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Most of today’s E-business applications on the Internet are built 
upon middleware-based architectures. For service providers 
offering these applications performance is essential: less-than-
acceptable performance levels may lead to customer churn, and 
thus loss of revenue, and as such directly affect the company’s 
competitive edge. This raises the critical need for service providers 
to be able to predict and control performance. In this paper we 
demonstrate the usefulness of a quantitative modeling approach to 
analyze and predict the performance of middleware-based 
applications. To this end, we develop a quantitative performance 
model of middleware architectures based on CORBA, the de-facto 
standard for object middleware. A particular feature of the model 
is that it explicitly takes into account priority mechanisms that 
handle the access to the processors among the different threads. 
To validate the model we have compared performance predictions 
from simulation runs with results from lab experiments for a 
variety of parameter settings.  The results show that (1) the 
inclusion of priority mechanisms in the model leads to a significant 
improvement of the accuracy of the performance predictions 
based on the model, and (2) a quantitative modeling approach to 
assess and predict the performance of middleware-based 
applications is very promising. 
 

1. INTRODUCTION 
Many of today’s E-business applications on the Internet run in a 
heterogeneous environment of networks, hardware and software 
components. In the competitive market of E-businesses a critical 
success factor service providers is performance. Performance 
problems can directly lead to customer churn, and thus loss of 
revenue. Typical examples of E-business applications are online 
airline ticket reservation, online banking and online purchasing of 

consumer products. For this type of applications, the most 
relevant performance aspects are service availability, payment 
transaction security and performance. This paper is focused on 
performance, particularly in terms of response times. 

To assess the performance of their E-business applications, 
companies usually perform a variety of activities: (1) performance 
lab testing, (2) performance monitoring, and (3) performance 
tuning. Lab testing typically involves the performing load and 
stress testing in a lab environment. Although lab-testing efforts are 
undoubtedly useful, there are two major disadvantages. First, 
building a production-like lab environment may be very costly, 
and second, performing load and stress tests and interpreting the 
results are usually very time consuming, and hence highly 
expensive. Performance monitoring is usually performed to keep 
track of high-level performance metrics such as service availability 
and end-to-end response times, but also to keep track the 
consumption of low-level system resources, such as CPU 
utilization and network bandwidth consumption. Results from lab 
testing and performance monitoring provide input for tuning the 
performance of an application. A common drawback of the 
aforementioned performance assessment activities is that their 
ability to predict the performance under projected growth of the 
workload in order to timely anticipate on performance degradation 
(e.g., by planning system upgrades or architectural modifications) 
is limited. This raises the need to complement the activities with 
methods specifically developed for performance prediction [7]. To 
this end, various modeling and analysis techniques have been 
developed over the past few decades (e.g., see [4, 6, 9] and 
references therein). 

In this paper, we develop a quantitative model for the 
performance of a CORBA-based middleware implementation.  
The model encompasses the combined impact of a variety of 
factors, such as the processor speed, the rate at which requests 
arrive at the server, the marshalling and un-marshalling of requests, 
de-multiplexing the request to the proper application object, and 
the priority mechanisms implemented to schedule the different 



types of threads at the processor.  As such, the model is an 
extension of the model presented in [1], where we assumed that all 
the active threads share the underlying processor speed in a 
processor-sharing (PS) fashion, not taking into account some kind 
of priority mechanism.  We validate the model by comparing 
results from lab experiments with simulation results for a number 
of workload scenarios. The results demonstrate that the 
performance predictions based on the model match well with the 
results from the lab experiments.  Moreover, comparing the results 
with those in the model without priorities [1] the results show 
that the inclusion of the priority mechanism to scheduling threads 
leads to significant enhancements of the accuracy of the model. 

The remainder of this paper is organized as follows. Section 2 
describes the performance model. Section 3 compares performance 
experiment results with simulation results.  Section 4 presents our 
conclusions. 

2. PERFORMANCE MODEL 
In this section we develop a quantitative performance model for 
remote method invocations based on CORBA.  Compared to our 
previous paper on this performance model [1], we have added 
features of the operating system scheduler where we previously 
assumed PS scheduling.  Large parts of section 2.1 and 2.2 have 
been preserved to keep this paper self-containing. 

2.1 Description of request handling 
In this section we describe how the processing steps in handling 
requests (see for example [1, 10] for more details) are handled by 
the operating system and middleware layer. The focus is on the 
request handling at the server side, i.e. the handling of method 
invocation requests, which is essential for most CORBA 
applications.  

In the discussion below the middleware is configured to use 
the thread pool ORB threading model.  In this threading model 
there are two types of threads:  receiver threads that receive 
incoming requests from the network and dispatcher threads that 
dispatch these requests onto the target object implementation.  
The ORB allocates a pool of dispatcher threads during startup.  
This thread pool has a fixed size. 

Consider a server that receives and handles requests that 
come in over one of the Ncon connections. To discuss the 
functional behavior of the request handling mechanism, let us 
consider a tagged method invocation request T and follow its route 
along the successive processing steps, illustrated by Figure 1. 

To start, upon entering the system T is received by a 
receiver thread, which is used to perform several processing 
steps. Specifically, to read the header of the request, to read the 
body of the message, to search in the active object map for the 
object key, to locate the so-called Portable Object Adapter (POA) 
belonging to the invoked object and to send the request to the 
dispatcher thread pool. Newly incoming requests that arrive at a 
busy receiver thread are queued and served in the order of arrival. 
After finishing the receiver-thread processing, the receiver thread 
is released and the method invocation request T is forwarded to a 
pool of dispatcher threads that handle access to the POAs and 

object implementations. The receiver thread en-queues request T 
in the request queue of the dispatcher thread pool, even if there are 
available dispatcher threads and the queue is empty.  After en-
queuing the request T, idle dispatcher threads are signaled that a 
new request is available in the queue. After these so-called 1st 
phase receiver thread processing steps the receiver thread is not 
ready to process a new request, until the 2nd phase has been 
completed. The 2nd phase consists of cleaning allocated data-
structures and preparing to process for the next request. Once a 
dispatcher thread is available (after the receiver thread signaled the 
new request T in the queue) request T is sent to the proper POA, 
which contains a reference to the object that will handle the 
request. The POA may be configured to use a single-threaded or 
multi-threaded policy. With the single-threaded policy only one 
request can be processed by that POA. Other dispatcher threads 
that also want to process request on that POA will block until the 
POA becomes available again.  Each ORB has a Root-POA with a 
standard collection of policies, for instance the Root-POA has the 
multi-threaded threading policy.  Subsequently, the POA sends 
the request to the skeleton, which un-marshals the request and 
sends the request to the server object implementation (also 
referred to as servants) that will handle the request. Finally, the 
reply of the object execution is marshaled and sent back to the 
client and the dispatcher thread is released. Similar to the 
operation of a receiver thread, the dispatcher thread processing is 
completed by a second phase part where data-structures are 
cleaned and preparations are made to process the next request. 

2.2 Model  
Method invocation requests arrive at the server over one of the 
Ncon connections. Method invocation requests for object j at POA 
i arrive at the server according to a Poisson process with rate λi,j,k 
requests per time unit. To describe the dynamics of the model, we 
consider a tagged customer T=Ti,j,k and follow its route along the 
different processing steps. Each receiver thread serves incoming 
requests in the order of arrival, and requests finding the receiver 
thread busy have to wait in an infinite-size buffer. Processing the 
request by the receiver thread takes a mean amount brec of CPU 
processing (same for all i); this processing time is assumed to be 
deterministic and includes both 1st and 2nd phase CPU time. After 
being processed the received thread, the receiver thread is released 
and T is forwarded to the dispatcher thread pool, consisting of 
Ndisp dispatcher threads. If T finds all Ndisp dispatcher threads 
occupied it is placed in a infinite-size buffer that is handled on a 
first-come-first-served basis. When a dispatcher thread is 
available, T is sent to the proper POA (namely, POA i, which is 
predetermined upon arrival). The amount of service time required 
at the POA is the deterministic CPU processing time bpoa 
(including 1st and 2nd phase CPU time). If i=1, then T is forwarded 
to the Root-POA and taken into service immediately; otherwise, T 
is forwarded to POA i and handled on a FIFO basis. 
Subsequently, POA i forwards T to servant j. In practice, POAs 
and servants may be single- or multi-threaded with any number of 
threads. In our performance model the threading level of POA i 



and servant j at POA i is represented by Tpoa_i and Tser_i,j , 
respectively. The amount of processing time needed by T consists 
of a mean amount of CPU processing time bser_i,j and a mean non-
CPU processing time of bsern_i,j  for object j at POA i 
(deterministically distributed). Non-CPU processing time 
represents idle times, database access times, memory access times, 
disk I/O, etcetera. The reply of the method invocation will be 
marshaled after the object has processed the request. The 
processing time needed for the marshaling consists of a 
deterministic amount of CPU processing time bmar_i,j  for the 
marshaling after object j belonging to POA i. The precise amount 
of deterministic CPU processing time for marshaling depends on 
the amount and type of data that is to be marshaled.  As soon as 
the reply is sent, the POA and dispatcher thread are released. In 
other words, the dispatcher thread is possessed by the request 
during the POA, servant and marshaling steps. 

The processing steps performed by the receiver and 
dispatcher threads share the hardware resources.  In our first 
version [1] of the performance model we assumed that the threads 
shared the CPU in a PS fashion.  That is, if at some point in time 
there are in total N receiver and dispatcher threads active, then 
each of them receives a faction of 1/N of the available processor 
capacity (on a single CPU machine). 

The second version of the performance model more 
accurately captures the thread scheduling behavior of the Linux 
operating system.  Linux schedules thread execution using a time 
sharing scheduler with variable quantum of 10 – 110 milliseconds.  

The scheduling order of threads depends on the time-slice threads 
have left.  When there are no runnable (non-blocking) threads left 
with a time-slice larger than zero, the time-slices of all threads are 
recalculated.  Threads keep half of their remaining time-slice from 
the last scheduler round and some constant amount of time-slice is 
added.  By allowing threads to keep half of their remaining time-
slice, Linux favors threads that don’t spend a lot of time on the 
CPU (i.e. sleeping / blocking threads).  In other words, Linux 
favors I/O bound threads over CPU bound threads.  Thread 
context switches occur when a thread has no time-slice left, when 
a thread blocks for some resource, or when a thread with a larger 
time-slice un-blocks (e.g. a dispatcher thread un-blocking because a 
receiver thread en-queued a new request in the thread-pool queue 
preempts the receiver thread if its time-slice is larger).  Every 10 
milliseconds the kernel decrements the time-slice of the running 
thread. 

More detailed information on the Linux scheduler is available 
from [8] and the Linux kernel source code. 

3. MODEL VALIDATION 
In this section we describe our test lab setup and present some 
performance experiment results with accompanying simulation 
results, using both our previous [1] and updated performance 
simulation implementations. 

3.1 Test lab setup and measurements 
Our test lab consists of 2 machines interconnected using local 
network.  The server machine is a Pentium III 550 MHz with 256 
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Figure 1. Performance model for the server-side request handling. 



MB RAM.  The client machine is a Pentium IV 1.7 GHz with 512 
MB RAM.  Both machines run the Linux v2.4 operating system 
and the Java 2 standard edition v1.4.1.  For this experiment we 
disabled priority scheduling of processes on the Linux machines 
and used high-resolution timers to generate accurate arrival 
processes.  The CORBA implementation we use is ORBacus 
4.1.1 by IONA Technologies [3]. In the experimental setup one 
target object, managed by the Root-POA, is instantiated in each 
scenario. The client machine runs a synthetic workload generator 
[1] that produces workload for the CORBA implementation 
running on the server machine.  To obtain measurement data of the 
CORBA server, we used our Java Performance Monitoring 
Toolkit (JPMT) [2].  Amongst other measures, we monitored the 
following performance data during the experiments: 

• Queuing times before the receiver thread and the 
dispatcher thread-pool. 

• CPU times of the receiver and dispatcher threads. 
• Completion times of the receiver and dispatcher threads. 
• CPU utilization. 

3.2 Performance results 
We configure the CPU service demand of the target object to be 5 
milliseconds with a deterministic distribution.  The server ORB 
dispatcher thread pool has 10 threads.  The client ORB will 
generate a workload of 15000 requests using a Poisson process, 
via one connection.  The arrival-rate for the Poisson process is 1 
request per 10 milliseconds. 

Table 1 contains a summary of the performance measurement 
results, together with simulation results from both our previous 
and updated simulators (discussed in section 3.3).  The presented 
values are all averaged over the 15000 requests. The measured 
receiver queuing time represents the time that requests are queued 
before the receiver thread (somewhere between client and server-
side receiver thread, e.g. in socket buffers).  The measured 
dispatcher queuing time represents the time that requests are 
queued at the dispatcher thread-pool.  The measured completion 
time of the receiver and dispatcher threads equal the (average) time 
between the arrival at the thread and departure of a request from 
the thread, after processing the request.  The CPU consumption of 
the receiver thread is 0.925 milliseconds per request.  A dispatcher 
thread consumes 5.6 milliseconds per request, including the 5 
milliseconds of the method executed by the target object. 

The measured queuing and completions times of the receiver 
and dispatcher threads are illustrated by Figures 2 and 3, together 
with simulated values from the updated performance model. 

The performance experiment results show that different 
numbers of dispatcher threads cause different queuing behavior, 
while not really influencing overall request response times (around 
14 milliseconds). 

3.3 Simulation results 

Thread
s 

Measure
d 
receiver 
queuing 
time 
(ms)  

Ruby Extend  Measured 
receiver 
completio
n time 
(ms)  

Ruby  Extend  Measured 
dispatche
r queuing 
time (ms)  

Ruby  Extend  Measured 
dispatche
r 
completio
n time 
(ms)  

Ruby Extend 

1 0.53 0.05 0.00 0.94 0.97 1.69 6.71 7.39 7.25 6.30 6.25 6.36 

2 0.59 0.12 0.01 0.98 1.04 2.10 5.45 5.83 5.23 8.86 8.44 10.32 

4 1.55 1.52 0.01 1.61 2.27 2.52 3.57 3.80 1.68 10.14 10.07 14.62 

6 3.59 4.36 0.02 3.55 4.90 2.69 1.86 1.21 0.66 8.65 7.91 16.45 

8 5.39 5.22 0.03 5.55 6.00 2.74 0.74 0.47 0.37 6.84 6.79 16.95 

10 6.01 6.15 0.03 6.04 6.41 2.73 0.40 0.13 0.10 6.36 5.97 17.16 

15 6.40 6.36 0.03 6.59 6.61 2.71 0.09 0.00 0.00 5.84 5.64 17.08 

20 6.25 6.51 0.02 6.69 6.58 2.62 0.04 0.02 0.00 5.75 5.69 16.52 

25 6.53 6.49 0.02 6.67 6.61 2.63 0.04 0.00 0.00 5.73 5.64 16.43 



We first implemented the performance model described in section 
2 in the Extend [5] simulation tool.  We modeled thread scheduling 
behavior using a PS node.  This implementation yielded 
encouraging performance predictions [1], but overestimated the 
completion times of the dispatcher threads and underestimated 
receiver thread completion times and queuing times for the receiver 
and dispatcher threads.  As shown in Table 1, the dispatcher 
thread completion times in the Extend simulation are much higher 
than measured during the experiments.  These higher completions 
times are caused by the PS scheduling, which effectively schedules 
all runnable threads with an infinitely small time quantum.  The 
overall response times were over estimated by the Extend 

simulation, mostly because of overestimation of the dispatcher 
thread completion times. 

Our new simulation model is implemented using the Ruby 
programming language.  Besides the middleware features described 
in section 2, this simulation model also implements the operating 
system scheduler features described in section 2.  As shown in 
Table 1 and Figures 2 and 3, the predictions of both queuing times 
of receiver and dispatcher threads and completion times of the 
receiver and dispatcher thread have become more accurate. 

4. CONCLUSIONS 
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Figure 2. Receiver and dispatcher thread queuing time comparison. 



In this paper we refined our quantitative performance model for 
middleware architectures based on CORBA, first presented in [1].  
A particular feature of the updated model is that it explicitly takes 
into account priority mechanisms that handle the access to the 
processors among the different threads.  Validation results of the 
updated model show accurate results of queuing times and thread 
completion times, whereas in our previous model these were often 
under- or over-estimated. 
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Figure 3. Receiver and dispatcher thread completion time comparison. 


