Teseo and the Analysis of Structural Dynamic Graphs

Dean De Leo
CWI
dleo@cwi.nl

ABSTRACT

We present Teseo, a new system for the storage and analysis of
dynamic structural graphs in main-memory and the addition of
transactional support. Teseo introduces a novel design based on
sparse arrays, large arrays interleaved with gaps, and a fat tree,
where the graph is ultimately stored. Our design contrasts with
early systems for the analysis of dynamic graphs, which often lack
transactional support and are anchored to a vertex table as a primary
index. We claim that the vertex table implies several constraints,
often neglected, that can actually impair the generality, the robust-
ness and extension opportunities of these systems. We compare
Teseo with other dynamic graph systems, showing a high resilience
to workload and input changes, while achieving comparable, if not
superior, throughputs in updates and latencies in raw scans.

PVLDB Reference Format:

Dean De Leo and Peter Boncz. Teseo and the Analysis of Structural
Dynamic Graphs. PVLDB, 14(6): 1053 - 1066, 2021.
doi:10.14778/3447689.3447708

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/cwida/gfe_driver.

1 INTRODUCTION

Graph analysis involves the execution of computationally expensive
and relatively long running algorithms over structural graphs. These
are homogeneous graphs, simply composed of vertices, edges and,
possibly, a weight attached to their elements. For sizable problems,
the established approach is to run these algorithms in one among
the many systems for static graphs already existing [62]. They are
static, in the sense that, the studied graphs need to be first extracted
from other primary data sources, preprocessed and finally loaded
into the final tool for the analysis. In case of any change, the whole
cycle needs to be repeated, propagating the changes from their
primary data sources. As such, this pipeline remains suitable only
when allowed to work with somewhat stagnant data.

The alternative is the analysis of dynamic graphs. These are
graphs whose constituent structure and properties can continuously
change, opening the opportunity of working constantly up-to-date
information. For this scenario, there have been studies aimed at
doing away with the ETL pipeline and running the graph algorithms
on transactional primary data sources. On the one hand, this can be
accomplished on a native and feature-rich graph DBMS, with Neo4;j

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 6 ISSN 2150-8097.
doi:10.14778/3447689.3447708

1053

Peter Boncz
CWI
boncz@cwi.nl

arguably representing the most compared system to day. On the
other hand, there have been attempts to adapt existing Relational
DBMSes (RDBMS) for graph analysis [22, 33].

Upon inspection, these approaches have been shown to come
short in terms of performance [48, 50], compared to systems for
static graphs, while offering a somewhat more restricted abstrac-
tion model. Nowadays, single machines can process relatively large
graphs [51], and, recently, for this architecture, several libraries
to tackle dynamic graphs have been published [20, 35, 37, 46, 63].
These systems, regardless of their physical implementation, all
expose a logical view based on adjacency lists, one of the most con-
ventional abstractions presented in algorithmic textbooks [14]. In
this model, the user operates on the graph by selecting one specific
vertex at-a-time and iterating over its edges and/or its properties.
Published works for the above libraries report comparable latencies,
in graph analysis, w.r.t. systems for static graphs. Furthermore, they
show to be capable of very high throughput in updates, effectively
suggesting the analysis of real-time dynamic graphs.

Regrettably, most of these systems forgo transactional support
[20, 35, 43, 46] or incur overhead [63]. Analysis of dynamic graphs
is increasingly relevant in sectors such as Finance, Insurance, Logis-
tics, Media and Infrastructure and include applications like Fraud
Detection [4], Threat Detection [34], Information Diffusion [24],
Risk Analysis, Compliance as well as Supply Chain Optimization,
and more [55]. Without the isolation and consistency of transac-
tions, in presence of concurrent changes, queries and computations
will yield incorrect results. For instance, in fraud detection, the
wrong customer could be flagged, or, in a computer network, a
suspicious authentication could pass unnoticed.

In this paper, we present Teseo, a library for the analysis of
dynamic structural graphs with the addition of full transactional
support. Similarly to the above mentioned libraries, Teseo also
targets main-memory standalone machines and exposes to the end
users the same abstraction of adjacency lists. Teseo guarantees
snapshot isolation [56], with a protocol modelled after HyPer [52].
Furthermore, it introduces a novel design based on sparse arraysl,
large dynamic arrays interspersed with gaps to maintain a sorted
order. Sparse arrays are the building block that form the leaves of
fat trees, where the graph is finally stored.

This design presents several advantages. Large leaves, together
with additional indexing, contribute to reducing random memory
accesses, already compelling in graph algorithms [44] and a limiting
factor of traditional B* trees [17, 63]. The sorted order enables long
sequential scans, essential in analytical workloads [2]. The free
space, arranged as a sparse array, guarantees a low cost per update
while maintaining the sorted order. In-place updates and aggressive
pruning curtail the overhead of transactional support. Through
these techniques, Teseo aims to exploit the access patterns of graph
analysis, while retaining sustainable throughput in updates.

! Also known as Packed Memory Arrays (PMA) in the literature [10].

https://doi.org/10.14778/3447689.3447708
https://github.com/cwida/gfe_driver
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3447689.3447708

a) Input graph:

10

b) Internal representation:

30 40 3 1
20 0
10 10 140l 3
30 0
20
40
Vertex identifiers Vertex table Edge lists

(hash table) (array) (vectors)

Figure 1: Systems for dynamic graphs typically rely on a
vertex table, an array where all vertices are stored. Figure b)
depicts the content of a vertex table for the input graph a).
Vertex identifiers are relabelled by a hash table to the indices
in the vertex table: 10 — 2,20 — 1,30 — 3 and 40 — 0.

Designs based on trees, and B*-trees in particular, are predom-
inant in RDBMSes [56], but they are a novelty with respect to
the high-throughput and low-latency systems for dynamic graphs
we examined [20, 35, 37, 46, 63]. These systems share a common
scheme, outlined in Figure 1, ultimately anchored to a vertex table,
a container where all vertices are stored together and whose entries
refer to lists of their adjacent edges. The vertex table is usually im-
plemented as a pre-allocated array and, often, with a fixed capacity.
This solution ensures quick vertex look-ups, in O(1).

We claim that a vertex table presents a number of limitations
that are frequently overlooked. Because it is based on a static ar-
ray, most of the examined systems do not allow vertex deletions,
whereas insertions are usually bound up to the pre-allocated capac-
ity. To support arbitrary vertex identifiers, the vertex table needs
to be associated to a hash table, to map the identifiers to their
indices in the array. As none of the examined systems cover the
hash table by a suitable form of concurrency isolation, changes to
vertices cannot be overlapped with concurrent reads. The edges
associated to the same source are stored in an unindexed sequence,
typically, unsorted. The cost of single edge look-ups, and updates
as consequence, depends on the length of the sequence and can be
expensive in vertices with a high degree. These systems can also
become fragile in presence of skew in updates, as they tend to parti-
tion critical sections at the granularity of the single vertices. Finally,
as described in Section 3, most algorithms for graph analysis tend
to manifest one of two common patterns, which we name sequen-
tial and random patterns, where data accesses are predominantly
sequential and random, respectively. While all systems perform
similarly on random access, the updatable sparse array storage of
Teseo is optimized for sequential access, unlike typical vertex table
designs where updates disturb the access pattern.

In our experimental results, Teseo can compete favourably, in
terms of both updates and raw scans, against these systems. Our

1054

results complement and, at first glance, can conflict with the exper-
imental results reported in previous work. As we detail in Section
8, in 3/4 of our competitors [20, 35, 46] updates have only been
evaluated as bulk loads, while, generally, different, but, occasionally
incompatible implementations of the same graph algorithms have
been compared. Our experiments, instead, target fine-grained up-
dates, whereas all systems are evaluated in the LDBC Graphalytics
standard benchmark [29], under the same implementation for the
graph algorithms. This eases a direct comparison of the involved
systems as algorithmic merits are detached. Our contributions are:

e We present Teseo, a new system for the analysis of dynamic
structural graphs with full transactional support. It relies
on a novel design based on sparse arrays and fat trees.

e We compare Teseo against some of most recent, prominent
and compatible systems of the last decade, reporting similar
or superior performance in terms of updates and raw scans.

e We uncover a different picture than what was provided by
our competitors in their works. Our experiments tend to be
more complex and comprehensive, and we often measured
a lower performance than the results previously published.

The rest of the paper is organised as follows. In Section 2, we
summarise sparse arrays and other components prerequisites of
Teseo. In Section 3, we motivate our design rationale. Section 4
details the layout and the operations of the fat tree. In Section
5, we describe how Teseo handles concurrency, while Section 6
delves with a few remaining key features. In Section 7, we evaluate
Teseo against other comparable systems, analysing the throughput
of both insertions and general updates and their performance in
graph analysis. In Section 8, we contrast our results with those
published by our contenders. We review related work in Section 9
and conclude in Section 10.

2 PREREQUISITES

This section summarises sparse arrays [16] and, then, it reviews
hybrid latches [12, 40] and the Multi-Version Concurrency Control
(MVCC) protocol of HyPer [52], all central components of Teseo.

2.1 Sparse arrays

A sparse array is an array where elements are stored according to
a key order, interspersed with gaps. These are empty slots, provi-
sioned to accommodate future potential insertions. The supported
operations are insertions, deletions, point look-ups and range scans.
Point look-ups and range scans are akin to sorted dense arrays,
with encountered gaps ignored or skipped.

Ca

Cs contiguous
chunks, named segments, of a predetermined size Cs. Figure 2a
depicts an instance of a sparse array. Insertions can be performed
into a segment until it becomes full, that is, there are no more gaps.
Analogously, deletions from a segment replace an element with a
gap and can be performed until the segment becomes half full. At
that point, a rebalance operation is carried out. The intuition is to
visit the adjacent segments and share their elements. The sequence
of segments involved in a rebalance is called a window.

In a sparse array, there is a specific formula to determine the win-
dow W. Given |W| the number of segments in W, cardinality(W)
as the cumulative number of elements in the segments of W, h =

Given its capacity Cy, the array is split into

a) Sparse array

|10|11|12|13i20|21|22| i30| [] i4o|41|42|43|
))) Segment 4

Segment 1 Segment 2 Segment 3

b) Rebalance

[o]1[12] |13]20]21] [22]30]a0] |ar]42]43] |
Figure 2: a) A sparse array of capacity C4 = 12, with 4 seg-

ments of size Cg = 4. b) The outcome of a rebalance for the
whole array a).

[log, g—‘:] and a given set of constants 0 < p; < pp, <7, <11 < 1,
then the objective is to find the smallest window W such that:

low(W) < cardinality(W) < high(W)

torw(w) = [~ (o — o) - (PR s wi
hlgh(W) = [Th + (Th +‘[1) . (w)] -Cs - |W|

In practice, starting from an unbalanced segment, we create a
window from it and iteratively add its adjacent segments until (1)
is satisfied. Once a window is found, all contained elements are
equally spread among its segments, as in Figure 2b. If the formula
(1) cannot be satisfied even for the largest window, the array is
resized to a new capacity Cy = 2N/(pp, + 1p,).

The constants p1, pp, 73, 71 are named density thresholds and are
an input parameter defined by the implementation. Here, we simply
set p1 = 0.5, 71 = 1, pp, = 1, = 0.75, a choice that ensures that the fill
factor of a resize will be ~ 75%, whereas the overall array is always
filled at 50% [31]. The segment size Cs is also an implementation
parameter, conceptually analogous to the leaf size of a B tree. In
this paper, we assume Cs = 4 KB as it was experimentally shown
in previous work [17] to provide, for in-memory sparse arrays, a
good balance between the cost of updates and that of scans.

In the RAM model, the worst-case complexity of an update
is O(N), due to a resize or a large rebalance. The formula (1)
guarantees a tighter bound of O(log%N), per update, in the amor-
tised worst-case analysis [10, 32]. In the I/O model [3], assuming
Cs = O(B), the complexity turns to O((loggN) /B) per update?
[9, 10]. The worst-case occurs in presence of skew, when elements
are continuously either inserted into or deleted from the same
segment. If the keys in the updates follow a uniform distribution,
then the amortised average-case becomes O(logg N) [8, 32]. Finally,
range scans match the optimal worst-case O(R/B) with sequential
accesses [9, 10], where R is the number of elements in the range.

2.2 Hybrid latches

A hybrid latch combines a conventional latch with an optimistic
latch [40]. Like a conventional latch, it can be acquired by either
multiple readers or a single writer in mutual exclusion. The latch
is also augmented with a version, a counter incremented every
time a writer passes through it. A reader can alternatively acquire
the latch optimistically, by checking the version both before and
after accessing the content of the critical section. If the values are

2The parameter B is the conventional block size of the I/O model [3].

1055

equal, it guarantees that, in the meantime, the content in the critical
section was not altered. Otherwise, the whole read operation needs
to be repeated. In read-intensive workloads, optimistic reads avoid
modifying the internal state of a latch, a potential cause both of
contention and of additional traffic in the CPU cache hierarchy.

2.3 MVCC

In HyPer, every data item has associated a pointer, potentially
null, with the head of a linked list of versions. The chain contains
the history of alterations applied by different transactions to the
related data item during its lifetime. A reader can always access the
corresponding visible version by traversing the history. A writer
locks the data item until its transaction terminates, by commit or
roll back, and prepends a new version to the data item’s history.
Upon conflict, a change is rejected and an error is thrown to the user.
Finally, versions are marked with the commit time of the transaction
that created them, so that other transactions can identify which
change in the history is visible to them.

Periodically, inaccessible versions are pruned by a Garbage Col-
lector (GC). A data item without a history is implicitly visible to
all transactions. This enables an alternative “fast code path”, where
transactions do not incur the overhead of checking the versions.

3 OVERVIEW

3.1 Opportunities

Most algorithms for graph analysis, including those in Graphalytics,
follow either a sequential or a random pattern, where a significant
part, if not most, of the completion time is spent. A goal of Teseo is
to handle both patterns as efficiently as possible. In the sequential
pattern, the bulk of an algorithm has the following structure:
while condition do
for all vin V do
for all e in edges(v) do
result[v] = f(result[v], v, e, ...
end for
end for
end while

1:
2
3
4:)
5
6

7:
Here, an algorithm accesses all vertices and edges of the graph in
a strict sequential order, repeating the same computation until a
certain condition (line 1) is satisfied. An example of this pattern is
PageRank, where the score of all vertices is computed as a function
of all their neighbours and their score at the previous iteration.

The random pattern is similar to the sequential pattern, with the
exception that the vertex fetched at line 2 cannot be pre-established
statically, but it is determined at run-time. For instance, in a shortest
path algorithm, the vertex examined at each iteration is typically
extracted from a minimum priority queue.

In both patterns, once a vertex is accessed, then all of its outgoing
or, in some cases, incoming edges are also retrieved.

We note that both patterns are effectively captured by the popular
Compressed Sparse Row (CSR) format [25, 61]°, a straightforward
graph layout employed by frameworks for static graphs. In the CSR,
all vertices and edges are stored in two contiguous arrays, with
the edges logically sorted by the pair (source, destination). For the
sequential pattern, accessing vertices and edges is very efficient

3Sometimes equivalently referred as Compressed Row Storage (CRS) in the literature.

Secondary index

Primary index (ART) (Hash table)

O/I\/.
A

[)
Leaf

Vertex 20

Vertex 10

—

Segment

Figure 3: Sketch of a fat tree with two leaves.

because the data retrieval becomes a single sequential scan of these
two arrays. Whereas in the random pattern, a vertex and its first
neighbours can be still fetched with only two memory accesses.
Finally, the usage of implicit pointers and contiguous arrays in the
CSR also leads to a narrow memory footprint, further decreasing
the cost of random memory look-ups [19].

Vertex tables can also be effective in the random pattern. Al-
though their working set is larger than the CSR, vertex look-ups
and the retrieval of their first adjacent edges can exhibit a constant
cost. On the other hand, in the sequential pattern they are less
efficient than the CSR, because logically consecutive vertices refer
to unrelated memory regions, causing expensive random accesses,
particularly detrimental on vertices with a low degree.

3.2 Graph storage

For a dynamic graph representation, our starting point for Teseo is
to store the whole graph in a single in-memory B* tree. Vertices and
edges are stored together. We further assume that vertex identifiers
are derived from an ordered universe, e.g. natural integers. Then,
we preserve a sorted order in the tree: vertices are stored according
to their natural order, while directed edges are stored immediately
after their source vertex, and, when sharing the same source, ac-
cording to their destination vertex. We represent undirected edges
a — b as two directed edges: a —» band b — a.

While this initial representation is effective for updates, it does
not capture the patterns of graph analysis. The sequential pattern is
dominated by sequential scans. Conventional B* trees are typically
composed of leaves of one memory page (4KB) or a few more [23].
This causes expensive random memory jumps in scans, due to
frequent leaf traversals [17, 63]. On the other hand, on vertices
with a small degree, the random pattern will be instead dominated
by point look-ups, which have a logarithmic cost in B* trees.

In Teseo, we mitigate these issues with a new variant of the B*
tree, which we name fat tree, broadly sketched in Figure 3. In a fat
tree, we extend the size of the leaves to the order of MBs. Scans will
now traverse less leaves, improving the latency of the sequential
pattern. Furthermore, we introduce a secondary index, a hash table,
that maps each vertex to its physical position in the tree. The hash
table guarantees that point look-ups, a dominating factor of the
random pattern, now feature a cost, on average, of O(1).

But naively extending the size of a leaf also proportionally im-
pairs the latency of updates [17], as generally more elements need
to be moved to maintain the sorted order. To regain the efficiency
in updates, we organise the leaves of the tree as sparse arrays. This
originates in a hybrid design, where full segments inside a leaf are
rebalanced as in sparse arrays, while array resizes are substituted by
leaf splits/merges as in B* trees. Finally, for efficient point look-ups,

1056

Vertex Edges Free space (gaps)
Sz Sz '
IJEY 20 30 20 1 BRI |
T

Segment 1 (ROS) Segment 2 (WOS)

Index

T 7 7 7
EEE 30-40 | 40520 PR 4030

Unsorted buffer :

Figure 4: The storage of the graph of Figure 1a) over two
segments. The first segment is in ROS format and the second
one is in WOS format.

demanded by updates, a fat tree uses ART [41, 42], a form of trie,
as primary index, with one search key per segment.

3.3 Asynchronous operations

Structural operations in a fat tree are more expensive than in a
traditional B* trees, because its leaves are three orders of magnitude
larger. In a fat tree, the structural operations are segment rebalances
and leaf splits/merges. Moreover, proper maintenance of the indices
can further aggravate the peak latency of updates.

A crucial point of Teseo is to delay and perform all the above op-
erations asynchronously by service threads. These are background
threads spawned and managed by the system, responsible for main-
tenance tasks and GC. In particular, when a segment becomes full, a
writer can always keep adding new elements into a write-optimised
side buffer. The run-time will eventually rebalance the segment,
clearing the buffer and physically redistributing the elements.

4 FAT TREE

In this section, we detail the layout and the operations in a fat
tree. Hereafter, we assume that vertex identifiers are represented
by 8-byte integers, although our description can be reasonably
generalised to any arbitrary domain with a sorted order.

4.1 Leaf layout

All vertices and edges are stored in the leaves of a fat tree. A leaf'is or-
ganised as a sparse array. It is composed by a contiguous sequence of
page-sized segments. A segment consists of some metadata and can
be alternatively arranged in two different layouts: read-optimised
segment (ROS), where elements are physically stored sorted in the
segment, or write-optimised segment (WOS), where elements are
instead stored unsorted in an outside buffer. Figure 4 depicts the
representation of the graph of Figure 1a) over two segments.

In Teseo, the metadata is formed by a hybrid latch, for concur-
rency purposes, and a pair of fence keys. Fence keys define the [min,
max) values for the interval covered by a segment. The max fence
key of a segment is equal to the min fence key of the following
segment. Fence keys are only altered during rebalances. Note that,
in a leaf, there are no pointers towards its siblings. Instead, a thread
can find the next leaf through a look-up in the index for the max
fence key of the last segment in the current leaf.

In a ROS, data items are physically packed together towards the
start and the end of the segment, while the free space resides in
the middle. A data item can be either a vertex or an edge. A vertex
is represented with 16 bytes: 8 bytes for its identifier and 8 bytes
for the field sz, the number of edges following the vertex in the
segment. An edge simply consists of 8 bytes for its destination.

When the edges adjacent to the same source span over multiple
segments, we duplicate the source vertex in each involved segment.

A new element can be inserted into a ROS in either the left
or right area of the segment, by reclaiming some free space from
the middle. To maintain the sorted order, the existing elements
are physically shifted accordingly. When the free space exhausts,
a writer changes the segment into a WOS, which consists of a
pointer to a buffer, where elements can only be appended at the
end, accompanied by a secondary dense index for quick point look-
ups. In the buffer, an edge is explicitly stored as a 16 bytes pair
(source, destination). The index is a sequential ART trie.

The ROS format favours sequential scans while the WOS format
favours updates. Most of the time, a segment is expected to remain
in ROS format, where scans are analogous to dense arrays, but skip-
ping the middle area of free space, and a limited amount of updates
can be still accommodated. The WOS is instead a temporary state.
It is eventually transformed back into a ROS during a rebalance.

4.2 Structural operations

In Teseo, structural operations are performed by service threads.
When the free space in a segment is starting to deplete, a writer
proactively notifies the run-time. In turn, the run-time forwards the
request, but only after a predefined delay D, to a service thread. At
that point, the service thread follows the same procedure of Section
2.1 to determine the window to rebalance. Eventually, the service
thread redistributes the elements among the involved segments,
and when present, switches back their format from WOS to ROS.

We implement sparse array resizes, to a new capacity C’,, as
follows. The leaves of the fat tree are variable-sized, with a size
between Cr and Cr /2, with Cp an implementation parameter. In
aresize, if C; < C, we recreate the leaf with a new capacity C/,.
Otherwise, we split, as in a traditional B* tree, the leaf in two, with
each one having capacity C/, /2. With the density thresholds of
Section 2.1, this procedure always produces leaves with a fill factor
of ~ 75%, while the capacity of the leaves is at least Cy /2. Finally,
occasionally, due to the extra capacity of the WOS segments, a
resize could similarly split a leaf in more than two leaves.

The purpose of the delay D is to mitigate the worst-case com-
plexity of sparse arrays, which occurs in presence of update skew.
With skew, a given segment is constantly accessed by writers. By
filling a WOS and delaying the rebalance, many more elements can
be redistributed in a single rebalance. This resembles the effect of a
batch insertion into a sparse array, which has only a logarithmic
cost [11]. And, while a large WOS is detrimental to readers, these
are already impaired, in the first place, by the concurrent writers.

Finally, in Teseo, contrary to traditional sparse arrays, we never
rebalance a segment when it becomes underfilled due to deletions.
Rather, a service thread periodically visits the fat tree and merges
together neighbour leaves. A merge occurs when the fill factor of
the resulting leaf is less or equal than p; = 0.75.

4.3 Indices

As described in Section 3.2, Teseo relies on two indices for the leaves:
an ART trie and a hash table. The trie is a clustering sparse index,
used for general point look-ups and updates. Its search keys are the
min fence keys of the segments. The hash table maps the vertices to
their physical position inside a segment. It is used to initialise scans,

1057

as they always start from a source vertex. In a NUMA machine, the
hash table is duplicated in all sockets. In our implementation, the
hash table is loosely based on a custom lock-free variant of [47].
Both indices are only updated asynchronously, by the service
threads, during a structural operation. Therefore, occasionally, a
concurrent thread ¢ can retrieve an outdated entry. For the primary
index, t detects an incorrect segment by checking whether the key
searched belongs to the interval defined by the fence keys. If not, as
rebalances tend to spread elements nearby, ¢ can simply continue its
search in the proximate segments, checking again the fence keys.
In the secondary index, each entry consists of a tuple (segment,
version, of fset), where the segment is a pointer to the related
segment, version refers to the segment’s latch version when the
entry was last updated and off'set to the relative position of the
data item in the segment. Similarly to the primary index, a reader
detects if a segment is invalid through the mechanism of the fence
keys. Furthermore, if the segment is in ROS format, a reader checks
whether the version retrieved matches the one in the latch. If so, it
implies that no writes took place in the meanwhile and the reader
can directly jump to the source vertex through the of fset. Other-
wise, the reader falls back to a linear search, potentially skipping
unrelated edges via the field sz of prior vertices. For segments in
the WOS format, the version and the of fset are ignored, and a
reader retrieves the searched element through the WOS index.

4.4 Weights

Weights are simply stored in-line, together with its associated ele-
ment, in a WOS segment. Whereas in the ROS format, weights are
stored out-of-place. For fixed-length values, the idea is to imagine
the sequence of segments in a leaf as a single logical array K. Then,
for each weight w, we append an array V,, of equal capacity at the
end of the leaf. If the segment is in ROS format, given an edge at
position i in K, its associated weight w will be stored at the same
position i in V;,. In presence of updates, we shift the weights in V,,
by the same amount the elements are moved in K.

The layout of ROS resembles vertical partitioning, a characteristic
of column stores [2]. It is geared more towards analytical workloads.
Computations that only visit the graph topology are advantaged,
since they operate on a smaller working set. Conversely, updates
are more expensive, as they now affect multiple memory locations.

Our prototype does not yet support variable-length values, as
they are uncommon in structural graphs. Still, in principle, they
could be enabled with an extra layer of indirection [2].

5 CONCURRENCY

There are two orthogonal dimensions to concurrency. Section 5.1
first describes how multiple logical threads can operate concur-
rently on Teseo data structures. Section 5.2, conversely, describes
how Teseo enables multiple transactions to operate concurrently
while respecting the isolation boundaries.

5.1 Parallelism

Every segment is protected by a hybrid latch. Writers acquire it in
exclusive mode, whereas point look-ups, a fine granularity opera-
tion, optimistically. For scans, it depends on the kind of transaction.
For optimisation purposes, a transaction can be optionally created,
by an end user, as read-only. In a scan, a read-only (RO) transac-
tion acquires the latch in conventional shared mode, whereas a

content area version area gaps

|10->25,w:5 12—>7,W:2|12->35,w:1|REMOVE| EDIT |

|

| INSERT |10—>25, w:5| -

| INSERT | 12 > 35, w:2 |<—| EDIT |12 > 35, w: 8|

history

Figure 5: Sample layout of a ROS segment with one vertex
12, three edges: 10 — 25,12 — 7 and 12 — 35 plus an attribute
w, and two chains of versions. Note that, here, for simplicity
reasons, the attribute is sketched in-line with the data item,
while, in a ROS, attributes are actually always stored out-of-
place and data items serialised as described in Section 4.

read-write (RW) transaction can only acquire it optimistically. The
reason is that our latches are non-reentrant. If we had relied on
shared locks for RW transactions, a user could hit a deadlock when
altering the content of a segment currently visited by a cursor. ART
only relies on optimistic latches [42], one per node of the trie.

During a rebalance, a thread needs to hold all latches for the re-
lated segments in exclusive mode. When computing the window to
rebalance, competing threads may try to include the same segments
and acquire the same latches in different order. To avoid the risk of
deadlocks, every leaf contains an additional latch, only respected by
rebalancers. This latch needs to be acquired before computing the
window to rebalance, effectively serialising this operation inside a
leaf. Once the window has been identified, the actual relocation of
the data items inside the segments can be concurrent to the other
rebalancers and the leaf’s latch can be released.

As the search of the window to rebalance is serial, a thread #;
can also encompass (or steal) a neighbour window computed by
another thread t,, freeing t; by the task of rebalancing. For this
purpose, segments contain an extra pointer ptr in their metadata.
When t#; visits a segment with an empty value for ptr, it sets it to its
internal state. Otherwise, it steals the window W computed by the
competing thread, which must be blocked on a latch, and replaces
ptr in all segments of W with its state. Finally, after a window has
been computed, t; resets the value ptr in all acquired segments.

5.2 Transactions

Users can operate on the graph only by transactions. Teseo follows
the same scheme of HyPer [§2.3]. As in HyPer, in a WOS, each data
item includes a pointer to its chain of versions. In a ROS, to save
space, we do not preallocate a side array for the history, because
most entries will be empty. Rather, we only store the pointers that
are initialised. Versions also change more frequently than data
items. For instance, an insertion of a new vertex logically creates
both a new data item and a new version, while version pruning
only removes a version.

For these reasons, we logically split the filled space of a ROS
in a content area followed by a version area, as per Figure 5. The
content area only contains the data items, while the version area
the pointers to the versions. Pointers in the version area follow
the same sorted order of the data items and are tagged both with
a back reference to the data item they refer and with the kind of

1058

change performed: insert, edit or remove. A data item without an
associated version is visible to all transactions.

The rest of the protocol works like HyPer. An update alters
an element in place and prepends the previous value in the chain
of versions. Versions are only pruned by service threads, either
during a rebalance or a periodic visit of a background thread. When
the version area is empty, a scan switches to the “fast code path”,
fetching the elements directly.

6 FURTHER ASPECTS

6.1 Sequential scans

In the adjacency list model, a scan always starts from a vertex and
fetches its edges. In Teseo, scans are accomplished by a cursor.
When a cursor is opened, the system executes a point look-up in
the secondary index for a given vertex v;, acquires a read latch for
the segment where v; is located and searches the element inside
the segment. To retrieve its edges, the system reads the elements in
the segment one after another, unless the same data item must be
discriminated among multiple versions due to transaction isolation.

Teseo further applies an additional optimisation for the sequen-
tial pattern. When all edges of v; have been fetched, the cursor is not
implicitly closed, but it holds the last retained latch and the position
of the next data item, vertex v;41. If a user eventually requests a
range scan for v;41, the cursor will resume its last position, avoiding
the opening cost. Otherwise, the cursor will be cleared and the scan
will restart from scratch. This optimisation makes the sequential
pattern more effective, because it is implicitly transformed into a
single sequential scan over the fat tree.

6.2 Logical vertex identifiers

A large collection of graph algorithms is described or already exists
for static graphs in the public domain, assuming that all vertices
can be identified as integers in [0, |V|), where |V| is the number
vertices in the graph. Frequently, these algorithms employ static
arrays or bitmaps as side data structures, leveraging the association
between an index in the array and a vertex. In a dynamic graph,
vertices change over time and their identifiers are arbitrary values.

To ease the porting of existing algorithms, transactions expose an
abstraction where vertices can be interchangeably referred by their
real identifiers or their rank in the sorted order. This functionality
is implemented by a materialised view, transparently computed
upon first request. In our current implementation, computing the
materialised view still requires a pass of the whole graph.

The materialised view is implemented differently depending on
the kind of transaction. In RO transactions, we employ a static hash
table to translate a real vertex identifier into its logical counterpart,
and by a static array for the other direction. In NUMA architectures,
the data structures are duplicated in all sockets. In RW transactions,
the materialised view is implemented by a single counting B* tree,
synchronously updated as the user alters the graph.

7 EVALUATION

We present an evaluation of Teseo in terms of both throughput
for updates and latency for common graph algorithms. For our
evaluation, we rely on the LDBC Graphalytics Benchmark [29, 30].
The benchmark specifies six algorithms or kernels: BFS, weighted

Graphs Vertices |V| Edges |E|
dota-league ~61x10° ~ 51 x10°
graph500-22, uniform-22 ~ 2.4 % 10° ~ 64 x 10°
graph500-24, uniform-24 ~ 8.8 X 10° ~ 260 x 10°
graph500-26, uniform-26 ~32.8 x 100 ~1.05 % 10°

Table 1: Number of vertices |V| and edges |E| in the input
graphs evaluated.

shortest paths from a single source (SSSP), weakly connected com-
ponents (WCC), PageRank (PR), local triangle counting (LCC) and a
variation of the community detection via label propagation (CDLP)
algorithm [54]. In our implementation, BFS, PR and CDLP exhibit
a sequential pattern, LCC and SSSP a random pattern, whereas
WCC somewhere in between?. The outputs of the algorithms are
deterministic, our results were validated with those expected.

Graphalytics already ships with a collection of data sets ready for
evaluation, from which we selected DOTA League and the Graph500
graphs. DOTA League is one of the few weighted graphs available,
while Graph500 is a common synthetic graph also considered by
other benchmarks and comes in multiple scale factors SF. DOTA
League exhibits a mild exponential trend in the node degree dis-
tribution, whereas Graph500 can be characterised by a power law
in the tail. As both graphs are heavily skewed, we augmented our
evaluations with some additional synthetic graphs, created with
a uniform distribution and the same size of the Graph500 graphs.
Table 1 summarises the size of all considered graphs. All graphs
are simple, i.e. there cannot exist multiple edges between two given
endpoints, and undirected. The weights are double floating point
scalars associated to the edges. In the unweighted graphs, we still
randomly associated a weight in (0, 1] to each edge.

As Graphalytics only describes a static scenario, we extended
our evaluation to cover insertions and updates in two ways. In
the first case, we inserted all the vertices and all the edges, in a
random permutation, of the original graph G. In the second case, we
simulated general updates in G by inserting and deleting temporary
edges, generated following the same node degree distribution of G.

We prototyped Teseo in C++, specifically for weighted and undi-
rected graphs, as almost all graphs in Graphalytics are undirected.
However, we believe that supporting directed and unweighted
graphs should be a straightforward extension. For the implemen-
tation parameters of the fat tree, we set the density thresholds as
in Section 2.1. We fixed the delay D of asynchronous rebalances
to 200ms, a value we inherited from previous work [16], where it
proved experimentally to be a suitable trade-off between the la-
tency of concurrent updates and scans in the processing of batch
updates in sparse arrays. We finally set the maximum leaf capacity
Cr, to 1MB. In our internal profiling, this size bounded the latency
of splits involving two leaves to less than 60ms, a value we deemed
acceptable, while still keeping the capacity of leaves large.

We conducted our experiments on a set of dual socket machines,
each equipped with an Intel Xeon Gold 5115 @ 2.4GHz. Each CPU
features 10 cores and 20 physical threads in SMT mode. Each ma-
chine has 384 GB of memory in total. The source code was compiled
with GCC v10.2, with the optimisation flags -03 -march=native
-mtune=native. Each experiment has been repeated 5 times. The
reported results refer to the median.

4The first iteration of WCC has a sequential pattern, but in the following iterations
fewer and fewer vertices become active and participate in the computation.

1059

7.1 Competitors
We considered the following competitors, all implemented in C++:

e Stinger [20]: a library with parallel support for both insertion
and removal of edges. Edges sharing the same source vertex are
stored in a linked list of blocks. The vertices are instead stored
in a pre-allocated vertex table. The library only guarantees that
single writes and single reads are thread safe, while scans cannot
be safely executed when updates are performed concurrently.
LLAMA [46]: an implementation of a multi-version CSR. The
graph is split into a read store, consisting of static CSR arrays
and multiple ordered levels (or deltas), and a write store, imple-
mented by a custom key-value store, where all single updates
are propagated. New levels need to be explicitly created through
the API, having the effect of flushing all the changes from the
write store into a new delta. Read operations can only access the
read store, while updates can be performed concurrently in the
write store. In our experiments, we explicitly issued a new level
every 10 seconds, a value suggested in the original paper [46].
GraphOne [35, 37]: a library also inspired by a delta design
with multiple levels. The read store is logically arranged as an
adjacency list, with the change sets maintained at the node gran-
ularity. The write store is implemented as a circular buffer. New
deltas are periodically created asynchronously by the library,
when the buffer becomes full, or they can be explicitly issued by
the user. Read operations can either only access the read store,
or, at the price of a performance penalty, obtain a static view,
where all the changes currently in the write store, as present at
the time of creation of the view, are incorporated. Updates can
always concurrently be performed in the write store.
LiveGraph [63]: a recent library targeted to HTAP workloads
with full support of transactions via MVCC. The library aims to
retain sequential accesses, by storing all edges adjacent to a given
vertex in a vector, timestamped with their commit time. Deletions
only set the end timestamp in an edge, while insertions append
a new item in the vector. We evaluated LiveGraph v2020.08.29
[64]. Note that the source code is not publicly available, limiting
our possibility of analysis compared to the other systems.

All four of these systems for dynamic graphs depend on a vertex
table. In Graphalytics, vertex identifiers are non-contiguous non-
negative 8-byte integers. As depicted in Figure 1, we need a way to
map these external identifiers into the dense indices of the vertex
table. Stinger and GraphOne expose to end users an auxiliary data
structure for the purpose. LLAMA and LiveGraph do not offer it
natively, and we augmented them with an external hash map, from
Intel TBB [28], as it is also ultimately used by GraphOne for the
same task. For fairness, we also disabled the disk logging in systems
supporting it, that is, GraphOne and LiveGraph.

All dynamic systems conceptually expose a similar API based
on adjacency lists. The API simply consists of methods to insert,
get and, when supported, remove vertices and edges in the graph,
iterate over the edges of a given vertex and fetch their weights. In
Teseo and LiveGraph, these methods are only exposed from a local
transaction object, created by the user, while in the other systems
from the global graph instance. We detail the API of Teseo in [1].

As baseline for LDBC Graphalytics, we implemented the graph al-
gorithms on top of a custom static CSR data structure. We compared

Figure 6: Plot a) shows the scalability measured in the insertions for graph500-24. For LLAMA, the plot also reports the
scalability in uniform-24. Plot b) reports the average throughput measured in the insertions among various graphs.

System Graph BFS CDLP LCC PageRank SSSP WCC
graph500-24 5.07x 35.62x DNF 25.30x 5.48x 56.77x

GraphMat " iform-24 17.34x 40.95x 130x 53.70x 8.13x 70.02x
SuiteSparse graph500-24 0.74x 3.01x 2.95x 5.35x 1.56x 1.33x
P uniform-24 0.51x 1.21x 3.04x 6.56x 2.17x 2.04x

Table 2: Speed-up achieved by our CSR baseline over Graph-
Mat [53] and SuiteSparse:GraphBLAS [26]. The results refer
to the processing time [30], that is, the completion time with-
out the preprocessing and loading time, from the median
out of 5 runs.

our baseline against GraphMat [58] and SuiteSparse:GraphBLAS
v3.1.1 [6, 15], two libraries for static graphs for which a public driver
for Graphalytics exists [26, 53]. At the time of writing, GraphMat is
the best performing implementation for SMP machines among those
evaluated by the LDBC authors [39], but despite their assistance
and numerous attempts, we were never able to obtain satisfactory
results in our setup. Moreover, with the exception of BFS, on SF
24, our baseline also outperformed SuiteSparse in a range between
1.2x and 6.5x. On the other hand, their BFS implementation favours
smaller graphs and, on SF 26, our implementation also resulted
~ 4x faster. Table 2 reports the detailed speed-ups of our baseline
for graph500-24 and uniform-24. In Graphalytics, we mark as Did
Not Finish (DNF) kernels that do not complete within one hour.

7.2 Insertions

In this experiment, we measured the throughput, in terms of inser-
tions of edges, for each of the evaluated systems. The experiment
starts with an empty data structure, and inserts, one by one and in
random order, all the edges of the input graphs. We first assessed
the (strong) scalability® of each system, to determine the optimal
number of user threads to employ. Figure 6a shows the measured
scalability on graph500-24. We note that, with the notable excep-
tion of LLAMA, we also obtained comparable results on uniform-24.
Figure 6b reports the measured throughput when using the optimal
number of threads, those that yielded the best results in Figure 6a.

In the discussion of the scalability, all systems, regardless of the
parallelism degree, always use some form of service threads. Teseo
spawns one service thread per core to execute the rebalances and
the periodic garbage collection (GC). Both LLAMA and GraphOne

SFormally, the strong scalability [49] is the ratio T(1)/T(p), where T(p) is the completion
time of the system with parallelism degree p. In this context, the parallelism degree is
always the number of concurrent user threads.

1060

use all the available physical threads to compact the write store,
when needed. Stinger internally also depends on OpenMP.

Teseo reaches a scalability of 9 with p = 20 and around 13
with 40 user threads in hyper-threading. At p = 40, the system is
oversubscribed as, when also accounting the service threads, there
are more than 60 logical threads in execution. On the other hand, the
service threads are only occasionally active, and when rebalances
do occur, the involved segments are locked in mutual exclusion.
In this context, having more user threads available increases the
number of writers proceeding, while other writers are blocked for
a segment being rebalanced. In terms of throughput, with p = 40,
Teseo can insert ~ 2.4M edges/sec, and about 20% less for smaller
graphs due to contention. To emulate the behaviour of the other
systems, we wrap each update into its own transaction. Therefore,
Teseo also exhibits a throughput of roughly 2.4M transactions/sec.

Stinger can scale to a value of 22 with p = 40. While this trans-
lates to a throughput of up to 5.5M edges/sec with uniform graphs,
it only manages 80k edges/sec on graph500-24. Before inserting an
edge, Stinger executes a linear search in the edge list, to check if
the edge already exists. This procedure is expensive in presence of
skew, as the degree of the most referred vertices can be very large.
For comparison, when implementing a sequential adjacency list in
C++, on top of the STL containers unordered_map and vector, in
our machine we almost reached the same throughput of Stinger
with 70k edges/sec for the skewed graphs, while achieving 736k
edges/sec for the uniform graphs. In contrast to Stinger, in Teseo,
edges are indexed per segment of fixed size, rather than per vertex,
avoiding the issue of these expensive linear searches.

LLAMA achieves a throughput in the range of 225k ~ 330k
edges/sec. Creating new levels every 10 seconds, the value proposed
in [46], we were able to perform insertions for up to about 4 ~ 5
hours before the library exhausted the available memory in the
machine. As consequence, we were not able to process the graphs
with SF 26. LLAMA seems to present optimal scalability and even
hyper-scalability in graph500-24. This is a mere artifact as the actual
throughput also depends on the number of delta levels present.
With p = 1, more levels are created, and therefore it takes longer to
perform each single insertion.

As in Stinger, the majority of the time in LLAMA is spent in a
linear search to check if the edges inserted already exist. With p = 1,
this operation accounts for 90% of the total time on graph500-24,

