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Abstract: Given the fundamental role of renewable energy assets in achieving global temperature
control targets, new energy management methods are required to efficiently match intermittent
renewable generation and demand. Based on analysing various designed cases, this paper explores a
number of heuristics for a smart battery scheduling algorithm that efficiently matches available power
supply and demand. The core of improvement of the proposed smart battery scheduling algorithm is
exploiting future knowledge, which can be realized by current state-of-the-art forecasting techniques,
to effectively store and trade energy. The performance of the developed heuristic battery scheduling
algorithm using forecast data of demands, generation, and energy prices is compared to a heuristic
baseline algorithm, where decisions are made solely on the current state of the battery, demand, and
generation. The battery scheduling algorithms are tested using real data from two large-scale smart
energy trials in the UK, in addition to various types and levels of simulated uncertainty in forecasts.
The results show that when using a battery to store generated energy, on average, the newly proposed
algorithm outperforms the baseline algorithm, obtaining up to 20–60% more profit for the prosumer
from their energy assets, in cases where the battery is optimally sized and high-quality forecasts are
available. Crucially, the proposed algorithm generates greater profit than the baseline method even
with large uncertainty on the forecast, showing the robustness of the proposed solution. On average,
only 2–12% of profit is lost on generation and demand uncertainty compared to perfect forecasts.
Furthermore, the performance of the proposed algorithm increases as the uncertainty decreases,
showing great promise for the algorithm as the quality of forecasting keeps improving.

Keywords: battery control model; battery scheduling algorithm; energy management system;
microgrid control method; renewable energy; forecasting; smart grid management; battery energy
storage system; time-of-use tariff; state of charge

1. Introduction

The renewable energy market is growing at a rapid pace and its development is fun-
damental for reaching global climate targets [1–4]. Yet, advancement is not solely made by
investments and expansion of renewable energy generation capacity, but also by thoroughly
understanding existing energy needs in order to optimize efficiency and ultimately reduce
the carbon intensity of generation and gain benefits for prosumers (small-scale consumer
with microgeneration and/or storage) [5,6]. In order to achieve this, it is vital to understand
current and future energy needs, which is a challenging task due to increasing uncertainties
in supply and demand from new loads (e.g., electric vehicles [7,8]) and intermittent gen-
erations from renewable sources. Prosumer energy needs, together with the growing use
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of dynamic energy tariffs by utility providers, have underpinned the critical importance
of battery storage technologies coupled with agile and accurate forecasting algorithms for
efficient scheduling.

Furthermore, whether within mature energy markets or developing energy commu-
nities, the role of consumers and prosumers is of increasing importance due to several
factors, across social, economic, and environmental metrics. Due to fuel poverty and the
criticality of energy access, there is a need to improve accessibility to energy services.
Economically, citizens are exposed to geopolitical influences on energy costs [9], amplifying
fuel poverty and underpinning economic inflation. Environmentally, 73.2% of the global
carbon emission in 2016 was by the energy sector, including the use of energy in buildings,
industries, and transport. Moreover, the generation of electricity and heating in residential
and commercial buildings made up 17.5% of global carbon emissions [10]. Therefore, it is
necessary to accelerate the local generation and storage of renewable energy.

Considering a household or a community with either individual or shared renewable
energy assets, e.g., solar panels or wind turbines and battery storage, a battery schedul-
ing algorithm should handle the matching of demand and supply of energy efficiently,
i.e., maximizing renewable energy usage and minimizing energy imports (and costs) from
the central grid. Besides this battery scheduling problem, there are many potential key
factors in the setup of the renewable energy assets, e.g., battery type or size and individual
versus shared assets, that play a role in the overall efficiency and profit gained by a battery
scheduling algorithm [11–13].

As forecasting techniques continuously evolve and the solution space for efficiently
managing energy using battery scheduling algorithms remains suboptimally covered [14,15],
this paper studies and defines an efficient heuristic battery scheduling algorithm that can
be coupled to any forecasting technique to maximize the prosumer profit. Ultimately,
exploiting future knowledge should optimize the matching of supply and demand and
lead towards improving the efficiency of renewable energy assets.

The particular model of the energy management system that will be considered
consists of the following components:

• Solar photovoltaic(s) or wind turbine(s) encapsulated as generated power;
• Battery energy storage system (BESS) of a community or household;
• Household or community represented as prosumer demand;
• Central grid attachment via some dynamic energy plan.

Prosumer demand can be covered by power from local renewable generation, discharg-
ing the battery or importing energy from the grid. The battery can export energy to the grid
and charge via locally generated power and, moreover, excess generated power can also be
sold directly to the grid. Note that, in this work, we focus on using the battery to integrate
local renewable generation, not price arbitrage with the grid; hence, experimenting with
charging via imports from the grid is left to future work.

The outline of this paper is as follows: Section 2 covers related work that allows the
proposed smart battery scheduling algorithm to be compared and reviews the feasibility of
forecasting techniques being able to deliver. Section 3 explores and defines the heuristics
of the proposed smart battery scheduling algorithm. Using the materials and methods
presented in Section 4, an assessment of the proposed smart battery scheduling algorithm
by conducting various experiments will be demonstrated in Section 5 and debated in
Section 6. Finally, Section 7 presents the conclusions and highlights future work.

2. Related Work

To be able to compare the heuristic approach of the smart battery scheduling algorithm
and assess the feasibility of the forecasting techniques being able to deliver, several related
research efforts are discussed in this section.

Facing the financially driven challenge of managing energy in certain battery systems
has resulted in the evolution of many different techniques to achieve performance. There



Energies 2023, 16, 2425 3 of 26

are two main types of approaches to battery scheduling algorithms proposed in the prior
literature: optimization-based and heuristic-based.

Linear programming (LP) has been extensively studied for the battery scheduling
problem. Torres et al. [16] consider the optimal energy scheduling of photovoltaic (PV)
and conventional energy generations in addition to a battery, and linear programming is
applied to optimize the operational cost. Luna et al. [17] and Elkazaz et al. [18] formulate
the optimal day-ahead energy scheduling of a microgrid with renewable energy sources
and a battery as a mixed-integer linear programming (MILP). Similarly, Nguyen et al. [19]
use MILP to minimize the day-ahead operational cost of a multi-microgrid system with a
demand response program. Furthermore, Couraud et al. [20] also study residential battery
scheduling using MILP, considering operational cost as well as battery depreciation cost.
Given perfect data (i.e., perfect forecasts with no uncertainty), LP approaches can be used
to determine the optimal schedule, however, they require a wide lookahead window, suffer
from high computational complexity, and often assume accurate knowledge of future gen-
eration and demand. There do exist some robust optimization methods under uncertainty:
for example, Zhang et al. [21] consider PV output uncertainty in the energy scheduling
of a multi-microgrid system. However, only fixed tariffs have been considered in their
work. Other optimization methods include dynamic programming [22], quadratic program-
ming [23,24], genetic algorithm [25,26], particle swarming [26–29], honey bee mating [30],
as well as machine learning techniques, most notably reinforcement learning [31–33].

Though the optimization and scheduling methods have been shown to reduce import-
ing energy as well as the total energy costs, they can be computationally costly and often
rely on an accurate forecast of energy generation and demand. Rule-based algorithms are
another branch of battery scheduling methods that have the advantage of being highly
efficient and adaptive to incoming input (generation, demand). Fitting in this direction,
and representing a key starting point for this work is the model of Norbu et al. [34], which
presented a highly efficient and easily implementable heuristic-based battery schedul-
ing algorithm. The algorithm can be depicted as a concise decision tree that determines
whether to interact with the battery, i.e., charge or discharge, or interact with the central
grid, i.e., sell or buy energy, based on the current residual power and battery state—see
Figure 1. The approach performs well; when not considering (forecasted) future data and
using static pricing, it delivers solid results. Yet, heuristic-based methods can further benefit
from incorporating predicted forecasts. Ouedraogo et al. [35] show that their proposed
rule-based battery scheduling method with predicted forecasting of 6 h ahead using ARMA
achieved 94.9% relative performance to the baseline LP method.

currently more generated power than prosumer demand?

battery not empty and
battery power available? battery power available?

no yes

buy discharge + buy

no yes

sell charge + sell

no yes

battery not full and

Figure 1. Simplified illustration of heuristic-based energy management strategy by Norbu et al. [34].

Given that Section 5 aims to assess the stability of the proposed smart battery schedul-
ing algorithm not by using any actual forecasting technique but by using a range of various
uncertainties based on actual data, it is critical to justify the feasibility of various uncer-
tainties by denoting the ability of several techniques (with different complexities) used to
forecast certain types of data, as explored below.

The related body of literature regarding wind predictions is as follows. O’Brien
and Ralph [36] found an error of 25–30% in true wind speeds for forecasts of 30 h by
evaluating the performance of a wind-forecasting system that utilised a Numerical Weather
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Prediction (NWP) model and was operated in a similar environment as the data used in
this paper. Forbes and Zampelli [37] describe the accuracy of wind energy forecasts in the
UK and found an energy-weighted RMSE of 32% for forecasting a day ahead. The energy
trading market is leading (also in complexity) and can accurately forecast 36 h ahead at
high frequencies using ensemble learning as described by Suárez-Cetrulo et al. [38], which
shows several techniques obtaining a scaled RMSE and scaled mean absolute error of less
than 1 × 10−3. Another promising long-term prediction model is demonstrated by Torabi
et al. [39], a cascade neural network that is able to improve one-day-ahead forecasts by 84%
and one-week-ahead predictions by 73% based on the RMSE of other already progressive
prediction models. Skittides and Früh [40] propose a wind forecasting tool based on
Principal Component Analysis (PCA), which is trained on past data to predict wind speeds
using an ensemble of dynamically similar past events, and show good performance in
forecasting the wind up to 24 h ahead.

Forecasting energy consumption based on electricity consumption data provides
promising results, presumably due to the nature of repetitive and alike human behaviour
causing stable patterns in the data, of 62.5 h ahead with a prediction error of around
10% using the TBATS model (which forecasts time series based on multiple seasonalities)
according to Gellert et al. [41]. The combination of weather and load prediction alone can
already decrease operation costs substantially using a hybrid machine learning strategy of
Faraji et al. [42]: a multilayer perceptron (MLP) artificial neural network (ANN), adaptive
neuro-fuzzy inference system (ANFIS), and radial basis function (RBF) ANN.

While tariffs are often known for various types of contracts, some agile contracts
or energy markets call for predicting electricity prices as future tariffs remain unknown.
The energy trading sector has led to the proper development of forecasting tools in this area,
even though a decade review by Lu et al. [43] shows the serious challenge of predicting
electricity prices due to many variables: economic factors, trade factors such as cross-border
energy flow, policy factors, environmental factors, calendar factors such as holidays, and
lastly general consumption, production, supply, storage, and capacity play a role in energy
prices. Using artificial neural networks, day-ahead predictions with a mean absolute
percentage error of 7.8% have been achieved [44].

3. Heuristics of a Smart Battery Scheduling Algorithm

In this section, logical actions and properties are defined and translated into the
definition of a smart battery scheduling algorithm that possesses the characteristics of
the designed optimal behaviour, i.e., optimally manage energy using future knowledge.
Following journal requirements, the extensive definitions of mathematical symbols used
can be found in the Nomenclature.

3.1. Case Analysis

Before presenting our battery scheduling algorithm, based on the careful analysis and
processing of various distinguishing scenarios, some key cases that underpin the battery
scheduling algorithm developed in this paper are summarized below. This will form the
basis of the algorithmic definition in Section 3.2.

3.1.1. Order of Covering Demand

Demand can be covered by power coming from the grid, generator, or battery. In this
case, the order matters for optimal energy management. A solid intuitive approach directly
covers demand with (“free”) generated power as much as possible. To verify this behaviour,
all usage cases for generated power should be examined. If indeed generated power is
used first to cover demand, the flow looks as depicted in Figure 2.

If generated power were to be used to charge the battery directly, the flow would be as
presented in Figure 3. Demand remains uncovered, thus, we need to cover it by either using
the battery or importing from the grid. The battery is already charging, and by discharging
it, it would be more efficient to directly cover demand using generated power. Considering
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a charging efficiency ηc and discharging efficiency ηd both in the range of [0, 1], directly
covering is optimal as it does not deal with the redundant (dis)charging efficiency factor of
ηc · ηd < 1. Ultimately, this idea is redirected back to the scenario shown in Figure 2.

?

Excess power Excess demand

demand

generated power

completely cover
demand

store or sell rest, depending
on future estimations

demand battery grid

generated power

partly cover
demand

use battery or grid for the rest
depending on future estimations

battery grid

Figure 2. Scenario in which generated power is used first to cover demand, either in case of excess
power (more generated power than demand) or excess demand (less generated power than demand).

demand

generated power

battery grid

charge battery now for later usage or exporting,
this could be a cheaper move overall

not covering using battery, would be less efficient
due to (dis)charging inefficiencies compared to then
covering using generated power directly

cover using grid

Figure 3. Scenario in which generated power is used to charge the battery while demand still needs
to be satisfied.

The other option is to charge the battery using generated power while covering the
demand using imported energy from the grid. This could be a valuable move, as more ex-
pensive future excess demand might be possible (Section 3.1.3 elaborates on this). However,
we can still argue that covering the demand using generated power first is as optimal as the
aforementioned if we charge the battery using the central grid, see Figure 4. By interacting
with the battery, (dis)charging inefficiency will have to take place in both scenarios, and
the cost of importing energy is the same as an equal amount of energy in any circumstance
needs to be imported. Consider an amount of generated power g, an amount of demand d,
Method 1 being the first method shown in Figure 4, and Method 2 being the second method
shown. When the battery cannot be completely charged with g (battery is full at some
point), consider b the possible amount for charging the battery (0 ≤ b ≤ g) and s = g− b
as the amount of energy that can be exported (profit). By definition, Method 1 imports d
from the grid, charges the battery with b, and exports s to the grid. As suggested, Method 2
is able to achieve the same:

• If g ≥ d, then Method 2 can completely cover d using g, resulting in remainder g− d.
Similarly, an amount of d can be imported from the grid, resulting in a total remainder
of g (= (g− d) + d). The battery needs to be charged with amount b, which can be
achieved using the available g, resulting in a leftover of g− b = s. Thus, s can be
exported to the grid.

• If g < d, then Method 2 covers d using g, yielding a remaining demand of d− g (since
g < d). Similarly, an amount of d can be imported from the grid, which can be used
to cover the remaining demand d− g and results in g remaining (g = d− (d− g)).
The battery needs to be charged with amount b, which can be achieved using the
available g, resulting in a leftover of g− b = s. Thus, s can be exported to the grid.
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Given that both Method 1 and Method 2 import d, charge the battery with b and export
s, it can be deduced that covering the demand using generated power first remains optimal.
The call to import energy from the grid (for beneficial reasons) as presented in this scenario
is discussed in Section 3.1.6.

Method 1 Method 2

demand battery

generated power grid

demand battery

generated power grid

=

Figure 4. Covering demand using the grid and charging the battery with generated power is the
same as charging the battery using the grid and covering demand using generated power, based on
examining the overall (dis)charging inefficiencies and cost of importing.

Lastly, directly exporting generated power needs to be analysed. The flow of this
scenario is illustrated in Figure 5, in addition to an equally effective flow which instead
directly covers demand using generated power.

demand battery grid

generated power

directly
exportcover using battery and/or grid

(depending on future estimations) =
demand battery grid

generated power

directly
cover

(export possibly
remaining power)

(cover possibly remaining demand)

export

Method 3 Method 4

Figure 5. Scenario in which generated power is directly exported to the grid. Instead of directly
exporting the generated power, it can be shown to be equally effective to directly cover demand using
generated power while still being able to export and import the same amount of energy (thus equal
profit and loss) and discharge the battery equivalently.

To show that both methods in Figure 5, from now on referred to as Method 3 (left)
and Method 4 (right), are equally effective, consider an amount of generated power g and
some demand d, of which some amount b comes from the battery and the remainder r
is imported by the grid. By definition, Method 3 exports g, discharges b, and imports r.
As suggested, Method 4 is able to achieve the same:

• If g ≥ d, then Method 4 can completely cover d using g, resulting in remainder g− d.
Similarly to Method 3, r can be imported from the grid and b can be discharged,
resulting in d = b + r. In total, this results in (g− d) + d = g which can be exported.

• If g < d, then only g can be covered, resulting in a remaining demand of d − g.
Similarly to Method 3, r can be imported from the grid and b can be discharged,
resulting in d = b + r. With this, the remaining demand d− g can be covered and
results in d− (d− g) = g, which can be exported.

Given that both Method 3 and Method 4 export g, discharge b, and import r, it can be
deduced that covering the demand using generated power first remains optimal. The call
to discharge battery energy to export to the grid (for beneficial reasons) as presented in this
scenario is discussed in Section 3.1.2—it should never occur. Thus, covering demand using
the battery while having generated power available should never occur either (and again
shows the optimality of covering demand using generated power first). Then, only covering
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demand using imported energy while exporting generated power would be something to
consider. This would only be beneficial if the export price is higher than the import price,
which rationally makes no sense to occur (providers would be better off by keeping their
energy); however, it can be accounted for with a simple if-statement for completeness.

Another edge case to consider is importing energy being the most optimal action when
there is an energy surplus on the network and the provider decides to pay prosumers for
importing energy in order to prevent blackouts [45], or disruptive providers trying to shift
peak demand [46] by paying prosumers for importing energy.

All in all, unless export prices are higher than import prices or import prices are
negative (i.e., you get paid to consume energy), the optimal order of covering demand is
first using generated power and then either discharging the battery or importing energy
based on (forecasted) future knowledge, as explored below, to minimize loss and maximize
profit (without such knowledge, discharging would seem cheaper than importing energy).

3.1.2. Matching Demand with Battery Capacity

When not looking into the future, the safe approach for battery scheduling algo-
rithms, e.g., the algorithm by Norbu et al. [34], Figure 1, is to charge as much as possible
whenever there is no demand to be covered anymore. However, with future knowledge,
this is not optimal, as it can miss out on selling opportunities. For example, consider
some excess power α at timestamp t, i.e., the surplus of generated power compared to
the demand: g(t) − d(t) > 0, and some (forecasted) future excess demand β at t + 1,
i.e., g(t+ 1)− d(t+ 1) < 0. Moreover, excess power α is even more than the amount needed
to cover excess demand β when taking into account (dis)charging inefficiencies: α > |β|

ηc ·ηd .
Furthermore, excess power α could charge the battery without exceeding the capacity of the
battery (ω) and α is less than the maximal amount of power that can be currently charged
(δc(t)) when also taking into account charging efficiency: α · ηc ≤ δc(t) ≤ ω. Additionally,
excess demand β can be covered by the battery (only when charged sufficiently), given
that its discharging boundary (δd) multiplied by the discharging efficiency at the respective
timestamp is considered to be |β| ≤ δd(t + 1) · ηd. Then, only considering these two times-
tamps (timespan T = 2) and starting with an empty battery, the safe approach (charging
using all of α) misses out on exporting (α + β) · ∆t (i.e., the combined residual power times
the duration of the timestamp = amount of export energy). In essence, the battery should
never be filled more than needed with the knowledge of perfect future data.

3.1.3. Expensive Future Excess Demand

Given some usable capacity in a battery at some t, i.e., the current state of charge is
above the minimum (SoC(t) > SoCmin) and discharging is possible (δd(t) > 0), and con-
secutive negative residual power, i.e., excess demand in the (forecasted) future that is more
than the battery can cover, i.e., g(x)− d(x) < 0 for x ∈ X where X = {t, t + 1, . . . , t + n}
and min(SoC(t), ∑x∈X δd(x) · ∆t) − ∑x∈X

g(x)−d(x)
ηd/∆t < 0, where future import tariffs are

higher than the current import tariff, i.e., ∀x ∈ X \ {t}, it holds that τb(t) < τb(x), it is
intuitively smarter to buy energy currently at t and discharge the battery at a later moment
(when import tariffs are the highest) as this reduces the total cost for covering excess
demand in X.

3.1.4. Maximizing Profit Exported Energy

Considering some (forecasted) future where we currently are in a timespan with excess
power, i.e., g(x)− d(x) ≥ 0 for x ∈ X where X = {t, t + 1, . . . , m}, and as far as we can
look in the future (denoted as timestamp n), excess demand timespans, i.e., g(i)− d(i) < 0
for i ∈ Y where Y = {m + 1, m + 2, . . . , n}, do not exist or are already known to be covered
maximally by current excess power from X while still resulting in leftover energy to export,
it is optimal to calculate the amount of energy that needs to be charged for possible future
coverage of Y and then charge the battery at times when selling prices are as low as possible
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until the desired SoC is reached to ultimately export any leftover energy at the highest
export prices.

3.1.5. Mandatory Profits and Losses

Given any α = g(t)− d(t), consider β = α− δc(t) for α ≥ 0 and γ = |α| − δd(t) for
α < 0. Then, if β > 0 or γ > 0, the battery cannot handle charging or discharging this
amount of residual power (α) and thus β needs to be exported or γ needs to be imported. No
smart algorithm can go beyond these battery constraints, these profits or losses must occur.

3.1.6. Expensive Charging Exploit

Charging the battery with imported energy should be considered at any t if this is
possible from a technical standpoint (intuitively, it is similar to using your phone while it
charges). It is needed to truly cover all demand as cheaply as possible whenever the battery,
even given perfect knowledge, is not able to. Any excess demand that needs imported
energy should have, if and only if there was room to charge (RtC, in kWh per timestamp)
up until the current t, charged previously at some timestamp tprev with imported energy
if the import tariff (τb) was substantially cheaper, i.e., τb(tprev) · ηc · ηd > τb(t). When
looking back at the period [tprev, t), the available import amount for t is capped at the
maximum throughput for the RtC within this period and of course considering any other
constraints such as the respective (dis)charging boundaries. To be more precise, RtC is
the usable capacity of the battery per timestamp within the minimum and maximum
limits provided by SoCmin and SoCmax, respectively. Any action within the lookahead
window could require readjusting the RtC accordingly. For example, when charging at a
timestamp tc to discharge at a later timestamp td, the RtC needs to be reduced accordingly
within the range [tc, td). The RtC serves a purpose in calculating the amount of energy that
can “travel” between two timestamps within the lookahead window, also described as
the maximum throughput. The maximum throughput is a reverse traversal of a range of
timestamps where each RtC value (or any other list of values) is compared with the current
global minimum, defined as ∞ at the start of the traversal, until 0 or the start of the range
has been reached. Essentially, this is a boundary that needs to be taken into account by
certain operations of the proposed algorithm in Section 3.2.

3.2. Definition of the Smart Battery Scheduling Algorithm

This section defines the smart battery scheduling algorithm, while simultaneously
elaborating on the implementation of the beneficial insights and derived properties from
the case analysis in Section 3.1.

Algorithmically, the idea is to process future timestamps and their data by looking back
each time in a stepwise manner and rearranging the past optimally. Then, after processing
the whole forecast, the most optimal action—based on the forecast data—is discovered
for the current timestamp. It is important to be aware of this direction of processing and
thinking in the next subsections, as the previous case analysis in Section 3.1 denotes the
basis of the to-be-implemented logic in a future-orientated manner at times (and thus needs
to be converted yet satisfied). Moreover, be aware that each timestamp looks at the residual
power, i.e., g(t)− d(t), since directly covering demand using generated power is (generally)
always a first step (see Section 3.1.1), thus either the remaining excess demand or excess
power is considered.

3.2.1. Step 1: Skipping Excess Power

Any excess power within the lookahead window, i.e., g(t)− d(t) ≥ 0, is skipped by
the algorithm (meaning no decisions are made immediately), as then its leftover residual
power can be used in future timestamps within the lookahead window which look back
respectively. If no future timestamp needs or is able to use this residual power (completely),
all leftover power will be exported to the central grid when post-processing the current
timestamp (see Section 3.2.7). This step falls back on the idea of matching demand with
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battery capacity (in this case skipped excess power is potential battery capacity) optimally
as presented in the case analysis in Section 3.1.2.

3.2.2. Step 2: Using Battery Power

As analysed in Section 3.1.1, and also under the hypothesis that the battery is filled
knowing it was needed in the future, which could be now, the first action of covering
excess demand is using battery power—unless τb(t) < 0, then importing energy is optimal.
Thus, any excess demand will be covered as much as possible or needed using the battery,
i.e., min(δd(t) · ∆t, SoC(t) · ω, g(t)−d(t)

ηd/∆t ). Do note that such actions require changes to be

made for RtC, SoC, pbat
d , and other variables the algorithm keeps track of. Additionally, it

might seem like this step will yield suboptimal results given the possibility of expensive
future excess demand as illustrated in Section 3.1.3, however, step 4 (Section 3.2.4) will
satisfy said case.

3.2.3. Step 3: Using Past Excess Power

If excess demand is still not fully covered by the previous step (2) and δd(t) > 0,
the algorithm continues to look for available excess power that can be used to charge the
battery between the starting timestamp of the lookahead window and the current future
timestamp that is being looked at. To maximize the profit of exported energy as discussed
in Section 3.1.4, the algorithm will sort any previous timestamps with g(t) − d(t) > 0
and δc(t) > 0 based on ascending export tariffs, such that the revenue remains as large as
possible. Before that, the algorithm should also know how much energy at such timestamps
can be discharged and should not consider any timestamps before other timestamps that
have no room to charge, as the energy cannot reach the current timestamp due to said
bottleneck. Thus, iterating back until, for some timestamp x, RtC(x) = 0 or the starting
timestamp of the lookahead window is reached, a list to keep track of throughput values
is generated by calculating min(RtC(t), minglobal), where minglobal is a variable, initially
set to ∞, to keep track of the minimal global throughput and t, the respective timestamp.
Then, based on the aforementioned pricing strategy and (dis)charging boundaries at the
respective timestamps, excess power will be charged into the battery as much as possible
and needed at the available timestamps.

3.2.4. Step 4: Using Previously Discharged Energy

If excess demand is still not fully covered by the previous steps (2 and 3), it can only
be covered by importing energy. However, instead of directly importing, the first thing to
consider is the case in Section 3.1.3 that depicts a scenario with expensive future demand,
which could be the case for the current timestamp (i.e., import tariff is currently higher
than previous timestamps). If any previous timestamp, let us refer to such a timestamp by
x, had a lower import tariff and discharged energy from the battery, it is possible to swap
the discharged energy at x for imported energy and use the newly available energy in the
battery, if δd(t) > 0, at the timestamp t which is currently being looked at. Additionally, it
needs to be checked whether enough room to store energy is available during the period of
[x, t). Then, sorted on ascending import tariffs, discharged energy is swapped as much as
possible and needed to cover the demand at t.

3.2.5. Step 5: Using Previously Imported Energy

Besides the previous step (4), there is another possibility for additional benefit re-
garding the need to import energy, if the renewable energy system is set up accordingly,
by preventively charging using substantially cheaper imported energy as discussed in
Section 3.1.6. The algorithm should compare the benefit compared to the previous step and
also, similarly to step 3, calculate how much room to charge is available and needed.
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3.2.6. Step 6: Directly Importing Energy

If excess demand is still not fully covered by the previous steps, which would be
the case if it is out of control as illustrated in Section 3.1.5, or simply since buying energy
at the current timestamp is the best option (left), energy needs to be imported from the
grid. Similar to the first step of skipping excess power, the excess demand can be skipped
and any leftover excess demand will be imported from the grid by the algorithm when
post-processing the current timestamp (see Section 3.2.7).

3.2.7. Output of the Algorithm

After processing the steps taken by the algorithm as described above, the algorithm
should return the actions for the current timestamp t (= 0 within the lookahead window,
referred to as 0la) which are as follows:

• g(0la) · ∆t, denoting the leftover energy that will be exported (values in g have been al-
tered to reflect actions taken within the lookahead window), referred to as optexport(t).

• d(0la) ·∆t, denoting the leftover energy that will be imported (values in d have been al-
tered to reflect actions taken within the lookahead window), referred to as optimport(t).

• pbat
c (0la) · ∆t, denoting the optimal amount to charge at t, referred to as optcharge(t)

(which is the energy change in the battery, not the actual input).
• pbat

d (0la) ·∆t, denoting the optimal amount to discharge at t, referred to as optdischarge(t)
(which is the energy change in the battery, not the actual output).

It can then be deduced that:

• SoC(t + 1) = SoC(t) + optcharge(t)− optdischarge(t)
• Bill (cost) at t = optimport(t) · τb(t)− optexport(t) · τs(t)

3.2.8. Constraints of the Algorithm

When running the algorithm, at each t ∈ T, the following assertions are made to check
if the algorithm satisfies properties that classify the algorithm as working properly:

0 ≤ SoC(t) ·ω ≤ ω (capacity boundaries) (1)

pbat
c (t) ≤ pmax

c and pbat
d (t) ≤ pmax

d (power boundaries) (2)

(g(t)− d(t)) · ∆t = es(t)− eb(t) +
optcharge(t)

ηc − optdischarge(t) · ηd (3)

Equation (3) checks whether more or less output has been created from some input,
i.e., the residual energy at t equals the leftover energy (which will be exported or needs to
be covered using imports) combined with the energy going into the battery to charge (part
of the original residual energy) minus the energy coming out the battery by discharging
(not part of the original residual energy) based on a supposedly optimal decision at t.

3.3. Processing an Example Scenario Using the Smart Battery Scheduling Algorithm

To possibly increase the intuitiveness behind the functioning of the algorithm beyond
the power of words, a figurative systematic walkthrough of the smart battery scheduling
algorithm for an example scenario with expensive future demand is presented in Figure 6.

In this scenario, initially ∆t = 1, SoCinit = 0, and ω = 1. The algorithm considers
three timestamps when looking ahead, i.e., κ = 3. Furthermore, to simplify, efficiency is
not considered (ηc = ηd = 1). The bottleneck of this scenario is the substantially higher
import tariff at the third timestamp compared to the second timestamp (5 > 1) and the
lack of generated power in the first timestamp to cover all future demand. Thus, it would
be optimal to import energy at the second timestamp instead of the third to reduce total
cost, which a basic present-orientated battery scheduling algorithm (e.g., Figure 1) does not
consider as it discharges immediately and then requires to import at the third timestamp.
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Figure 6. Systematic walkthrough of the proposed smart battery scheduling algorithm for an example
scenario with expensive future excess demand. The energy is imported at the lowest import tariff
while discharging the battery during the highest import tariff.

4. Methods and Data Used in Experimental Validation

In order to assess the newly introduced heuristics for a smart battery scheduling
algorithm using (forecasted) future knowledge, several experiments that simulate exper-
imental yet practical settings should be conducted. The materials and methods for such
experiments are described in this section.

4.1. Baseline Comparison and Generated Power Data

As a baseline for comparing the proposed heuristics of the smart battery scheduling
algorithm, the battery scheduling algorithm by Norbu et al. [34] is used. The authors
of Norbu et al. [34] also granted access to repositories containing an assemblage of code
that simulates this basic battery scheduling algorithm and provides data for generated
power based on calculations of UK weather data (i.e., solar and/or wind). The baseline
battery scheduling algorithm will be compared to the proposed smart battery scheduling
algorithm, of which a concise implementation by de Bekker [47] can be utilised.

4.2. Data for Demand and Tariffs Used in Experimental Validation

Regarding data available for simulation, a collection of recorded energy demands of
households connected to a smart grid during two trials, i.e., Thames Valley Vision and
Low Carbon London, and dynamic tariffs from an Octopus Agile energy plan are utilized.
The Thames dataset by Scottish & Southern Electricity Networks [48] contains 200 house-
holds over a timespan of a year (from January 2017 to December 2017) with intervals of
30 min. The London dataset by UK Power Networks [49] contains 5567 households over a
time span of 2.5 years (from November 2011 to February 2014) with intervals of 30 min.

Historical data of the Octopus API have been recorded by EnergyStatsUK [50] and
provides Octopus Agile import and export tariffs for London from roughly 2018 to 2022
with intervals of 30 min (∆t = 0.5). Given the similarity in interval frequency, all data can
adequately be matched on a month–day basis. As for matching the years, unfortunately,
no proper overlap is achievable in the data, thus the best remaining option for simulation
is using complete years. Tariff data used are from 2020 to 2021, whereas the London and



Energies 2023, 16, 2425 12 of 26

Thames data are the first complete year available, i.e., 2012 and 2017, ultimately resulting in
T = 365 · 24 · 2 = 17520 time periods.

To be able to put any output of the simulated experiments into perspective, the annual
energy bills for the average prosumer have been calculated for the datasets of Thames and
London in Table 1 and could also be seen as baseline annual bills for these simulated envi-
ronments.

Table 1. Annual energy bills for the average prosumer in the simulated Thames or London environ-
ment without battery or generated power.

Setup Thames Dataset London Dataset

No generated power and no battery b(T)/N = £15.51 b(T)/N = £349.93
Generated power and no battery b(T)/N = −£4.10 b(T)/N = −£44.02

Additionally, an indication of the shape of the Octopus Agile import and export tariffs
used in experiments is provided in Figure 7.

Figure 7. Indication of the shape of Octopus Agile import and export tariffs used during simulations.

4.3. Battery Data Used in Experiments

As for simulating the battery, based on the research of May et al. [51], a lead-acid
battery is a remarkably well-established option for energy storage and is the only BESS
that is nearly entirely recycled (99% in Europe and the USA), which supports the ultimate
goal of improving renewable energy assets: sustainability. Lithium-ion batteries have a
problematic low rate of recyclability (less than 1%), yet as a result of rapidly developing
technologies are deemed to be the future of batteries due to a longer life cycle and higher
energy density [52]. Additionally, based on the research of Kebede et al. [53], lithium-
ion batteries are also considered to be more techno-economically viable than lead-acid
batteries. Given the mentioned advantages of lithium-ion batteries and the future potential
of proper recycling as comes with battery maturity according to Yanamandra et al. [52],
lithium-ion batteries have been selected to be simulated. The technological downsides that
need to be accounted for when simulating a BESS using a lithium-ion battery are a depth
of discharge (DoD) of 80% and practical efficiencies of around 85% for (dis)charging the
battery, according to performance tests carried out by Bila et al. [54]. The aforementioned
translates into the following attributes: ηc = ηd = 85% and SoCmin = 20%. The optimal
sizing of battery capacity (ω) to gain the most benefit requires taking into account many
(local) factors and performing additional experiments, which is not the main focus of this
paper. Instead, a wide range of battery capacities for the average prosumer are considered
in the experiments.

4.4. Simulation of Forecasting Methods

In order to be more certain that the smart battery scheduling algorithm works ad-
equately, the robustness is tested by experimenting with erroneous future forecasts for
power and demand predictions in addition to tariff predictions. As there are various
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techniques used to estimate the future—some more accurate or costly than others—which
all deserve to be considered, a broad range of functions that alter the data uniquely have
been experimented with and are clarified below.

4.4.1. Constant Uncertainty Margins

The simplest function to quickly assess the robustness of the algorithm is a constant
margin of the form y± c · σdata in which uniformly a random value is picked for x ∈ (0, κ].
Note that the standard deviation is not within the lookahead window but the complete
data to gain more stable insights.

4.4.2. Linear Uncertainty Margins

Future estimations often become more inaccurate as time passes, as patterns are
often not that clear for longer periods. To illustrate the robustness of the smart battery
scheduling algorithm with uncertainty following said characteristics, a linear function of
the form y± c · x · σdata where x ∈ (0, κ] is considered for the margins to uniformly pick a
random value.

An example of the shape of such a margin function can be seen in Figure 8.

Figure 8. Example of the shape of a linear margin function on flat original data (left) and on actual
power data of the London dataset (right). The blue line depicts the original power data and the
orange line is an example of power forecast data within the orange uncertainty area based on the
margin function.

4.4.3. Complex Uncertainty Margins

Usually, uncertainty boundaries are not constant or linear, thus, a more complex
experiment is also contemplated where up until a point in the lookahead window the
uncertainty converges and then starts diverging. This led to creating the following function
for setting the margins to uniformly pick a random value:

y±
{

s1 ·
√

x, for x < br · κc = d
s1 ·
√

d + (s2/w) · (x− d)n, else
(4)

In Equation (4), s denotes a scalar, where s1 scales the converging function and s2
scales the diverging function with exponent n. Another scalar is w, which can be seen
as a control for the width. In the performed experiments, w is commonly defined as
κ − d (= d(1− r) · κe). The d is the timestamp within the lookahead window where the
converging function is continued by the diverging function, which can also be defined as a
ratio r of the lookahead window multiplied by its size κ.

This function aims to be a more naturalistic margin for the picked random values
where the beginning can be fairly accurate and then shift into larger misconceptions.

An example of the shape of such a margin function can be seen in Figure 9.
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Figure 9. Example of the shape of a converging and diverging margin function on flat original data
(left) and on actual power data of the London dataset (right). The blue line depicts the original power
data and the orange line is an example of power forecast data within the orange uncertainty area
based on the margin function.

4.5. Calculating the Bill of a Community or Prosumer

When computing the cost of a community (e.g., London or Thames), this paper
considers b(T) to be the bill of the total operational cost for the whole community, which is
the sum of the imported and exported energy times the respective tariff for each timestamp
in T, for all prosumers in the dataset:

b(T) =
N

∑
i

T

∑
t

eb
i (t) · τb(t)− es

i (t) · τs(t) (5)

Thus, the total operational profit is defined as −b(T) and is most suited for plotting
results of the simulations as the generated power and smart energy management result in
comparing profits rather than costs. For the bill of the average prosumer, the operational
profit or cost for a community is divided by N, the number of households/size of the
dataset, respectively.

5. Experimental Results

In this section, the practical performance of the proposed smart battery scheduling
algorithm is assessed by conducting and describing the experiments in various settings
based on the data and methods used, as discussed in Section 4.

5.1. Performance of Perfect Forecasts

To obtain an initial understanding of the performance of the newly introduced battery
scheduling algorithm, the baseline algorithm and the smart battery scheduling algorithm
are both simulated within the environment as described in Section 4 but in combination
with perfect future knowledge (i.e., original data). Battery size and how far we look into
the future (lookahead window) are not specific, thus, various values have been considered
to gather a complete overview:

• ω/N ∈ {0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 5, 7.5, 10, 15, 30, 50} [kWh per prosumer].
• κ ∈ {2, 4, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96} [#timestamps in lookahead window].

The results of the 450 simulations are carefully summarized in Figure 10 by showing,
for the average prosumer, the operational profit gained by the smart battery scheduling
algorithm as a boxplot (based on outcomes for the various κ) per battery size. For the
baseline battery scheduling algorithm, the operational profit per prosumer, i.e., −b0(T)/N,
has been plotted per battery size as well to compare the algorithms.

All the details per κ per battery size can be seen in Appendices A and B for the London
and Thames dataset, respectively. These details reveal that a lookahead window of 8–12 h
nearly always outperforms the baseline battery scheduling algorithm and looking ahead
24 h was always more profitable compared to the baseline battery scheduling algorithm.
Additionally, based on the annual bills when having generated power yet no battery,
on average, when getting a battery, the smart battery scheduling algorithm is able to
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achieve between 20% to 60% more operational profit compared to the baseline battery
scheduling algorithm, as shown in Table 2.

Figure 10. High-level comparison between operational profits of the baseline algorithm and smart
algorithm for the average prosumer using various battery sizes across the lookahead amounts
represented in boxplots, following the experiment described in Section 5.1.

Table 2. Relative operational profit for the average prosumer from using the smart algorithm over
the baseline algorithm in the simulated Thames or London environment. The underlying basis for
comparison is no battery and/or generated power (Table 1).

Base Comparison Thames Dataset London Dataset

No generated power and no battery Avg: +17%, Max: +21% Avg: +1%, Max: +5%
Generated power and no battery Avg: +20%, Max: +24% Avg: +60%, Max: +210%

5.2. Robustness of the Smart Battery Scheduling Algorithm

In order to be more certain that the smart battery scheduling algorithm works ad-
equately, the robustness is tested by experimenting with erroneous future forecasts for
power and demand predictions in addition to tariff predictions as described in Section 4.4.
All experiments performed in this subsection consider κ ∈ {6, 8, 16, 24, 32, 40, 48, 64, 72, 96}
and battery sizes similar to Section 5.1.

5.2.1. Robustness of Constant Uncertainty Margins

As for the constant c, values ranging from 0.5 up to 100,000 have been considered and
the results of 3080 experiments have been summarized in Figure 11.

Based on these experiments, the smart algorithm outperforms the baseline algorithm
each time with complete future tariff knowledge; however, when tariff uncertainty is
introduced next to power and demand uncertainty, the smart battery scheduling algorithm
always only beats the baseline battery scheduling algorithm for a margin of less than or
equal to one standard deviation. Thus, directly having substantial constant uncertainty in
future tariffs most likely results in suboptimal output, unless more sophisticated forecasts
are used as in the next experiments.
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Figure 11. High-level comparison between operational profits of the baseline algorithm and smart al-
gorithm for the average prosumer using various battery sizes and lookahead amounts with uncertain
forecasts based on constant margins. The legend in each graph applies to both graphs.

Moreover, the results of this experiment indicate that by becoming a prosumer with
both generated power and a battery, on average, the smart battery scheduling algorithm
maximally loses only 3% operational profit with constant generation and demand uncer-
tainty compared to perfect forecasts, as shown in Table 3.

Table 3. Relative performance of the smart algorithm with constant generation and demand uncer-
tainty compared to perfect forecasts in the simulated Thames or London environment. The underlying
basis for comparison is no battery and/or generated power (Table 1).

Base Comparison Thames Dataset London Dataset

No generated power and no battery Avg: 97%, Min: 92% Avg: 100%, Min: 98%
Generated power and no battery Avg: 96%, Min: 90% Avg: 87%, Min: 65%

5.2.2. Robustness of Linear Uncertainty Margins

Figure 12 summarizes 1400 experiments using various linear margin functions in
combination with various sizes for the lookahead window (κ) and various sizes for the
battery per prosumer (ω/N). Interestingly, c ≤ 0.05 outperforms even the smart battery
scheduling algorithm using perfect forecasts, also with tariff uncertainty. Moreover, all
functions outperform the baseline battery scheduling algorithm with only power and
demand uncertainty.
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Figure 12. High-level comparison between operational profits of the baseline algorithm and smart al-
gorithm for the average prosumer using various battery sizes and lookahead amounts with uncertain
forecasts based on linear margins. The legend in each graph applies to both graphs.

Moreover, the results of this experiment indicate that by becoming a prosumer with
both generated power and a battery, on average, the smart battery scheduling algorithm
only loses 1% to 2% operational profit with linear generation and demand uncertainty
compared to perfect forecasts, as shown in Table 4.

Table 4. Relative performance of the smart algorithm with linear generation and demand uncertainty
compared to perfect forecasts in the simulated Thames or London environment. The underlying basis
for comparison is no battery and/or generated power (Table 1).

Base Comparison Thames Dataset London Dataset

No generated power and no battery Avg: 98%, Min: 97% Avg: 99%, Min: 99%
Generated power and no battery Avg: 98%, Min: 96% Avg: 84%, Min: 80%

5.2.3. Robustness of Converging and Diverging Uncertainty Margins

Figure 13 summarizes 1400 experiments using various converging and diverging
margin functions in combination with various sizes for the lookahead window (κ) and
various sizes for the battery per prosumer (ω/N). The results show similar (profitable)
results compared to the smart battery scheduling algorithm using perfect forecasts and
remarkably tolerable tariff uncertainty compared to previous experiment types.
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Figure 13. High-level comparison between operational profits of the baseline algorithm and smart
algorithm for the average prosumer using various battery sizes and lookahead amounts with un-
certain forecasts based on converging and diverging margins. The legend in each graph applies to
both graphs.

Moreover, the results of this experiment indicate that by becoming a prosumer with
both generated power and a battery, on average, the smart battery scheduling algorithm
maximally loses only 1% operational profit with converging and diverging generation and
demand uncertainty compared to perfect forecasts, as shown in Table 5.

Table 5. Relative performance of the smart algorithm with converging and diverging generation and
demand uncertainty compared to perfect forecasts in the simulated Thames or London environment.
The underlying basis for comparison is no battery and/or generated power (Table 1).

Base Comparison Thames Dataset London Dataset

No generated power and no battery Avg: 99%, Min: 95% Avg: 100%, Min: 98%
Generated power and no battery Avg: 99%, Min: 94% Avg: 94%, Min: 65%

6. Discussion

After introducing a smart battery scheduling algorithm defined in Section 3 and
putting it to the test in Section 5 by simulating a manifold of scenarios based on Section 4,
this section will reflect on particularities present in the conducted experiments.

Firstly, a conceivably anomalous sight of more profitable simulations with respect to
the simulations using perfect forecasts can be seen in the outcomes of some experiments
testing the robustness of the algorithm in Section 5.2. A probable justification for this
occurrence could be that the lack of knowledge after the lookahead window causes a
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suboptimal decision no matter the accuracy of the forecast, as the lookahead window does
not span the range of timestamps that would influence the perfect decision in retrospect.
From all the detailed results of simulations for various sizes of κ with perfect forecasts,
presented in Appendices A and B, the total operational cost, i.e., b(T), with respect to
κ follows the shape of a positive-indexed reciprocal function, i.e., y = 1/x for x > 0,
and Π(T) does not decrease, which confirms that more (accurate) knowledge guides the
smart algorithm to make more profitable decisions. Based on said beliefs and findings, it
seems that some of the imperfect forecasts accidentally directed the decision unknowingly
towards a decision that matched the supply and demand of energy more or most optimally.
Therefore, it could be worth investigating uncommon actions or trends in lookahead
windows of unusually computationally large size in order to assess whether using these
actions based on the estimation of some machine learning techniques in small lookahead
window sizes would benefit the overall efficiency of the smart battery scheduling algorithm.

Secondly, it is essential to denote limitations regarding the experiments to critically
assess the proposed smart battery scheduling algorithm appropriately. Computationally
speaking, the available equipment used to run simulations had an inferior level of per-
formance to calculate the "most optimal" profit possible where κ = |T|, which would
provide even finer insight into the level of performance of the simulations carried out
in Section 5.2 where randomness was introduced to sample the robustness of the smart
battery scheduling algorithm. Moreover, due to a lack of available data, the simulations
were run on real data yet originating from different years, thus, it merely provided a
sound environment to evaluate the behaviour of the proposed smart battery scheduling
algorithm, whereas true-to-life data could have supplied more relatable insights into actual
cost and profit differences, especially for the energy communities that were considered in
this paper. From weather to demand, all variables in the setup have a sensitive correlation,
as confirmed by Hernández et al. [55]; thus, any output cannot be truly considered genuine
or useful for any recommendations besides performance testing. It would be interesting,
as then the outcomes could provide practical recommendations for the size of a battery
storage unit for a particular prosumer as well. In addition, various types of tariffs could be
considered to gain a perspective of the usefulness of adapting to the proposed smart battery
scheduling algorithm for a particular prosumer. Essentially, actual forecasting models
and more real data should be explored using the proposed battery scheduling algorithm
in order to advance towards practical deployment and directly improve the efficiency of
renewable energy assets.

7. Conclusions and Further Work

In this paper, customised heuristics for a smart battery scheduling algorithm are
developed to improve the utilisation of renewable energy and storage assets by efficient
matching of energy supply and demand. For a theoretically optimal decision, the future
should be taken into account, which realistically can be forecasted with the current state of
technology. Based on the idea of having perfect knowledge in the complete range of time,
the following broad principles should be taken into account:

• A battery should never be filled more than needed as otherwise the surplus of energy
could have been sold.

• If battery power is considered to be utilised, while in the future excess demand needs
to be covered by buying energy for a higher price than the current price, it would be
beneficial to buy energy now and use battery power in the future.

• If energy can be sold to the central grid on multiple occasions, it should be sold at
times when the selling price is as high as possible.

• If the battery is able to charge using imported energy from the grid, charging the
battery with bought energy should be considered if it is more profitable than having
to buy energy later at a substantially higher price.
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• If the available generated power and battery power cannot cover the demand, there is
no other option than to buy energy. Similarly, if the battery cannot be charged more or
at a higher rate, energy needs to be sold to the central grid.

Based on several thousands of simulations in areas of the UK with various probable
ranges of forecasts and battery sizes, the smart battery scheduling algorithm has demon-
strated to gain additional profit for both theoretically perfect forecasts and plenty more
realistic forecasts by exploiting the aforementioned characteristics. On average, the results
show that when a prosumer uses a battery to store generated energy, the newly proposed
algorithm outperforms the baseline algorithm, obtaining up to 20–60% more profit for
the prosumer from his/her energy assets with perfect forecasts. With various types and
levels of simulated uncertainty in generation, demand, and tariff forecasting, the proposed
algorithm has shown robustness: it produces greater profit than the baseline method and
only 2–12% of profit is lost compared to perfect forecasts. The performance of the pro-
posed algorithm increases as the uncertainty decreases, showing great promise for the
algorithm as the quality of forecasting keeps improving. In conclusion, the proposed smart
battery scheduling algorithm can be considered a proper improvement in the efficiency of
renewable energy assets and also serve as a foundation for the heuristics of smart energy
management systems using forecasting techniques.

In future work, we plan to focus on exploring how other advanced techniques from
machine learning and modern AI can be leveraged to design more efficient control algo-
rithms for integrating renewable generation, demand, and battery storage, such as, for
example, those coming from Bayesian reasoning, reinforcement learning, or deep learning
neural nets [56]. The design of intelligent scheduling algorithms for this problem, that
leverage recent advances in AI and the use of forecasting data, remains a key direction for
further work. Other promising directions for extending the work include better integration
of the battery control with renewable forecasting (for example, wind forecasting), as well as
the use of our heuristics from price arbitrage and trading with the grid, taking advantage
of dynamic time-of-use prices, which are increasingly used by power system operators
to encourage flexible demand. Looking further ahead, it may be fruitful to integrate our
approach with other smart energy problems—for example, the control of charging of
electric vehicle batteries [57], including two-directional charging in vehicle-to-grid (V2G)
schemes [58]. Additionally, algorithms such as ours could be used for distributed demand-
side response [59–61], also incorporating behavioural factors, such as perception of comfort
loss by energy users [62].
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Nomenclature

Abbreviations
BESS Battery Energy Storage System
DoD Depth of Discharge
MILP Mixed-Integer Linear Programming
PV Photovoltaic
RMSE Root Mean Squared Error
RtC Room to Charge
SoC State of Charge
Parameters
ηc Battery charging efficiency
ηd Battery discharging efficiency
κ Size of lookahead window [timestamps]
pmax Maximum power that battery can charge/discharge [kW]
SoCinit Initial battery SoC [%]
SoCmax Maximum battery SoC [%]
SoCmin Minimum battery SoC [%]
τb(t) Import tariff at t [pence/kWh]
τs(t) Export tariff at t [pence/kWh]
ω Battery capacity [kWh]
Subscripts and Sets
N Number of households in energy community
T Number of time periods
t Particular timestamp
Variables
b(T) Annual bill, where T = 1 year [£]
b0(T) Baseline annual bill, where T = 1 year [£]
∆t Duration of time period t [h]
δc(t) pmax − pbat

c (t), charging boundary at t [kW]
δd(t) pmax − pbat

d (t), discharging boundary at t [kW]
d(t) Demand at t [kW]
eb(t) Imported energy at t [kWh]
es(t) Exported energy at t [kWh]
g(t) Generated power at t [kW]
Π(T) Savings on annual bill, where T = 1 year [£]
pbat

c (t) Charging power of the battery at t [kW]
pbat

d (t) Discharging power of the battery at t [kW]
RtC(t) Room to charge in battery at t [kWh]
SoC(t) State of charge of battery at t [%]

Appendix A. Detailed Results of Forecasts on London Dataset

This appendix shows the details of the experiments carried out in Section 5.1 using
the London dataset to give more insight regarding how far the smart battery scheduling
algorithm needed to look ahead (κ) in order to be more profitable than the baseline battery
scheduling algorithm for a broad range of battery sizes. The results can be seen in Figures A1
and A2. Note: BA stands for “baseline battery scheduling algorithm” and SA stands for
“smart battery scheduling algorithm” in the legend. On average, a lookahead window of
size κ = 16 (i.e., 8 h) outperformed the BA. For larger battery sizes, the SA beats the BA
with a lookahead size of κ = 24 (i.e., 12 h).
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Figure A1. Part 1: Overview of operational profits per prosumer for the baseline and smart battery
scheduling algorithm using various sizes for the lookahead window (κ) and various sizes for the
battery per prosumer (ω/N) on original historical data of London.

Figure A2. Part 2: Overview of operational profits per prosumer for the baseline and smart battery
scheduling algorithm using various sizes for the lookahead window (κ) and various sizes for the
battery per prosumer (ω/N) on original historical data of London.
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Appendix B. Detailed Results of Forecasts on Thames Dataset

This appendix shows the details of the experiments carried out in Section 5.1 using
the Thames dataset to give more insight regarding how far the smart battery scheduling
algorithm needed to look ahead (κ) in order to be more profitable than the baseline bat-
tery scheduling algorithm for a broad range of battery sizes. The results can be seen in
Figures A3 and A4. Note: BA stands for “baseline battery scheduling algorithm” and SA
stands for “smart battery scheduling algorithm” in the legend. On average, a lookahead
window of size κ = 16 (i.e., 8 h) outperformed the BA. For larger battery sizes, the greedy
charging approach of the BA works so sufficiently that the SA can barely outperform BA in
smaller lookahead windows. Only for substantially higher lookahead windows is the SA
able to outperform BA. This makes sense, as a lot of room in the battery means that charging
the battery is rarely a mistake short-term, thus, a larger lookahead window has to provide
these details.

Figure A3. Part 1: Overview of operational profits per prosumer for the baseline and smart battery
scheduling algorithm using various sizes for the lookahead window (κ) and various sizes for the
battery per prosumer (ω/N) on original historical data of Thames.
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Figure A4. Part 2: Overview of operational profits per prosumer for the baseline and smart battery
scheduling algorithm using various sizes for the lookahead window (κ) and various sizes for the
battery per prosumer (ω/N) on original historical data of Thames.
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