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Real-Time Tilt Undersampling Optimization during
Electron Tomography of Beam Sensitive Samples using
Golden Ratio Scanning and RECAST3D †
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Electron tomography is a widely used technique for 3D structural analysis of nanomaterials, but it
can cause damage to samples due to high electron doses and long exposure times. To minimize
such damage, researchers often reduce beam exposure by acquiring fewer projections through tilt
undersampling. However, this approach can also introduce reconstruction artifacts due to insufficient
sampling. Therefore, it is important to determine the optimal number of projections that minimizes
both beam exposure and undersampling artifacts for accurate reconstructions of beam-sensitive
samples. Current methods for determining this optimal number of projections involve acquiring
and post-processing multiple reconstructions with different numbers of projections, which can be
time-consuming and requires multiple samples due to sample damage. To improve this process, we
propose a protocol that combines golden ratio scanning and quasi-3D reconstruction to estimate the
optimal number of projections in real-time during a single acquisition. This protocol was validated
using simulated and realistic nanoparticles, and was successfully applied to reconstruct two beam-
sensitive metal-organic framework complexes.

1 Introduction
Nanomaterials are materials with at least one dimension in the
nanoscale, usually ranging from 1 to 100 nanometers.1 They
have unique physical, chemical, and spectroscopic properties
compared to their bulk counterparts, which can be used for
various commercial, industrial, and medicinal purposes.2,3

These properties are largely influenced by the three-dimensional
(3D) structure and morphology of the nanomaterial. Therefore,
it is essential to accurately characterize the nanomaterial’s
structure to understand its behavior and predict its potential
applications.1,4,5

High-resolution imaging techniques such as transmission
electron microscopy (TEM) and annular dark-field scanning
transmission electron microscopy (ADF-STEM) can provide
insights into the structure of nanomaterials.6–8 However, these
techniques only produce two-dimensional (2D) projections,
which may not accurately represent the true 3D structure of the
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material. To overcome this limitation, techniques such as
electron tomography (ET) have been developed to enable the
three-dimensional characterization of nanomaterials.9–11 In a
typical ET procedure, a series of 2D images are obtained at
incremental angles (1 − 3◦) over a range of approximately
±70− 80◦ .12–14 These images are then aligned and processed
using reconstruction algorithms such as filtered back projection
(FBP),15 simultaneous iterative reconstruction technique
(SIRT),16 or expectation maximization (EM)17 to generate a 3D
volume of the nanomaterial. Overall, the use of ET has
significantly improved the scientific understanding of
nanomaterials and their potential applications.

Exposure to the electron beam during the tomographic
acquisition of nanomaterials can cause significant deformation
due to various factors, including radiolysis, atomic displacement,
heating, charge accumulation, and knock-on effects.18–22 This
electron beam-induced damage has been observed in a wide
range of nanomaterials, including silicates, zeolites, and
metal-organic frameworks (MOFs).22–26 Prior studies have
investigated various approaches to minimize beam damage, with
the most reliable method being limiting beam exposure.27

Low-dose methods, which employ acquisition regimes with high
signal-to-noise ratios,28 such as ptychography29 or integrated
differential phase contrast23 microscopy, allow for the collection
of the same signal with significantly less exposure. However,
these techniques require specialized detectors and setups that
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Fig. 1 Phantom Shepp-Logan (a) undersampled with 21 projections
by reducing the annular range (±20◦, 2◦ step, 21 projections) (b) and
the sampling density (±70◦, 7◦ step, 21 projections) (c). By decreasing
the sampling density further (±70◦, 70◦ step, three projections),
undersampling artefacts become apparent (d).

may not be readily available. Tracking and focusing optimization
during acquisition have also been used to reduce beam exposure.
For example, in 2018, a twofold reduction in beam exposure was
achieved by accelerating the high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM)
acquisition to a few minutes through simultaneous scanning,
tracking, and focusing.30,31

Another commonly applied technique to reduce beam damage
is undersampling. Undersampling reduces beam exposure by
reducing (i) the information encoded into an image (image
undersampling)32 or (ii) the number of images collected (tilt
undersampling).33. However, undersampling also has its own
challenges; typically in the introduction of new artefacts. This
has been extensively studied for various undersampling schemes
by Vanrompay et. al.34 For instance, tilt undersampling has been
shown to amplify missing wedge artefacts by decreasing the
angular range (e.g., from 70° to 15°).12,34,35 Whilst these
artefacts can be compensated using algorithms such as discrete
algebraic reconstruction tomography (DART), these algorithms
assume prior knowledge of the sample’s properties, which may
not always be applicable.13,14,36

The missing wedge is an issue that arises in ET when only
projections over limited angular range are collected. This can be
mitigated during undersampling by evenly distributing the few
images across the entire available annular range, thus decreasing
the sampling density rather than the sampling range.34 For
instance, both an acquisition at ±20◦ in 2◦ increments and ±70◦

in 7◦ increments have 21 projections. However, the missing
wedge is minimized in the latter case, where the images are
more evenly distributed. Nevertheless, even in this case,
significantly decreasing the sampling density can result in
artefacts in the reconstructed image (Figure 1). Therefore, it is
important to find a balance between minimizing beam damage
and avoiding undersampling artefacts in order to ensure the
quality of the reconstruction.

When assessing the quality of a reconstruction, researchers
often compare it to a reference structure collected using a
standard 2− 3◦ tilt increment.34 However, this approach is not
suitable for optimizing tilt undersampling of beam-sensitive
samples. Firstly, it is not guaranteed that the reference, collected
under standard imaging conditions, does not contain beam
damage artefacts. Secondly, during incremental scanning (IS),
the sampling density remains constant while the sampling range
increases with each new projection (Figure 2a). Therefore,

Fig. 2 First 10 projections acquired using IS (±70◦, 10◦ increment)(a) and
GRS (±70◦)(b). The collectable missing wedge due to early termination
of acquisition (grey) and the inaccessible missing wedge due to the holder
geometry (black) are shown for both acquisition schemes.

prematurely ending the acquisition will result in a large missing
wedge in the tilt-series. In order to find the optimal number of
projections, the 3D reconstruction of multiple tilt-series collected
with different numbers of projections should be compared. This
process is time-consuming, as it involves the microscopist
alternating between the microscope and post-processing steps at
a workstation.37 Furthermore, when multiple acquisitions are
performed on the same particle, the damage induced in previous
acquisitions is often evident in the new tilt-series. Therefore, it is
necessary to perform each acquisition on a new particle, making
it difficult to directly compare the resulting 3D reconstructions.
In such cases, the microscopist must rely on a qualitative
judgement to determine the optimal number of projections.

The requirement for multiple tilt-series in tomographic
acquisitions can be mitigated using an acquisition scheme with a
semi-constant sampling range, and a sampling density that
increases as new projections are added. Golden Ratio Scanning
(GRS) proposed by Kaestner et al. satisfies this requirement for
4D neutron microtomography.38 In GRS, the tilt angle θ in
radians is given by

θ = iα

(
1+

√
5

2

)
mod (α)− α

2
, (1)

where i is the image index, mod is the modulo function, and α

is the annular range in radians. In GRS, the majority of the
annular range is occupied within the first 3− 4 projections, and
subsequent projections increase the sampling density
(Figure 2b). Therefore, acquisition can be terminated early
without significant missing wedge artefacts.38 In practice,
however, it is impossible to know how many projections are
required to minimize undersampling and beam damage artefacts
without knowledge of the 3D structure during acquisition.

Quasi-3D reconstruction allows for real-time viewing of 3D
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data by limiting the computational requirements of
reconstruction. This was achieved using the software RECAST3D
(Reconstruction of Arbitrary Slices in Tomography), which
reduces the computational burden by only reconstructing only a
few arbitrary slices at a time using the computationally efficient
FBP algorithm.39

Here, we present a protocol, referred to as Tilt Undersampling
Optimized Tomographic Acquisition (TUOTA), that combines GRS
with real-time analysis of quasi-3D reconstructions provided by
RECAST3D to determine the optimal number of projections for
beam-sensitive samples. TUOTA was tested using simulated and
experimental datasets, and was applied to two beam-sensitive
MOF nanoparticle (NP) composites: NU-1000 encapsulating an
Au bipyramidal nanoparticle (Au@NU-1000) and ZIF-8
encapsulating an Au/Pd nanorod (Au/Pd@ZIF-8).

2 Method

2.1 Tilt Undersampling Optimized Tomographic Acquisition
The TUOTA protocol for optimizing the number of projections
consists of the following stages:

1. Obtaining projections using GRS with an annular range of
±70◦ (α = 7π/9) in real-time at the microscope, with
acquisition ending at the discretion of the microscopist.

2. Processing the projections using RECAST3D to reconstruct
three slices using FBP, with slices being updated as new
projections are acquired.

3. Evaluating slice quality quantitatively based on the number
of projections used.

4. Conducting a final reconstruction using the EM algorithm
with the optimal number of projections determined in step
3.

2.1.1 Quantification.

In order to determine the optimal number of projections, the
reconstruction quality of the slices computed in step 2 is
quantitatively assessed in step 3. A reliable approach to assess
reconstruction quality is to compare it to a reliable reference
standard, which is commonly computed as the shape error (Es)
or the normalized root-mean-squared difference between the
Otsu threshold40 binarized reconstruction (Vrec) and reference
(Vref), defined as

Es = 100
∥Vref −Vrec∥

∥Vref∥
, (2)

where ∥ · ∥ represents the Euclidean norm, i.e., ∥x∥ =
√

∑
n
i=1 x2

i .
The reference is typically the sample collected using standard
tomographic acquisition, which is assumed to be a reliable
representation of the true 3D structure. However, due to beam
damage, this assumption may not always be reliable.
Additionally, subsequent acquisitions of the same particle may
differ from the reference solely due to beam damage induced
during the reference acquisition, making it impossible to obtain a
reliable reference structure.

In this case, the only information available from RECAST3D is
three arbitrary slices. For convenience, in this paper, all
calculations were determined from the xy, yz, and xz orthoslices
passing through the origin. If the positions of these orthoslices
are fixed for the acquisition duration, the change in these
orthoslices can be observed as a function of the number of
projections. In ET, as more projections are provided, the
reconstruction converges towards a 3D structure, and each
projection becomes a smaller portion of the complete set of N
projections. Therefore, each projection contributes less to the
reconstruction as more projections are added, and the difference
between the 3D reconstruction with N and N − 1 projections
tends towards zero.

Applied to the RECAST3D orthoslices, a measure for the
convergence can be obtained as a function of N by finding the
normalized root mean squared difference between the set of
orthoslices (ON) and the orthoslices obtained with N − 1
projections (ON−1). This measure is

SROD(N) =
∥ON −ON−1∥

∥ON∥
. (3)

This metric, referred to as the self-referential orthoslice
difference (SROD), can be obtained solely from the RECAST3D
orthoslices without a known accurate reference structure. The
lower the SROD, the more closely ON−1 and ON resemble each
other. Sufficient convergence for reconstruction is achieved
when the SROD is lower than a user-defined threshold value. For
this work, an arbitrary threshold of 0.1 was applied. Higher or
lower threshold values may be utilized depending on the desired
frequency resolution.

The SROD metric only monitors convergence and
undersampling. For beam-sensitive samples, beam-induced
artifacts may reduce the reconstruction quality before
adequately sampling the structure. To monitor this, the
signal-to-noise ratio (SNR) of each set of orthoslices is measured

Fig. 3 Procedure to optimize the number of projections during 3D reconstruction using TUOTA. Steps 1-3 are performed at the microscope, while
the final step can be performed at the compute station (e.g. high-performance computer or server).

Journal Name, [year], [vol.],1–12 | 3



as a function of the number of projections, i.e.,

SNR(N) = 20log10

(
µ(ON)

σ(ON)

)
, (4)

where µ is the average and σ is the standard deviation in the
signal of each pixel in the set of orthoslices ON .

It is noted that the SNR typically increases as more projections
are added to the tilt-series and tends to decrease in electron
microscopy images as a response to beam damage.41 The
optimum number of projections is determined by the
intersection of the convergence of the SROD and the decline in
SNR due to beam damage.

The optimum number of projections for a given sample can be
obtained by analyzing the SROD and SNR curves as a function
of the number of projections. This allows for the determination
of the optimum number of projections for a given sample without
the need for a reliable reference structure. Refer to the supporting
information regarding its implementation in code.

2.1.2 Post-processing.

The optimal number of projections for the tilt-series is used to
reconstruct the complete 3D volume using the MATLAB ASTRA
implementation of the EM algorithm.42–44 In contrast,
RECAST3D only provides orthoslices using the FBP algorithm,
which has been shown to perform poorly when the tilt-series is
undersampled or contains a missing wedge.42 Therefore, we
prefer the EM algorithm for complete volume reconstruction.

2.2 Method evaluation

To evaluate the validity of TUOTA, we compared the suggested
optimum reconstructions to a standardized method for
evaluating reconstruction accuracy, Es. However, Es is not
reliable for beam-sensitive samples because the reference sample
is unreliable. Therefore, we performed simulated beam damage
experiments where a phantom was used as an accurate reference
of the initial structure before beam damage was applied. For
beam-insensitive samples, it can be assumed that standard IS
tomography provides a reasonably accurate reconstruction that
can be used as a reference. To evaluate the proposed acquisition
procedure and the reliability of TUOTA, we compared the
TUOTA- and Es-determined optimum number of projections for
both simulated and experimental structures.

2.2.1 Simulations and Experimental Acquisition.

Sample data were obtained through both microscopy simulations
and experiments. The simulations were performed by iteratively
deforming an original 3D structure using a Gaussian filter and a
binomial probability mask implemented in MATLAB. After each
iteration, the entire volume was saved. Tilt-series were
simulated by forward projecting the structure after each iteration
of beam damage. As a result, the image corresponding to the
first angle in the tilt-series was simulated by the forward
projection of the structure after one iteration of beam damage,
and the image for the second angle was obtained by forward
projecting the structure after two iterations of beam damage.
This process was repeated until images for all angles were

Fig. 4 Simulated beam damage on four nanocage samples with different
simulation settings. A tilt-series is acquired for each sample by forward
projecting after each iteration of simulated deformation. Each nanocage
is shown after 0, 17, 34, 51 and 71 iterations of deformation.

obtained. The magnitude of the beam damage was adjustable by
adjusting two deformation parameters (β1,β2). See the
supporting information for more details on the beam damage
simulations.

Simulations were performed for a nanoparticle with a hollow,
cage-like structure, which we previously investigated
experimentally.45 We used four different deformation settings to
simulate the beam damage (Figure 4, Movie S1), ranging from
no deformation (NC-1) to severe deformation (NC-4). Beam
damage in the hollow nanocages manifested as a slowly opening
cavity in the structure and thinning of the cage walls.

In addition, three experimental samples were characterized
(Figure B1.): an Au/Pd nanostar (NS) and two NP@MOF
composites. The first composite was a Zn(2−methylimidazole)2
MOF ZIF-8 containing an Au/Pd nanorod (Au/Pd@ZIF-8), and
the second composite was a NU-1000 MOF consisting of
Zr6O4(OH)4 clusters and a 1,3,6,8−Tetra(4−carboxylphenyl)
pyrene ligand encapsulating a bipyramidal Au NP
(Au@Nu-1000). These samples were suspended in ethanol and
drop-cast onto a carbon-coated Cu transmission electron
microscopy (TEM) grid. Imaging was performed using a Thermo
Fisher Scientific Tecnai Osiris TEM with an acceleration voltage
of 200 kV, a screen current of 50 pA, and an imaging/scanning
dwell time of 3.06/7.96 µs. Au/Pd NS samples were collected
using HAADF-STEM, and MOF complexes were collected using
ADF-STEM.

Sample tracking and focusing were performed manually.
During RECAST3D imaging, projection alignment was performed
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by centering the sample, masking the background with an Otsu
threshold, and then aligning the projections in chronological
order using intensity correlation. Post-processing reconstruction
and alignment were performed using the ASTRA toolbox in
MATLAB. Before post-processing, the tilt-series was sorted into
annular order (lowest to highest, e.g., −70◦ to 70◦) and
projection alignments were performed using intensity
correlation.

For comparison, tilt-series were acquired with both IS and GRS.
The simulated and acquired tilt-series throughout this work are
summarized in Table A1. Approximately 70 projections of GRS
acquisition were acquired regardless of the proposed termination
point for comparison with the standard protocol of IS with a 2◦

increment (71 projections). IS acquisitions were collected with
a tilt increment of 2◦, 5◦, 7◦, 10◦, 14◦, 35◦, or 70◦. These are
the only integer tilt increments that result in all projections being
equally spaced between ±70◦.

3 Results

3.1 Simulated evaluation of optimization protocol

3.1.1 Incremental scanning.

The traditional approach to optimizing the number of
projections is to vary the tilt increment during IS scanning.
Therefore, to determine the optimum number of projections
using IS for NC-1 to NC-4, we simulated tilt-series with tilt
increments of 2◦, 5◦, 7◦, 10◦, 14◦, 35◦, and 70◦ (71, 29, 21, 15,
11, 5, 3 projections, respectively). We measured Es for each
tilt-series by comparing them to a ground truth structure, and
the minimum Es was obtained where the 3D reconstruction most
accurately reflected the ground truth. As more beam damage
was simulated from NC-1 to NC-4, the minimum Es value was
obtained with fewer projections, but the Es value at the optimum
number of projections increased (Es/Projections: 5.1/11,
6.6/11, 8.7/5, 9.1/5) (Figure 5a-b, Figure B3). While it is
possible to estimate the optimum number of projections by
simulating seven different tilt-series per sample, this process is
infeasible for experimental beam damage analysis.

An alternative method would be to take a single tilt-series
using a fixed tilt increment and collect projections until an
optimum is obtained. Therefore, we collected a tilt-series for
NC-1 to NC-4 for IS with a 2◦ increment while monitoring the Es

as a function of the number of projections (Figure 5c). As more
beam damage was simulated from NC-1 to NC-4, the Es

optimum was obtained earlier with an increased value
(Figure 5b), indicating lower quality reconstructions
(Es/Projections: 6.6/71, 13.6/71, 30.2/68, 44.3/52). The same
trend was observed for variable tilt increments, but the optimum
number of projections occurred with far more projections
compared to the results displayed in Figure 5b. The late optimal
number of projections in Figure 5d occurs because, until the final
projection, each projection is filling a missing wedge in the
tilt-series. In contrast, the projections are spread across the
entire annular range by taking multiple tilt-series with a variable
tilt increment. Therefore, when reducing the number of
projections during an IS acquisition, the reduction in beam

damage artifacts is counteracted by increased missing wedge
artifacts. With NC-4, this is visually apparent. At the Es optimum
of 52 projections, a missing wedge artifact is compensated for
when adding new projections, but adding extra projections
increases the beam damage artifact (Figure B2). Through visual
inspection, it is apparent that by finding the optimum of multiple
tilt-series (Figure 5e-i), undersampling artifacts are apparent in
samples NC-2 to NC-4. However, by finding the optimum from a
single typical acquisition (IS, 2◦)(Figure 5j-m), severe beam
damage artifacts are apparent in NC-3 and NC-4 (Movie S2).

In summary, current techniques for optimizing the number of
projections either require multiple acquisitions or introduce
substantial beam damage artifacts while correcting for missing
wedge artifacts, limiting their feasibility for beam-sensitive
samples. One possible solution to this problem is to use the GRS
method, which allows for the determination of the optimum
number of projections from a single acquisition. In the following
subsection, we describe the GRS method and compare it to the
traditional IS method for optimizing the number of projections
in beam-sensitive samples.

3.1.2 Golden ratio scanning.

In order to determine the optimum number of projections from
a single tilt-series, we performed simulations for samples NC-1
to NC-4 according to the golden ratio scanning (GRS) method
(Figure 2b) and evaluated the reconstruction quality using Es.
For each sample, we obtained a local minimum Es (Figure 6a).
This minimum represents the optimum between undersampling
and beam damage. As more damage was simulated from NC-
1 to NC-4, the optimum was found with fewer projections, but
the Es value increased (Es/Projections: 7.4/55, 10.4/21, 13.7/13,
14.9/13). Therefore, reconstructions with fewer projections were
favored with increased beam damage simulation because beam
damage artifacts outweighed undersampling. However, despite
optimizing the number of projections, the overall reconstruction
quality worsened as more beam damage was induced.

It may seem counterintuitive that a local minimum was
achieved for NC-1, in which no beam damage was simulated.
However, reconstruction algorithms tend to favor equidistant
angular spacing. In GRS, the angular spacing is approximately
equidistant where the number of projections is expected to be
found in the Fibonacci sequence (e.g. 0, 1, 2, 3, 5, 8, 13, 21, 34,
55, 89, 144).38 Notably, the optimum number of projections
determined by Es for NC-1 to NC-4 were all on the Fibonacci
sequence. However, it should be noted that when computing an
alternative reconstruction with a projection added (e.g. number
of projections = 56, 22, 14, and 14 respectively), the Es for the
resulting reconstruction differs by less than 0.4%. This extends
further for NC-1, where the Es at 71 projections (7.8%) differs
from 55 projections by just 0.4% and no substantial difference
could be observed (Figure B4). This indicates neglible difference
between the full tilt-series and the optimum reconstruction were
present.

The obtained optimum number of projections is consistent
with the visual inspection of the samples. For NC-1 and NC-2,
there is little notable distortion in the reconstruction at the
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Fig. 5 To change the projection number while maintaining a constant annular range, samples NC-1 to NC-4 were collected with a variable tilt increment
of 2◦, 5◦, 7◦, 10◦, 14◦, 35◦, 70◦ (71, 29, 21, 15, 11, 5, 3 projections). An example is shown for the acquisition of 11 projections (14◦ tilt increment) (a).
The Es of each acquisition was then determined (b). Alternatively, for samples NC-1 to NC-4, the tilt increment was fixed at a standard 2◦ and more
projections were collected while increasing the annular range during a single acquisition. An example is shown for the acquisition of 11 projections (c).
The Es was plotted as a function of the number of projections (d). The 3D reference structure (e) is shown along with the optimum reconstructions
for NC-1 to NC-4 determined with a variable tilt increment (f-i) and 2◦ increment (j-m).

optimum number of projections (Figure 6b-d). Slight surface
defects were noted in NC-3 and NC-4 (Figure 6e-f). However,
these were minor compared to the beam damage-induced
cavities apparent in NC-3 and NC-4 with 71 projections
(Figure 6g-j).

When comparing the minimum Es obtained from NC-1 to
NC-4 for IS and GRS (IS(%)/GRS(%): 6.6/7.4, 13.6/10.4,
30.2/13.7, 44.3/14.9), the Es value for IS is substantially larger
than the same value obtained for GRS for NC-2 to NC-4,

indicating that optimization of GRS acquisitions produces a
substantially improved reconstruction compared to IS with a
standard 2◦ increment for beam-sensitive samples.

3.1.3 TUOTA.

We have previously evaluated reconstruction quality using the
metric Es, by comparison to a known ground truth structure. To
determine the optimal number of projections in real
experiments, it is necessary to do so without prior knowledge of
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Fig. 6 (a) Shape error as a function of the number of projections for NC1-4 nanocages and their determined optimum number of projections with GRS
acquisition scheme. (b) Inset: nanocage before beam damage simulation. 3D reconstruction of NC-1-4 with their optimum number of projections
(c-f) and 71 projections (g-j).

the ground truth. TUOTA has been applied as a promising
approach for this purpose, using samples NC-1 to NC-4 and
monitoring the SROD and SNR as a function of the number of
projections during GRS. The SROD threshold was reached for all
NC samples at approximately 24 projections (Figure 7a). It is
important to note that the number of projections optimized for
Es and SROD identify different properties. The SROD determines
the number of projections beyond which additional projections
are unlikely to significantly improve reconstruction, while the Es

criteria identify the number of projections that produce the most
accurate reconstruction shape. This difference is particularly
apparent in the case of NC1-GRS, where the Es and SROD (using
a threshold of 0.1 as described in Section 2.1.1) identified 55
and 22 projections, respectively. In the absence of damage, the
acquisition could be continued indefinitely, but there was no
visible change beyond a certain point (Figure B4). As damage
increased from NC-1 to NC-4, the maximum SNR value
decreased (Figure 7b), occurring at a later projection
(SNR(dBm)/Projections: -13.6/70, -14.0/24, -14.4/16,
-14.6/16). Thus, with more simulated damage, reconstructions
using fewer projections were optimal. To validate the TUOTA
results, we calculated the Es for the optimal reconstructions
determined by TUOTA and compared them to the full tilt series
and the optimal reconstruction based on the minimum Es

determined in 3.1.2. While the optimal number of projections
determined by Es, SROD, and SNR did vary, the reconstruction
quality as determined by Es remained largely the same
(Figure 7c, Table 1, Movie S3). Visual inspection of the
TUOTA-determined optimal reconstructions for NC-1 showed no
artifacts. In contrast, NC-2 to NC-4 had a rippled texture due to
an artifact at their TUOTA-determined optimal number of
projections (Figure 7d-g). This is consistent with the optimal
reconstructions obtained by Es (Figure 6c-f). These results
demonstrate that, for simulated nanocages, TUOTA can
accurately determine the optimal number of projections,
comparable to a reference ground truth structure.

3.2 Experimental validation
3.2.1 Au/Pd nanostar

As mentioned earlier, a challenge in optimizing tilt
undersampling for beam-sensitive samples is the lack of
knowledge of the material’s true volume. Simulated experiments
address this challenge by allowing the comparison of the
reconstruction to a simulated "true" reference volume. However,
challenges with focusing and aligning projections are not present
in simulated data. For samples resistant to beam damage, it can
be assumed that the reconstruction obtained with standard ET is
a reasonable representation of the sample’s true volume. As
such, the reconstruction quality can be determined using Es,
where the reference is a non-beam-sensitive sample acquired
with standard ET.

To validate TUOTA using experimental data, an Au/Pd
nanostar was used as a beam damage-resistant sample. Three
acquisitions were performed sequentially on the same sample: a
GRS acquisition (71 projections) and an IS acquisition with a 2◦

(71 projections) and 5◦ (29 projections) increment. A 0◦

projection was acquired before and after all collections were
completed. Visual inspection of these images showed no obvious
signs of beam damage (Figure 8a-b).

For GRS reconstructions, the Es was measured as a function of
the number of projections by comparing it to a reference sample
collected with IS using a 2◦ increment. Similar to the simulated
results for NC-1, with a non-deforming sample, the Es tends to
decrease as more projections are added, but a local minimum is

Table 1 Shape error Es and number of projections (NPs) of GRS acquired
reconstructions using various optimization criteria, along with full tilt-
series

Sample
Es SROD SNR full

NPs Es NPs Es NPs Es NPs Es

NC-1 55 7.4 22 8.8 70 7.7 71 7.7
NC-2 24 10.4 22 11.3 24 11.3 71 14.0
NC-3 13 13.7 24 15.7 16 14.9 71 28.7
NC-4 13 14.9 24 19.2 16 16.6 71 44.3
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Fig. 7 (a) SROD showing the 0.1 threshold and (b) SNR of NC-1 to NC-4 orthoslices determined by TUOTA. (c) Comparison of the Es for the
optimum reconstruction determined from the shape error, SNR, SROD, and complete tilt-series of 71 projection. (d-g) reconstruction of NC-1 to
NC-4 with the optimum number of projections determined by SNR.

never achieved and the Es plateaus around 58 projections
(Es = 8.52%) (Figure 8c). When adding further projections, the
Es reduces insubstantially to 8.47% (71 projections), indicating a
limited improvement to the reconstruction. At 58 and 71
projections, the 3D structure is visually indistinguishable
(Figure B5). When applying TUOTA, the SNR increases but
plateaus as more projections are added (Figure 8d). The
maximum SNR (-16.6 dBm) is obtained when the full tilt-series
is collected, indicating there is no beam damage reducing the
signal quality. As for the SROD, the threshold is reached at 53
projections, indicating a termination point where further
projections are unnecessary (Figure 8e). At 53 projections, the
Es varies from the minimum Es by only 2.43% (Table 2),
indicating a limited difference between the reconstruction with
71 and 53 projections.

Through visual inspection of the sample, a minor artifacts is
apparent when comparing the right-side dendrite of the full GRS
reconstruction with the IS reconstruction with 2◦ steps indicating
a minor difference in reconstruction quality.(Figure 8f-g). When
the number of projections decreases to 29 projections, this
artefact is apparent for both GRS and IS (Figure 8h-i, Movie S4).
As mentioned earlier, reconstruction convergence was identified
at 53 projections using TUOTA. Hence, the GRS tilt-series with

Table 2 Es and number of projections of a Au/Pd nanostar acquired by
GRS terminated using various optimization criteria.

Optimization Criteria number of projections Es(%)

Minimum Es 71 8.47
SROD 53 10.9

SNR 71 8.47
Full 71 8.47

53 projections was reconstructed (Figure 8j). A minor difference
of 8.47% Es was determined between the full GRS reconstruction
and the reference. (Table 2.) and no visual distinction could be
found between the GRS reconstruction with 53 and 71
projections indicating a reasonable optimum was obtained.

Overall, as expected for Au/Pd nanoparticles, beam damage
could not be identified either through visual inspection of the
sample or analysis. An optimum number of projections between
29 and 71 projections was obtained through IS acquisition.
Using TUOTA, the optimum number of projections was narrowed
to 53 projections during a single acquisition. This demonstrates
the effectiveness of TUOTA in determining an optimal number of
projections without the need for a ground truth reference
structure, even when applied to beam-resistant samples.
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Fig. 8 0◦ projections of Au/Pd NS before (a) and after (b) collection of three tilt-series (IS 2◦, 5◦ increment and GRS 71 projections). The shape error
as a function of the number of projections (c) for GRS reconstructions was determined by comparison to the IS reconstruction with a 2◦ increment.
The SNR (d) and SROD (e) were determined in real-time using TUOTA. The Au/Pd NS was reconstructed with 71 (f-g) and 29 projections (h-i) for
GRS and IS. The GRS tilt-series was also reconstructed with the optimum number of projections determined from the SROD threshold (j).

3.2.2 NP@MOF composite

The technique TUOTA was applied to two MOF composites:
Au@NU-1000 and Au/Pd@ZIF-8, which are known to undergo
significant changes in shape and crystallinity when exposed to a
beam.23,46,47 Using a GRS technique, the degradation and
contamination of the samples were observed by comparing the
first and last projections collected (Figure B6). The crystal facets
became less defined and a large, blurry ring appeared around
the sample, indicating the presence of carbon contamination.

The SNR was also analyzed (Figure 9a). The Au/Pd@ZIF-8
sample had a higher maximum SNR (SNR of -9.84 dBm with 66
projections) than the Au@NU-1000 sample (SNR of -13.1 dBm
with 43 projections). Additionally, the maximum SNR was
achieved at the end of the tilt-series for Au/Pd@ZIF-8, while it

occurred at a local maximum for Au@NU-1000. This suggests
that the Au@NU-1000 sample is more sensitive to beam-induced
deformation, consistent with the SROD results. The SROD
threshold for Au/Pd@ZIF-8 was obtained at 31 projections,
indicating that while the SNR improved with additional
projections, the reconstruction showed minimal change past 31
projections. In contrast, the SROD threshold for Au@NU-1000
was achieved later, at 43 projections, and was generally higher
and less consistent than that of Au/Pd@ZIF-8, indicating
difficulty in converging to a consistent reconstruction due to
additional noise (Figure 9b).

Visual inspection of the samples supports the findings of the
TUOTA analysis. For Au@NU-1000, the NU-1000 shell displayed
substantially more surface detail at the SNR optimum compared
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Fig. 9 SNR (a) and SROD (b) as a function of the number of projections for Au@NU-1000 and Au/Pd@ZIF-8. 3D reconstructions were acquired
with the complete tilt-series, SNR optimum, SROD threshold, and 20 projections (left to right) for Au@NU-1000 (c-f) and Au/Pd@ZIF-8 (g-j).

to the sample particle undersampled with 20 projections. Using
the full tilt-series, the MOF shell had significantly shrunk,
indicating continued deformation (Figure 9c-f, Movie S5). In the
case of Au/Pd@ZIF-8, little difference was observed between the
full tilt-series, SNR optimum, and SROD optimum.
Undersampling with 20 projections resulted in a reconstruction
in which the Au/Pd nanoparticle could not be properly
segmented (Figure 9g-j, Movie S6).

Overall, the results of this study suggest that TUOTA can be
used to determine the optimal acquisition point for MOF samples
to prevent beam damage. For the NU-1000 sample, acquisition
should be terminated at 43 projections. For Au/Pd@ZIF-8, beam
damage is evident, but it has a limited impact on reconstruction
quality, and acquisition can be terminated after 31 projections to
obtain good results.

4 Discussion

4.1 Tilt scheme

In our study, we found that using RECAST3D and GRS scanning
in both experimental and simulated cases resulted in
reconstructions that were comparable to or better than those
obtained with IS using a standard tilt increment of 2°. However,
when the number of projections in the IS scan was optimized to
be similar to that of the GRS scan, there was a slight decrease in
the reconstruction quality measured with Es. One possible
explanation for this finding is that GRS tends to sample almost
the entire range of tilts, or “annular range," but falls short of
fully covering it. For instance, in a tilt range of ±70◦ (140◦ total),
the first ten projections of a GRS scan cover about 119.6◦,
increasing to 127.4◦ (20 projections) and 132.2◦ (30 projections).
In contrast, IS always samples the full annular range regardless

of the tilt increment used.

It is noted that whilst optimized IS may provide slight
improvement on the reconstruction quality over GRS, optimizing
the number of projections in an IS scan is not feasible for
beam-sensitive samples. Furthermore, even if optimization were
possible, the need to acquire multiple tilt series would make the
process time-consuming. As an alternative, it may be beneficial
to consider a two-step approach in which the optimal number of
projections is first determined using GRS, followed by the
acquisition of a second tilt series using IS with a tilt increment
that approximates the optimal number of projections found
using GRS. This approach could potentially lead to a slightly
improved reconstruction while also reducing the beam exposure
time due to the tracking and refocusing steps required in GRS
imaging. It is worth noting that in our study, GRS tracking and
focusing were performed manually, but automated tracking
could significantly reduce the beam exposure time in GRS
imaging. Hence, the development of automated acquisition
should be considered for future work.

In this work, the starting angle is defined by Eq. 1. where i =
1 and the end angle is determined where i equals the final
number of projections. By starting with i = 0 and collecting θ

α/2, a smaller missing wedge can be acquired. In electron
tomography of beam-sensitive samples, it is common practice to
assess the degree of damage introduced during acquisition by
comparing an image taken before the tilt series acquisition to an
image collected after the tilt series. Typically, these images are
obtained at an angle of 0◦. However, these projection images at
0◦ are not incorporated into the tilt-series when incremental
scanning is used. By starting the tilt series at i=1, the first image
collected can be used as a before image, while also being
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incorporated into the tilt-series, which reduces the required
electron dose. However, in the case the user does not want to
inspect the effects of beam damage on the image quality and
only aims to obtain the optimized reconstruction, using i=0 is
viable.

4.2 Software architecture

Most of TUOTA is implemented using RECAST3D, as described in
previous studies.39,48 However, there are additional constraints
for quantification that require modifications to RECAST3D. In
particular, the orthoslices at N − 1 projections must have the
same orientation and tilt axis as the orthoslices with N
projections. While RECAST3D allows these parameters to be
adjusted in real-time, doing so would invalidate the
quantification results of TUOTA and prevent the user from
visually inspecting other regions of the sample or correcting the
tilt-axis alignment. Additionally, the default orthoslices selected
by RECAST3D (xy, xz, and yz slices passing through the origin)
may not be representative slices of the entire volume. For
example, in the case of an 8-dendrite nanostar, these slices could
go through the center and miss every dendrite, resulting in a
large region of the sample being outside the inspected area
(Figure B7). To address this issue, it is possible to visually
inspect the sample and adjust the orthoslice selection by rotating
the xy and xz planes 45◦, resulting in a more representative slice
of the volume.

4.3 Alignment

Projection alignment is a major challenge during TUOTA. In
previous studies, projection and tilt axis alignment have been
performed in real-time using RECAST3D.37 However, when
applying TUOTA to beam-sensitive samples, there are some
additional challenges to consider. Firstly, intensity
cross-correlation can result in poorly aligned projections due to
the inclusion of other features in the images, such as
beam-damaged regions of the carbon mesh, other particles, or
the grid. To address this issue, we use watershed segmentation
to identify the largest particle in the image and mask out
everything else.

The second challenge is that GRS typically has large annular
distances between projections, which can lead to inaccuracies
during cross-correlation. For example, the second projection
(−37.0◦) and the third projection (49.6◦) are separated by 86.5◦.
To address this issue, we index images by both angle and
chronology and align each projection to the closest projection by
angle, rather than aligning to the previously collected projection.
Overall, our method for addressing these challenges has been
successful in ensuring accurate projection alignment during
TUOTA of beam-sensitive samples.

5 Conclusions
In conclusion, we have developed a novel protocol for
optimizing tilt undersampling during a single acquisition using
GRS and RECAST3D. Our simulations have demonstrated that
reconstructions of beam-sensitive samples optimized using this

method have higher fidelity with the pre-damaged sample than
reconstructions using standard incremental acquisition. We have
validated our approach through simulations and experimental
3D imaging of Au/Pd nanostars and applied it to the
characterization of highly sensitive NP@MOF complexes. Our
approach, which is based on golden ratio acquisition and
quasi-real-time reconstruction, provides an effective solution for
balancing undersampling, beam damage, and reconstruction
quality on a sample-by-sample basis. While similar results can be
achieved with undersampling optimization of IS, our method is
far more efficient and less time-consuming.

Future work may involve further optimization and testing of
the TUOTA protocol on a wider range of beam-sensitive samples
and comparing its performance to other acquisition schemes.
Additionally, exploring the use of more advanced reconstruction
algorithms in conjunction with TUOTA could potentially lead to
even higher-quality reconstructions.
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