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Abstract

The genetic code has been shown to be very error robust compared to randomly selected codes, but

to be significantly less error robust than a certain code found by a heuristic algorithm. We formulate

this optimisation problem as a Quadratic Assignment Problem and thus verify that the code found

by the heuristic is the global optimum. We also argue that it is strongly misleading to compare the

genetic code only with codes sampled from the fixed block model, because the real code space is

orders of magnitude larger. We thus enlarge the space from which random codes can be sampled from

approximately2.433×10
18 codes to approximately5.908×10

45 codes. We do this by leaving the fixed

block model, and using the wobble rules to formulate the characteristics acceptable for a genetic code.

By relaxing more constraints three larger spaces are also constructed. Using a modified error function,

the genetic code is found to be more error robust compared to abackground of randomly generated

codes with increasing space size. We point out that these results do not necessarily imply that the code

was optimized during evolution for error minimization, butthat other mechanisms could explain this

error robustness.

Index Terms

Genetic code, error robustness, origin of life.

I. BACKGROUND

The genetic code is the set of rules according to which nucleic acid sequences are translated

into amino acid sequences. Although a few small variations on the standard genetic code are

known (especially in mitochondrial systems), this set of rules is essentially the same for all

organisms. The genetic code is therefore one of the most fundamental aspects of biochemistry.

The pattern of codon assignments in the genetic code appearsto be organized in some way (Table

I). First, there is codon similarity for codons encoding thesame amino acid. The underlying

biochemical reason [1] is (partly) that tRNA molecules often recognize more than one codon. A

second phenomenon is that similar amino acids are often specified by similar codons. One way

to quantify amino acid similarity is to use the values of polar requirement introduced by Woese

et al. [2]. According to this measure amino acids with a polarside chain like glutamate and

aspartate have a high value (12.5 and 13.0, respectively), while hydrophobic amino acids like

leucine and valine have a low value (4.9 and 5.6, respectively). An example of similar codons

coding for similar amino acids is asparagine, specified by codons AAU and AAC with a polar

requirement of 10.0 and lysine, specified by AAA and AAG, witha polar requirement of 10.1.
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TABLE I

THE STANDARD GENETIC CODE. ASSIGNMENT OF THE64 POSSIBLE CODONS TO AMINO ACIDS OR STOP SIGNALS, WITH

POLAR REQUIREMENT OF THE AMINO ACIDS INDICATED IN BRACKETS.

UUU Phe (5.0) UCU Ser (7.5) UAU Tyr (5.4) UGU Cys (4.8)

UUC Phe (5.0) UCC Ser (7.5) UAC Tyr (5.4) UGC Cys (4.8)

UUA Leu (4.9) UCA Ser (7.5) UAA STOP UGA STOP

UUG Leu (4.9) UCG Ser (7.5) UAG STOP UGG Trp (5.2)

CUU Leu (4.9) CCU Pro (6.6) CAU His (8.4) CGU Arg (9.1)

CUC Leu (4.9) CCC Pro (6.6) CAC His (8.4) CGC Arg (9.1)

CUA Leu (4.9) CCA Pro (6.6) CAA Gln (8.6) CGA Arg (9.1)

CUG Leu (4.9) CCG Pro (6.6) CAG Gln (8.6) CGG Arg (9.1)

AUU Ile (4.9) ACU Thr (6.6) AAU Asn (10.0) AGU Ser (7.5)

AUC Ile (4.9) ACC Thr (6.6) AAC Asn (10.0) AGC Ser (7.5)

AUA Ile (4.9) ACA Thr (6.6) AAA Lys (10.1) AGA Arg (9.1)

AUG Met (5.3) ACG Thr (6.6) AAG Lys (10.1) AGG Arg (9.1)

GUU Val (5.6) GCU Ala (7.0) GAU Asp (13.0) GGU Gly (7.9)

GUC Val (5.6) GCC Ala (7.0) GAC Asp (13.0) GGC Gly (7.9)

GUA Val (5.6) GCA Ala (7.0) GAA Glu (12.5) GGA Gly (7.9)

GUG Val (5.6) GCG Ala (7.0) GAG Glu (12.5) GGG Gly (7.9)

Although one may suspect that similar codons code for similar amino acids may also be present

in a random grouping [3], Haig and Hurst [4], [5] showed that this is not the case. Random

codes do not have this property to the same extent as the standard genetic code.

Haig and Hurst [4] generated by computer a large number of alternative genetic codes, in which

the blocks coding for amino acids in the standard genetic code, e.g. the UCU, UCC, UCA, UCG,

AGU, AGC block encoding serine, were kept the same, but theirassignment to an amino acid

was randomly redistributed (a procedure generally called “swapping”). We will refer to this as

the fixed block model[6]. Note that the use of the word “block” is different from the use in

studies such as [7], [8]. We use the word ”block” as in [6] and [9]: in the sense of the collection

of all codons specifying the same amino acid or chain termination (”STOP” in Table I). We will

call the collection of all codons sharing the same first and second nucleotide ”box”. The space

of codes which is created as a result of random code generation under the fixed block model,

denoted as Space 0, contains exactly20! (≈ 2.433× 1018) codes.
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As a measure for the quality of a code the change in polar requirement caused by one step

point mutations in the codons was proposed. Each codon has nine codons to which it can

mutate in one step: e.g. for the UCU serine codon, these are UCC, UCA, UCG (these three

remain coding for serine in the actual code), UUU (coding forphenylalanine, a 2.5 difference

in polar requirement), UAU (coding for tyrosine, a 2.1 difference), UGU (coding for cysteine, a

2.7 difference), CCU (coding for proline, a 0.9 difference), ACU (coding for threonine, also a

0.9 difference), and GCU (coding for alanine, a 0.5 difference). The quality of the code is then

measured by averaging over all squared differences:MS0. In this calculation, Haig and Hurst

[4] ignored the three “stop codons” which are coding for chain termination. In this way, 263

connections between adjacent codons contribute equally toMS0.

To facilitate the mathematical formulation ofMS0 we introduce an undirected graphG = (V,E)

that has the 61 codons as its vertices and an edge between any two codons if they differ in only

one position, yielding 263 edges. LetGS = (V S, ES) be the graph obtained by adding the 3

stop codons toV , yielding 288 edges. A codeF maps each codonc to exactly one amino acid

F (c). We denote byr(F (c)) the polar requirement of the amino acid that codonc encodes for

w.r.t. codeF . The error function of codeF is then given by

MS0(F ) =
1

263

∑

{c,c′}∈E

(r(F (c))− r(F (c′)))
2
.

Using MS0 as a quality measure of a genetic code Haig and Hurst found that only 1 out

of 10,000 random codes performs better, i.e. has a lowerMS0, than the standard genetic code

[5]. This shows that in the standard genetic code not only identical amino acids are encoded

by similar codons, but also similar amino acids are encoded by similar codons. Originally, Haig

and Hurst [4], [5] investigated three other characteristics beside polar requirement (like e.g. the

isoelectric point), but the correspondence between codon assignments and error robustness with

respect to polar requirement was most striking. It may be interesting to find other measures which

perform equally well, or better. However, the measure has tobe independent from the genetic

code (this point has been made in connection with the use of values derived from replacement

mutations known from sequence data). We have to be careful not to artificially create a measure

that is based on the genetic code itself. To keep results comparable to the work of Haig and
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Hurst, use of polar requirement is preferable.

The work of Haig and Hurst was soon followed by the work of Goldman [6], who found a

code using a heuristic method that has a lowerMS0 value than any of the codes generated

before. In Section II-A we verify that Goldman’s code is in fact the global optimum in the fixed

block model.

Freeland and Hurst [9] presented four histograms to visualise the particular error robustness,

in the sense of Haig and Hurst [4], of the standard genetic code. They reported that with respect

to theMS0 value, 114 codes out of the 1,000,000 random codes had a lowervalue than the

standard genetic code. They also reported similar results with respect to the MS measure restricted

to point mutations in the first, second and third codon, respectively denoted byMS1, MS2 and

MS3. To define them we partition the edge setE in the graph representationG = (V,E) of the

adjacency structure of codons, depending on the position inwhich two adjacent codons differ:

E1 is the set of edges between two codons that differ only in the first position,E2 the set

of edges between two codons that differ only in the second position, andE3 the set of edges

between two codons that differ only in the third position. Clearly these sets are disjoint and

E = E1 ∪ E2 ∪ E3. Then forp = 1, 2, 3,

MSp(F ) =
1

|Ep|

∑

{c,c′}∈Ep

(r(F (c))− r(F (c′)))
2
,

where |X| denotes the cardinality ofX i.e. the number of elements inX. In fact, |E1| = 87,

|E2| = 88 and |E3| = 88. The results of Freeland and Hurst show that there is not mucherror

robustness for mutations in the middle position of the codon; the third position, however, is

extremely robust against changes in polar requirement.

Subsequent research following this approach has concentrated on nuancing the error function

[9], [10], [11], [12], [13] or taking a parameter different from polar requirement as an amino

acid characteristic [10], [11], [12], [13]. The common theme in most of these approaches is the

code space from which random alternative codes are generated; in [11] this space is referred

to as “possible code space” and we denote this space as Space 0. Remarkably, known genetic

code variations lieoutsideSpace 0. In code variations certain individual codons arereallocated

from one block to another. The fixed block structure of the standard genetic code is thereby
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replaced by an alternative, slightly different, fixed blockstructure. In Section II-C we construct

four progressively larger code spaces (denoted Space 1, Space 2, Space 3 and Space 4), which

encompass successively more known genetic code variationsnext to the standard genetic code.

To be able to compare the genetic code with respect to alternative codes sampled randomly from

Spaces 1 and 2, we nuance the MS measure such as to accommodatevalues of polar requirement

for stop codons. In this paper, we aim at refining several points in the seminal work by Haig

and Hurst [4], [5], Goldman [6] and Freeland and Hurst [11]. Apart from determining the global

minimum, the refinements concern the code space structure and the kind of conclusions assumed

to be possible to draw based on the research. We do not intend to change the characteristic taken

to represent the amino acid (which is polar requirement in the work of Haig and Hurst [4], [5]

and Goldman [6]) or to weigh the three positions of the codonsdifferently in the error function

(as is done in the second part of [9] and most subsequent work). We only intend to enlarge the

space from which random codes are sampled, and find out how they relate to [9].

II. RESULTS

A. Goldman’s best solution is the global minimum

Goldman [6] applied a heuristic algorithm for finding the best code under thefixed block model.

The best solution he found had anMS0 value of 3.489, which was well below the value of

5.194 reported by Haig and Hurst [4], [5] for the standard genetic code. A heuristic does not

guarantee that the code found is optimal. We designed an exact method for finding the optimal

code by formulating the minimization problem as a QuadraticAssignment Problem (QAP) [14]

and solved it using the exact QAP-solver QAPBB [15]. An intuitive formulation of QAP is as

follows. We are given two sets of objectsV1 andV2 of equal size. We are to match each object

from V1 to exactly one object fromV2 such that all objects ofV2 are matched as well; as a

result we get a perfect matching (pairing) of the objects ofV1 andV2. In the ordinary (linear)

assignment problem, there is a cost for assigning objecti from V1 to objectk from V2 and we

wish to find the assignment that minimizes total cost. In QAP the cost is dependent on pairs

of assignments: there is a cost for assigning objecti from V1 to objectk from V2 and object j

from V1 to objectℓ from V2. Again we wish to minimize the total assignment cost.

If we consider the set of objectsV1 to be the 20 blocks in Table I, and the set of objectsV2

to be the 20 amino acids, then we can model the minimization ofMS0 by letting the cost of
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assigning one amino acid to one block and another amino acid to another block be given by

the difference of their polar coordinates times the number of point mutations between the two

blocks. In Section V-A we define this problem formally as a 0-1integer program with quadratic

objective and linear constraints.

QAP is an NP-hard problem, meaning that it is probably hard tosolve [16]. However, small

instances of QAP can be solved effectively using an exhaustive enumeration technique known as

branch and bound[17]. This searches (implicitly) through the entire space of solutions, keeping

note of the best solution found so far, and ignoring parts of the solution space that could not

possibly lead to a better solution. Even with branch and bound it is in general not feasible to use

the QAP model for finding a code with minimumMS0 value in any reasonable time when we

leave thefixed block model. However, we could find the global minimumMS0 value in Space

0. We found the same solution as Goldman, certifying that hissolution was in fact the optimal

one.

B. Incorporating stop codons

Leaving the fixed block model required us to nuance the MS measure and attach a value of

polar requirement to the stop signal. Chain termination is produced by Release Factors (RFs),

which are proteins, and therefore most probably later elements of the coding system than tRNAs.

This is an argument which can also be found in e.g. [13] (“... Ido not want to assume that there

were stop codons in the current positions from the beginning, because it is more likely that

stop codons were a late addition to the code, after the main layout of most of the codons

was already established”). Genetic codes lacking stop codons are not impossible. During the

evolutionary development of the genetic code, mRNAs could have been short, and the last sense

codon of a message could have been the end of the mRNA. After attaching the last amino acid

of the polypeptide, the primordial ribosome could move further along the mRNA, and both the

polypeptide and the mRNA could lose the association with theribosome, as the tape leaving the

tape recorder in the classical analogy. The more sophisticated mechanism with Release Factors

could have evolved later, to make things run more smoothly. When this is the scenario of evolution

of chain termination we follow, we want the stop codons to have the smallest influence on our

calculations possible.
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How to assign values to stop codons?

There are at least four possible ways to deal with the stop codons. In the work described

in Section I the stop codons were ignored and no value was assigned to them. A second way to

deal with stop codons is to assign a fixed value to a stop codon.A third way would be to assign

a fixed value to the mutation to a stop codon, which would be thesame for all amino acids.

The last way to deal with the problem would be to mimic the natural process of suppression.

1) Assigning no value to stop codons:Ignoring stop codons in the calculation as has been

done until now [4], [6], [9] is not the way in which their influence is the smallest possible.

This is because they eliminate a lot of the edges fromGS. For the UCA serine codon, in the

previous treatment only the edges to UCU, UCC, UCG, UUA, CCA,ACA and GCA take part

in the calculation. The edges to UAA and UGA are ignored, which means in fact that they

behave towards serine as if those codons were encoding serine. Due to this effect, the four

alanine codons have a stronger influence on the calculation than the four glycine codons. Thus

ignoring stop codons artificially favors certain amino acids. This effect will even become more

pronounced when we enlarge the space of possible codes. For example, if we allow codes to have

as many as four stop codons (like our mitochondrial code), orto have stop codons in unusual

places (like the UUA and UUG stop codons of the mitochondria of Pycnococcus provasolii[18]).

2) Assigning a fixed value to a node (i.e. give the stop codon a fixed value): If we were to

reason that a mutation to a stop codon would lead to truncation of messages, we might be inclined

to attach a very large value to a stop codon (because truncated proteins would be non-functional

and the mutation therefore lethal). To model “lethal”, we could use the value “infinity”. This

makes our calculation useless. We could also attach a polar requirement of 1,000,000 to a stop

codon. In this case the stop codons are going to dominate the calculation and this is exactly

what we didn’t want to begin with.

3) Assigning a fixed value to an edge (i.e. give the mutation toa stop codon a fixed value):

There is another way to model the concept that a mutation to a stop codon is worse than

a mutation to a sense codon. One could assign a fixed penalty toa mutation to ”stop”, no

matter which amino acid is mutated to stop. One relatively large value which could be given
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as a penalty is the difference in polar requirement between the two most dissimilar amino

acids. The disadvantage of this approach is again the domination of the calculation by the stop

mutations. Although less dominating than the very high fixedvalues suggested for the stop nodes,

this approach still has the stop codons dominating the calculation, and possibly obscuring the

phenomenon we want to see.

4) The suppression approach:What would happen if there is a mRNA with a codon which

does not have a tRNA? In such a case, one possibility is that decoding is performed by the

tRNA which, among the tRNA repertoire present in the system in consideration, is the most

similar to the one which would be needed to decode the codon regularly. This phenomenon

is called “suppression” in molecular biology [19]. In the living cell, the cognate tRNA or RF

competes with several different potential suppressor tRNAs for decoding a codon [20]. By using

in the calculation the value which would be there in case of the most probable suppression,

a value is attached to a stop codon which results in a relatively small influence of the stop

codons in the calculation. The most probable suppression for a stop codon ending on A, is by

the tRNA which recognizes the sense codon ending on G from thesame box. This is reflected

by genetic code variants: apparently suppressing tRNAs often evolve towards full recognition.

We can illustrate this with the UGA codon, which can be found in the top right-hand corner of

Table I. Because the most probable suppression for UGA is by the tRNA which normally reads

UGG as tryptophan, genetic code variants in which both UGA and UGG encode tryptophan

evolved multiple times. Although there exists an organism in which UGA is encoding cysteine,

the more frequent reassignment for UGA is to tryptophan. Thesame phenomenon is found for

AUA, which can be found towards the bottom left-hand side of Table I. AUA has been reassigned

several times to methionine. Suppression of AUA codons in protein coding sequences by the

tRNA which is normally reading the AUG codons has apparentlybeen followed by the evolution

of full recognition of the AUA codon by this tRNA. Assigning to a stop codon ending on a purine

(A or G) the value of polar requirement of the amino acid specified by the other purine-ending

codon in the box is therefore a possible way to deal with stop codons. This obviously can not be

done when both purine-ending codons in a box are stop codons.Genetic code variants suggest

an approach also in this case. In bilaterian mitochondria the tRNA which decodes AGA and

AGG (recall Table I, the AGA and AGG codons can be found towards the bottom right-hand

side) as arginine in the standard code is not present. The tRNA which decodes AGU and AGC
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as serine usually takes over the function of decoding AGA andAGG by reading them as serine

[8]. This suggests the approach: if in one box both purine-ending codons are stop codons, the

value of polar requirement of the amino acid specified by the codons ending on a pyrimidine (U

or C) in that box can be assigned to them. This is always a single amino acid because the two

pyrimidine-ending codons in the same box always code for thesame amino acid. Until now, no

genetic code variants are discovered with pyrimidine-ending stop codons, so our approach is to

develop only a way to deal with stop codons ending on purines.

How to modify the MS measure?

By treating the stop codons as sense codons according to the suppression approach, we simplified

the MS measure. In the notation introduced before,

MSS
0 (F ) =

1

|ES|

∑

{c,c′}∈ES

(r(F (c))− r(F (c′)))
2
,

and similarly w.r.t. the three positionsp = 1, 2, 3 of the codons

MSS
p (F ) =

1

|ES
p |

∑

{c,c′}∈ES
p

(r(F (c))− r(F (c′)))
2
.

In this way, all 64 codons contribute equally to the error measure. Note that|ES| = 288 and

that |ES
1 | = |ES

2 | = |ES
3 | = 96. It should be realized that by usingMSS

0 or MSS
p we do not

necessarily start working in a space larger than Space 0. We can useMSS
0 andMSS

p when we

generate random codes from Space 1 or Space 2 (see Section II-C) but we can also useMSS
0

andMSS
p when we generate random codes from Space 0.

We investigate how the new measure reflects the nature of Space 0 when used as a background

to study the standard genetic code (Table I). We produce fourplots as in [9]. The plots (Figure

1) have the same general shape as the four plots in [9]. In particular, the prominent shoulder at

the left side is present in both theMSS
3 (Figure 1.(d)) and theMS3 [9] frequency distributions.

The spikes present in the plots in [9] are not present. They are an artifact of rounding errors

in both the data and the bin borders of the histograms. The combination of MS values rounded

to two digits after the decimal point and bin border values which are repetitive binary fractions
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rounded by the histogram software, are probably the source of the spikes in [9].

The global minimum code in Space 0 for theMSS
0 measure was also found using the quadratic

assignment approach described in Section II-A. We calculated the average of bothMS0 and

MSS
0 of 1,000,000 randomly generated codes as well as the global minimum in Space 0 with

respect to both measures (Table II). Clearly, both measuresgive similar results. We also studied

the proportions of random codes better than the standard genetic code with theMSS
0 measure.

Out of 1,000,000 random codes 156 codes had a lowerMSS
0 -value than the standard genetic

code, resulting in a proportionP S
0 of 0.000156. This was also investigated forp = 1, 2 and 3

(Table III). Again theMS andMSS measures give similar results (as can be detected also from

the plots of Figure 1).

We conclude that it is acceptable to replaceMS by MSS to study the character of the standard

genetic code compared to randomly generated ones.MSS gives the same results in all essential

aspects, and can be used to investigate larger spaces and spaces with different codons used as

chain termination signal.

TABLE II

COMPARISON OFMS0 AND MS
S
0 . VALUES WERE CALCULATED FOR106 RANDOMLY SAMPLED CODES FROMSPACE 0. THE

AVERAGES AND VARIANCE ARE SHOWN; MS0 IS TAKEN FROM [9].

MS0 MS
S
0

Mean of random codes 9.41± 1.51 9.43± 1.89

Standard genetic code (rounded)5.194 5.501

Global minimum code (rounded) 3.489 3.946

TABLE III

COMPARISON OF PROPORTIONS OF“ BETTER CODES” FORMS AND MS
S .

MS MS
S

P0 = 0.000114 P
S
0 = 0.000156

P1 = 0.002964 P
S
1 = 0.012369

P2 = 0.221633 P
S
2 = 0.129075

P3 = 0.000088 P
S
3 = 0.000078
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C. Enlarging the “possible code space”

Space 0 has a fixed block structure. It is possible to leave this fixed block structure and generate

randomly genetic codes, without relaxing all biochemical constraints. In this section we develop

a method to enlarge the space from which codes are sampled randomly, by specification of

allowed subdivision of boxes.

Space 0 does not even cover all existing genetic codes: the only existing genetic code present in

Space 0 is the standard genetic code. By studying code variants general rules with respect to the

possible ways to construct a genetic code can be found. Usingthese rules, we enlarge the code

space progressively. Genetic code variants are derived from the standard genetic code, as can be

concluded by studying the codon assignments of close relatives. For mitochondrial code variants

this is recently described in [8]. The number of code variants apart from mitochondria is very

small and it is nowadays believed that they all are derived from the standard code (although this

was less clear when the very first variants were discovered).Although these variants probably

emerged after the standard genetic code, we use the larger spaces because they contain possible

ways for constructing genetic codes with the system found inliving organisms on Earth.

In the standard genetic code, the box in the top left-hand corner (see Table I) shows one of several

ways in which a box can be subdivided according to the codon-anticodon pairing patterns allowed

by the simple wobble rules [1], [21]. The codons UUU and UUC are assigned to one amino

acid, and the codons UUA and UUG to another. Recognition of both pyrimidine-ending codons

by one tRNA molecule is the wobbling behavior of G in the first position of the anticodon as

proposed by Crick [1]. Modification of U (in the first positionof the anticodon) to thio-U restricts

the wobbling behavior of the tRNA molecule to recognition ofboth purine-ending codons [22],

[23]. A second pattern of subdivision is presented by a box towards the bottom left-hand side of

Table I. In this box AUU, AUC and AUA are assigned to one amino acid and AUG is assigned

to another. The existence is known of tRNA molecules which recognize all three codons in the

top of a box [24]. Recognition of the G-ending codon only, is the wobbling behavior of C in the

first position of the anticodon as proposed by Crick [1]. Therefore, this pattern of subdivision

of a box can be understood by the pairing characteristics of tRNA molecules. In eight boxes of

Table I all four codons are assigned to one amino acid, as in the box in the bottom right-hand
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corner: GGU, GGC, GGA and GGG are assigned to the same amino acid. Recognition of all

four codons of a box seems to be the wobbling behavior of a tRNAmolecule with unmodified

U in the first anticodon position [25]. In summary, the wobbling behavior of tRNA molecules

allows subdivision of boxes with only sense codons in three ways: no subdivision, division

in a pyrimidine-ending pair and a purine-ending pair, and division in a set of three codons

in the top of a box, and a single codon at the bottom. Although extensive modifications of

anticodons in contemporary organisms can lead to much more complex patterns of wobbling

behavior [26], [27], [22], [24], for the purpose of enlarging Space 0 we do not take these

aspects of the wobble phenomenon in account. These modifications are produced by proteins,

and therefore were probably not present during the development of the coding system. To allow

the modifications of U to thio-U (enabling the exclusive recognition of purine-ending codons)

and A to I (enabling the recognition of three codons by one tRNA molecule) is already pushing

the limit concerning capacities credibly attributable to avery early living system.

Further subdivisions of boxes are possible when stop codonsare added to the possibilities

in a box. Because stop codons ending on pyrimidines are not discovered yet, we restrict the

possibilities to purine-ending stop codons only. This addsfour further ways to subdivide a box.

The upper two codons assigned to an amino acid, and the lower two codons being stop codons

is the first. The upper three codons assigned to one amino acid, and the bottom codon being a

stop codon is the second. The upper two codons assigned to oneamino acid, the third codon

being a stop codon, and the last codon assigned to an amino acid, but different from the amino

acid assigned to the upper two codons, is the third possibility. The last possibility again has

the third codon being a stop codon, but the three remaining codons are assigned to the same

amino acid in this case. Taken together with the three possibilities for subdivision with only

sense codons presented in the previous paragraph, we arriveat seven possible ways to subdivide

a box according to the simple wobbling behaviour without extensive anticodon modification.

This is summarized in Table IV. We generate block structuresuniformly at random according

to the rules described in Table IV, the block structures consist of 21 blocks.

In our first extension, the “stop block” consists of three stop codons, as in the standard genetic

code. However, their location is free, under the condition that they do not end in U or C. The

number of codons allocated to any amino acid is free, as long as each amino acid is encoded by
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TABLE IV

POSSIBLE TYPES OF BOXES. A = AMINO ACID . B = AMINO ACID , DIFFERENT FROM A. S = STOP.

Box Meaning

AAAA All 4 codons recognized by the same tRNA (or by several tRNAs carrying the same

amino acid).

AAAB NNU, NNC, NNA recognized by one tRNA, NNG recognized by another tRNA

carrying a different kind of amino acid.

AAAS NNU, NNC, NNA recognized by a tRNA, NNG by a Release Factor (RF).

AABB NNU, NNC recognized by one tRNA, NNA, NNG by another tRNA carrying a

different kind of amino acid.

AASA NNU, NNC recognized by one tRNA, NNA by a RF, NNG by another tRNA, but

carrying the same amino acid.

AASB NNU, NNC recognized by one tRNA, NNA by a RF, NNG by another tRNA, carrying

a different kind of amino acid.

AASS NNU, NNC recognized by one tRNA, NNA, NNG recognized by a RF.

at least one codon. In this way we obtain a first enlarged space, Space 1, that is more realistic

than Space 0. Space 1 is, with approximately5.908 × 1045 possible codes, much larger than

Space 0 (with approximately2.433× 1018 codes).

To include most existing genetic code variations, which differ in the number of stop codons, we

enlarged Space 1 to Space 2, by allowing the codes to have0− 4 stop codons.

For completeness, we also define two more spaces but we will not use them in our calculations.

In some bacteria some codons are not used: neither tRNAs nor release factors to recognize them

(without suppression) are present. To include these code variations too we in addition add a

new block “unassigned” to our block structure, allowing thenumber of unassigned codons to

range between0 and40 (Space 3). Every codon is allowed to be unassigned, with the restriction

that codons ending on U or C are either both assigned or both unassigned. Space 3 contains all

existing natural genetic code variations.

Finally (Space 4) we also include codes with fewer or more than 20 amino acids. In many

speculations on the origin of the genetic code, codes with less than 20 amino acids play a role;
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Jukes suggested such an evolutionary pathway already in 1966 [28]. With the extreme of just

one codon in use, the number of unassigned codons ranges from0 to 63. The size of Space

4 is approximately1.120 × 1050 codes. The sizes of Spaces 0-4 are presented in Table V. In

Section V-B we explain the methods behind sampling and counting. The presence of unassigned

codons in Spaces 3 and 4 causes the functionMSS to be ill-defined. Therefore we could not

investigate the nature of these spaces, as we will do for Spaces 1 and 2.

TABLE V

SIZES AND CHARACTERISTICS OF THE FIVE PROGRESSIVELY LARGER SPACES. NUMBER OF CODES PRESENT INSPACES

0− 4. THE BLOCK STRUCTURE OFSPACES1− 4 IS FREE, EXCEPT FOR THE CONSTRAINTS IMPOSED BY ADHERENCE TO

THE WOBBLE RULES, AND THE SPECIFICATIONS LISTED UNDER“CHARACTERISTICS OF CODES”.

Space Characteristics of codes Approximate size of

space

Space 0 21 blocks, 20 amino acids, 3 stop codons, 0 unassigned

codons

2.433 × 10
18

Space 1 21 blocks, 20 amino acids, 3 stop codons, 0 unassigned

codons, free block structure

5.908 × 10
45

Space 2 20-21 blocks, 20 amino acids, 0-4 stop codons, 0

unassigned codons, free block structure

1.932 × 10
46

Space 3 20-22 blocks, 20 amino acids, 0-4 stop codons, 0-40

unassigned codons, free block structure

8.635 × 10
48

Space 4 2-34 blocks, 1-32 amino acids, 0-4 stop codons, 0-63

unassigned codons, free block structure

1.120 × 10
50

Figure 2 shows four plots (as in Figure 1) ofMSS-values, but of codes sampled from Space

1 rather than Space 0. We notice the great similarity with theplots in Figure 1. Despite the

fact that Space 1 is about2 × 1027 times larger than Space 0, the meanMSS
0 -value is still

about 10. The frequency distributions have the same generalnature, and the position of the

frequency distribution relative to that of the standard genetic code has not changed. We also

notice that the prominent shoulder at the left side of theMSS
3 frequency distribution in Figure

1 has disappeared. We conjecture that the particular block structure of the standard genetic code

is responsible for this shoulder.

October 24, 2018 DRAFT



16

Figure 3 shows the same four plots for Space 2. It is hard to finddifferences with Figure

2. The genetic code seems a bit more special against the background with progressively larger

spaces: the number of “better codes” found with a million randomly generated codes decreased

from 156 in Space 0, via 7 in Space 1, to just a single one (TableVI) in Space 2.

TABLE VI

BASIC DESCRIPTIVE STATISTICS OFSPACE 0, SPACE 1 AND SPACE 2. FROM EACH SPACE106 CODES WERE RANDOMLY

SAMPLED.

Measure Space 0 Space 1 Space 2

Mean± variance

MS
S
0 9.426 ± 1.89 10.663 ± 3.13 10.665 ± 3.12

MS
S
1 12.100 ± 6.37 12.362 ± 5.88 12.368 ± 5.86

MS
S
2 12.627 ± 6.33 12.270 ± 5.79 12.278 ± 5.79

MS
S
3 3.550 ± 2.09 7.358 ± 4.51 7.348 ± 4.49

Proportion of better

codes found

P
S
0 0.000156 0.000007 0.000001

P
S
1 0.012369 0.004853 0.004864

P
S
2 0.129075 0.151506 0.150269

P
S
3 0.000078 0.000000 0.000000

III. D ISCUSSION

We now compare five published possible scenarios concerningthe evolution of the genetic

code and show they are not inconsistent with low MS values.

A. Evolution of the genetic code by selection for error minimization

The concept that the codon assignments are a feature of living organisms which protects them

against damage to the genetic information and which is, as such, specifically selected for by
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natural selection, was first published by Sonneborn [29]. Woese [30] elaborated on this concept

by pointing out that it is much more probable that translation errors instead of mutations in the

genome were the errors against which the system in which the genetic code was developed had to

be protected. The concept and first experiment of producing computer-generated random codes

to compare with the genetic code was published by Alff-Steinberger [31]. This author points out

that the differences found depending on the codon position suggest translation errors rather than

mutations as responsible for determining (in part!) the structure of the code. Haig and Hurst

[4] developed the MS measure and were able to generate much more random codes than Alff-

Steinberger. They again found differences depending on codon position, but left the possibility

open, that ”... the code acquired its major features before the evolution of proteins” [4], implying

that selection for protection against errors in protein-coding messages maybe played no role in

the evolution of the genetic code. Freeland and Hurst [9] elaborated on the work of Haig and

Hurst, and presented the code as ”one in a million”: ”We thus conclude not only that the natural

genetic code is extremely efficient at minimizing the effects of errors, but also that its structure

reflects biases in these errors, as might be expected were thecode the product of selection” [9].

The extreme version of the ”Error Minimization Hypothesis”would be that all possible codes

were tested by natural selection, and the standard genetic code was the best. With a measure

which would be a good model for the errors against which the genetic code was optimized, the

standard genetic code would then be found to be the global minimum code. There probably are

no scientists who adhere to such an extreme variant of the ”Error Minimization Hypothesis”. It

is, however, tempting to see the lowMS0 value as an indication that specific selection for error

minimization was a major determinant of the codon assignments in the standard genetic code

(e.g. [32].

B. The Sequential ”2-1-3” Model of Genetic Code Evolution

Figure 3 shows the main result of [9] remains valid when Space0 is enlarged to Space 1,

and subsequently to Space 2: the MS value of the standard genetic code isbetter than the

MS value of the average code when point mutations in thesecondposition are considered;

it is much betterwhen point mutations in thefirst position are considered; and it isso much

better when point mutations in thethird position are considered that better codes in this respect
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are not visible in the graphs. This could point to the chronological order in which the codon

positions acquired coding information. Massey [33], [34],[35] published a series of papers in

which the sequential acquisition of coding information by the second, then the first, and finally

the third codon position is the major determinant of the codon assignments in the standard

genetic code. According to this ”2-1-3” model, the genetic code started with full degeneracy in

the side positions. The amino acid repertoire would originally have been limited to four amino

acids, and coding information was carried by the middle position. Subsequently the amino acid

repertoire was expanded by assigning coding information tothe first position. Because the code

expansion would be ”...facilitated by duplication of the genes encoding adaptor molecules and

charging enzymes” [34], amino acids of similar properties would be assigned to codons with

the same middle nucleotide. Selection on error minimization plays a limited role in the ”2-1-3”

model in so far that code expansion via duplication of adaptor molecules followed by mutation

of the middle position of the anticodon is selected against.Hence: ”... amino acids of similar

properties were selectively assigned to codons separated from one another by a single potential

mutation” [33]. Finally, a further expansion was possible by assigning coding information to

the third codon position. A consideration of the structure of the tRNA anticodon leads Massey

to conclude that the third codon position is intrinsically the most error-prone. Therefore it is

logical that distinguishing codons unambiguously on the third position is only possible when

protein biochemistry has already progressed beyond the initial stages. Massey states that his

analyses ”...demonstrate that a substantial proportion oferror minimization is likely to have

arisen neutrally, simply as a consequence of code expansion, facilitated by duplication of the

genes encoding adaptor molecules and charging enzymes. This implies that selection is at best

only partly responsible for the property of error minimization” [34]. The concept of a genetic

code in which coding information was carried by the middle position only, has been around

since the sixties (e.g. with Crick: ”For example, only the middle base of a triplet may have been

recognized, a U in that position standing for any of a number of hydrophobic amino acids, an

A for an acidic one etc.” [3]). The ”2-1-3” model, however, goes further than that: it presents

the chronological order in which the codon positions acquired coding information as the major

determinant of the error minimization present in the code. The lowMS0 value is not incompatible

with the ”2-1-3” model; to the contrary, the ”2-1-3” model isbased on the lowMS0 value.
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C. The Frozen Accident Theory

A third scenario is the Frozen Accident Theory of Crick [3]. In this scenario, ”... the actual

allocation of amino acid to codons is mainly accidental and yet related amino acids would be

expected to have related codons” [3]. This is because there ”...are several reasons why one

might expect [...] a substitution of one amino acid for another to take place between structurally

similar amino acids. First, [...] such a resemblance would diminish the bad effects of the initial

substitution. Second, the new tRNA would probably start as agene duplication of the existing

tRNA for those codons. Moreover, the new activating enzyme might well be a modification of

the existing activating enzyme. This again might be easier if the amino acids were related. Thus,

the net effect of a whole series of such changes would be thatsimilar amino acids would tend

to have similar codons, which is just what we observe in the present code” [3]. Please note

that in text preceding this fragment the possibility has been raised that ”... the primitive tRNA

was its own activating enzyme” [3], which is a description ofa ribozymeavant la lettre. At a

certain moment the system would reach a stage in which ”... more and more proteins would

be coded and their design would become more sophisticated until eventually one would reach a

point where no new amino acid could be introduced without disrupting too many proteins. At

this stage the code would be frozen” [3]. Please note that on the very first page of the paper

the possibility is mentioned that the genetic code is not exactly identical for all organisms,

although for widely different organisms it had been found tobe very similar. Therefore the word

”frozen” was probably from the start meant to be interpretedwith a small degree of flexibility.

The concept ”relatedness” of amino acids is not rigorously defined in the paper, but Crick

presents three examples of what he considers to be groups of related amino acids. ”All codons

with U in the second place code for hydrophobic amino acids”.The polar requirements of this

specific group of hydrophobic amino acids are 5.0, 4.9, again4.9, 5.3, and 5.6. A second group

of ”related” amino acids is described in: ”The basic and acidic amino acids are all grouped

near together towards the bottom right-hand side ...” The polar requirements of this group of

charged (and thus hydrophilic) amino acids are 10.1, 9.1, 13.0, and 12.5. The third example

is the group of aromatic amino acids: ”Phenylalanine, tyrosine and tryptophan all have codons

starting with U”. The polar requirements of these are 5.0, 5.4, and 5.2. Because ”related” amino

acids according to Crick tend to share a similar polar requirement, the lowMS0 value is not

incompatible with the ”Frozen Accident Theory”. A clear difference between the ”2-1-3” model
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and the ”Frozen Accident Theory” is the presence of pairs of ”related” amino acids with a

second position difference in the latter: e.g. lysine-arginine, and phenylalanine-tyrosine. In this

respect, it is relevant to observe that the MS value of the genetic code is lower than the MS

value of the average code when point mutations in the second position are considered. Both the

”2-1-3” model and the ”Frozen Accident Theory” are scenarios in which the genetic code is

basically a piece of historical information. Differences between these two scenarios are a lack

of emphasis on sequential acquisition of coding information for the different codon positions

in Crick’s scenario; and a ”refusal” by Crick to have a role for specific selection for error

minimization in the scenario: ”There is no reason to believe, however, that the present code

is the best possible, and it could have easily reached its present form by a sequence of happy

accidents. In other words, it may not be the result of trying all possible codes and selecting the

best. Instead, it may be frozen at a local minimum which it hasreached by a rather random

path” [3].

D. The Stereochemical Theory

A fourth scenario is what Crick named ”The Stereochemical Theory” [3]. According to this

scenario there is a physico-chemical relationship betweencertain nucleic acid triplets and certain

amino acids. The first such proposal was published by Gamow [36]. Woese spent a lot of effort

collecting evidence for the support of the Stereochemical Theory [37], [30], [38], [2], [39]. Orgel

described this scenario as follows: ”The simplest theory suggests that the role of tRNA’s was

originally filled by a set of much shorter polynucleotides, perhaps the anticodon trinucleotides

themselves. In this form, the theory postulates that trinucleotides have a selective affinity for

the amino acid coded by their complementary trinucleotide.Of course, the selectivity must have

been limited in the first place, but it is argued that it might have been sufficient to produce

primitive activating enzymes in the presence of a suitable messenger RNA. Then the system

could have perfected itself by the ”bootstrap” principle, [...]. If this type of theory is correct the

code is not arbitrary; if life were to start again, certain features of the code would be reproduced

because the physical interactions on which it is based are unchanging” [40]. Exactly these kind

of unchanging physical interactions are found in a number ofrecently published experiments

([41], [42], [43] and references therein). Anticodons likeGAA, GUA, GUG, and CCA are part
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of RNA molecules which bind respectively phenylalanine, tyrosine, histidine, and tryptophan.

Again, phenylalanine and tyrosine form a group of amino acids coded by codons with U in

the first position (contributing to a lowMS0 value), but in this scenario the formation of the

group is due to a straightforward binding affinity of a GAA-containing RNA for phenylalanine,

and another one of a GUA-containing RNA for tyrosine. Earlier experimental work pointed

to a stereochemical relationship between the anticodons GCC, AGC and GAC and the simple

amino acids glycine, alanine and valine respectively [44].The same author published models in

which e.g. asparagine and lysine were shown binding their cognate anticodons [45]. If the major

determinant for the codon assignments in the standard genetic code is stereochemical affinity

between triplets and amino acids as reported in these publications, this implies a lowMS0 value.

Therefore, the Stereochemical Theory is not incompatible with a low MS0 value.

E. A four-column theory for the origin of the genetic code

The four scenarios discussed above share the characteristic that one factor (either ”mini-

mization”, ”history” or ”stereochemistry”) is the major determinant of the codon assignments

in the standard genetic code. They share this characteristic with the scenarios published by

Wong [46] and by Ikehara [47]. Other scenarios are present inwhich all three factors are major

determinants [48], [49]. As a last scenario, we discuss the four-column theory published by

Higgs [13]. Like the scenario proposed by Massey, the earliest genetic code according to the

four-column theory is encoding a repertoire of four amino acids. Higgs is very detailed on the

amino acids and the codon assignments in this earliest genetic code: the sixteen codons with U in

the middle originally encoded valine, the sixteen middle-Ccodons alanine, the sixteen middle-A

codons aspartate, and the sixteen middle-G codons glycine.Later amino acids were added to

this code by a process of subdivision of these 16-codon blocks, in which a subset of the codons

assigned to an early amino acid were reassigned to a later amino acid. In the four-column theory,

codons with a certain middle position are reassigned to amino acids similar to the one originally

assigned to codons with this middle position because this isthe least disturbing to already

existing protein sequences. The driving force for the reassignment is the ”positive selection for

the increased diversity and functionality of the proteins that can be made with a larger amino

acid alphabet”[13]. An intermediate code is presented, with Leu, Ile and Val coded by middle-
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U codons, Ser, Pro, Thr and Ala coded by middle-C codons, Asp and Glu coded by middle-A

codons, and all middle-G codons coding Gly. At this stage, the total of protein-coding sequences

starts to influence the further development of the code strongly (code-message coevolution, as in

the series of papers by Sella and Ardell [50], [51], [52], [53]) because, as a consequence of their

function in proteins, glycine codons become rare codons. The consequence of this is that the

constraint to reassign them is relaxed. The final result is that amino acids which are not similar

to glycine, but which are associated with strong positive selection because they bring radical new

functions for proteins (cysteine, tryptophan and arginine) are found coded by middle-G codons.

Although Higgs emphasizes that the driving force during theprocess of expansion of the amino

acid repertoire is not the minimization of translational error, the four-column theory is not as

”neutral” as the ”2-1-3” model, because the ”minimal disruption to the proteins already encoded

by the earlier code” by adding ”...later amino acids into positions formerly occupied by amino

acids with similar properties” is such an important component of the scenario.

Like the other discussed scenarios, the four-column theoryis compatible with a lowMS0 value.

All five discussed scenarios agree that error robustness dueto codon assignments is present in

the standard genetic code. The scenarios differ in the way they propose the error robustness has

been built.

F. Consequence of the error robustness

The consequence of the error robustness is an enormous potential to evolve. A variation in

an RNA sequence can have different kinds of consequences in the protein sequence. At the one

end of the spectrum, the different codon does not lead to a different amino acid. Slightly more

effect would be that a different codon would lead to a different amino acid, but this would be

so similar to the original amino acid that no difference in protein structure is the consequence.

Most important would be the effect that there is a differencein protein structure, but so small

that natural selection can use it as a slight step along an evolutionary path. At the far end of the

spectrum, finally, we find the lethal mutations. Because of this graded intensity of evolutionary

effect, the nature of the relationship between RNA sequenceand protein sequence (i.e. the genetic

code) gives biochemistry an enormous evolvability [54], [55]. This not necessarily implies that

the phenomenon itself is built by direct optimizing selection for the error minimizing aspects

(exactly the same argument holds for the aspects of stop codons allowing additional information
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to be encoded in protein-coding sequences as described by Itzkovitz and Alon [56]).

IV. CONCLUSIONS

Formulating the minimisation problem as a Quadratic Assignment Problem, we certify that

3.489, Goldman’s best solution [6] is in fact the optimal one. In spite of its theoretical hardness,

the size of the problem allows for exact solution methods instead of mere heuristics, that may fail

in finding the optimal solution. We demonstrated that it is possible to sample from much larger

and more realistic code spaces. Leaving Space 0, and using simple wobble rules we constructed

four progressively larger code spaces. Their size is of a completely different order than that

of Space 0. Spaces 3 and 4 contain all existing genetic code variations. Using a modified MS

measure, the nature of Spaces 1 and 2 could be investigated. In Spaces 1 and 2, the standard

genetic code was found to be a little more error robust when compared to randomly generated

codes than it was found to be in Space 0. Finally, limitation of error robustness as a means to

decide between different evolutionary scenarios is discussed.

V. M ATERIALS AND METHODS

A. Quadratic Assignment Problem

We formulate determining the minimumMS0 as a Quadratic Assignment Problem. We use

the graph model presented in the Section I for adjacency of the codon pairs. We number the

amino acidsA1, . . . , A20 and the blocks in the standard genetic codeB1, . . . , B20. We introduce

binary decision variablesxik, i = 1, . . . , 20, k = 1, . . . , 20; xik gets value1 if amino acidAi is

assigned code blockBk and value0 otherwise. Ifxik = 1 andxjℓ = 1 then this contributes to

the objective a value

dikjℓ =
∑

c∈Bk,c
′∈Bl,{c,c′}∈E

(r(Ai)− r(Aj))
2
.

To find the code with minimumMS0-value we minimise
20
∑

i=1

20
∑

j=1

20
∑

k=1

20
∑

ℓ=1

dikjℓxikxjℓ,

subject to the restrictions

20
∑

i=1

xik = 1, for k = 1, . . . , 20,

October 24, 2018 DRAFT



24

20
∑

k=1

xik = 1, for i = 1, . . . , 20,

ensuring that each block encodes some amino acid and that each amino acid is encoded by some

block, and the restrictions

xik ∈ {0, 1}, for i = 1, . . . , 20, k = 1, . . . , 20,

ensuring that blocks cannot be assigned fractionally to some amino acid and for another fraction

to some other amino acid.

A similar model can be used to compute the code achieving minimum MSS
0 value, although

it requires time in the order of weeks to compute, as opposed to hours for theMS0 value.

Further extending the above model, to compute the minima of the even larger code spaces,

leads to programs that even state-of-the-art algorithms cannot solve in any reasonable amount

of computer time.

B. Counting and sampling

TABLE VII

TRNA INDUCED COUNTS

Amino acids Stop codons Unassigned Multiplicity tRNA Patterns

0 0 4 1 “uuuu”

0 1 3 2 “uusu” “uuus”

0 2 2 1 “uuss”

1 0 0 1 “aaaa”

1 0 1 2 “aaau” “aaua”

1 0 2 2 “aauu” “uuaa”

1 0 3 1 “uuua”

1 1 0 2 “aaas” “aasa”

1 1 1 2 “aasu” “aaus”

1 1 2 1 “uusa”

1 2 0 1 “aass”

2 0 0 2 “aaab” “aabb”

2 0 1 1 “aaub”

2 1 0 1 “aasb”

In Table VII we have listed the possible ways to fill a single box that are compatible with the

considered tRNA wobble rules. Let{p1, . . . , pM} enumerate the possible tRNA patterns as listed
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in the rightmost column of Table VII. We writea(p), s(p), u(p) for the number of amino acids,

stop codons and unassigned codons present in patternp.

Problem. We now consider the problem of filling 16 boxes (64 codons in total) using 20 different

amino acids,s stop codons andu unassigned codons. It is useful to solve a slightly more general

problem: the number of ways to fillb boxes using

• N amino acids,

• each of the firsta amino acids at least once,

• exactlys stop codons, and

• exactlyu unassigned codons.

The original problem is obtained by settinga = N = 20 and b = 16.

Recurrence. We denote the number of such fillings by#N(b, a, s, u) and compute their values

by the recurrence

#N (b, a, s, u) =

M
∑

i=1

a(pi)
∑

j=0

a(pi)!

(

a

j

)(

N − a

a(pi)− j

)

#N (b− 1, a− j, s− s(pi), u− u(pi)). (1)

with basis

#N (0, 0, 0, 0) = 1,

#N (b, a, s, u) = 0 if 4b < a+ s+ u,

Rationale. The reasoning behind (1) is the following. We fill box numberb first, and worry

about the remaining boxes later. We iterate over the possible tRNA patterns with variablei. To

realise patternpi we needa(pi) amino acids,s(pi) stop codons andu(pi) unassigned codons.

There is only one way to choose stop codons and unassigned codons, but we can obtain the

amino acids from two sources. We can take some from thea still-to-use amino acids that we

have to use at least once, and we must take the others from theN −a free amino acids that can

be used as desired. We consider all possible ways to realise the choice: We first iterate over the

number of amino acids that we take from the still-to-use poolwith variablej. Selectingj out

of a still-to-use amino acids can be done in
(

a

j

)

ways. Similarly, taking the remaininga(pi)− j

amino acids fromN − a free amino acids can be done in
(

N−a

a(pi)−j

)

ways. All thesea(pi) chosen
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amino acids are different, and so there area(pi)! ways to instantiate the pattern using them. Now

we still have to fill the remainingb−1 boxes, using the remaininga− j still-to-use amino acids

at least once, while using exactlys−s(pi) stop codons and leavingu−u(pi) codons unassigned.

Implementation. The value#20(16, 20, s, u) can be efficiently evaluated by dynamic program-

ming. This is achieved by storing all intermediate values of# that are computed in memory,

and recalling them when they are needed instead of reevaluating #. This way,#N (b, a, s, u)

can be evaluated in time and spaceO(basu). Note that a single call to#N(b, a, s, u) computes

#N (b
′, a′, s′, u′) for manyb′ ≤ b, a′ ≤ a, s′ ≤ s andu′ ≤ u.

Sampling. The above dynamic programming implementation has the advantage that it allows

uniform sampling over the space of all codes. We first sample anumber uniformly between1

and#N (b, a, s, u). Then we use the recurrence in reverse to determine which code this number

corresponds to. This is done as follows. Say the number sampled wasn. We then incrementally

evaluate the sum of (1). Once the partial sum up toi surpassesn, we know that patternpi was

used in code numbern. Similarly we decode which amino acids are used and in which order

they are placed. By explicitly keeping track of the set of still-to-use amino acids we can retrieve

the entire code recursively.
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