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We consider in general two-block substitutions and their 
fixed points. We prove that some of them have a simple 
structure: their fixed points are morphic sequences. Others are 
intrinsically more complex, such as the Kolakoski sequence. 
We prove this for the Thue-Morse sequence in base 3/2.
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1. Introduction

Let A = {0, 1}, A∗ the monoid of all words over A, and let T ∗ be the submonoid of 
0-1-words of even length. A two-block substitution κ is a map

κ : {00, 01, 10, 11} → A∗.

A two-block substitution κ acts on T ∗ by defining for w1w2 . . . w2m−1w2m ∈ T ∗

κ(w1w2 . . . w2m−1w2m) = κ(w1w2) . . . κ(w2m−1w2m).

In the case that κ(T ∗) ⊆ T ∗, we call κ 2-block stable. This property entails that the 
iterates κn are all well-defined for n = 1, 2, . . . .

The most interesting example of a two-block substitution that is not 2-block stable is 
the Oldenburger-Kolakoski two-block substitution κK given by

κK(00) = 10, κK(01) = 100, κK(10) = 110, κK(11) = 1100.

The fact that κK is not 2-block stable, and so its iterates κn
K are not defined, makes 

it very hard to establish properties of the fixed point xK = 110010 . . . (usually written 
as 221121...) of κK, see, e.g., [4].

In Section 2 we show that even if a two-block substitution κK is not 2-block stable, 
then still it can be well-behaved in the sense that its fixed points are pure morphic words.

In Section 3 we prove that the Thue-Morse word in base 3/2 is not well-behaved: it 
cannot be generated as a coding of a fixed point of a morphism.

This is a remarkable contrast with the behaviour of the sum of digits function for two 
seemingly more complicated bases: the Fibonacci base, and the golden mean base—see 
the paper [6].

2. Two-block substitutions with conjugated morphisms

Let κ be a two-block substitution on T ∗, and let σ be a morphism on A∗ with σ(T ∗) ⊆
T ∗. We say κ and σ commute if κσ(w) = σκ(w) for all w from T ∗.

In this case we say that σ is conjugated to κ.
Note that if κσ = σκ, then for all n ≥ 1 one has κσn = σnκ on T ∗.
Let σ : A∗ → A∗ be a morphism. Then σ induces a two-block substitution κσ by 

defining

κσ(ij) = σ(ij) for i, j ∈ A.

We mention the following property of κσ, which is easily proved by induction.

Proposition 1. Let σ : A∗ → A∗ be a morphism, let n be a positive integer, and suppose 
that κσ is two-block stable. Then κn

σ = κσn .
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We call σ the trivial conjugated morphism of the two block substitution κσ.
Not all morphisms σ can occur as trivial conjugated morphisms, but many will be 

according to the following simple property.

Proposition 2. Any morphism σ on {0, 1} with the lengths of σ(0) and σ(1) both odd or 
both even is conjugated to the two-block substitution κ = κσ.

Example: for the Fibonacci morphism ϕ defined by ϕ(0) = 01, ϕ(1) = 0, one can take 
the third power ϕ3 to achieve this (cf. [13, A143667]).

In the remaining part of this section we discuss non-trivial conjugated morphisms.

Theorem 3. Let κ be a two-block substitution on T ∗ conjugated with a morphism σ on 
A∗. Suppose that there exist i, j from A such that κ(ij) has prefix ij, and such that ij is 
also prefix of a fixed point x of σ. Then also κ has fixed point x.

Proof. Letting n → ∞ in κσn(ij) = σnκ(ij) = σn(ij . . . ) gives κ(x) = x. �
The Pell word wP = 0010010001001 . . . is the unique fixed point of the Pell morphism 

π given by

π :
{

0 → 001
1 → 0.

The following result proves a conjecture from R.J. Mathar in [13, A289001]. The 
difficulty here is that since the 2-block substitution in Theorem 4 has the property that 
κ(0010) = 0010010 has odd length, the two-block substitution κ is not 2-block stable.

Theorem 4. Let κ be the two-block substitution1:

κ :

⎧⎪⎨
⎪⎩

00 → 0010
01 → 001
10 → 010.

Then the unique fixed point of κ is the Pell word wP.

Proof. We apply Theorem 3 with ij = 00.
Note first that π(T ∗) ⊆ T ∗. Next, we have to establish that κ and π commute on T ∗.
It suffices to check this for the three generators 00, 01 and 10 from the four generators 

of T ∗:

1 Here it is not necessary to define κ(11), since 11 does not occur in images of words without 11 under κ.
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κπ(00) = κ(001001) = 0010010001 = π(0010) = πκ(00),

κπ(01) = κ(0010) = 0010010 = π(001) = πκ(01),

κπ(10) = κ(0001) = 0010001 = π(010) = πκ(10). �
3. Thue-Morse in base 3/2

A natural number N is written in base 3/2 if N has the form

N =
∑
i≥0

di

(3
2

)i

, (1)

with digits di = 0, 1 or 2.
We write these expansions as

SQ(N) = dR(N) . . . d1(N)d0(N) = dR . . . d1d0.

Let for N ≥ 0, s3/2(N) :=
∑i=R

i=0 di(N) be the sum of digits function of the base 3/2 ex-
pansions. The Thue-Morse word in base 3/2 is the word (x3/2(N)) := (s3/2(N) mod 2) =
0100101011011010101 . . .

Theorem 5. ([5]) Let the two-block substitution κTM be defined by

κTM :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

00 → 010
01 → 010
10 → 101
11 → 101

Then the word x3/2 is the fixed point of κTM starting with 0.

The Thue-Morse word t is fixed point with prefix 0 of the Thue-Morse morphism τ :
0 → 01, 1 → 10. It satisfies the recurrence relations t(2N) = t(N), t(2N +1) = 1 − t(N).

The fixed point x3/2 satisfies very similar recurrence relations:

x3/2(3N) = x3/2(2N), x3/2(3N + 1) = 1 − x3/2(2N), x3/2(3N + 2) = x3/2(2N).

We call κTM the Thue-Morse two-block substitution.
We now discuss the Kolakoski word xK. This word was introduced by Kolakoski (years 

after Oldenburger [12]) as a problem in [8]. The problem was to prove that xK is not 
eventually periodic. Its solution in [9] is however incorrect (The claim that words w with 
minimal period N in www . . . map to words with period N1 satisfying N < N1 < 2N
by replacing run lengths by the runs themselves is false. For example, if the period 
word is w = 21221, then ww maps to the period word 2212211211211221, or its binary 
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complement image.) A stronger result was proved by both Carpi [3] and Lepistö [10]: 
xK does not contain any cubes. The fixed point x3/2 of κTM has more repetitiveness. It 
contains for example the fourth power 01010101.

The Thue-Morse word is a purely morphic word, i.e., fixed point of a morphism. It 
is known that the Kolakoski word is not purely morphic ([4]). However it is still open 
whether the Kolakoski word is morphic, i.e., image under a coding (letter to letter map) 
of a fixed point of a morphism. The tool here is the subword complexity function (p(N)), 
which gives the number of words of length N occurring in an infinite word. A well known 
result tells us that when the subword complexity function increases too fast, faster than 
N2, then a word can not be morphic. There is one example of a two-block substitution 
which yields a word that is not morphic given by Lepistö in the paper [11].

Theorem 6. ([11]) Let the two-block substitution κL be defined by

κL :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

00 → 011
01 → 010
10 → 001
11 → 000

Then the fixed point 010011000011 . . . of κL has subword complexity function p(N) sat-
isfying p(N) > C ·N t for some C > 0 and t > 2.

We do not know how to prove this ‘faster than quadratic’ property for the base 3/2 
Thue-Morse word, but still we can use Lepistö’s result to obtain the following.

Theorem 7. The base 3/2 Thue-Morse word x3/2 is not a morphic word.

The proof of Theorem 7 will be based on what we call the base 3/2 Toeplitz word.
Recall (see, e.g., [1, Lemma 3]) that the binary base Toeplitz word z = 01000 . . . is 

directly derived from the binary Thue-Morse word t = 01101001 . . . by putting z(N) =
t(N) + t(N +1) +1 mod 2. It appears that for the generalization to base 3/2, there is a 
subtle move: z(N) = t(N) + t(N +1) +1 mod 2 is equivalent to z(N) = t(2N) + t(2N +
2) + 1 mod 2. We therefore define the base 3/2 Toeplitz word xT for N ≥ 0 by

xT(N) = x3/2(3N) + x3/2(3N + 3) + 1 mod 2. (2)

So xT = 101100111100 . . ..
With some effort one can find in the paper [7, Theorem 3.2] a completely different 

proof of our next result.

Theorem 8. The base 3/2 Toeplitz word xT is the unique fixed point of the two-block 
substitution given by
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κT :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

00 → 111
01 → 110
10 → 101
11 → 100

Proof. In this proof ≡ denotes equality modulo 2. The goal is to show that xT satisfies 
for m ≥ 0 the recurrence relations in Equations (3), (4), (5). This implies directly that 
xT is fixed point of the 2-3-block substitution a, b → 1, a +1, b +1. Taking a, b = 0, 1 one 
then obtains κT.

xT(3m) ≡ 1, (3)

xT(3m + 1) ≡ xT(2m) + 1, (4)

xT(3m + 2) ≡ xT(2m + 1) + 1. (5)

The proof of these equations is based on the properties of the 6-9-block substitution 
generated by κTM:

λTM :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

010010 → 010010101
010101 → 010010010
101010 → 101101101
101101 → 101101010

It is easy to see that x3/2 is the fixed point of λTM starting with 010010. We first prove 
Equation (3). Consider N = 3m. Then 3N = 9m, and 3N +3 = 9m +3. So by Equation 
(2) we have

xT(3m) ≡ x3/2(9m) + x3/2(9m + 3) + 1.

But x3/2(9m) and x3/2(9m + 3) are the first and the fourth letter in an image block of 
length 9 of λTM, which are generated by the first and the third letter of the corresponding 
source block of λTM. For any source block these two letters are equal (simply because 
the source blocks occur at a position 0 mod 3 in x3/2).

The conclusion is that xT(3m) = x3/2(9m) + x3/2(9m + 3) + 1 ≡ 1 for all m.
To prove Equation (4), consider N = 3m +1. Then 3N = 9m +3, and 3N+3 = 9m +6.
So by Equation (2) we have

xT(3m + 1) ≡ x3/2(9m + 3) + x3/2(9m + 6) + 1.

But x3/2(9m + 3) and x3/2(9m + 6) are the fourth letter and the seventh letter in an 
image block of length 9 of λTM, which are generated by the third and the fifth letter 
of the corresponding source block of λTM. These are at positions 6m + 2, respectively 
6m + 4. So
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x3/2(9m + 3) = x3/2(6m + 2), x3/2(9m + 6) = x3/2(6m + 4).

On the other hand, by Equation (2) we have

xT(2m) ≡ x3/2(6m) + x3/2(6m + 3) + 1.

But x3/2(6m) = x3/2(6m + 2), because they are the first and the third letter in a block 
010 or 101. Also, x3/2(6m + 3) + 1 ≡ x3/2(6m + 4), because x3/2(6m + 3), respectively 
x3/2(6m + 4) are the first and the second letter in a block 010 or 101.

The conclusion is that for all m

xT(3m + 1) ≡ x3/2(9m + 3) + x3/2(9m + 6) + 1 ≡ x3/2(6m) + x3/2(6m + 3) + 1 + 1

≡ xT(2m) + 1.

To prove Equation (5), consider N = 3m +2. Then 3N = 9m +6, and 3N+3 = 9m +9.
So by Equation (2) we have

xT(3m + 2) ≡ x3/2(9m + 6) + x3/2(9m + 9) + 1.

But x3/2(9m +6) and x3/2(9m +9) are the seventh letter and the first letter in an image 
block of length 9 of λTM, which are generated by the third and the first letter of the 
corresponding source block of λTM. These are at positions 6m + 4, respectively 6m + 6. 
So

x3/2(9m + 6) = x3/2(6m + 4), x3/2(9m + 9) = x3/2(6m + 6).

On the other hand, by Equation (2) we have

xT(2m + 1) ≡ x3/2(6m + 3) + x3/2(6m + 6) + 1.

But x3/2(6m + 3) ≡ x3/2(6m + 4) + 1, because they are the first and the second letter in 
a block 010 or 101. The conclusion is that for all m

xT(3m + 2) ≡ x3/2(9m + 6) + x3/2(9m + 9) + 1 ≡ x3/2(6m + 3) + 1 + x3/2(6m + 6) + 1

≡ xT(2m + 1) + 1. �
Proof of Theorem 7. The crucial observation is that the base 3/2 Toeplitz two-block 
substitution κT is just the binary complement of the κL two-block substitution. In par-
ticular Theorem 6 also holds for the base 3/2 Toeplitz word, and so xT cannot be a 
morphic word.

Suppose that the base 3/2 Thue-Morse word (x3/2(N)) is a morphic word. Then an 
application of [2, Theorem 7.9.1] yields that the word (x3/2(3N)) is morphic. Next, [2, 
Theorem 7.6.4] gives that the direct product word ([x3/2(3N), x3/2(3(N+1))]) is morphic. 
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Finally, another application of [2, Theorem 7.9.1] yields that according to Equation 
(2) this direct product word maps to a morphic word (xT(N)) under the morphism 
[0, 0] �→ 1, [0, 1] �→ 0, [1, 0] �→ 0, [1, 1] �→ 1. But this contradicts the fact that (xT(N)) is 
not morphic. Hence the base 3/2 Thue-Morse word is not a morphic word. �
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