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Abstract

The genetic code has been shown to be very error robust cethpmrandomly selected codes, but
to be significantly less error robust than a certain code doloyr a heuristic algorithm. We formulate
this optimisation problem as a Quadratic Assignment Probsénd thus verify that the code found
by the heuristic is the global optimum. We also argue thas istrongly misleading to compare the
genetic code only with codes sampled from the fixed block mduecause the real code space is
orders of magnitude larger. We thus enlarge the space froithwhndom codes can be sampled from
approximately2.433 x 10'® codes to approximately.908 x 10*°> codes. We do this by leaving the fixed
block model, and using the wobble rules to formulate the atteristics acceptable for a genetic code.
By relaxing more constraints three larger spaces are alsstremted. Using a modified error function,
the genetic code is found to be more error robust compareditackground of randomly generated
codes with increasing space size. We point out that thesdtsato not necessarily imply that the code
was optimized during evolution for error minimization, khiat other mechanisms could explain this

error robustness.

Index Terms

Genetic code, error robustness, origin of life.

|. BACKGROUND

The genetic code is the set of rules according to which naieeid sequences are translated
into amino acid sequences. Although a few small variatiomghe standard genetic code are
known (especially in mitochondrial systems), this set desuis essentially the same for all
organisms. The genetic code is therefore one of the mostfuadtal aspects of biochemistry.
The pattern of codon assignments in the genetic code apioelaesorganized in some way (Table
). First, there is codon similarity for codons encoding g@me amino acid. The underlying
biochemical reason [1] is (partly) that tRNA molecules nftecognize more than one codon. A
second phenomenon is that similar amino acids are oftenfigaeby similar codons. One way
to quantify amino acid similarity is to use the values of patguirement introduced by Woese
et al. [2]. According to this measure amino acids with a paiae chain like glutamate and
aspartate have a high value (12.5 and 13.0, respectivehj)e wydrophobic amino acids like
leucine and valine have a low value (4.9 and 5.6, respegjivAih example of similar codons
coding for similar amino acids is asparagine, specified ljoos AAU and AAC with a polar

requirement of 10.0 and lysine, specified by AAA and AAG, wdtlpolar requirement of 10.1.



TABLE |

THE STANDARD GENETIC CODE ASSIGNMENT OF THE64 POSSIBLE CODONS TO AMINO ACIDS OR STOP SIGNALSWVITH

POLAR REQUIREMENT OF THE AMINO ACIDS INDICATED IN BRACKETS

UUU Phe (5.0)
UUC Phe (5.0)
UUA Leu (4.9)
UUG Leu (4.9)

UCU Ser (7.5)
UCC Ser (7.5)
UCA Ser (7.5)
UCG Ser (7.5)

UAU Tyr (5.4)
UAC Tyr (5.4)
UAA STOP
UAG STOP

UGU Cys (4.8)
UGC Cys (4.8)
UGA STOP

UGG Trp (5.2)

CUU Leu (4.9)
CUC Leu (4.9)
CUA Leu (4.9)
CUG Leu (4.9)

CCU Pro (6.6)
CCC Pro (6.6)
CCA Pro (6.6)
CCG Pro (6.6)

CAU His (8.4)
CAC His (8.4)
CAA GIn (8.6)
CAG Gin (8.6)

CGU Arg (9.1)
CGC Arg (9.1)
CGA Arg (9.1)
CGG Arg (9.1)

AUU lle (4.9)
AUC lle (4.9)
AUA lle (4.9)
AUG Met (5.3)

ACU Thr (6.6)
ACC Thr (6.6)
ACA Thr (6.6)
ACG Thr (6.6)

AAU Asn (10.0)
AAC Asn (10.0)
AAA Lys (10.1)
AAG Lys (10.1)

AGU Ser (7.5)
AGC Ser (7.5)
AGA Arg (9.1)
AGG Arg (9.1)

GUU Val (5.6)
GUC Val (5.6)
GUA Val (5.6)
GUG Val (5.6)

GCU Ala (7.0)
GCC Ala (7.0)
GCA Ala (7.0)
GCG Ala (7.0)

GAU Asp (13.0)
GAC Asp (13.0)
GAA Glu (12.5)
GAG Glu (12.5)

GGU Gly (7.9)
GGC Gly (7.9)
GGA Gly (7.9)
GGG Gly (7.9)

Although one may suspect that similar codons code for simaiaino acids may also be present
in a random grouping [3], Haig and Hurst| [4],] [5] showed thaistis not the case. Random

codes do not have this property to the same extent as theasthgdnetic code.

Haig and Hurst[[4] generated by computer a large number efrative genetic codes, in which
the blocks coding for amino acids in the standard genetie ced). the UCU, UCC, UCA, UCG,
AGU, AGC block encoding serine, were kept the same, but thesignment to an amino acid
was randomly redistributed (a procedure generally calkdapping”). We will refer to this as
the fixed block mode[6]. Note that the use of the word “block” is different fromethuse in

studies such as[7],[8]. We use the word "block” aslin [6] a8 [n the sense of the collection
of all codons specifying the same amino acid or chain tertiungd"STOP” in Tablel). We will

call the collection of all codons sharing the same first armbisd nucleotide "box”. The space
of codes which is created as a result of random code generatider the fixed block model,

denoted as Space 0, contains exaefly (~ 2.433 x 10'®) codes.



As a measure for the quality of a code the change in polar reap@nt caused by one step
point mutations in the codons was proposed. Each codon hees aadons to which it can
mutate in one step: e.g. for the UCU serine codon, these ai€, WCA, UCG (these three
remain coding for serine in the actual code), UUU (codinggdbenylalanine, a 2.5 difference
in polar requirement), UAU (coding for tyrosine, a 2.1 difface), UGU (coding for cysteine, a
2.7 difference), CCU (coding for proline, a 0.9 differencACU (coding for threonine, also a
0.9 difference), and GCU (coding for alanine, a 0.5 diffeedn The quality of the code is then
measured by averaging over all squared differendésy. In this calculation, Haig and Hurst
[4] ignored the three “stop codons” which are coding for ohermination. In this way, 263

connections between adjacent codons contribute equally $g.

To facilitate the mathematical formulation 815, we introduce an undirected graph= (V, F)
that has the 61 codons as its vertices and an edge betweewaipdons if they differ in only
one position, yielding 263 edges. L&t = (V°, E¥) be the graph obtained by adding the 3
stop codons td/, yielding 288 edges. A codé maps each codonto exactly one amino acid
F(c). We denote by (F(c)) the polar requirement of the amino acid that codoencodes for

w.r.t. codeF'. The error function of codé’ is then given by

1

MS(F) = 55 Y. (r(F(e) =r(F(d))".
{c,c'}€FE

Using M S, as a quality measure of a genetic code Haig and Hurst fourtdotiig 1 out

of 10,000 random codes performs better, i.e. has a ldwW#&p, than the standard genetic code
[5]. This shows that in the standard genetic code not onlytidal amino acids are encoded
by similar codons, but also similar amino acids are encodesirbilar codons. Originally, Haig
and Hurst[[4], [5] investigated three other characterssbieside polar requirement (like e.g. the
isoelectric point), but the correspondence between codsigiaments and error robustness with
respect to polar requirement was most striking. It may bera@sting to find other measures which
perform equally well, or better. However, the measure haletondependent from the genetic
code (this point has been made in connection with the useloésalerived from replacement
mutations known from sequence data). We have to be carefubravtificially create a measure

that is based on the genetic code itself. To keep results ambfe to the work of Haig and



Hurst, use of polar requirement is preferable.

The work of Haig and Hurst was soon followed by the work of Go#h [6], who found a
code using a heuristic method that has a lowéf, value than any of the codes generated
before. In Sectiof II-A we verify that Goldman’s code is itfahe global optimum in the fixed

block model.

Freeland and Hurst [9] presented four histograms to visealne particular error robustness,
in the sense of Haig and Hurst [4], of the standard genetie.cddey reported that with respect
to the M S, value, 114 codes out of the 1,000,000 random codes had a kalee than the
standard genetic code. They also reported similar resithsr@aspect to the MS measure restricted
to point mutations in the first, second and third codon, retpely denoted byM S, M.S, and
M Ss. To define them we partition the edge gein the graph representatigi = (V, E') of the
adjacency structure of codons, depending on the positiomhich two adjacent codons differ:
E; is the set of edges between two codons that differ only in tie¢ fiosition, £ the set
of edges between two codons that differ only in the secondtippsand E5 the set of edges
between two codons that differ only in the third positione&ly these sets are disjoint and
E=F,UFEyUE;. Then forp=1,2,3,
MS,(F) = —

‘Ep‘ {C,C,}EEP

(r(F(c)) = r(F ()",

where | X | denotes the cardinality ok i.e. the number of elements iN. In fact, |E;| = 87,
|E>| = 88 and|Es| = 88. The results of Freeland and Hurst show that there is not neacr

robustness for mutations in the middle position of the codbe third position, however, is

extremely robust against changes in polar requirement.

Subsequent research following this approach has contedittan nuancing the error function
[9], [10], [11], [12], [13] or taking a parameter differentoin polar requirement as an amino
acid characteristic [10]/ [11], [12], [13]. The common them most of these approaches is the
code space from which random alternative codes are gedeliat§ll] this space is referred
to as “possible code space” and we denote this space as Sp&mm@rkably, known genetic
code variations lieutsideSpace 0. In code variations certain individual codonsreafiocated

from one block to another. The fixed block structure of thendtad genetic code is thereby



replaced by an alternative, slightly different, fixed blastkucture. In Sectioh II-IC we construct
four progressively larger code spaces (denoted Space te3p&pace 3 and Space 4), which
encompass successively more known genetic code variatiextsto the standard genetic code.
To be able to compare the genetic code with respect to atieerades sampled randomly from
Spaces 1 and 2, we nuance the MS measure such as to accomwaddaseof polar requirement
for stop codons. In this paper, we aim at refining several tgaim the seminal work by Haig
and Hurst[[4], [[5], Goldman |6] and Freeland and Hurst [11pa& from determining the global
minimum, the refinements concern the code space structdreharkind of conclusions assumed
to be possible to draw based on the research. We do not inbesfthhge the characteristic taken
to represent the amino acid (which is polar requirement énork of Haig and Hurst |4], [5]
and Goldman([6]) or to weigh the three positions of the codtifferently in the error function
(as is done in the second part of [9] and most subsequent wakk)only intend to enlarge the

space from which random codes are sampled, and find out howéhege to [9].

[l. RESULTS
A. Goldman’s best solution is the global minimum

Goldman [6] applied a heuristic algorithm for finding the tbesde under théixed block model
The best solution he found had ads, value of 3.489, which was well below the value of
5.194 reported by Haig and Hurst [4],] [5] for the standardegiencode. A heuristic does not
guarantee that the code found is optimal. We designed art ex@bod for finding the optimal
code by formulating the minimization problem as a Quadrassignment Problem (QAP) [14]
and solved it using the exact QAP-solver QAPBBI[15]. An itiug@ formulation of QAP is as
follows. We are given two sets of objects and V5 of equal size. We are to match each object
from 1} to exactly one object fromV, such that all objects of; are matched as well; as a
result we get a perfect matching (pairing) of the objectd’ofand V5. In the ordinary (linear)
assignment problem, there is a cost for assigning objécm V; to objectk from V5 and we
wish to find the assignment that minimizes total cost. In QAP tost is dependent on pairs
of assignments: there is a cost for assigning objdobm V; to objectk from V; and object j

from V; to object/ from V5. Again we wish to minimize the total assignment cost.

If we consider the set of objects, to be the 20 blocks in Table |, and the set of objéekts

to be the 20 amino acids, then we can model the minimization/6f, by letting the cost of



assigning one amino acid to one block and another amino acahother block be given by
the difference of their polar coordinates times the numbgraint mutations between the two
blocks. In Sectionh V-A we define this problem formally as a Dvkger program with quadratic

objective and linear constraints.

QAP is an NP-hard problem, meaning that it is probably harddive [16]. However, small
instances of QAP can be solved effectively using an exhaustiumeration technique known as
branch and boundl17]. This searches (implicitly) through the entire spatsautions, keeping
note of the best solution found so far, and ignoring partshef $olution space that could not
possibly lead to a better solution. Even with branch and Hauis in general not feasible to use
the QAP model for finding a code with minimu? S, value in any reasonable time when we
leave thefixed block modelHowever, we could find the global minimuf¥ S, value in Space
0. We found the same solution as Goldman, certifying thaisblation was in fact the optimal

one.

B. Incorporating stop codons

Leaving the fixed block model required us to nuance the MS oreaand attach a value of
polar requirement to the stop signal. Chain terminationr@pced by Release Factors (RFs),
which are proteins, and therefore most probably later efesnaf the coding system than tRNAs.
This is an argument which can also be found in e.gl [13] (“doInot want to assume that there
were stop codons in the current positions from the beginnegause it is more likely that
stop codons were a late addition to the code, after the maioutaof most of the codons
was already established”). Genetic codes lacking stop @mwe not impossible. During the
evolutionary development of the genetic code, mMRNAs coakktbeen short, and the last sense
codon of a message could have been the end of the mRNA. Afsrhattg the last amino acid
of the polypeptide, the primordial ribosome could moveHartalong the mRNA, and both the
polypeptide and the mRNA could lose the association withrith@some, as the tape leaving the
tape recorder in the classical analogy. The more sophistiamechanism with Release Factors
could have evolved later, to make things run more smoothhel\his is the scenario of evolution
of chain termination we follow, we want the stop codons toehthe smallest influence on our

calculations possible.



How to assign values to stop codons?

There are at least four possible ways to deal with the stopreedin the work described
in Sectiorl] the stop codons were ignored and no value wagressito them. A second way to
deal with stop codons is to assign a fixed value to a stop cofldhird way would be to assign
a fixed value to the mutation to a stop codon, which would bestmae for all amino acids.

The last way to deal with the problem would be to mimic the ratprocess of suppression.

1) Assigning no value to stop codonkgnoring stop codons in the calculation as has been
done until now [[4], [[6], [9] is not the way in which their inflnee is the smallest possible.
This is because they eliminate a lot of the edges fi@m For the UCA serine codon, in the
previous treatment only the edges to UCU, UCC, UCG, UUA, CBEA and GCA take part
in the calculation. The edges to UAA and UGA are ignored, Whigeans in fact that they
behave towards serine as if those codons were encodinges®ire to this effect, the four
alanine codons have a stronger influence on the calculdtiam the four glycine codons. Thus
ignoring stop codons artificially favors certain amino acidhis effect will even become more
pronounced when we enlarge the space of possible codesxd&iopte, if we allow codes to have
as many as four stop codons (like our mitochondrial code}pdrave stop codons in unusual

places (like the UUA and UUG stop codons of the mitochondfiByenococcus provasolig]).

2) Assigning a fixed value to a node (i.e. give the stop codored fralue): If we were to
reason that a mutation to a stop codon would lead to truntaficmessages, we might be inclined
to attach a very large value to a stop codon (because truhpadéeins would be non-functional
and the mutation therefore lethal). To model “lethal”, weulcbuse the value “infinity”. This
makes our calculation useless. We could also attach a pedaiirement of 1,000,000 to a stop
codon. In this case the stop codons are going to dominatealeelation and this is exactly

what we didn’t want to begin with.

3) Assigning a fixed value to an edge (i.e. give the mutaticm $top codon a fixed value):
There is another way to model the concept that a mutation teoa sodon is worse than
a mutation to a sense codon. One could assign a fixed penalynbwtation to "stop”, no

matter which amino acid is mutated to stop. One relativetgdavalue which could be given



as a penalty is the difference in polar requirement betwéentivo most dissimilar amino
acids. The disadvantage of this approach is again the ddiomnaf the calculation by the stop
mutations. Although less dominating than the very high fixaldies suggested for the stop nodes,
this approach still has the stop codons dominating the dlon, and possibly obscuring the

phenomenon we want to see.

4) The suppression approaciWhat would happen if there is a mRNA with a codon which
does not have a tRNA? In such a case, one possibility is thaidieg is performed by the
tRNA which, among the tRNA repertoire present in the systantansideration, is the most
similar to the one which would be needed to decode the codgulady. This phenomenon
is called “suppression” in molecular biology [19]. In theifig cell, the cognate tRNA or RF
competes with several different potential suppressor tRkh decoding a codon [20]. By using
in the calculation the value which would be there in case ef iost probable suppression,
a value is attached to a stop codon which results in a relatsmall influence of the stop
codons in the calculation. The most probable suppressioa &iop codon ending on A, is by
the tRNA which recognizes the sense codon ending on G fronsdhee box. This is reflected
by genetic code variants: apparently suppressing tRNAenaodtvolve towards full recognition.
We can illustrate this with the UGA codon, which can be foundhe top right-hand corner of
Table[l. Because the most probable suppression for UGA i©i®tRNA which normally reads
UGG as tryptophan, genetic code variants in which both UGA BIGG encode tryptophan
evolved multiple times. Although there exists an organismvhich UGA is encoding cysteine,
the more frequent reassignment for UGA is to tryptophan. §dme phenomenon is found for
AUA, which can be found towards the bottom left-hand sidealfl&]. AUA has been reassigned
several times to methionine. Suppression of AUA codons otgim coding sequences by the
tRNA which is normally reading the AUG codons has appareldégn followed by the evolution
of full recognition of the AUA codon by this tRNA. Assigning & stop codon ending on a purine
(A or G) the value of polar requirement of the amino acid sfgettiby the other purine-ending
codon in the box is therefore a possible way to deal with stjpns. This obviously can not be
done when both purine-ending codons in a box are stop cod&srsetic code variants suggest
an approach also in this case. In bilaterian mitochondatBRNA which decodes AGA and
AGG (recall Tabldll, the AGA and AGG codons can be found towdtte bottom right-hand
side) as arginine in the standard code is not present. Thé& tRiNch decodes AGU and AGC
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as serine usually takes over the function of decoding AGA AB¢& by reading them as serine
[8]. This suggests the approach: if in one box both puringirencodons are stop codons, the
value of polar requirement of the amino acid specified by theboas ending on a pyrimidine (U
or C) in that box can be assigned to them. This is always aesiagiino acid because the two
pyrimidine-ending codons in the same box always code foistmee amino acid. Until now, no
genetic code variants are discovered with pyrimidinesegditop codons, so our approach is to

develop only a way to deal with stop codons ending on purines.
How to modify the MS measure?

By treating the stop codons as sense codons according tappeession approach, we simplified

the MS measure. In the notation introduced before,

1 /
MS5(F) = B Y. (r(F(e) =r(F(),
{c,c'}eES
and similarly w.r.t. the three positions= 1,2, 3 of the codons
1 /
T3 Y (r(F(e) =r(F()).
P {c,c/}YeES
In this way, all 64 codons contribute equally to the error suga. Note thatE®| = 288 and
that |EY| = |E5| = |E§| = 96. It should be realized that by using/S§ or A/S5 we do not

necessarily start working in a space larger than Space 0.avaiseM S; and MSJ;,9 when we

MS3(F) =

generate random codes from Space 1 or Space 2 (see Sec@)rblit we can also usé/S;

and MS;? when we generate random codes from Space 0.

We investigate how the new measure reflects the nature ofeSpadten used as a background
to study the standard genetic code (Tdble 1). We producegtmis as in[[9]. The plots (Figure
) have the same general shape as the four plofs in [9]. licpkat, the prominent shoulder at
the left side is present in both the Sy (Figure[1.(d)) and thé/S; [9] frequency distributions.
The spikes present in the plots in [9] are not present. Theyaar artifact of rounding errors
in both the data and the bin borders of the histograms. Théutwation of MS values rounded
to two digits after the decimal point and bin border valuescivtare repetitive binary fractions
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rounded by the histogram software, are probably the sourtieeospikes in[[9].

The global minimum code in Space 0 for théS; measure was also found using the quadratic
assignment approach described in Sectionlll-A. We caledlahe average of both/S, and
MS; of 1,000,000 randomly generated codes as well as the glolmainom in Space 0 with
respect to both measures (Table I1). Clearly, both meaggivessimilar results. We also studied
the proportions of random codes better than the standaretigezode with thel/ S; measure.
Out of 1,000,000 random codes 156 codes had a laWéy'-value than the standard genetic
code, resulting in a proportio®?; of 0.000156. This was also investigated for= 1,2 and 3
(Table[I). Again the)M S and M S® measures give similar results (as can be detected also from
the plots of Figuréll).

We conclude that it is acceptable to replades by M S° to study the character of the standard
genetic code compared to randomly generated ahes’ gives the same results in all essential
aspects, and can be used to investigate larger spaces aresb spigh different codons used as

chain termination signal.

TABLE I
COMPARISON OFM So AND M Sj . VALUES WERE CALCULATED FOR10%® RANDOMLY SAMPLED CODES FROMSPACEOQ. THE

AVERAGES AND VARIANCE ARE SHOWN M Sy IS TAKEN FROM [9].

MSo MS§
Mean of random codes 9.41+ 151 | 9.43+ 1.89
Standard genetic code (rounded)5.194 5.501
Global minimum code (rounded) 3.489 3.946
TABLE Il

COMPARISON OF PROPORTIONS OEBETTER CODES FOR M S AND M S¥.

MS MSS

Py = 0.000114

Py = 0.000156

P, = 0.002964

P =0.012369

P, =0.221633

Py =0.129075

P3; = 0.000088

Py = 0.000078




12

C. Enlarging the “possible code space”

Space 0 has a fixed block structure. It is possible to leagditted block structure and generate
randomly genetic codes, without relaxing all biochemiaaistraints. In this section we develop
a method to enlarge the space from which codes are sampleddmdy) by specification of

allowed subdivision of boxes.

Space 0 does not even cover all existing genetic codes: tlgeeristing genetic code present in
Space 0 is the standard genetic code. By studying code t&ugeneral rules with respect to the
possible ways to construct a genetic code can be found. Wkesg rules, we enlarge the code
space progressively. Genetic code variants are derived fine standard genetic code, as can be
concluded by studying the codon assignments of closevefatFor mitochondrial code variants
this is recently described inl[8]. The number of code vasgaapart from mitochondria is very
small and it is nowadays believed that they all are derivethfthe standard code (although this
was less clear when the very first variants were discoveddt)ough these variants probably
emerged after the standard genetic code, we use the largegspecause they contain possible

ways for constructing genetic codes with the system founkzing organisms on Earth.

In the standard genetic code, the box in the top left-handerqsee Tablg I) shows one of several
ways in which a box can be subdivided according to the coddizedon pairing patterns allowed
by the simple wobble rules [1], [21]. The codons UUU and UUE assigned to one amino
acid, and the codons UUA and UUG to another. Recognition d¢if pgrimidine-ending codons
by one tRNA molecule is the wobbling behavior of G in the firssiion of the anticodon as
proposed by Crick [1]. Modification of U (in the first positiaf the anticodon) to thio-U restricts
the wobbling behavior of the tRNA molecule to recognitionbofth purine-ending codons [22],
[23]. A second pattern of subdivision is presented by a bawatds the bottom left-hand side of
Tablell. In this box AUU, AUC and AUA are assigned to one amis@and AUG is assigned
to another. The existence is known of tRNA molecules whidogaize all three codons in the
top of a box [24]. Recognition of the G-ending codon only,his tvobbling behavior of C in the
first position of the anticodon as proposed by Crick [1]. Efere, this pattern of subdivision
of a box can be understood by the pairing characteristicRN#&t molecules. In eight boxes of

Table[l all four codons are assigned to one amino acid, aserbtix in the bottom right-hand
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corner: GGU, GGC, GGA and GGG are assigned to the same amidoRe&cognition of all
four codons of a box seems to be the wobbling behavior of a tRidfecule with unmodified
U in the first anticodon position [25]. In summary, the wobflibehavior of tRNA molecules
allows subdivision of boxes with only sense codons in threg/sy no subdivision, division
in a pyrimidine-ending pair and a purine-ending pair, andsthn in a set of three codons
in the top of a box, and a single codon at the bottom. Althouxgfieresive modifications of
anticodons in contemporary organisms can lead to much nmuorglex patterns of wobbling
behavior [26], [[27], [22], [[24], for the purpose of enlargirbpace 0 we do not take these
aspects of the wobble phenomenon in account. These modifisadire produced by proteins,
and therefore were probably not present during the devedoprf the coding system. To allow
the modifications of U to thio-U (enabling the exclusive rgeition of purine-ending codons)
and A to | (enabling the recognition of three codons by oneARNblecule) is already pushing

the limit concerning capacities credibly attributable tgeay early living system.

Further subdivisions of boxes are possible when stop codmesadded to the possibilities
in a box. Because stop codons ending on pyrimidines are isobdéred yet, we restrict the
possibilities to purine-ending stop codons only. This afdds further ways to subdivide a box.
The upper two codons assigned to an amino acid, and the leveecadons being stop codons
is the first. The upper three codons assigned to one aming @uwitlthe bottom codon being a
stop codon is the second. The upper two codons assigned tarmim® acid, the third codon
being a stop codon, and the last codon assigned to an amiadpbatidifferent from the amino
acid assigned to the upper two codons, is the third podsibilihe last possibility again has
the third codon being a stop codon, but the three remaininipr® are assigned to the same
amino acid in this case. Taken together with the three pibsigib for subdivision with only
sense codons presented in the previous paragraph, we afrsesen possible ways to subdivide
a box according to the simple wobbling behaviour withouteaestve anticodon modification.
This is summarized in Table V. We generate block structungiormly at random according
to the rules described in Talle]lV, the block structures bred 21 blocks.

In our first extension, the “stop block” consists of thregostodons, as in the standard genetic
code. However, their location is free, under the conditioat they do not end in U or C. The

number of codons allocated to any amino acid is free, as Isrgpah amino acid is encoded by
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TABLE IV

POSSIBLE TYPES OF BOXESA = AMINO ACID . B = AMINO ACID, DIFFERENT FROM A S = STOR

Box Meaning

AAAA | All 4 codons recognized by the same tRNA (or by several tRNasying the same
amino acid).

AAAB | NNU, NNC, NNA recognized by one tRNA, NNG recognized by amothRNA
carrying a different kind of amino acid.

AAAS | NNU, NNC, NNA recognized by a tRNA, NNG by a Release Factor)(RF
AABB | NNU, NNC recognized by one tRNA, NNA, NNG by another tRNA gang a
different kind of amino acid.

AASA | NNU, NNC recognized by one tRNA, NNA by a RF, NNG by another RNut
carrying the same amino acid.

AASB | NNU, NNC recognized by one tRNA, NNA by a RF, NNG by another fRNarrying
a different kind of amino acid.

AASS | NNU, NNC recognized by one tRNA, NNA, NNG recognized by a RF.

at least one codon. In this way we obtain a first enlarged siua&ce 1, that is more realistic
than Space 0. Space 1 is, with approximat&§08 x 10*> possible codes, much larger than

Space 0 (with approximately.433 x 10'® codes).

To include most existing genetic code variations, whiclediin the number of stop codons, we

enlarged Space 1 to Space 2, by allowing the codes to lhhavé stop codons.

For completeness, we also define two more spaces but we willsgothem in our calculations.
In some bacteria some codons are not used: neither tRNA<lease factors to recognize them
(without suppression) are present. To include these codatieens too we in addition add a
new block “unassigned” to our block structure, allowing tinember of unassigned codons to
range between and40 (Space 3). Every codon is allowed to be unassigned, withesigiction
that codons ending on U or C are either both assigned or bathsigned. Space 3 contains all

existing natural genetic code variations.

Finally (Space 4) we also include codes with fewer or morentB@ amino acids. In many

speculations on the origin of the genetic code, codes wih tkan 20 amino acids play a role;
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Jukes suggested such an evolutionary pathway already i@ [P383. With the extreme of just
one codon in use, the number of unassigned codons rangesOftont3. The size of Space

4 is approximatelyl.120 x 10°° codes. The sizes of Spaces 0-4 are presented in Table V. In
Sectior V-B we explain the methods behind sampling and @oginThe presence of unassigned
codons in Spaces 3 and 4 causes the funclibft® to be ill-defined. Therefore we could not

investigate the nature of these spaces, as we will do fore&sphand 2.

TABLE V
SIZES AND CHARACTERISTICS OF THE FIVE PROGRESSIVELY LARGERPACES NUMBER OF CODES PRESENT INSPACES
0 — 4. THE BLOCK STRUCTURE OFSPACES] — 4 IS FREE, EXCEPT FOR THE CONSTRAINTS IMPOSED BY ADHERENCE TO

THE WOBBLE RULES, AND THE SPECIFICATIONS LISTED UNDER'CHARACTERISTICS OF CODE&.

Space | Characteristics of codes Approximate size of]
space

Space 0| 21 blocks, 20 amino acids, 3 stop codons, 0 unassigngd!33 x 10*®

codons

Space 1| 21 blocks, 20 amino acids, 3 stop codons, 0 unassignéd08 x 10%°
codons, free block structure
Space 2| 20-21 blocks, 20 amino acids, 0-4 stop codons| 0.932 x 10%°

unassigned codons, free block structure
Space 3| 20-22 blocks, 20 amino acids, 0-4 stop codons, 0}48635 x 10%®

unassigned codons, free block structure
Space 4| 2-34 blocks, 1-32 amino acids, 0-4 stop codons, 0F6B120 x 10°°

unassigned codons, free block structure

Figure[2 shows four plots (as in Figuré 1) 6fS°-values, but of codes sampled from Space
1 rather than Space 0. We notice the great similarity withghlus in Figure[]l. Despite the
fact that Space 1 is abot x 10%" times larger than Space 0, the meahS;-value is still
about 10. The frequency distributions have the same gematake, and the position of the
frequency distribution relative to that of the standard ejencode has not changed. We also
notice that the prominent shoulder at the left side of M85 frequency distribution in Figure
[ has disappeared. We conjecture that the particular blwoktare of the standard genetic code

is responsible for this shoulder.
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Figure[3 shows the same four plots for Space 2. It is hard to différences with Figure
[2. The genetic code seems a bit more special against the foackbwith progressively larger
spaces: the number of “better codes” found with a milliond@nly generated codes decreased

from 156 in Space 0, via 7 in Space 1, to just a single one (TdBlén Space 2.

TABLE VI

BASIC DESCRIPTIVE STATISTICS OFSPACEQ, SPACE1 AND SPACE 2. FROM EACH SPACE10® CODES WERE RANDOMLY

SAMPLED.

Measure Space 0 Space 1 Space 2
Mean + variance
MSy 9.426 + 1.89 10.663 £ 3.13 | 10.665 + 3.12
MS? 12.100 £ 6.37 | 12.362 £ 5.88 | 12.368 £ 5.86
MSsy 12.627 £ 6.33 | 12.270 £5.79 | 12.278 = 5.79
MSgs 3.550 £ 2.09 7.358 £4.51 7.348 £4.49
Proportion of better
codes found
Py 0.000156 0.000007 0.000001
PP 0.012369 0.004853 0.004864
Py 0.129075 0.151506 0.150269
Py 0.000078 0.000000 0.000000

[1l. DISCUSSION

We now compare five published possible scenarios concethigvolution of the genetic

code and show they are not inconsistent with low MS values.

A. Evolution of the genetic code by selection for error mimation

The concept that the codon assignments are a feature of lbrganisms which protects them

against damage to the genetic information and which is, ah,sgpecifically selected for by
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natural selection, was first published by Sonnebbrn [29]e$®d30] elaborated on this concept
by pointing out that it is much more probable that transtatorors instead of mutations in the
genome were the errors against which the system in whichehetg code was developed had to
be protected. The concept and first experiment of producimgpeiter-generated random codes
to compare with the genetic code was published by Alff-Sterger [31]. This author points out
that the differences found depending on the codon positiggest translation errors rather than
mutations as responsible for determining (in part!) theicttre of the code. Haig and Hurst
[4] developed the MS measure and were able to generate muih navadom codes than Alff-
Steinberger. They again found differences depending oorcgasition, but left the possibility
open, that "... the code acquired its major features befureetolution of proteins’’[4], implying
that selection for protection against errors in proteidiag messages maybe played no role in
the evolution of the genetic code. Freeland and Hurst [Yai@ed on the work of Haig and
Hurst, and presented the code as "one in a million”: "We thursctude not only that the natural
genetic code is extremely efficient at minimizing the effeat errors, but also that its structure
reflects biases in these errors, as might be expected wemdtleethe product of selection”|[9].
The extreme version of the "Error Minimization Hypothesigbuld be that all possible codes
were tested by natural selection, and the standard genadie was the best. With a measure
which would be a good model for the errors against which theetie code was optimized, the
standard genetic code would then be found to be the globahmam code. There probably are
no scientists who adhere to such an extreme variant of th@r'Binimization Hypothesis”. It
is, however, tempting to see the laW.S, value as an indication that specific selection for error
minimization was a major determinant of the codon assignsinthe standard genetic code
(e.g. [32].

B. The Sequential "2-1-3” Model of Genetic Code Evolution

Figure[3 shows the main result of [9] remains valid when Spgade enlarged to Space 1,
and subsequently to Space 2: the MS value of the standardigeele isbetter than the
MS value of the average code when point mutations in dbeondposition are considered;
it is much betterwhen point mutations in thérst position are considered; and it & much

better when point mutations in thkird position are considered that better codes in this respect
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are not visible in the graphs. This could point to the chrogadal order in which the codon
positions acquired coding information. Massey|[33],/ [38F] published a series of papers in
which the sequential acquisition of coding information hg second, then the first, and finally
the third codon position is the major determinant of the codssignments in the standard
genetic code. According to this "2-1-3” model, the genetbde started with full degeneracy in
the side positions. The amino acid repertoire would oridyniaave been limited to four amino
acids, and coding information was carried by the middle tomsi Subsequently the amino acid
repertoire was expanded by assigning coding informatiathedirst position. Because the code
expansion would be "...facilitated by duplication of thenge encoding adaptor molecules and
charging enzymes’ [34], amino acids of similar propertiesuld be assigned to codons with
the same middle nucleotide. Selection on error minimiraptays a limited role in the "2-1-3”
model in so far that code expansion via duplication of adaptolecules followed by mutation
of the middle position of the anticodon is selected agaiHsince: "... amino acids of similar
properties were selectively assigned to codons separaigddne another by a single potential
mutation” [33]. Finally, a further expansion was possible dssigning coding information to
the third codon position. A consideration of the structuréhe tRNA anticodon leads Massey
to conclude that the third codon position is intrinsicalhetmost error-prone. Therefore it is
logical that distinguishing codons unambiguously on thedtiposition is only possible when
protein biochemistry has already progressed beyond thialistages. Massey states that his
analyses "...demonstrate that a substantial proportioerafr minimization is likely to have
arisen neutrally, simply as a consequence of code exparfsicifitated by duplication of the
genes encoding adaptor molecules and charging enzymesiniplies that selection is at best
only partly responsible for the property of error minimipat’ [34]. The concept of a genetic
code in which coding information was carried by the middlesipon only, has been around
since the sixties (e.g. with Crick: "For example, only theddie base of a triplet may have been
recognized, a U in that position standing for any of a numbdnyalrophobic amino acids, an
A for an acidic one etc.”[[3]). The "2-1-3" model, however,afurther than that: it presents
the chronological order in which the codon positions acgglicoding information as the major
determinant of the error minimization present in the code [bw )/ S, value is not incompatible
with the "2-1-3” model; to the contrary, the "2-1-3” model imsed on the lowl/ .S, value.
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C. The Frozen Accident Theory

A third scenario is the Frozen Accident Theory of Crick [3).this scenario, "... the actual
allocation of amino acid to codons is mainly accidental aetlnglated amino acids would be
expected to have related codon$’ [3]. This is because thew€ several reasons why one
might expect [...] a substitution of one amino acid for amotto take place between structurally
similar amino acids. First, [...] such a resemblance wouldimish the bad effects of the initial
substitution. Second, the new tRNA would probably start @=m@e duplication of the existing
tRNA for those codons. Moreover, the new activating enzynightrwell be a modification of
the existing activating enzyme. This again might be easigrei amino acids were related. Thus,
the net effect of a whole series of such changes would besihalar amino acids would tend
to have similar codonswhich is just what we observe in the present code” [3]. Rieaste
that in text preceding this fragment the possibility hasnbessed that ... the primitive tRNA
was its own activating enzyme!’[[3], which is a descriptionaofibozymeavant la lettre At a
certain moment the system would reach a stage in which ".remand more proteins would
be coded and their design would become more sophisticatéddeuaentually one would reach a
point where no new amino acid could be introduced withoutuging too many proteins. At
this stage the code would be frozen’ [3]. Please note thathenvery first page of the paper
the possibility is mentioned that the genetic code is notcixadentical for all organisms,
although for widely different organisms it had been foundbéovery similar. Therefore the word
"frozen” was probably from the start meant to be interpretgith a small degree of flexibility.
The concept "relatedness” of amino acids is not rigorousd§ingéd in the paper, but Crick
presents three examples of what he considers to be grougtatéd amino acids. "All codons
with U in the second place code for hydrophobic amino acidsie polar requirements of this
specific group of hydrophobic amino acids are 5.0, 4.9, ag#n5.3, and 5.6. A second group
of "related” amino acids is described in: "The basic and &c&mino acids are all grouped
near together towards the bottom right-hand side ...” Thiarp@quirements of this group of
charged (and thus hydrophilic) amino acids are 10.1, 9.10,18hd 12.5. The third example
is the group of aromatic amino acids: "Phenylalanine, tyr@sand tryptophan all have codons
starting with U”. The polar requirements of these are 5.8, &nd 5.2. Because "related” amino
acids according to Crick tend to share a similar polar regmént, the low)M S, value is not

incompatible with the "Frozen Accident Theory”. A clearfdifence between the "2-1-3" model
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and the "Frozen Accident Theory” is the presence of pairsrefated” amino acids with a
second position difference in the latter: e.g. lysine+arg?, and phenylalanine-tyrosine. In this
respect, it is relevant to observe that the MS value of theeerwode is lower than the MS
value of the average code when point mutations in the secositign are considered. Both the
"2-1-3" model and the "Frozen Accident Theory” are scenanin which the genetic code is
basically a piece of historical information. Differencestween these two scenarios are a lack
of emphasis on sequential acquisition of coding infornmafior the different codon positions
in Crick’s scenario; and a "refusal” by Crick to have a role f&pecific selection for error
minimization in the scenario: "There is no reason to belidv@wever, that the present code
is the best possible, and it could have easily reached itseptdorm by a sequence of happy
accidents. In other words, it may not be the result of tryihgpassible codes and selecting the
best. Instead, it may be frozen at a local minimum which it teeched by a rather random
path” [3].

D. The Stereochemical Theory

A fourth scenario is what Crick named "The Stereochemicaorir’ [3]. According to this
scenario there is a physico-chemical relationship betveeetain nucleic acid triplets and certain
amino acids. The first such proposal was published by Gam6jv YBoese spent a lot of effort
collecting evidence for the support of the Stereochemitaory [37], [30], [38], [2], [39]. Orgel
described this scenario as follows: "The simplest theorygsests that the role of tRNAs was
originally filled by a set of much shorter polynucleotidesyrhaps the anticodon trinucleotides
themselves. In this form, the theory postulates that ttentales have a selective affinity for
the amino acid coded by their complementary trinucleot@fecourse, the selectivity must have
been limited in the first place, but it is argued that it miglavé been sufficient to produce
primitive activating enzymes in the presence of a suitabéssanger RNA. Then the system
could have perfected itself by the "bootstrap” principle,] | If this type of theory is correct the
code is not arbitrary; if life were to start again, certaiatteges of the code would be reproduced
because the physical interactions on which it is based achamying” [40]. Exactly these kind
of unchanging physical interactions are found in a numbereoéntly published experiments
([41], [42], [43] and references therein). Anticodons IBAA, GUA, GUG, and CCA are part
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of RNA molecules which bind respectively phenylalaningpgine, histidine, and tryptophan.
Again, phenylalanine and tyrosine form a group of amino @@dded by codons with U in
the first position (contributing to a low/S, value), but in this scenario the formation of the
group is due to a straightforward binding affinity of a GAAnataining RNA for phenylalanine,
and another one of a GUA-containing RNA for tyrosine. Earkgperimental work pointed
to a stereochemical relationship between the anticodon§,QGC and GAC and the simple
amino acids glycine, alanine and valine respectively [#%je same author published models in
which e.g. asparagine and lysine were shown binding thgnate anticodons [45]. If the major
determinant for the codon assignments in the standard igecmde is stereochemical affinity
between triplets and amino acids as reported in these patiolis, this implies a low/ .S, value.

Therefore, the Stereochemical Theory is not incompatibta & low M S, value.

E. A four-column theory for the origin of the genetic code

The four scenarios discussed above share the charactdtisti one factor (either "mini-
mization”, "history” or "stereochemistry”) is the major geminant of the codon assignments
in the standard genetic code. They share this charactersth the scenarios published by
Wong [46] and by Ikehara [47]. Other scenarios are presewthich all three factors are major
determinants[[48],[[49]. As a last scenario, we discuss the-€olumn theory published by
Higgs [13]. Like the scenario proposed by Massey, the esrlyenetic code according to the
four-column theory is encoding a repertoire of four aminasacHiggs is very detailed on the
amino acids and the codon assignments in this earliestigaroete: the sixteen codons with U in
the middle originally encoded valine, the sixteen middlegdons alanine, the sixteen middle-A
codons aspartate, and the sixteen middle-G codons glycater amino acids were added to
this code by a process of subdivision of these 16-codon bldokwhich a subset of the codons
assigned to an early amino acid were reassigned to a lateoamid. In the four-column theory,
codons with a certain middle position are reassigned to amands similar to the one originally
assigned to codons with this middle position because thithesleast disturbing to already
existing protein sequences. The driving force for the rigassent is the "positive selection for
the increased diversity and functionality of the proteihattcan be made with a larger amino

acid alphabet[13]. An intermediate code is presentedh \wiu, lle and Val coded by middle-
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U codons, Ser, Pro, Thr and Ala coded by middle-C codons, AsbGlu coded by middle-A
codons, and all middle-G codons coding Gly. At this stage ttital of protein-coding sequences
starts to influence the further development of the code glyojcode-message coevolution, as in
the series of papers by Sella and Ardell/[50],/[51],/[52].])38ecause, as a consequence of their
function in proteins, glycine codons become rare codong ddnsequence of this is that the
constraint to reassign them is relaxed. The final resultas &mino acids which are not similar
to glycine, but which are associated with strong positived®n because they bring radical new
functions for proteins (cysteine, tryptophan and argipisye found coded by middle-G codons.
Although Higgs emphasizes that the driving force duringpghaecess of expansion of the amino
acid repertoire is not the minimization of translationaloer the four-column theory is not as
"neutral” as the "2-1-3” model, because the "minimal digrap to the proteins already encoded
by the earlier code” by adding ”...later amino acids intoiposs formerly occupied by amino

acids with similar properties” is such an important compuare the scenario.

Like the other discussed scenarios, the four-column thsocpmpatible with a low\/ S, value.
All five discussed scenarios agree that error robustnessadoedon assignments is present in
the standard genetic code. The scenarios differ in the way phopose the error robustness has

been built.

F. Consequence of the error robustness

The consequence of the error robustness is an enormoustipbtenevolve. A variation in
an RNA sequence can have different kinds of consequencée iprbtein sequence. At the one
end of the spectrum, the different codon does not lead tofareift amino acid. Slightly more
effect would be that a different codon would lead to a differamino acid, but this would be
so similar to the original amino acid that no difference iotpin structure is the consequence.
Most important would be the effect that there is a differemc@rotein structure, but so small
that natural selection can use it as a slight step along adntemaary path. At the far end of the
spectrum, finally, we find the lethal mutations. Because i&f ginaded intensity of evolutionary
effect, the nature of the relationship between RNA sequandeprotein sequence (i.e. the genetic
code) gives biochemistry an enormous evolvability [54B][5This not necessarily implies that
the phenomenon itself is built by direct optimizing seleatifor the error minimizing aspects

(exactly the same argument holds for the aspects of stopnscaltowing additional information
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to be encoded in protein-coding sequences as describedkuvitz and Alon [56]).

IV. CONCLUSIONS

Formulating the minimisation problem as a Quadratic Assignt Problem, we certify that
3.489, Goldman'’s best solution| [6] is in fact the optimal olmespite of its theoretical hardness,
the size of the problem allows for exact solution methodtess of mere heuristics, that may fail
in finding the optimal solution. We demonstrated that it isgble to sample from much larger
and more realistic code spaces. Leaving Space 0, and usipesivobble rules we constructed
four progressively larger code spaces. Their size is of aptet@ly different order than that
of Space 0. Spaces 3 and 4 contain all existing genetic cod&tigas. Using a modified MS
measure, the nature of Spaces 1 and 2 could be investigat&pdces 1 and 2, the standard
genetic code was found to be a little more error robust whenpased to randomly generated
codes than it was found to be in Space 0. Finally, limitatibrerwor robustness as a means to

decide between different evolutionary scenarios is dsetis

V. MATERIALS AND METHODS
A. Quadratic Assignment Problem

We formulate determining the minimum/ S, as a Quadratic Assignment Problem. We use
the graph model presented in the Secfibn | for adjacency efctddon pairs. We number the
amino acidsA,, . .., Ayy and the blocks in the standard genetic cadgle. . ., Boy. We introduce
binary decision variables,;,, i =1,...,20, k =1,...,20; x;, gets valuel if amino acid 4; is
assigned code block; and value0 otherwise. Ifz;;, = 1 andxzj;, = 1 then this contributes to
the objective a value

dikje = Z (r(4) — T(Aj))Q :
c€By,¢'€B) {c,c'}EE

To find the code with minimund/.Sy-value we minimise
20 20 20 20

Z Z Z Z dikjﬂikxjé,

i=1 j=1 k=1 (=1

subject to the restrictions

20
> wg=1, fork=1,...,20,
=1
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inkzl, for:=1,...,20,

ensuring that each block encodes some amino acid and tHate@no acid is encoded by some

block, and the restrictions
zg € {0,1}, fori=1,...,20, k=1,...,20,

ensuring that blocks cannot be assigned fractionally toesamino acid and for another fraction

to some other amino acid.

A similar model can be used to compute the code achievingnmini M/S5 value, although
it requires time in the order of weeks to compute, as opposekdotrs for theM .S, value.
Further extending the above model, to compute the minimahefeven larger code spaces,
leads to programs that even state-of-the-art algorithmeaasolve in any reasonable amount

of computer time.

B. Counting and sampling

TABLE VI

TRNA INDUCED COUNTS

Amino acids| Stop codons| Unassigned| Multiplicity | tRNA Patterns
0 0 4 1 “uuuu”
0 1 3 2 “uusu” “uuus”
0 2 2 1 “uuss”
1 0 0 1 “aaaa”
1 0 1 2 “aaau” “aaua”
1 0 2 2 “aauu” “uuaa”
1 0 3 1 “uuua”
1 1 0 2 “aaas” “aasa”
1 1 1 2 “aasu” “aaus”
1 1 2 1 “uusa”
1 2 0 1 “aass”
2 0 0 2 “aaab” “aabb”
2 0 1 1 “aaub”
2 1 0 1 “aasb”

In Table[VIl we have listed the possible ways to fill a singlexlibat are compatible with the

considered tRNA wobble rules. Lépy, ..., py } enumerate the possible tRNA patterns as listed
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in the rightmost column of Table Vll. We write(p), s(p), u(p) for the number of amino acids,

stop codons and unassigned codons present in pattern

Problem. We now consider the problem of filling 16 boxes (64 codons faljasing 20 different
amino acidsg stop codons and unassigned codons. It is useful to solve a slightly more ggne
problem: the number of ways to fill boxes using

« NN amino acids,

« each of the first amino acids at least once,

« exactly s stop codons, and

« exactlyu unassigned codons.

The original problem is obtained by settiag= N = 20 andb = 16.

Recurrence. We denote the number of such fillings B¥y (b, a, s, u) and compute their values

by the recurrence
#n(b,a,s,u) =
M a(p:) a N —a
S5 (4) (oo v Lia s = s = ). @)

i=1 j=0 (pi) =3

with basis

#N(()?Oa 070) = 17

#N(b7a7s7u):0 |f4b<a+8—)—u7

Rationale. The reasoning behindl(1) is the following. We fill box numldefirst, and worry
about the remaining boxes later. We iterate over the passitiNA patterns with variablé To
realise patterrp; we needa(p;) amino acids,s(p;) stop codons and(p;) unassigned codons.
There is only one way to choose stop codons and unassigneshgodut we can obtain the
amino acids from two sources. We can take some fromatlséll-to-use amino acids that we
have to use at least once, and we must take the others frofW the free amino acids that can
be used as desired. We consider all possible ways to rehbsehbice: We first iterate over the
number of amino acids that we take from the still-to-use paitth variable j. Selecting; out
of a still-to-use amino acids can be done(fji*) ways. Similarly, taking the remaining(p;) — j

amino acids fromV — a free amino acids can be done QqN fj) ways. All theseu(p;) chosen

a(p;)
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amino acids are different, and so there afg;)! ways to instantiate the pattern using them. Now
we still have to fill the remaining — 1 boxes, using the remaining— j still-to-use amino acids

at least once, while using exactly- s(p;) stop codons and leaving— u(p;) codons unassigned.

Implementation. The value#4,(16, 20, s, u) can be efficiently evaluated by dynamic program-
ming. This is achieved by storing all intermediate values#othat are computed in memory,
and recalling them when they are needed instead of reewraugt This way, # (b, a, s, u)
can be evaluated in time and spagéasu). Note that a single call tgty (b, a, s, u) computes

#n(,d, s u) for manyt <b,d <a,s <sandu <u.

Sampling. The above dynamic programming implementation has the aagarthat it allows
uniform sampling over the space of all codes. We first sampieraber uniformly between
and#x (b, a, s,u). Then we use the recurrence in reverse to determine whicé ttosl number
corresponds to. This is done as follows. Say the number smhwphsn. We then incrementally
evaluate the sum of{1). Once the partial sum up sorpasses, we know that patterp; was
used in code numbets. Similarly we decode which amino acids are used and in whiclero
they are placed. By explicitly keeping track of the set ol-st-use amino acids we can retrieve

the entire code recursively.
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HISTOGRAMS FOR THEMS VALUES OBTAINED FROM CODES RANDOMLY SAMPLED FROMSPACE 0. MS VALUE OF THE STANDARD GENETIC CODE INDICATED BY THE BLUE BAR 10°

SAMPLES. THE MS MEASURE WAS SLIGHTLY MODIFIED IN COMPARISON TO EARLIER WORK THE MODIFICATION DOES NOT CHANGE THE BASIC CHARACTERISTICS GUND THERE (A)

MSS (8) MSF (c) MSS (p) MSS.
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HISTOGRAMS FOR THEMS VALUES OBTAINED FROM CODES RANDOMLY SAMPLED FROMSPACE 1. MS VALUE OF THE STANDARD GENETIC CODE INDICATED BY THE BLUE BAR 106
SAMPLES THE MODIFIED MS MEASURE WAS USED TO CALCULATE AMS VALUE BECAUSE THE RANDOM REDISTRIBUTION OF THE THREE STOP ClIONS MADE THE USE OF THEMS
MEASURE FROM EARLIER WORK IMPOSSIBLE THE DISTRIBUTION OF RANDOMLY GENERATED CODES IS MORE REGULARVITH RESPECT TO CHANGES IN THE THIRD CODON POSITION

COMPARED WITH THAT DISTRIBUTION RESULTING FROM CODES SAMPED FROM SPACE O (SHOWN IN FIGUREL). (a) MSGg (B) MSIS (c) MSQS (D) Msf.
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