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ABSTRACT

Machine learning algorithms are powerful tools in Bayesian uncertainty quantification (UQ) of inverse problems.
Unfortunately, when using these algorithms medical imaging practitioners are faced with the challenging task of
manually defining neural networks that can handle complicated inputs such as acoustic data. This task needs to
be replicated for different receiver types or configurations since these change the dimensionality of the input. We
propose to first transform the data using the adjoint operator —ex: time reversal in photoacoustic imaging (PAI)
or back-projection in computer tomography (CT) imaging — then continue posterior inference using the adjoint
data as an input now that it has been standardized to the size of the unknown model. This adjoint preprocessing
technique has been used in previous works but with minimal discussion on if it is biased. In this work, we prove
that conditioning on adjoint data is unbiased for a certain class of inverse problems. We then demonstrate with
two medical imaging examples (PAI and CT) that adjoints enable two things: Firstly, adjoints partially undo the
physics of the forward operator resulting in faster convergence of a learned Bayesian UQ technique. Secondly,
the algorithm is now robust to changes in the observed data caused by different transducer subsampling in PAI
and number of angles in CT. Our adjoint-based Bayesian inference method results in point estimates that are
faster to compute than traditional baselines and show higher SSIM metrics, while also providing validated UQ.

Keywords: Uncertainty Quantification, Bayesian Inference, Amortized Inference, Normalizing Flows, Inverse
Problems, Medical Imaging, Machine Learning, Deep Learning

1. DESCRIPTION OF PURPOSE

The power of machine learning methods bring accelerated and high fidelity solutions for inverse problems in a
variety of fields.1 On the downside, many machine learning methods are black boxes with failure cases that
are difficult to predict and interpret. This is one of the reasons that their adoption in safety critical settings is
hampered. Our purpose is to increase trustworthiness of machine learning (ML) for medical imaging by enabling
uncertainty. This is important since applying ML under distribution shifts or poor training can cause instabilities
and even hallucinations that could lead to incorrect diagnoses.2,3 Uncertainty quantification (UQ) alleviates this
problem by communicating to practitioners when a method is confident in its result versus when it should not
be trusted.

We describe a practical Uncertainty Quantification framework based on adjoint operators and amortized
variational inference (AVI). These two concepts marry powerful data-driven methods with physics knowledge
allowing us to amortize over unseen data and also different imaging configurations. By amortizing, we mean
that the framework trades an expensive pretraining phase for fast inference results on unseen observations. The
particular class of algorithms we study, can be trained given only examples of the parameters of interest x and
their corresponding simulated data y. In medical imaging, data y can contain complex physical phenomena such
as acoustic waves in photoacoustic imaging. Under the hood, an ML-based algorithm learns to undo the complex
physical phenomena when providing an estimate of x. This can lead to long training times and large training
data quotas which we would like to ameliorate. We are also interested in creating an algorithm that is robust to
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changes in the dimensionality of the observations y such as when changing the number of transducers. To solve
both problems, we propose preprocessing the data y with the adjoint operator.

We first show that the posterior given data is equivalent to the posterior given data preprocessed with the
adjoint in the case of linear forward operators and Gaussian noise. Many medical imaging modalities fall in this
category i.e. photoacoustic imaging, CT and MRI. Equipped with this theoretical result, we demonstrate that
this method solves our two problems since it accelerates training convergence of AVI with conditional normalizing
flows. This is a welcome result since normalizing flows are notoriously costly to train (40 GPU weeks for the
seminal GLOW normalizing flow4). Second, the adjoint brings data to the model space and therefore standardizes
data size, enabling us to learn a single amortized normalizing flow that can sample the posterior for a variety of
imaging configurations. We demonstrate these results using two medical imaging applications.

2. METHODS

2.1 Bayesian Uncertainty

Given our quantity of interest x ∈ X called the model, the forward problem is described by a linear operator
A : X → Y whose action on x gives observations y ∈ Y. Here, we consider linear problems with additive
Gaussian noise term εεε—i.e.,

y = Ax+ εεε. (1)

Upon observing data y, traditional methods in inverse problems create a single point estimate of the x that
produced y. In the absence of noise and for invertible operators this point estimate is enough to describe the
solution of the inverse problem. However, This approach fails to fully characterize the solution space in ill-posed
problems,5 where there is no guarantee of a unique solution. In this scenario, it is important to be able to answer
questions such as: Can we trust the solution or is this estimate affected by the null space of the operator? If
there is more than one solution, what is the variability between these solution? These are questions that are
answered by UQ.

At the forefront of uncertainty quantification (UQ) for inverse problems are Bayesian methods.6 In a Bayesian
framework, we try to find the set or distribution of solutions that all explain the data. This set of solutions is
encoded by the conditional distribution p(x | y) called the posterior distribution and is the end goal of Bayesian
inference . It contains all information needed to estimate x given y while providing UQ. Calculating the posterior
distribution can be done with two main type of algorithms: first, sampling based algorithms such as Markov
chain Monte Carlo (MCMC) algorithms7 and second, optimization based algorithms such as variational inference
(VI).8 MCMC can be a costly method due to the amount of sampling required,9 especially in high-dimensional
problems. We instead explore variational inference (VI)8 to sample the posterior since it allows for amortized
training costs.

2.2 Variational Inference for Posterior Distribution Learning

To reduce the overall costs of sampling, VI methods reduce the sampling problem into an optimization problem
by finding a approximate distribution that best fits the desired distribution.8 The goodness of fit is typically
measured by the Kullback-Leibler (KL) divergence. Among the various VI methods, normalizing flows10 have
been shown to be flexible, efficient and powerful while working on a variety of distributions including conditional
distributions.4,11 For our case, the goal is to find the normalizing flow fθ parameterized by θ that makes a
learned conditional distribution pθ(x | y) approximate the desired posterior distribution p(x | y). We measure
the “closeness” with the KL-divergence making the optimization objective

θ̂ = argmin
θ

KL ( pθ(x | y) || p(x | y)). (2)

Previous work has been put into VI with normalizing flows that involves costly optimization for each incoming
observed data y.12–15 The optimization is costly because learned parameters of fθ typically parameterize neural
networks that are costly to optimize. On top of that, these VI objectives requires online use of the forward
operator A and its adjoint A∗ during optimization. With this formulation, VI is not efficient enough to enable
quick inference. Quick results are particularly important in medical imaging settings since they extend the
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abilities of a given modality for example by enabling the use of hand-held probes.16,17 In general, minimizing
turnover time makes the difference in providing a timely diagnosis.18

A different formulation of VI called amortized variational inference (AVI)19–23 aims to obtain fast inference
on test data without having to re-optimize an objective. This is accomplished by an intensive pretraining phase
that optimizes a (KL) divergence based objective averaged over different data y sampled from the distribution

p(y): θ̂ = argminθ Ey∼p(y) [KL (p(x | y) || pθ(x | y))] . One can optimize a simplified objective that only requires
samples from the joint distribution x,y ∼ p(x,y).24,25 For a conditional normalizing flow (CNF) fθ, our objective
becomes

θ̂ = argmin
θ

1

N

N∑
n=1

(
∥fθ(x(n);y(n))∥22 − log |detJfθ |

)
(3)

where N is the size of a training dataset D = {(x(n),y(n))}Nn=1 and Jfθ is the Jacobian of the CNF. This objective
is particularly simple to implement with conditional normalizing flows since they allow for tractable computation
of the determinant Jacobian term detJfθ by design.

Our goal is to generalize our CNF for a variety of imaging configurations. Then we must consider that a
different imaging configuration Ai can change the size of yi. These different data sizes can arise from changing
receiver settings such as number of receivers or view angles. To handle a set of imaging configurations {i = 1 : M}
(where M is the number configurations), one would need to define a network fθi , for all M configurations i.e.
manually defining downsampling layers. Standardizing observations to a single size would allow practitioners to
only need to define a single network fθ since now all inputs to the network are the same size regardless of their
imaging configurations. The adjoint A∗

i offers a physics informed way of standardizing data inputs to a single
size, namely the size of the model.

Standardizing the size of incoming data is related to the concept of a summary statistic24,26 so can we
interpret the adjoint as a physics-informed summary statistic. We will show that on top of being robust over
different imaging configurations, adjoints also accelerate the convergence of the training objective in Equation
3. Before demonstrating these two practical advantages of using the adjoint, we present our main contribution:
a theoretical discussion showing when preprocessing data with the adjoint will not affect the result of posterior
inference.

2.3 Adjoint Data is Bayesian Sufficient

As noted in the previous section, there are good reasons to use the adjoint operator as a preprocessor. This
leads to an important question that we phrase using the language of:27 can we condition on adjoint data without
introducing bias into the inference procedure? We will answer this question in the affirmative by using Proposition
1 from28 and specifying a class of inverse problems that satisfies the proposition with adjoint preprocessing.

Proposition 1:28 If B is injective on the range of Π then p(x | BΠy) will be equal to p(x | y) if and only if
the information lost by observing Πy instead of y is conditionally independent of x given Πy:

p(x | BΠy) = p(x | y) ⇐⇒ x ⊥⊥ y −Πy | Πy. (4)

Proposition 1a: Given data y (created as in Equation (1)), the posterior conditioned on adjoint-preprocessed
data p(x | A∗y) will be equal to the original posterior p(x | y) if the additive noise εεε is Gaussian.

Proof: We use Proposition 1 from28 and set B = A∗; and Π = AA+ where A+ is the Moore-Penrose inverse.
Since p(x | BΠy) = p(x | A∗AA+y) = p(x | A∗y) then our proof is complete if we show that the following
conditional independence is true: x ⊥⊥ y −AA+y | AA+y.

To show this, we note that the noise εεε can be decomposed as the sum of two independent components – one that
lives in ran(A) (the range of A) and another that lives in ran(A)⊥ : εεε = εεεran + εεε⊥. Assuming this structure,
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the observed data is y = Ax + εεε⊥ + εεεran. Since AA+ is the orthogonal projector onto ran(A) then whenever
AA+ interacts with y it will make the contribution from εεε⊥ vanish:

x ⊥⊥ y −AA+y | AA+y

= x ⊥⊥ (Ax+ εεε⊥ + εεεran)−AA+(Ax+ εεε⊥ + εεεran) | AA+(Ax+ εεε⊥ + εεεran)

= x ⊥⊥ Ax+ εεε⊥ + εεεran −AA+Ax− εεεran | AA+Ax+ εεεran

= x ⊥⊥ εεε⊥ | Ax+ εεεran. (5)

By the d-separation criterion,29 Equation 5 is true because εεε⊥ is independent of all other elements, including εεεran
as per the assumption. Thus we prove that for linear problems with Gaussian additive noise p(x | A∗y) = p(x | y)
meaning adjoint preprocessing does not change the posterior inference.

Corruption noise is often approximated as Gaussian additive in medical modalities including our applications
in photoacoustic imaging and CT.30 Our proof does not cover non-Gaussian noise, multiplicative noise or noise
correlated with A or x. We leave those for future work.

3. RESULTS

We show three main results. First, that adjoint preprocessing accelerates the convergence of a conditional
normalizing flow training to sample from the posterior distribution. Secondly, we demonstrate that the adjoint
operator enables amortization over varying imaging configurations while using the same underling neural network.
Finally, we validate the learned UQ by demonstrating posterior consistency through three tests.

3.1 Adjoint Accelerates Convergence:

We design a photoacoustic simulation and CNF architecture to compare two scenarios, namely learning pθ(x |
y) by training on pairs D = {(x(n),y(n))}Nn=1 or adjoint preprocessed learning of pθ(x | A∗y) with D∗ =
{(x(n),A∗y(n))}Nn=1. As noted in our motivations, creating a CNF fθ that can accept raw data y as an input is
a laborious task but we do this for one imaging configuration to provide a fair comparison. This task involves
manually defining downsampling layers in the CNF that bring y to the appropriate dimensionality. Then we can
proceed to train two CNF’s where both underlying networks have the same architectures (with addition of the
downsampling layer) and are trained using the same hyperparameters.

(a) (b)

Figure 1: Convergence plots. (a) Posterior learning objective for data without (dashed) and with preprocessing
with the adjoint A∗. The adjoint accelerates convergence. (b) MSE of the conditional mean yielding improved
Bayesian inference with less training time (juxtapose solid and dashed line for raw and preprocessed data).

Figure 1 shows that for equivalent base architectures and training, learning pθ(x|A∗y) is accelerated com-
pared to learning pθ(x|y). We also plot the mean squared error (MSE) between the calculated conditional mean
xcm and the ground truth xgt. While MSE is not the training objective, it is still an important proxy since the
conditional mean of the true posterior is the one that gives the lowest expected error.31,32 Here and throughout,
the conditional mean xcm and the variance (our UQ) is estimated using an average of 64 generated samples from
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the posterior. The training logs in Figure 1 are averages of an unseen validation set Nval=192 created by a 10%
split from the training dataset of N=2048 pairs.

We emphasize that our posterior sampling after training is fast. After applying the adjoint, the CNF is
conditioned on A∗y then the user generates the desired quantity of posterior samples (10 millisec/sample on our
GPU). The time to create a point estimate with the conditional mean xcm (around 2 seconds with 64 posterior
samples) is favorable compared to traditional least-squares approaches that require several forward and adjoint
evaluations.

(a) Ground truth (b) SIRT (c) Our conditional mean (d) Posterior sample

(e) A∗
120y120 (f) SIRT error (g) Our error (h) Our UQ

Figure 2: Computer tomography 360×360 images with uncertainty quantification. (a) Ground truth image; (b)
Reconstructed image using SIRT baseline with 300 iterations; (c) Our image reconstruction made by averaging
64 samples from the learned posterior; (d) A single posterior sample from our method; (e) The adjoint data that
has been brought to image space; (f) Error made by the SIRT baseline; (g) Error made by our conditional mean;
(h) Our UQ calculated from the variance of posterior samples; Note: error plots and the UQ plot have the same
colorbar limits [0, 0.014]

In Figure 2, we show images of results from posterior sampling on limited-view CT after training with adjoint
preprocessing. For training and testing, we used the lodopab-ct dataset in the original resolution of 360× 360.33

For CT forward and adjoint simulations we use.34 Our experimental setup, follows35 for limited-view CT with
SNR = 40dB additive Gaussian noise. It has been said that bijective methods were not viable for a resolution of
256× 256.35 We did not find this to be the case, our conditional normalizing flow is completely bijective and the
implementation from InvertibleNetworks.jl36 we did not see any out-of-memory problems training this method
on the original 360× 360 resolution.

For the baseline CT, we use the simultaneous iterative reconstruction technique (SIRT) as described in.37,38

Compared to the baseline Figure 2b, our method Figure 2c produces cleaner images that can deal with the
substantial null-spaces due to limited-views. Importantly, structures in the null-space are illuminated by our UQ
Figure 2h pointing to reduced confidence in those areas.
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3.2 Adjoint Generalizes Different Imaging Configurations:

Data that is preprocessed with the adjoint A∗y will always live in the space of the image. Thus we can use
a single network to learn the posterior for different imaging configurations by augmenting our training dataset

with examples from the desired configurations (x(n),A∗
iy

(n)
i )}Nn=1.

Receivers in photoacoustic imaging: We generalize over four photoacoustic imaging configurations consisting
of data collected with 8, 16, 32, and 64 receivers. These different configurations are encoded by forward and
adjoint operators Ai,A

∗
i with i ∈ {8, 16, 32, 64}. We train our CNF with N=2048 examples for each imaging

configuration. Training took 14 hours on P1000 4GB GPU.

(a) (b)

Figure 3: (a) Amortized training of neural networks capable of sampling from posterior distributions for differ-
ently sized observations yi. As the number of receivers is increased, the samples show posterior contraction, a
Bayesian phenomenon39 that says increasing the amount of data should decrease the width of the posterior. (b)
The baseline method (TV-projected gradient descent) fails to image vertical vessels.

After training, we sample from the learned posterior for unseen test data examples, yi for varying numbers
of receivers. The results demonstrate proper posterior contraction.39 Visually, this is confirmed in Figure 3a
since uncertainty (quantified via pointwise variance) goes down when we increase receivers from 16 to 64. To
quantitatively capture the global variation of these UQ images, we use the sum of pointwise variances: Var Sum
= ∥Var∥1 or equivalently the trace of the covariance matrix.40 As the uncertainty reduces, the quality of the
estimates increase, thus the posterior is contracting on the ground truth. We quantitatively verify this statement
in the next section. Importantly, uncertainty is high where we expect, namely for vessels that are close to being
vertical. These vertical events are in the null-space of the forward operator because the receivers are only located
at the top of the model.

We compare our point estimate xcm with TV-projected gradient descent (TV-PGD)41,42 xtv. Timing and
quality metrics averaged over a test set of 96 samples are in Table 1. Across all receiver configurations, we show
better Structural Similar Index Measure (SSIM). Also our method, produces the image reconstruction in less
time.

Photoacoustic imaging
Timing (Seconds) Quality metric (SSIM)

Nrec = 64 Nrec = 8 Nrec = 16 Nrec = 32 Nrec = 64

TV-proj GD xtv 16.78 0.27 0.36 0.42 0.44
Our conditional mean xcm 1.72 0.62 0.74 0.80 0.81

Table 1: Photoacoustic image reconstruction timing and quality metric comparison.
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View angles in computer tomography: To demonstrate generalization in CT, we train a single normalizing
flow to sample from the posterior of three different quantities of views 60, 90 and 120 degrees. We add 40dB
Gaussian noise to measurements. The raw data measurements y60,y90,y120 are shown in Appendix Figure 6.
To train we use 4000 images for each of the three configurations for a total of 12000 training images.

(a) A∗
60y60 (b) xcm SSIM = 0.79 (c) Error MSE = 0.71 (d) UQ Sum Var = 75

(e) A∗
90y90 (f) xcm SSIM = 0.87 (g) Error MSE = 0.25 (h) UQ Sum Var = 38

(i) Ground truth (j) A∗
120y120 (k) xcm SSIM = 0.92 (l) Error MSE = 0.13 (m) UQ Sum Var = 23

Figure 4: Generalizing computer tomography over different view angles. (a,b,c,d) The first row shows results of
our method for 60 view angles. (e,f,g,h) The second row shows results of our method for 90 view angles. (j,k,l,m)
The third row shows results of our method for 120 view angles.

The results of the CT application show similar behaviour to the photoacoustic case. Bayesian contraction
is clearly shown in Figure 4 since the uncertainty is reduced as more angles are observed. Also the uncertainty
is physically consistent with our understanding of the imaging system since higher uncertainty is placed on the
view angles that are unseen. We compare the quality of our CT generalized normalizing flow by comparing with
the SIRT baseline. In Table 2, we show timing results for the maximum amount of angles and SSIM metrics for
all tested angles. SSIM metrics are averages over a test set of 50 images. Our method is faster since the SIRT
needs various applications of the forward and adjoint CT simulation while our method uses a single adjoint.

Computed tomography
Timing (Seconds) Quality metric (SSIM)

Nang = 120 Nang = 60 Nang = 90 Nang = 120

Simultaneous iterative reconstruction xSIRT 41.32 0.59 0.69 0.75
Our conditional mean xcm 1.21 0.78 0.84 0.88

Table 2: Limited-view computer tomography image reconstruction timing and quality metric comparison.
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3.3 Validation of Uncertainty Quantification:

Since our problem does not have Gaussian priors, we can not analytically verify that our converged posteriors
have reached the ground truth posterior. We can use three tests on the photoacoustic application to check that
our posteriors are consistent and useful.

(i) posterior contraction by testing the CNF for different amount of data to check whether the posterior
demonstrates contraction to the ground truth when increasing the amount of observed data. This contraction
ultimately points to posterior consistency;39

(ii) posterior calibration by checking whether our UQ correlates with regions in the image with large errors.
This important check of UQ is called calibration and is established qualitatively by visually juxtaposing errors
with UQ in Figure 3a. For a more quantitative test, we plot a calibration line by using σ-scaling;43,44

(iii) simulation-based calibration (SBC) by testing for uniformity in the rank statistic when comparing various
samples drawn from the proposed posterior with the known prior.24,45

The results of these three tests are included in Figure 5 and show our learned posterior is consistent and
approximates the true posterior. For this reason, we argue that a practitioner is justified in using our posterior
for uncertainty quantification.

(a) (b) (c) (d)

Figure 5: Validation of uncertainty quantification (a) Posterior contraction when increasing the amount of data.
(b) Posterior contraction towards the ground truth as measured by MSE. (c) Our posterior calibration is close
to perfect calibration showing that our UQ is correlated with error made. (d) The uniformity of the SBC test
shows that our marginalized posterior samples recover the prior distribution.

4. CONCLUSIONS

For linear operators and Gaussian noise, we prove that adjoint preprocessing posterior is equivalent to the original
posterior p(x|A∗y) = p(x|y). Although the distributions are ultimately the same, learning them poses different
computational burdens for ML training. We showed that the adjoint accelerates convergence of CNFs for AVI.
We also demonstrate that the adjoint allows us to train a single network to handle many different imaging con-
figurations thus saving costs associated with designing network architectures for individual configurations. Our
amortized posterior gives physically meaningful uncertainties that we also validate.
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APPENDIX A. RAW OBSERVATIONS FOR LIMITED-VIEW COMPUTER
TOMOGRAPHY
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(a) Data recorded with increasing view angles
from left to right: y60, y90 and y120

Figure 6: Experimental setup used to show generalization to computed tomography angles. (a) Sinogram data
with increasing angles;

11


	Description of Purpose
	METHODS
	Bayesian Uncertainty
	Variational Inference for Posterior Distribution Learning
	Adjoint Data is Bayesian Sufficient

	RESULTS
	Adjoint Accelerates Convergence:
	Adjoint Generalizes Different Imaging Configurations:
	Validation of Uncertainty Quantification:

	CONCLUSIONS
	Raw observations for limited-view computer tomography

