
ScriptButler serves an Empirical Study of PuzzleScript
Analyzing the Expressive Power of a Game DSL through Source Code Analysis

Clement Julia
clement.julia13@gmail.com
University of Amsterdam

Amsterdam, The Netherlands

Riemer van Rozen
rozen@cwi.nl

Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

ABSTRACT
Automated Game Design (AGD) empowers game designers with
languages and tools that automate game design processes. Domain-
Specific Languages (DSLs) promise to deliver an expressive means
for rapidly prototyping and fine-tuning interaction mechanisms
that support rich emergent player experiences. However, despite
the growing number of studies that center around languages for
games and play, few prototypes are ever thoroughly validated and
evaluated in practice. As a result, it is not yet well understood what
the costs, benefits and limitations of DSL formalisms are.

To find out, we investigate to what extent rules, affordances and
play can be related by means of source code analysis. We study
PuzzleScript, a language and online game engine with an active user
community. We reverse engineer PuzzleScript’s design and propose
ScriptButler, a novel tool prototype and engine for its analysis. To
validate our approach, we conduct an empirical study on the quality
of the source code by performing an analysis on a curated collection
of 95 games. Our results show that ScriptButler can identify bugs
and helps relate PuzzleScript rules to game qualities.

CCS CONCEPTS
• Software and its engineering → Domain specific languages;
Integrated and visual development environments; Software verifica-
tion and validation; • Applied computing→ Computer games.

KEYWORDS
automated game design, domain-specific languages, PuzzleScript,
source code analysis, game design tools, reverse engineering

ACM Reference Format:
Clement Julia and Riemer van Rozen. 2023. ScriptButler serves an Empirical
Study of PuzzleScript: Analyzing the Expressive Power of a Game DSL
through Source Code Analysis. In Foundations of Digital Games 2023 (FDG
2023), April 12–14, 2023, Lisbon, Portugal.ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3582437.3582467

1 INTRODUCTION
Digital Games are a powerful means for creating rich interactive
player experiences, e.g., for entertainment, health and learning.

This work is licensed under a Creative Commons Attribution International
4.0 License.

FDG 2023, April 12–14, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9855-8/23/04.
https://doi.org/10.1145/3582437.3582467

Automated Game Design (AGD) aims to automate game design pro-
cesses by providing designers with tools they need for explorative
design, creative tinkering, and iterative improvements. Domain-
Specific Languages (DSLs) are a particular means to give such tools
expressive power, e.g., for improving predictive accuracy and sup-
porting mixed-initiative, co-creative and generative approaches.

DSLs have proven instrumental in raising expert productivity
and improving the code quality in areas such as digital forensics,
robotic engineering, and banking. Costs include learning to use the
DSL and maintaining its digital infrastructure. However, how the
trade off between costs and benefits applies to AGD is not yet well
understood due to a lack of empirical studies on real world exam-
ples [26]. As a result, the merits of DSLs for AGD are still largely
unknown. Therefore, we study which game facets are amenable to
DSL development, which features can express game designs, and
what the benefits and limitations of DSL formalisms are.

To obtain empirical evidence, we investigate to what extent
rules, affordances and play can be related by means of source code
analysis. In particular, we study PuzzleScript, an established DSL
with an active user community. Developers have created a wide
variety of puzzle games whose sources are available online. This
presents a research opportunity. We pose two research questions:

(1) What can be observed about the quality of PuzzleScript
source code in terms of a) volume in source lines of code
(SLOC); of b) objects, collision-layers, win-conditions and
levels; and c) rules, interactivity, affordances and play?

(2) What kind of games can PuzzleScript express, and which
game elements, language features, and usage patterns do
these games have in common?

To answer these questions, we conduct mixed-method research.
First, we reverse engineer PuzzleScript in Section 2. We recover its
design by reading manuals, studying its sources, and dissecting ex-
amples. Using the insights we obtain, in Section 3, we then design a
novel tool prototype called ScriptButler, a multi-stage compiler, an-
alyzer, engine that 1) facilitates studying PuzzleScript source code;
and 2) supports designing games with immediate feedback in its
IDE. Finally, we validate our approach and answer our questions by
conducting an empirical study on the quality of a curated collection
of 95 PuzzleScript games in Section 4. This paper contributes:

• An analysis of the PuzzleScript language and its engine.
• ScriptButler, a novel tool for PuzzleScript analysis.
• An empirical study on the software quality of 95 games.

Our results indicate that PuzzleScript is a powerful DSL, and
that ScriptButler serves its purpose as a code analysis platform well.
By uncovering the sources of PuzzleScript’s expressive power in
particular, we also gather evidence on the merits of DSLs for AGD
in general. Next, we introduce PuzzleScript and discuss its design.

https://orcid.org/0009-0003-4667-5812
https://orcid.org/0000-0002-3834-682X
https://doi.org/10.1145/3582437.3582467
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3582437.3582467

FDG 2023, April 12–14, 2023, Lisbon, Portugal Julia and van Rozen

Background

lightgreen green

11111

01111

11101

11111

10111

1(a) Object definition

(b) Rendered object

Figure 1: Defining a grassy background object

2 PUZZLESCRIPT
PuzzleScript is an online textual language and game engine for cre-
ating puzzle games designed by Stephen Lavelle [17]. PuzzleScript
has an active community of developers and enthusiasts who have
constructed many different classical and original games using a
surprisingly little amount of code. We study its source code in order
to learn what gives it such expressive power. However, a suitable
means for automating an empirical study is currently unavailable.

Therefore, we investigate the technical requirements to facilitate
its source code analysis and transformation. We apply the research
method of reverse engineering to recover its design. We perform
the following activities. First, we study PuzzleScript’s documenta-
tion [18], and read articles and books describing the language [2].
Section 2.1 summarizes our findings and introduces the language.

Next, we analyze PuzzleScript’s codebase for recovering design
intentions from the sources. We dissect the language by analyzing
its compiler and features. We subject the game engine, the system
under study, to various inputs to observe its behavior. In particular,
we run the games bundled in its distribution to observe the effects
of language features in isolation. Section 2.2 describes our findings
about the engine’s design. Finally, Section 2.3 discusses the technical
requirements for a novel prototype that enables an empirical study.

2.1 Introduction to the PuzzleScript Language
PuzzleScript games are tile maps populated by objects, named
sprites of five by five pixels that can move and collide. The game
logic is defined by a set of rewrite rules. Game definitions consist
of a sequence of sections whose meaning we introduce one by one.
Just like the online game engine, we introduce the notation using
the Simple Block Pushing Game created by David Skinner.

2.1.1 Prelude. Programs begin with a metadata section called pre-
lude. Authors specify the game’s title, author name and homepage.

title Simple Block Pushing Game

author David Skinner

homepage www.puzzlescript.net

The manual describes in detail how other tags adjust the user
interaction, various timings and visual parameters [18]. We do not
discuss these tags here. Instead, we introduce them when the need
arises. Sections other than prelude each begin with their respective
keyword, optionally surrounded by separator bars (hyphens).

2.1.2 Objects. The OBJECTS section defines a series of game assets
called objects, sprites of 5x5 pixels that can move and collide.

Figure 1 shows an example of a background object. Its definition,
shown in Figure 1a, begins with its name, followed by colors asso-
ciated with numbers. The sprites directly below have a 5x5 literal

notation that references these colors. When the engine renders the
object, this results in the visual sprite displayed in Figure 1b.

Games typically have objects defining background, players, ob-
stacles, enemies and exits. Objects appear in levels, can be combined
to form larger structures, and are manipulated using rules.

2.1.3 Legend. In the LEGEND section, programmers define how sym-
bols used in level descriptions can refer to objects to create levels.

= Wall

P = Player

* = Crate

@ = Crate and Target (example aggregate symbol)

O = Target

One symbol can represent multiple objects called aggregates,
e.g., the @ symbol in the preceding example. However, aggregates
are only valid if those objects appear in different layers, i.e. objects
that do not collide. An alternative (less clean) notation is writing
the symbol directly behind the object name in the objects section.

In the same snippet, we also introduce comments. Comments
appear on one or more lines between left and right parentheses.

2.1.4 Sounds. The engine defines built-in sounds that can be asso-
ciated with rules and actions. Because sounds support experiences
but do not directly influence rules, we do not discuss them further.

2.1.5 Collision Layers. Each game consists of surfaces representing
a z-axis on the map, e.g., for background and foreground objects.
The COLLISIONLAYERS section describes how objects appear on maps
in a sequence of vertically separated collision layers. Objects in the
same layer can collide with each other.

Background (background layer)

Target (support layer)

Player , Wall , Crate (foreground layer)

In the example, we see three layers. The background, support and
foreground layers each appear on one line. The last line determines
that player, wall and crate objects can collide with eachother.

2.1.6 Rules. In the RULES section specifies game mechanics and
run-time behaviors as a sequence of rewrite rules. Players can
interact with these rules using the arrow keys and the action key x.
The following rule describes a crate pushing mechanism.

[> Player | Crate] -> [> Player | > Crate]

The rule’s left hand side is a pattern describing the condition
that must hold before applying the rule. We can read: “if the player
moves in the direction of a crate”. Of course, a collision would nor-
mally prevent this movement. However, the rule’s right hand side
describes a different result of the collision. We can read: “then the
player and the crate both move directionally”.

The omnidirectional > operator is short-hand for applying the
rule in every direction. The single rule from the example therefore
translates into a group of four directional rules that work in an up,
down, left and right manner. Internally, the system processes:

down[Crate|up Player] -> [up Crate|up Player]

+ down[down Player|Crate] -> [down Player|down Crate]

+ right[Crate|left Player] -> [left Crate|left Player]

+ right[right Player|Crate] -> [right Player|right Crate]

Rules are processed in groups specified using the + operator.
Matching can be restricted by prefixing the rule a direction keyword.

ScriptButler serves an Empirical Study of PuzzleScript FDG 2023, April 12–14, 2023, Lisbon, Portugal

####..

#.O#..

#..###

#@P..#

#..*.#

#..###

####..

(a) Level definition (b) Rendered level

Figure 2: Level of the Simple Block Pushing Game

These rules trigger until the system cannot match and apply them
any more, i.e. as a fixpoint computation.

Other short-hand operators include horizontal for rules that
work in the directions left and right, and vertical for both up and
down. In our analysis of game rules, in Section 4.3, we will discuss
additional mechanisms and more advanced patterns.

2.1.7 Win conditions. The WINCONDITIONS section describes a set
of conditions that work on sets of objects. They must each be true
for a player to win. In the example, every crate must be on a target.

all Target on Crate

Perhaps somewhat counter-intuitive, this condition specifies that
given the set of all targets, crates must occupy the same coordinates.
After all, crates and targets are in different collision layers.

Aside from intersections of sets, conditions can also test for the
empty set with the no keyword or a non-empty set using the some

keyword. Midas poetically describes its win condition as follows.
some Love (Awwww!)

When a condition cannot become true anymore, the player gets
stuck, which is the PuzzleScript way of losing a game. Normally,
players can undo moves, unless the noundo tag prevents it.

2.1.8 Levels. The LEVELS section describes a sequence of game lev-
els and messages for mixing information with puzzle progressions.
Like objects, levels have a literal notation describing a tile map
composed from legend symbols. Figure 2 shows an example. Each
level has a regular width and height. Rows each have the same
length. However, successive game levels need not be the same size.

By default, PuzzleScript games show an entire level. The tags
zoomscreen WxH and flickscreen WxH can be used to show smaller
areas of themap.Moving the player-controlled object between areas
shifts this view. This concludes our limited introduction. Next, we
discuss the design and implementation of its engine.

2.2 Overview of the PuzzleScript Engine
Here we report a partially recovered design. PuzzleScript’s game
engine is based on HTML5/css and JavaScript. The sources, released
under the MIT license, are available on GitHub [18]. The repository
contains 27 JavaScript files whose volume in source lines of code
(SLOC) amounts to 15 KLOC1. The SLOC metric includes lines with
code and curlies, but not lines that are empty or comments only.

The core of the engine consists of the three files shown in Table 1.
The other sources provide features not directly tied to PuzzleScript’s
design such playing sounds, and saving and exporting games. Next,
we discuss the parsing, compilation and run time phases.
1We use cloc (http://cloc.sourceforge.net) to obtain these numbers.

Table 1: Main files of PuzzleScript’s engine

file LOC description

parser.js 1065 responsible for the parsing phase.
compiler.js 2340 responsible for the compilation phase
engine.js 2405 responsible for the run time phase.

2.2.1 Parsing. Developers create games using a browser-based
IDE. This IDE uses CodeMirror, a versatile library specifically made
for editing code in the browser. PuzzleScript has a line-based parser
that processes the input line by line. The parser is a state machine
composed of a collection of functions that produce an Abstract Syn-
tax Tree (AST). In addition, this machine also performs contextual
analysis. The IDE’s syntax coloring adapts to the source code.

2.2.2 Compilation. Once a user presses “run” the game compiles
and potential errors appear in the bottom right. The title screen for
the game appears in the top right. The compiler prepares internal
data structures the engine processes during the run-time phase.
During the compilation, the compiler shows error messages as they
are detected, and it aborts when a certain threshold is reached. This
threshold is necessary to prevent an error cascade, a high number of
dependent or “ghost” errors. By setting a low threshold, developers
can address errors one by one. Error messages have a line number
but omit symbol, column number and range.

2.2.3 Run time. The running game is displayed in the IDE’s central
area on the right. During play, the engine interprets the compiled
rules as described in Section 2.1. The top bar of the IDE provides ad-
ditional options for sharing and exporting the game as a standalone
application and helpful links for seeking support.

2.2.4 Debugging. The verbose_logging tag activates logging in the
output area of the IDE. When playing the game, this area displays
the sequence of button presses and rule activations. Hovering over
the events in the sequence shows the associated game state and
the rule’s effects by showing directional arrows. Clicking on an
activated rule moves the cursor to the associated source line.

2.2.5 Level editor. Levels can be edited textually or visually us-
ing the online engine’s interactive level editor. Programmers can
generate animated GIFs from the editor by pressing CTRL+K.

2.3 Requirements Analysis
Here we discuss to what extent the design fulfils our research
needs. The source code analysis of PuzzleScript requires treating
the sources as data. Unfortunately, the JavaScript implementation
is not very suitable for this. Language workbenches provide the
specialized features we need, e.g., for expressing analyses, matching
data structures and generating reports [10]. To study PuzzleScript,
we need a research prototype that leverages this technology.

An empirical study of PuzzleScript entails analyzing and com-
paring syntax trees of many programs. Therefore, we require bulk
parsing. However, the JavaScript parser provides at most one tree
at a time. To study PuzzleScript at scale, we need a grammar that
parses all PuzzleScript. Given a grammar in extended Backus-Naur

http://cloc.sourceforge.net

FDG 2023, April 12–14, 2023, Lisbon, Portugal Julia and van Rozen

Game
Designer IDE

ScriptButler

Web GUI

Parser Post-
Process

Static
Checker

Dynamic
Analyzer Engine Compiler

writes code in

sends
code to

provides
syntax

coloring in

sends error
messages on

code to

runs game in

input
commands

into

displays
debugging
info to

sends error
messages on
gameplay to

Figure 3: ScriptButler framework, components, data flow

(EBNF) form, we can obtain a more concise and maintainable lan-
guage specification. In addition, an EBNF grammar would greatly
simplify the analysis of its concrete and abstract syntax.

Analyzing the source code quality requires an exhaustive analy-
sis of errors and warnings. Expressing the design as a multi-phase
compiler helps prevent error cascades that pollute the data. En-
abling root-cause analysis requires that each error messages has an
exact source location that includes column numbers and range.

Next, we introduce ScriptBulter, our solution to these challenges.

3 SCRIPTBUTLER
Here we describe ScriptButler, a novel multi-purpose tool capable of
parsing, validating, and running PuzzleScript games. Our goals are
two-fold. The first, is to give game designers a better understanding
of how changes to the code affect the game quality by providing
immediate feedback in the IDE. The second is to create an extensible
research platform for conducting empirical research by automating
source code analyses. We use the Rascal language workbench to
create ScriptButler [13]. Rascal helps generate an IDE at a low cost2.

Figure 3 illustrates the framework. In the following sections, we
explain how the multi-phase compiler and its components work.
For a more detailed description, we refer to Julia [12].

3.1 Parser and post processing
For bulk parsing, we create a grammar that can parse every Puzzle-
Script program. At a mere 106 SLOC, our grammar is significantly
smaller the original, which counts 1065 SLOC of hand-written
JavaScript. However, perhaps surprisingly, the grammar itself is not
necessarily easier to extend and maintain. Eliminating ambiguities
in the grammar has been extremely challenging because Puzzle-
Script evolved as a line-based language. However, our grammar
now passes every test. It is a central part of ScriptButler, and can
also be reused for creating other tools for PuzzleScript.

The post processing phase simplifies the syntax trees for analysis
in successive phases. By analyzing colors of sprites and modifying
the concrete syntax trees, it also offers syntax coloring in the IDE.
2https://www.rascal-mpl.org

Check object

Log duplicate Log invalid
reference

Log in-
valid colors

Log in-
valid sprite

[has unique
name]

[else] [else]

[has no
reference]

[has valid
reference]

[else]

[else]

[has valid
colors]

[has sprite]

[else]

[has valid
sprite]

[else]

Figure 4: Activity diagram for checking objects

Check win
condition

Log invalid
length

Log invalid
reference

Log invalid
on-reference

Log invalid
object stack

Log invalid
condition

[has valid
length]

[else]

[has valid
reference]

[else]

[has no
on-clause]

[else]

[else]

[has valid
on-clause] [else]

[objects
can stack]

[condition
exists]

[else]

Figure 5: Activity diagram for checking win conditions

Player

black orange white blue

.000.

.111.

2222222222

.333.

.3.3.

1(a) Sprite not 5x5

Crate

orange green

00000

0...0

0...0

0...0

00000

1(b) Unused color

####

#.O#..

#..###..

#@P..#

#..*

#..###

####..

1(c) Uneven level

[Eyeball| ... |Player] -> [> Eyeball | Player]

1(d) Missing ellipsis in right hand side of rule

[> Player|Crate] -> [> Player] [> Crate]

1(e) Unexpected rule part in right hand side of rule

Figure 6: Errors and warnings detected by the checker

3.2 Static checker
The static checker performs a contextual analysis on simplified
syntax trees and generates human readable error messages. Com-
pared to the JavaScript implementation, which has 117 unique error
messages, this checker maintains just 72 message types.

There are two reasons for this. First, parse errors need not be
covered by the checker. Second, the design of the checker is more
concise, requiring fewer messages for the same purpose.

Messages have three levels of importance. First, error-level mes-
sages indicate failures or unintended side effects that make running
the game impossible. Warnings indicate dead or unoptimized code.
Information-level messages involve advise on gameplay quality and
best practices. Message categories are: 1) Invalid: a component is
not well-formed, making it unusable; 2) Undefined: a reference/ob-
ject with that name is never defined but is used; 3) Existing: a
reference/object with that name already exists, but the code is try-
ing to define it again; 3) Unused: a warning, the code defines a
reference/object/sound but never uses it; 4) Misc: few other errors.

https://www.rascal-mpl.org

ScriptButler serves an Empirical Study of PuzzleScript FDG 2023, April 12–14, 2023, Lisbon, Portugal

Figures 4 and 5 show UML Activity Diagrams that illustrate the
data flow in the analysis of objects and win conditions. Figure 6
shows selected examples of how the IDE shows error and warn-
ing messages. Compared to the original implementation, we add
checks for mutually exclusive win conditions, impossible layering,
duplicate rules, and unused legend, objects and colors.

3.3 Dynamic analysis and play
The focus of this paper is on static analysis. Therefore we only
briefly describe the components for dynamic analysis and play.

3.3.1 Compiler. The compiler generates low-level data structures
for a game’s rules, levels and objects. We ensure the source of errors
can always be identified by tracking the origins of each structure.
By propagating the textual source locations onto these structures,
we can enable debugging and generate appropriate run-time errors.

3.3.2 Engine. The engine processes rule activations and transforms
the objects appearing in the level’s layers.

3.3.3 Dynamic analyzer. The dynamic analysis checks for: 1) In-
stant victory, a win condition is fulfilled from the start; 2) Impossible
victory: a win condition requires objects that are not present and
not created by any rules; 3) Rule similarity: compiled forms of rules
are structurally similar; and 4) Unusable rule: prerequisites for a
rule must be spawned by another rule. Developers can use this
information to assess if play and win scenarios are appropriate.

3.3.4 Game UI. A web-based game UI is rendered using Rascal’s
Salix framework. Its debug view enables inspecting layers and rules.

3.4 Implementation and testing
ScriptButler is implemented in the Rascal language workbench [13].
The core consists of 9 files and 2317 SLOC, significantly less than
the original. Its test suite verifies the system’s main functions. The
sources are available on GitHub under the 3-clause BSD license3.

In this paper, we leverage ScriptButler in an empirical study. For
further validation, we refer to a case study that applies ScriptButler
to an evolution scenario of a game called Timothy’s Adventure [12].

4 ANALYZING PUZZLESCRIPT
We perform an empirical study on PuzzleScript. The motivation for
this analysis is twofold. First, we investigate the expressiveness of
PuzzleScript by studying its source code. Second, we aim to validate
ScriptButler and evaluate its use in answering research questions.

4.1 Methodology
The analysis of PuzzleScript requires a well-defined methodology
that ensures an accurate and reproducible information extraction,
categorization and comparison. We define the scope, formulate
research questions, select sources and devise a review protocol.

4.1.1 Scope. We study PuzzleScript and automate this work with
ScriptButler. In particular, we wish to learn what can be observed
about the quality of existing games by analyzing their sources. Our
goal is not to perform a critical analysis, or to construct a precise

3https://github.com/vrozen/ScriptButler

ontology that enables distinguishing between games and play. Here,
the PuzzleScript source code itself is the subject of the study.

4.1.2 Questions. We address the following research questions:
(1) What can be observed about the quality of PuzzleScript

source code in terms of a) volume in source lines of code
(SLOC); of b) objects, collision-layers, win-conditions and
levels; and c) rules, interactivity, affordances and play?

(2) What kind of games can PuzzleScript express, and which
game elements, language features, and usage patterns do
these games have in common?

4.1.3 Sources. We exclusively study the GitHub repository of Puz-
zleScript [18]. This source contains a curated collection of 95 high
quality games that use different facets of the language and demon-
strate its expressive power. Games include distinct recreations of
existing video games (or demakes), feature demos, tutorials, and
original creations that various authors have submitted to Stephen
Lavelle. The repository contains the original source code, which
makes it particularly suitable for our study.

The inclusion criterion is: we include games whose sources de-
scribe rules, have at least one level and have gameplay. The exclu-
sion criterion is: we exclude duplicates, test cases and demos that
illustrate one or more features in isolation. These games can easily
be identified. Most have a single level and a lack of win conditions.

4.1.4 Review protocol. We review the sources and create a data
set by subjecting each game to the following review protocol. The
following quantitative analyses help answer Question 1.

Source code. For each game, we calculate its volume in terms of
Source Lines of Code (SLOC), comment lines and blank lines. We
parse the sources with ScriptButler, and record parse errors. Each
game has a title and author. We identify distinct origins.

Objects. Players control an avatar, connect puzzle blocks, place
props, or select and move board pieces. We record the number of
objects, which object the player controls and what its name is.

Collision layers. Each game𝑔 has a list of collision layers 𝑙 (𝑔). We
record the number of layers |𝑙 (𝑔) |. We introduce a collision metric
that defines a game’s maximum number of collisions 𝑐 (𝑔), defined
as the sum of the upper bound of collisions between two objects in
each layer, or more formally 𝑐 (𝑔) = ∑

𝑙𝑖 ∈𝑙 (𝑔) (
|𝑙𝑖 |∗(|𝑙𝑖 |−1))

2)

Win-conditions. Common win-conditions include reaching an
exit, collecting all objects of a certain kind. Other games let players
freely explore without a predefined goal.

Levels. We record the amount of levels to estimate game content.

Contextual analysis. We run ScriptButler’s checker and record
how many warnings and errors it can identify.

Verbs, mechanisms, rules and affordances. We record how many
rules a game has. In addition, we perform a qualitative analysis
based on Koster’s theory of fun [14]. Koster has proposed Verbs,
a simple visual game design language for expressing player affor-
dances and reasoning about fun, delight, flow and social facets [15].

We apply this conceptual lens without its visual diagrams. We
play each game and interpret affordances. We relate verbs to rules

https://github.com/vrozen/ScriptButler

FDG 2023, April 12–14, 2023, Lisbon, Portugal Julia and van Rozen

Table 2: Syntax errors identified by ScriptButler

Title Author Parse error reason Action

Ponies Jumping
Synchronously

vytah Extra ‘)’ on line 349. Removed ‘)’

PUSH lonebot -
demake
by rmmh

Missing ‘)’ on line 644. Added ‘)’

Des Poseidons
Dreizack

Stephen
Lavelle

Unexpected ‘=’ in object
and in level on lines 511
and 834.

Replaced ’=’
by ‘?’

Heroes of
Sokoban

Jonah
Ostroff

Missing line break after
level on line 433.

Added line
break.

and actions players can take to exert influence over in-game objects.
For instance, players can move objects using arrow keys. They can
push, pull or place objects. Actions include, e.g., shoot, teleport,
explode. Gravity enables falling. A snake mechanism grows a line.

4.1.5 Categorization. We discuss what the games have in common
in Section 4.3. From the above analyses we distill categories. We
inspect the source code to in order to learn if games with similar
affordances also have similar rules, thereby answering Question 2.

4.2 Results
4.2.1 Inclusion. Of the 95 descriptions we exclude 28 demos, one
duplicate and a very large test case. The duplicate is: It Dies in
the Light by Christopher Wells. Easy Enigma is a large test case
(1432 SLOC) that covers many language features. We have used it
to improve our grammar. We report results for 65 included games.
The analysis of the source code reveals the following.

4.2.2 Volume. The volume of PuzzleScript game descriptions ranges
from tiny, e.g., Notsnake by Terry Cavanagh at just 50 SLOC to very
large, e.g., The Saga of the Candy Scroll by Jim Palmeri at 737 SLOC.
Figure 7a shows a box plot that illustrates the distribution of vol-
ume in SLOC over the 65 included games. A game’s volume rarely
exceeds 500 SLOC, indicating a concise notation.

In addition, authors use blank lines for improving the readability.
Therefore, the sources contain many blank lines, approximately 5%
on average. We find many commented out lines in relatively few
games. Upon closer inspection, these are usually commented out
levels. Explanations of the source code are much more rare.

4.2.3 Parsing. ScriptButler parses every syntactically correct spec-
ification. However, we identify four games that have syntax errors,
listed in Table 2. We divide these errors into three categories.

First, incomplete comments, require matching opening and clos-
ing parentheses. Second, incorrect use of the reserved keyword ‘=’
in object or level definitions, requires replacing this symbol by an-
other. Finally, we require a line break after each level definition. This
is good programming practice but also serves as a disambiguation
measure in the grammar. In comparison, PuzzleScript’s line-based
parser only warns the programmers not to use reserved symbols as
legend. We use the parse trees we obtain in the following analyses.

Table 3: Authors who contributed at least three games

author ct. contributions

increpare 12 Tutorials, demakes and original creations by
Stephen Lavelle, the creator of PuzzleScript.

Jonah Ostroff 4 Heroes of Sokoban I, II and III.
lexaloffle 3 Love and pieces, neko puzzle, Zen puzzle garden.
David Skinner 3 Microban and simple block pushing games.

Table 4: Collision layers found in game descriptions

layers ct. analysis

2 4 Simple background/foreground division.
3 16 One support layer, e.g., crate targets.
4 15 Two support layers
5 14 Complex layering system.
6 13 Complex layering system.

> 6 7 Very complex layering system.

50

737

162

285

404

SL
O
C

0

100

200

300

400

500

600

700

800

(a) Volume in SLOC

3

39

62

7

18

29ob
je
ct
s

0

10

20

30

40

50

60

70

(b) Object count

1

94
106

187

5
19

44

ru
le
s

0

20

40

60

80

100

120

140

160

180

200

(c) Rule count

Figure 7: Box plots illustrating how volume, objects and rules
are distributed over the source code of included games

4.2.4 Authors. A total number of 38 authors contribute at least one
game. Table 3 shows the four most prolific authors who contribute
at least three games. In addition, 8 authors contribute two games
and 27 authors contributed one, indicating distinct origins.

4.2.5 Objects. Relatively simple games have up to ten objects.
Games with more objects are usually fully fledged and complete
experiences. Figure 7b shows a box plot that illustrates the distribu-
tion of object counts over the 65 games. Even very complex sources
rarely exceed thirty objects.

4.2.6 Collision layers. Most games have between two and six col-
lision layers, three being the most common, as shown in Table 4.
Games have a background layer and a foreground layer containing
player controlled objects. In addition, one or more support layers
can contain items, teleport pads, pathways, destinations, etc.

The collision metric usually yields scores between one and three.
Fifteen games whose scores are above ten are indeed collision-
heavy. Of course, many objects cannot collide because they do not
move or do not appear in levels together. As a result, our collision
metric is likely an overestimate of actual collisions.

ScriptButler serves an Empirical Study of PuzzleScript FDG 2023, April 12–14, 2023, Lisbon, Portugal

Table 5: Win-conditions found in game descriptions

cond. ct. analysis

0 8 Free exploration.
1 39 Simple positive win-condition.
2 12 Dual win-condition, e.g., multiple sequential tasks.
3 6 Complex win condition.

Table 6: Games with many rules

game author rules complexity analysis

Threes Benjamin Davis 187 Tetris-like shape compo-
sition ’combining threes’.

Robot Arm increpare 106 Controlling a robot arm
to catch apples.

Coin Counter – 94 Complex number shape
manipulation maze.

Memories of
Castle Mouse

Wayne Myers 93 Complex puzzle dungeon
with many side-effects.

4.2.7 Win-conditions. The number ofwin-conditions usually ranges
from zero to three, as shown in Table 5. One condition specifying
the winning game state is usually enough. Additional conditions
may be needed for performing more taks in a specific order. De-
scriptions without win-conditions imply free exploration.

4.2.8 Rules. We observe large differences in the amount of rules
games have. Figure 7c shows the distribution of rules over games,
in the same way we have illustrated volume and objects.

PuzzleScript’s expressive power stems from the fact that few
rules can concisely express playful affordances. One in five games
has only one or two rules, one third has five rules or less, and
still half have ten or fewer rules. However, it is not generally the
case that rules and affordances can be mapped one to one. Often,
multiple rules express one type of action with contextual effects.

Several complex games stand out. Table 6 shows games with a
particularly high rule count. The causes of the complexity differ
from game to game. For instance, composite shape manipulation
or Tetris-like mechanisms can require many rules, but also games
that have many actions and side-effects.

4.2.9 Contextual Analysis. Despite the high quality of the sources,
ScriptButler identifies several potential issues. The main reason is
the strictness of its checker. In comparison, the online engine is
more forgiving. Most of the errors and warnings appear in just 25
games, whereas 28 games have no errors or just one, indicating an
enormous difference in code quality. Many of the errors pertain to
reserved symbols, and many of the warnings indicate dead code.

4.2.10 Levels. Unsurprisingly, we find that with some exceptions,
volume usually indicates game content, i.e. lengthier game descrip-
tions contain more levels or larger ones.

4.2.11 Verbs. Despite the concise notation, rules can express a
wide variety of game mechanics. We interpret the gameplay and
inspect the code of each game. Table 7 shows the verbs we identify
and in at least three games. The next section discusses the game
mechanics in more detail.

Table 7: Verbs and affordances

verbs ct. mechanism and affordance

move, walk, shift 55 move an avatar or block between tiles
reach, hug, exit, leave 27 reach a tile, avatar or exit
push 17 push an object by colliding
collect, take, obtain 8 obtain an item or object at its location
jump, climb 6 move an avatar up in a side-view
fall 6 fall due to gravity pulling down
skate, slide, run, roll 6 move an object along a line until it collides
switch, toggle, cast 6 activate an item in place
match, remove 6 match objects and remove the pattern
place, put, drop 5 put an object or piece in a place
float, fly 4 delay gravity after jumping
lose, give, rid 4 get rid of an item or object
dig, fill, extend 4 make a path to reach a location
combine, glue 4 combine objects into a composite shape
select 4 select a puzzle piece or avatar
repel 4 repel another object
pull 3 pull an adjacent object directionally
remove, cancel, kill 3 an object disappears on impact
move synchronous 3 move directionally with another object
attract 3 attract another object
redirect, bounce 3 redirect an object through a collision
grow 3 grows objects at anx avatar’s location
shoot 3 activate object that directionally collides

4.3 Categorization
Here we distill categories with common pieces of code and rule pat-
terns associated with verbs, affordances and gameplay. We illustrate
these categories game summaries and code snippets.

4.3.1 Map orientation. Game levels can be oriented in a top-down
or side-view manner. Top down views (90%) orient levels as viewed
from above, portraying dungeons, mazes, or puzzles. Alternatively,
side views orient the level such that height and gravity play a role,
e.g., in platform games or puzzles with falling pieces.

4.3.2 Platformer. Platform games orient levels in a side view of
the map. Players control an avatar and reach platforms by jumping,
teleporting, climbing and falling or other means. The end-goal is
usually reaching the exit or collecting an item by occupying the
same space. Table 7 reveals six games whose verbs indicate gravity.
Falling and jumping are central to these games. The code reveals
common rules that operate in the DOWN and UP direction. For instance,
gravity on Crates in Lime Rick as defined as follows.

DOWN [Crate | No Obstacle] -> [| Crate]

Midas (platform game). In Midas (Fig. 8c) the player has to lose
the Midas’ touch on water before they reach their loving partner.
However, collapsing gold platforms impede Midas’ movements.

4.3.3 Snake. Snake is a classical video game genre whose rules
involve moving a snake-head through a maze as its body grows.
Originally, the snake becomes a rigid body that limits its movements.
We identify several snake games with similar rules.

FDG 2023, April 12–14, 2023, Lisbon, Portugal Julia and van Rozen

(a) Cute Train (b) Chaos Wizards (c) Midas (d) Kettle (e) Lunar Lockout

(f) Coin Counter (g) Lime Rick (h) IceCrates (i) CastleMouse (j) Led Challenge

Figure 8: Screenshots illustrating a wide variety of PuzzleScript Games

Notsnake. In Notsnake, a top-down game by Terry Cavanagh,
the player is a snake whose goal is to completely erase its own tail.
However, traversing background creates a new tail instead.

[> Player | No Trail] -> [Trail | Player]

[> Player | Trail] -> [| Player]

Lime Rick. Lime Rick by Tommi Tuovinen (Fig. 8g) is a platform
game in which the snake has to reach a red piece of food. However,
its head can only move in one direction four spaces before it has to
switch direction. The crawling pattern reminds of a limerick.

Dungeon Janitor. In Dungeon Janitor by Farbs, the player has to
clean a top-down dungeon infested by slime creature that leaves
slime in its wake. However, the head of this creature can continue
crawling from any slime-infested area. The goal is cleaning all slime
by trapping the creature in a corner. Slime grows as follows.

(Grow Slime)

[Head | NO Slime NO Wall NO Player] -> [Head | Slime]

4.3.4 Sokoban. Sokoban is a classical video game and genre where
the player acts as a warehouse keeper. The four games called
Sokoban each revolve around moving crates into places by pushing,
pulling or otherwise shifting the location of the crates, and reaching
certain locations. Levels contain a series of puzzles that require the
player to deduce how to use the available space without getting
stuck. Pushing is a very common mechanism.

(Push Crate)

[> Player | Crate] -> [> Player | > Crate]

Sokoban is surprisingly complex, and has been the subject of
complexity research and motion planning problems [8], and con-
tinues to be a subject for planning algorithms [11].

4.3.5 Adventure. By default, maps are fully visible. We identify
seven extensible top-down views, indicated by keywords zoomscreen
and flickscreen keywords and WxH dimensions. These maps,
which are partially hidden, enable visiting smaller areas of larger
levels one by one, revealing details as part of an exploration or an
adventure. Players progress through puzzles, messages and quests.

Closet and the Castle (top down, storytelling). This game by Hes-
kHwis and Holly Hatter centers around game narrative. The player
explores a house containing various pieces of furniture and appli-
ances. By interacting with these objects, and reading messages, they
learn what motivates their character. When they finally reach the
car outside, the goal of leaving this house for good becomes clear.

Legend of Zokoban. In The Legend of Zokoban by Joshua Minor,
the player navigates a top-down dungeon populated by “baddies”
that can catch them. By obtaining a sword, players can instead
best the baddies. Pushing rocks on water opens a path to different
dungeon areas, and enables reaching the dungeon’s exit.

Chaos Wizards. In Chaos Wizards (Fig. 8b), a top-down dungeon
crawler, players have to use wizard abilities to clear the path and
reach the exit, e.g., by teleporting and causing explosions.

Cute Train. In Cute Train by Mark Wonnacott, the player can
explore an island by driving a train on a railway track. By flipping
switches, the tracks direct the train to different parts of the island.
The player decides what the goal is.

4.3.6 Puzzle block games. Puzzle block games revolve around shift-
ing, pushing and moving puzzle pieces or blocks into place. Unlike
crates in Sokoban-likes, these blocks are composite structures. The
rules usually involve collision effects, or gluing blocks together. Al-
though gravity can play a role, in the examples top-down views are
more common. In some cases, blocks arranged in special patterns,
such as rows, remove those blocks to make space for other blocks,
in a way similar to Tetris. We give four distinct examples.

In Kettle (Fig. 8d the police have to move the crowd into a desig-
nated area. Each level shows increasingly grim messages.

In Led Challenge (Fig. 8j), the goal is turning leds on by pushing
wires and leds near a power unit. Beware of the electric current.

In Threes, the player has to combine matching blocks of threes
by colliding them. Combining blocks raises the score.

In Coin Counter (Fig. 8f), collecting coins changes the shape of
a maze. The goal is reaching the exit, and not losing one’s footing.

ScriptButler serves an Empirical Study of PuzzleScript FDG 2023, April 12–14, 2023, Lisbon, Portugal

4.3.7 Board games. In board games, the tile map is a board which
contains pieces that can be selected for making moves. However,
selection mechanisms are relatively hard to express.

In Lunar Lockout (Fig. 8e) the goal is getting the captain to the
destination by strategically colliding with helper pawns.

Similarly, in Bouncers, the player ensures balls reach the exit by
first placing bouncer pieces in strategic places.

4.3.8 Directional collisions. Instead of moving an object just one
tile at a time, some games continue the movement until the object
collides. Associated verbs we identify are skate, roll and run. We
give two examples of games with such movements.

In Ice crates (Fig. 8h), the player skates across an ice court. They
reach the destination by colliding with boundaries and crates.

In Memories of Castle mouse (Fig. 8i), Wayne Myers recounts
memories of the original game. The goal is letting running mice
escape trough exits on the boundaries of a castle. Mice fear cats, cats
fear dogs, etc. Each level the player controls a different animal that
runs directionally, scaring other animals that also run in response.

4.3.9 Synchronousmovement. Instead of controlling just one avatar
or block, some games let players control multiple at the same time.
Of course, each of the object occupies its own space and encoun-
ters separate collisions. We count four games with synchronous
movements, e.g., Ponies jumping synchronously. The verbs attract
and repel indicate other kinds of synchronicity, e.g., By your side.

In Ebony and Ivory, players move two synchronous red things
in white and black spaces. By pushing, they can extend white and
black spaces such that the red things move adjacent to each other.

5 DISCUSSION
We have conducted mixed-method research. Here we discuss the
benefits, limitations and threats to validity of our approach.

5.1 Reverse engineering approach
The key advantage of reverse engineering is one can redesign soft-
ware for new purposes. In the case of PuzzleScript, the tradeoff
between the costs and the benefits is positive. Of course there are
also risks. We may have overlooked important details, made in-
correct assumptions or misinterpreted design decisions. Overall,
through reverse engineering, we have been able to construct our
own prototype that satisfies additional requirements.

5.2 ScriptButler
We have proposed ScriptButler as a novel multi-purpose tool ca-
pable of parsing, validating, and running PuzzleScript games. Our
method, design research, requires that we iteratively design, im-
plement, test and improve our prototype in practice. This process
is ongoing. For accurate results, verifying and validating the tool
itself is essential. Despite our best efforts in testing, undoubtedly
some bugs remain that could affect the results of Section 4.

In addition, we have validated ScriptButler in an empirical study
on high quality source code that covers many language features.
However, its focus is solely on the static analysis of complete games.
This may not be a good indicator for use by developers in improving
and debugging the source code as it evolves. Julia describes an
evolution scenario that investigates how its feedback can help, also

using dynamic analyses [12]. Finally, we have not yet conducted a
user study to validate ScriptButler’s usability.

5.3 Empirical study
We have conducted an empirical study of PuzzleScript source code
that consists of two parts, a quantitative and a qualitative analysis.

5.3.1 Method. We have defined a precise method to ensure accu-
rate and reproducible quantitative results. By using ScriptButler to
automate the data analysis, we can account for quality. We have
made ScriptButler and the data of the study available on GitHub4.

5.3.2 Scoping the area of interest. We have scoped the area of
interest narrowly by selecting a single source of high quality games.
As a result, there may be a selection bias. Adding additional sources
could uncover a wider design space.We have opted not to do so. The
repository contains diverse show cases by many different authors.

5.3.3 Rules, complexity and quality. Rules are a prime indicator of
a game’s complexity but usually just take up a fraction of the code.
However, a game’s complexity is not exclusively determined by its
rules. We acknowledge that rigid bodies, collision layers, and the
levels, that also determine how the rules work.

5.3.4 Verbs. In our qualitative analysis we have relied on our own
ability to interpret the games, but of course, gameplay is highly
personal. As a result, the analysis of verbs, and our categorization
may be biased towards our own views and understanding. We
acknowledge someone elsemight interpret the gameplay differently,
and may not use the same verbs to describe the playful affordances.

A game’s mechanisms are not always immediately clear. For
instance, in Poseidon’s Dreizack we initially interpreted whales
that spout water as a laser-guided security system. Inspecting the
code has revealed the author’s intentions and the rule’s effects.

5.3.5 General results. Caution is advised when generalizing the
results. An infamous example is the long-standing assumption of
a strong linear correlation between Cyclometic Complexity and
SLOC, which has been directly contradicted by Landman et al. [16].
By requiring root-cause analysis that relates metrics to the source
code, we ensure the results can be traced back to empirical evidence.

6 RELATEDWORK
Here we give an overview that relates our mixed-method approach
to existing research areas, methods, approaches and tools.

6.1 Automated Game Design
Automated Game Design (AGD) is a research area that proposes and
applies various techniques to automate game design processes [22],
e.g., algorithms, procedural content generation, and human com-
puter interaction. Cook describes the need for a software engineer-
ing discipline for AGD [7]. In a comprehensive survey of languages
and tools for game design and development, van Rozen identifies
PuzzleScript as one of 108 languages in over 1400 academic publi-
cations [26]. The study systematically maps related work, research
areas and languages, and distills fourteen research perspectives,

4https://github.com/vrozen/ScriptButler

FDG 2023, April 12–14, 2023, Lisbon, Portugal Julia and van Rozen

including one on AGD that identifies opportunities for advancing
area. We refer to that study for summaries of game DSLs [26].

Several works aim to relate game mechanics to meaning. Sum-
merville et al. propose Gemini, a system for analysis and generation
of a game’s mechanics [24]. Dormans describes prescriptive pat-
terns for Machinations, a visual notation for game economies [9]
which has evolved into a DSL with a pattern-based editor [25].

6.2 Empirical Software Engineering
Empirical software engineering uses empirical research methods to
prove or falsify hypotheses about real-world software phenomena.
Examples include user studies, analysis of comments, and mining
software repositories. Chen et al. study software clones in open
source game software [6]. Lee et al. study the impact of game
modifications (mods) on the code quality [19].

Our approach is part of the source code analysis and manipula-
tion domain [13], which leverages meta-programs to analyze the
qualities of other programs [10]. To the best of our knowledge, our
empirical study on a game DSL is the first of its kind.

6.3 PuzzleScript
We have introduced PuzzleScript in Section 2 as output of the
reverse engineering method. Here we describe other related work.

Educational applications include teaching game design [5] and
programming in PuzzleScript [2]. Many games can be found online5.
Several games appear on Itch.io6. Finally, a branch of the main
sources adds several features, notably a solver that attempts to beat
games automatically7. In contrast, ScriptButler is not a branch.

PuzzleScript has been used in case studies in technical games
research. For instance, Lim and Harell present an approach for auto-
mated evaluation and generation of PuzzleScript video games and
propose two heuristics [20]. Naus and Jeuring propose a DSL for
expressing rule-based problems and use generic search algorithms
to solve these problems [21]. Osborn et al. introduce PlaySpecs, reg-
ular expressions for specifying and analyzing desirable properties
of game play traces, sequences of player actions.

6.4 Tiny Online Game Engines
Warren identifies the area of “tiny online game engines” and exam-
ines three: Twine, PuzzleScript, and Bitsy [27]. The examination
include the engine’s interface, its design philosophy, a sampling
of games, and information gathered from users. Our works have
in common that we aim for better tools for game development.
However, the methodologies differ. Our mixed method comprises
reverse engineering, design research and an empirical study of the
source code. Interviewing users is not part of this work.

6.4.1 Bitsy and Twine. Twine is an open-source tool for telling
interactive, nonlinear stories8. Bitsy is “a little editor for little games
or worlds” by Adam Le Doux et al.9. The creation environment of-
fers documentation, a room editor, an object editor, a color palette

5https://philschatz.com/puzzlescript/ – last visited November 8th 2022
6https://itch.io/games/made-with-puzzlescript – last visited November 8th 2022
7https://github.com/Auroriax/PuzzleScriptPlus/ – last visited November 8th 2022
8https://twinery.org – last visited November 26th 2022
9https://make.bitsy.org (last visited November 23rd 2022)

and import/export functions. The interface does not require pro-
gramming experience, which may help beginners. One avatar, and
multiple tiles, sprites and items, their dialogues and behaviors can
each be created through menus. Exporting games results in a single
HTML file with data and large quantities of JavaScript. Unlike puz-
zleScript, Bitsy lacks a textual DSL that enables off-line analyses.
Instead, the rules are integrated in the menus. As a result, it is not
straightforward to reproduce this study on Bitsy.

6.5 Patterns, ontologies and typologies
Björk et al. have created a game design pattern catalogue that relates
game rules and gameplay [3]. Our work represents first steps in cre-
ating an executable pattern catalogue for PuzzleScript. Ontologies
and typologies categorize a game’s elements in order to critically
analyze and distinguish their parts [1, 28]. From an ontological per-
spective, describing additional facets of user interaction and player
experience may prove useful for relating rules and affordances.

7 CONCLUSION
Automated Game Design studies how to empower game designers
with languages and tools that automate game design processes. We
have investigated to what extent rules, affordances and play can be
related by means of source code analysis of DSLs. In particular, we
have studied PuzzleScript, an established DSL with an active user
community and many available sources.

We have addressed the following questions: 1) what can be ob-
served about the quality of PuzzleScript source code in terms of
a) volume in source lines of code (SLOC); of b) objects, collision-
layers, win-conditions and levels; and c) rules, interactivity, af-
fordances and play?; and 2) what kind of games can PuzzleScript
express, and which game elements, language features, and usage
patterns do these games have in common?

To answer these questions, we have conducted mixed-method
research that contributes: 1) an analysis of the PuzzleScript language
and its engine; 2) ScriptButler, a novel tool for PuzzleScript analysis;
and 3) an empirical study on the software quality of 95 games.

Our results indicate that PuzzleScript is a powerful DSL and that
ScriptButler serves its purpose as a source code analysis platform
well. Although ScriptButler is not yet thoroughly validated as a
tool for AGD, its IDE also supports creating games by providing
immediate feedback on the code quality. By uncovering the sources
of PuzzleScript’s expressive power in particular, we also gather
evidence on the merits of DSLs for AGD in general. PuzzleScript is
a valuable asset in learning how to create better game design tools.
Ultimately, research on game DSLs can help advance AGD.

7.1 Future work
We have identified design patterns in Section 4.3 whose analysis
may be automated. Future work includes studying how Feature
Models [4, 23] can express PuzzleScript’s design space, and how
these models support pattern-based procedural content generation.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback and
for their suggestions that helped improve this paper. We also thank
Daria Polak for proofreading this paper.

https://philschatz.com/puzzlescript/
https://itch.io/games/made-with-puzzlescript
https://github.com/Auroriax/PuzzleScriptPlus/
https://twinery.org
https://make.bitsy.org

ScriptButler serves an Empirical Study of PuzzleScript FDG 2023, April 12–14, 2023, Lisbon, Portugal

REFERENCES
[1] Espen Aarseth and Pawel Grabarczyk. 2018. An Ontological Meta-Model for

Game Research. In Proceedings of the 2018 DiGRA International Conference: The
Game is the Message, DiGRA 2018, Turin, Italy, July 25–28, 2018. Digital Games
Research Association. http://www.digra.org/digital-library/publications/an-
ontological-meta-model-for-game-research/

[2] Anna Anthropy. 2019. Make Your Own PuzzleScript Games! No Starch Press.
[3] Staffan Björk, Sus Lundgren, and Jussi Holopainen. 2003. Game Design Patterns.

In Digital Games Research Conference 2003, 4-6 November 2003, University of
Utrecht, The Netherlands. http://www.digra.org/digital-library/publications/
game-design-patterns/

[4] Filipe M. B. Boaventura and Victor Travassos Sarinho. 2019. A Feature-Based
Approach to Develop Digital Board Games. In Entertainment Computing and
Serious Games - First IFIP TC 14 Joint International Conference, ICEC-JCSG 2019,
Arequipa, Peru, November 11–15, 2019, Proceedings (LNCS, Vol. 11863). Springer,
175–186. https://doi.org/10.1007/978-3-030-34644-7_14

[5] Alexander Card, WengranWang, Chris Martens, and ThomasW. Price. 2021. Scaf-
folding Game Design: Towards Tool Support for Planning Open-Ended Projects
in an Introductory Game Design Class. In IEEE Symposium on Visual Languages
and Human-Centric Computing, VL/HCC 2021, St Louis, MO, USA, October 10-13,
2021. IEEE, 1–5. https://doi.org/10.1109/VL/HCC51201.2021.9576209

[6] Yaowen Chen, Iman Keivanloo, and Chanchal Kumar Roy. 2014. Near-miss Soft-
ware Clones in Open Source Games: An Empirical Study. In IEEE 27th Canadian
Conference on Electrical and Computer Engineering, CCECE 2014, Toronto, ON,
Canada, May 4–7, 2014. IEEE, 1–7. https://doi.org/10.1109/CCECE.2014.6901018

[7] Michael Cook. 2020. Software Engineering for Automated Game Design. In IEEE
Conference on Games, CoG 2020, Osaka, Japan, August 24–27, 2020. IEEE, 487–494.
https://doi.org/10.1109/CoG47356.2020.9231750

[8] Joseph Culberson. 1997. Sokoban is PSPACE-complete. Technical Report TR97-02.
University of Alberta.

[9] Joris Dormans. 2012. Engineering Emergence: Applied Theory for Game Design.
Ph. D. Dissertation. University of Amsterdam.

[10] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma, Remi
Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex
Loh, Gabriël D. P. Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen, Eugen
Schindler, Klemens Schindler, Riccardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin
van der Vlist, Guido Wachsmuth, and Jimi van der Woning. 2013. The State of
the Art in Language Workbenches – Conclusions from the Language Workbench
Challenge. In Software Language Engineering - 6th International Conference, SLE
2013, Indianapolis, IN, USA, October 26–28, 2013. Proceedings (LNCS, Vol. 8225).
Springer, 197–217. https://doi.org/10.1007/978-3-319-02654-1_11

[11] Dieqiao Feng, Carla P. Gomes, and Bart Selman. 2020. A Novel Automated
Curriculum Strategy to Solve Hard Sokoban Planning Instances. In Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, December 6–12, 2020, virtual.

[12] Clement Julia. 2022. ScriptButler: Leveraging Meta-Programming Principles to
facilitate the Software Evolution of Digital Games. Master’s thesis. University of
Amsterdam. https://scripties.uba.uva.nl/search?id=record_52797

[13] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. 2009. RASCAL: A Domain
Specific Language for Source Code Analysis and Manipulation. In Ninth IEEE
International Working Conference on Source Code Analysis and Manipulation,
SCAM 2009, Edmonton, Alberta, Canada, September 20-21, 2009. IEEE Computer
Society, 168–177. https://doi.org/10.1109/SCAM.2009.28

[14] Raph Koster. 2013. Theory of Fun for Game Design. O’Reilly Media, Inc.
[15] Raph Koster. 2016. The Limits of Formalism. In Presentation delivered at the

BIRS Workshop on Computational Modeling in Games. Raph Koster’s Website.
https://www.raphkoster.com/games/presentations/the-limits-of-formalism/

[16] Davy Landman, Alexander Serebrenik, Eric Bouwers, and urgen J. Vinju. 2016.
Empirical Analysis of the Relationship between CC and SLOC in a Large Corpus
of Java Methods and C Functions. J. Softw. Evol. Process. 28, 7 (2016), 589–618.
https://doi.org/10.1002/smr.1760

[17] Stephen Lavelle. 2015. PuzzleScript. https://github.com/increpare/PuzzleScript
Last visited October 26th 2022.

[18] Stephen Lavelle. 2015. PuzzleScript Documentation. https://www.puzzlescript.
net/Documentation/documentation.html Last visited October 26th 2022.

[19] Daniel Lee, Dayi Lin, Cor-Paul Bezemer, and Ahmed E. Hassan. 2020. Building
the Perfect Game - An Empirical Study of Game Modifications. Empir. Softw. Eng.
25, 4 (2020), 2485–2518. https://doi.org/10.1007/s10664-019-09783-w

[20] Chong-U Lim and D. Fox Harrell. 2014. An Approach to General Videogame
Evaluation and Automatic Generation using a Description Language. In 2014 IEEE
Conference on Computational Intelligence and Games, CIG 2014, Dortmund, Ger-
many, August 26–29, 2014. IEEE, 1–8. https://doi.org/10.1109/CIG.2014.6932896

[21] Nico Naus and Johan Jeuring. 2016. Building a Generic Feedback System for
Rule-Based Problems. In Trends in Functional Programming - 17th International
Conference, TFP 2016, College Park, MD, USA, June 8–10, 2016, Revised Selected
Papers (LNCS, Vol. 10447). Springer, 172–191. https://doi.org/10.1007/978-3-030-
14805-8_10

[22] Mark J. Nelson and Michael Mateas. 2007. Towards Automated Game Design.
In AI*IA 2007: Artificial Intelligence and Human-Oriented Computing (LNCS,
Vol. 4722). Springer Berlin Heidelberg, 626–637. https://doi.org/10.1007/978-
3-540-74782-6_54

[23] Victor Travassos Sarinho, Gabriel S. de Azevedo, and Filipe M. B. Boaventura.
2018. AsKME: A Feature-Based Approach to Develop Multiplatform Quiz Games.
In 17th Brazilian Symposium on Computer Games and Digital Entertainment,
SBGames 2018, Foz do Iguaçu, Brazil, October 29 –November 1, 2018. IEEEComputer
Society, 38–47. https://doi.org/10.1109/SBGAMES.2018.00014

[24] Adam Summerville, Chris Martens, Sarah Harmon, Michael Mateas, Joseph C.
Osborn, NoahWardrip-Fruin, and Arnav Jhala. 2019. FromMechanics toMeaning.
IEEE Trans. Games 11, 1 (2019), 69–78. https://doi.org/10.1109/TCIAIG.2017.
2765599

[25] Riemer van Rozen. 2015. A Pattern-Based Game Mechanics Design Assistant.
In Proceedings of the 10th International Conference on the Foundations of Digital
Games, FDG 2015, Pacific Grove, CA, USA, June 22–25, 2015. Society for the Ad-
vancement of the Science of Digital Games. http://www.fdg2015.org/papers/
fdg2015_paper_79.pdf

[26] Riemer van Rozen. 2020. Languages of Games and Play: A Systematic Mapping
Study. Comput. Surveys 53, 6 (Dec. 2020). https://doi.org/10.1145/3412843
Interactive version: https://vrozen.github.io/LoGaP/.

[27] Jonah Warren. 2019. Tiny Online Game Engines. In Decision and Game Theory
for Security - 10th International Conference, GameSec 2019, Stockholm, Sweden,
October 30 – November 1, 2019, Proceedings (LNCS, Vol. 11836). Springer, 1–7.
https://doi.org/10.1109/GEM.2019.8901975

[28] José P. Zagal, Michael Mateas, Clara Fernández-Vara, Brian Hochhalter, and
Nolan Lichti. 2005. Towards an Ontological Language for Game Analysis. In
Digital Games Research Conference 2005, Changing Views: Worlds in Play, June
16–20, 2005, Vancouver, British Columbia, Canada. http://www.digra.org/digital-
library/publications/towards-an-ontological-language-for-game-analysis/

http://www.digra.org/digital-library/publications/an-ontological-meta-model-for-game-research/
http://www.digra.org/digital-library/publications/an-ontological-meta-model-for-game-research/
http://www.digra.org/digital-library/publications/game-design-patterns/
http://www.digra.org/digital-library/publications/game-design-patterns/
https://doi.org/10.1007/978-3-030-34644-7_14
https://doi.org/10.1109/VL/HCC51201.2021.9576209
https://doi.org/10.1109/CCECE.2014.6901018
https://doi.org/10.1109/CoG47356.2020.9231750
https://doi.org/10.1007/978-3-319-02654-1_11
https://scripties.uba.uva.nl/search?id=record_52797
https://doi.org/10.1109/SCAM.2009.28
https://www.raphkoster.com/games/presentations/the-limits-of-formalism/
https://doi.org/10.1002/smr.1760
https://github.com/increpare/PuzzleScript
https://www.puzzlescript.net/Documentation/documentation.html
https://www.puzzlescript.net/Documentation/documentation.html
https://doi.org/10.1007/s10664-019-09783-w
https://doi.org/10.1109/CIG.2014.6932896
https://doi.org/10.1007/978-3-030-14805-8_10
https://doi.org/10.1007/978-3-030-14805-8_10
https://doi.org/10.1007/978-3-540-74782-6_54
https://doi.org/10.1007/978-3-540-74782-6_54
https://doi.org/10.1109/SBGAMES.2018.00014
https://doi.org/10.1109/TCIAIG.2017.2765599
https://doi.org/10.1109/TCIAIG.2017.2765599
http://www.fdg2015.org/papers/fdg2015_paper_79.pdf
http://www.fdg2015.org/papers/fdg2015_paper_79.pdf
https://doi.org/10.1145/3412843
https://vrozen.github.io/LoGaP/
https://doi.org/10.1109/GEM.2019.8901975
http://www.digra.org/digital-library/publications/towards-an-ontological-language-for-game-analysis/
http://www.digra.org/digital-library/publications/towards-an-ontological-language-for-game-analysis/

	Abstract
	1 Introduction
	2 PuzzleScript
	2.1 Introduction to the PuzzleScript Language
	2.2 Overview of the PuzzleScript Engine
	2.3 Requirements Analysis

	3 ScriptButler
	3.1 Parser and post processing
	3.2 Static checker
	3.3 Dynamic analysis and play
	3.4 Implementation and testing

	4 Analyzing PuzzleScript
	4.1 Methodology
	4.2 Results
	4.3 Categorization

	5 Discussion
	5.1 Reverse engineering approach
	5.2 ScriptButler
	5.3 Empirical study

	6 Related Work
	6.1 Automated Game Design
	6.2 Empirical Software Engineering
	6.3 PuzzleScript
	6.4 Tiny Online Game Engines
	6.5 Patterns, ontologies and typologies

	7 Conclusion
	7.1 Future work

	Acknowledgments
	References

