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Abstract

We model and discuss advantages of pan-editing, the complex way of expressing
mitochondrial genes in kinetoplastids. The rapid spread and preservation of pan-editing
seems to be due to its concomitant fragment dispersal. Such dispersal prevents losing
temporarily non expressed mitochondrial genes upon intense intraspecific competition,
by linking non expressed fragments to parts which are still needed. We mathematically
modelled protection against gene loss, due to the absence of selection, by this kind of
fragment association. This gives ranges of values for parameters like scrambling extent,
population size, and number of generations still retaining full genomes despite limited
selection. Values obtained seem consistent with those observed. We find a quasi-linear
correlation between dispersal and number of generations after which populations lose
genes, showing that pan-editing can be selected to effectively limit gene loss under
relaxed selective pressure.

1 Introduction

Gene fragmentation and dispersal of fragments are found in various organisms ranging from
Euglenozoa (found in kinetoplastids, euglenoids, and diplonemids) to Alveolates (found in
apicomplexa, ciliates, and dinoflagellates). See (Benne et al., 1986; Gillespie et al., 1999;
Marande and Burger, 2007; Kamikawa et al., 2007; Nowacki et al., 2008; Walker, 2007;
Spencer and Gray, 2011). Gene fragmentation occurs when the RNA is not made from a
single precursor, derived directly from the genome, but it is reconstituted from different
RNA sources. This can also happen without dispersal, i.e. spreading the genes for these
RNA parts over the genome, intermingled with other genes.

*Centrum Wiskunde & Informatica, and University of Amsterdam

fCentrum Wiskunde & Informatica

#University College London

§Corresponding author: Department of Medical Biochemistry, Academic Medical Center, University of
Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; E-mail: D.Speijer@amc.uva.nl



RNA editing, first used to refer to RNA alteration processes in trypanosomatids, en-
tailing extreme mitochondrial (mt) gene fragment dissemination, was discovered in 1986
(Benne et al., 1986). Trypanosomatids are parasitic unicellular organisms belonging to the
kinetoplastid order. Kinetoplastids are characterized by a ’kinetoplast’, the strongly stain-
ing location of all the mt DNA molecules within their single mitochondrion. Kinetoplastid
RNA editing refers to post-transcriptional sequence alteration via insertion and deletion of
uridylate residues at specific sites of mt RNAs.

Trypanosomal mt RNAs are encoded by two types of mt DNA molecules: several thou-
sand small minicircles and a few dozen maxicircles (Scott, 1995; Simpson and Thiemann,
1995; Simpson et al., 2000; Madison-Antenucci et al., 2002). Maxicircles contain ribosomal
RNA genes and genes mostly encoding subunits of respiratory chain complexes. Many
subunit genes need editing upon transcription. Both kind of circles encode guide (g) RNAs
necessary for editing of maxicircle encoded RNAs (Blum et al., 1990).

Very extensive editing is illustrated by the Trypanosoma brucei cox3 gene. Cox3 is easily
found (e.g. by looking at homologies) in Crithidia fasciculata and Leishmania tarentolae:
the transcript undergoes limited editing (e.g. in C. fasciculata only 32 Us are inserted and
2 Us deleted at 14 sites).

The T. brucei cox3 ’gene’ was identified later: its transcript has to be edited overall
(Feagin et al., 1988). While the G, A and C nucleotide sequence is maxicircle derived,
the U nucleotide sequence is generated by editing, using minicircle encoded gRNAs, with
547 Us inserted and 41 Us deleted at 223 sites. The transcript derived from the 'GAC
sequence’ (called the ’cryptogene’ (Simpson and Shaw, 1989)) has less than half the edited
size.

In T. brucei, most of the mt encoded proteins come from such cryptogenes (9 out of
17, with 5 unedited and 3 partially edited transcripts remaining). The extensive editing
of cryptogene transcripts is known as pan-editing (Simpson and Shaw, 1989; Sturm and
Simpson, 1990). The precise molecular mechanisms of editing, using sequential basepairing
between gRNAs and mRNA, are described in (Schnaufer et al., 2003) and references therein
(Madison-Antenucci et al., 2002; Blum et al., 1990; Feagin et al., 1988; Simpson and Shaw,
1989). The consequence of pan-editing is that information necessary for production of
(some) proteins is spread and mixed over the entire mt DNA.

Here, we propose a mathematical model to support the concept (Speijer, 2006; Speijer,
2007) that such gene fragment dispersal can function as a biological adaptation preventing
gene loss caused by intense intraspecific competition, due to selection on growth rate in
limited spaces (e.g. a host). The process lowers the chance that rapidly growing deletion
mutants replace all the more complex, ecologically versatile, organisms, as large deletions
will contain linked ’active’ segments. It thus works to 'preserve by association’. To put
it another way: mt gene scattering prevents the translation of short-term advantages into
long-term disaster.



2 Modelling the effects of mitochondrial gene fragment dis-
persal in changing environments

Our model describes the ‘life cycle’ of the mt genetic material of a trypanosomatid. In the
absence of functional selection we do not distinguish between competition at the levels of
individual mt genomes (e.g. maxicircles) and whole organisms. At the molecular level small
circles outcompete larger circles by faster replication while at the level of the organism,
organisms carrying less mt DNA can also grow faster. At both levels mt deletions will be
selected then: they even reinforce each other. We need to include the following parameters
to determine the relationship between some of them:

1. Population size (s,), 10'9 individuals;

2. Deletion size (1);

3. Probability of a deletion (p), 1075;

4. Level of fragmentation/editing (k);

5. Number of generations in each environment (in the case of parasites ‘host’);
6. Replication advantage of smaller DNA (r(x));

7. Confidence parameter (d) that governs the level of approximation in our second
simulation.

As mitochondrial DNA polymerases are much more error-prone than their nuclear coun-
terparts (see (Larsson, 2010) and references therein), a value of 10~ for the deletion prob-
ability is not unrealistic. We first model the process of replication and deletion in its most
general form, and then simplify it, to enable us to simulate for realistic values of our pa-
rameters. In all our simulations, we assume there are two environments, A and B, e.g. A,
tsetse fly and B, human host. A sequence ’'a’ of base pairs of length n, is necessary for
survival in A and a sequence ’b’ of length ny is needed in B, but not in A. For simplicity
we excluded sequences needed in both (violet segments in Figure 1). Total length of mt
DNA will therefore be n = n, + ny base pairs. We chose n, to represent 65% and n;, 35%
of total mt DNA (~ 23000 basepairs). We assume the parasite to be in environment A.

The level of mt DNA fragmentation for an individual parasite is simply modelled as
follows. The fragmentation and spreading that pan-editing of RNA entails, intertwines
subsequences of ¢ and b modelled by the sequence aibiasbs...apb;. We assume the DNA
and hence this sequence to be circular, so that b; connects with a1, and we call k—1 the level
of fragmentation. Initially, length of subsequence a; is n,/k and length of subsequence b; is
ny/k. We model replication rounds, in which for every round, with probability p, deletion
of DNA with random length [, at a random position, may occur. Any deletion in an ’a’



sequence is lethal. Surviving individuals replicate such, that the smaller their total DNA,
the faster they replicate. This advantage (given as an increased representation in the next
round) is modelled by a function r(z). For example, a complete deletion of 35% (n;) of
the DNA will translate in a 3/2 stronger representation in the next generation.

The process is modelled using a Markov chain approach, with simplifying assumptions
described in the appendix. We study the value ty,ax(k) monitoring the expected number
of generations until no individuals are left with b’ of length n;. Any individual, missing
part of b, can not survive in the ‘next’ environment (B) anymore. The increase of tyax (k)
gives us the added protection that additional fragmentation (k) brings. At level k we have
(nk/k+1)k many states in our Markov chain (see appendix). Realistically, n; is set around
8000 base pairs and k can be over 200, making the Markov chain too big to handle.

By exploiting symmetries and simplifying our model we approximate our Markov chain,
obtaining a manageable model that we can simulate for realistic values of n; and k. An
additional feature of this approximation is parameter d, the confidence level, which allows
us to smoothly interpolate between the simplified and the original Markov chain. Varying
d suggests that already for small values we obtain accurate approximations of the original
process. See appendix and Figure 2.

3 Results obtained by modelling the effects of increasing
mitochondrial gene fragment dispersal

In a first simulation (see Figure 1B) we decided to compare our highly simplified genome
with and without a fragmented gene (k = 2) under partially relaxed selection (when only
part of the genome is needed) with concomitant strong (intraspecific) competition. We
simulated a modest (e.g. in the bloodstream much less of the mt genome is needed)
situation in which most (2/3) of the mt DNA is still necessary for survival (environment
A: ‘tsetse’). Starting with 1019 individuals, we look at the number of generations needed
to reduce the amount of individual organisms that have retained ’ecological flexibility’ (i.e.
they still contain all genetic information to be able to make the switch to another part of
the life cycle) to 1. Without any fragmentation: after 108 generations no organism has the
possibility to switch to the next stage of the life cycle. With 1 split: no such individual
is left after 156 generations (values obtained starting with 108 individuals: 96 and 146
respectively; with 10!? individuals: 119 and 169). See the table below:

Population size
k 10° | 101 10™
1 (no split) | 96 108 119
2 (one split) | 146 156 169




The allowed generation time under periods of partially relaxed selective pressure has
been extended by more than 40%. We next altered the ’simple’ simulation by using a
fixed deletion size for gene fragments (instead of allowing the full range of sizes of our
previous model) while at the same time making it more informative by varying the amount
of gene fragmentation (k, see Figure 1C). This (full Markov chain) simulation gave a
surprising result: we obtained a direct, quasi-linear correlation between the degree of dis-
persal/fragmentation (k) and the number of generations after which a complete population
loses ecological competence (see Figure 2). In other words, the function ty.x(k) has an
almost linear growth rate.

4 Comparing the model to values observed

A triatomine bug (the insect vector used by Trypanosoma cruzi) will contain on average
105 parasites (Kollien and Schaub, 1998); while a bite with the tsetse fly will transmit
0—40,000 (mean, ~ &,000) T. brucei infective metacyclics, giving rise to over 10'° parasites
in a Vervet monkey (Chlorocebus pygerythrus) at peak infection ((Thuita et al., 2008) and
references therein). We chose populations of 108, 10'° and 10'? parasites in our simple
modelling (see the table) and 10'° for our full Markov chain approach. Under the parameter
values of our model the size of the population does not seem of major importance (cf the
table).

We chose to model ~ 65% of the total mt DNA in use, and ~ 35% free from functional
selection (for trypanosomatids in mammalian hosts, much less mt DNA seems essential).
Doubling time in mammals can be 4.5 hours if unimpeded by immune responses, while
infections can be sustained for months. Thus, our model should look at effects over many
generations. In our basic approach we compare only two instances ('no split’ and ’only one
split’), but allow all possible deletion sizes. In the full Markov chain approach we use an
approximation (depending on d) allowing us to model random deletions of varying sizes.

Because we have modelled optimal dissemination (always strictly intermingling consti-
tutively used and conditionally used regions), we tentatively infer that the fragmentation
values of Figure 2 are relevant below 150. Recall that the complete T. brucei required set
of gRNAs for all lifecycles is about 150 (Hong and Simpson, 2003).

Surprisingly, only 77 rapid passages (at least 600 generations) in mice of tsetse fly in-
fective T. brucei already gave rise to a homogeneous population of parasites that could no
longer infect the insect and did not display mt (oligomycin sensitive) ATPase activity any-
more (Hajduk and Vickerman, 1981), demonstrating rapid takeover by mt DNA mutants.
These mutants in the end indeed divided more rapidly than the wildtype in blood but did
not contain large scale mt deletions. This could of course be explained by the fact that
certain parts of the present-day highly dispersed mt genome are still necessary and thus
protect against large scale deletions under these circumstances, as described by our model
of selection for linkage.



Takeover by deletion mutants could thus have been even faster, as mt replication times
are possibly limiting when doubling every 4.5 hrs. This also means (cf. Figure 2) that at
a fragmentation level of between ~ 10 and 20, deletion mutants would contribute about
as much to depletion of the wt population as all other inactivating mutations (> 600
generations). For T. brucei we would expect a fragmentation level of > 20 and << 150,
which seems realistic. However, all T. brucei parameter values are very difficult to estimate
in real life, because:

1. It is not known precisely how little mt DNA is essential in the mammalian host,

2. Population sizes and generation time estimates are complicated by waves of para-
sitemia, reflecting the immune response to alternating variant surface glycoprotein
expression. Very limited mt function and repeating population bottlenecks could
explain why 7. brucei has the most extensive editing observed (see below).

A further conclusion, shedding light on another point of contention (Landweber, 2007;
Speijer, 2008): physical linkage of all mt genes is not essential for the model to work. This
aspect is important when considering the cox1 gene in the parasitic diplonemid Diplonema
papillatum apparently split up in ~ 250-bp fragments, located on individual unlinked DNA
circles (Marande et al., 2005) and the existence of minicircles with only one gRNA in certain
trypanosomatids (though often physically linked).

As the modelling makes clear, it is only reducing the chance of large deletions giving
replication advantages which is essential. Losing a substantial fraction of -one gRNA
encoding- minicircles (a ’large’ deletion) will still compromise viability directly, regardless
of physical linkage. Networks themselves did probably evolve to make takeover by (deletion)
mutants even less likely (Borst, 1991).

5 Evolution of RNA editing: gene fragment dispersal to
counter gene loss?

We model fragment dissemination as advantageous to parasites (Speijer, 2006; Speijer,
2007), but others defend ‘neutral’ models (such as ’Constructive Neutral Evolution’ (Cov-
ello and Gray, 1993; Gray et al., 2010)); see (Lukes et al., 2009; Speijer, 2010; Lukes et
al., 2011; Flegontov et al., 2011; Speijer, 2011). Parasitism is not essential for our model
to function: any free-living ancestor in periodically changing environments adapting its
mt function could favour mt gene fragmentation when encountering strong intraspecific
competition.

Quickly changing environments could also be at the basis of the glycosome (Hannaert
et al., 2003; Gualdron-Lopez et al., 2012). Rapidly changing oxygen levels would lead to
either aerobiosis with mt respiration or anaerobiosis with glycosomal activity for energy
generation in non-parasitic ancestors. For these ancestors, the lack of selective pressure



on the mt genome has been invoked as the raison d’etre for RNA editing before (Cavalier-
Smith, 1997).

The fact that novel kinetoplastids and diplonemids have been found in anoxic deep-
sea basins recently, make such an ancestor more likely (Lara et al., 2009; Edgcomb et
al., 2011). Indeed, despite corrections to the kinetoplastid phylogenetic tree (Moreira et
al., 2004; Katz et al., 2012), pan-editing is still seen as ancestral, originating 500 to 700
million years ago (Lukes et al., 1994; Fernandes et al., 1993). Kinetoplastids are part of
the Euglenozoa (with diplonemids and euglenoids). Interestingly, another form of mt gene
fragmentation occurs in the diplonemid D. papillatum (Marande et al., 2005; Marande and
Burger, 2007), as described above.

Transcript editing has become less extensive in more recently evolved species (e.g. com-
pare cox3 editing in L. tarentolae and C. fasciculata with its pan-editing in T. brucei).
Editing loss results from reverse transcription of (almost completely) edited RNA followed
by homologous recombination of the cDNA with mt DNA. The 5’ and 3’ homology require-
ments of the cDNA would sometimes result in a need for 5’ editing of the 'new’ transcript
encoded by the mt DNA upon recombination. This is actually seen in cox3 and cytb in L.
tarentolae and C. fasciculata (Landweber, 1992).

Another nice example of recent editing domain length reduction during cryptogene
evolution is found in the ND8 gene of three related insect trypanosomatids, again strongly
suggestive of correlations between life cycle complexity and editing extent (see below; Gerasi-
mov et al., 2012). Pan-editing entails a lot of extra complexity and energetic costs, so losing
it is indeed what one would indeed expect, as soon as reduction of life cycle complexity
allows it.

6 Pan-editing counters gene loss

In 1993 Covello and Gray (Covello and Gray, 1993) introduced a general model for the
evolution of different RNA editing forms. RNA editing activity is first acquired by (a
combination of) pre-existing enzymes. Mutations at ’editable’ nucleotide positions in the
genome occur next. Later on, editing becomes essential after fixation by a chance process
in which an altered form replaces the original without a selective advantage. In the case of
kinetoplastid editing this model could in principle explain the emergence of a few ’limited’
editing instances, but it is very hard to envisage how it explains the rapid acquisition of
multiple instances of pan-editing with hundreds of gRNAs.

This model does not identify selective pressure(s) responsible for an active increase of
editing potential. This pressure was postulated to reside in the fact that gene scattering
could protect against loss of temporarily non expressed mt genes during periods of intense
intraspecific competition (Speijer, 2006), by warding off large deletion mutants outcom-
peting wildtype kinetoplastids (see above and Figure 1A). Thus, ecological flexibility is
retained, allowing kinetoplastids to occupy highly diverse (parasitic) niches and undergo



extensive speciation (cf. the repeated evolution of T. brucei strains that can not infect
their insect vectors anymore (Lun et al., 2010)).

Pan-editing seems an effective way of making large deletions improbable. It necessitates
presence of all cognate small gRNAs (containing information for the U sequence) to express
a cryptogene (encoding the "GAC sequence’). These ‘gene fragments’ colonize mt DNA
so that every random large scale deletion will now contain some information still under
selective pressure (Speijer, 2006; Speijer, 2007). The following observations fit our model.

1. Especially transcripts encoding gene products which are crucial in all life cycle stages
should be prone to pan-editing (such as ATP6 and RPS12, encoding components of
the T. brucei mt F1Fo ATPase and ribosome respectively). It is exactly because they
are always required that fragmenting their genes with concomitant spread of cognate
gRNA genes in mt DNA leads to efficient 'mt DNA integrity checkpoints’.

2. The role of gRNAs as such mt DNA integrity checkpoints can also be performed
by evenly distributed tRNA genes. Compare e.g. tRNA genes in human mt DNA
(Anderson et al., 1981) and E. coli’s multiple rRNA operons distributed in such
fashion (Blattner et al., 1997). However, exceptionally, all trypanosomatid mt tRNA
genes are absent, mt tRNAs coming from the cytoplasm (Hancock and Hajduk, 1990).

3. There seems to be a clear correlation between life cycle complexity and amount of
pan-editing, i.e. gene fragment dissemination (see above and e.g. (Gerasimov et
al., 2012). T. brucei, with its highly complex life cycle, still encodes a COX III
cryptogene, much reduced in length (see above), so its loss in the mammalian host
would be less advantageous. Much more importantly, its dispersed gRNA segments
protect parts (encoding NADH dehydrogenase subunits) of the genome not used in
the fly (Speijer, 2006; Speijer, 2007). Thus, gene fragmentation implicit in mt RNA
editing can be seen as an instance of a general tendency to ’evenly’ distribute genetic
information over the genome. In this way large scale deletion of pieces released from
selection becomes impossible, no longer threatening ecological flexibility.

4. Our modelling demonstrates that the number of generations a population retains
individuals with a full mt genome complement increases quasi-linearly with increases
in RNA editing (i.e. with its concomittant gene scrambling). It thus allows positive
selection of small, incremental increases of editing potential under the appropriate
circumstances (e.g. less frequent environment-host exchange).

Constructive Neutral Evolution, ignoring ’evolvability’ aspects tries to explain pan-
editing as resulting from genetic drift and population bottlenecks only, but our model
explains both its rapid spread and current patterns. These patterns correlate not only with
a history of population bottlenecks, but specifically with alternating selection pressures on
mt DNA (Speijer, 2006; Gray et al., 2010; Lukes et al., 2011; Flegontov et al., 2011; Speijer,
2011).



7 Kinetoplastid mitochondrial genome evolution

Every time kinetoplastids readjust to different environments, founder effects can occur.
The observed rapid speciation and development of unexpected, 'weird’ biochemical prop-
erties could then be a natural result. Such founder effects might explain acquisition of
(limited) RNA mt editing/gene fragmentation in Euglenozoa (Walker, 2007) in the first
place. The kind of selection described here would then quickly give pan-editing in lineages
with alternating mitochondrial demands.

Present-day kinetoplastids show an enormous diversity in mt DNA: maxicircles of up to
200 kb, gRNA encoding minicircles of 1-3 kb with only one to several gRNA genes, and 200
kb circles possibly encoding hundreds (Simpson et al., 2000; Maslov and Simpson, 1994;
Blom et al., 2000). Minicircles clearly evolved later, possibly in response to coding capacity
demands of pan-editing. This increased mt DNA size and led to networks combating
minicircle loss (Borst, 1991). As mentioned, over time editing becomes less extensive in
some kinetoplastids (Landweber, 1992;Gerasimov et al., 2012), reflecting the complexity
and overall burden of the elaborate editing system.

8 Conclusion

We have modelled mt gene scrambling, matching it with observations regarding the fre-
quency of pan-editing and the ecology and population sizes of trypanosomatids in which
it occurs. Important modelling parameters include: the population size, the deletion size
(as a percentage of total genome size), the probability of a deletion in each new genera-
tion and the replication advantage value for a deletion. The outcome for every simulation
was the number of generations after which no viable individual was left. We took the T.
brucei lifecycle to deduce fixed values, only varying population size and amount of gene
fragmentation. Population size did not seem a major determinant. Our output correlated
extent of fragmentation/dispersal and increase in number of generations retaining ecologi-
cal competence, which turned out to be a quasi-linear function. The 'fragmentation value’
of T. brucei mt DNA seems to be in the range suppressing large scale deletion population
takeover. To prevent such takeover, condemning parasites to die with their host, a gene
architecture of tremendous complexity evolved. It links survival of genes released from
selection pressure to survival of genes still under such control. Thus, while fragmenta-
tion reduces efficiency it seems to enhance long term ecological success. We are currently
looking at gene fragmentation of Plasmodium falciparum (Feagin et al., 2012) and ciliates
(Nowacki et al., 2011) in light of this mechanism, with only the malaria parasite possibly
fitting the mould.
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A Model

We want to mathematically model the life cycle of genetic material of a parasite. We need
to model the following parameters:

1. Population size (sp);

2. Deletion size;

3. Probability of deletion (p);

4. Level of fragmentation/editing (k);

5. Number of generations in each host;

6. Replication advantage of smaller DNA (r(x));

7. Stop criterion: number of parasites that still have their full DNA and will be able to
survive in a different host.

The model will enable us to determine the relationship between some of these param-
eters.

We will first model the process of replication and deletion in its most general form and
then simplify it to enable us to study/simulate the model more accurately . We assume
there are two environments, in which the parasite lives. We call these A and B. A could
be when the parasite, for example a trypanosome, occupies a tsetse fly and B when it is
in the human host. The level of fragmentation of the mitochondrial DNA of an individual
parasite is modeled as follows. Each parasite has a sequence a base pairs of length n,
necessary to survive in environment A and b of length n; needed in environment B. The
total length of it’s mitochondrial DNA will therefore be n = n, + n; base pairs. For the
remaining we assume that the parasite is in environment A.

The process of editing induces that the base-pairs of a and b are intertwined modeled
as follows by the sequence aibiasbs...apby. We assume that the DNA and hence this
sequence is circular, so that by connects with aq, and we call k£ the amount of fragmentation.
Moreover we assume initially that the length of each subsequence is the same: a; is n,/k
and b; is ny/k.

A.1 Deletion

During each replication cycle deletion of DNA may occur. We will model this by setting
p < 1 the probability that a deletion occurs. When a deletion occurs we model this by
picking uniformly at random a point 1 < position < n on the cyclic DNA and cut out
a uniformly random chosen length 1 <[ < n. Two things may now happen. Either the
resulting smaller circle of DNA misses part of its DNA that is essential for its current
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environment— for example in environment A all DNA in the parts a; are needed and any
deletion in such part will kill the parasite— or the smaller DNA still has all the a; parts
intact and the deletion only removed a part of the B- type DNA. The resulting DNA of a
surviving individual is the sequence a{b] ... a}.bj where for each a] = a; = nq/k and b, < b;;
note that b, may become 0.

A.2 Replication

Next, the surviving individuals replicate in such a way that the smaller their total DNA the
faster they replicate, which translates into more descendants (replication advantage). We
use a function r(x) that models the replication advantage. Let s(x) = Zle b; be the total
size of the B-part (number of B base-pairs) of sequence © = ajb; ...axrb;. Let max, be
the maximum multiplicative replication advantage, individuals who lost all their B-DNA
replicate with a factor max, (e.g. 3), and set min, to be the minimum replication factor,
for individuals who still have their whole DNA intact (e.g. 2).

r(z) = max —s(z) * (Inrax— mrin)/nb (1)

Note that the function r(x) linearly interpolates between max, and min,, depending on
the size of the DNA.

A.3 Simulation

We will need to model both the process of deletion and that of replication. We start by
describing the first.

A.3.1 Deletion

We use a Markov chain to model our process, though the entries will not be probabilities
since they can be larger than 1. A Markov chain is a graph G(E, N), where N is the set
of nodes corresponding to all the possible states of the parasite being alive: the sequences
arb) ... apb), with b} < b;. There is a directed edge from node = to node y in G when
sequence y can be obtained from sequence x via a single deletion. The edges of G are
labeled with the probability that these deletions occur. There are also edges (self loops)
from each node z to itself, with label (1 — p). These self loops represent the probability
that no deletion occurs.

We next construct a matrix D out of our Markov chain G(E, N) of size |[N| % |N| as
follows. The entry D(z,y), is equal to the label of edge (x,y), and 0 when (x,y) is not an
edge in G. The starting state of our process corresponds to all the individuals that have
all their DNA still present. This corresponds to the unit vector vy, with vp(1) = 1 and
vo(i) = 0 for 2 < i < |N|. In other words we fix the first entry of our vector to correspond
to the state where all the DNA is still present. Likewise entry x corresponds to the fraction
of individuals in state z.
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A.3.2 Replication

In order to model the replication process we define the diagonal matrix R(x,z) = r(x).
Multiplication with R corresponds to replicating state x with replication factor r(x). A
single deletion step followed by a replication step is now simply the matrix M = RD.

The vector v/ = Muwvg corresponds to our population after a deletion and replication step
of our process. Note that the vector v' does not have L; norm 1 anymoreﬂ We now need to
take into account the boundary conditions induced by the maximum population size of the
parasites as follows. We would like to view vy and v’ as the probability distributions over the
state space. Initially all the probability mass is on the full DNA state and progressively this
mass flows to other states. We can then interpret the multiplication of v.(7) with the size of
the maximum population s,, s,v¢(i) as the ezpected number of individuals that have DNA
corresponding to state ¢ after ¢ generations. This means that we have to renormalize our
vector: v; = v'/|v'|; in order to make it a probability. This completes one full generation
step of our process, and in general:

M’Utfl

Vp = —————
! |Muvi_11

Since M is a linear map, we may renormalize at the end, so that:
M t’UO

V¢t = 5
¢ ’Mt’l)()h

Note that implicit in M is the value of k, the fragmentation level, which we have omitted
in our notation so far for simplicity. Note that when & grows so does the size of the Markov
chain. Keeping track of this parameter we define for each k:

t

Mgl

Utk

Let tymaz (k) be the maximum ¢ such that spvg (1) > 1. The value tpa. (k) + 1 tells us the
expected number of generations until there are no individuals left that have their full DNA,
at a fragmentation level k. We are interested in the growth rate of this function 4. (k).

B Reduction of the State Space

It is easy to see that at fragmentation level k& we have (ny/k + 1)¥ many states in our
Markov chain. Typically the total size of the mitochondrial DNA of type B will be around
10,000 base pairs and k can be over 200. This means that for these values the Markov chain
becomes way too big to handle. We will first exploit some symmetries in our problem and
then show how we can approximate the Markov chain in order to obtain a more manageable
formulation that we can simulate.

'The L; norm of v, |v]; = Zg‘l |v(7)].
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B.1 Symmetries

Since we are only interested in evaluating the first entry of v, 1, we do not need the infor-
mation of the states a1b] ...ab), with b < b;, we only need to keep track of how many
blocks we have of size 0 < s < np/k. For example the starting state corresponds to the
following tuple with ny,/k+1 entries (k,0, . ..,0), the first entry indicating how many blocks
we have of size np/k, the second how many of size one less and the last how many of size
0. Following this convention, the fully depleted state becomes (0, ..., k). So these are pre-
cisely the states (c1,..., ¢y, /k+1) Such that Z?:b{kH ¢; = k. This corresponds exactly to
the number of multi-sets of cardinality k£ with elements taken from a finite set of cardinality
ny/k + 1. This multi-set coefficient is equal to ((””/ :Hk) and can be bound from below by
((np/k +k)/k)*. This second representation is significantly smaller than our initial set-up,
but still too large for the range of parameters we are interested in. We therefore have to
simplify our process further.

B.2 Simplification

We modeled a deletion of DNA, by randomly picking a position pos in the (circular) DNA
and then remove a piece starting at pos of random length. Individuals survived this deletion
whenever only DNA from within a B-block i was deleted. We now simplify this as follows.
Fix a parameter d, 1 < d < ng, which we will call the confidence level. We will only keep
track for each block i whether it has size axny/(k*d), with 0 < a < d. Whenever a random
deletion left us with a block size

axnp/(kxd) <V, < (a+1)*ny/(kx*d),

we set the block size b, = a * np/(k * d), while keeping the probability of this event the
same ﬂ We thus give slightly more probability to deleting larger parts within block i. We
will see later that this change is not very significant.

For example, setting d = 1, models that whenever a deletion falls within block 4, we
completely remove block ¢ (i.e. it will have size 0). On the other hand for d = ny/k we get
back our old process. Confidence level d thus allows us to interpolate smoothly between
the simplified process and the original process.

For confidence level d, the states of our Markov chain will be d + 1-tuples (c1, ..., ¢c4+1)
such that Zfill ¢; = k. The first entry indicates the number of blocks that have size
ny/k = (np/k * d) x d, the second entry describes the number of blocks that have size
(np/k*d)*(d—1), and the last entry the number of blocks that have size 0 = (np/k*d) *0.

The number of states we have in our Markov chain, with fragmentation k£ at confidence

level d is equal to the number of multi-sets of cardinality k out of a finite set of cardinality
d+ 1, which is (*}9).

2Strictly speaking we should write [a * ny/(k * d)], we approximate this and assume that ny is divisible
by d * k.
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B.3 Transition Probabilities

Here we will make precise the transition probabilities between any pair of states in our
Markov chain. Given any state z = (ci,...,¢c4+1) such that Z;lill ¢; = k. The transition
from z to z, i.e. no deletion occurred, is labeled with (1 — p) *r(x), where r(z) is taken as

in equation (1| with s(x) the size function adapted for these simplified states:

o ny(d—)
S(aj) = Ng + ZCi+1W
=0

Transition from z = (c1,...,cay1) to 2’ = (c},...,cj,,) are only possible if there is an
i < j such that ¢; = ¢; + 1 and ¢; = ¢; — 1, and for all the other indices i’ the states
are the same: ¢y = ¢,. This guarantees that exactly one B-block of size corresponding to
i:np(d+1—1)/(k*d) transforms, by means of a deletion, to a block of size corresponding
to j:np(d+1—7)/(k*d). The probability that this transition occurs turns out to be:

N Z%f ) v (2)

Where m(j, k, d) is the number of ways one can transform a block of length corresponding
to 4, i.e of length ny x (d+ 1 —1)/(k *d), to a block of length corresponding to j, using the
rule of rounding down described in section Note that this number only depends on
j,k, and d and not on ¢. For example if i = 1 and j = 2 this corresponds to the number of
ways one can delete a sequence of length 1 up-to ny/(k * d) in a sequence of length ny/k,
which is equal to

np/k+ (np/k — 1)+ ...+ (np/k —np/(kxd) + 1).

In general this becomes

npx(d+1-(j—1))
kxd

m(j, k,d) = > il

L, npx(d—(i—1))
V="t +1

In equation [2] we divide by s(x)? because each possible deletion has probability s(z)?
to occur at a fixed position and is of a fixed length. Finally we multiply in equation [2| with
p, the probability that a deletion occurs.

C Results

We started by simulating our process with a confidence level of 1. This gives a state
space of size k + 1 with the corresponding simulation matrix of size (k + 1)2. We ran the
simulation with the following parameters: p = 1079, total size of the mitochondrial DNA is
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26+ (10%), with 34% part being of type B. We set the maximum population size s, = 10.
The replication advantage was computed as in equation [l with max, = 3 and min, = 2.
The function tpax(k) when plotted for values of k ranging from 1 to 200 shows a nearly
perfect line, indicating that the advantage of fragmentation is almost linear. We were able
to show rigorously that in the simple case of d = 1 the fragmentation advantage can never
be more than linear, that is, we were able to show a linear upper bound on the function
tmax (k). This was done by studying the spectrum of a simplified 2 x 2 Markov chain.

Next we simulated the same process with increasing confidence values d. These results
show that in each case, for these parameters, we get almost straight lines each one with a
slightly steeper slope. However for successive values of d the increase of the slope appears
to be halving each time. This suggests that already for a small value of d we have a
reasonably good approximation of our original Markov chain.

20



Figure 1: Schematic representation of gene scrambling in organisms alternating between life cycles
with different selective pressures and strong intraspecific competition (A) and of modelling used in
this study (B,C). Inset: kinetoplastids are represented by multicoloured mt DNA circles with 2 or
3 classes of genes: ’green’ genes required in one life cycle (e.g. mammalian blood for T. brucei),
'red’ genes required in another (e.g. Tsetse fly) and ’violet’ genes required in both. Only pres-
ence/absence of selective pressure is important in modelling. Full figure: red (absence of selective
pressure) and green only. Arrow lengths (not to scale) represent number of generations upon which
the population loses ecological competence (tmax(t) of our model). (A) Red genes disappear during
many generations of strong competition. Gene scrambling will slow down this process. (B) Simula-
tions of instances of scrambling over successive generations. In the first simulation we deduce how
many generations more the population is allowed by a split before losing ecological flexibility (rep-
resented by the smaller green circle), using many possible deletions. (C) In the second simulation
we deduce how many generations more retain full flexibility by stepwise scrambling increase, using
complete segment deletions only.
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Figure 2: Quasi-linear correlation between amount of fragments (2-axis, parameter k of our model)
and maximum number of generations upon which the population loses ecological competence (y-
axis; tmax (k) of our model). Inset: close-up of fragmentation levels 1 — 8; inset on the right: colour
code for different confidence levels (d). The higher d, the better the approximation (see appendix).
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