Marco Peressotti (2021): Certifying Choreography Compila-

tion. In: ICTAC, Lecture Notes in Computer Science 12819, Springer, pp. 115–133, doi:10.1007/

978-3-030-85315-0_8.

[24] Luı́s Cruz-Filipe, Fabrizio Montesi & Marco Peressotti (2021): Formalising a Turing-Complete Choreo-

graphic Language in Coq. In: ITP, LIPIcs 193, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp.

15:1–15:18, doi:10.4230/LIPIcs.ITP.2021.15.

[25] E. Allen Emerson & Edmund M. Clarke (1982): Using Branching Time Temporal Logic to Synthesize Syn-

chronization Skeletons. Sci. Comput. Program. 2(3), pp. 241–266, doi:10.1016/0167-6423(83)90017-5.

[26] Saverio Giallorenzo, Fabrizio Montesi & Maurizio Gabbrielli (2018): Applied Choreographies. In: FORTE,

Lecture Notes in Computer Science 10854, Springer, pp. 21–40, doi:10.1007/978-3-319-92612-4_2.

https://doi.org/10.1145/2220365.2220367
https://doi.org/10.1145/2220365.2220367
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1007/s00446-017-0295-1
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.1145/5397.5399
https://doi.org/10.1017/S0960129514000188
https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.1007/978-3-031-17715-6_15
https://doi.org/10.1007/978-3-662-54458-7_25
https://doi.org/10.1007/978-3-319-39570-8_8
https://doi.org/10.1145/3019612.3019901
https://doi.org/10.1007/978-3-319-60225-7_7
https://doi.org/10.1016/j.tcs.2019.07.005
https://doi.org/10.1145/3167132.3167267
https://doi.org/10.1007/978-3-030-85315-0_8
https://doi.org/10.1007/978-3-030-85315-0_8
https://doi.org/10.4230/LIPIcs.ITP.2021.15
https://doi.org/10.1016/0167-6423(83)90017-5
https://doi.org/10.1007/978-3-319-92612-4_2

60 Choreographic Programming of Isolated Transactions

[27] Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, David Richter, Guido Salvaneschi & Pascal

Weisenburger (2021): Multiparty Languages: The Choreographic and Multitier Cases (Pearl). In: ECOOP,

LIPIcs 194, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 22:1–22:27, doi:10.4230/LIPIcs.

ECOOP.2021.22.

[28] Rob J. van Glabbeek & W. P. Weijland (1996): Branching Time and Abstraction in Bisimulation Semantics.

J. ACM 43(3), pp. 555–600, doi:10.1145/233551.233556.

[29] Thomas T. Hildebrandt, Tijs Slaats, Hugo A. López, Søren Debois & Marco Carbone (2019): Declarative

Choreographies and Liveness. In: FORTE, Lecture Notes in Computer Science 11535, Springer, pp. 129–

147, doi:10.1007/978-3-030-21759-4_8.

[30] Andrew K. Hirsch & Deepak Garg (2022): Pirouette: higher-order typed functional choreographies. Proc.

ACM Program. Lang. 6(POPL), pp. 1–27, doi:10.1145/3498684.

[31] Kohei Honda, Vasco Thudichum Vasconcelos & Makoto Kubo (1998): Language Primitives and Type Dis-

cipline for Structured Communication-Based Programming. In: ESOP, Lecture Notes in Computer Science

1381, Springer, pp. 122–138, doi:10.1007/BFb0053567.

[32] Kohei Honda, Nobuko Yoshida & Marco Carbone (2008): Multiparty asynchronous session types. In: POPL,

ACM, pp. 273–284, doi:10.1145/1328438.1328472.

[33] Kohei Honda, Nobuko Yoshida & Marco Carbone (2016): Multiparty Asynchronous Session Types. J. ACM

63(1), pp. 9:1–9:67, doi:10.1145/2827695.

[34] Sung-Shik Jongmans & Petra van den Bos (2022): A Predicate Transformer for Choreographies - Comput-

ing Preconditions in Choreographic Programming. In: ESOP, Lecture Notes in Computer Science 13240,

Springer, pp. 520–547, doi:10.1007/978-3-030-99336-8_19.

[35] Bjørn Angel Kjær, Luı́s Cruz-Filipe & Fabrizio Montesi (2022): From Infinity to Choreographies - Extraction

for Unbounded Systems. In: LOPSTR, Lecture Notes in Computer Science 13474, Springer, pp. 103–120,

doi:10.1007/978-3-031-16767-6_6.

[36] Wen Kokke, J. Garrett Morris & Philip Wadler (2020): Towards Races in Linear Logic. Log. Methods

Comput. Sci. 16(4), doi:10.23638/LMCS-16(4:15)2020.

[37] Fabrizio Montesi (2013): Choreographic Programming. Ph.D. Thesis, IT University of Copenhagen.

https://www.fabriziomontesi.com/files/choreographic-programming.pdf.

[38] Fabrizio Montesi & Nobuko Yoshida (2013): Compositional Choreographies. In: CONCUR, Lecture Notes

in Computer Science 8052, Springer, pp. 425–439, doi:10.1007/978-3-642-40184-8_30.

[39] Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese & Jacopo Mauro (2015): Dynamic

Choreographies - Safe Runtime Updates of Distributed Applications. In: COORDINATION, Lecture Notes

in Computer Science 9037, Springer, pp. 67–82, doi:10.1007/978-3-319-19282-6_5.

[40] Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese & Jacopo Mauro (2017): Dy-

namic Choreographies: Theory And Implementation. Log. Methods Comput. Sci. 13(2), doi:10.1007/

BF01221097.

[41] Mila Dalla Preda, Saverio Giallorenzo, Ivan Lanese, Jacopo Mauro & Maurizio Gabbrielli (2014): AIOCJ: A

Choreographic Framework for Safe Adaptive Distributed Applications. In: SLE, Lecture Notes in Computer

Science 8706, Springer, pp. 161–170, doi:10.1007/978-3-319-11245-9_9.

[42] A. Laura Voinea, Ornela Dardha & Simon J. Gay (2019): Resource Sharing via Capability-Based Multiparty

Session Types. In: IFM, Lecture Notes in Computer Science 11918, Springer, pp. 437–455, doi:10.1007/

978-3-030-34968-4_24.

https://doi.org/10.4230/LIPIcs.ECOOP.2021.22
https://doi.org/10.4230/LIPIcs.ECOOP.2021.22
https://doi.org/10.1145/233551.233556
https://doi.org/10.1007/978-3-030-21759-4_8
https://doi.org/10.1145/3498684
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-030-99336-8_19
https://doi.org/10.1007/978-3-031-16767-6_6
https://doi.org/10.23638/LMCS-16(4:15)2020
https://www.fabriziomontesi.com/files/choreographic-programming.pdf
https://doi.org/10.1007/978-3-642-40184-8_30
https://doi.org/10.1007/978-3-319-19282-6_5
https://doi.org/10.1007/BF01221097
https://doi.org/10.1007/BF01221097
https://doi.org/10.1007/978-3-319-11245-9_9
https://doi.org/10.1007/978-3-030-34968-4_24
https://doi.org/10.1007/978-3-030-34968-4_24

	1 Introduction
	1.1 Background: Choreographic Programming
	1.2 Open Problem: Isolated Transactions
	1.3 Contributions of This Paper

	2 The Design
	2.1 Names and Data
	2.2 Actions
	2.3 Programs
	2.4 Stores
	2.5 Channels
	2.6 Systems
	2.7 Properties
	2.8 Examples

	3 Conclusion
	3.1 Related Work
	3.2 This Work
	3.3 Future Work

