
Performance of Middleware Based Architectures: A Quantitative
Approach1

M. Harkema a,c, B.M.M. Gijsen b and R.D. van der Mei c,d

a University of Twente, Department of Computer Science, Enschede, The Netherlands
b TNO Telecom, Center of Excellence Quality of Service, Delft, The Netherlands
c CWI, Advanced Communication Networks, Amsterdam, The Netherlands
d Vrije Universiteit, Faculty of Sciences, Amsterdam, The Netherlands

1 This work was partly carried out within the EQUANET project, an “ICT-doorbraakproject” which is supported by the Dutch Ministry
of Economic Affairs via its agency SenterNovem. Information on the EQUANET project is available from http://equanet.cs.utwente.nl/.

Keywords: middleware, performance, quantitative models,
simulations, lab testing, thread pools, thread scheduling

Most of today’s E-business applications on the Internet are built
upon middleware-based architectures. For service providers
offering these applications performance is essential: less-than-
acceptable performance levels may lead to customer churn, and
thus loss of revenue, and as such directly affect the company’s
competitive edge. This raises the critical need for service providers
to be able to predict and control performance. In this paper we
demonstrate the usefulness of a quantitative modeling approach to
analyze and predict the performance of middleware-based
applications. To this end, we develop a quantitative performance
model of middleware architectures based on CORBA, the de-facto
standard for object middleware. A particular feature of the model
is that it explicitly takes into account priority mechanisms that
handle the access to the processors among the different threads.
To validate the model we have compared performance predictions
from simulation runs with results from lab experiments for a
variety of parameter settings. The results show that (1) the
inclusion of priority mechanisms in the model leads to a significant
improvement of the accuracy of the performance predictions
based on the model, and (2) a quantitative modeling approach to
assess and predict the performance of middleware-based
applications is very promising.

1. INTRODUCTION
Many of today’s E-business applications on the Internet run in a
heterogeneous environment of networks, hardware and software
components. In the competitive market of E-businesses a critical
success factor service providers is performance. Performance
problems can directly lead to customer churn, and thus loss of
revenue. Typical examples of E-business applications are online
airline ticket reservation, online banking and online purchasing of

consumer products. For this type of applications, the most
relevant performance aspects are service availability, payment
transaction security and performance. This paper is focused on
performance, particularly in terms of response times.

To assess the performance of their E-business applications,
companies usually perform a variety of activities: (1) performance
lab testing, (2) performance monitoring, and (3) performance
tuning. Lab testing typically involves the performing load and
stress testing in a lab environment. Although lab-testing efforts are
undoubtedly useful, there are two major disadvantages. First,
building a production-like lab environment may be very costly,
and second, performing load and stress tests and interpreting the
results are usually very time consuming, and hence highly
expensive. Performance monitoring is usually performed to keep
track of high-level performance metrics such as service availability
and end-to-end response times, but also to keep track the
consumption of low-level system resources, such as CPU
utilization and network bandwidth consumption. Results from lab
testing and performance monitoring provide input for tuning the
performance of an application. A common drawback of the
aforementioned performance assessment activities is that their
ability to predict the performance under projected growth of the
workload in order to timely anticipate on performance degradation
(e.g., by planning system upgrades or architectural modifications)
is limited. This raises the need to complement the activities with
methods specifically developed for performance prediction [7]. To
this end, various modeling and analysis techniques have been
developed over the past few decades (e.g., see [4, 6, 9] and
references therein).

In this paper, we develop a quantitative model for the
performance of a CORBA-based middleware implementation.
The model encompasses the combined impact of a variety of
factors, such as the processor speed, the rate at which requests
arrive at the server, the marshalling and un-marshalling of requests,
de-multiplexing the request to the proper application object, and
the priority mechanisms implemented to schedule the different

types of threads at the processor. As such, the model is an
extension of the model presented in [1], where we assumed that all
the active threads share the underlying processor speed in a
processor-sharing (PS) fashion, not taking into account some kind
of priority mechanism. We validate the model by comparing
results from lab experiments with simulation results for a number
of workload scenarios. The results demonstrate that the
performance predictions based on the model match well with the
results from the lab experiments. Moreover, comparing the results
with those in the model without priorities [1] the results show
that the inclusion of the priority mechanism to scheduling threads
leads to significant enhancements of the accuracy of the model.

The remainder of this paper is organized as follows. Section 2
describes the performance model. Section 3 compares performance
experiment results with simulation results. Section 4 presents our
conclusions.

2. PERFORMANCE MODEL
In this section we develop a quantitative performance model for
remote method invocations based on CORBA. Compared to our
previous paper on this performance model [1], we have added
features of the operating system scheduler where we previously
assumed PS scheduling. Large parts of section 2.1 and 2.2 have
been preserved to keep this paper self-containing.

2.1 Description of request handling
In this section we describe how the processing steps in handling
requests (see for example [1, 10] for more details) are handled by
the operating system and middleware layer. The focus is on the
request handling at the server side, i.e. the handling of method
invocation requests, which is essential for most CORBA
applications.

In the discussion below the middleware is configured to use
the thread pool ORB threading model. In this threading model
there are two types of threads: receiver threads that receive
incoming requests from the network and dispatcher threads that
dispatch these requests onto the target object implementation.
The ORB allocates a pool of dispatcher threads during startup.
This thread pool has a fixed size.

Consider a server that receives and handles requests that
come in over one of the Ncon connections. To discuss the
functional behavior of the request handling mechanism, let us
consider a tagged method invocation request T and follow its route
along the successive processing steps, illustrated by Figure 1.

To start, upon entering the system T is received by a
receiver thread, which is used to perform several processing
steps. Specifically, to read the header of the request, to read the
body of the message, to search in the active object map for the
object key, to locate the so-called Portable Object Adapter (POA)
belonging to the invoked object and to send the request to the
dispatcher thread pool. Newly incoming requests that arrive at a
busy receiver thread are queued and served in the order of arrival.
After finishing the receiver-thread processing, the receiver thread
is released and the method invocation request T is forwarded to a
pool of dispatcher threads that handle access to the POAs and

object implementations. The receiver thread en-queues request T
in the request queue of the dispatcher thread pool, even if there are
available dispatcher threads and the queue is empty. After en-
queuing the request T, idle dispatcher threads are signaled that a
new request is available in the queue. After these so-called 1st
phase receiver thread processing steps the receiver thread is not
ready to process a new request, until the 2nd phase has been
completed. The 2nd phase consists of cleaning allocated data-
structures and preparing to process for the next request. Once a
dispatcher thread is available (after the receiver thread signaled the
new request T in the queue) request T is sent to the proper POA,
which contains a reference to the object that will handle the
request. The POA may be configured to use a single-threaded or
multi-threaded policy. With the single-threaded policy only one
request can be processed by that POA. Other dispatcher threads
that also want to process request on that POA will block until the
POA becomes available again. Each ORB has a Root-POA with a
standard collection of policies, for instance the Root-POA has the
multi-threaded threading policy. Subsequently, the POA sends
the request to the skeleton, which un-marshals the request and
sends the request to the server object implementation (also
referred to as servants) that will handle the request. Finally, the
reply of the object execution is marshaled and sent back to the
client and the dispatcher thread is released. Similar to the
operation of a receiver thread, the dispatcher thread processing is
completed by a second phase part where data-structures are
cleaned and preparations are made to process the next request.

2.2 Model
Method invocation requests arrive at the server over one of the
Ncon connections. Method invocation requests for object j at POA
i arrive at the server according to a Poisson process with rate λi,j,k
requests per time unit. To describe the dynamics of the model, we
consider a tagged customer T=Ti,j,k and follow its route along the
different processing steps. Each receiver thread serves incoming
requests in the order of arrival, and requests finding the receiver
thread busy have to wait in an infinite-size buffer. Processing the
request by the receiver thread takes a mean amount brec of CPU
processing (same for all i); this processing time is assumed to be
deterministic and includes both 1st and 2nd phase CPU time. After
being processed the received thread, the receiver thread is released
and T is forwarded to the dispatcher thread pool, consisting of
Ndisp dispatcher threads. If T finds all Ndisp dispatcher threads
occupied it is placed in a infinite-size buffer that is handled on a
first-come-first-served basis. When a dispatcher thread is
available, T is sent to the proper POA (namely, POA i, which is
predetermined upon arrival). The amount of service time required
at the POA is the deterministic CPU processing time bpoa
(including 1st and 2nd phase CPU time). If i=1, then T is forwarded
to the Root-POA and taken into service immediately; otherwise, T
is forwarded to POA i and handled on a FIFO basis.
Subsequently, POA i forwards T to servant j. In practice, POAs
and servants may be single- or multi-threaded with any number of
threads. In our performance model the threading level of POA i

and servant j at POA i is represented by Tpoa_i and Tser_i,j ,
respectively. The amount of processing time needed by T consists
of a mean amount of CPU processing time bser_i,j and a mean non-
CPU processing time of bsern_i,j for object j at POA i
(deterministically distributed). Non-CPU processing time
represents idle times, database access times, memory access times,
disk I/O, etcetera. The reply of the method invocation will be
marshaled after the object has processed the request. The
processing time needed for the marshaling consists of a
deterministic amount of CPU processing time bmar_i,j for the
marshaling after object j belonging to POA i. The precise amount
of deterministic CPU processing time for marshaling depends on
the amount and type of data that is to be marshaled. As soon as
the reply is sent, the POA and dispatcher thread are released. In
other words, the dispatcher thread is possessed by the request
during the POA, servant and marshaling steps.

The processing steps performed by the receiver and
dispatcher threads share the hardware resources. In our first
version [1] of the performance model we assumed that the threads
shared the CPU in a PS fashion. That is, if at some point in time
there are in total N receiver and dispatcher threads active, then
each of them receives a faction of 1/N of the available processor
capacity (on a single CPU machine).

The second version of the performance model more
accurately captures the thread scheduling behavior of the Linux
operating system. Linux schedules thread execution using a time
sharing scheduler with variable quantum of 10 – 110 milliseconds.

The scheduling order of threads depends on the time-slice threads
have left. When there are no runnable (non-blocking) threads left
with a time-slice larger than zero, the time-slices of all threads are
recalculated. Threads keep half of their remaining time-slice from
the last scheduler round and some constant amount of time-slice is
added. By allowing threads to keep half of their remaining time-
slice, Linux favors threads that don’t spend a lot of time on the
CPU (i.e. sleeping / blocking threads). In other words, Linux
favors I/O bound threads over CPU bound threads. Thread
context switches occur when a thread has no time-slice left, when
a thread blocks for some resource, or when a thread with a larger
time-slice un-blocks (e.g. a dispatcher thread un-blocking because a
receiver thread en-queued a new request in the thread-pool queue
preempts the receiver thread if its time-slice is larger). Every 10
milliseconds the kernel decrements the time-slice of the running
thread.

More detailed information on the Linux scheduler is available
from [8] and the Linux kernel source code.

3. MODEL VALIDATION
In this section we describe our test lab setup and present some
performance experiment results with accompanying simulation
results, using both our previous [1] and updated performance
simulation implementations.

3.1 Test lab setup and measurements
Our test lab consists of 2 machines interconnected using local
network. The server machine is a Pentium III 550 MHz with 256

∞λi,j,1
Root POAbrec

∞
bser
bsern

bser
bsern

bdisp bunm bmar breply

POA 2

ST
POA NPOA ∞

bser
bsern

bser
bsern

bdisp
bunm bmar breply

∞λi,j,2
brec

∞λi,j,k
brec

Receiver
threads

Servant 1
POA1

Servant Nser_1
POA1

Servant 1
POANPOA

Servant Nser_1
POANPOA

logical resource layer

physical resource layer∞
CPU

Operating system
scheduler runs
threads on Ncpu

CPUs

N
con

Dispatcher
threads

∞

Pool of
Ndisp

threads

∞

ST POA
mutex

Figure 1. Performance model for the server-side request handling.

MB RAM. The client machine is a Pentium IV 1.7 GHz with 512
MB RAM. Both machines run the Linux v2.4 operating system
and the Java 2 standard edition v1.4.1. For this experiment we
disabled priority scheduling of processes on the Linux machines
and used high-resolution timers to generate accurate arrival
processes. The CORBA implementation we use is ORBacus
4.1.1 by IONA Technologies [3]. In the experimental setup one
target object, managed by the Root-POA, is instantiated in each
scenario. The client machine runs a synthetic workload generator
[1] that produces workload for the CORBA implementation
running on the server machine. To obtain measurement data of the
CORBA server, we used our Java Performance Monitoring
Toolkit (JPMT) [2]. Amongst other measures, we monitored the
following performance data during the experiments:

• Queuing times before the receiver thread and the
dispatcher thread-pool.

• CPU times of the receiver and dispatcher threads.
• Completion times of the receiver and dispatcher threads.
• CPU utilization.

3.2 Performance results
We configure the CPU service demand of the target object to be 5
milliseconds with a deterministic distribution. The server ORB
dispatcher thread pool has 10 threads. The client ORB will
generate a workload of 15000 requests using a Poisson process,
via one connection. The arrival-rate for the Poisson process is 1
request per 10 milliseconds.

Table 1 contains a summary of the performance measurement
results, together with simulation results from both our previous
and updated simulators (discussed in section 3.3). The presented
values are all averaged over the 15000 requests. The measured
receiver queuing time represents the time that requests are queued
before the receiver thread (somewhere between client and server-
side receiver thread, e.g. in socket buffers). The measured
dispatcher queuing time represents the time that requests are
queued at the dispatcher thread-pool. The measured completion
time of the receiver and dispatcher threads equal the (average) time
between the arrival at the thread and departure of a request from
the thread, after processing the request. The CPU consumption of
the receiver thread is 0.925 milliseconds per request. A dispatcher
thread consumes 5.6 milliseconds per request, including the 5
milliseconds of the method executed by the target object.

The measured queuing and completions times of the receiver
and dispatcher threads are illustrated by Figures 2 and 3, together
with simulated values from the updated performance model.

The performance experiment results show that different
numbers of dispatcher threads cause different queuing behavior,
while not really influencing overall request response times (around
14 milliseconds).

3.3 Simulation results

Thread
s

Measure
d
receiver
queuing
time
(ms)

Ruby Extend Measured
receiver
completio
n time
(ms)

Ruby Extend Measured
dispatche
r queuing
time (ms)

Ruby Extend Measured
dispatche
r
completio
n time
(ms)

Ruby Extend

1 0.53 0.05 0.00 0.94 0.97 1.69 6.71 7.39 7.25 6.30 6.25 6.36

2 0.59 0.12 0.01 0.98 1.04 2.10 5.45 5.83 5.23 8.86 8.44 10.32

4 1.55 1.52 0.01 1.61 2.27 2.52 3.57 3.80 1.68 10.14 10.07 14.62

6 3.59 4.36 0.02 3.55 4.90 2.69 1.86 1.21 0.66 8.65 7.91 16.45

8 5.39 5.22 0.03 5.55 6.00 2.74 0.74 0.47 0.37 6.84 6.79 16.95

10 6.01 6.15 0.03 6.04 6.41 2.73 0.40 0.13 0.10 6.36 5.97 17.16

15 6.40 6.36 0.03 6.59 6.61 2.71 0.09 0.00 0.00 5.84 5.64 17.08

20 6.25 6.51 0.02 6.69 6.58 2.62 0.04 0.02 0.00 5.75 5.69 16.52

25 6.53 6.49 0.02 6.67 6.61 2.63 0.04 0.00 0.00 5.73 5.64 16.43

We first implemented the performance model described in section
2 in the Extend [5] simulation tool. We modeled thread scheduling
behavior using a PS node. This implementation yielded
encouraging performance predictions [1], but overestimated the
completion times of the dispatcher threads and underestimated
receiver thread completion times and queuing times for the receiver
and dispatcher threads. As shown in Table 1, the dispatcher
thread completion times in the Extend simulation are much higher
than measured during the experiments. These higher completions
times are caused by the PS scheduling, which effectively schedules
all runnable threads with an infinitely small time quantum. The
overall response times were over estimated by the Extend

simulation, mostly because of overestimation of the dispatcher
thread completion times.

Our new simulation model is implemented using the Ruby
programming language. Besides the middleware features described
in section 2, this simulation model also implements the operating
system scheduler features described in section 2. As shown in
Table 1 and Figures 2 and 3, the predictions of both queuing times
of receiver and dispatcher threads and completion times of the
receiver and dispatcher thread have become more accurate.

4. CONCLUSIONS

Queuing Time Comparison

0

1

2

3

4

5

6

7

8

0 20 40 60

Threads

Q
u

eu
in

g
 t

im
e

(m
s)

Receiver queuing
experiment

Receiver queuing
simulation

Dispatcher queuing
experiment

Dispatcher queuing
simulation

Figure 2. Receiver and dispatcher thread queuing time comparison.

In this paper we refined our quantitative performance model for
middleware architectures based on CORBA, first presented in [1].
A particular feature of the updated model is that it explicitly takes
into account priority mechanisms that handle the access to the
processors among the different threads. Validation results of the
updated model show accurate results of queuing times and thread
completion times, whereas in our previous model these were often
under- or over-estimated.

5. REFERENCES
[1] M. Harkema, B.M.M. Gijsen, R.D. van der Mei and Y.

Hoekstra. Middleware Performance: A Quantitative Modeling
Approach. To appear in Proc. of the international Symposium
of Performance Evaluation of Computer and
Telecommunication Systems (SPECTS), San Jose, July 2004.

[2] M. Harkema, D. Quartel, B.M.M. Gijsen, R.D. van der Mei,
Performance Monitoring of Java Applications, Proc. of the 3rd
Workshop on Software and Performance (WOSP), 2002.

[3] IONA Technologies, Object Oriented Concepts Inc., ORBacus
4 for Java, 2000.

[4] R. Jain, The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation,
and Modeling, John Wiley & Sons, 1991.

[5] D. Krahl, Imagine That Inc., The Extend Simulation
Environment, Proceedings of the 2000 Winter Simulation
Conference, Orlando, FL, USA, 2000.

[6] E.D. Lazowska, J. Zahorjan, G.S. Graham, K. Sevcik,
Quantitative System Performance, Prentice-Hall Inc., 1984.

[7] R.D. van der Mei, B.M.M. Gijsen and J.L. van den Berg, End-to-
end Quality of Service modeling of distributed applications: the
need for a multidisciplinary approach, CMG Journal on
Computer Management 109, 51-55, 2003.

[8] D.P. Bovet, M. Cesati, Understanding the Linux Kernel, 2nd
edition, O’Reilly Media, Inc., 2002.

[9] R. Sahner, K.S. Trivedi, A. Puliafito, Performance and
Reliability Analysis of Computer Systems, Kluwer Academic
Publishers, 1996.

[10] S. Vinoski, CORBA: Integrating diverse applications within
distributed heterogeneous environments, IEEE Communications
Magazine, February, 1997.

Completion Time Comparison

0

2

4

6

8

10

0 20 40 60

Threads

C
o

m
p

le
ti

o
n

 t
im

es
 (

m
s)

Receiver completion
experiment

Receiver completion
simulation

Dispatcher
completion
experiment

Dispatcher
completion
simulation

Figure 3. Receiver and dispatcher thread completion time comparison.

