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Abstract

In this book chapter, we briefly describe the main components that constitute the
gradient descent method and its accelerated and stochastic variants. We aim at explaining
these components from a mathematical point of view, including theoretical and practical
aspects, but at an elementary level. We will focus on basic variants of the gradient descent
method and then extend our view to recent variants, especially variance-reduced stochastic
gradient schemes (SGD). Our approach relies on revealing the structures presented inside
the problem and the assumptions imposed on the objective function. Our convergence
analysis unifies several known results and relies on a general, but elementary recursive
expression. We have illustrated this analysis on several common schemes.

1 Introduction

The core problem in many optimization applications such as signal and image processing, en-

gineering, operations research, statistics, and machine learning is the following optimization

problem, see, e.g., [1, 2, 7, 27, 28, 49, 60]:

min
w∈Rp

F (w), (1)

where F : Rp → R ∪ {+∞} is a given objective or loss function, and w is a vector of decision

variables (also called model parameters). Depending on the form or structures of the objective

function F , we obtain different classes of optimization problems. For instance, the following

structures are common in practice.

• Nonsmooth convex optimization. If F is M -Lipschitz (i.e. there exists M > 0 such

that |F (w) − F (w′)| ≤M‖w − w′‖ for all w,w′ ∈ R
p) and convex, but often nonsmooth,

then (1) is called a nonsmooth convex minimization. Note that theM -Lipschitz continuity

is often imposed for nonsmooth functions such as F (w) := ‖w‖ for any norm, or for special

smooth functions, e.g., the objective F (w) :=
∑n

i=1 log(1 + exp(yiX
⊤
i w)) of a logistic

regression, where (Xi, yi) is given for i = 1, · · · , n. Obviously, the Lipschitz continuity

also holds if we consider F to be continuous on a given compact set W.
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• Smooth and convex optimization. If F is L-smooth (i.e. there exists L ≥ 0 such that

‖∇F (w)−∇F (w′)‖ ≤ L‖w−w′‖ for all w,w′ ∈ R
p) and convex, then (1) is called a smooth

and convex minimization. Examples of L-smooth and convex functions are vast. For

example, a least-squares function F (w) := 1
2‖X⊤w − y‖2 for a given data matrix X and

an output vector y is L-smooth with L := ‖XX⊤‖. The logistic regression function above

is also convex and L-smooth with L := 1
4‖XX⊤‖. However, exponential functions such

as F (w) :=
∑n

i=1 exp(X
⊤
i w) or logarithmic functions such as F (w) := −

∑n
i=1 log(X

⊤
i w)

are convex, but not L-smooth on their domain, unless we limit their domain on a given

compact set, see, e.g., [64].

• Smooth and nonconvex optimization. If F is L-smooth and nonconvex, then (1)

is called a smooth and nonconvex minimization. The L-smoothness is a key condition

required in most gradient-based methods for nonconvex optimization. Again, this assump-

tion obviously holds if we assume that F is continuously differentiable and then limit the

domain of F on a compact set. But there exists L-smooth functions on the entire space

R
p. For instance, F (w) := 1

2w
⊤Qw + q⊤w for given symmetric matrix Q and q ∈ R

p is

L-smooth with L := ‖Q‖, but not necessarily convex.

• Composite optimization. If F (w) := f(w) + g(w), where f is usually L-smooth and

convex/nonconvex, and g is convex and possibly nonsmooth, then (1) is called [additive]

composite minimization. This model is ubiquitous in machine learning and statistical

learning, where f presents a loss function or a data fidelity term, while g is a regularizer

or a penalty term to promote solution structures or to handle constraints. Examples can

be found, e.g., in [10, 52]. If g(w) is the indicator of a convex set W as g(w) = 0 if w ∈ W,

and g(w) = +∞, otherwise, then (1) covers constrained problem minw∈W f(w).

• Finite-sum optimization. If F (w) := 1
n

∑n
i=1 Fi(w) for some n ≥ 1, then (1) is called

a finite-sum minimization, an empirical risk minimization, or distributed optimization

depending on the context. This structure is presented in most supervised learning tasks,

network and distributed optimization, and federated learning. The most interesting case

is when n≫ 1.

• Stochastic optimization. If F (w) := E[F(w, ξ)], the expectation of a stochastic func-

tion F : Rp × Ω → R, where (Ω,Σ,P) is a given probability space, then (1) is called a

stochastic program [34, 43, 59]. This setting also covers the finite-sum as a special case

by setting Ω := {1, · · · , n} and P(ξ = i) = 1
n .

Apart from these individual settings, many other combinations between them are also possible;

we do not list all of these here. For example, the combination of composite structure and

finite-sum is very common.

Existence of solutions. We first assume that F ⋆ := infw F (w) is bounded from below,

i.e. F ⋆ > −∞ to guarantee the well-definedness of (1). Many machine learning applications

automatically satisfy this condition since the underlying loss function is usually nonnegative.

One obvious example is the least-squares problem.

Our next question is: Does (1) have an optimal solution? To discuss this aspect, we use a

coercive concept from nonlinear analysis [18]. We say that F is coercive if lim‖w‖→∞ F (w) =

+∞. A common coercive function is F (w) := L(w)+ λ
2‖w‖2, where L is M -Lipschitz continuous
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(but not necessarily convex) and λ > 0. If F is continuous and coercive, then by the well-known

Weierstrass theorem, (1) has global optimal solutions w⋆. In this case, we denote F ⋆ := F (w⋆),

its optimal value. If F is nonconvex and differentiable, then we use w⋆ to denote its stationary

points, i.e. ∇F (w⋆) = 0. If F is not differentiable, a generalization of stationary points is

required [40]. To keep it simple, we assume throughout this chapter that F is continuously

differentiable.

If F is strongly convex, then it is continuous and coercive and (1) has a unique global

optimal solution. For convex problems, our goal is to find an approximate global solution ŵ⋆

of w⋆ in some sense (see Subsection 2.7). For nonconvex problems, we only expect to compute

an approximate stationary point ŵ⋆, which can be a candidate for a local minimizer. However,

we do not attempt to check if it is an approximate local minimizer or not in this chapter.

Contribution. Our contribution can be summarized as follows. We provide a comprehensive

discussion for the main components of the gradient descent method and its variants, including

stochastic schemes. We also propose a unified and simple approach to analyze convergence

rates of these algorithms, and demonstrate it through concrete schemes. This approach can

perhaps be extended to analyzing other algorithms, which are not covered in this chapter. We

also discuss some enhanced implementation aspects of the basic algorithms.

Outline. The rest of this chapter is organized as follows. Section 2 reviews basic components

of gradient methods. Section 3 focuses on stochastic gradient methods, while Section 4 makes

some concluding remarks and raises a few possible research directions.

2 Basic components of GD-type methods

The gradient descent (GD) method is an iterative method aimed at finding an approximate

solution of (1). This dates back to the works of Cauchy in the 19th century, and has been

intensively studied in numerical analysis, including optimization for many decades. During the

last two decades, there has been a great surge in first-order methods, especially gradient-type

algorithms, due to applications in signal and image processing, modern statistics, and machine

learning. In this chapter, we do not attempt to review the literature of GD-type methods, but

only focus on summarizing their basic components.

Formally, the gradient descent algorithm starts from a given initial point w0 ∈ R
p and at

each iteration t ≥ 0, it updates

wt+1 := P(wt + ηtd
t), (2)

where wt is the current iterate, ηt > 0 is called a stepsize or learning rate, dt is called a search

direction, and P is an operator to handle constraints or regularizers; if this is not needed, one can

set P = I, the identity operator. This method generates a sequence of iterate vectors {wt} using

only first-order information of F (e.g., function values, proximal operators, or [sub]gradients).

Here, we add an operator P, which can also be used to handle constraints, regularizers, penalty,

or Bregman distance (e.g., mapping between the primal and dual spaces). Let us discuss each

component of the scheme (2).

2.1 Search direction

The most important component in (2) is the search direction dt, which determines the type of

algorithm such as first-order, second-order, quasi-Newton-type, or stochastic methods. Let us
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consider the following possibilities.

• Descent direction. Assume that F is continuously differentiable, a search direction dt

is called a descent direction at the iterate wt if 〈∇F (wt), dt〉 < 0. We can even impose

a stronger condition, called strictly descent, which is 〈∇F (wt), dt〉 ≤ −c‖∇F (wt)‖2 for

some c > 0. The name “descent” comes from the fact that if we move from wt along the

direction dt with an appropriate stepsize ηt, then we have a descent, i.e. F (wt+1) < F (wt).

If P = I, the identity operator, then (2) reduces to wt+1 := wt + ηtd
t. By Taylor’s

expansion of F , we have

F (wt+1) = F (wt) + ηt〈∇F (wt), dt〉+ o(η2t ‖dt‖2) < F (wt),

for sufficiently small ηt > 0 due to 〈∇F (wt), dt〉 < 0.

• Steepest descent direction. If we take dt := −∇F (wt), then (2) becomes

wt+1 := wt − ηt∇F (wt), (3)

and we have 〈∇F (wt), dt〉 = −‖∇F (wt)‖2 < 0 provided that wt is not a stationary point

of F . With this choice of dt, we obtain a gradient descent or also called a steepest descent

method. It actually realizes the most decrease of F at wt as 〈∇F (wt), dt〉 ≥ −‖∇F (wt)‖
for any dt such that ‖dt‖ = 1.

• Stochastic gradient direction. If we choose dt to be a stochastic estimator of ∇F (wt),

then we obtain a stochastic approximation (or also called stochastic gradient descent)

method. A stochastic gradient direction is generally not a descent one, i.e., 〈∇F (wt), dt〉 6
<0. Examples of stochastic estimators include standard unbiased estimator vt := ∇F(wt, ξt)

and its mini-batch version vt := 1
|St|

∑

ξ∈St
∇F(wt, ξ) for a minibatch St, and various

variance-reduced estimators, see, e.g., [13, 29, 48, 58, 66].

• Newton and quasi-Newton direction. We can go beyond gradient-based methods by

incorporating second-order information, or curvature of F as dt := −B−1
t ∇F (wt), where

Bt is a given symmetric and invertible matrix. For instance, if Bt := ∇2F (wt), then we

obtain a Newton method, while if Bt is an approximation to ∇2F (wt), then we obtain a

quasi-Newton method.

• Inexact descent direction. If we do not evaluate the gradient ∇F (wt) exactly, but

allow some error as dt = −(∇F (wt) + δt) for some Gaussian noise δt, then we obtain

an inexact or noisy gradient method [24]. Another example is called sign gradient

method, which uses dt = −sign(∇F (wt)), the sign of gradient, see, e.g., [41]. Inexact

Newton-type methods compute dt by approximately solving Btd
t = −∇F (wt) such that

‖Btd
t +∇F (wt)‖ ≤ c‖dt‖ for c > 0.

Apart from the above examples, other methods such as [block]-coordinate, incremental

gradient, Frank-Wolfe or conditional gradient, proximal-point, prox-linear, Gauss-Newton, ex-

tragradient, optimistic gradient, and operator splitting techniques can also be written in the

form (2) by formulating appropriate search directions dt. For instance, the proximal point

method can be viewed as the gradient method applied to its Moreau’s envelope, see, e.g., [56].
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2.2 Step-size

The second important component of (2) is the step-size ηt. In machine learning community,

this quantity is called a learning rate. Choosing an appropriate ηt is a crucial step that affects

the performance of the algorithm. Classical optimization techniques have proposed several

strategies, which are known as globalization strategies, including (i) line-search and its variants,

(ii) trust-region, and (iii) filter [11, 23, 49]. Line-search and trust-region strategies have been

widely used in numerical optimization, see [11, 49]. In recent optimization algorithms and

machine learning training tasks, we often observe the following techniques.

• Constant learning rate. Constant learning rates are usually used to derive convergence

rates or complexity bounds due to their simplicity. The algorithm often performs well

with a constant learning rate if the problem is “easy”, e.g., strongly convex and L-smooth,

but it becomes poor if the landscape of F is complex such as deep neural networks.

Usually, theoretical analysis gives us a range (i.e. an interval, like
(
0, 2

L

)
in standard

gradient methods) to choose a constant learning rate. However, this range could easily

be underestimated by using global parameters, and does not capture the desired region

of optimal solutions. In practice, nevertheless, we need to tune this learning rate using

different strategies such as grid search or bisection, etc.

• Diminishing learning rate. Diminishing learning rates are usually used in subgradient

or stochastic gradient methods. One common diminishing learning rate is ηt :=
C

(t+β)ν

for some positive constant C, a shifting factor β, and an order ν > 0. Depending on the

structure assumptions of F , we can choose appropriate order ν, e.g., ν := 1
2 or ν := 1

3 .

Other possibility is to choose ηt :=
C

(⌈t/s⌉+β)ν for an additional integer s to maintain fixed

learning rate in each s iterations. In stochastic gradient methods, diminishing learning

rates are often required if the variance of dt is nondecreasing (i.e. dt is not computed

from a variance-reduced estimator of ∇F ). A diminishing learning rate also determines

the convergence rate of the underlying algorithm.

• Scheduled learning rate. In practice, we often use a schedule to tune an appropriate

learning rate so that we can achieve the best performance. Different ideas have been

proposed such as using exponential decay rate, cosine annealing, or even with a varying

mini-batch size, see, e.g., [37, 62].

• Adaptive learning rate. The above strategies of learning rate selection do not take

into account the local geometry of the objective function. They may perform poorly on

“hard” problems. This motivates the use of adaptive learning rates which exploit local

landscape or curvature of the objective function. The first common strategy is linesearch,

which [approximately] solves minη>0 F (w
t+ηdt) to find ηt. If F is quadratic, then we can

compute ηt exactly by solving this one-variable minimization problem. However, most

algorithms use inexact line-search such as bisection or golden ratio search. Another strat-

egy is using a Barzilai-Borwein step-size, e.g., ηt := ‖wt − wt−1‖/‖∇F (wt)−∇F (wt−1)‖,
which gives an estimation of 1

L .

Recently, several adaptive methods have been proposed, see, e.g., [12, 17, 32]. The un-

derlying learning rate is usually given by ηt := C/
√

∑t
j=0 ‖gj‖2 + ǫ, where gj is some

gradient estimator at iteration j, C > 0 is given, and ǫ ≥ 0 is a small constant to avoid

division by zero and provide numerical stability.
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Among the above strategies and tricks for selecting learning rates, one can also compute them

in different ways when solving a specific problem, even using a “trial and error” method or a

combination of the above techniques. The main goal is to tune a good learning rate for such a

problem, but still guarantee the convergence of the algorithm.

2.3 Proximal operator

Many problems covered by (1) have constraints or nonsmooth objective terms. For example,

we may have F (w) = f(w) + g(w), where g is nonsmooth. In this case, we cannot use the full

gradient of F . One way to handle the nonsmooth term g is to use proximal operators, and

in particular, use the projections if we have simple constraints. Mathematically, the proximal

operator of a proper and lower semicontinuous function g is defined as

proxγg(w) := arg min
z∈Rp

{

γg(z) + 1
2‖z − w‖2

}

, γ > 0. (4)

Note that under appropriate choices of γ, the minimization problem in (4) is strongly convex,

and hence has unique solution, leading to the well-definedness of proxγg. If g = δW as the indi-

cator function of a closed and convex set W, i.e. δW(w) = 0 if w ∈ W, and δW(w) = +∞, oth-

erwise, then proxγg reduces to the projection onto W, i.e. projW(w) := argminz∈W
1
2‖z − w‖2.

In terms of computation, evaluating proxγg is generally as hard as solving a [strongly] convex

problem. There are at least three ways of evaluating proxγg(·), which can be sketched as follows.

• Separable functions. The most obvious case is when g is component-wise separable as

g(w) :=
∑p

j=1 gj(wj) (e.g., g(w) := ‖w‖1), then evaluating proxγg requires solving p one-

variable convex minimization problems, which can be done in a closed form. This idea

can be extended to block separable functions, e.g., g(w) :=
∑n

i=1 ‖w[i]‖2, where {w[i]}ni=1

are subvectors.

• Dual approach. Moreau’s identity proxγg(w) = w− γ · proxg∗/γ(w/γ) suggests that we

can compute proxγg from its Fenchel conjugate g∗. Since many convex functions have

simple conjugates such as norms (e.g., g(w) = ‖w‖2) or Lipschitz continuous functions,

this approach is more tractable.

• Optimality approach. If g is differentiable, then we can directly use its optimality

condition ∇g(z) + γ−1(z − w) = 0, and solve it as a nonlinear equation in z. Examples

include − log det(X) and
∑n

i=1 log(1 + exp(yiX
⊤
i w)).

Note that the second and third techniques are only used for convex functions, while the first one

can be used for nonconvex functions. The number of convex functions g where proxγg(·) can be

computed efficiently is vast, see, e.g., [1, 51] for more examples and computational techniques.

2.4 Momentum

One way to explain the role of momentum is to use a dynamical system of the form ẅ(τ) +

ψ(τ)ẇ(τ) + ∇F (w(τ)) = 0 rooted from Newton’s second law, where ψ(τ)ẇ(τ) presents a

friction or a damping factor. If we discretize this differential equation using ẅ(τ) ≈ (wt+1 −
2wt +wt−1)/h2t and ẇ(τ) ≈ (wt −wt−1)/ht, then we obtain (wt+1 − 2wt +wt−1)/h

2
t +ψt(wt −

wt−1)/ht +∇F (wt) = 0, leading to wt+1 := wt − h2t∇F (wt) + (1− htψt)(w
t − wt−1), see, e.g.,
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[61]. Therefore, we can specify momentum variants of (2) when P = I (the identity operator)

as follows.

wt+1 := wt + ηtd
t + βt(w

t − wt−1), (5)

where βt > 0 is a momentum stepsize. The search direction dt can be evaluated at wt leading

to a so-called heavy ball method [54]. Alternatively, if dt is evaluated at an intermediate point,

e.g., zt := wt+βt(w
t−wt−1), then we obtain Nesterov’s accelerated scheme in the convex case

[44]. This scheme can be written into two steps as

zt := wt + βt(w
t − wt−1), and wk+1 := zt + ηtd(z

t), (6)

where d(zt) presents the direction dt evaluated at zt instead of wt. Note that momentum terms

do not significantly add computational costs on top of (2). Yet, it can accelerate the algorithm

in convex cases [44, 46] (see also Subsection 2.8), and possibly in some nonconvex settings, see,

e.g., [35, 63].

2.5 Dual averaging variant

The scheme (2) can be viewed as a forward update, but in convex optimization, dual averaging

schemes are also closely related to (2). Unlike (2), a dual averaging scheme works as follows.

Starting from w0 ∈ R
p, for t ≥ 0, we update

wt+1 := argmin
w

{ t∑

j=0

γj〈gj , w〉+ 1
2ηt

‖w − w0‖2
}

, (7)

where gj are given dual directions (e.g., gj := ∇F (wj)), γj are the weights of gj , and ηt is

a given dual stepsize. In general settings, we can replace 1
2‖w − w0‖2 by a general Bregman

distance D(w,w0). If the norm is the Euclidean norm, then we have wt+1 := w0−ηt
∑t

j=0 γjg
j .

If ηt = η > 0 is fixed and we choose gj := ∇F (wj), then we have wt+1 = w0 − η
∑t

j=0 γjg
j =

w0 − η
∑t−1

j=0 γjg
j − ηγtg

t = wt − ηγtg
t, which is exactly covered by (2). Therefore, for the

Euclidean norm 1
2‖w − w0‖2, the dual averaging scheme (7) is identical to the gradient descent

scheme wt+1 = wt−ηγtgt. However, under a non-Euclidean norm or a Bregman distance, these

methods are different from each other.

2.6 Structure assumptions

One main theoretical task when designing a gradient-based algorithm is to establish its conver-

gence. From a computational perspective, estimating the convergence rate as well as complexity

is also critically important. However, to establish these, we require F to satisfy a set of assump-

tions. The following structures are commonly used in optimization modeling and algorithms.

• Lipschitz continuity. F in (1) is said to be M -Lipschitz continuous if

|F (w) − F (w′)| ≤M‖w − w′‖, ∀w,w′ ∈ R
p. (8)

Examples of Lipschitz continuous functions include norms, smoothed approximation of

norms (e.g., F (w) :=
∑p

i=1(w
2
j + ǫ2)1/2 for a small ǫ), or continuous functions with

bounded domain. Note that when F is convex, then M -Lipschitz continuity is equivalent

to M -bounded [sub]gradient, i.e., ‖∇F (w)‖ ≤ M for all w ∈ R
p. This assumption is

usually used in subgradient-type or stochastic gradient-type methods.
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• L-smoothness. F is called L-smooth if the gradient ∇F of F satisfies

‖∇F (w) −∇F (w′)‖ ≤ L‖w − w′‖, ∀w,w′ ∈ R
p. (9)

If w,w′ ∈ W, for a compact domain W and F is continuously differentiable, then F is

L-smooth on W. This concept can be extended to an L-average smoothness in the finite-

sum or stochastic settings. For instance, if F (w) := 1
n

∑n
i=1 Fi(w), then we can modify

(9) as 1
n

∑n
i=1 ‖∇Fi(w)−∇Fi(w

′)‖2 ≤ L2‖w − w′‖2 for all w,w′ ∈ R
p. Alternatively, if

F (w) := E[F(w, ξ)], then we can use E[‖∇F(w) −∇F(w′)‖2 | w,w′] ≤ L2‖w − w′‖2 for

all w,w′ ∈ R
p. These assumptions are usually used in variance reduction SGD methods,

see, e.g., [52, 66]. Note that other extensions are possible, see, e.g., [34]. Verifying the

L-smoothness is generally not straightforward. However, if F (w) := 1
n

∑n
i=1 ℓi(X

⊤
i w−yi)

as, e.g., in a generalized linear model, then we can verify the L-smoothness of F by

verifying the L-smoothness of each one-variable function ℓi. This model is ubiquitous in

machine learning.

One key property of (9) is the following bound:

|F (w′)− F (w) − 〈∇F (w), w′ − w〉| ≤ L

2
‖w′ − w‖2, (10)

which shows that F can be globally upper bounded by a convex quadratic function and

globally lower bounded by a concave quadratic function. If, additionally, F is convex, then

stronger bounds as well as the co-coerciveness of ∇F can be obtained, see, e.g., [45]. One

can also extend the L-smoothness of F to a Hölder smoothness as ‖∇F (w)−∇F (w′)‖ ≤
L‖w−w′‖ν for some 0 ≤ ν ≤ 1. This concept unifies both the L-smoothness (ν = 1) and

the bounded gradient (ν = 0) conditions in one. It has been used in universal first-order

methods for both deterministic and stochastic first-order methods, e.g., [47].

• Convexity. F is said to be µ-[strongly] convex if

F (ŵ) ≥ F (w) + 〈∇F (w), ŵ − w〉+ µ

2
‖ŵ − w‖2, ∀w, ŵ ∈ R

p. (11)

Here, ∇F (w) can be a gradient or a subgradient of F at w. This inequality shows that

F can be lower bounded by either a linear (µ = 0) or a quadratic approximation (µ 6= 0).

If µ = 0, then F is just convex or merely convex. If µ > 0, then F is strongly convex,

and µ is called the strong convexity parameter. If µ < 0, then F is called weakly convex.

Convexity and strong convexity are key concepts in convex analysis, optimization, and

related fields, see, e.g., [7, 57], and we do not further discuss them here.

These are three key and also basic assumptions to analyze convergence of (2) and its variants.

Nevertheless, other assumptions can also be exploited. For example, the following conditions

are commonly used in different methods.

• Gradient dominance and PL condition. F is called σ-gradient dominant if F (w)−
F (w⋆) ≤ σ‖∇F (w)‖2 for all w ∈ R

p and w⋆ is a minimizer of F . Clearly, if F is strongly

convex, then it is gradient dominant. However, there exists nonconvex functions that are

gradient dominant. Note that one can consider local gradient dominance by limiting w in

a neighborhood of w⋆. We can also extend this concept to different variants. The gradient
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dominant condition allows us to obtain a convergence guarantee on the objective residual

F (ŵ)−F (w⋆) even in the nonconvex setting. Note that this condition is also called Polyak–

Łojasiewicz (PL) condition. These conditions can be used to establish linear convergence

or linear-like convergence rates (i.e. linearly converge to a small neighborhood of an

optimal solution) [52, 30].

• Uniform convexity and star-convexity. F is said to be µ-Hölder uniformly convex

of order ν ≥ 1 if F (w′) ≥ F (w) + 〈∇F (w), w′ −w〉+ µ
ν ‖w′ − w‖ν for all w,w′ ∈ R

p, see,

e.g., [68]. Clearly, if ν = 2, then we obtain the strong convexity. If ν = 2 and w = w⋆, a

minimizer of F , then F is said to be µ-star strongly convex. These conditions are often

used in gradient-type methods to establish linear convergence rates [42].

• Sharpness, quadratic growth, and error bound conditions. Assume that there

exist γ > 0 and ν ≥ 1 such that F (w) − F (w⋆) ≥ γ
ν ‖w − w⋆‖ν for all w ∈ R

p and a

minimizer w⋆ of F . If ν = 1, then we say that F is sharped at w⋆. If ν = 2, then we

say that F has a quadratic growth property. Clearly, if F is strongly convex, then it has

a quadratic growth property. However, nonconvex functions may still have a quadratic

growth property. This property can be extended to an ω-convexity as in [14]. Another

related concept is error bound [39], which is defined as γ‖∇F (w)‖ ≥ ‖w − w⋆‖ for some

γ > 0 and all w ∈ R
p. Both quadratic growth and error bound conditions can be used to

establish [local] linear convergence of gradient-type methods, see, e.g., [16].

Other properties can be used to analyze convergence of gradient methods such as essential strong

convexity, weak strong convexity, restricted secant inequality [42, 30], Kurdyka-Łojasiewicz

(KL) condition [4], and Aubin’s property [56].

2.7 Optimality certification

Finding an exact solution of (1) is impractical. Our goal is to approximate a solution of this

problem in some sense. Let us discuss what we can approximate for (1) in both convex and

nonconvex problems.

Assume that w⋆ is a global optimal solution of (1) with the optimal value F ⋆ = F (w⋆)

and ŵ is an approximate solution produced by an algorithm. One obvious condition to certify

the optimality is to compute the objective residual F (ŵ)− F (w⋆). We often expect to find ŵ

such that F (ŵ) − F (w⋆) ≤ ǫ for a given tolerance ǫ > 0. This condition is usually used for

convex optimization or special classes of nonconvex problems, e.g., under a gradient dominance

condition. The construction of ŵ usually relies on two possible ways. The first one is to simply

take the last iterate wT as ŵ := wT , where wT is the final iterate of the algorithm. The second

option is to form an averaging or a weighted averaging vector as

ŵ := 1
T+1

T∑

t=0

wt, or ŵ := 1
ST

T∑

t=0

γtw
t, (12)

where γt > 0 are given weights (usually related to the stepsize ηt, but could be different),

and ST :=
∑T

t=0 γt. In general, averaging vectors have better theoretical convergence rate

guarantees, but they may break desired properties of solutions such as sparsity or low-rankness,

etc., compared to the last-iterate wT . In convex optimization, we often use Jensen’s inequality

9



to obtain F (ŵ) − F (w⋆) ≤ 1
ST

∑T
t=0 γt[F (w

t) − F (w⋆)] for our convergence rate bounds since

we obtain a convergence rate bound for the right-hand side.

The second criterion is to use the norm of gradient of F , e.g., ‖∇F (ŵ)‖ or its squared norm.

Note that ∇F (w⋆) = 0 only provides us stationary points, which are candidates for local

minimizers in nonconvex settings. Hence, any vector ŵ such that ‖∇F (ŵ)‖ ≤ ǫ for a given

tolerance ǫ > 0 only provides us an approximate stationary point ŵ of (1). To guarantee an

approximate local solution, we may add a second-order condition such as λmin(∇2F (ŵ)) ≥ −ǫ̂
for some ǫ̂ > 0, where λmin(∇2F (ŵ)) is the smallest eigenvalue of ∇2F (ŵ). The construction

of ŵ in the nonconvex case often relies on the best iterate from {w0, · · · , wT }, in the sense

that ‖∇F (ŵ)‖ = min0≤t≤T ‖∇F (wt)‖. For nonsmooth optimization, where F := f + g, we

can use the norm ‖Gβ(ŵ)‖ of gradient mapping Gβ(ŵ) := β−1
(
ŵ − proxβg(ŵ − β∇f(ŵ))

)
for

some β > 0. For stochastic optimization, one needs to characterize the optimality condition

using expectation E[‖∇F (ŵ)‖2], E[F (ŵ)−F ⋆], or high probability P[‖∇F (ŵ)‖ ≤ ǫ] ≥ 1− δ or

P[F (ŵ)− F ⋆ ≤ ǫ] ≥ 1− δ for a small δ ∈ (0, 1).

2.8 Unified convergence analysis

Let us first present our general and unified convergence analysis approach and then illustrate

it through three different methods.

(a) General approach. Most convergence analysis of first-order methods of the form (2) relies

on the following recursive inequality often generated by two or three consecutive iterates:

Dt+1 +∆t ≤ ωt ·Dt + Et, (13)

where Dt, ∆t, and Et are nonnegative quantities, and ωt ∈ (0, 1] is a contraction factor. Very

often these quantities depend on two consecutive iterates wt and wt+1, but sometimes they

also depend on wt−1. The error term Et usually satisfies
∑∞

t=0Et < +∞. Moreover, we often

have ωt = 1 or ωt → 1 for sublinear rates, and a fixed ωt = ω ∈ (0, 1) for linear rates. The

quantity Dt can be referred to as a potential or Lyapunov function. There is no general and

universal method to constructDt, but for gradient-type methods, it is usually either ‖wt − w⋆‖2,
‖wt − wt−1‖2, F (wt)− F ⋆, ‖∇F (wt)‖2 (in Euclidean or weighted norms), or a combination of

these terms. Clearly, if Et = 0, then {Dt} is nonincreasing, showing a descent property of Dt.

However, if Et > 0, then we no longer have a descent property of Dt, which is usually the case

in SGD or subgradient methods. There are two cases.

Case 1. If Dt contains an optimality measure, e.g., St[F (w
t) − F ⋆], then we can show

that F (wt)−F ⋆ ≤ C
St

for the last iterate wt, where C is a constant depending on w0 and

possibly on w⋆ or F ⋆.

Case 2. If ∆t contains an optimality measure, e.g., γt‖∇F (wt)‖2, then we can show that
1
ST

∑T
t=0 γt‖∇F (wt)‖2 ≤ C

ST
for some constant C and ST :=

∑T
t=0 γt.

The recursive estimate (13) can be used to prove the convergence of different gradient-type

methods, including standard and accelerated algorithms. Let us illustrate how to obtain (13)

for some common schemes.

(b) Subgradient method. Let us consider the classical [sub]gradient method to minimize

F (w) as wt+1 = wt−ηt∇F (wt), which is a special case of (2), where ∇F (wt) is a [sub]gradient
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of F at wt. Then, for any w ∈ R
p, we have

ηt〈∇F (wt), wt − w〉 = 1
2‖wt − w‖2 − 1

2‖wt+1 − w‖2 + η2t
2 ‖∇F (wt)‖2. (14)

If F is convex, then 〈∇F (wt), wt − w〉 ≥ F (wt) − F (w). Combining this inequality and (14),

we obtain

1
2‖w

t+1 − w‖2
︸ ︷︷ ︸

Dt+1

+ ηt[F (w
t)− F (w)]

︸ ︷︷ ︸

∆t

≤ 1
2‖w

t − w‖2
︸ ︷︷ ︸

Dt

+
η2t
2 ‖∇F (w

t)‖2
︸ ︷︷ ︸

Et

.
(15)

This inequality is exactly in the form (13) with ωt = 1. To guarantee convergence, we need to

take w = w⋆ as a solution of (1) and assume that ‖∇F (wt)‖ ≤ M . Then, (15) implies that

∆t ≤ Dt−Dt+1+Et. By induction, we have
∑T

t=0 ∆t ≤ D0−DT+1+
∑T

t=0Et ≤ D0+
∑T

t=0Et.

Therefore, we obtain

F (ŵ)− F (w⋆) ≤ 1

ST

T∑

t=0

ηt[F (w
t)− F (w⋆)] ≤ 1

2ST
‖w0 − w⋆‖2 + M2

2ST

T∑

t=0

η2t ,

where ST :=
∑T

t=0 ηt and ŵ := 1
ST

∑T
t=0 ηtw

t as computed by (12). To obtain a convergence

rate bound, we require
∑∞

t=0 η
2
t < +∞ and ST → S∞ =

∑∞
t=0 ηt = ∞. These are exactly the

conditions to guarantee the convergence of [sub]gradient methods, see, e.g., [8].

(c) Gradient descent method for nonconvex problems. If we assume that F is only

L-smooth and not necessarily convex, then using (10) with w := wt and w′ := wt+1 = wt −
ηt∇F (wt) we have

F (wt+1) ≤ F (wt) + 〈∇F (wt), wt+1 − wt〉+ L
2 ‖wt+1 − wt‖2

= F (wt)− ηt
(
1− Lηt

2

)
‖∇F (wt)‖2.

(16)

By adding −F ⋆, where F ⋆ := infw F (w) > −∞ (our assumption), to both sides and rearranging

the result, the inequality (16) leads to

F (wt+1)− F ⋆

︸ ︷︷ ︸

Dt+1

+ ηt
(
1− Lηt

2

)
‖∇F (wt)‖2

︸ ︷︷ ︸

∆t

≤ F (wt)− F ⋆

︸ ︷︷ ︸

Dt

.

This is exactly in the form (13) with ωt = 1 and Et = 0. Without any further assumption, we

have ∆t ≤ Dt −Dt+1, and by induction, we get
∑T

t=0 ∆t ≤ D0 −DT+1 ≤ D0, leading to

min
0≤t≤T

‖∇F (wt)‖2 ≤ 1

ST

T∑

t=0

γt‖∇F (wt)‖2 ≤ F (w0)− F ⋆

ST
,

where γt = ηt(1 − Lηt
2 ) and ST =

∑T
t=0 γt, provided that 0 < ηt <

2
L . This result allows us to

certify the best-iterate convergence rate of the algorithm to a stationary point of (1).

(d) Gradient descent method for smooth and convex problems. Assume that F is

convex and L-smooth. Let us choose ηt :=
1
L in (2) to get wt+1 := wt − 1

L∇F (wt). Then, from

(14) and (16), and the convexity of F , we have






L
2 ‖wt+1 − w⋆‖2 + 〈∇F (wt), wt − w⋆〉 = L

2 ‖wt − w⋆‖2 + 1
2L‖∇F (wt)‖2,

(t+ 1)[F (wt+1)− F (w⋆)] + (t+1)
2L ‖∇F (wt)‖2 ≤ (t+ 1)[F (wt)− F (w⋆)],

F (wt)− F (w⋆) ≤ 〈∇F (wt), wt − w⋆〉.

11



By summing up these three inequalities and canceling terms, we obtain

L
2 ‖wt+1 − w⋆‖2 + (t+ 1)[F (wt+1)− F (w⋆)] + t

2L‖∇F (wt)‖2 ≤ L
2 ‖wt − w⋆‖2

+ t[F (wt)− F (w⋆)],

This is exactly (13) with Dt :=
L
2 ‖wt − w⋆‖2 + t[F (wt)−F (w⋆)], ∆t :=

t
2L‖∇F (wt)‖2, Et = 0,

and ωt = 1. This recursive estimate implies Dt+1 ≤ D0, and therefore, using the definition of

Dt+1 and dropping L
2 ‖wt+1 −w⋆‖2, we get

F (wt+1)− F (w⋆) ≤ D0

t+ 1
=
L‖w0 − w⋆‖2

2(t+ 1)
,

which shows a O (1/t)-last-iterate convergence rate on wt. It also implies that
∑T

t=0 t‖∇F (wt)‖2 ≤
L2‖w0 − w⋆‖2 (by using

∑T
t=0 ∆t ≤ D0) and ‖wt −w⋆‖ ≤ ‖w0 − w⋆‖ (by using Dt ≤ D0) for

all t ≥ 0.

(e) Accelerated gradient method for smooth and convex problems. Our last illustra-

tion follows Nesterov’s accelerated gradient scheme:

zt := wt + βt(w
t − wt−1) and wt+1 := zt − 1

L∇F (z
t), (17)

where βt =
θt−1−1

θt
for θt ≥ 1 such that θt(θt − 1) ≤ θ2t−1 with θ0 := 1. This is an accelerated

variant of (2) with the momentum βt(w
t − wt−1). It is well-known [44] that, after a few

elementary transformations, (17) can be written as

zt := (1− 1
θt
)wt + 1

θt
ut, wt+1 := zt − 1

L∇F (z
t), and ut+1 = ut − θt

L∇F (z
t).

Let vt := (1− 1
θt
)wt+ 1

θt
w⋆. Then, zt− vt = 1

θt
(ut−w⋆). Moreover, by convexity of F , we have

F (zt) ≤ F (vt) + 〈∇F (zt), zt − vt〉 ≤ (1 − 1
θt
)F (wt) + 1

θt
F (w⋆) + 1

θt
〈∇F (zt), ut − w⋆〉. Hence,

multiplying both sides by θ2t , we obtain

θ2t [F (z
t)− F (w⋆)] ≤ θt(θt − 1)[F (wt)− F (w⋆)] + θt〈∇F (zt), ut −w⋆〉.

Similar to the proof of (14) and (16), respectively we have






L
2 ‖ut+1 − w⋆‖2 + θt〈∇F (zt), ut − w⋆〉 = L

2 ‖ut − w⋆‖2 + θ2t
2L‖∇F (zt)‖2,

θ2t [F (w
t+1)− F (w⋆)] +

θ2t
2L‖∇F (zt)‖2 ≤ θ2t [F (z

t)− F (w⋆)].

Summing up the last three inequalities, we obtain

θ2t [F (w
t+1)− F (w⋆)] + L

2 ‖u
t+1 − w⋆‖2

︸ ︷︷ ︸

Dt+1

+(θ2t−1 − θt(θt − 1))[F (wt)− F (w⋆)]
︸ ︷︷ ︸

∆t

≤ θ2t−1[F (w
t)− F (w⋆)] + L

2 ‖u
t − w⋆‖2

︸ ︷︷ ︸

Dt

,
(18)

which is exactly (13) with Et = 0 and ωt = 1, provided that θ2t−1 − θt(θt − 1) ≥ 0 (note that

θ0 = 1 and θ−1 = 1
2 satisfy this condition). The recursive estimate (18) implies that Dt ≤ D0,

leading to

F (wt)− F (w⋆) ≤ D0

θ2t−1

=
L

2θ2t−1

‖w0 − w⋆‖2.

12



In particular, if we choose θt−1 := t+1
2 , then θ2t−1 = (t+1)2

4 ≥ θt(θt − 1) = t(t+1)
4 , then we get

the last-iterate convergence guarantee F (wt)− F (w⋆) ≤ 2L‖w0−w⋆‖2
(t+1)2

.

We have illustrated how to employ the unified recursive expression (13) to analyze four

different deterministic gradient-type algorithms. It provides a simple approach with a few

lines to derive convergence rate analysis compared to classical techniques in the literature. We

believe that this approach can be extended to analyze other methods that have not been listed

here.

2.9 Convergence rates and complexity analysis

Classical optimization literature often characterizes asymptotic convergence or linear conver-

gence rates of the underlying algorithm, while sublinear rates or oracle complexity are largely

elusive, see, e.g., [3, 21, 22, 31, 38, 53]. Sublinear convergence rates have been widely studied in

convex optimization methods, see, e.g., [45], while oracle complexity analysis was formally stud-

ied in [43]. Recently, these topics have gained in popularity due to applications to large-scale

problems in modern signal and image processing, machine learning, and statistical learning

[9, 28, 67]. Let us discuss these concepts in detail here.

(a) Convergence rates. A convergence rate characterizes the progress of the optimality

measure (e.g., the objective residual F (ŵt)− F ⋆, the squared distance to solution ‖ŵt − w⋆‖2,
or the squared norm of gradient ‖∇F (ŵt)‖2) w.r.t. the iteration t, where ŵt is an approximate

solution. For example, in the gradient method for smooth and convex problems, we have

F (wt+1) − F ⋆ ≤ L‖w0−w⋆‖2
2(t+1) showing that the objective residual F (wt) − F ⋆ decreases with a

speed of at least 1
t , which we write F (wt)− F ⋆ = O (1/t). We can also write F (wt+1)− F ⋆ =

O
(
R2

0L
t+1

)

for R0 := ‖w0 −w⋆‖ to show the dependence of the rate on L and R0.

Note that we generally attempt to establish an upper bound rate, but can also show that

this upper bound matches the lower bound rate (up to a constant factor) for certain class of

algorithms under a given set of assumptions on (1), see, e.g., [45]. For gradient-type methods,

the optimal convergence rates under only convexity and L-smoothness is O
(
1/t2

)
, which is

guaranteed by Nesterov’s optimal methods. For nonconvex problems, gradient-type methods

only achieve a O (1/t) rate on ‖∇F (ŵt)‖2 under L-smoothness. Linear convergence rates can be

achieved with additional assumptions such as strong convexity, error bound, quadratic growth,

or PL condition. However, we do not further discuss these variants in this paper.

(b) Complexity. The concept of complexity comes from theoretical computer science, but

is widely used in computational mathematics, and in particular, in optimization. Formal def-

initions of complexity can be found, e.g., in [43, 45]. We distinguish two types of complexity

for our gradient-type methods: iteration-complexity (or analytical complexity), and computa-

tional complexity (or sometimes called arithmetic complexity, or work complexity) [45]. In

gradient-type methods, the overall computational complexity is generally dominated by the or-

acle complexity, which characterizes the total number of function and/or gradient evaluations

required for finding an approximate solution. We notice that, we overload the concept oracle,

which is formally defined, e.g., in [45]. Mathematically, the oracle complexity of T iterations
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of an algorithm (in our context) is defined as follows:

Oracle complexity :=

T∑

t=0

Per-iteration complexity at iteration t, (19)

The per-iteration complexity characterizes the workload (e.g., the number of gradient eval-

uations) at each iteration. At each iteration, we often count the most dominated computa-

tion steps such as gradient evaluations, function evaluations, proximal operations, projections,

matrix-vector multiplications, or Hessian-vector multiplications. If this per-iteration complex-

ity is fixed, then we have

Oracle complexity = Number of iterations × Per-iteration complexity.

For example, for the standard gradient descent method for smooth and convex problems, the per-

iteration complexity is O (1), i.e. requires one gradient evaluation, leading to oracle complexity

O
(
1
ǫ

)
in order to obtain wt such that F (wt) − F ⋆ ≤ ǫ. Indeed, from the convergence bound

F (wt)−F ⋆ ≤ L‖w0−w⋆‖2
2t we infer that F (wt)−F ⋆ ≤ ǫ is implied by L‖w0−w⋆‖2

2t ≤ ǫ, leading to

t ≥
⌈L‖w0−w⋆‖2

2ǫ

⌉
. Hence, we need at most tmax :=

⌈L‖w0−w⋆‖2
2ǫ

⌉
= O (1/ǫ) iterations, leading to

O (1/ǫ) gradient evaluations.

2.10 Initial point, warm-start, and restart

For convex algorithms, which can converge to a global minimizer w⋆ starting from any initial

point w0, the choice of w0 will affect the number of iterations as the term ‖w0 − w⋆‖2 for

any solution w⋆ appears in the bound of the convergence guarantee, e.g., F (wT ) − F ⋆ ≤
O
(
L‖w0−w⋆‖2

T ν

)

for ν = 1 or ν = 2. Clearly, if w0 is close to w⋆, then the number of iterations

T is small.

For nonconvex algorithms, initialization plays a crucial role since different initial points

w0 may make the algorithm converge to different approximate stationary points w⋆, and their

quality is different. Stationary points are candidates for local minimizers, but some may give

us maximizers or saddle points. If we do get a local minimizer, then it may still be a bad one,

which is far from any global minimizer or which gives us a bad prediction error in machine

learning.

A warm-start strategy uses the output of the previous run or the previous iteration to

initialize the algorithm at the current stage or iteration. It is based on the idea that the

previous run already gives us a good approximation of the desired solution. Initializing from

this point may hope to quickly converge to the target optimal solution. Warm-start is widely

used in sequential iterative (e.g., sequential quadratic programming) or online learning methods.

A restarting strategy is often used in the case where the algorithm makes undesired progress

and needs to be restarted. This idea has been used in accelerated gradient methods, where

the objective function increases after significant decrease, causing oscillated behaviors [26, 50].

Restarting is often combined with a warm-start and an appropriate condition to obtain good

performance. Some theoretical analysis and practical discussion of restarting strategies can be

found, e.g., in [20, 26, 50, 61].
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3 Stochastic Gradient Descent Methods

Let us further extend our discussion from deterministic to stochastic methods for solving (1)

when F is a finite-sum or an expectation function. The stochastic approximation (SA) method

was initially proposed by Robbins and Monro in 1950s [55]. It has become extremely popular

in the last decades as it has been widely used in machine learning and data science, see, e.g.,

[6, 5, 60].

3.1 The algorithmic template

In this section, we only focus on the standard stochastic optimization and discuss two types

of methods: classical SGD and variance-reduced SGD. More specifically, we focus on F (w) :=

E[F(w, ξ)] in (1), which can be written as

min
w∈Rp

{

F (w) := E[F(w, ξ)]
}

, (20)

where ξ is a random vector defined on a given probability space (Ω,Σ,P).

Many stochastic gradient-based methods for solving (20) can be described as in Algorithm 1.

Here, Algorithm 1 only presents a pure stochastic gradient scheme with a possible variance-

Algorithm 1 (Unified Stochastic Gradient (SGD) Method)

1: Initialization: Choose an initial point ŵ0 in R
p.

2: For s = 0 to S − 1, perform:

3: Evaluate a snapshot estimator v̂s of ∇F (ŵs) and set ws,0 = ŵs;

4: For t = 0 to Ts − 1, update:

5: Sample a subset of examples Ss,t;

6: Construct an estimator vs,t of ∇F (ws,t) using Ss,t and v̂s;

7: Update ws,t+1 := P(ws,t − ηs,tv
s,t);

8: End of Iterations

9: Form a new snapshot point ŵs+1 from {ws,0, · · · , ws,Ts}.
10: End of Stages

11: Output: Return ŵ from the available iterates.

reduction step, but without momentum or accelerated steps. The operator P presents a projec-

tion to handle constraints if required, or to add a compression. However, if it is not specified,

then we assume that P(z) = z, the identity operator. Note that Algorithm 1 is a double-loop

algorithm, where the inner loop carries out SGD updates, while the outer loop performs stage-

wise updates, which can be expressed in an epoch-wise fashion or as a restarting mechanism.

If S = 0, then Algorithm 1 reduces to a single-loop method. If S > 1, then we can also

transform Algorithm 1 into a single loop with “IF” statement and using the iteration counter

k :=
∑s−1

i=0 Ti + t. If Ts := T is fixed, then k := (s− 1)T + t. This transformation allows us to

inject Bernoulli’s rule for the “IF” statement instead of deterministic rules. Such a modification

has been implemented in Loopless-SVRG and Loopless-SARAH schemes, see, e.g., [33, 36].
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3.2 SGD estimators

The main component of Algorithm 1 is the estimator vt of ∇F (wt). Let us review some

important estimators widely used in optimization and related fields.

(a) Classical SGD and mini-batch estimators. Clearly, if S = 0, then we can simply drop

the superscript s in Algorithm 1, and write the main update as

wt+1 := wt − ηtv
t, (21)

which is in the form (2) with dt = −vt being a stochastic estimator of ∇F (wt).

In classical SGD, we often generate vt as an unbiased estimator of ∇F (wt) with bounded

variance, i.e.:

E[vt | Ft] = ∇F (wt) and E[‖vt‖2 | Ft] ≤M2, (22)

for given M ≥ 0, where Ft is the smallest σ-algebra generated by {S0, · · · ,St} and E[· | Ft] is

the conditional expectation.

(b) Variance-reduced SGD estimators. There exists a number of variance-reduced meth-

ods, which are based on different estimators of ∇F (w). We only focus on some of them. For

simplicity, we drop the stage superscript “s”.

The first one is SVRG [29], which generates vt as

vt := v̂s + [∇F(wt,St)−∇F(ŵs,St)], (23)

where ∇F(wt,St) :=
1
bt

∑

ξt∈St
∇F(wt, ξt) and bt := |St|. Then, one can show that

ESt [v
t] = ∇F (wt) and ESt[‖vt −∇F (wt)‖2] ≤ σ2t ,

where σ2t := L2‖wt − w⋆‖2 if F is L-average smooth, and σ2t := 4L[F (wt)− F (w⋆) + F (ŵs)−
F (w⋆)] if F is convex and L-average smooth.

The second estimator is SARAH [48], which is expressed as follows:

vt := vt−1 + [∇F(wt,St)−∇F(wt−1,St)]. (24)

It is called a stochastic recursive gradient estimator. Unfortunately, this estimate is biased, i.e.

ESt[v
t] 6= ∇F (wt). However, one can prove that

ESt[v
t] = ∇F (wt) + et and ESt[‖vt −∇F (wt)‖2] ≤ σ2t ,

where et := vt−1 − ∇F (wt−1) is an error, and σ2t ≤ σ2t−1 +
L2

bt
‖wt − wt−1‖2 if F is L-average

smooth, see [52].

Another interesting estimator is the hybrid variance reduced estimator proposed in [66],

which can be written as

vt := (1− βt)[v
t−1 + [∇F(wt,St)−∇F(wt−1,St)]] + βtu

t, (25)

where βt ∈ [0, 1] and ut is an unbiased estimator of ∇F (wt) with variance σ̂2t , i.e. E[‖ut −∇F (wt)‖2 |
Ft] ≤ σ̂2t . Again, as proven in [66], this is a biased estimator of ∇F (wt) and if F is L-average

smooth, then vt satisfies E[‖vt −∇F (wt)‖2 ≤ σ2t , where

σ2t ≤ (1− βt)
2σ2t−1 +

2(1−βt)2L2

bt
‖wt −wt−1‖2 + 2β2t σ̂

2
t .

One simple choice of ut is ut := ∇F(wt,St). In this case, we have σ̂t =
σ2

bt
.
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3.3 Unified convergence analysis

Similar to Subsection 2.8, let us first present our general and unified convergence analysis

approach and then illustrate it through three different methods.

(a) General approach. Let us identify what the crucial steps in convergence analysis of

Algorithm 1 are. One of the most important steps is to establish a recursive estimate w.r.t.

inner iterations t of the form (13), but in conditional expectation, i.e.:

E[Dt+1 | Ft] + ∆t ≤ ωt ·Dt + Et, (26)

where the related quantities are defined similarly to (13). If we take the total expectation on

both sides of (26), and assume that ωt =
ξt

ξt+1
for ξt > 0 and E[Et] ≤ θ2tM

2 for some M ≥ 0

and θt > 0, then we have

ξt+1E[Dt+1] + ξt+1E[∆t] ≤ ξt · E[Dt] + ξt+1θ
2
tM

2.

By induction, we have

ξT+1E[DT+1] +

T∑

t=0

ξt+1E[∆t] ≤ ξ0E[D0] +M2
T∑

t=0

ξt+1θ
2
t . (27)

Let ST :=
∑T

t=0 γt with given weights γt > 0 (usually depending on ξt and/or θt). Dividing

both sides of (27) by ST , we obtain

1

ST

T∑

t=0

ξt+1E[∆t] ≤
ξ0E[D0]

ST
+
M2

ST

T∑

t=0

ξt+1θ
2
t . (28)

Both estimates (27) and (28) will allow us to estimate convergence rates of the underlying

algorithm. Let us apply this approach to prove convergence of some variants of Algorithm 1.

(b) SGD for nonsmooth convex problems. Let us analyze the convergence of the SGD

scheme (21). Using the update (21), we have ‖wt+1 − w⋆‖2 = ‖wt − w⋆‖2 − 2ηt〈vt, wt − w⋆〉+
η2t ‖vt‖2. Taking conditional expectation E[· | Ft] of this estimate and noting that E[vt | Ft] =

∇F (wt), we have

ηt〈∇F (wt), wt − w⋆〉 = 1
2‖wt − w⋆‖2 − 1

2E[‖wt+1 − w⋆‖2 | Ft]

+
η2t
2 E[‖vt‖2 | Ft].

If F is convex, then we have F (wt) − F (w⋆) ≤ 〈∇F (wt), wt − w⋆〉. Moreover, we also have

E[‖vt‖2 | Ft] ≤M2. Combining these two expressions and the last inequality, we have

1
2E[‖w

t+1 −w⋆‖2 | Ft]
︸ ︷︷ ︸

E[Dt+1|Ft]

+ ηt[F (w
t)− F (w⋆)]

︸ ︷︷ ︸

∆t

≤ 1
2‖w

t − w⋆‖2
︸ ︷︷ ︸

Dt

+
η2t
2 M

2

︸ ︷︷ ︸

Et

.

This is exactly the recursive estimate (26). Using (28), we can show that

E[F (ŵ)− F (w⋆)] ≤ 1
ST

∑T
t=0 ηtE[F (w

t)− F (w⋆)]

≤ 1
2ST

‖w0 − w⋆‖2 + M2

2ST

∑T
t=0 η

2
t ,

(29)
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where ST :=
∑T

t=0 ηt and ŵ := 1
ST

∑T
t=0 ηtw

t. If we choose ηt :=
C√
T+1

for some C > 0, then

ST = C
√
T + 1 and

∑T
t=0 η

2
t = C2. In this case, (29) becomes

E[F (ŵ)− F (w⋆)] ≤ ‖w0 − w⋆‖2
2C

√
T + 1

+
M2C

2
√
T + 1

.

If we choose ηt := C√
t+1

for some C > 0, then ST := C
∑T

t=0
1√
t+1

≥ 2C
∫ T+1
1

1
2
√
t
dt =

2C(
√
T + 1− 1) and

∑T
t=0 η

2
t = C2

∑T
t=0

1
t+1 ≤ C2(1 + ln(T + 1)). In this case, (29) becomes

E[F (ŵ)− F (w⋆)] ≤ ‖w0 − w⋆‖2
4C(

√
T + 1− 1)

+
M2C(1 + ln(T + 1))

4(
√
T + 1− 1)

.

(c) SGD for smooth and nonconvex problems. We consider the case F is L-smooth. In

addition, we assume that our stochastic estimator vt is unbiased, i.e. E[vt | Ft] = ∇F (wt) and

has bounded variance as E[‖vt −∇F (wt)‖2 | Ft] ≤ σ2. In this case, we have E[‖vt‖2 | Ft] ≤
‖∇F (wt)‖2 + σ2. Using this inequality, E[vt | Ft] = ∇F (wt), and the L-smoothness of F , we

can derive

E[F (wt+1) | Ft] ≤ F (wt)− ηtE[〈∇F (wt), vt〉 | Ft] +
Lη2t
2 E[‖vt‖2 | Ft]

≤ F (wt)− ηt‖∇F (wt)‖2 + Lη2t
2 ‖∇F (wt)‖2 + Lη2t σ

2

2

= F (wt)− ηt
(
1− Lηt

2

)
‖∇F (wt)‖2 + Lη2t σ

2

2 .

This inequality leads to

E[F (wt+1)− F ⋆

︸ ︷︷ ︸

Dt+1

| Ft] + ηt
(
1− Lηt

2

)
‖∇F (wt)‖2

︸ ︷︷ ︸

∆t

≤ F (wt)− F ⋆

︸ ︷︷ ︸

Dt

+
Lη2t σ

2

2
︸ ︷︷ ︸

Et

,

which is exactly (26) with ωt = 1, provided that 0 < ηt <
2
L . By using this estimate we can

derive a convergence rate for 1
ST

∑T
t=0 γtE[‖∇F (wt)‖2] with γt := ηt

(
1−Lηt

2

)
and ST :=

∑T
t=0 γt

as done in [25]. We omit the details here.

(d) Hybrid variance-reduced SGD for smooth and nonconvex problems. We analyze

one variance-reduced variant of Algorithm 1 where the inner loop updates wt+1 := wt − ηtv
t

with vt being given by (25) for bt = 1, see [66]. In addition, we do not need the outer loop,

leading to a single-loop algorithm.

Let us analyze its convergence rate. First, by the L-smoothness of F and the relation

−2〈a, b〉 = ‖a− b‖2 − ‖a‖2 − ‖b‖2, we can derive

E[F (wt+1) | Ft] ≤ F (wt)− ηtE[〈∇F (wt), vt〉 | Ft] +
Lη2t
2 E[‖vt‖2 | Ft]

= F (wt)− ηt
2 ‖∇F (wt)‖2 + ηt

2 E[‖vt −∇F (wt)‖2 | Ft]

− ηt
2 (1− Lηt)E[‖vt‖2 | Ft].

Since E[‖vt −∇F (wt)‖2 | Ft] ≤ σ2t and 0 < ηt ≤ 1
L , this inequality reduces to

E[F (wt+1)− F ⋆ + ηt(1−Lηt)
2 ‖vt‖2 | Ft] ≤ F (wt)− F ⋆ − ηt

2 ‖∇F (wt)‖2 + ηtσ2
t

2 .
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Since σ2t ≤ (1− βt)
2σ2t−1 + 2(1− βt)

2L2‖wt − wt−1‖2 + 2β2t σ̂
2 and wt −wt−1 = −ηt−1v

t−1, we

have

σ2t ≤ (1− βt)
2σ2t−1 + 2L2(1− βt)

2η2t−1‖vt−1‖2 + 2β2t σ̂
2.

Multiplying this inequality by ct
2 > 0 and adding to the last estimate, we obtain

E[F (wt+1)− F ⋆ + ηt(1−Lηt)
2 ‖vt‖2 | Ft] +

(ct−ηt)
2 σ2t +

ηt
2 ‖∇F (wt)‖2 ≤ F (wt)− F ⋆

+ L2ct(1− βt)
2η2t−1‖vt−1‖2 + ct(1−βt)2

2 σ2t−1 + ctβ
2
t σ̂

2.

For simplicity, we choose all parameters to be constant. Let us define Dt := F (wt) − F ⋆ +
η(1−Lη)

2 ‖vt−1‖2 + (c−η)
2 σ2t−1, and impose the following conditions:

2L2η2c(1− β)2 ≤ η(1− Lη) and c(1 − β)2 ≤ c− η. (30)

Then, the last estimate leads to

E[Dt+1 | Ft] +
η
2‖∇F (wt)‖2
︸ ︷︷ ︸

∆t

≤ Dt + cβ2σ̂2
︸ ︷︷ ︸

Et

,

which is exactly (26) with ωt = 1.

Assume that we choose η ∈ (0, 1
L) and c > 0 such that 2L2η2(c− η) = η(1−Lη), leading to

c := 1−Lη
2L2η

+η = 1−Lη+2L2η2

2L2η
. Moreover, (1−β)2 ≤ 1− 2L2η2

1−Lη+2L2η2
. Then, both conditions of (30)

hold with equality. In this case, we obtain E[Dt+1 | Ft]+
η
2‖∇F (wt)‖2 ≤ Dt+

(1−Lη+2L2η2)β2

2L2η
σ̂2.

This inequality implies

1
T+1

∑T
t=0 E[‖∇F (wt)‖2]≤ 2

η(T+1)D0 +
(1−Lη+2L2η2)β2

L2η2
σ̂2

≤ 2[F (w0)−F ⋆]
η(T+1) + ‖v0‖2

(T+1) +
σ2
−1

2L2η2(T+1) +
β2σ̂2

L2η2 .

Finally, we choose η := 1
L(T+1)1/3

≤ 1
L , σ−1 := 1

(T+1)1/3
, and β := O

(
1

(T+1)2/3

)

such that

(1− β)2 ≤ 1− 2L2η2

1−Lη+2L2η2
(always exist such a β). Moreover, the last estimate shows that

1
T+1

T∑

t=0

E[‖∇F (wt)‖2] = O
(

1

(T + 1)2/3

)

,

as proven in [66].

We have illustrated our approach by using the recursive estimate (26) to analyze the con-

vergence of three SGD schemes, including variance-reduced methods. We believe that this

approach can be used to analyze other variants including SVRG and SARAH.

4 Concluding remarks

We have reviewed several main components that constitute the gradient descent method and

its variants, including deterministic and stochastic ones, ranging from convex to nonconvex

problems. We have provided a simple and unified convergence analysis framework relying

on an elementary recursive estimate under the most basic structure assumptions commonly
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used in the literature. While this approach can be applied to analyze several methods, we

have only illustrated it on a few well-known schemes. Note that we have not proposed any

new algorithms, but rather unified the convergence analysis using a simple recursive estimate.

However, we believe that such an approach can be extended beyond what we have done in this

paper. The following research topics are interesting to us. First, can one still apply our analysis

to accelerated variance-reduced stochastic gradient-type methods? Perhaps, this can possibly

be done by using the idea from a recent work [15]. Second, how can we extend our framework to

study other optimization methods in distributed systems and federated learning? We emphasize

that many algorithms in these fields can be viewed as a randomized [block-]coordinate methods.

Therefore, extensions to coordinate methods and shuffling methods are promising and remain

open. Third, is it possible to extend and adapt our analysis to asynchronous gradient-based

algorithms? We believe that such an extension is possible as long as the delay is bounded.

However, one needs to modify the recursive expression to capture with the delayed updates,

leading to an extra error term in the recursive inequality. Finally, our approach can be used

to analyze convergence of algorithms for minimax and variational inequality problems, which

have recently gained tremendous popularity [19, 65].
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