
BRINGING DIFFERENTIAL PRIVATE SGD TO PRACTICE: ON
THE INDEPENDENCE OF GAUSSIAN NOISE AND THE NUMBER

OF TRAINING ROUNDS

Marten van Dijk1,2∗, Nhuong V. Nguyen3†∗, Toan N. Nguyen3†,
Lam M. Nguyen4, Phuong Ha Nguyen5

1 CWI Amsterdam, The Netherlands
2 Department of Electrical and Computer Engineering, University of Connecticut, CT, USA
3 Department of Computer Science and Engineering, University of Connecticut, CT, USA

4 IBM Research, Thomas J. Watson Research Center, Yorktown Heights, NY, USA
5 eBay, CA, USA

marten.van.dijk@cwi.nl, nhuong.nguyen@uconn.edu, toan.nguyen@uconn.edu,
LamNguyen.MLTD@ibm.com, phuongha.ntu@gmail.com

ABSTRACT

In the context of DP-SGD each round communicates a local SGD update which leaks some new
information about the underlying local data set to the outside world. In order to provide privacy,
Gaussian noise is added to local SGD updates. However, privacy leakage still aggregates over multiple
training rounds. Therefore, in order to control privacy leakage over an increasing number of training
rounds, we need to increase the added Gaussian noise per local SGD update. This dependence of the
amount of Gaussian noise σ on the number of training rounds T may impose an impractical upper
bound on T (because σ cannot be too large) leading to a low accuracy global model (because the
global model receives too few local SGD updates). This makes DP-SGD much less competitive
compared to other existing privacy techniques.
We show for the first time that for (ε, δ)-differential privacy σ can be chosen equal to√

2(ε+ ln(1/δ))/ε for ε = Ω(T/N2). In many existing machine learning problems, N is always
large and T = O(N). Hence, σ becomes “independent” of any T = O(N) choice with ε = Ω(1/N)
(aggregation of privacy leakage increases to a limit). This means that our σ only depends on N rather
than T . This important discovery brings DP-SGD to practice – as also demonstrated by experiments –
because σ can remain small to make the trained model have high accuracy even for large T as usually
happens in practice.

1 Introduction

The optimization problem for training many Machine Learning (ML) models using a training set {ξi}mi=1 of m samples
can be formulated as a finite-sum minimization problem as follows

min
w∈Rd

{
F (w) =

1

m

m∑
i=1

f(w; ξi)

}
. (1)

The objective is to minimize a loss function with respect to model parameters w. This problem is known as empirical
risk minimization and it covers a wide range of convex and non-convex problems from the ML domain, including, but
not limited to, logistic regression, multi-kernel learning, conditional random fields and neural networks.

∗ these authors contributed equally.
† supported by NSF grant CNS-1413996 “MACS: A Modular Approach to Cloud Security.”

ar
X

iv
:2

10
2.

09
03

0v
3

 [
cs

.L
G

]
 1

9
O

ct
 2

02
1

We want to solve (1) in a distributed setting where many clients have their own local data sets and the finite-sum
minimization problem is over the collection of all local data sets. A widely accepted approach is to repeatedly use the
Stochastic Gradient Descent (SGD) recursion

wt+1 = wt − ηt∇f(wt; ξ), (2)

where wt represents the model after the t-th iteration; wt is used in computing the gradient of f(wt; ξ), where ξ is a
data sample randomly selected from the data set {ξi}mi=1 which comprises the union of all local data sets.

This approach allows each client to perform local SGD recursions for the ξ that belong to the client’s local data set.
The updates as a result of the SGD recursion (2) are sent to a centralized server who aggregates all received updates
and maintains a global model. The server regularly broadcasts its most recent global model so that clients can use it in
their local SGD computations. This allows each client to use what has been learned from the local data sets at the other
clients. This leads to good accuracy of the final global model.

Each client is doing SGD recursions for a batch of local data. These recursions together represent a local round and at
the end of the local round the sum of local model updates, i.e., the addition of computed gradients, is transmitted to the
server. The server in turn adds the received sum of local updates to its global model – and once the server receives new
sums from all clients, the global model is broadcast to each of the clients. When considering privacy, we are concerned
about how much information these sums of local updates reveal about the used local data sets. Each client wants to
keep its local data set as private as possible with respect to the outside world which observes round communication (the
outside world includes all other clients as well).

Rather than reducing the amount of round communication such that less sensitive information is leaked, differential
privacy [Dwork et al., 2006b, Dwork, 2011, Dwork et al., 2014, 2006a] offers a solution in which each client-to-server
communication is obfuscated by noise. If the magnitude of the added noise is not too much, then a good accuracy of the
global model can still be achieved albeit at the price of more overall SGD iterations needed for achieving good accuracy.
On the other hand, only if the magnitude of the added noise is large enough, then good differential privacy guarantees
can be given.

When using Gaussian based differential privacy, each local round produces a sum of locally computed gradients based
on the local data set, which is transmitted to the central server after adding Gaussian noise Abadi et al. [2016]. Because
of this, each local training round communicates information about the corresponding local data set. Privacy leakage
aggregates over multiple training rounds, and the total amount of privacy leakage from the local data set increases as
the total number T of local training rounds increases.

As discussed in Abadi et al. [2016], in order to control privacy leakage over an increasing number of training rounds,
we need to increase the magnitude, or standard deviation σ, of the added noise per round. Increasing σ makes each
round leakage smaller and as a result the aggregated leakage becomes less. For a fixed privacy leakage budget this
allows us to add more entries, in other words, we may increase T . The maximum possible T increases as σ increases.

This dependence of the amount of Gaussian noise σ on the number of training rounds T may impose an impractical
upper bound on T : First, σ cannot be too large. The global model suffers from aggregated noise from each local update.
In particular, the global model includes σ noise from the final training round. If σ is too large, then this leads to a low
accuracy global model. Second, if σ cannot be too large, then the number of training rounds T cannot be too large
because otherwise privacy leakage aggregates too much over all training rounds. But this implies that the global model
may receive too few local SGD updates; local SGD updates from different clients are communicated through the global
model to one another using too few interactions/rounds (frequent exchange is especially important when local data sets
are heterogeneous, hence, different clients produce distinctive updates that are specific to their local data sets). This
leads again to a low accuracy global model. This intuition/reasoning indicates that Differential Private SGD (DP-SGD)
can only be practical for subtle parameter settings and data sets that allow ‘fast enough’ training/convergence to a good
accuracy global model. In general, DP-SGD is expected to be much less competitive compared to using other existing
privacy techniques (such as secure multiparty computation even though this is less efficient).

Main contribution. We show that DP-SGD is actually competitive by non-trivially improving the analysis of the
moment accountant method in Abadi et al. [2016]. As a conclusion of Sections 5 and 6 we show for the first time that
(ε, δ)-differential privacy can be achieved for

σ =
√

2(ε+ ln(1/δ))/ε (3)

in practical parameter settings

(a) with a reasonable DP guarantee by choosing δ ≤ 1/N and ε smaller than 0.5,
(b) where the total number K of gradient computations over all local rounds performed on the local data set is at least

a constant times
√
ε ln(1/δ) epochs (of size N),

2

(c) and T is at least another constant times (K/N)2/ε (the constants are made explicit in the main body).

The lower bound (b) on K is generally satisfied in practice as usually K is 50 or 100s of epochs or is O(N) epochs.

The lower bound (c) on T shows that we may increase T without having to increase σ – in this sense σ does not depend
on T anymore. This important discovery brings DP-SGD to practice because, in order to make the trained model have
high accuracy even for large T as happens in practice, σ can remain small as indicated by our tight formula (3). In fact
T can become as large as K (corresponding to batches of size s = 1) implying that for K = T , the lower bound (c)
on T translates into ε at least a constant times K/N2 (leading to the interpretation in the abstract). First, this shows
that in theory ε can be chosen very small for large enough data sets N and practical K (although as explained above,
very small ε lead to too large σ implying low accuracy, hence, our requirement on accuracy likely leads to a more strict
lower bound on ε). Second, requiring ε at least a constant times K/N2 with K = kN (that is, K is equal to k epochs
of gradient computations) is equivalent to requiring N at least a constant (turns out to be ≈ 2) times k/ε. For typical
values of k (100s of epochs), this means N = Ω(1/ε).

Our σ therefore depends on N rather than T . For improved differential privacy (smaller ε), we need a larger data set
(larger N). This observation comes natural since selecting a random batch of local training data among a larger data
set helps in making round computation less dependent on an a-priori selected single local training data sample and
being able to differentiate whether such a local training data sample is part of the larger local training data set is what
differential privacy is about.

Outline. In order to set up the proper background, we first discuss differential privacy in Section 2, next discuss
DP-SGD as introduced by Abadi et al. Abadi et al. [2016] in Section 3, and explain in Section 4 that according to their
analysis/theory the maximum number of local training rounds is significantly restricted. In relation to this, we discuss
the independence of σ and T in Section 5, i.e., we explain that there is no ceiling to the total number of local training
rounds in DP-SGD and that this can be chosen independent of the required differential privacy with corresponding
Gaussian noise. Our main theorems are in Section 6 with experiments in Section 7.

2 Differential Privacy

Differential privacy [Dwork et al., 2006b, Dwork, 2011, Dwork et al., 2014, 2006a] defines privacy guarantees for
algorithms on databases, in our case a client’s sequence of mini-batch gradient computations on his/her training data set.
The guarantee quantifies into what extent the output of a client (the collection of updates communicated to the server)
can be used to differentiate among two adjacent training data sets d and d′ (i.e., where one set has one extra element
compared to the other set).
Definition 1. A randomized mechanismM : D → R is (ε, δ)-DP (Differentially Private) if for any adjacent d and d′
in D and for any subset S ⊆ R of outputs,

Pr[M(d) ∈ S] ≤ eεPr[M(d′) ∈ S] + δ,

where the probabilities are taken over the coin flips of mechanismM.

The privacy loss incurred by observing o is given by

LoM(d)‖M(d′) = ln

(
Pr[M(d) = o]

Pr[M(d′) = o]

)
.

As explained in [Dwork et al., 2014] (ε, δ)-DP ensures that for all adjacent d and d′ the absolute value of privacy loss
will be bounded by ε with probability at least 1− δ. The larger ε the more certain we are about which of d or d′ caused
observation o. When using differential privacy in machine learning we typically use δ = 1/N (or 1/(10N)) inversely
proportional with the data set size N .

In order to prevent data leakage from inference attacks in machine learning [Lyu et al., 2020] such as the deep leakage
from gradients attack [Zhu et al., 2019, Zhao et al., 2020, Geiping et al., 2020] or the membership inference attack
[Shokri et al., 2017, Nasr et al., 2019, Song et al., 2019] a range of privacy-preserving methods have been proposed.
Privacy-preserving solutions for federated learning are Local Differential Privacy (LDP) solutions [Abadi et al., 2016,
Bhowmick et al., 2019, Naseri et al., 2021, Truex et al., 2019, Hao et al., 2020, Duchi et al., 2014] and Central
Differential Privacy (CDP) solutions [Naseri et al., 2021, Geyer et al., 2018, McMahan et al., 2018, Papernot et al., 2018,
Yu et al., 2019]. In LDP, the noise for achieving differential privacy is computed locally at each client and is added
to the updates before sending to the server – in this paper we also consider LDP. In CDP, a trusted server aggregates
received client updates into a global model; in order to achieve differential privacy the server adds noise to the global
model before communicating it to the clients.

3

3 Differential Private SGD (DP-SGD)

In this paper we analyse the Gaussian based differential privacy method, called DP-SGD, of [Abadi et al., 2016],
depicted in Algorithm 1. Rather than using the gradient ∇f(ŵ, ξ) itself, DP-SGD uses its clipped version [∇f(ŵ, ξ)]C
where [x]C = x/max{1, ‖x‖/C}. Clipping is needed because in general we cannot assume a bound C on the gradients
(for example, the bounded gradient assumption is in conflict with strong convexity [Nguyen et al., 2018]), yet the added
gradients need to be bounded by some constant C in order for the DP analysis of [Abadi et al., 2016] to go through.
Experiments in [Abadi et al., 2016] show that such a clipped version of mini-batch SGD still leads to acceptable
convergence to acceptable accuracy.

DP-SGD uses a mini-batch approach where before the start of the i-th local round a random min-batch of sample size si
is selected out of a local data set d of size |d| = N . Here, we slighty generalize DP-SGD’s original formulation which
uses a constant si = s sample size sequence, while our analysis will hold for a larger class of sample size sequences.
The inner loop maintains the sum U of gradient updates where each of the gradients correspond to the same local model
ŵ until it is replaced by a newer global model at the start of the outer loop. At the end of each local round the sum of
updates U is obfuscated with Gaussian noiseN (0, C2σ2) added to each vector entry, and the result is transmitted to the
server. The noised U is transmitted to the server who adds U times the round step size η̄i to its global model ŵ. As
soon as all clients have submitted their updates, the resulting new global model ŵ is broadcast to all clients, who in turn
replace their local models with the newly received global model (at the start of the outer loop).

Algorithm 1 DP-SGD: Local Model Updates with Differential Privacy

1: procedure LOCALSGDWITHDP(d)
2: for i ∈ {0, . . . , T − 1} do
3: Receive the current global model ŵ from Server.
4: Uniformly sample a random set {ξh}sih=1 ⊆ d
5: h = 0, U = 0
6: while h < si do
7: g = [∇f(ŵ, ξh)]C
8: U = U + g
9: h++

10: end while
11: n← N (0, C2σ2I)
12: U = U + n
13: Send (i, U) to the Server.
14: end for
15: end procedure

4 DP-SGD Analysis by Abadi et al.

Abadi et al. Abadi et al. [2016] prove the following theorem (rephrased using our notation with q = s/N):
Theorem 1. There exist constants c1 and c2 so that given a sample size sequence si = s and number of steps T , for
any ε < c1T (s/N)2, Algorithm 1 is (ε, δ)-differentially private for any δ > 0 if we choose

σ ≥ c2
(s/N) ·

√
T ln(1/δ)

ε
.

The theorem suggests a necessary dependence between σ and T where σ scales with
√
T for fixed s and N . If this is

indeed necessary, then in order to achieve good accuracy for a given σ we need to increase the number of rounds T , but
this requires us to increase σ, which increases T , etc. This reasoning would imply a subtle setting of σ and T for a
given privacy budget (ε, δ) that leads to ‘best’ accuracy. Here, σ must be small enough so that it does not causes too
much noise in the final global model. But this implies that the ’best’ accuracy is restricted by only being able to use a
limited number of training rounds T (since T cannot be too large for small enough σ = O(

√
T)).

The interpretation of Theorem 1, however, is more subtle: The condition on ε in Theorem 1 is equivalent to

1/
√
c1 < z where z = (s/N) ·

√
T/ε.

Substituting this into the bound for σ yields

σ ≥ (c2 · z) ·
√

ln(1/δ)

ε
. (4)

4

This formulation only depends on T through the definition of z. Notice that z may be as small as 1/
√
c1. In fact, it

is unclear how z depends on T since T is equal to the total number K of gradient computations over all local rounds
performed on the local data set divided by the mini-batch size s, i.e., T = K/s, hence, z = (K/N) ·

√
1/(Tε). This

shows that for fixed K and N , we can increase T as long as 1/
√
c1 < z, or equivalently,

T < c1(K/N)2/ε (5)

(notice that the original constraint on ε in Theorem 1 directly translates into this upper bound on T by using T = K/s).
Since σ cannot be chosen too large (otherwise the final global model has too much noise), ε, see (4), cannot be very
small (like ε ≈ 0.001). Therefore, this more precise analysis still puts an upper bound on T which is in general much
less than K for practically sized large data sets (K equals the maximum possible number of rounds for mini-batch size
s = 1).

Rather than applying Theorem 1, we can directly use the moment accountant method of its proof to analyse specific
parameter settings. It turns out that T can be much larger than upper bound (5). In this paper we formalize this insight
(by showing that ‘constants’ c1 and c2 can be chosen as functions of T and other parameters) and show a lower bound on
σ which does not depend on T at all – in fact z in (4) can be characterized as a constant independent of any parameters.
This will show that σ can remain small up to a lower bound that only depends on the privacy budget. We can freely
increase T (up to K if needed) in order to improve accuracy.

5 Independence between σ and T

We go beyond the analysis presented by Abadi et al. [Abadi et al., 2016] in a non-trivial way and show that (ε, δ)-DP
(Differential Privacy) holds for per round added Gaussian noise with standard deviation (normalized with respect to the
clipping constant C)

σ =

√
2(ε+ ln(1/δ))

ε
(6)

if

σ ≤ N
√
T

K

√
2(ε+ ln(1/δ))

γθ2
, (7)

where γ is some constant ≈ 2, θ measures the variation in the sample size sequence {si}T−1
i=0 used for selecting

mini-batches during the local mini-batch SGD computations (constant sample size sequences have θ = 1), T is the
number of local rounds, and K is the total number of gradient computations (iterations) over all local rounds performed
on the local data set. This compares to taking c2z ≈

√
2 in (4). We do have the new constraint (7) which we interpret

below.

Interpretation: In general, practical parameter settings that achieve good enough accuracy show that σ must be
restricted to at most 10, 20, may be 35 (this depends on the data set). This shows that if N

√
T/K is large enough,

larger than the relatively small σ
√
θ2(γ/2)/(ε+ ln(1/δ)), then upper bound (7) is satisfied. That is, for given K and

N , we need T to be large enough, or equivalently the mean sample/mini-batch size s̄ = K/T small enough. Squaring
both sides of (7) and moving terms yields the lower bound

T ≥ γ

2

σ2θ2

ε+ ln(1/δ)
· (K/N)2,

which after substituting (6) gives

T ≥ γθ2

ε
· (K/N)2. (8)

In other words T is at least a factor γθ2/ε larger than the square of the overall amount of local SGD computations
measured in epochs (of size N). Notice that we have a lower bound on T rather than an upper bound as in (5).

We notice the natural restriction T ≤ K as there can be no more local rounds than the total number of local gradient
computations (each mini-batch must at least contain one element). Substituting the maximum K for T in (8) and
reordering terms shows that there exists a (large) T satisfying (8) only if K ≤ N2ε/(γθ2). In other words K is at most
ε/(γθ2) times N epochs (of N gradient computations each), which is true in practical parameter settings for the small ε
values we aim at in combination with sufficiently large data sets N .

This shows that in practical settings there is no imposed ceiling for T and corresponding to T there is a wide range of
accommodating sample size sequences (with s̄ = K/T). We only need to make sure to choose σ, ε, and δ according to

5

(6). Allowable sample size sequences also include polynomial increasing ones with si ≈ q · ip which have θ = p+ 1.
Using such increasing sample size sequences reduces the number of rounds T and, hence, the amount of communication
for a given K. [van Dijk et al., 2020] gives evidence that increasing sample size sequences still lead to sufficient
convergence to practical accuracy.

Since (6) does not involve T (or K), (ε, δ)-DP is achieved for any increasing number of rounds with the same noise
σ. This is counter intuitive as we expect to see a steady aggregation of leakage from round to round, which after
some moment is too much for guaranteeing (ε, δ)-DP. This latter intuition is also expressed in [Abadi et al., 2016]
in Theorem 1 and the resulting upper bound (5) on T . Nevertheless, our analysis shows that it suffices to satisfy the
weaker constraint (6) with lower bound (8) on T .

This has a major practical consequence: If we need to increase T (and K) for achieving convergence to better practical
accuracy, then we do not need to increase σ in order to remain guaranteeing differential privacy. Prior to this work the
above explained incorrect intuition prevented us from increasing T too much as this would imply (according to this
intuition) a too large increase in σ which inherently leads to impractical accuracy.

One order of magnitude smaller ε: In order to attain an accuracy comparable to the non-DP setting where no noise
is added, the papers cited in Section 2 generally require large ε (such that σ can be small enough) – which gives a
weak privacy posture (a weak bound on the privacy loss). For example, when considering LDP (see Section 2), 10%
deduction in accuracy yields only ε = 50 in [Bhowmick et al., 2019] and ε = 10.7 in [Naseri et al., 2021], while [Truex
et al., 2019, Hao et al., 2020] show solutions for a much lower ε = 0.5. Similarly, when considering CDP (see Section
2), in order to remain close to the accuracy of the non-DP setting [Naseri et al., 2021] requires ε = 8.1, [Geyer et al.,
2018] requires ε = 8, and [McMahan et al., 2018] requires ε = 2.038.

The theory presented in this paper allows relatively small Gaussian noise for small ε: We only need to satisfy the main
equation (6). For example in Section 7 simulations for the LIBSVM data set show (ε = 0.05, δ = 1/N)-DP is possible
while achieving good accuracy with σ ≈ 20. Such small ε is a significant improvement over existing literature and
gives us significant more trust in that DP offers appropriate privacy.

6 Main DP Theorem

The proof of our main theorem is in Supplemental Material B, where we generalize Theorem 1 in a non-trivial way by
analysing increasing sample size sequences, by making explicit the higher order error term in [Abadi et al., 2016], and
by providing a precise relationship among the constants c1 and c2 in Theorem 1.

Theorem 2. For sample size sequence {si}T−1
i=0 the total number of local SGD iterations is equal to K =

∑T−1
i=0 si.

We define the mean s̄ and maximum smax and their quotient θ as

s̄ =
1

T

T−1∑
i=0

si =
K

T
, smax = max{s0, . . . , sT−1},

and θ =
smax
s̄

.

We define

h(x) =
(√

1 + (e/x)2 − e/x
)2

, g(x) = min

{
1

ex
, h(x)

}
,

and denote by γ the smallest solution satisfying

γ ≥ 2

1− ᾱ
+

24 · ᾱ
1− ᾱ(

σ

(1−
√
ᾱ)2

+
1

σ(1− ᾱ)− 2e
√
ᾱ

e3

σ

)
e3/σ2

with ᾱ =
εN

γK
.

6

If the following requirements are satisfied:

s̄ ≤
g
(√

2(ε+ ln(1/δ))/ε
)

θ
·N, (9)

ε ≤ γh(σ) · K
N
, (10)

ε ≥ γθ2 · K
N
· s̄
N
, and (11)

σ ≥
√

2(ε+ ln(1/δ))/ε, (12)
then Algorithm 1 is (ε, δ)-differentially private.

Theorems 3 and 2 hold for the more general asynchronous mini-batch SGD algorithm (which follows Hogwild!’s
philosophy [Recht et al., 2011, De Sa et al., 2015, Zhang et al., 2016, Nguyen et al., 2018, Leblond et al., 2018, van
Dijk et al., 2020]) with DP in Supplemental Material A. The asynchronous setting allows clients to adapt their sample
sizes to their processing speed and communication latency.

We notice that polynomial increasing sample size sequences si ∼ qNip have s̄ ≈ [qNT p+1/(p+ 1)]/T and smax =
qNT p, hence, θ = 1 + p. This show that our theory covers e.g. linear increasing sample size sequences as discussed in
[van Dijk et al., 2020], where is explained how this implies reduced round communication – another metric which one
may trade-off against accuracy and total local number K of gradient computations.

Utility σ: In the DP approach, the utility which we wish to achieve measures accuracy. We aim at sufficient high
accuracy. We cannot write out this utility function in closed form. In Section 7 we simulate for various σ the accuracy
achieved by a global optimal model generated without adding any noise during any of the rounds except for the very
last round. This upper bounds the accuracy that can be achieved if noise were added at the end of each round as in
DP-SGD. The result is a utility graph which can be used to upper bound σ beyond which the accuracy will certainly
suffer too much.

We set σ as large as possible with respect to the accuracy we wish to have. Given this σ we want to max out on our
privacy budget. That is, we satisfy (12) with equality, see (6) in the introduction. We discuss (6) with constraints (9),
(10), and (11) below:

Neglect (9) and (10): In practice, we need a sufficiently strong DP guarantee, hence, δ ≤ 1/N and ε is small enough,
typically ≤ 0.5, see Section 5. This means that we will stretch σ to typical values σ = 10, 20, or 35 such that
accuracy will not be compromised too much and at the same time we can achieve sufficient differential privacy. For
such σ we have h(σ) ≈ 1 and g(

√
2(ε+ ln(1/δ))/ε) = g(σ) = 1/(eσ) (the first equality follows from (6)). This

reduces requirement (9) to s̄ ≤ N/(eσθ) and requirement (10) to ε ≤ γK/N . Notice that (11) in combination with
ε ≤ γθ

eσK/N implies condition s̄ ≤ N/(eσθ). This implies that (9) and (10) are satisfied for ε ≤ min{γ, γθ/(eσ)} · KN
or, equivalently, K ≥ ε ·max{1/γ, eσ/(γθ)} epochs of size N . Typically σ ≥ θ/e is in the range of 10, 20, or 35 for
small enough ε ≤ 0.5 offering a sufficiently strong DP guarantee. This reduces the condition to

K ≥ εσ · e
γθ

epochs of size N.

Since γ ≥ 2, θ ≥ 1, and εσ ≈
√

2ε ln(1/δ) by (6), we need K to be at least
√

2ε ln(1/δ) · e/(γθ) epochs. In practical
settings, K consists of multiple (think 50 or 100s of) epochs (of size N) computation and this is generally true. We
conclude that (9) and (10) are automatically satisfied by (11) for general practical settings with δ ≤ 1/N , ε typically
smaller than 0.5, and K ≥

√
2ε ln(1/δ) · e/(γθ) epochs.

Remaining constraint (11): By using (6), (11) can be equivalently recast as an upper bound on σ,

σ ≤

√
2(ε+ ln(1/δ))

γθ2 · (K/N) · (s̄/N)
.

Here, γ is a function of σ because γ depends on ε in ᾱ which is a function of σ through (6). However, the definition of
γ shows that for small ε, γ is close to 2 and this gives

√
ln(1/δ)/(θ2 · (K/N) · (s̄/N)) as a good approximation of the

upper bound. Notice that substituting s̄ = K/T yields (7), see Section 5. We conclude that (9, 10, 11, 12) are implied
by (6, 7) for general practical settings with δ ≤ 1/N , ε typically smaller than 0.5, and K ≥

√
2ε ln(1/δ) · e/(γθ)

epochs (of size N).

We remind the reader that Section 5 interprets (6, 7), derives the equivalent constraint (8) in place of (7), and explains
the benefit of σ’s independence of T . The simulations in the next section are based on parameters that satisfy the exact
theorem’s constraints (9, 10, 11, 6).

7

7 Experiments

Our goal is to show that the more general asynchronous differential privacy framework (asynchronous DP-SGD which
includes DP-SGD of Algorithm 1) of Supplemental Material A ensures a strong privacy guarantee, i.e, can work with
very small ε (and δ = 1/N), while having a good convergence rate to good accuracy. We refer to Supplementary
Material C for simulation details and complete parameter settings.

Objective function. We summarize experimental results of our asynchronous DP-SGD framework for strongly convex,
plain convex and non-convex objective functions with constant sample size sequences. As the plain convex objective
function we use logistic regression: The weight vector w and bias value b of the logistic function can be learned by
minimizing the log-likelihood function J :

J = −
N∑
i=1

[yi · log(σ̄i) + (1− yi) · log(1− σ̄i)],

where N is the number of training samples (xi, yi) with yi ∈ {0, 1}, and σ̄i = 1/(1 + e−(wTxi+b)) is the sigmoid
function. The goal is to learn a vector/model w∗ which represents a pair w̄ = (w, b) that minimizes J . Function J
changes into a strongly convex problem by adding ridge regularization with a regularization parameter λ > 0, i.e., we
minimize Ĵ = J + λ

2 ‖w̄‖
2 instead of J . For simulating non-convex problems, we choose a simple neural network

(LeNet) [LeCun et al., 1998] with cross entropy loss function for image classification.

Asynchronous DP-SGD setting. The experiments are conducted with 5 compute nodes and 1 central server. For
simplicity, the compute nodes have iid datasets.

7.1 Utility graph

Since we do not have a closed form to describe the relation between the utility of the model (i.e., prediction accuracy)
and σ, we propose a heuristic approach to learn the the range of σ from which we may select σ for finding the best
(ε, δ)-DP. The utility graphs – Figures 1a, 2a and 3a – show the fraction of test accuracy between the model F (w + n)
over the original model F (w) (without noise), where n ∼ N (0, C2σ2I) for various values of the clipping constant C
and noise standard deviation σ. Intuitively, the closer F (w + n)/F (w) to 1, the better accuracy wrt to F (w). Note that
w can be any solution and in the utility graphs, we choose w = w∗ with w∗ being near to an optimal solution.

The smaller C, the larger σ can be, hence, ε can be smaller which gives stronger privacy. However, the smaller C, the
more iterations (larger K) are needed for convergence.

In next experiments we use clipping constant C = 0.1, which gives a drop of at most 10% in test accuracy for σ ≤ 20
for both strongly convex and plain convex objective functions. To keep the test accuracy loss ≤ 10% in the non-convex
case, we choose C = 0.025 and σ ≤ 12.

7.2 Asynchronous DP-SGD with different constant sample size

0 20 40 60 80 100
sigma

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 fr
ac

tio
n

of
 F

(w
*

+
no

is
e)

/F
(w

*)

phishing
C=0.01
C=0.025
C=0.05
C=0.075
C=0.1
C=0.25
C=0.5
C=0.75
C=1.0

(a)

0 10000 20000 30000 40000 50000
of iteration

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

phishing

s=1
s=5
s=10
s=15
s=20
s=26

(b)

0 10000 20000 30000 40000 50000
of iteration

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

phishing

= 0.04945
= 0.1
= 0.25
= 0.5
= 1.0
= 2.0

non-DP

(c)

Figure 1: Strongly convex. (a) Utility graph, (b) Different s, (c) Different ε

Figure 1b and Figure 2b illustrate the test accuracy of our asynchronous DP-SGD with various constant sample sizes
for the strongly convex and plain convex cases. Here, we use privacy budget ε = 0.04945 and noise σ = 19.2. It is
clear that with s = 1, the algorithm shows a bad test accuracy though this constant sample size has the maximum
communication rounds. When we use a bigger constant sample size s, for example, s = 26, our algorithm can

8

0 20 40 60 80 100
sigma

0.5

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra

cy
 fr

ac
tio

n
of

 F
(w

*
+

no
is

e)
/F

(w
*)

phishing
C=0.01
C=0.025
C=0.05
C=0.075
C=0.1
C=0.25
C=0.5
C=0.75
C=1.0

(a)

0 10000 20000 30000 40000 50000
of iteration

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

phishing

s=1
s=5
s=10
s=15
s=20
s=26

(b)

0 10000 20000 30000 40000 50000
of iteration

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

phishing

= 0.04945
= 0.1
= 0.25
= 0.5
= 1.0
= 2.0

non-DP

(c)

Figure 2: Plain convex. (a) Utility graph, (b) Different s, (c) Different ε

0 10 20 30 40 50
sigma

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 fr
ac

tio
n

of
 F

(w
*

+
no

is
e)

/F
(w

*)

mnist
C=0.01
C=0.025
C=0.05
C=0.075
C=0.1
C=0.25
C=0.5
C=0.75
C=1.0

(a)

0 50K 100K 150K 200K 250K 300K 350K
of iteration

0.0

0.2

0.4

0.6

0.8

1.0
Te

st
 a

cc
ur

ac
y

mnist

s=10
s=25
s=50
s=100
s=200
s=300
s=370

(b)

0 50K 100K 150K 200K 250K 300K 350K
of iteration

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

mnist

= 0.15
= 0.2
= 0.25
= 0.5
= 0.75
= 1.0
= 2.0

non-DP

(c)

Figure 3: Non-convex. (a) Utility graph, (b) Different s, (c) Different ε

achieve the desired performance, when compared to other constant sample sizes. The experiment is extended to the
non-convex case as shown in Figure 3b, where we can see a similar pattern. Experimental results for other data sets
are in Supplemental Material C. This confirms that our DP-SGD framework can converge to a decent accuracy while
achieving a very small privacy budget ε.

7.3 Asynchronous DP-SGD with different levels of privacy budget

Figure 1c and Figure 2c show that our DP-SGD framework converges to better accuracy if ε is slightly larger. E.g., in
the strongly convex case, privacy budget ε = 0.04945 achieves test accuracy 86% compared to 93% without differential
privacy (hence, no added noise); ε = 0.1, still significantly smaller than what is reported in literature, achieves test
accuracy 91%. Figure 3c shows the test accuracy of our asynchronous DP-SGD for different privacy budgets ε in the
non-convex case. For ε = 0.15, our framework can achieve the test accuracy about 93%, compared to 98% without
differential privacy. These figures again confirm the effectiveness of our DP-SGD framework, which can obtain a strong
differential privacy guarantee.

8 Conclusion

We proved a new differential privacy guarantee for DP-SGD which is independent of the total number of communication
rounds, attains significantly smaller ε than what has been reported in literature, and does this for reasonable DP noise
such that test accuracy does not suffer much. This brings DP-SGD to practice.

9

References
Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learn-

ing with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 308–318. ACM, 2016.

Abhishek Bhowmick, John Duchi, Julien Freudiger, Gaurav Kapoor, and Ryan Rogers. Protection against reconstruction
and its applications in private federated learning, 2019.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2:27:1–27:27, 2011.

Christopher M De Sa, Ce Zhang, Kunle Olukotun, and Christopher Ré. Taming the wild: A unified analysis of
hogwild-style algorithms. In NIPS, pages 2674–2682, 2015.

John C. Duchi, Michael I. Jordan, and Martin J. Wainwright. Local privacy, data processing inequalities, and statistical
minimax rates, 2014.

Cynthia Dwork. A firm foundation for private data analysis. Communications of the ACM, 54(1):86–95, 2011.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data, ourselves: Privacy
via distributed noise generation. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 486–503. Springer, 2006a.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data
analysis. In Theory of cryptography conference, pages 265–284. Springer, 2006b.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations and Trends® in
Theoretical Computer Science, 9(3–4):211–407, 2014.

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients – how easy is it to
break privacy in federated learning?, 2020.

Robin C. Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A client level perspective,
2018.

Meng Hao, Hongwei Li, Xizhao Luo, Guowen Xu, Haomiao Yang, and Sen Liu. Efficient and privacy-enhanced
federated learning for industrial artificial intelligence. IEEE Transactions on Industrial Informatics, 16(10):6532–
6542, 2020. doi: 10.1109/TII.2019.2945367.

Rémi Leblond, Fabian Pedregosa, and Simon Lacoste-Julien. Improved asynchronous parallel optimization analysis for
stochastic incremental methods. JMLR, 19(1):3140–3207, 2018.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.lecun.com/exdb/
mnist/.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Lingjuan Lyu, Han Yu, and Qiang Yang. Threats to federated learning: A survey, 2020.

Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private recurrent language
models. In International Conference on Learning Representations (ICLR), 2018. URL https://openreview.
net/pdf?id=BJ0hF1Z0b.

Mohammad Naseri, Jamie Hayes, and Emiliano De Cristofaro. Toward robustness and privacy in federated learning:
Experimenting with local and central differential privacy, 2021.

M. Nasr, R. Shokri, and A. Houmansadr. Comprehensive privacy analysis of deep learning: Passive and active white-box
inference attacks against centralized and federated learning. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 739–753, 2019. doi: 10.1109/SP.2019.00065.

Lam M Nguyen, Phuong Ha Nguyen, Marten van Dijk, Peter Richtárik, Katya Scheinberg, and Martin Takáč. Sgd and
hogwild! convergence without the bounded gradients assumption. arXiv preprint arXiv:1802.03801, 2018.

Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Úlfar Erlingsson. Scalable
private learning with pate, 2018.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free approach to parallelizing
stochastic gradient descent. In Advances in neural information processing systems, pages 693–701, 2011.

Nicolas Le Roux, Mark Schmidt, and Francis Bach. A stochastic gradient method with an exponential convergence rate
for finite training sets. arXiv preprint arXiv:1202.6258, 2012.

10

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://openreview.net/pdf?id=BJ0hF1Z0b
https://openreview.net/pdf?id=BJ0hF1Z0b

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks against machine
learning models. In 2017 IEEE Symposium on Security and Privacy (SP), pages 3–18. IEEE, 2017.

L. Song, R. Shokri, and P. Mittal. Membership inference attacks against adversarially robust deep learning models. In
2019 IEEE Security and Privacy Workshops (SPW), pages 50–56, 2019. doi: 10.1109/SPW.2019.00021.

Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui Zhang, and Yi Zhou. A hybrid
approach to privacy-preserving federated learning, 2019.

Marten van Dijk, Nhuong V Nguyen, Toan N Nguyen, Lam M Nguyen, Quoc Tran-Dinh, and Phuong Ha Nguyen.
Hogwild! over distributed local data sets with linearly increasing mini-batch sizes. arXiv preprint arXiv:2010.14763,
2020.

Lei Yu, Ling Liu, Calton Pu, Mehmet Emre Gursoy, and Stacey Truex. Differentially private model publishing for
deep learning. 2019 IEEE Symposium on Security and Privacy (SP), May 2019. doi: 10.1109/sp.2019.00019. URL
http://dx.doi.org/10.1109/SP.2019.00019.

Huan Zhang, Cho-Jui Hsieh, and Venkatesh Akella. Hogwild++: A new mechanism for decentralized asynchronous
stochastic gradient descent. In 2016 IEEE 16th International Conference on Data Mining (ICDM), pages 629–638.
IEEE, 2016.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients, 2020.
Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. CoRR, abs/1906.08935, 2019. URL http:
//arxiv.org/abs/1906.08935.

11

http://dx.doi.org/10.1109/SP.2019.00019
http://arxiv.org/abs/1906.08935
http://arxiv.org/abs/1906.08935

Bringing Differential Private SGD to Practice: On the Independence of
Gaussian Noise and the Number of Training Rounds

Appendix

A Asynchronous Mini-Batch DP-SGD

Algorithms* 2, 3, and 4 explain in pseudo code our asynchronous LDP approach. It is based on the Hogwild! [Recht
et al., 2011] recursion

wt+1 = wt − ηt∇f(ŵt; ξt), (13)

where ŵt represents the vector used in computing the gradient ∇f(ŵt; ξt) and whose vector entries have been read
(one by one) from an aggregate of a mix of previous updates that led to wj , j ≤ t. In a single-thread setting where
updates are done in a fully consistent way, i.e. ŵt = wt, yields SGD with diminishing step sizes {ηt}.
Recursion (13) models asynchronous SGD. The amount of asynchronous behavior that can be tolerated is given by
some function τ(t), see [Nguyen et al., 2018] where this is analysed for strongly convex objective functions: We say
that the sequence {wt} is consistent with delay function τ if, for all t, vector ŵt includes the aggregate of the updates
up to and including those made during the (t− τ(t))-th iteration, i.e.,

ŵt = w0 −
∑
j∈U

ηj∇f(ŵj ; ξj)

for some U with {0, 1, . . . , t− τ(t)− 1} ⊆ U .

In Algorithm 4 the local SGD iterations all compute gradients based on the same local model ŵ, which gets substituted
by a newer global model v̂k as soon as it is received by the interrupt service routine ISRRECEIVE. As explained
in ISRRECEIVE v̂k includes all the updates from all the clients up to and including their local rounds ≤ k. This
shows that locally the delay τ can be estimated based on the current local round i together with k. Depending on
how much delay can be tolerated SETUP defines Υ(k, i) to indicate whether the combination (k, i) is permissible (i.e.,
the corresponding delay aka asynchronous behavior can be tolerated). It has been shown that for strongly convex
objective functions (without DP enhancement) the convergence rate remains optimal even if the delay τ(t) is as large
as ≈

√
t/ ln t [Nguyen et al., 2018]. Similar behavior has been reported for plain convex and non-convex objective

functions in [van Dijk et al., 2020].

In Algorithm 4 we assume that messages/packets never drop; they will be resent but can arrive out of order. This
guarantees that we get out of the "while Υ(k, i) is false loop" because at some moment the server receives all the
updates in order to broadcast a new global model v̂k+1 and once received by ISRRECEIVE this will increment k and
make Υ(k, i) true which allows LOCALSGDWITHDP to exit the wait loop. As soon as the wait loop is exited we
know that all local gradient computations occur when Υ(k, i) is true which reflect that these gradient computations
correspond to delays that are permissible (in that we still expect convergence of the global model to good accuracy).

Algorithm 2 Client – Local model with Differential Privacy

1: procedure SETUP(n):
Initialize sample size sequence {si}Ti=0, (diminishing) round step sizes {η̄i}Ti=0, and a default global model v̂0 to
start with.
Define a permissible delay function Υ(k, i) ∈ {True,False} which takes the current local round number i and the
round number k of the last received global model into account to find out whether local SGD should wait till a
more recent global model is received. Υ(·, ·) can also make use of knowledge of the sample size sequences used by
each of the clients.

2: end procedure

*Our pseudocode uses the format from [van Dijk et al., 2020].

12

Algorithm 3 Client – Local model with Differential Privacy

1: procedure ISRRECEIVE(v̂k):
This Interrupt Service Routine is called whenever a new broadcast global model v̂k is received from the server.
Once received, the client’s local model ŵ is replaced with v̂k (if no more recent global model v̂>k was received out
of order before receiving this v̂k)
The server broadcasts global model v̂k for global round number k once the updates corresponding to local round
numbers ≤ k − 1 from all clients have been received and have been aggregated into the global model. The server
aggregates updates from clients into the current global model as soon as they come in. This means that v̂k includes
all the updates from all the clients up to and including their local round numbers ≤ k − 1 and potentially includes
updates corresponding to later round numbers from subsets of clients. The server broadcasts the global round
number k together with v̂k.

2: end procedure

Algorithm 4 Client – Local model with Differential Privacy

1: procedure LOCALSGDWITHDP(d)
2: i = 0, ŵ = v̂0

3: while True do
4: while Υ(k, i) = False do nothing end . k is the global round at the server.
5: Uniformly sample a random set {ξh}sih=1 ⊆ d
6: h = 0, U = 0
7: while h < si do
8: g = [∇f(ŵ, ξh)]C
9: U = U + g

10: h++
11: end while
12: n← N (0, C2σ2

i I)
13: U = U + n
14: ŵ = ŵ + η̄i · U
15: Send (i, U) to the Server.
16: i++
17: end while
18: end procedure

In this paper we analyse the Gaussian based differential privacy method of [Abadi et al., 2016]. We use their
clipping method; rather than using the gradient ∇f(ŵ, ξ) itself, we use its clipped version [∇f(ŵ, ξ)]C where
[x]C = x/max{1, ‖x‖/C}. Also, we use the same mini-batch approach where before the start of the i-th local round
a random min-batch of sample size si is selected. During the inner loop the sum of gradient updates is maintained
where each of the gradients correspond to the same local model ŵ until it is replaced by a newer global model. In
supplementary material B we show that this is needed for proving DP guarantees and that generalizing the algorithm
by locally implementing the Hogwild! recursion itself (which updates the local model each iteration) does not work
together with the DP analysis. So, our approach only uses the Hogwild! concept at a global round by round interaction
level.

At the end of each local round the sum of updates U is obfuscated with Gaussian noise; Gaussian noise N (0, C2σ2
i) is

added to each vector entry. In this general description σi is round dependent, but our DP analysis in Supplementary
Material B must from some point onward assume a constant σ = σi over all rounds. The noised U times the round step
size η̄i is added to the local model after which a new local round starts again.

The noised U is also transmitted to the server who adds U times the round step size η̄i to its global model v̂. As soon as
all clients have submitted their updates up to and including their local rounds ≤ k − 1, the global model v̂, denoted as
v̂k, is broadcast to all clients, who in turn replace their local models with the newly received global model. Notice that
v̂k may include updates from a subset of client that correspond to local rounds ≥ k.

The presented algorithm adapts to asynchronous behavior in the following two ways: We explained above that the
broadcast global models v̂k themselves include a mix of received updates that correspond to local rounds ≥ k – this is
due to asynchronous behavior. Second, the sample size sequence {si} does not necessarily need to be fixed a-priori
during SETUP (the round step size sequence {η̄i} does need to be fixed a-priori). In fact, the client can adapt its sample

13

sizes si on the fly to match its speed of computation and communication latency. This allows the client to adapt its local
mini-batch SGD to its asynchronous behavior due to the scheduling of its own resources. Our DP analysis holds for a
wide range of varying sample size sequences.

We notice that adapting sample size sequences on a per client basis still fits the same overall objective function as
long as all local data sets are iid: This is because iid implies that the execution of the presented algorithm can be cast
in a single Hogwild! recursion where the ξh are uniformly chosen from a common data source distribution D. This
corresponds to the stochastic optimization problem

min
w∈Rd

{F (w) = Eξ∼D[f(w; ξ)]} ,

which defines objective function F (independent of the locally used sample size sequences). Local data sets being iid in
the sense that they are all, for example, drawn from car, train, boat, etc images benefit from DP in that car details (such
as an identifying number plate), boat details, etc. need to remain private.

B Differential privacy proofs

In order to prove Theorem 2, we first set up the differential privacy framework of Abadi et al. [2016] in Supplemental
Material B.1. Here we enhance a core lemma by proving a concrete bound rather than an asymptotic bound on the
so-called λ-th moment which plays a crucial role in the differential privacy analysis. The concrete bound makes explicit
the higher order error term in [Abadi et al., 2016].

Next in Supplemental Material B.2 we generalize Theorem 1 Abadi et al. [2016]:

Theorem 3. We assume that σ = σi with σ ≥ 216/215. for all rounds i. Let

r = r0 · 23 ·
(

1

1− u0
+

1

1− u1

e3

σ3

)
e3/σ2

with u0 =
2
√
r0σ

σ − r0
and u1 =

2e
√
r0σ

(σ − r0)σ
,

where r0 is such that it satisfies
r0 ≤ 1/e, u0 < 1, and u1 < 1.

Let the sample size sequence satisfy si/N ≤ r0/σ. For j = 1, 2, 3 we define Ŝj (resembling an average over the sum of
j-th powers of si/N) with related constants ρ and ρ̂:

Ŝj =
1

T

T−1∑
i=0

sji
N(N − si)j−1

,
Ŝ1Ŝ3

Ŝ2
2

≤ ρ and
Ŝ2

1

Ŝ2

≤ ρ̂.

Let ε = c1T Ŝ
2
1 . Then, Algorithm 4 is (ε, δ)-differentially private if

σ ≥ 2
√
c0

√
Ŝ2T (ε+ ln(1/δ))

ε
where c0 = c(c1) with c(x) = min

{√
2rρx+ 1− 1

rρx
,

2

ρ̂x

}
.

This generalizes Theorem 1 where all si = s are constant. First, Theorem 3 covers a much broader class of sample size
sequences that satisfy bounds on their ’moments’ Ŝj (this is more clear as a consequence of Theorem 3). Second, our
detailed analysis provides a tighter bound in that it makes the relation between “constants” c0 and c1 explicit, contrary
to [Abadi et al., 2016]. Exactly due to this relation c0 = c(c1) we are able to prove in Supplemental Material B.3
Theorem 2 as a consequence of Theorem 3 by considering the case c(c1) = 2/(ρ̂c1).

B.1 Definitions

We base our proofs on the framework and theory presented in [Abadi et al., 2016]. In order to be on the same page we
repeat and cite word for word their definitions:

For neighboring databases d and d′, a mechanismM, auxiliary input aux, and an outcome o, define the privacy loss at
o as

c(o;M, aux, d, d′) = ln
Pr[M(aux, d) = o]

Pr[M(aux, d′) = o]
.

14

For a given mechanismM, we define the λ-th moment αM(λ; aux, d, d′) as the log of the moment generating function
evaluated at the value λ:

αM(λ; aux, d, d′) = ln Eo∼M(aux,d)[exp(λ · c(o;M, aux, d, d′))].

We define
αM(λ) = max

aux,d,d′
αM(λ; aux, d, d′)

where the maximum is taken over all possible aux and all the neighboring databases d and d′.

We first take Lemma 3 from [Abadi et al., 2016] and make explicit their order term O(q3λ3/σ3) with q = si,c and
σ = σi in our notation. The lemma considers as mechanismM the i-th round of gradient updates and we abbreviate
αM(λ) by αi(λ). The auxiliary input of the mechanism at round i includes all the output of the mechanisms of previous
rounds (as in [Abadi et al., 2016]).

For the local mini-batch SGD the mechanismM of the i-th round is given by

M(aux, d) =

si−1∑
h=0

[∇f(ŵ, ξh)]C +N (0, C2σ2
i I),

where ŵ is the local model at the start of round i which is replaced by a new global model v̂ as soon as a new v̂ is
received from the server (see ISRReceive), and where ξh are drawn from training data d, and [.]C denotes clipping (that
is [x]C = x/max{1, ‖x‖2/C}). In order forM to be able to compute its output, it needs to know the global models
received in round i and it needs to know the starting local model ŵ. To make sureM has all this information, aux
represents the collection of all outputs generated by the mechanisms of previous rounds < i together with the global
models received in round i itself.

In the next subsection we will use the framework of [Abadi et al., 2016] and apply its composition theory to derive
bounds on the privacy budget (ε, δ) for the whole computation consisting of T rounds that reveal the outputs of the
mechanisms for these T rounds as described above.

We remind the reader that si/N is the probability of selecting a sample from a sample set (batch) of size si out of
a training data set d′ of size N = |d′|; σi corresponds to the N (0, C2σ2

i I) noise added to the mini-batch gradient
computation in round i (see the mechanism described above).

Lemma 1. Assume a constant r0 < 1 and deviation σi ≥ 216/215 such that si/N ≤ r0/σi. Suppose that λ is a
positive integer with

λ ≤ σ2
i ln

N

siσi
and define

U0(λ) =
2
√
λr0/σi

σi − r0
and U1(λ) =

2e
√
λr0/σi

(σi − r0)σi
.

Suppose U0(λ) ≤ u0 < 1 and U1(λ) ≤ u1 < 1 for some constants u0 and u1. Define

r = r0 · 23

(
1

1− u0
+

1

1− u1

e3

σ3
i

)
exp(3/σ2

i).

Then,

αi(λ) ≤ s2
iλ(λ+ 1)

N(N − si)σ2
i

+
r

r0
· s3

iλ
2(λ+ 1)

N(N − si)2σ3
i

.

Proof. The start of the proof of Lemma 3 in [Abadi et al., 2016] implicitly uses the proof of Theorem A.1 in [Dwork
et al., 2014], which up to formula (A.2) shows how the 1-dimensional case translates into a privacy loss that corresponds
to the 1-dimensional problem defined by µ0 and µ1 in the proof of Lemma 3 in [Abadi et al., 2016], and which shows
at the end of the proof of Theorem A.1 (p. 268 [Dwork et al., 2014]) how the multi-dimensional problem transforms
into the 1-dimensional problem. In the notation of Theorem A.1, f(D) +N (0, σ2I) represents the general (random)
mechanismM(D), which for Lemma 3 in [Abadi et al., 2016]’s notation should be interpreted as the batch computation

M(d) =
∑
h∈J

f(dh) +N (0, σ2I)

15

for a random sample/batch {dh}h∈J . Here, f(dh) (by abuse of notation – in this context f does not represent the
objective function) represent clipped gradient computations∇f(ŵ; dh) where ŵ is the last received global model with
which round i starts (Lemma 3 in [Abadi et al., 2016] uses clipping constant C = 1, henceN (0, C2σ2I) = N (0, σ2I)).

Let us detail the argument of the proof of Lemma 3 in [Abadi et al., 2016] in order to understand what flexibility is
possible: We consider two data sets d = {d1, . . . , dN−1} and d′ = d + {dN}, where dN 6∈ d represents a new data
base element so that d and d′ differ in exactly one element. The size of d′ is equal to N . We define vector x as the sum

x =
∑
J\{N}

f(di).

Let
z = f(dN).

If we consider data set d, then sample set J ⊆ {1, · · · , N − 1} and mechanismM(d) returns

M(d) =
∑
h∈J

f(dh) +N (0, σ2I) =
∑

h∈J\{N}

f(dh) +N (0, σ2I) = x+N (0, σ2I).

If we consider data set d′, then J ⊆ {1, · · · , N} contains dN with probability q = |J |/N (|J | = si is the sample size
used in round i). In this case mechanismM(d′) returns

M(d′) =
∑
h∈J

f(dh) +N (0, σ2I) = f(dN) +
∑

h∈J\{N}

f(dh) +N (0, σ2I) = z + x+N (0, σ2I)

with probability q. It returns

M(d′) =
∑
h∈J

f(dh) +N (0, σ2I) =
∑

h∈J\{N}

f(dh) +N (0, σ2I) = x+N (0, σ2I)

with probability 1− q. Combining both cases shows thatM(d′) represents a mixture of two Gaussian distributions
(shifted over a vector x):

M(d′) = x+ (1− q) · N (0, σ2I) + q · N (z, σ2I).

This high dimensional problem is transformed into a single dimensional problem at the end of the proof of Theorem
A.1 (p. 268 [Dwork et al., 2014]) by considering the one dimensional line from point x into the direction of z, i.e., the
line through points x and x+ z; the one dimensional line maps x to the origin 0 and x+ z to ‖z‖2.M(d) as wells as
M(d′) projected on this line are distributed as

M(d) ∼ µ0 andM(d′) ∼ (1− q)µ0 + qµ1,

where
µ0 ∼ N (0, σ2) and µ1 ∼ N (‖z‖2, σ2).

In [Abadi et al., 2016] as well as in this paper the gradients are clipped (their Lemma 3 uses clipping constant C = 1)
and this implies

‖z‖2 = ‖f(dN)‖2 ≤ C = 1.

Their analysis continues by assuming the worst-case in differential privacy, that is,

µ1 ∼ N (1, σ2).

Notice that the above argument analyses a local mini-batch SGD computation. Rather than using a local mini-batch
SGD computation, can we use clipped SGD iterations which continuously update the local model:

ŵh+1 = ŵh − ηh∇[f(ŵh, ξh)]C .

This should lead to faster convergence to good accuracy compared to a local minibatch computation. However, the above
arguments cannot proceed† because (in the notation used above where the dh, h ∈ J , are the ξh, h ∈ {0, . . . , si − 1 =
|J | − 1}) selecting sample dN in iteration h does not only influence the update computed in iteration h but also
influences all iterations after h till the end of the round (because f(dN) updates the local model in iteration h which
is used in the iterations that come after). Hence, the dependency on dN is directly felt by f(dN) in iteration h and

†Unless we assume a general upper bound on the norm of the Hessian of the objective function which should be large enough to
cover a wide class of objective functions and small enough in order to be able to derive practical differential privacy guarantees.

16

indirectly felt in the f(dj) that are computed after iteration h. This means that we cannot represent distributionM(d′)
as a clean mix of Gaussian distributions with a mean z, whose norm is bounded by the clipping constant.

The freedom which we do have is replacing the local model by a newly received global model. This is because the
updates f(dh), h ∈ J , computed locally in round i have not yet been transmitted to the server and, hence, have not been
aggregated into the global model that was received. In a way the mechanismM(d) is composed of two (or multiple if
more newer and newer global models are received during the round) sums

M(d) =
∑
h∈J0

f0(dh) +
∑
h∈J1

f1(dh) +N (0, σ2I),

where J = J0 ∪ J1 and J0 represent local gradient computations, shown by f0(.), based on the initial local model ŵ
and J1 represent the local gradient computations, shown by f1(.), based on the newly received global model v̂ which
replaces ŵ. As one can verify, the above arguments are still valid for this slight adaptation. As in Lemma 3 in [Abadi
et al., 2016] we can now translate our privacy loss to the 1-dimensional problem defined by µ0 ∼ N (0, C2σ2) and
µ1 ∼ N (C,C2σ2) for ‖∇f(., .)‖2 ≤ C as in the proof of Lemma 3 (which after normalization with respect to C gives
the formulation of Lemma 3 in [Abadi et al., 2016] for C = 1).

The remainder of the proof of Lemma 3 analyses µ0 and the mix µ = (1 − q)µ0 + qµ1 leading to bounds for the
expectations (3) and (4) in [Abadi et al., 2016] which only depend on µ0 and µ1. Here, q is the probability of having a
special data sample ξ (written as dN in the arguments above) in the batch. In our algorithm q = si/N . So, we may
adopt the statement of Lemma 3 and conclude for the i-th batch computation

αi(λ) ≤ s2
iλ(λ+ 1)

N(N − si)σ2
i

+O

(
s3
iλ

3

N3σ3
i

)
.

In order to find an exact expression for the higher order term we look into the details of Lemma 3 of [Abadi et al., 2016].
It computes an upper bound for the binomial tail

λ+1∑
t=3

(
λ+ 1

t

)
Ez∼ν1 [((ν0(z)− ν1(z))/ν1(z))t], (14)

where

Ez∼ν1 [((ν0(z)− ν1(z))/ν1(z))t]

≤ (2q)t(t− 1)!!

2(1− q)t−1σt
+

qt

(1− q)tσ2t
+

(2q)t exp((t2 − t)/(2σ2))(σt(t− 1)!! + tt)

2(1− q)t−1σ2t

=
(2q)t(t− 1)!!(1 + exp((t2 − t)/(2σ2)))

2(1− q)t−1σt
+
qt(1 + (1− q)2t exp((t2 − t)/(2σ2))tt)

2(1− q)tσ2t
(15)

Since t ≥ 3, we have the coarse upper bounds

1 ≤ exp((t2 − t)/(2σ2))

exp((32 − 3)/(2σ2))
and 1 ≤ (1− q)2t exp((t2 − t)/(2σ2))tt

(1− q)23 exp((32 − 3)/(2σ2))33
.

By defining c as 1 plus the maximum of these two bounds,

c = 1 +
max {1, 1/((1− q) · 216)}

exp(3/σ2)
,

we have (15) at most

≤ (2q)t(t− 1)!!c exp((t2 − t)/(2σ2))

2(1− q)t−1σt
+
qtc(1− q)2t exp((t2 − t)/(2σ2))tt

2(1− q)tσ2t
. (16)

Generally (for practical parameter settings as we will find out), q ≤ 1− 1/216 which makes c ≤ 2. In the remainder of
this proof, we use c = 2 and assume q ≤ 215/216. In fact, assume in the statement of the lemma that σ = σi ≥ 216/215
which together with q = si/N ≤ r0/σi and r0 < 1 implies q ≤ 215/216.

After multiplying (16) with the upper bound for(
λ+ 1

t

)
≤ λ+ 1

λ

λt

t!

17

and noticing that (t− 1)!!/t! ≤ 1 and tt/t! ≤ et we get the addition of the following two terms

λ+ 1

λ

λt(2q)t exp((t2 − t)/(2σ2))

(1− q)t−1σt
+
λ+ 1

λ

λtqt(1− q)2t exp((t2 − t)/(2σ2))et

(1− q)tσ2t
.

This is equal to

(1− q)λ+ 1

λ

(
λ2q exp((t− 1)/(2σ2))

(1− q)σ

)t
+(1− q)λ+ 1

λ

(
λq2 exp(1 + (t− 1)/(2σ2))

(1− q)σ2

)t
. (17)

We notice that by using t ≤ λ+ 1, λ/σ2 ≤ ln(1/(qσ)) (assumption), and q = si,c/Nc ≤ r0/σ we obtain

λ2q exp((t− 1)/(2σ2))

(1− q)σ
≤ λ2q exp(λ/(2σ2))

(1− q)σ
≤ 2

√
λq

(1− q)σ
=

2
√
λr0/σ

σ − r0
= U0(λ)

and

λq2 exp(1 + (t− 1)/(2σ2))

(1− q)σ2
≤ λq2e exp(λ/(2σ2))

(1− q)σ2
≤ 2e

√
λq

(1− q)σ2
=

2e
√
λr0/σ

(σ − r0)σ
= U1(λ).

Together with our assumption on U0(λ) and U1(λ), this means that the binomial tail (14) is upper bounded by the two
terms in (17) after substituting t = 3, with the two terms multiplied by

∞∑
j=0

U0(λ)j =
1

1− U0(λ)
≤ 1

1− u0
and

∞∑
j=0

U1(λ)j =
1

1− U1(λ)
≤ 1

1− u1

respectively. For (14) this yields the upper bound

1

1− u0
(1− q)λ+ 1

λ

(
λ2q exp(1/σ2)

(1− q)σ

)3

+
1

1− u1
(1− q)λ+ 1

λ

(
λq2 exp(1 + 1/σ2)

(1− q)σ2

)3

≤
(

1

1− u0
23 exp(3/σ2) +

1

1− u1

23 exp(3 + 3/σ2)

σ3

)
· λ

2(λ+ 1)q3

(1− q)2σ3
.

By the definition of r, we obtain the bound

≤ r

r0
· λ

2(1 + λ)q3

(1− q)2σ3
,

which finalizes the proof.

B.2 Proof of Theorem 3

The proof Theorem 3 follows the line of thinking in the proof of Theorem 1 in [Abadi et al., 2016]. Our theorem applies
to varying sample/batch sizes and for this reason introduces moments Ŝj . Our theorem explicitly defines the constant
used in the lower bound of σ – this is important for proving our second (main) theorem in the next subsection.

Theorem 3 assumes σ = σi for all rounds i with σ ≥ 216/215; constant r0 ≤ 1/e such that si/N ≤ r0/σ; constant

r = r0 · 23

(
1

1− u0
+

1

1− u1

e3

σ3

)
exp(3/σ2), (18)

where

u0 =
2
√
r0σ

σ − r0
and u1 =

2e
√
r0σ

(σ − r0)σ

are both assumed < 1.

For j = 1, 2, 3 we define‡

Ŝj =
1

T

T−1∑
i=0

sji
N(N − si)j−1

with
Ŝ1Ŝ3

Ŝ2
2

≤ ρ, Ŝ
2
1

Ŝ2

≤ ρ̂.

‡sji denotes the j-th power (si)
j .

18

Based on these constants we define

c(x) = min

{√
2rρx+ 1− 1

rρx
,

2

ρ̂x

}
.

Let ε = c1T Ŝ
2
1 . We want to prove Algorithm 4 is (ε, δ)-differentially private if

σ ≥ 2
√
c0

√
Ŝ2T (ε+ ln(1/δ))

ε
≈ 2
√
c0

√
Ŝ2T ln(1/δ)

ε
where c0 = c(c1)

(the approximation holds for small ε which is what we aim for in this paper).

Proof. For j = 1, 2, 3, we define

Sj =

T−1∑
i=0

sji
N(N − si)j−1σji

and S′j =
1

T

T−1∑
i=0

sjiσ
j
i

N(N − si)j−1
.

(Notice that S′1 ≤ r0.) Translating Lemma 1 in this notation yields (we will verify the requirement/assumptions of
Lemma 1 on the fly below)

T−1∑
i=0

αi(λ) ≤ S2λ(λ+ 1) +
r

r0
S3λ

2(λ+ 1).

The composition Theorem 2 in [Abadi et al., 2016] shows that our algorithm for client c is (ε, δ)-differentially private
for

δ ≥ min
λ

exp

(
T−1∑
i=0

αi(λ)− λε

)
,

where T indicates the total number of batch computations and the minimum is over positive integers λ. Similar to their
proof we choose λ such that

S2λ(λ+ 1) +
r

r0
S3λ

2(λ+ 1)− λε ≤ −λε/2. (19)

This implies that we can choose δ as small as exp(−λε/2), i.e., if

δ ≥ exp(−λε/2), (20)

then we have (ε, δ)-differential privacy. After dividing by the positive integer λ, inequality (19) is equivalent to the
inequality

S2(λ+ 1) +
r

r0
S3λ(1 + λ) ≤ ε/2,

which is equivalent to

(λ+ 1)

(
1 +

r

r0

S3

S2
λ

)
≤ ε

2S2
.

This is in turn implied by
λ+ 1 ≤ c0

ε

2S2
(21)

together with

c0
ε

2S2

(
1 +

r

r0

S3

S2
c0

ε

2S2

)
≤ ε

2S2
,

or equivalently,

c0

(
1 +

r

2r0
· c0 ·

S3

S2
2

ε

)
≤ 1. (22)

We use
ε = c1 · T Ŝ2

1 = c1 · S1S
′
1 (23)

(for constant σi = σ). This translates our requirements (21) and (22) into

λ+ 1 ≤ c0c1
2

S1S
′
1

S2
and (24)

19

c0

(
1 +

r

2r0
· c0c1

S1S3

S2
2

S′1

)
≤ 1. (25)

Since we assume
S1S3

S2
2

=
Ŝ1Ŝ3

Ŝ2
2

≤ ρ

and since we know that S′1 ≤ r0, requirement (25) is implied by

c0(1 +
rρ

2
· c0c1) ≤ 1,

or equivalently

c1 ≤
1− c0
rρ
2 c

2
0

. (26)

Also notice that for constant σi = σ we have S′1 = S1σ
2/T . Together with

S2
1

S2
=
Ŝ2

1

Ŝ2

T ≤ ρ̂T

we obtain from (24)

λ+ 1 ≤ c0c1
2

S1S
′
1

S2
≤ c0c1

2
ρ̂σ2. (27)

Generally, if

c1 ≤
2

ρ̂c0
, (28)

then (27) implies λ ≤ σ2: Hence, (a) for our choice of u0 and u1 in this theorem, U0(λ) ≤ u0 and U1(λ) ≤ u1 as
defined in Lemma 1, and (b) the condition λ ≤ σ2

i ln Nc

si,cσi
is satisfied (by assumption, Nc

si,cσi
≥ 1/r0 ≥ e). This

implies that Lemma 1 is indeed applicable.

For the above reasons we strengthen the requirement on ε (conditions (26) and (28) with (23)) to

ε ≤ min

{
1− c0
rρ
2 c

2
0

,
2

ρ̂c0

}
· S1S

′
1

For constant σi = σ, we have
S1S

′
1 = T Ŝ2

1 ,

hence, we need

ε ≤ min

{
1− c0
rρ
2 c

2
0

,
2

ρ̂c0

}
· T Ŝ2

1 (29)

Summarizing (29), (21), and (20) for some positive integer λ proves (ε, δ)-differential privacy.

Condition (20) (i.e., exp(−λε/2) ≤ δ) is equivalent to

ln(1/δ) ≤ λε

2
(30)

If
λ = bc0

ε

2S2
c − 1 (31)

is positive, then it satisfies (21) and we may use this λ in (30). This yields the condition

ln(1/δ) ≤
(
bc0

ε

2S2
c − 1

)
ε

2
,

which is implied by

ln(1/δ) ≤
(
c0

ε

2S2
− 2

)
ε

2
=

c0
4S2

ε2 − ε.

For constant σi = σ we have S2 = Ŝ2T/σ
2 and the latter inequality is equivalent to

σ ≥ 2
√
c0

√
Ŝ2

√
T (ε+ ln(1/δ))

ε
. (32)

20

Summarizing, if (29), (32), and the lambda value (31) is positive, then this shows (ε, δ)-differential privacy.

The condition (31) being positive follows from
4S2

c0
≤ ε.

Substituting S2 = Ŝ2T/σ
2 yields the equivalent condition

4T Ŝ2

σ2c0
≤ ε

or

σ ≥ 2
√
c0

√
Ŝ2

√
Tε

ε
,

which is implied by (32). Summarizing, if (29) and (32), then this shows (ε, δ)-differential privacy. Notice that (32)
corresponds to Theorem 1 in [Abadi et al., 2016] where all si are constant implying

√
Ŝ2 = q/

√
1− q.

We are interested in a slightly different formulation: Given

c1 = min

{
1− c0
rρ
2 c

2
0

,
2

ρ̂c0

}
what is the maximum possible c0 (which minimizes σ implying more fast convergence to an accurate solution). We
need to satisfy c0 ≤ 2/(ρ̂c1) and

rρ

2
c1c

2
0 + c0 − 1 ≤ 0,

that is,
(c0 + 1/(rρc1))2 ≤ 1/

(rρ
2
c1

)
+ 1/(rρc1)2,

or

c0 ≤
√

1/
(rρ

2
c1

)
+ 1/ (rρc1)

2 − 1/(rρc1) =

√
2rρc1 + 1− 1

rρc1
.

We have

c0 = min

{√
2rρc1 + 1− 1

rρc1
, 2/(ρ̂c1)

}
= c(c1).

This finishes the proof.

B.3 Proof of Theorem 2

We will now analyse the requirements stated in Theorem 3. We will focus on the case where c(x) = 2
ρ̂x , which turns

out to lead to practical parameter settings as discussed in the main body of the paper.

Requirement on r – (35): In Theorem 3 we use

r = r0 · 23 ·
(

1

1− u0
+

1

1− u1

e3

σ3

)
e3/σ2

with

u0 =
2
√
r0σ

σ − r0
and u1 =

2e
√
r0σ

(σ − r0)σ
,

where r0 is such that it satisfies
r0 ≤ 1/e, u0 < 1, and u1 < 1. (33)

In our application of Theorem 3 we substitute r0 = ασ. This translates the requirements of (33) into

α ≤ 1

eσ
, α < 1, and σ >

2e
√
α

1− α
. (34)

As we will see in our derivation, we will require another lower bound (39) on σ. We will use (39) together with

α ≤ 1

e
√

2(ε+ ln(1/δ))/ε
, α < 1, and

√
2(ε+ ln(1/δ))/ε >

2e
√
α

1− α

21

to imply the needed requirement (34). These new bounds on α are in turn equivalent to

α ≤ g(ε, δ) where (35)

g(ε, δ) = min


√
ε

e
√

2(ε+ ln(1/δ))
,

(√
1 +

e2ε

2(ε+ ln(1/δ))
− e

√
ε√

2(ε+ ln(1/δ))/ε

)2


(notice that this implies α < 1).

Substituting r0 = ασ in the formula for r yields the expression

r = 23 ·
(

σ

(1−
√
α)2

+
1

σ(1− α)− 2e
√
α

e3

σ

)
· e3/σ2

(1− α)α. (36)

Requirement on si/N – (37): In Theorem 3 we also require si/N ≤ r0/σ which translates into

si/N ≤ α. (37)

Requirement on σ – (39) and (40): In Theorem 3 we restrict ourselves to the case where function c(x) attains the
minimum c(x) = 2/(ρ̂x). This happens when

√
2rρx+ 1− 1

rρx
≥ 2

ρ̂x
.

This is equivalent to

x ≥ 2r
ρ

ρ̂2
+

2

ρ̂
. (38)

Notice that in the lower bound for σ in Theorem 3 we use c0 = c(x) for x = c1, where c1 is implicitly defined by

ε = c1T Ŝ
2
1

or equivalently
c1 =

ε

T Ŝ2
1

.

To minimize ε, we want to minimize c1 = x. That is, we want c1 = x to match the lower bound (38). This lower bound
is smallest if we choose the smallest possible ρ (due to the linear dependency of the lower bound on ρ). Given the
constraint on ρ this means we choose

ρ =
Ŝ1Ŝ3

Ŝ2
2

.

For c1 = x satisfying (38) we have

c0 = c(c1) =
2

ρ̂x
.

Substituting this in the lower bound for σ attains

σ ≥ 2√
c(c1)

√
Ŝ2T (ε+ ln(1/δ))

ε
=

√
ρ̂Ŝ2

Ŝ2
1

√
2(ε+ ln(1/δ))/ε.

In order to yield the best test accuracy we want to choose the smallest possible σ. Hence, we want to minimize the
lower bound for σ and therefore choose the smallest ρ̂ given its constraints, i.e.,

ρ̂ =
Ŝ2

1

Ŝ2

.

This gives
σ ≥

√
2(ε+ ln(1/δ))/ε. (39)

Notice that this lower bound implies σ ≥ 216/215 and for this reason we do not state this as an extra requirement.

Our expressions for ρ, ρ̂, and c1 with x = c1 shows that lower bound (38) holds if and only if

ε ≥

(
2r
Ŝ3

Ŝ1

+ 2Ŝ2

)
T. (40)

22

Requirement implying (40): The definition of moments Ŝj imply

Ŝ1 =
K

TN

and, since si/N ≤ α < 1,
Ŝj ≤ αj/(1− α)j−1.

Lower bound (40) on ε is therefore implied by

ε ≥ 2r
α3

(1− α)2

T 2N

K
+ 2

α2

1− α
T. (41)

We substitute

T = β
K

N
(42)

in (41) which yields the requirement

ε
N

K
≥ 2r

α(1− α)2
(α2β)2 +

2

1− α
(α2β). (43)

This inequality is implied by the combination of the following two inequalities:

α2β ≤ εN

γK
(44)

and

1 ≥ 2r

α(1− α)2

εN

K

1

γ2
+

2

1− α
1

γ
. (45)

Inequality (45) is equivalent to

γ ≥ 2r

α(1− α)2

εN

γK
+

2

1− α
. (46)

This implies

γ ≥ 2

1− α
≥ 2.

Also notice that
1

β
=

K

TN
= Ŝ1 ≤ α

from which we obtain
1 ≤ αβ.

Let us define

ᾱ =
εN

γK
. (47)

Inequalities γ ≥ 2 and 1 ≤ αβ together with (44) and the definition of ᾱ imply

α ≤ α2β ≤ εN

γK
= ᾱ ≤ εN

2K
. (48)

We will require
ᾱ < 1 (49)

and also σ(1− ᾱ)− 2e
√
ᾱ > 0 i.e,

σ >
2e
√
ᾱ

1− ᾱ
. (50)

Bounds (49) and (50) are equivalent to

ᾱ ≤ h(σ) where h(σ) =
(√

1 + (e/σ)2 − e/σ
)2

. (51)

23

With condition (51) in place we may derive the upper bound

2r

α(1− α)2

=
24

1− α

(
σ

(1−
√
α)2

+
1

σ(1− α)− 2e
√
α

e3

σ

)
e3/σ2

≤ 24

1− ᾱ

(
σ

(1−
√
ᾱ)2

+
1

σ(1− ᾱ)− 2e
√
ᾱ

e3

σ

)
e3/σ2

because all denominators are decreasing functions in α and remain positive for α ≤ ᾱ. Similarly,

2

1− α
≤ 2

1− ᾱ
.

These two upper bounds combined with (47) show that (46) is implied by choosing

γ = γ(σ, εN/K),

where γ(σ, εN/K) is defined as the smallest solution of γ satisfying

γ ≥ 2

1− ᾱ
+ (52)

24 · ᾱ
1− ᾱ

(
σ

(1−
√
ᾱ)2

+
1

σ(1− ᾱ)− 2e
√
ᾱ

e3

σ

)
e3/σ2

,

where ᾱ = (εN/K)/γ. The smallest solution γ will meet (52) with equality. For this reason the minimal solution
γ will be at most the right hand side of (52) where γ is replaced by its lower bound 2; this is allowed because this
increases ᾱ to the upper bound in (48) and we know that the right hand side of (52) increases in ᾱ up to the upper bound
in (48) if the upper bound satisfies

εN

2K
≤ h(σ).

This makes requirement (51) slightly stronger – but in practice this stronger requirement is already satisfied because K
is several epochs of N iterations making εN

2K � 1 while σ � 1 for small ε implying that h(σ) is close to 1.

Notice that γ = 2 +O(ᾱ), hence, for small ᾱ we have γ ≈ 2. A more precise asymptotic analysis reveals

γ = 2 + (2 + 24 ·
(
σ +

e3

σ2

)
e3/σ2

)ᾱ+O(ᾱ3/2).

Relatively large ᾱ closer to 1 will yield γ � 2.

Summarizing
{(42), (44), (47), (51), (52)} ⇒ (40).

Combining all requirements – resulting in (54), (55), and (39), or equivalently (57), (58), and (39): The combina-
tion of requirements (42) and (44) is equivalent to

α ≤
√

ε

γT
(53)

(notice that T and β are not involved in any of the other requirements including those discussed earlier in this discussion,
hence, we can discard (42) and substitute this in (44)). The combination of (47), (51), and (52) is equivalent to

εN

γK
≤ h(σ) with γ = γ

(
σ,
εN

K

)
(54)

(for the definition of h(.) see (51) and for γ(., .) see (52)).

We may now combine (53), (35), and (37) into a single requirement

si/N ≤ min

{
g(ε, δ),

√
ε

γT

}
(55)

(for the definition of g(., .) see (35)). This shows that (54), (55), and (39) (we remind the reader that the last condition
is the lower bound on σ ≥

√
2(ε+ ln(1/δ))/ε) implies (ε, δ)-DP by Theorem 3.

24

Let us rewrite these conditions. We introduce the mean s̄ of all si defined by

s̄ =
1

T

T−1∑
i=0

si =
K

T

and we introduce the maximum smax of all si defined by

smax = max{s0, . . . , sT−1}.

We define θ as the fraction
θ =

smax
s̄

. (56)

This notation allows us to rewrite

si/N ≤
√

ε

γT

from (55) as

γ
K

N

s̄

N
θ2 ≤ ε.

From this we obtain that the requirements (54) and (55) are equivalent to

γ

(
σ,
εN

K

)
· K
N

s̄

N
θ2 ≤ ε ≤ γ

(
σ,
εN

K

)
· h(σ)

K

N
(57)

and
θs̄ ≤ g(ε, δ)N. (58)

This alternative description shows that (57), (58), and (39) with definitions for h(.), γ(., .), g(., .), and θ in (51), (52),
(35), and (56) implies (ε, δ)-DP. This proves Theorem 2 (after a slight rewrite of the definitions of functions h(.) and
g(., .)).

C Experiments

We provide experiments to support our theoretical findings, i.e., convergence of our proposed asynchronous distributed
learning framework with differential privacy (DP) to a sufficiently accurate solution. We cover strongly convex, plain
convex and non-convex objective functions over iid local data sets.

We introduce our experimental set up in Section C.1. Section C.2 provides utility graphs for different data sets and
objective functions. A utility graph helps choosing the maximum possible noise σ, in relation to the value of the clipping
constant C, for which decent accuracy can be achieved. Section C.3 provides detailed experiments for our asynchronous
differential privacy SGD framework (asynchronous DP-SGD) with different types of objective functions (i.e., strongly
convex, plain convex and non-convex objective functions), different types of constant sample size sequences and
different levels of privacy guarantees (i.e., different privacy budgets ε).

All our experiments are conducted on LIBSVM Chang and Lin [2011]§ and MNIST LeCun and Cortes [2010] ¶ data
sets.

C.1 Experiment settings

Simulation environment. For simulating the asynchronous DP-SGD framework, we use multiple threads where each
thread represents one compute node joining the training process. The experiments are conducted on Linux-64bit OS,
with 16 cpu processors, and 32Gb RAM.

Objective functions. Equation (59) defines the plain convex logistic regression problem. The weight vector w and the
bias value b of the logistic function can be learned by minimizing the log-likelihood function J :

J = −
N∑
i=1

[yi · log(σ̄i) + (1− yi) · log(1− σ̄i)], (plain convex) (59)

§https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
¶http://yann.lecun.com/exdb/mnist/

25

where N is the number of training samples (xi, yi) with yi ∈ {0, 1} and σ̄i is defined by

σ̄i =
1

1 + e−(wTxi+b)
,

which is the sigmoid function with parameters w and b. Our goal is to learn a vector w∗ which represents a pair
w̄ = (w, b) that minimizes J .

Function J can be changed into a strongly convex problem Ĵ by adding a regularization parameter λ > 0:

Ĵ = −
N∑
i=1

[yi · log(σi) + (1− yi) · log(1− σi)] +
λ

2
‖w‖2 , (strongly convex).

where w̄ = (w, b) is vector w concatenated with bias value b. In practice, the regularization parameter λ is set to 1/N
[Roux et al., 2012].

For simulating non-convex problems, we choose a simple neural network (Letnet) [LeCun et al., 1998] with cross
entropy loss function for image classification.

The loss functions for the strong, plain, and non-convex problems represent the objective function F (.).

Parameter selection. The parameters used for our distributed algorithm with Gaussian based differential privacy for
strongly convex, plain convex and non-convex objective functions are described in Table 1. The clipping constant C is
set to 0.1 for strongly convex and plain convex problems and 0.025 for non-convex problem (this turns out to provide
good utility).

Table 1: Common parameters of asynchronous DP-SGD framework with differential privacy

of clients n Diminishing step size η̄t Regular λ Clipping constant C

Strongly convex 5 η0
1+βt

‡ 1
N

0.1
Plain convex 5 η0

1+βt
or η0

1+β
√
t

N/A 0.1
Non-convex 5 η0

1+β
√
t

N/A 0.025

‡ The i-th round step size η̄i is computed by substituting t =
∑i−1
j=0 sj into the diminishing step size

formula.

For the plain convex case, we can use diminishing step size schemes η0
1+β·t or η0

1+β·
√
t
. In this paper, we focus our

experiments for the plain convex case on η0
1+β·

√
t
. Here, η0 is the initial step size and we perform a systematic grid

search on parameter β = 0.001 for strongly convex case and β = 0.01 for both plain convex and non-convex cases.
Moreover, most of the experiments are conducted with 5 compute nodes and 1 central server. When we talk about
accuracy (from Figure 7 and onward), we mean test accuracy defined as the fraction of samples from a test data set
that get accurately labeled by the classifier (as a result of training on a training data set by minimizing a corresponding
objective function).

C.2 Utility graph

The purpose of a utility graph is to help us choose, given the value of the clipping constant C, the maximum possible
noise σ for which decent accuracy can be achieved. A utility graph depicts the test accuracy of model F (w∗ + n) over
F (w∗), denotes as accuracy fraction, where w∗ is a near optimal global model and n ∼ N (0, C2σ2I) is Gaussian noise.
This shows which maximum σ can be chosen with respect to allowed loss in expected test accuracy, clipping constant
C and standard deviation σ.

As can be seen from Figure 4 and Figure 5, for clipping constant C = 0.1, we can choose the maximum σ somewhere in
the range σ ∈ [18, 22] if we want to guarantee there is at most about 10% accuracy loss compared to the (near)-optimal
solution without noise. Another option is C = 0.075, where we can tolerate σ ∈ [18, 30] yielding the same accuracy
loss guarantee. When the gradient bound C gets smaller, our DP-SGD can tolerate bigger noise, i.e, bigger values of
σ. However, we need to increase the number K of iterations during the training process when C is smaller in order
to converge and gain a specific test accuracy – this is the trade-off. For simplicity, we intentionally choose C = 0.1,
σ ≤ 20 and expected test accuracy loss about 10% for our experiments with strongly convex and plain convex objective
functions.

The utility graph is extended to the non-convex objective function in Figure 6. To keep the test accuracy loss less or
equal to 10% (of the final test accuracy of the original model w∗), we choose C = 0.025 and noise level σ ≤ 12. For
simplicity, we use this parameter setting for our experiments with the non-convex problem.

26

0 20 40 60 80 100
sigma

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 fr
ac

tio
n

of
 F

(w
*

+
no

is
e)

/F
(w

*)

phishing
C=0.01
C=0.025
C=0.05
C=0.075
C=0.1
C=0.25
C=0.5
C=0.75
C=1.0

(a) Strong convex.

0 20 40 60 80 100
sigma

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 fr
ac

tio
n

of
 F

(w
*

+
no

is
e)

/F
(w

*)

phishing
C=0.01
C=0.025
C=0.05
C=0.075
C=0.1
C=0.25
C=0.5
C=0.75
C=1.0

(b) Plain convex.

Figure 4: Utility graph with various gradient norm C and noise level σ

0 20 40 60 80 100
sigma

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 fr
ac

tio
n

of
 F

(w
*

+
no

is
e)

/F
(w

*)

mushrooms
C=0.01
C=0.025
C=0.05
C=0.075
C=0.1
C=0.25
C=0.5
C=0.75
C=1.0

(a) Strong convex.

0 20 40 60 80 100
sigma

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 fr
ac

tio
n

of
 F

(w
*

+
no

is
e)

/F
(w

*)

mushrooms
C=0.01
C=0.025
C=0.05
C=0.075
C=0.1
C=0.25
C=0.5
C=0.75
C=1.0

(b) Plain convex.

Figure 5: Utility graph with various gradient norm C and noise level σ

C.3 Asynchronous distributed learning with differential privacy

We consider the asynchronous DP-SGD framework with strongly convex, plain convex and non-convex objective
functions for different settings, i.e., different levels of privacy budget ε and different constant sample size sequences.

C.3.1 Asynchronous DP-SGD with different constant sample size sequences

The purpose of this experiment is to investigate which is the best constant sample size sequence si = s. This experiment
allows us to choose a decent sample size sequence that will be used in our subsequent experiments. To make the analysis
simple, we consider our asynchronous DP-SGD framework with Υ(k, i) defined as false if and only if k < i− 1, i.e.,
compute nodes are allowed to run fast and/or have small communication latency such that broadcast global models are
at most 1 local round in time behind (so different clients can be asynchronous with respect to one another for 1 local
round). We also use iid data sets. The detailed parameters are in Table 2.

The results from Figure 7 to Figure 8 confirm that our asynchronous DP-SGD framework can converge under a very
small privacy budget. When the constant sample size s = 1, it is clear that the DP-SGD algorithm does not achieve good
accuracy compared to other constant sample sizes even though this setting has the maximum number of communication

27

0 10 20 30 40 50
sigma

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 fr
ac

tio
n

of
 F

(w
*

+
no

is
e)

/F
(w

*)

mnist
C=0.01
C=0.025
C=0.05
C=0.075
C=0.1
C=0.25
C=0.5
C=0.75
C=1.0

Non-convex.

Figure 6: Utility graph with various gradient norm C and noise level σ

Table 2: Basic parameter setting for strongly and plain convex problems

Parameter Value Note
η̄0 0.1 initial stepsize
Nc 10, 000 # of data points
K 50, 000 # of iterations
ε 0.04945
σ 19.29962
δ 0.0001
C 0.1 clipping constant
s {1, 5, 10, 15, 20, 26} constant sample size sequence

dataset LIBSVM iid dataset
n 5 # of nodes
Υ k ≥ i− 1 1−asynchronous round

rounds. When we choose constant sample size s = 26 (this meets the upper bound for constant sample sizes for our
small N = 10, 000 and small ε ≈ 0.05, see Theorem 2), our DP-SGD framework converges to a decent test accuracy,
i.e, the test accuracy loss is expected less than or equal to 10% when compared to the original mini-batch SGD without
noise. In conclusion, this experiment demonstrates that our asynchronous DP-SGD with diminishing step size scheme
and constant sample size sequence works well under DP setting, i.e, our asynchronous DP-SGD framework can gain
differential privacy guarantees while maintaining an acceptable accuracy.

We also conduct the experiment for the non-convex objective function. The detailed parameter settings can be found
in Table 3. Here, we again consider our asynchronous setting where each compute node is allowed to run fast and/or
has small communication latency such that broadcast global models are at most 1 local round in time behind. As can
be seen from Figure 9, our proposed asynchronous DP-SGD still converges under small privacy budget. Moreover,
when we use the constant sample size s = 370 (this meets the upper bound for constant sample sizes for our small
N = 60, 000 and small ε ≈ 0.15, see Theorem 2), we can significantly reduce the communication cost compared to
other constant sample sizes while keeping the test accuracy loss within 10%. The constant sample size s = 10 (as well
as s ≤ 10) shows a worse performance while this setting requires more communication rounds, compared to other
constant sample sizes. This figure again confirms the effectiveness of our asynchronous DP-SGD framework towards a
strong privacy guarantee for all types of objective function.

28

0 10000 20000 30000 40000 50000
of iteration

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y
phishing

s=1
s=5
s=10
s=15
s=20
s=26

(a) Strong convex.

0 10000 20000 30000 40000 50000
of iteration

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

phishing

s=1
s=5
s=10
s=15
s=20
s=26

(b) Plain convex.

Figure 7: Effect of different constant sample size sequences

0 10000 20000 30000 40000 50000
of iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

mushrooms

s=1
s=5
s=10
s=15
s=20
s=26

(a) Strong convex.

0 10000 20000 30000 40000 50000
of iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y
mushrooms

s=1
s=5
s=10
s=15
s=20
s=26

(b) Plain convex.

Figure 8: Effect of different constant sample size sequences

C.3.2 Asynchronous DP-SGD with different levels of privacy budget

We conduct the following experiments to compare the effect of our DP-SGD framework for different levels of privacy
budget ε including the non-DP setting (i.e., no privacy at all, hence, no noise). The purpose of this experiment is to show
that the test accuracy degradation is at most 10% even if we use very small ε. The detailed constant sample sequence s
and noise level σ based on Theorem 2 are illustrated in Table 4. Other parameter settings, such as initial stepsize η0, are
kept the same as in Table 2.

As can be seen from Figures 10 and Figure 11, the test accuracy degradation is about 10% for ε = 0.04945 compared to
the other graphed privacy settings and non-DP setting. Privacy budget ε = 0.1, still significant smaller than what is
reported in literature, comes very close to the maximum attainable test accuracy of the non-DP setting.

We ran the same experiment for the non-convex objective function. The detailed setting of different privacy budgets
is shown in Table 5. Note that we also set the asynchronous behavior to be 1 asynchronous round, and the total of
iterations on each compute node is K = 360, 000. Other parameter settings for the non-convex case, such as initial
stepsize η0, are kept the same as in Table 3. As can be seen from Figure 12, the test accuracy loss with ε ≈ 0.15 is less
than 10% (the expected test accuracy degradation from utility graph at Figure 6).

29

Table 3: Basic parameter setting for non-convex problem

Parameter Value Note
η̄0 0.1 initial stepsize
Nc 60, 000 # of data points
K 360, 000 # of iterations
ε 0.15007
σ 12.10881
δ 1.667 · 10−5

C 0.025 clipping constant
s {10, 25, 50, 100, 200, 300, 370} constant sample size sequence

dataset MNIST iid dataset
n 5 # of nodes
Υ k ≥ i− 1 1−asynchronous round

0 50K 100K 150K 200K 250K 300K 350K
of iteration

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

mnist

s=10
s=25
s=50
s=100
s=200
s=300
s=370

Non-convex.

Figure 9: Effect of different constant sample size sequences

Table 4: Different privacy budget settings for strongly and plain convex problems

Privacy budget (ε, δ) σ Sample size s
(0.04945, 0.0001) 19.29962 26

(0.1, 0.0001) 13.06742 55
(0.25, 0.0001) 8.59143 103
(0.5, 0.0001) 6.05868 168
(1.0, 0.0001) 4.27273 265
(2.0, 0.0001) 3.03241 400

These figures again confirm the effective performance of our DP-SGD framework, which not only conserves strong
privacy, but also keeps a decent convergence rate to good accuracy, even for a very small privacy budget.

30

0 10000 20000 30000 40000 50000
of iteration

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y
phishing

= 0.04945
= 0.1
= 0.25
= 0.5
= 1.0
= 2.0

non-DP

(a) Strong convex.

0 10000 20000 30000 40000 50000
of iteration

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

phishing

= 0.04945
= 0.1
= 0.25
= 0.5
= 1.0
= 2.0

non-DP

(b) Plain convex.

Figure 10: Effect of different levels of privacy budgets ε and non-DP settings

0 10000 20000 30000 40000 50000
of iteration

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

mushrooms

= 0.04945
= 0.1
= 0.25
= 0.5
= 1.0
= 2.0

non-DP

(a) Strong convex.

0 10000 20000 30000 40000 50000
of iteration

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Te

st
 a

cc
ur

ac
y
mushrooms

= 0.04945
= 0.1
= 0.25
= 0.5
= 1.0
= 2.0

non-DP

(b) Plain convex.

Figure 11: Effect of different levels of privacy budgets ε and non-DP settings

Table 5: Different privacy budget settings for non-convex problem

Privacy budget (ε, δ) σ Sample size s
(0.15007, 1.667 · 10−5) 12.10881 370

(0.2, 1.667 · 10−5) 10.48452 460
(0.25, 1.667 · 10−5) 9.37379 543
(0.5, 1.667 · 10−5) 6.63120 889
(0.75, 1.667 · 10−5) 5.41887 1168
(1.0, 1.667 · 10−5) 4.69244 1409
(2.0, 1.667 · 10−5) 3.31648 2159

C.4 Using DP-SGD in Practice

We propose each local client to take control over its own privacy budget while making sure the locally measured test
accuracy of the final global model is acceptable. The main idea is to start with an initial σ = σ0 and K = K0, and

31

0 50K 100K 150K 200K 250K 300K 350K
of iteration

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

mnist

= 0.15
= 0.2
= 0.25
= 0.5
= 0.75
= 1.0
= 2.0

non-DP

Non-convex.

Figure 12: Effect of different levels of privacy budgets ε and non-DP settings

for local data set size N compute proper parameter settings including the batch size s = s0 for each round and the
total number of rounds T = T0. Once the T rounds are finished, local test data is used to compute the test accuracy of
the final global model. If the accuracy is not satisfactory, then σ must be reduced to a lower σ1 and another local K1

gradient computations need to be executed. The lower σ will correspond to worse differential privacy as a lower σ is
directly related to a higher ε for given δ = 1/N . The local client is control of what ε is acceptable.

In order to apply our theory, we pretend as if the initial T rounds used the lower σ = σ1 – this means that our analysis
provides an advantage to the adversary as we assume less noise is used compared to what was actually used. Hence, the
resulting DP guarantee for σ1 will hold for all K = K0 +K1 local gradient computations. We use the new σ = σ1

and K together with badge size s0 for the first T0 rounds to compute a new parameter setting for the next rounds; this
includes the number T1 of additional rounds (making T = T0 + T1) and the new batch size s1. The new batch size
implies a new average s̄ = (s0T0 + s1T1)/(T0 + T1) as well as a new variation in sequence of batch sizes θ1 > 1.

Once all T = T0 + T1 rounds are finished (or equivalently all K = K0 +K1 local gradient computations are finished),
the local client again computes the test accuracy of the last global model. If not acceptable σ is reduced again and we
repeat the above process. If the test accuracy is acceptable, then the local client stops participating, that is, the local
client stops gradient computations but continues to receive global models from the central server. As soon as the local
client measures a new unacceptable local test accuracy, the client will continue the above process and starts a new series
of rounds based on σ.

Stopping participation and later continuing if needed best fits learning problems over large data: Here, each local client
iid samples its own local data set according to the "client’s behavior". The local client wants to prevent as much leakage
of its privately selected local data set as possible. Notice that each local data set is too small for a local client to learn
a global model on its own – this is why local clients need to unite in a joint effort to learn a global model (by using
distributed SGD). Since all samples are iid, the final global model is not affected by having more or less contribution
from local clients (because they have different stopping and continuation patterns). Notice that if local data sets would
be heterogeneous, then the final global model corresponds to a mix of all heterogeneous data sets and here it matters
how much each local client participates (as this influences the mix).

The above procedure describes an adaptive method for adjusting σ to lower values if the locally measured test accuracy
is not satisfactory. Of course, the local client sets an a-priori upper bound εallowed on the ε, its privacy budget. This
privacy budget cannot be exceeded, even if the local test accuracy becomes unsatisfactory.

We notice that our theory is general in that it can be used to analyse varying sequences of batch sizes, which is needed
for our adaptive method. We now describe in detail how to calculate parameter settings according to our theorems:

Suppose the local client has already computed for T0 + T1 + . . .+ Tj rounds with badge sizes s0, s1, . . . , sj , hence,
K0 = s0T0,K1 = s1T1, . . . ,Kj = sjTj . The local client sets/fixes the total Kj+1 of gradient computations it wants

32

to compute over the next Tj+1 rounds. We want to compute a new sj+1 and Tj+1. Notice that sj+1 = Kj+1/Tj+1 and
s̄ =

∑j+1
i=0 siTi/T , where T =

∑j+1
i=0 Ti. We want to find a suitable sj+1.

We start our calculation with sj+1 = 1 and we rerun our calculation for bigger batch sizes until we reach a maximum.
Given a choice sj+1 = s, we execute the following steps:

1. Set δ = 1/N , compute Tj+1 = Kj+1/sj+1 given the input values Kj+1 and sj+1, compute the corresponding
s̄ (see above) together with corresponding θ = max{si}/s̄. Compute K =

∑j+1
i=0 Ki.

2. Set γ = 2 (because γ = 2 +O(ᾱ)) as the initial value.
3. According to Theorem 2, we compute ε, σ, and ᾱ as follows:

• Based on inequality (11), set ε as small as possible, that is, ε = γθ2s̄ KN2 .
• We distinguish two cases:
j + 1 = 0: In case we want to determine s0, we compute σ0 = σ where σ meets (12) with equality

σ =
√

2(ε+ log 1/δ)/ε.
j + 1 > 0: If we occupy ourselves with determining sj+1 with j + 1 ≥ 1, then during previous com-

putations we already selected a σj . As described above, we only perform these calculations if the
corresponding test-accuracy is not satisfactory. For this reason we want a lower σj+1 < σj . The local
client chooses a smaller σj+1 for which better accuracy is expected. We compute ε as a solution of
σj+1 =

√
2(ε+ log 1/δ)/ε and set ε to the maximum of this solution and the minimal possible ε

computed in step 3.
• Compute ᾱ = εN

γK .

4. Recompute the new γnew = 2
1−ᾱ + 24·ᾱ

1−ᾱ

(
σ

(1−
√
ᾱ)2

+ 1
σ(1−ᾱ)−2e

√
ᾱ
e3

σ

)
e3/σ2

.

5. Repeat steps 3,4 until γnew − γ ≤ 0.0001γ.
6. Using the set of parameters (ε, δ, σ, γ, θ,K,N), only if inequalities (9) and (10) are satisfied and ε ≤ εallowed,

we save the set of parameters (s, ε, σ) and rerun the above calculation with bigger sample size s. Otherwise,
we output the valid set of parameters (s, ε, σ) of the previous run and terminate: We set σj+1 = σ, sj+1 = s,
and Tj+1 = Kj+1/sj+1. Our theory proves that we have (ε, δ = 1/N)-differential privacy.

It may be that even the minimal batch size sj+1 = 1 does not result in a valid set of parameters (s, ε, σ). This means
that the local client cannot participate any more otherwise its required differential privacy guarantee cannot be met.

33

	1 Introduction
	2 Differential Privacy
	3 Differential Private SGD (DP-SGD)
	4 DP-SGD Analysis by Abadi et al.
	5 Independence between and T
	6 Main DP Theorem
	7 Experiments
	7.1 Utility graph
	7.2 Asynchronous DP-SGD with different constant sample size
	7.3 Asynchronous DP-SGD with different levels of privacy budget

	8 Conclusion
	A Asynchronous Mini-Batch DP-SGD
	B Differential privacy proofs
	B.1 Definitions
	B.2 Proof of Theorem 3
	B.3 Proof of Theorem 2

	C Experiments
	C.1 Experiment settings
	C.2 Utility graph
	C.3 Asynchronous distributed learning with differential privacy
	C.3.1 Asynchronous DP-SGD with different constant sample size sequences
	C.3.2 Asynchronous DP-SGD with different levels of privacy budget

	C.4 Using DP-SGD in Practice

