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Abstract: Quantum key distribution (QKD) protocols aim at allowing two parties to generate a
secret shared key. While many QKD protocols have been proven unconditionally secure in theory,
practical security analyses of experimental QKD implementations typically do not take into account
all possible loopholes, and practical devices are still not fully characterized for obtaining tight and
realistic key rates. We present a simple method of computing secure key rates for any practical
implementation of discrete-variable QKD (which can also apply to measurement-device-independent
QKD), initially in the single-qubit lossless regime, and we rigorously prove its unconditional security
against any possible attack. We hope our method becomes one of the standard tools used for
analysing, benchmarking, and standardizing all practical realizations of QKD.
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1. Introduction

The purpose of quantum key distribution (QKD) is to allow two legitimate parties,
typically named Alice and Bob, to generate an information-theoretically secure key [1].
Most QKD protocols have been proven secure even if the adversary Eve is allowed to apply
any theoretical attack allowed by the laws of quantum theory. However, despite enormous
progress in recent years, unconditional security of practical implementations of QKD has
remained elusive.

The difficulty of achieving practical security stems from the fact that practical im-
plementations deviate from the theoretical protocols in many important aspects. The
theoretical models of the preparation devices, the transmitted quantum systems, the quan-
tum channels, and the measurement devices differ enormously from any experimental
realization, and these differences open up loopholes and weaknesses that Eve may be able
to exploit (see, e.g., [2,3]).

Most security weaknesses of the measurement devices can be closed using measurement-
device-independent (MDI) QKD [4–7]. However, MDI QKD still requires us to trust the
preparation devices of Alice and Bob, and deviations of the actually prepared quantum
states from the theoretical states still pose a significant security threat. Alternatively,
in (fully) device-independent (DI) QKD [8–10], Alice’s and Bob’s devices are completely
uncharacterized, and violations of Bell’s inequality prove the secrecy of the final key. This
method, while promising and theoretically solid, still achieves far worse secret key rates
than standard QKD (including MDI QKD) in realistic experimental settings [11–13]; in
addition, it still requires assumptions, including the assumption that Alice’s and Bob’s
uncharacterized devices are never allowed to communicate with each other or with Eve.
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Therefore, while we believe that both DI QKD and standard (especially MDI) QKD are
important directions that can lead to practical security (perhaps in different levels of
security), in this paper, we focus on standard and MDI QKD protocols, where the most
pressing practical security problem that has no fully available solution is imperfectly
generated quantum states.

We suggest a simple and systematic method for analysing source imperfections and
proving unconditional security of a large variety of QKD protocols. Our method (similarly
to the “loss tolerant” QKD protocol [14–17]) assumes that the quantum source can only
emit three possible quantum states (instead of the four states used by BB84), and it uses a
mismatched-basis analysis (see, e.g., [18]) for deriving the key rate in the finite-key regime.
Our analysis method is vastly simplified and rigorous, takes into account many subtle
points that are often omitted in other security proofs, and gives an explicit key rate formula
in the finite-key regime. We further suggest a practical step-by-step process for analysing
experimental implementations of QKD, and we verify that the restriction to three states is
indeed essential for practical security.

Our method currently applies only to the qubit regime (in the generalized sense:
namely, we require the three emitted quantum states to be linearly dependent and, therefore,
lie inside a two-dimensional Hilbert subspace), it does not support losses, and it does not
support decoy states [19–21]. We believe that the analysis of losses and decoy states will
work within our framework (see, e.g., [22–24]), but we leave their rigorous and precise
analysis for future research. We also believe that our analysis can prove security for practical
implementations of MDI QKD using the reduction techniques introduced by [4,6], but we
leave a detailed analysis of this direction for future research.

In Section 2, we explain how the security of practical implementations of QKD should
be rigorously analysed and proved. In Section 3, we fully define the analysed QKD protocol,
and in Section 4, we prove its security; our final security result (the key rate) is presented
as Corollary 3. In Section 5, we explain why four source states are likely too many (in the
qubit and two-basis regime) and why we must restrict our protocol to three states.

2. Step-by-Step Analysis of Practical Implementations of QKD

Nowadays, despite the enormous progress made on practical security analysis, a
comprehensive method for proving security is still lacking. In many descriptions of
practical implementations of QKD, while the theoretical model suggested for analysis
is close to the practical implementation, it is naturally not identical, and the reduction
from the practical implementation to the theoretical protocol sometimes uses hand wavy
arguments instead of fully rigorous mathematical modelling and analysis.

For rigorously proving the security of a practical implementation in the case of a
measurement-device-independent (MDI) protocol, we suggest the following way:

1. The implementation should be evaluated and tested. In particular, the emitted quan-
tum states must be repeatedly measured in all aspects, including determining the
modes—frequency spectrum (which includes wavelengths and their relative phases),
polarization, timing and location of emission, direction of propagation (wave vector),
and their degrees of mutual coherence—and performing a full tomography for each
mode, thereby discovering the resulting quantum states. Each resulting quantum state
(for each basis choice and data choice) must be reconstructed and explicitly written;
this reconstruction is essential for the security analysis.

2. The quantum states must be given as inputs to the security proof. The security proof
then gives us a key rate formula and security parameters.

3. The key rate and security parameters can now be compared to the security definition.
The result of this comparison decides whether security of the practical implementation
has been proved.

In particular, if this process requires any reduction between the practical implemen-
tation and the theoretical model, the reduction must be rigorous and precise, it must be
included as a part of the proof, and it must be verified to work against any possible attack.
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3. Definition of the QKD Protocol

The QKD protocol we analyse in this paper is a prepare-and-measure protocol, which
is defined as follows:

1. Alice and Bob publicly agree on the parameters of the protocol:

• Three normalized quantum states {|γ0〉Bi , |γ1〉Bi , |γ+〉Bi} (identical between all
rounds i) that can reside in any arbitrary Hilbert space but must be linearly
dependent (and, therefore, must span a two-dimensional Hilbert subspace).
Specifically, we denote

|γ+〉Bi = a|γ0〉Bi + b|γ1〉Bi , (1)

where a, b ∈ C. We require |a|2 + |b|2 > 1
2 or, equivalently, <(a?b〈γ0|γ1〉Bi ) <

1
4 .

• Bob’s generalized measurement operators for each round i:

(a) {MZ,t
Bi
}t∈{0,1}, which we name “measurement in the standard basis” or

“measurement in the z basis”, and
(b) {MX,t

Bi
}t∈{0,1}, which we name “measurement in the conjugate basis” or

“measurement in the x basis”.

which are defined similarly to [22]. We note that Bob’s measurement operators
can be arbitrary and are not required to be perfectly implemented or perfectly
known. However, they influence the measurement results and the error rate,
which influence the protocol’s success probability and key rate.

• The number m of all rounds (all quantum states sent by Alice to Bob).
• The probabilities that Alice chooses each “preparation basis”: pA

z represents
the probability that Alice prepares either |γ0〉Bi or |γ1〉Bi (each of which she

chooses with an equal probability, pA
z
2 ), and pA

x represents the probability that
Alice prepares |γ+〉Bi . We require pA

z + pA
x = 1.

• The probabilities that Bob chooses to measure in each measurement basis: pB
z

(for choosing to measure in the “z basis”) and pB
x (for choosing to measure in the

“x basis”), respectively, such that pB
z + pB

x = 1.
• The numbers k1, k2, k3, k4 of TEST bits required for each pair of basis choices of

Alice and Bob (Z-Z, Z-X, X-Z, and X-X, respectively, where the first letter (Z or
X) represents Alice’s basis choice, and the second letter represents Bob’s basis
choice) and the number n1 of required INFO bits corresponding to basis choices
of Z-Z. We require n1 + k1 + k2 + k3 + k4 ≤ m.

• The error rate threshold δ (maximal allowed noise in TEST-Z-Z and TEST-X-
X bits).

• The zero rate threshold δmismatch (maximal allowed rate of “+” or “0” results
measured by Bob in TEST-Z-X and TEST-X-Z bits, respectively).

• The error correction and privacy amplification parameters described in [22],
including, in particular, the final key length `.

2. Alice randomly chooses a string ΦA ∈ {0, 1}m of basis choices: she chooses each bit
independently to have value 0 with probability pA

z or value 1 with probability pA
x .

Bob randomly chooses a string ΦB ∈ {0, 1}m of basis choices: he chooses each bit
independently to have value 0 with probability pB

z or value 1 with probability pB
x .

In addition, Alice chooses a uniformly random string R ∈ {0, 1}m of the raw bits she
prepares and sends (it is only used for rounds where Alice’s basis choice is 0).
All strings are kept secret.

3. For each round i ∈ {1, 2, . . . , m} of the protocol, Alice prepares the state dictated by
(ΦA)i and Ri—namely:



Quantum Rep. 2023, 5 55

• Alice prepares |γ0〉Bi if (ΦA)i = 0 and Ri = 0;
• Alice prepares |γ1〉Bi if (ΦA)i = 0 and Ri = 1;
• Alice prepares |γ+〉Bi if (ΦA)i = 1 (independently of Ri).

Alice sends the prepared state to Bob via the quantum channel. Bob measures each
obtained state in the basis dictated by (ΦB)i (the “z basis” if (ΦB)i = 0, or the “x basis”
if (ΦB)i = 1) and puts the measurement result in the string U ∈ {0, 1}m, which is
kept secret.

4. Bob publicly sends to Alice his basis choice string ΦB.
5. Alice verifies that the set Σ , {1, 2, . . . , m} includes at least n1 + k1 rounds where

Alice chose z and Bob chose z (named “Z-Z rounds”), at least k2 “Z-X rounds”, at least
k3 “X-Z rounds”, and at least k4 “X-X rounds”. If verified, Alice sets the flag Fmin = X;
otherwise, she sets the flag Fmin = ∅ and aborts the protocol.

6. Alice randomly chooses four subsets Π1, Π2, Π3, Π4 ⊆ Σ of test rounds:

• |Π1| = k1 is randomly chosen out of all “Z-Z rounds” in Σ, and it consists of k1
rounds we define as the “TEST-Z-Z rounds”;

• |Π2| = k2 is randomly chosen out of all “Z-X rounds” in Σ, and it consists of k2
rounds we define as the “TEST-Z-X rounds”;

• |Π3| = k3 is randomly chosen out of all “X-Z rounds” in Σ, and it consists of k3
rounds we define as the “TEST-X-Z rounds”;

• |Π4| = k4 is randomly chosen out of all “X-X rounds” in Σ, and it consists of k4
rounds we define as the “TEST-X-X rounds”,

and one subset Σ1 ⊆ Σ of information rounds:

• |Σ1| = n1 is randomly chosen out of all “Z-Z rounds” in Σ \Π1, and it consists
of n1 rounds we define as the “INFO rounds”.

She publicly sends the five disjoint sets Π1, Π2, Π3, Π4, Σ1 to Bob.
7. Each one of Alice and Bob produces five substrings of their respective bit strings R, U:

• V1 and W1 are the substrings corresponding to Π1 (the TEST-Z-Z rounds) of
Alice and Bob, respectively;

• V2 and W2 are the substrings corresponding to Π2 (the TEST-Z-X rounds) of
Alice and Bob, respectively;

• V3 and W3 are the substrings corresponding to Π3 (the TEST-X-Z rounds) of
Alice and Bob, respectively;

• V4 and W4 are the substrings corresponding to Π4 (the TEST-X-X rounds) of
Alice and Bob, respectively;

• X1 and Y1 are the substrings corresponding to Σ1 (the INFO rounds) of Alice
and Bob, respectively.

8. Alice sends V1, V4 to Bob, and Bob compares them to his W1, W4 and computes the
error rates. If the error rate in either the TEST-Z-Z rounds or the TEST-X-X rounds
exceeds δ, Bob sets Fpe = ∅ and aborts the protocol.
In addition, Bob evaluates his bit strings W2, W3 and computes their zero rates (namely,
the percentages of his “+” or “0” measurement results, respectively). If the zero rate
in either the TEST-Z-X rounds or the TEST-X-Z rounds exceeds δmismatch, Bob sets
Fpe = ∅ and aborts the protocol.
If both tests pass, Bob sets Fpe = X, and the protocol proceeds.

9. Alice and Bob perform error correction and privacy amplification to their secret INFO
bits X1, Y1 in the standard way for BB84 protocols (described, e.g., in [22]) to obtain
their final secret keys. We note that Alice and Bob generate another flag, Fec, and they
abort the protocol if Fec = ∅ (see details in [22]); however, if Fec = X, the protocol
succeeds, and Alice’s and Bob’s final secret keys are denoted by KA, KB ∈ {0, 1}`,
respectively.
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We point out that this is a very general protocol in the lossless qubit regime because
Alice’s emitted states {|γ0〉Bi , |γ1〉Bi , |γ+〉Bi} can be any states (assuming they are linearly
dependent and satisfy |a|2 + |b|2 > 1

2 ), even if they lie inside a very general Hilbert space
(which may be infinite-dimensional or even continuous). Thus, for this security proof to
apply, Alice and Bob must first test their devices, perform a full quantum tomography of
their emitted states, and input the resulting states |γ0〉Bi , |γ1〉Bi , |γ+〉Bi to the security proof,
as described in Section 2.

Using pure states |γ0〉Bi , |γ1〉Bi , |γ+〉Bi does not hurt generality because if Alice sends
a mixed state, we can always assume that she also sends the purifying system (which Eve
intercepts and uses): this assumption is only beneficial to Eve, so it makes our security
proof stronger.

4. Security Proof

Our security proof is a generalized version of the rigorous, mostly self-contained
security proof presented by [22] for BB84-based protocols. That security proof uses entropic
uncertainty relations to derive a key rate formula in the finite-key regime, showing a
reduction from the prepare-and-measure protocol to an entanglement-based protocol.
Here, we generalize this approach to apply to our practical protocol (in the qubit regime)
described in Section 3.

4.1. Equivalent Modified Entanglement-Based Protocol

We begin our security proof by performing a reduction to the following modified
entanglement-based protocol. We point out that this protocol does not strictly adhere
to standard definitions of “entanglement-based” protocols because it requires Alice to
prepare a specific entangled state, measure some portions of it, and send other portions
to Bob (which Eve can attack). Therefore, it is similar to prepare-and-measure protocols.
Nevertheless, this protocol is entanglement-based in the narrowest sense because it allows
Alice to delay her measurements (on some portions of her state) and relies on the resulting
entanglement for proving security.

Therefore, we call it a “modified entanglement-based protocol”, and it is defined
as follows:

1. Alice and Bob publicly agree on the parameters of the protocol:

• Three normalized quantum states {|γ0〉Bi , |γ1〉Bi , |γ+〉Bi} (identical between all
rounds i) that can reside in any arbitrary Hilbert space but must be linearly
dependent (and, therefore, must span a two-dimensional Hilbert subspace).
Specifically, we denote

|γ+〉Bi = a|γ0〉Bi + b|γ1〉Bi , (2)

where a, b ∈ C. We require |a|2 + |b|2 > 1
2 or, equivalently, <(a?b〈γ0|γ1〉Bi ) <

1
4 .

We also denote the following parameter T:

T , |a|2 + |b|2 (3)

(so T > 1
2 , or 2T − 1 > 0), and a resulting fourth quantum state |γ−〉Bi :

|γ−〉Bi ,
b?|γ0〉Bi − a?|γ1〉Bi√

2T − 1
. (4)

Lemma 1. If |γ0〉Bi , |γ1〉Bi , |γ+〉Bi are all normalized, then |γ−〉Bi is normalized, too.

Proof.

1 = 〈γ+|γ+〉Bi = |a|2〈γ0|γ0〉Bi + |b|
2〈γ1|γ1〉Bi + 2<(a?b〈γ0|γ1〉Bi )
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= T + 2<(a?b〈γ0|γ1〉Bi ), (5)

〈γ−|γ−〉Bi =
|b|2〈γ0|γ0〉Bi + |a|

2〈γ1|γ1〉Bi − 2<(ba?〈γ0|γ1〉Bi )

2T − 1

=
T − 2<(a?b〈γ0|γ1〉Bi )

2T − 1
=

T − (1− T)
2T − 1

=
2T − 1
2T − 1

= 1 (6)

• Inside a separate qubit spaceHAi , Span{|0〉Ai , |1〉Ai}, two orthonormal quan-
tum states (using the same a, b ∈ C and T as above):

|ξ+〉Ai ,
a?|0〉Ai + b?|1〉Ai√

T
, (7)

|ξ−〉Ai ,
b|0〉Ai − a|1〉Ai√

T
, (8)

leading to two orthonormal measurement bases (representing standard, projec-
tive quantum measurements) of Alice for each round i:

(a) {|0〉Ai , |1〉Ai}, which we name “the standard basis” or “the z basis”, and
(b) {|ξ+〉Ai , |ξ−〉Ai}, which we name “the conjugate basis” or “the x basis”.

• Bob’s generalized measurement operators for each round i:

(a) {MZ,t
Bi
}t∈{0,1}, which we name “measurement in the standard basis” or

“measurement in the z basis”, and
(b) {MX,t

Bi
}t∈{0,1}, which we name “measurement in the conjugate basis” or

“measurement in the x basis”.

which are defined similarly to [22]. We note that Bob’s measurement operators
can be arbitrary and are not required to be perfectly implemented or perfectly
known. However, they influence the measurement results and the error rate,
which influence the protocol’s success probability and key rate.

• The number M′ of all rounds (all quantum states sent by Alice to Bob).
• The required number m of rounds where Alice does not tell Bob to discard (see

Step 3).
• The probabilities that Alice chooses to measure in each measurement basis: p′Az

(for choosing to measure in the “z basis”) and p′Ax (for choosing to measure in
the “x basis”), respectively, such that p′Az + p′Ax = 1.

• The probabilities that Bob chooses to measure in each measurement basis: p′Bz
(for choosing to measure in the “z basis”) and p′Bx (for choosing to measure in the
“x basis”), respectively, such that p′Bz + p′Bx = 1.

• The numbers k1, k2, k3, k4 of TEST bits required for each pair of basis choices of
Alice and Bob (Z-Z, Z-X, X-Z, and X-X, respectively, where the first letter (Z or
X) represents Alice’s basis choice, and the second letter represents Bob’s basis
choice) and the number n1 of required INFO bits corresponding to basis choices
of Z-Z. We require n1 + k1 + k2 + k3 + k4 ≤ m.

• The error rate threshold δ (maximal allowed noise in TEST-Z-Z and TEST-X-
X bits).

• The zero rate threshold δmismatch (maximal allowed rate of “+” or “0” results
measured by Bob in TEST-Z-X and TEST-X-Z bits, respectively).

• The error correction and privacy amplification parameters described in [22],
including, in particular, the final key length `.

2. Alice randomly chooses a string ΦA ∈ {0, 1}M′ of basis choices: she chooses each bit
independently to have value 0 with probability p′Az or value 1 with probability p′Ax .
Bob randomly chooses a string ΦB ∈ {0, 1}M′ of basis choices: he chooses each bit
independently to have value 0 with probability p′Bz or value 1 with probability p′Bx .
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Both strings are kept secret.
3. For each round i ∈ {1, 2, . . . , M′} of the protocol, Alice generates the following

entangled state:

|Ψ〉AiBi ,
|0〉Ai |γ0〉Bi + |1〉Ai |γ1〉Bi√

2
=
|ξ+〉Ai |γ+〉Bi +

√
2T − 1|ξ−〉Ai |γ−〉Bi√
2T

(9)

(this equality between its two representations can be proven algebraically). In other
words, Alice generates the state

⊗M′
i=1 |Ψ〉AiBi (10)

consisting of the M′ quantum systems A1, A2, . . . , AM′ (one system for each round i).
For each round i, if (ΦA)i = 1 (namely, if Alice will have to measure this round in
the “x basis”), Alice measures subsystem Ai in the “x basis” {|ξ+〉Ai , |ξ−〉Ai}. (If
(ΦA)i = 0, she delays measurement to Step 8.) Alice then defines the following bit
string D ∈ {0, 1}M′ :

Di ,

{
1 If (ΦA)i = 1 and Alice measures “ξ−” in round i
0 Otherwise, (either (ΦA)i = 0, or Alice measures “ξ+” in round i)

(11)

Alice publicly sends to Bob the string D. This means that for each round i, Alice tells
Bob (and Eve) whether she obtained the measurement result “ξ−”; however, if she
did not obtain the measurement result “ξ−”, she does not expose the measurement
result (if any) or the chosen basis.
Alice and Bob discard and ignore all rounds where Di = 1, which we name the
“discarded rounds”. However, for all the “non-discarded rounds” (rounds where
Di = 0), Alice sends to Bob the subsystem Bi via the quantum channel, which can be
attacked by Eve.

4. Bob publicly sends to Alice his basis choice string ΦB.
5. Alice denotes the set of rounds that were not discarded by her as Ω ⊆ {1, 2, . . . , M′}

(namely, Ω , {1 ≤ i ≤ M′ | Di = 0}). Alice verifies that at least m rounds appear in
Ω, in which case she sets the flag Fsift′ = X and publishes the set Σ ⊆ Ω consisting
of the first m rounds appearing in Ω (which are the first m non-discarded rounds).
Otherwise (if fewer than m rounds appear in Ω), Alice sets the flag Fsift′ = ∅ and
aborts the protocol.
The two next steps are completely identical to Steps 5 and 6 of the original prepare-and-
measure protocol described in Section 3:

6. Alice verifies that Σ includes at least n1 + k1 rounds where Alice chose z and Bob
chose z (named “Z-Z rounds”), at least k2 “Z-X rounds”, at least k3 “X-Z rounds”, and
at least k4 “X-X rounds”. If verified, Alice sets the flag Fmin = X; otherwise, she sets
the flag Fmin = ∅ and aborts the protocol.

7. Alice randomly chooses four subsets Π1, Π2, Π3, Π4 ⊆ Σ of test rounds:

• |Π1| = k1 is randomly chosen out of all “Z-Z rounds” in Σ, and it consists of k1
rounds we define as the “TEST-Z-Z rounds”;

• |Π2| = k2 is randomly chosen out of all “Z-X rounds” in Σ, and it consists of k2
rounds we define as the “TEST-Z-X rounds”;

• |Π3| = k3 is randomly chosen out of all “X-Z rounds” in Σ, and it consists of k3
rounds we define as the “TEST-X-Z rounds”;

• |Π4| = k4 is randomly chosen out of all “X-X rounds” in Σ, and it consists of k4
rounds we define as the “TEST-X-X rounds”,

and one subset Σ1 ⊆ Σ of information rounds:

• |Σ1| = n1 is randomly chosen out of all “Z-Z rounds” in Σ \Π1, and it consists
of n1 rounds we define as the “INFO rounds”.
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She publicly sends the five disjoint sets Π1, Π2, Π3, Π4, Σ1 to Bob.
8. Alice measures all quantum systems Ai for which (ΦA)i = 0 in the “z basis” {|0〉Ai , |1〉Ai}.

She puts all her measurement results (from both this step and Step 3) in the string
R ∈ {0, 1}M′ , which is kept secret.

9. Bob measures all his non-discarded quantum systems in the bases dictated by ΦB (the
“z basis” if (ΦB)i = 0, or the “x basis” if (ΦB)i = 1) and puts his measurement results
in the string U ∈ {0, 1}M′ , which is kept secret.
The rest of the protocol is completely identical to the last steps of the original prepare-
and-measure protocol described in Section 3 (in its Steps 7–9):

10. Each one of Alice and Bob produces five substrings of their respective bit strings R, U:

• V1 and W1 are the substrings corresponding to Π1 (the TEST-Z-Z rounds) of
Alice and Bob, respectively;

• V2 and W2 are the substrings corresponding to Π2 (the TEST-Z-X rounds) of
Alice and Bob, respectively;

• V3 and W3 are the substrings corresponding to Π3 (the TEST-X-Z rounds) of
Alice and Bob, respectively;

• V4 and W4 are the substrings corresponding to Π4 (the TEST-X-X rounds) of
Alice and Bob, respectively;

• X1 and Y1 are the substrings corresponding to Σ1 (the INFO rounds) of Alice
and Bob, respectively.

11. Alice sends V1, V4 to Bob, and Bob compares them to his W1, W4 and computes the
error rates. If the error rate in either the TEST-Z-Z rounds or the TEST-X-X rounds
exceeds δ, Bob sets Fpe = ∅ and aborts the protocol.
In addition, Bob evaluates his bit strings W2, W3 and computes their zero rates (namely,
the percentages of his “+” or “0” measurement results, respectively). If the zero rate
in either the TEST-Z-X rounds or the TEST-X-Z rounds exceeds δmismatch, Bob sets
Fpe = ∅ and aborts the protocol.
If both tests pass, Bob sets Fpe = X, and the protocol proceeds.

12. Alice and Bob perform error correction and privacy amplification to their secret INFO
bits X1, Y1 in the standard way for BB84 protocols (described, e.g., in [22]) to obtain
their final secret keys. We note that Alice and Bob generate another flag, Fec, and they
abort the protocol if Fec = ∅ (see details in [22]); however, if Fec = X, the protocol
succeeds, and Alice’s and Bob’s final secret keys are denoted by KA, KB ∈ {0, 1}`,
respectively.

In Section 4.2, we prove security of this protocol, and in Section 4.3, we prove the
reduction to be correct—namely, we prove that security of the above protocol implies
security of the original protocol.

4.2. Security Proof for the Modified Entanglement-Based Protocol

Our security proof is a generalization of Section 6 of [22] (which proves security of an
entanglement-based version of BB84 [1,25,26]), requiring a few modifications of their proof.

The proof of [22] is based on an entropic uncertainty relation which, roughly speaking,
links two quantities: the smooth min-entropy of Alice’s data conditioned on Eve’s data
(denoted Hε

min(A|E)) and the smooth max-entropy of Alice’s data conditioned on Bob’s
data (denoted Hε

max(A|B)). Generally speaking, these entropies are measures of uncertainty:
they capture the number of bits in Alice’s system A that are unknown to either Eve or Bob,
respectively. Intuitively (and imprecisely), the smooth min-entropy Hε

min(A|E) describes
the number of secret bits that can be extracted from Alice’s system A and will be completely
secret even from Eve (or from anyone that has Eve’s system E), while the smooth max-
entropy Hε

max(A|B) describes the number of extra information bits that Bob will have to
receive from Alice if he wants to have full information on her system A (which is roughly
equivalent to asking how much information Alice would need to send to Bob during the
error correction procedure).
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Roughly speaking, the entropic uncertainty relation used by [22] shows a lower bound
on Hε

min(A|E) + Hε
max(A|B). Then, their proof upper-bounds Hε

max(A|B) by bounding the
error rate between Alice and Bob using a law of large numbers, which shows it is unlikely
that the error rate on TEST bits is less than δ while the error rate on INFO bits is more than
δ + ν. (Intuitively, the smoothness parameter ε means that we do not necessarily use the
original quantum state given as an input to the entropy, but we may use any quantum state
up to distance ε from it. In our case, for example, ε2 represents the maximal probability that
the law of large numbers is violated—namely, the maximal probability that the true error
rate in the INFO bits is much higher than the error rate observed in the TEST bits. Using
the smooth min- and max-entropy allows us to upper-bound the impact of this unwanted
possibility.) The combination of these two results implies a lower bound on Hε

min(A|E),
and this lower bound immediately gives us the protocol’s key rate using the Leftover
Hashing Lemma [27] (which intuitively says that roughly Hε

min(A|E) bits, known to Alice
and completely secret from Eve, can be extracted from Alice’s system using a standard
procedure of privacy amplification).

We mainly modify the first two parts of [22]’s proof: the entropic uncertainty relation
and the use of the law of large numbers. In addition, we need to justify security of our
sifting step.

4.2.1. The Sifting Step

The sifting step of our modified entanglement-based protocol does not appear in the
entanglement-based protocol of [22]. Therefore, we must prove that it does not hurt security
by showing that it keeps Alice’s and Bob’s basis choice strings ΦA, ΦB independent of the
other systems.

Each bit of ΦA, ΦB is chosen independently (with probabilities p′Az , p′Ax , p′Bz , and p′Bx ,
respectively). Moreover, the state that Alice generates for each round is as follows:

|Ψ〉AiBi ,
|0〉Ai |γ0〉Bi + |1〉Ai |γ1〉Bi√

2
=
|ξ+〉Ai |γ+〉Bi +

√
2T − 1|ξ−〉Ai |γ−〉Bi√
2T

, (12)

so we observe that if (ΦA)i = 0 (namely, if Alice chooses the “z basis”), Alice obtains the
“0” and “1” results with equal conditional probabilities ( 1

2 ); and if (ΦA)i = 1 (namely, if
Alice chooses the “x basis”), Alice obtains the “ξ+” result with conditional probability 1

2T
and obtains the “ξ−” result with conditional probability 2T−1

2T . We conclude the following:

PrAi (0) = PrAi (1) = p′Az ·
1
2
=

p′Az
2

, (13)

PrAi (ξ+) = p′Ax ·
1

2T
=

p′Ax
2T

, (14)

PrAi (ξ−) = p′Ax ·
2T − 1

2T
=

p′Ax (2T − 1)
2T

. (15)

To justify the sifting step, we notice that this probabilistic process can equivalently be
described as the following two-stage process:

1. First, for each round i, Alice determines whether round i is discarded (Di = 1) or not
(Di = 0). The round is discarded if and only if Alice measures “ξ−”; therefore,

PrAi (Di = 1) = PrAi (ξ−) =
p′Ax (2T − 1)

2T
, (16)

PrAi (Di = 0) = PrAi (0) + PrAi (1) + PrAi (ξ+) = 2 · p′Az
2

+
p′Ax
2T

= p′Az +
p′Ax
2T

. (17)

Remember that we define Ω , {1 ≤ i ≤ M′ | Di = 0} as the set of non-discarded rounds.
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2. Then, for each round i in Ω (each non-discarded round), Alice determines the basis:

PrAi [(ΦA)i = 0 | Di = 0] =
PrAi (0) + PrAi (1)

PrAi (Di = 0)
=

2 · p′Az
2

p′Az + p′Ax
2T

=
p′Az

p′Az + p′Ax
2T

, (18)

PrAi [(ΦA)i = 1 | Di = 0] =
PrAi (ξ+)

PrAi (Di = 0)
=

p′Ax
2T

p′Az + p′Ax
2T

. (19)

These probabilities are independent between the rounds: namely, the basis is deter-
mined independently for each non-discarded round.

Note that this equivalence is only correct with respect to the probability distribution;
the above process does not describe a physical process, but a virtual process that cannot
be applied in practice and only gives the same probability distribution over ΦA and
R. (This point can be counter-intuitive: from a quantum theory’s point of view, the
choice of discarded and non-discarded rounds obviously depends on the basis chosen for
measurement, yet from a probabilistic point of view, the process can be divided to the two
above stages and still give us an identical probability distribution.)

We notice that both the flag Fsift′ (which notes whether there are at least m rounds in
Ω—namely, whether at least m rounds were not discarded) and the set Σ (which represents
the first m rounds in Ω) only depend on stage 1: namely, from the probabilistic point of
view, both the passing of the sifting test (Fsift′ ) and the choice of the m relevant rounds (Σ)
depend only on the choice of discarded rounds in stage 1, and they are both completely
independent of the bases ΦA chosen for the non-discarded rounds in stage 2. The bases of
the non-discarded rounds are chosen independently with the predetermined probabilities
computed in Equations (18) and (19).

For this reason, in the rest of the analysis, we can treat ΦA and ΦB (more precisely,
their restrictions to the m non-discarded rounds in Σ) as completely independent of Eve’s
attack. In other words, Eve’s attack is applied independently of Alice’s and Bob’s chosen
bases (or their actually used bases) because Eve is only given access to the discarding
string D which is completely independent of the bases in the non-discarded rounds. This
result is crucial for the application of the law of large numbers to hypothetical protocols in
Section 4.2.3.

Furthermore, we notice that our modified entanglement-based protocol actually acts
in the following way regarding the choice of bases and TEST and INFO bits inside Σ:

1. In stage 2 (included in Step 2 of the protocol), Alice and Bob determine the bases
of the m non-discarded rounds in Σ, chosen randomly and independently for each
round in Σ.

2. In Step 6 of the protocol, Alice verifies that Σ has sufficient numbers of rounds
corresponding to each pair of bases (namely, at least n1 + k1 “Z-Z rounds”, at least k2
“Z-X rounds”, at least k3 “X-Z rounds”, and at least k4 “X-X rounds”). For simplicity,
let us denote the “Z-Z rounds” by ΣZ,Z, the “Z-X rounds” by ΣZ,X, the “X-Z rounds”
by ΣX,Z, and the “X-X rounds” by ΣX,X; here, Alice verifies that |ΣZ,Z| ≥ n1 + k1,
|ΣZ,X| ≥ k2, |ΣX,Z| ≥ k3, and |ΣX,X| ≥ k4. We condition on passing this verification—
namely, we evaluate the conditional probabilities on Fmin = X.

3. In Step 7 of the protocol, Alice uniformly and randomly chooses the corresponding
disjoint subsets Σ1, Π1 ⊆ ΣZ,Z, Π2 ⊆ ΣZ,X, Π3 ⊆ ΣX,Z, and Π4 ⊆ ΣX,X (of sizes n1,
k1, k2, k3, and k4, respectively). This effectively discards the other m − n1 − k1 −
k2 − k3 − k4 rounds in Σ \ (Σ1 ∪Π1 ∪Π2 ∪Π3 ∪Π4), because their basis choices and
measurement results are completely ignored by the rest of the protocol.

Combining these three steps and conditioning on Fmin = X (namely, condition-
ing on passing the verification of the second step), this process is equivalent from the
probabilistic point of view to uniformly and randomly choosing five disjoint subsets
Σ1, Π1, Π2, Π3, Π4 ⊆ Σ of sizes n1, k1, k2, k3, and k4, respectively (out of the m-sized set Σ),
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and letting this uniform choice dictate the choice of measurement probabilities (Z-Z, Z-Z,
Z-X, X-Z, and X-X, respectively). This equivalence results from the complete symmetry of
the above three steps, which have no dependence whatsoever on the identifying number of
each round inside Σ. This observation, too, is crucial for the application of the law of large
numbers in Section 4.2.3.

4.2.2. Entropic Uncertainty Relation

The security proof in [22] uses the uncertainty relation described in Proposition 4
of [22], which is equivalent to Corollary 7.4 of [28]. This uncertainty relation uses the
symmetry of the BB84 protocol with respect to the chosen basis of the INFO bits: namely,
it uses the property that each INFO bit in BB84 is measured in a uniformly random basis,
independently of the TEST bits’ results and bases. Since a similar property does not apply
to our protocol (because all our INFO bits are measured in the “z basis”), we must use a
different uncertainty relation.

Adopting an approach similar to [29], we use Theorem 7.2 of [28] as the generalized
entropic uncertainty relation (using slightly different notations compared to [28]):

Theorem 1. (Theorem 7.2 of [28]) Given ε ≥ 0 and a non-normalized state ρARS over the Hilbert
space HARS, and given two generalized measurement operators M1 = {Mx

1}x , M2 = {Mx′
2 }x′

onHA and a projective measurement {Pp}p onHA, the two post-measurement states

σXPR = ∑
x,p
|x〉X〈x|X ⊗ |p〉P〈p|P ⊗ trAS

(
Mx

1 PpρARSPp(Mx
1 )

†
)

, (20)

σ′X′PS = ∑
x′ ,p
|x′〉X′〈x′|X′ ⊗ |p〉P〈p|P ⊗ trAR

(
Mx′

2 PpρARSPp(Mx′
2 )†

)
(21)

satisfy the following inequality (uncertainty relation):

Hε
min(X|PR)σ + Hε

max(X
′|PS)σ′ ≥ log2

(
1
cP

)
, (22)

where:
cP , max

p,x,x′

∣∣∣∣∣∣Mx
1 Pp(Mx′

2 )†
∣∣∣∣∣∣2

∞
. (23)

Proof. Proved in Section 7.3.2 of [28] as Theorem 7.2.

The next proposition will give us a similar result to Corollary 5 of [22] (namely,
roughly speaking, a lower bound on the sum Hε

min(A|E) + Hε
max(A|B)), with one important

difference: the first term Hε
min(A|E) will still refer to the real QKD protocol (the modified

entanglement-based protocol described in Section 4.1), but the second term Hε
max(A|B) will

now refer to a hypothetical QKD protocol (still entanglement-based) where both Alice and
Bob measure the INFO bits in the conjugate (“x”) basis. Formally:

Proposition 1. For the modified entanglement-based protocol described in Section 4.1, for ε ≥ 0,
the state σX1Y1VWΠΦAΦBFsift′FminFpeE held by Alice, Bob, and Eve after Step 11 of the real proto-
col, and the state σ′

X′1Y′1VWΠΦAΦBFsift′FminFpeE
held by Alice, Bob, and Eve after Step 11 of the

hypothetical protocol defined below, it holds that

Hε
min(X

1 ∧ Fpe = X|VWΠΦAΦBE , Fsift′ = Fmin = X)σ

+ Hε
max(X

′1 ∧ Fpe = X|Y′1 , Fsift′ = Fmin = X)σ′ ≥ n1 log2

(
1
c

)
, (24)

where we define V , (V1, V2, V3, V4), W , (W1, W2, W3, W4), Π , (Π1, Π2, Π3, Π4, Σ1, D, Σ),
and c , max

(
|〈0|ξ+〉Ai |

2, |〈0|ξ−〉Ai |
2, |〈1|ξ+〉Ai |

2, |〈1|ξ−〉Ai |
2), using the protocol’s notations;
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subsystem E represents Eve’s ancilla (including her quantum data); and X′1, Y′1 are the substrings
corresponding to the n1 INFO rounds (namely, the Z-Z rounds in Σ1) in the hypothetical protocol
where both Alice and Bob measure the INFO bits in the conjugate (“x”) basis.

(The hypothetical protocol only changes the actual measurements performed by Alice and Bob
in Steps 8 and 9 of the modified entanglement-based protocol. It does not change any other part of
the protocol: in particular, Alice neither discards INFO rounds where she measured “ξ−” in the
hypothetical protocol nor notifies Bob about them.)

Proof. This proof combines modified versions of the proofs of Corollary 7.4 in Section 7.4.2
of [28] and Corollary 5 in Section 6.2 of [22].

We choose the measurement operators M1 = {|j〉A〈j|A | j ∈ {0, 1}n1} (i.e., the
tensor product of n1 copies of the “z basis”) and M2 = {|j〉A〈j|A | j ∈ {ξ+, ξ−}n1}
(i.e., the tensor product of n1 copies of the “x basis”) and the projective
measurement {Pp}p = {|ΠΦAΦB〉〈ΠΦAΦB|}ΠΦAΦB . It is easy to verify (see, e.g., [28])
that cP of Theorem 1 is equal to cn1 , where c was defined in our proposition
(c , max

(
|〈0|ξ+〉Ai |

2, |〈0|ξ−〉Ai |
2, |〈1|ξ+〉Ai |

2, |〈1|ξ−〉Ai |
2)).

Then, we apply Theorem 1 to the state after Alice’s and Bob’s measurements of all
TEST bits, before Alice’s and Bob’s measurements of the INFO bits (here, it is important that
our modified entanglement-based protocol delays to its Step 8 all Alice’s measurements
in the “z basis”, which include all measurements of the INFO bits), conditioned on the
first two tests passing (Fsift′ = Fmin = X), and requiring the third test to pass (Fpe = X):
(the difference between “conditioning” and “requiring” in this context is analogous to
the difference between a “conditional probability” and a “joint probability”, respectively;
see [22] for the precise definitions)

ρABVWΠΦAΦBFsift′FminFpeE ∧ Fpe=X | Fsift′=Fmin=X, (25)

and by choosing the systems P = ΠΦAΦB , R = VWE , S = B for Theorem 1, we obtain
the following:

Hε
min(X

1 ∧ Fpe = X|VWEΠΦAΦB , Fsift′ = Fmin = X)σ

+ Hε
max(X

′1 ∧ Fpe = X|BΠΦAΦB , Fsift′ = Fmin = X)σ′ ≥ n1 log2

(
1
c

)
, (26)

where X1 and X′1 represent the measurement results of Alice’s INFO bits in the “z basis”
and in the “x basis”, respectively.

Performing a measurement of Bob’s INFO bits in subsystem B in the “x basis” (yield-
ing the bit string Y′1) and discarding the classical information systems, ΠΦAΦB are two
quantum operations (CPTP) operated exclusively on subsystems BΠΦAΦB. According
to the data processing inequality (see, e.g., [22,27]), such operations can only increase
the max-entropy:

Hε
max(X

′1 ∧ Fpe = X|BΠΦAΦB , Fsift′ = Fmin = X)σ′ ≤ Hε
max(X

′1 ∧ Fpe = X|Y′1 , Fsift′ = Fmin = X)σ′ , (27)

which gives us the desired result:

Hε
min(X

1 ∧ Fpe = X|VWEΠΦAΦB , Fsift′ = Fmin = X)σ

+ Hε
max(X

′1 ∧ Fpe = X|Y′1 , Fsift′ = Fmin = X)σ′ ≥ n1 log2

(
1
c

)
. (28)

4.2.3. The Law of Large Numbers

Intuitively, the proof of [22] uses a law of large numbers (Lemma 6 of [22]) to upper-
bound the max-entropy Hε

max(X|Y)—namely, the max-entropy of Alice’s raw key condi-
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tioned on Bob’s raw key in the real protocol. However, in our proof, we need to bound
Hε

max(X′1|Y′1)—namely, the max-entropy of Alice’s raw key conditioned on Bob’s raw key
in a hypothetical protocol where Alice and Bob measure the INFO bits in the conjugate (“x”)
basis. For obtaining this bound, we need to apply the law of large numbers twice to two
different hypothetical protocols:

1. In the X-X hypothetical protocol (where both Alice and Bob measure the INFO bits in the
“x basis”), we can compare the TEST-X-X bits (where the only non-discarded rounds
are those where Alice measured “ξ+”) to the INFO bits. This way, we can discover
the error rate on the “ξ+” bits.

2. For finding the error rate on the “ξ−” bits, we use the Z-X hypothetical protocol, where
Alice measures the INFO bits in the “z basis” while Bob measures them in the “x
basis”. The following intuitive formula will give us the needed bound:

Pr(Ai = − , Bi = +) = Pr(Ai = 0 , Bi = +) + Pr(Ai = 1 , Bi = +)− Pr(Ai = + , Bi = +). (29)

This formula is intuitively trivial because it follows from the following formula:

Pr(Ai = − , Bi = +) + Pr(Ai = + , Bi = +) = Pr(Bi = +)

= Pr(Ai = 0 , Bi = +) + Pr(Ai = 1 , Bi = +). (30)

Formally, it follows from the independence of Alice’s and Bob’s operations, as elabo-
rated in the “bounding the fourth probability” portion of the proof of Proposition 2
below.
This idea can be compared with [30]’s analysis of the “loss tolerant” protocol (im-
proving on the usual analysis which involves matrix computations [14–17]), but their
analysis is more complicated and has several free parameters. Here, we present a full
and precise analysis, leading to an explicit key rate formula in the single-qubit regime.

Formally, we use the following law of large numbers (Lemma 6 of [22]):

Lemma 2. (Lemma 6 of [22]) Given a set of N random variables Z = (Z1, Z2, . . . , ZN), where
each Zi takes values in {0, 1} and N = a + b, and given an independent, a uniformly distributed
subset Π ⊆ {1, 2, . . . , N} of size a, it holds that

Pr

[
∑
i∈Π

Zi ≤ aδ ∧ ∑
i∈Π

Zi ≥ b · (δ + ν)

]
≤ e−

2ba2ν2
(a+b)(a+1) . (31)

Proof. Proved in Section 6.3 of [22] as Lemma 6.

We also use another law of large numbers, proved in Section 2 of [31] as Theorem 1:

Lemma 3. Let Z1, . . . , ZN be independent random variables with finite first and second moments,
such that 0 ≤ Zi ≤ 1 for all 1 ≤ i ≤ N. If Z , Z1+...+ZN

N is their average and µ , E[Z] is the
expected value of Z, then for any ν > 0,

Pr
[
Z− µ ≥ ν

]
≤ e−2Nν2

. (32)

Using these Lemmas, we prove the following (a modified version of Proposition 8
of [22]):

Proposition 2. For the modified entanglement-based protocol described in Section 4.1, for the state
σ′

X′1Y′1VWΠΦAΦBFsift′FminFpeE
defined in Proposition 1, and for error rate threshold δ and zero rate

threshold δmismatch, if we define for any 0 < ν ≤ 1
2 − δ:

δ′(ν) , δmismatch + ν−
(

1
2T
− ν

)
· (1− 2δ− 2ν), (33)
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ε(ν) ,

√
e−2n1ν2 + e

−
2n1 ·( 1

2T −ν)k2
4ν2

(k4+n1 ·( 1
2T −ν))(k4+1) + e

− 2n1k2
2ν2

(k2+n1)(k2+1) , (34)

then, for any 0 < ν ≤ 1
2 − δ satisfying 0 < δ′(ν) ≤ 1

2 and ε(ν)2 < Pr
[
Fpe = X | Fsift′ = Fmin =X

]
,

it holds that

Hε(ν)
max(X′1 ∧ Fpe = X | Y′1 , Fsift′ = Fmin = X)σ′ ≤ n1 · h2(δ

′(ν)), (35)

where h2(x) , −x log2(x)− (1− x) log2(1− x).

Proof. Let us define the following event:

Ω0 , 1

{
n1

∑
i=1

1{X′1i 6= Y′1i } > n1δ′(ν)

}
. (36)

We need to prove the following probability to be exponentially small:

Pr
[

Fpe = X ∧ Ω0 | Fsift′ = Fmin = X
]

= Pr

[
k1

∑
i=1

1{V1
i 6= W1

i } ≤ k1δ ∧
k2

∑
i=1

1{W2
i = 0} ≤ k2δmismatch

∧
k3

∑
i=1

1{W3
i = 0} ≤ k3δmismatch ∧

k4

∑
i=1

1{V4
i 6= W4

i } ≤ k4δ

∧
n1

∑
i=1

1{X′1i 6= Y′1i } > n1δ′(ν) | Fsift′ = Fmin = X

]

≤ Pr

[
k2

∑
i=1

1{W2
i = 0} ≤ k2δmismatch ∧

k4

∑
i=1

1{V4
i 6= W4

i } ≤ k4δ

∧
n1

∑
i=1

1{X′1i 6= Y′1i } > n1δ′(ν) | Fsift′ = Fmin = X

]
. (37)

Let us remember that V2 and W2 are Alice’s and Bob’s substrings corresponding to Π2 (the
k2 TEST-Z-X rounds); V4 and W4 are Alice’s and Bob’s substrings corresponding to Π4 (the
k4 TEST-X-X rounds); and X′1 and Y′1 are Alice’s and Bob’s substrings corresponding to Σ1
(the n1 INFO rounds) in the X-X hypothetical protocol—namely, assuming that both Alice and
Bob measured the INFO bits in the “x basis” in Steps 8 and 9 of the protocol, respectively.

Let us also denote Alice’s “ξ+ rate” (the percentage of INFO bits which Alice measures
as “ξ+”) in the X-X hypothetical protocol by R′+—namely, R′+ , 1

n1
∑n1

i=1 1{X′1i = 0}.
Thus, the probability Pr

[
Fpe = X ∧ Ω0 | Fsift′ = Fmin = X

]
is bounded by the sum of

four probabilities:
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Pr
[

Fpe = X ∧ Ω0 | Fsift′ = Fmin = X
]

≤ Pr
[

R′+ ≤
1

2T
− ν | Fsift′ = Fmin = X

]
+ Pr

[
R′+ ≥

1
2T
− ν ∧

k4

∑
i=1

1{V4
i 6= W4

i } ≤ k4δ

∧
n1

∑
i=1

1{X′1i = 0 ∧ Y′1i = 1} ≥ n1R′+ · (δ + ν) | Fsift′ = Fmin = X

]

+ Pr

[
k2

∑
i=1

1{W2
i = 0} ≤ k2δmismatch ∧

n1

∑
i=1

1{Y′1i = 0} ≥ n1 · (δmismatch + ν) | Fsift′ = Fmin = X

]

+ Pr

[
R′+ ≥

1
2T
− ν ∧

n1

∑
i=1

1{X′1i = 0 ∧ Y′1i = 1} ≤ n1R′+ · (δ + ν)

∧
n1

∑
i=1

1{Y′1i = 0} ≤ n1 · (δmismatch + ν) ∧
n1

∑
i=1

1{X′1i 6= Y′1i } > n1δ′(ν) | Fsift′ = Fmin = X

]
. (38)

We now bound each of these four probabilities:

Bounding the first probability:

We need to bound

Pr
[

R′+ ≤
1

2T
− ν | Fsift′ = Fmin = X

]
, (39)

where R′+ is the “ξ+” measurement rate of Alice among the INFO bits in the X-X hypotheti-
cal protocol. We notice that this rate is only dictated by identical quantum actions performed
by Alice: because Alice measures all INFO bits in the “x basis” in the hypothetical protocol,
her measurement results are obtained independently for all rounds and her probability of
measuring “ξ+” is always 1

2T . Namely, Alice’s measurement results are n1 independent
random variables {Zi}n1

i=1 (with all probabilities conditioned on Fsift′ = Fmin = X) such
that for each i:

Pr(Zi = 0 | Fsift′ = Fmin = X) =
1

2T
, Pr(Zi = 1 | Fsift′ = Fmin = X) = 1− 1

2T
. (40)

Therefore, the expected value of each Zi is E[Zi] = 1− 1
2T .

We can thus apply Lemma 3 (which applies to N independent random variables) to
the random variables {Zi}n1

i=1 with parameters N = n1 and µ = E[Z] = 1− 1
2T . We note

that Z = 1− R′+. Therefore, we obtain the following result:

Pr
[

R′+ ≤
1

2T
− ν | Fsift′ = Fmin = X

]
= Pr

[
R′+ −

1
2T
≤ −ν | Fsift′ = Fmin = X

]
= Pr

[
1

2T
− R′+ ≥ ν | Fsift′ = Fmin = X

]
= Pr

[(
1− R′+

)
−
(

1− 1
2T

)
≥ ν | Fsift′ = Fmin = X

]
= Pr

[
Z− µ ≥ ν | Fsift′ = Fmin = X

]
≤ e−2n1ν2

. (41)
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Bounding the second probability:

We need to bound

Pr

[
R′+ ≥

1
2T
− ν ∧

k4

∑
i=1

1{V4
i 6= W4

i } ≤ k4δ

∧
n1

∑
i=1

1{X′1i = 0 ∧ Y′1i = 1} ≥ n1R′+ · (δ + ν) | Fsift′ = Fmin = X

]
, (42)

where V4 and W4 are Alice’s and Bob’s substrings corresponding to Π4 (the k4 TEST-X-X
rounds); X′1 and Y′1 are Alice’s and Bob’s substrings corresponding to Σ1 (the n1 INFO
rounds) in the X-X hypothetical protocol; and R′+ is the “ξ+” measurement rate of Alice
among the INFO bits in the X-X hypothetical protocol. We notice that the TEST-X-X rounds
in Π4 consist only of rounds where Alice measured “ξ+” (the other rounds are discarded),
so her recorded bit must be 0; therefore, the error event V4

i 6= W4
i is actually equivalent to

V4
i = 0 ∧ W4

i = 1, and the probability is actually

= Pr

[
R′+ ≥

1
2T
− ν ∧

k4

∑
i=1

1{V4
i = 0 ∧ W4

i = 1} ≤ k4δ

∧
n1

∑
i=1

1{X′1i = 0 ∧ Y′1i = 1} ≥ n1R′+ · (δ + ν) | Fsift′ = Fmin = X

]
. (43)

We notice that all rates are evaluated in the X-X hypothetical protocol; that in all rounds,
both Alice and Bob measure in the “x basis”; and that in all rounds taken into account,
Alice obtains the “ξ+” result. We thus notice that the quantum behaviour of Alice, Bob, and
Eve is identical on all these rounds in the X-X hypothetical protocol (in particular, Di = 0
for all these rounds, and while the timing of Alice’s measurements may differ between the
rounds, this timing is meaningless from the quantum point of view).

Therefore, we can apply Lemma 2 using the following parameters: the random
variables Z = (Z1, Z2, . . . , ZN) represent the condition that Alice’s bit is 0 and Bob’s
bit is 1 (namely, Zi represents the evaluation of the condition V4

i = 0 ∧ W4
i = 1 or

X′1i = 0 ∧ Y′1i = 1, respectively); the sampled subset Π includes the a = k4 TEST-X-X
rounds in the Π4 subset chosen by the protocol, and the rest Π includes the b = n1R′+ INFO
rounds in the Σ1 subset chosen by the protocol where Alice obtains the “ξ+” measurement
result. The sampled susbet Π is completely independent of Bob’s measurement results
(that are dictated solely by Eve’s transmitted states and Alice’s results in the “x basis”)
because we showed in Section 4.2.1 that Σ1 and Π4 can be seen as uniformly and randomly
chosen subsets of Σ, conditioning on Fsift′ = Fmin = X.

We remark that this is not a straightforward application of Lemma 2 because the
number b = n1R′+ of rounds in Π is a random variable and not a parameter. Therefore, the
computation is slightly more complicated because all possible values of R′+ = r′+ need to be
evaluated. Nevertheless, using the condition R′+ ≥ 1

2T − ν and applying Lemma 2 for any
possible value of R′+, we are able to bound this probability and prove it exponentially small.

Using the formulation of Lemma 2, we obtain

Pr

[
R′+ ≥

1
2T
− ν ∧

k4

∑
i=1

1{V4
i 6= W4

i } ≤ k4δ

∧
n1

∑
i=1

1{X′1i = 0 ∧ Y′1i = 1} ≥ n1R′+ · (δ + ν) | Fsift′ = Fmin = X

]

= Pr

[
R′+ ≥

1
2T
− ν ∧

k4

∑
i=1

1{V4
i = 0 ∧ W4

i = 1} ≤ k4δ
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∧
n1

∑
i=1

1{X′1i = 0 ∧ Y′1i = 1} ≥ n1R′+ · (δ + ν) | Fsift′ = Fmin = X

]

=
n1

∑
j=dn1·( 1

2T−ν)e
Pr

[
R′+ =

j
n1
∧

k4

∑
i=1

1{V4
i = 0 ∧ W4

i = 1} ≤ k4δ

∧
n1

∑
i=1

1{X′1i = 0 ∧ Y′1i = 1} ≥ n1R′+ · (δ + ν) | Fsift′ = Fmin = X

]

=
n1

∑
j=dn1·( 1

2T−ν)e
Pr
[

R′+ =
j

n1
| Fsift′ = Fmin = X

]
· Pr

[
k4

∑
i=1

1{V4
i = 0 ∧ W4

i = 1} ≤ k4δ

∧
n1

∑
i=1

1{X′1i = 0 ∧ Y′1i = 1} ≥ n1R′+ · (δ + ν) | R′+ =
j

n1
, Fsift′ = Fmin = X

]
. (44)

We can now bound this conditional probability, for each value of j ∈
[
n1 ·

(
1

2T − ν
)

, n1

]
:

Pr

[
k4

∑
i=1

1{V4
i = 0 ∧ W4

i = 1} ≤ k4δ

∧
n1

∑
i=1

1{X′1i = 0 ∧ Y′1i = 1} ≥ n1R′+ · (δ + ν) | R′+ =
j

n1
, Fsift′ = Fmin = X

]

= Pr

[
k4

∑
i=1

1{V4
i = 0 ∧ W4

i = 1} ≤ k4δ

∧
n1

∑
i=1

1{X′1i = 0 ∧ Y′1i = 1} ≥ j · (δ + ν) | R′+ =
j

n1
, Fsift′ = Fmin = X

]

= Pr

[
∑
i∈Π

Zi ≤ k4δ ∧ ∑
i∈Π

Zi ≥ j · (δ + ν) | R′+ =
j

n1
, Fsift′ = Fmin = X

]

≤ e
− 2jk2

4ν2

(k4+j)(k4+1) ≤ e
−

2n1 ·( 1
2T −ν)k2

4ν2

(k4+n1 ·( 1
2T −ν))(k4+1) , (45)

where the last inequality results from the fact that j ≥ n1 ·
(

1
2T − ν

)
.

Substituting Equation (45) into Equation (44), we have

Pr

[
R′+ ≥

1
2T
− ν ∧

k4

∑
i=1

1{V4
i 6= W4

i } ≤ k4δ

∧
n1

∑
i=1

1{X′1i = 0 ∧ Y′1i = 1} ≥ n1R′+ · (δ + ν) | Fsift′ = Fmin = X

]

=
n1

∑
j=dn1·( 1

2T−ν)e
Pr
[

R′+ =
j

n1
| Fsift′ = Fmin = X

]
· Pr

[
k4

∑
i=1

1{V4
i = 0 ∧ W4

i = 1} ≤ k4δ

∧
n1

∑
i=1

1{X′1i = 0 ∧ Y′1i = 1} ≥ n1R′+ · (δ + ν) | R′+ =
j

n1
, Fsift′ = Fmin = X

]

≤
n1

∑
j=dn1·( 1

2T−ν)e
Pr
[

R′+ =
j

n1
| Fsift′ = Fmin = X

]
· e
−

2n1 ·( 1
2T −ν)k2

4ν2

(k4+n1 ·( 1
2T −ν))(k4+1)
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≤ e
−

2n1 ·( 1
2T −ν)k2

4ν2

(k4+n1 ·( 1
2T −ν))(k4+1) . (46)

Bounding the third probability:

We need to bound

Pr

[
k2

∑
i=1

1{W2
i = 0} ≤ k2δmismatch ∧

n1

∑
i=1

1{Y′1i = 0} ≥ n1 · (δmismatch + ν) | Fsift′ = Fmin = X

]
, (47)

where W2 is Bob’s substring corresponding to Π2 (the k2 TEST-Z-X rounds) and Y′1 is
Bob’s substring corresponding to Σ1 (the n1 INFO rounds) in the X-X hypothetical protocol.
Let us now define X′′1 and Y′′1 as Alice’s and Bob’s substrings corresponding to Σ1 (the
n1 INFO rounds) in the Z-X hypothetical protocol—namely, assuming that Alice measured the
INFO bits in the “z basis”, and Bob measured the INFO bits in the “x basis”. We can notice that
Y′1 is completely identical to Y′′1, because Bob’s quantum operations (and Eve’s attack)
are completely independent of Alice’s basis choice for the INFO bits (remembering that
Di = 0 for all INFO bits—namely, they are never discarded). Therefore, Y′1 = Y′′1, and the
probability is

= Pr

[
k2

∑
i=1

1{W2
i = 0} ≤ k2δmismatch ∧

n1

∑
i=1

1{Y′′1i = 0} ≥ n1 · (δmismatch + ν) | Fsift′ = Fmin = X

]
. (48)

We notice that all rates are evaluated in the Z-X hypothetical protocol; that in all rounds,
Bob measures in the “x basis” (and Alice measures in the “z basis”); and that Alice’s
measurement results are completely unconstrained (namely, no discarding is possible,
because Di = 0 for all rounds where Alice measures in the “z basis”). We thus notice that
the quantum behaviour of Alice, Bob, and Eve is identical on all these rounds in the Z-X
hypothetical protocol.

Therefore, we can apply Lemma 2 using the following parameters: the random vari-
ables Z = (Z1, Z2, . . . , ZN) represent the condition that Bob’s bit is 0 (namely, Zi is the value
of 1−W2

i or 1− Y′′1i , respectively); the sampled subset Π includes the a = k2 TEST-Z-X
rounds in the Π2 subset chosen by the protocol, and the rest Π includes the b = n1 INFO
rounds in the Σ1 subset chosen by the protocol (note that Bob measures them in the “x ba-
sis”). The sampled susbet Π is completely independent of Bob’s measurement results (that
are dictated solely by Eve’s transmitted states and Alice’s non-discarding of the rounds)
because we showed in Section 4.2.1 that Σ1 and Π2 can be seen as uniformly and randomly
chosen subsets of Σ, conditioning on Fsift′ = Fmin = X. Using the formulation of Lemma 2,
we obtain the following:

Pr

[
k2

∑
i=1

1{W2
i = 0} ≤ k2δmismatch ∧

n1

∑
i=1

1{Y′1i = 0} ≥ n1 · (δmismatch + ν) | Fsift′ = Fmin = X

]

= Pr

[
k2

∑
i=1

1{W2
i = 0} ≤ k2δmismatch ∧

n1

∑
i=1

1{Y′′1i = 0} ≥ n1 · (δmismatch + ν) | Fsift′ = Fmin = X

]

= Pr

[
∑
i∈Π

Zi ≤ k2δmismatch ∧ ∑
i∈Π

Zi ≥ n1 · (δmismatch + ν) | Fsift′ = Fmin = X

]

≤ e
− 2n1k2

2ν2

(k2+n1)(k2+1) . (49)

Bounding the fourth probability:

We need to bound

Pr

[
R′+ ≥

1
2T
− ν ∧

n1

∑
i=1

1{X′1i = 0 ∧ Y′1i = 1} ≤ n1R′+ · (δ + ν)
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∧
n1

∑
i=1

1{Y′1i = 0} ≤ n1 · (δmismatch + ν) ∧
n1

∑
i=1

1{X′1i 6= Y′1i } > n1δ′(ν) | Fsift′ = Fmin = X

]
, (50)

where X′1 and Y′1 are Alice’s and Bob’s substrings corresponding to Σ1 (the n1 INFO
rounds) in the X-X hypothetical protocol, and R′+ is the “ξ+” measurement rate of Alice
among the INFO bits in the X-X hypothetical protocol. We prove this probability to be zero;
namely, we prove that these four conditions contradict each other and cannot be all true.

Indeed, assume by contradiction that all four conditions hold:

R′+ ≥
1

2T
− ν ∧

n1

∑
i=1

1{X′1i = 0 ∧ Y′1i = 1} ≤ n1R′+ · (δ + ν)

∧
n1

∑
i=1

1{Y′1i = 0} ≤ n1 · (δmismatch + ν) ∧
n1

∑
i=1

1{X′1i 6= Y′1i } > n1δ′(ν). (51)

We can upper-bound ∑n1
i=1 1{X′1i 6= Y′1i } (which represents the total error rate on the

INFO bits in the X-X hypothetical protocol) using the first three conditions, as well as
the two following definitions: δ′(ν) , δmismatch + ν−

(
1

2T − ν
)
· (1− 2δ− 2ν) and R′+ ,

1
n1

∑n1
i=1 1{X′1i = 0}. So:

n1

∑
i=1

1{X′1i 6= Y′1i } =
n1

∑
i=1

1{X′1i = 0 ∧ Y′1i = 1}+
n1

∑
i=1

1{X′1i = 1 ∧ Y′1i = 0}

=
n1

∑
i=1

1{X′1i = 0 ∧ Y′1i = 1}+
n1

∑
i=1

1{Y′1i = 0} −
n1

∑
i=1

1{X′1i = 0 ∧ Y′1i = 0}

=
n1

∑
i=1

1{X′1i = 0 ∧ Y′1i = 1}+
n1

∑
i=1

1{Y′1i = 0}

−
[

n1

∑
i=1

1{X′1i = 0} −
n1

∑
i=1

1{X′1i = 0 ∧ Y′1i = 1}
]

= 2
n1

∑
i=1

1{X′1i = 0 ∧ Y′1i = 1}+
n1

∑
i=1

1{Y′1i = 0} −
n1

∑
i=1

1{X′1i = 0}

= 2
n1

∑
i=1

1{X′1i = 0 ∧ Y′1i = 1}+
n1

∑
i=1

1{Y′1i = 0} − n1R′+

≤ 2n1R′+ · (δ + ν) + n1 · (δmismatch + ν)− n1R′+
= n1 · [2R′+ · (δ + ν) + δmismatch + ν− R′+]

= n1 · [δmismatch + ν− R′+ · (1− 2δ− 2ν)]

≤ n1 ·
[

δmismatch + ν−
(

1
2T
− ν

)
· (1− 2δ− 2ν)

]
= n1δ′(ν), (52)

which strictly contradicts the fourth condition. (In the last inequality, we also used the
condition ν ≤ 1

2 − δ, which means that 1− 2δ− 2ν ≥ 0.) Therefore, our probability is 0.

Summary of the proof:

Combining our four bounds, we obtain the following inequality:

Pr
[

Fpe = X ∧ Ω0 | Fsift′ = Fmin = X
]

≤ Pr
[

R′+ ≤
1

2T
− ν | Fsift′ = Fmin = X

]
+ Pr

[
R′+ ≥

1
2T
− ν ∧

k4

∑
i=1

1{V4
i 6= W4

i } ≤ k4δ
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∧
n1

∑
i=1

1{X′1i = 0 ∧ Y′1i = 1} ≥ n1R′+ · (δ + ν) | Fsift′ = Fmin = X

]

+ Pr

[
k2

∑
i=1

1{W2
i = 0} ≤ k2δmismatch ∧

n1

∑
i=1

1{Y′1i = 0} ≥ n1 · (δmismatch + ν) | Fsift′ = Fmin = X

]

+ Pr

[
R′+ ≥

1
2T
− ν ∧

n1

∑
i=1

1{X′1i = 0 ∧ Y′1i = 1} ≤ n1R′+ · (δ + ν)

∧
n1

∑
i=1

1{Y′1i = 0} ≤ n1 · (δmismatch + ν) ∧
n1

∑
i=1

1{X′1i 6= Y′1i } > n1δ′(ν) | Fsift′ = Fmin = X

]

≤ e−2n1ν2
+ e
−

2n1 ·( 1
2T −ν)k2

4ν2

(k4+n1 ·( 1
2T −ν))(k4+1) + e

− 2n1k2
2ν2

(k2+n1)(k2+1) + 0

= ε(ν)2. (53)

The rest of the proof is identical to the proof of Proposition 8 in Section 6.3 of [22], using
our parameters ε(ν), X′1, Y′1, n1, Ω0, δ′(ν) and conditioning all probabilities and entropies
on Fsift′ = Fmin = X. (A small algebraic difference is that our set Ω0 requires the strong
inequality 1

{
∑n1

i=1 1{X′1i 6= Y′1i } > n1δ′(ν)
}

, while Ω’s definition in [22] only requires a
weak inequality (1{∑n

i=1 1{Xi 6= Yi} ≥ n · (δ + ν)}), but the proof still holds.) Therefore,
we obtain the following:

Hε(ν)
max(X′1 ∧ Fpe = X | Y′1 , Fsift′ = Fmin = X)σ′ ≤ n1 · h2(δ

′(ν)), (54)

as we wanted.

4.2.4. Security Theorem for the Modified Entanglement-Based Protocol

Applying the entire proof described in Section 6 of [22] to our modified entanglement-
based protocol described in Section 4.1, with the modifications described in Sections 4.2.1–4.2.3,
yields the following security result:

Corollary 1. For the modified entanglement-based protocol described in Section 4.1, we denote
the final state as ωKAKBSCFE, where KA is the final key generated by Alice and KB is the final
key generated by Bob (both consisting of ` bits), E is Eve’s ancillary quantum system, and S, C, F
consist of information published by Alice and Bob (where Hec, Hpa, Z, T, Fec, r, t are used in the
error correction and privacy amplification steps elaborated in [22]):

S , (ΦA, ΦB, Π1, Π2, Π3, Π4, Σ1, Hec, Hpa), (55)

C , (D, Σ, V1, V2, V3, V4, Z, T), (56)

F , (Fsift′ , Fmin, Fpe, Fec). (57)

We also denote ωU , 1
2` ∑k∈{0,1}` |k〉KA〈k|KA

⊗ |k〉KB〈k|KB
(an ideal key: a uniformly random

final key, identical for Alice and Bob) and ωSCFE , trKAKB(ωKAKBSCFE). It then holds that

1
2

tr
∣∣∣ωKAKBSCFE ∧ Fpe=Fec=X | Fsift′=Fmin=X −ωU ⊗ωSCFE ∧ Fpe=Fec=X | Fsift′=Fmin=X

∣∣∣
≤ 2−t + inf

ν | 0<ν< 1
2−δ , 0<δ′(ν)< 1

2

(εpa(ν) + εpe(ν)), (58)

for any possible attack by Eve, where we define

εpa(ν) ,
1
2

√
2−n1·[log2(

1
c )−h2(δ′(ν))]+r+t+`, (59)

εpe(ν) , 2ε(ν), (60)
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δ′(ν) , δmismatch + ν−
(

1
2T
− ν

)
· (1− 2δ− 2ν), (61)

c , max
(
|〈0|ξ+〉Ai |

2, |〈0|ξ−〉Ai |
2, |〈1|ξ+〉Ai |

2, |〈1|ξ−〉Ai |
2
)

, (62)

ε(ν) ,

√
e−2n1ν2 + e

−
2n1 ·( 1

2T −ν)k2
4ν2

(k4+n1 ·( 1
2T −ν))(k4+1) + e

− 2n1k2
2ν2

(k2+n1)(k2+1) , (63)

h2(x) , −x log2(x)− (1− x) log2(1− x). (64)

This result is similar to Theorems 2–3 in Section 5 of [22] but has different parameters.
According to standard definitions of composable security for QKD (e.g., [27]), this proves
security of the modified entanglement-based protocol and gives a tight finite-key rate.

4.3. Reduction of the Original Protocol to the Modified Entanglement-Based Protocol

Intuitively, to prove security of our original prepare-and-measure protocol from Sec-
tion 3, we perform a reduction to the entanglement-based protocol: namely, we show that
the modified entanglement-based protocol includes the prepare-and-measure protocol
as a special case. More precisely, for any possible attack of Eve on the prepare-and-
measure protocol, we need to show that there exists an equivalent attack on the modified
entanglement-based protocol leading to the same output for both protocols.

The proof intuitively works as follows: in the prepare-and-measure protocol, instead of
generating one of the states {|γ0〉Bi , |γ1〉Bi , |γ+〉Bi}, Alice can instead generate the following
entangled state:

|Ψ〉AiBi ,
|0〉Ai |γ0〉Bi + |1〉Ai |γ1〉Bi√

2
=
|ξ+〉Ai |γ+〉Bi +

√
2T − 1|ξ−〉Ai |γ−〉Bi√
2T

, (65)

where the equality between the two expressions in Equation (65) can be shown algebraically
using Equations (2)–(4) and (7)–(8). Then, Alice either measures her subsystem Ai in the
standard (“z”) basis {|0〉Ai , |1〉Ai} with probability p′Az , or measures it in the conjugate (“x”)
basis {|ξ+〉Ai , |ξ−〉Ai} with probability p′Ax . Either way, she sends the resulting state in
subsystem Bi to Bob (immediately notifying Bob and cancelling the round if she measured
“ξ−” in the “x basis”). This procedure is equivalent to our original prepare-and-measure
protocol, but it works within the framework of the modified entanglement-based protocol
(assuming Alice measures and discards the round before she sends Bob his part of the state),
which proves the reduction.

Formally, we use an adapted version of the reduction in Section 9 of [22]. First, given
the parameters of the original prepare-and-measure protocol (described in its Step 1), we
must define all the parameters of the modified entanglement-based protocol (described in
its Step 1), as follows:

• The parameters |γ0〉Bi , |γ1〉Bi , |γ+〉Bi , {MZ,t
Bi
}t∈{0,1}, {MX,t

Bi
}t∈{0,1}, m, k1, k2, k3, k4, n1, δ,

and δmismatch are all identical for the two protocols. (From |γ0〉Bi , |γ1〉Bi , |γ+〉Bi we
can infer a, b, and T , |a|2 + |b|2.) The error correction and privacy amplification
parameters (from [22]) are also identical in both protocols.

• Given the parameters m, T, we choose the parameter M′ of the modified entanglement-
based protocol to be

M′ =
m

1
2T − ν0

, (66)

where 0 < ν0 < 1
2T is chosen freely, without any constraint, to reach the desired

trade-off between performance (number of needed rounds) and robustness (success
probability of the sifting procedure).
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• Given the parameters pA
z , pA

x of the prepare-and-measure protocol and the parameter
T, we choose the parameters p′Az , p′Ax of the modified entanglement-based protocol
to be

p′Az =
pA

z
pA

z + 2TpA
x

, p′Ax =
2TpA

x
pA

z + 2TpA
x

. (67)

• Given the parameters pB
z , pB

x of the prepare-and-measure protocol, we choose the
parameters p′Bz , p′Bx of the modified entanglement-based protocol to be

p′Bz = pB
z , p′Bx = pB

x . (68)

Using these parameters, it is easy to verify that the output of the prepare-and-measure
protocol (conditioned on Fmin = X) is identical to the output of the modified entanglement-
based protocol (conditioned on Fsift′ = Fmin = X) if Eve performs the same attack on
the first m non-discarded rounds in both protocols. Formally, the differences between the
protocols are settled as follows:

• The modified entanglement-based protocol includes the possibility of discarded rounds
(where Alice measures “ξ−”) which are immediately notified to Bob and Eve, while the
prepare-and-measure protocol does not allow them. For this, we use the explanation
in Section 4.2.1 to divide the process into two stages (again, this division works
with respect to the probability distribution, not to the actual quantum operations):
stage 1, where Alice determines which rounds are discarded; and stage 2, where Alice
determines the basis for measuring all the non-discarded rounds. As explained in
Section 4.2.1, stage 1 is in fact independent of the bases used for the non-discarded
rounds; furthermore, the results of stage 1 are promptly communicated to Eve, who
can devise her attack accordingly. Meanwhile, stage 2 is completely identical between
the two protocols, as shown in the next item.

• Alice’s preparation is different between the two protocols:
In the prepare-and-measure protocol, Alice randomly chooses ΦA ∈ {0, 1}m (where
each bit, independently, is 0 with probability pA

z or 1 with probability pA
x ) and chooses

R ∈ {0, 1}m uniformly at random, which lead to the preparation of |γ0〉Bi , |γ1〉Bi ,

or |γ+〉Bi with probabilities pA
z
2 , pA

z
2 , and pA

x , respectively. These probabilities are
independent between the rounds.
In the modified entanglement-based protocol, Alice generates the following state
|Ψ〉AiBi for each round i:

|Ψ〉AiBi ,
|0〉Ai |γ0〉Bi + |1〉Ai |γ1〉Bi√

2
=
|ξ+〉Ai |γ+〉Bi +

√
2T − 1|ξ−〉Ai |γ−〉Bi√
2T

, (69)

randomly chooses the measurement bases ΦA ∈ {0, 1}M′ (where each bit, indepen-
dently, is 0 with probability p′Az or 1 with probability p′Ax ), performs the measurement,
publicly discards the round if she obtains “ξ−”, and keeps the result secret otherwise.
(In fact, Alice’s measurement is delayed to Step 8 if the chosen basis is the “z basis”, as
described in Section 4.1.)
As explained in Section 4.2.1 (Equations (18) and (19)), for each non-discarded round in
the modified entanglement-based protocol, the probabilities that Alice measures “0”,
“1”, or “ξ+” (leading to her sending to Bob |γ0〉Bi , |γ1〉Bi , or |γ+〉Bi , respectively) are

PrAi (0) = PrAi (1) =
1
2
· p′Az

p′Az + p′Ax
2T

, PrAi (ξ+) =
1

2T
· p′Ax

p′Az + p′Ax
2T

. (70)
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Substituting Equation (67) (and the fact pA
z + pA

x = 1), we obtain the following probabili-
ties:

PrAi (0) = PrAi (1) =
1
2
·

pA
z

pA
z +2TpA

x

pA
z

pA
z +2TpA

x
+

2TpA
x

pA
z +2TpA

x
2T

=
1
2
· pA

z
pA

z + pA
x
=

pA
z
2

, (71)

PrAi (ξ+) =
1

2T
·

2TpA
x

pA
z +2TpA

x

pA
z

pA
z +2TpA

x
+

2TpA
x

pA
z +2TpA

x
2T

=
1

2T
· 2TpA

x
pA

z + pA
x
= pA

x , (72)

which are independent between the rounds and identical to the prepare-and-measure
probabilities found above. Therefore, Alice’s preparation results are identical on the
(non-discarded) rounds of both protocols, even when conditioning on Fsift′ = X in the
modified entanglement-based protocol.

• Eve’s attack is slightly different between the two protocols: on the prepare-and-measure
protocol, it is applied to the m rounds which are all relevant, while on the modified
entanglement-based protocol, it is applied to all M′ rounds (including the discarded
rounds) when Eve knows ahead of time which rounds are discarded.
We need to prove that any attack that Eve applies to the m rounds of the prepare-
and-measure protocol can also be applied to the relevant rounds of the modified
entanglement-based (namely, to the m rounds in Σ, which are the first m rounds not
discarded by Alice). This is indeed true because in the modified entanglement-based
protocol, Eve knows ahead of time (before she applies her attack) which rounds are
discarded, and therefore, she knows exactly which rounds are included in Σ and can
apply her attack only to them. This means that any attack by Eve on the m rounds of
the prepare-and-measure protocol is a completely legitimate and valid attack on the
m rounds in Σ of the modified entanglement-based protocol, and it gives the same
outputs in both protocols.

• The rest of the steps in the prepare-and-measure protocol (Steps 5–9) are identical to the
rest of the steps in the modified entanglement-based protocol (Steps 6–12), except the
delayed measurement in Steps 8 and 9 of the modified entanglement-based protocol.

From the above, we can deduce that any attack by Eve on the prepare-and-measure
protocol can also be applied to the modified entanglement-based protocol, giving exactly
the same output. This conclusion only applies when we condition on Fmin = X (for the
prepare-and-measure protocol) and Fsift′ = Fmin = X (for the modified entanglement-
based protocol), which is indeed the case in our security proof in Section 4.2.

We therefore obtain the following result:

Corollary 2. If the modified entanglement-based protocol is secure with a specific security parameter
ε, the prepare-and-measure protocol is secure with the same security parameter.

Combining Corollaries 1 and 2, we obtain the final security result for the prepare-and-
measure protocol:

Corollary 3. For the prepare-and-measure protocol described in Section 3, we denote the final state
as ωKAKBSCFE, where KA is the final key generated by Alice and KB is the final key generated by Bob
(both consisting of ` bits), E is Eve’s ancillary quantum system, and S, C, F consist of information
published by Alice and Bob (where Hec, Hpa, Z, T, Fec, r, t are used in the error correction and
privacy amplification steps elaborated in [22]):

S , (ΦA, ΦB, Π1, Π2, Π3, Π4, Σ1, Hec, Hpa), (73)

C , (V1, V2, V3, V4, Z, T), (74)
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F , (Fmin, Fpe, Fec). (75)

We also denote ωU , 1
2` ∑k∈{0,1}` |k〉KA〈k|KA

⊗ |k〉KB〈k|KB
(an ideal key: a uniformly random

final key, identical for Alice and Bob) and ωSCFE , trKAKB(ωKAKBSCFE). It then holds that

1
2

tr
∣∣∣ωKAKBSCFE ∧ Fpe=Fec=X | Fmin=X −ωU ⊗ωSCFE ∧ Fpe=Fec=X | Fmin=X

∣∣∣
≤ 2−t + inf

ν | 0<ν< 1
2−δ , 0<δ′(ν)< 1

2

(εpa(ν) + εpe(ν)), (76)

for any possible attack by Eve, where we define

εpa(ν) ,
1
2

√
2−n1·[log2(

1
c )−h2(δ′(ν))]+r+t+`, (77)

εpe(ν) , 2ε(ν), (78)

δ′(ν) , δmismatch + ν−
(

1
2T
− ν

)
· (1− 2δ− 2ν), (79)

c , max
(
|〈0|ξ+〉Ai |

2, |〈0|ξ−〉Ai |
2, |〈1|ξ+〉Ai |

2, |〈1|ξ−〉Ai |
2
)

, (80)

ε(ν) ,

√
e−2n1ν2 + e

−
2n1 ·( 1

2T −ν)k2
4ν2

(k4+n1 ·( 1
2T −ν))(k4+1) + e

− 2n1k2
2ν2

(k2+n1)(k2+1) , (81)

h2(x) , −x log2(x)− (1− x) log2(1− x). (82)

5. Necessity of the Restriction to Three Source States

In our protocol, similarly to the “loss tolerant” protocol [14–17], only three source
states are used. This restriction is necessary in the imperfect-generation regime, as we
briefly explain below.

Let us assume that our protocol emits four input states (similarly to BB84), denoted
|γ0〉, |γ1〉, |γ+〉, |γ−〉. For standard security analysis to work, the following conditions is
required for some 0 < p < 1 and 0 < q < 1:

p|γ0〉〈γ0|+ (1− p)|γ1〉〈γ1| = q|γ+〉〈γ+|+ (1− q)|γ−〉〈γ−|, (83)

which means that Alice sends to Bob identical mixed states in each round of the protocol,
independently of the chosen basis. (Otherwise, Eve may gain information on the basis
and attack differently on each basis, which refutes the crucial possibility of comparing her
attack’s influence on different bases.)

For meeting the above condition, we obviously need |γ+〉 and |γ−〉 to be in the two-
dimensional Hilbert subspace spanned by |γ0〉 and |γ1〉. Therefore, we require (for some
a, b, c, d ∈ C):

|γ+〉 = a|γ0〉+ b|γ1〉 , |γ−〉 = c|γ0〉+ d|γ1〉. (84)

Substituting this into Equation (83), we obtain the following:

q|γ+〉〈γ+|+ (1− q)|γ−〉〈γ−| = q · [a|γ0〉+ b|γ1〉] · [a?〈γ0|+ b?〈γ1|]
+ (1− q) · [c|γ0〉+ d|γ1〉] · [c?〈γ0|+ d?〈γ1|]
= [q · |a|2 + (1− q) · |c|2] · |γ0〉〈γ0|+ [q · ab? + (1− q) · cd?] · |γ0〉〈γ1|
+ [q · a?b + (1− q) · c?d] · |γ1〉〈γ0|+ [q · |b|2 + (1− q) · |d|2] · |γ1〉〈γ1|. (85)

We thus obtain the following conditions for equality between Equations (83) and (85):

q · |a|2 + (1− q) · |c|2 = p, (86)

q · |b|2 + (1− q) · |d|2 = 1− p, (87)

q · ab? + (1− q) · cd? = 0, (88)
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q · a?b + (1− q) · c?d = 0. (89)

The two last equations are the complex conjugates of one another, so one of them is sufficient.
Therefore, for standard security proofs to work, we require very stringent conditions

on a, b, c, d. In particular, according to Equation (89), we require

q = − c?d
a?b− c?d

=
c?d

c?d− a?b
, (90)

and for q to be real (and satisfy 0 < q < 1), the complex phases of c?d and a?b must be
opposite (namely, they must differ by ±π, which is equivalent to having opposite signs).

This requirement seriously restricts the possible values on |γ0〉, |γ1〉, |γ+〉, |γ−〉. In
particular, if we assume (without loss of generality) that a and c are real and non-negative,
it requires b and d to have opposite phases. Namely,

|γ+〉 = |a||γ0〉+ |b|eiφ|γ1〉 , |γ−〉 = |c||γ0〉 − |d|eiφ|γ1〉, (91)

where |c| and |d| are dictated by |a| and |b|, respectively (see Equations (86) and (87)).
The above analysis means that |γ−〉 is, in fact, completely determined by the choice

of |γ0〉, |γ1〉, |γ+〉 (because |c|, |d|, and φ can all be inferred from |γ+〉). From a realistic
point of view, this means that a four-state protocol measured with two bases could be
practically insecure whenever a slight deviation of |γ−〉 (or of the states |γ0〉, |γ1〉, |γ+〉
which determine it) causes the protocol to violate the conditions of Equations (86)–(89).
Essentially, this means that in the presence of source imperfections, the use of at most three
states (or, alternatively, measurements in three or more bases, which we do not explore
here) is required for practical security, and the use of four states could lead to practical
security issues.

6. Conclusions

To sum up, we have found a new way to analyse the security of practical QKD
protocols by generalizing the results of [22] to more practical protocols (using a modified
entropic uncertainty relation and a refined analysis of finite-key statistics). Our proof,
compared with other proofs, is rigorous, careful, and simple, aiming to make it easy-to-
use in the lossless qubit regime (its extension to losses and decoy states is left for future
research because they present specific hurdles in this analysis regime: in particular, losses
would need to be declared by Eve in the modified entanglement-based protocol, which
could complicate the analysis). We believe that our suggested tools can contribute to
benchmarking and certifying the security of practical implementations of QKD.
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