
Going green: optimizing GPUs for energy efficiency
through model-steered auto-tuning

Richard Schoonhoven1,2 Bram Veenboer3 Ben van Werkhoven1,4 K. Joost Batenburg1,2

1Computational Imaging Group, Centrum Wiskunde & Informatica, Amsterdam, Netherlands
2Leiden Institute of Advanced Computer Science, Leiden, Netherlands

3Netherlands Institute for Radio Astronomy (ASTRON), Dwingelo, Netherlands
4Netherlands eScience Center, Amsterdam, Netherlands

{richard.schoonhoven, k.j.batenburg}@cwi.nl, veenboer@astron.nl,
b.vanwerkhoven@esciencecenter.nl

Abstract—Graphics Processing Units (GPUs) have revolution-
ized the computing landscape over the past decade. However,
the growing energy demands of data centres and computing
facilities equipped with GPUs come with significant capital
and environmental costs. The energy consumption of GPU
applications greatly depend on how well they are optimized.
Auto-tuning is an effective and commonly applied technique
of finding the optimal combination of algorithm, application,
and hardware parameters to optimize performance of a GPU
application. In this paper, we introduce new energy monitoring
and optimization capabilities in Kernel Tuner, a generic auto-
tuning tool for GPU applications. These capabilities enable us to
investigate the difference between tuning for execution time and
various approaches to improve energy efficiency, and investigate
the differences in tuning difficulty. Additionally, our model for
GPU power consumption greatly reduces the large tuning search
space by providing clock frequencies for which a GPU is likely
most energy efficient.

I. INTRODUCTION

Huge amounts of compute power are powering today’s
industrial and scientific applications, at huge energy and
environmental costs. Energy is among the largest expenses of
supercomputers and data centres, and this consumption will
double every four years [1]. The computational demands in
deep learning (artificial intelligence) applications have been
increasing at a exponential rate, 300,000× from 2012 to
2018 [2]. The carbon footprint of these applications is a
great concern for the environment, as training a single large
model produces as much carbon dioxide as five cars in their
lifetime, including fuel [3]. In addition, many applications
have stringent energy constraints; embedded and automotive
systems have limited battery capacity, offshore applications
where a connection to the power grid is not possible, and also
large-scale scientific instruments, such as the Square Kilometre
Array (SKA) built partially in the desert [4]. Graphics Process-
ing Units (GPUs) are powering nearly all large-scale AI and
HPC applications, and are in large part responsible for the total
power consumption of these systems [5], [6]. For instance, 8.3
MW out of the total 13 MW by the Summit Supercomputer
is consumed by its GPUs [7]. There is a clear urgency to
improving the energy efficiency of these applications.

While GPUs are relatively energy-efficient processors, en-
ergy consumption greatly depends on how well the application

is optimized to efficiently use the underlying hardware [8], [9].
The optimization of GPU applications is a complex problem
that requires finding the best performing combination of many
implementation choices and code optimization parameters in
a large and discontinuous search space [10], [11], [12], [13].
As such, auto-tuning, the process of automatically searching
for the best performing configuration, is often used to optimize
the compute performance of these applications [14], [15], [16],
[17].

This has led to the rise of generic GPU code auto-tuners,
such as CLTune [11], Kernel Tuner [18], Kernel Tuning
Toolkit (KTT) [19], and Auto-Tuning Framework (ATF) [20],
which facilitate the creation of auto-tuned GPU applications,
and support different optimization strategies to accelerate the
search process. These frameworks focus on auto-tuning user-
defined code parameterizations, which is more generic and
powerful than compiler-based auto-tuning [21], because it
allows users to tune for entirely different ways to parallelize a
computation, with different algorithms to compare, and differ-
ent data layouts, loop permutations, and code optimizations.
However, none of these generic GPU auto-tuners has built-in
support for energy optimization, and the differences between
auto-tuning for compute performance and energy efficiency
have not yet been studied in detail.

In this paper, we introduce new energy monitoring capa-
bilities in Kernel Tuner, which allows us to use the existing
frameworks to study and optimize energy efficiency. We use
these capabilities to investigate how different compute perfor-
mance tuning (lowest kernel runtime) is from energy tuning,
and whether the tuning difficulty differs from the perspective
of blind optimization algorithms. In addition, we compare two
methods for tuning energy efficiency of GPUs; power capping
and fixing clock frequencies. Lastly, we introduce a method
to efficiently model GPU power consumption, which allows
us to significantly narrow the range of clock frequencies to
search for the most energy efficient configuration. All together,
we provide a method and open-source tool for tuning GPU
applications for both performance and/or energy efficiency.
Moreover, these tools can be used for further auto-tuning and
high performance computing research.

1



II. RELATED WORK

OpenTuner [22] was one of the first generic software auto-
tuning frameworks, supporting a number of different search
optimization algorithms, but lacks support for tuning individ-
ual GPU kernels. CLTune [11] was one of the first of a new
breed of generic auto-tuning tools with specific support for
tuning GPU kernels written in OpenCL. Kernel Tuning Toolkit
(KTT) [19] is developed specifically to support online auto-
tuning and pipeline tuning, which allows for exploration of
combinations of tunable parameters over multiple kernels. An
interesting feature of KTT is its support for keeping track of
hardware performance counters during benchmarking, which
can also be used in advanced search strategies [23]. Auto-
Tuning Framework (ATF) [20] implements a way to generate
search spaces, using a chain-of-tree search space structure for
efficient storage and fast exploration of constrained search
spaces. HyperMapper [24] is a tuning framework that focuses
on multi-objective optimization and exploitation of user prior
knowledge. Kernel Tuner [18] is specifically designed to be
an easy-to-use and easy to extend tool for the development
of tunable GPU kernels, and in particular supports a large
selection of search optimization strategies. In this paper, we
extend Kernel Tuner [18] with functionality for auto-tuning
energy efficiency, which cannot be found in any of the existing
generic auto-tuning frameworks.

Research in auto-tuning GPU applications for energy ef-
ficiency is still in its infancy, despite spanning more than 12
years of research. There is no state-of-the-art method for GPU
energy tuning, as comparisons between studies or even to a
shared baseline are non-existent. The majority of studies only
tune individual parameters, e.g. thread block dimensions [25],
[26], [27], [28], [29], [30], or clock frequencies [31], [32],
[33], [34], [35], [36]. Only two studies actually combine auto-
tuning code optimizations with execution parameters, such as
clock frequencies, but only for a single application on a single
GPU [37], [38].

All generic auto-tuning frameworks use empirical perfor-
mance measurements, most likely because it is difficult to
create generalized performance models that capture the com-
plex system that arises from the combination of hardware and
software [39], [40], [41]. Some GPU energy tuning studies
use highly-inaccurate performance models, with up to 50%
error, to estimate energy consumption without evaluating the
impact of these inaccuracies on the auto-tuning results [29],
[42]. Therefore, most studies take an empirical approach, in
particular using the GPU’s internal power sensor [33], [34],
[35], [43], [44], [45], [46], but also through external power
sensors [47], [48], [49], [50], [51], [52] often based on custom-
built measurement equipment. Internal power sensors are
included in most modern GPUs and can be read by software,
e.g., using the NVIDIA Management Library (NVML) for
NVIDIA GPUs. Such power sensors are therefore highly
accessible, but may suffer from low sampling frequencies
and low accuracy [53]. Some researchers try to compensate
for these limitations by measuring individual functions for

long periods of time [54], [33], [5]. This approach, however,
is impractical for use in auto-tuners, which often have to
benchmark many configurations to find the optimum [55].
As such, Kernel Tuner supports an external power sensor,
namely PowerSensor2 [53], which is accurate within 1% error
and at a sampling frequency of 2.87 kHz. This means that
PowerSensor2 is capable of accurately measuring the energy
consumption of a kernel without the need to prolong the kernel
execution time. We have used PowerSensor2 to validate the
power measurements taken using NVML.

Many studies claim that there is a clear difference be-
tween the optimization objectives of compute performance
and energy efficiency, and that the two require different
optimization algorithms and parameters [30], [35], [37], [38],
[56], [57]. However, such claims are often not experimentally
verified. The relationship between performance and energy
efficiency is complicated, and many authors simply optimize
energy efficiency by minimizing the kernel execution time, an
approach that is sometimes referred to as race-to-idle [54].
In [58], a model for energy is proposed that predicts that
energy usage differs from runtime because energy costs for
memory operations cannot be hidden while the algorithm is
running. Therefore, energy optimality does not depend solely
on optimizing FLOPs, but also on balancing energy usage
between memory and compute operations. In this paper, we
aim to experimentally verify the differences between tuning
for compute performance and energy efficiency.

III. METHODOLOGY

A. GPU power consumption model

The energy consumed by a GPU over a time interval [t0, t1]
is related to its power usage P (t) according to

E =

∫ t1

t0

P (t) dt.

The power consumption P (t) = V (t)I(t) can be determined
by measuring the current I , and voltage V . In practice,
one can either approximate the integral numerically by, e.g.,
trapezoidal integration using the power readings, or simply
multiplying the average power consumption by the elapsed
time E = 〈P 〉(t1 − t0). We employ the latter method in this
work, where we take the median power reading for 〈P 〉.

The power consumption of a GPU is affected by several
factors, including the workload and operating frequency of the
GPU. The workload is implementation dependent, and in most
cases can be optimized by tuning kernel parameters, or by
changing the kernel code. Furthermore, different GPU models
contain different components, such as memory and chips, that
operate at certain clock frequencies which can vary at runtime.
These operating frequencies are commonly taken as is.

Throughout this work, we use a variety of GPUs with
distinct architectures. Moreover, even within one architecture
(e.g. the Ampere architecture) we cannot assume that the
energy characteristics of two different models are identical.
The Tesla A100 and RTX A4000 GPUs for instance use
a different chip (GA100 versus GA102), are produced at a

2



Kernel code

User interface

Strategies

Runners

Python script

Observers

Device function interface
CUDA

Functions
OpenCL

Functions
C

Functions

NVMLObserver

NVML wrapper
PowerSensor

Observer

PyCUDA Cupy PyOpenCL GCC PyNVML PowerSensor2

User input

Kernel Tuner

Backends

Fig. 1: Extended software architecture of Kernel Tuner.

different process size (7 nm versus 8 nm), and have a very
different mix and number of execution units. Moreover, the
Tesla A100 has HBM2e memory, while the RTX A4000 uses
GDDR6. The NVIDIA drivers currently do not expose an
option to tune the clock frequency of the HBM memory. For
the RTX A4000 and a compute-bound kernel, we measured
only a marginally lower energy consumption when reducing
the memory clock frequency. Therefore, we consider solely
the graphics clock (core) frequency in this work.

Contemporary GPUs usually operate at a base core fre-
quency and can boost up to a certain turbo frequency to in-
crease performance, but only when the temperature and power
consumption of the device allows for it. This technique is
commonly referred to as Dynamic Voltage Frequency Scaling
(DVFS). Price et al. [33] showed a relation between core
frequency and the voltage required to operate on a given
frequency, and a power consumption model is given by

Pgpu = Pstatic +NcCfV
2, (1)

where C is load capacitance, Nc the number of switches,
f is frequency, and V is voltage. V typically increases
with f . Consequently, the turbo frequency may be good for
performance, but not necessarily for energy efficiency.

To steer frequency tuning, we fit a GPU power consumption
model to data in section V-D, using a non-linear least squares
approach (Levenberg-Marquardt algorithm [59]).

B. Energy measurements in Kernel Tuner

We introduce several new features in Kernel Tuner to
acquire energy measurements of GPU kernel executions,
namely observers, user-defined metrics, and custom tuning
objectives. The software architecture and basic functionality
of Kernel Tuner is described in [18], and a diagram of
software hierarchy can be found in Figure 1. An observer can
be implemented to execute functions and can extend results
obtained during benchmarking before, during and after kernel
execution. For the experiments in this work, we implemented
the NVMLObserver and PowerSensorObserver in Ker-
nel Tuner.

1) PowerSensorObserver: To facilitate accurate energy
measurements at high sampling frequency, we implemented
the PowerSensorObserver (using PyBind111) as an in-

1https://pybind11.readthedocs.io/en/stable/

Fig. 2: NVML power readings while executing matrix multiplication kernel (GEMM)
over time on three different GPUs.

terface to PowerSensor2 [53]. The user can select this ob-
server to record power and/or energy consumption of kernel
configurations during auto-tuning. This allows Kernel Tuner
to accurately determine the power and energy consumption of
all kernel configurations it benchmarks during auto-tuning.

2) NVMLObserver: Measurements with the PowerSensor2
require wiring external hardware to a GPU, and the sensor is
not available to most users, the bulk of our measurements will
be performed using NVIDIA’s internal sensors. The NVIDIA
Management Library (NVML) [60] can be used for power
measurements on almost all NVIDIA GPUs, so using this
library is much more accessible to end-users compared to
solutions that require custom hardware, such as PowerSensor2.
To this end we implemented the NVMLObserver in Kernel
Tuner, which allows the user to observe the power usage, en-
ergy consumption, core and memory frequencies, core voltage
and temperature as reported by NVML.

As opposed to PowerSensor2, the power usage reported by
NVML has a significantly lower temporal resolution. Further-
more, NVML only reports a time-averaged power consumption
rather than instantaneous power consumption [61].

Figure 2 shows the GPU power consumption over time as
reported by NVML, while continuously executing a matrix
multiplication kernel (GEMM see section IV) for one second.
The jumps in the graph are caused by the fact that the
time-averaged value reported by NVML only refreshes at a
frequency of about 10 Hz (9.75 Hz on RTX A6000, 14.5 Hz
on Tesla A100, and 12.4 Hz on Titan RTX). We can see that
on the Titan RTX and Tesla A100, the power consumption
as report by NVML stabilizes after about 0.3 seconds into the
run. For the RTX A6000, power consumption gradually ramps
up until hitting the Thermal Design Power (TDP) right before
the end of our 1-second interval.

To ensure that the NVML power measurements in Kernel
Tuner more accurately reflect the power consumption of the
kernel, the NVMLObserver executes the kernel repeatedly
for a user-specified duration (1 second by default), and takes
the final energy measurement, thereby ensuring a more accu-
rate measurement with NVML. The downside of this approach

3



GPU Architecture Cores Bandwidth Peak SP TDP (W)

RTX A4000 Ampere (GA104) 6,144 448 19,170 140
RTX A6000 Ampere (GA104) 10,752 768 38,709 300
Tesla A100 Ampere (GA100) 6,912 1,555 19,500 250
Tesla V100 Volta (GV100) 5,120 900 14,028 250
Titan RTX Turing (TU102) 4,608 672 16,312 320

TABLE I: GPUs used in our experiments. Bandwidth in GB/s. Peak compute performance
in GFLOP/s. TDP in Watts.

is that it significantly increases benchmarking time.

C. Tunable parameters and objectives for energy tuning

Using application-specific clock frequencies is one of the
most common approaches to tuning energy efficiency on GPU
systems. Recently, Krzywaniak and Czarnul [57] have shown
promising results with setting application-specific power lim-
its, also called power capping, to optimize energy consump-
tion. For this work, we have implemented support in Kernel
Tuner for users to tune their applications under different clock
frequencies and power limits. Specifically, NVML tunable
parameters, such as nvml_gr_clock, nvml_mem_clock,
and nvml_pwr_limit, can be set using Kernel Tuner. Note
that changing these settings requires root privileges on most
systems. As such, these features may not be available to all
users on all systems.

Lastly, to perform energy tuning, we need to specify metrics
that we aim to minimize or maximize. Using the aforemen-
tioned observers, we can collect power readings (in Watts)
during kernel execution. Furthermore, Kernel Tuner’s flexible
user-defined metrics allows us to define other metrics such as
compute performance in floating point operations per second
(GFLOP/s). This allows us to define energy efficiency as
GFLOPs/W (same as GFLOP/J) which is a measure of the
energy used to perform a billion floating point operations.

IV. EXPERIMENTAL SETUP

To investigate energy tuning on GPUs, we run several real-
world applicable kernel programs, on a few different GPUs
available in either the DAS-6 cluster (Turing and Ampere
architecture) [62], or in the LOFAR COBALT-2 correlator
system (Tesla V100) [63]. Table I lists the properties of
these GPUs. In addition to the widely-used GEMM kernel,
we validate our results on several computationally expensive
radio astronomy kernels currently processing data for the
Low Frequency Array (LOFAR) radio-telescope [64]. These
kernels will be used in section V-E to determine the practically
obtained energy reduction for a real-world application. All
kernels are compute-bound, except for the TDD kernel which
is memory-bound. For the experiments in this section,

GEMM (Generalized dense matrix–matrix multiplication)
is one of the most widely-used kernels across many application
domains, including neural networks. Here we perform the
calculation C = αA · B + βC for 4096 × 4096 matrices
A,B,C, and constants α and β. We use the highly-tunable
OpenCL implementation available in CLBlast [65].

The CLBlast GEMM kernel can be tuned with many pa-
rameters, here we summarize the most important ones:

• Mwg , Nwg , and Kwg represent the total size of the tile
processed by a single thread block in the M, N, and K
matrix dimensions.

• MdimC and NdimC are the thread block dimensions in
M and N.

• SA and SB can be used to enable or disable using shared
memory as a software managed cache for matrix A and
matrix B.

• Mvec and Nvec are the vector widths for loading and
storing to global memory, Mvec is used for matrices A
and C, and Nvec for matrix B.

• Kwi is the unrolling factor used for the loop over K.
While the GEMM kernel can use several code optimizations,
none of the code optimizations have been introduced to
optimize the kernel specifically for energy efficiency. All
tunable parameters combined describe a large space, of which
many portions are restricted. Using the parameters employed
by CLBlast, the search space consists of 17472 valid kernel
configurations, that will all be compiled and benchmarked
when performing an exhaustive search. However, when we
add additional tunable parameters for energy tuning, such as
a power limit or clock frequency, the search space grows
combinatorially from a grid search perspective. For example,
if we want to tune all parameters in the search space in
combination with 7 different clock frequencies, the total size
of the search space becomes 17,472× 7 = 122,304.

LOFAR Correlator is the correlator application used
for real-time processing of LOFAR (Low Frequency Array)
data [64]. It combines measurements from the radio telescope
into a data product to be processed further by other (offline)
processing pipelines (see other kernels). The correlator ker-
nel was tuned by hand for the Kepler architecture, e.g. by
unrolling loops and using fixed block and grid dimensions.
Consequently, there is only a single tuning parameter left:
NR_STATIONS_PER_THREAD. This parameter is used to
choose between one of four different kernels.

TCC (Tensor-Core Correlator) is similar to the LOFAR cor-
relator, leveraging the Tensor Cores of contemporary NVIDIA
GPUs [66]. Tensor Cores are mixed-precision compute units
that operate on matrix-like inputs. By using these compute
units, the Tensor-Core correlator is both much faster and much
more energy-efficient compared to previous correlators. This
kernel is hand-tuned and uses fixed thread block dimensions.
There is one tuning-parameter: PORTABLE, which determines
whether the output is written using asynchronous writes (not
supported on all GPUs) or via shared memory.

IDG (Image-Domain Gridding) is an algorithm for radio
astronomical imaging, of which the gridder and degridder
kernels are the most compute intensive. IDG moves the com-
putation (which resembles convolution) from the frequency
domain to the image domain by introducing subgrids and
Fourier transformations for processing input data in smaller
subsets [67], [68]. The GPU implementation of the gridder
has the following tuning parameters: BLOCK_SIZE_X, the
number of threads in a thread block; UNROLL_PIXELS, the
number of pixels to process by a thread; NUM_BLOCKS,

4



0.0 0.5 1.0 1.5 2.0 2.5 3.0
Energy (J)

Tesla
A100

RTX
A4000

RTX
A6000

race-to-idle
energy-to-solution-maxclock
race-to-idle+clocks
energy-to-solution+clocks
global energy-to-solution

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Energy (J)

TITAN
RTX

Fig. 3: GEMM: Lowest energy configuration for the Tesla A100, RTX A4000, RTX
A6000, and TITAN RTX GPUs for the race-to-idle, energy-to-solution-maxclock, race-
to-idle+clocks, energy-to-solution+clocks, and global energy-to-solution tuning methods.
The energy measurements for the TITAN RTX were acquired using PowerSensor2, the
others using NVML.

the number of threads blocks per SM; USE_EXTRAPOLATE,
option to reduce the number of trigonometric operations,
at the cost of having to perform more fused multiply-add
operations. The degridder kernel has the same options, except
for UNROLL_PIXELS.

Dedispersion is used in time-domain astronomy to detect
transient effects (e.g. fast radio bursts) and pulsars. The
signal received by the telescope is dispersed (shifted) in
time of the frequency band, and dedispersion is needed to
correct for this. Dedispersion can either be performed in the
time domain (TDD), or in the Fourier domain (FDD) [69].
TDD has two tuning parameters: SAMPS_PER_THREAD,
controls the number of samples to be processed per thread;
USE_TEXTURE_MEM, whether to use texture memory as a
cache when loading input data. FDD has the following tuning
parameters: NFREQ_BATCH_GRID and NDM_BATCH_GRID
control the number of input samples to process per ker-
nel invocation; NCHAN_BATCH_THREAD, the number of in-
put samples (in the frequency dimension) that every GPU
thread processes; USE_SHARED_MEMORY, use shared mem-
ory as software-managed cache when reading input data;
USE_EXTRAPOLATE, reduces the number of trigonometric
operations (same as for IDG, see above.).

V. EXPERIMENTAL RESULTS

A. Impact of energy tuning versus race-to-idle

In this section, we experimentally answer whether auto-
tuning for energy efficiency (global energy-to-solution) is
different from auto-tuning for the lowest kernel runtime across

all clock frequencies (race-to-idle). Furthermore, we report the
lowest energy configuration at max clocks. We compare with
a practical compromise where we first tune for time, and then
select a clock frequency for the best energy efficiency. We
call this last approach race-to-idle+clocks. Conversely, we also
consider energy-to-solution+clocks where we fix the frequency
at the base clock frequency, tune for energy, and then select a
clock frequency to further maximize energy efficiency.

In Figure 3, we show the lowest energy configuration in
the GEMM search space with each of the aforementioned
methods across several GPUs. For the TITAN RTX we used
the PowerSensor2 measurements to validate the findings. We
use relatively widely spaced equidistant samples from the
range of supported SM clock frequencies (7-points) due to the
high cost of obtaining all measurements (9 days per GPU).

First, Figure 3 shows that the fastest configuration returned
by race-to-idle is not the most energy efficient for any of
the GPUs. Second, for most GPUs, the energy usage of the
configurations found by race-to-idle+clocks and energy-to-
solution+clocks are close to the global lowest energy config-
uration, but they never have the same parameters. Note that
for race-to-idle+clocks, we first tuned for time with the clock
frequency fixed to the maximum, before tuning only the clock
frequency for energy efficiency.

The exception is the Tesla A100, where we see a gap in
energy usage between all five methods. This means that there
is a particular combination of tunable parameter values that
results in a configuration that is more energy-efficient than
anything returned by the two-step optimization approaches. In
other words, to find the global optimum in terms of energy-to-
solution it is necessary to search the combined configuration
space of all tunable parameters, including clock frequencies.

Our experimental results show that auto-tuning the GEMM
kernel for energy efficiency does not lead to the same optimal
configuration as tuning for time, as all five methods produce
different configurations, with a different energy usage. This
raises the question of how kernel speed and energy efficiency
are related. In Figure 4 we plot the compute performance
in GFLOP/s for every GEMM configuration over energy
efficiency in GFLOPs/W, together with the Pareto front in red.
By looking at the points on the Pareto front for the RTX A4000
and Tesla A100, we see that the trade-off between speed and
energy efficiency differs between GPUs. For the RTX A4000,
a speed reduction of 28.4% leads to an increase in energy
efficiency of just 5.8%. However, for the Tesla A100, a speed
reduction of 27.5.% leads to an increase in energy efficiency
of 50.9%. Therefore, the trade-off between kernel runtime and
energy usage is GPU specific.

Overall, our results show that, for the GEMM kernel, tuning
for lowest energy leads to different configurations than tuning
for lowest execution time. However, depending on the GPU,
it may be sufficient to treat the optimization as a two-stage
optimization problem; first optimizing for minimal energy with
a fixed clock frequency, and then optimizing for the most
energy efficient frequency, can result in close to optimal energy
efficiency on certain GPUs.

5



Fig. 4: Kernel speed (GFLOP/s) over energy efficiency (GFLOPs/W) for all GEMM configurations for the RTX A4000 (left) and Tesla A100 (right). The red line indicates the
Pareto front, i.e., neither performance or efficiency can be improved without decreasing the other. The points are coloured according to the core frequency.

100 110 120 130 140 150
% Fitness (time or energy) of global minimum

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 c
en

tra
lit

y

RTX A4000

EnergyPwrLimit

EnergyClockFreq

RunTime

100 110 120 130 140 150
% Fitness (time or energy) of global minimum

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 c
en

tra
lit

y

RTX A6000

EnergyPwrLimit

EnergyClockFreq

RunTime

100 110 120 130 140 150
% Fitness (time or energy) of global minimum

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 c
en

tra
lit

y

Tesla A100

EnergyPwrLimit

EnergyClockFreq

RunTime

Fig. 5: Proportion of centrality for tuning execution time, energy tuning (power limit), and energy tuning (clock frequency) for the RTX A4000, RTX A6000, and Tesla A100 GPUs.

B. Speed vs energy: tuning difficulty of optimization spaces

Tuning a kernel for energy typically requires a larger search
space compared to tuning only for execution time. For energy,
the search space is typically enlarged with tunable parameters
such as clock frequency, or power limit, and possibly other
specific optimizations that affect energy usage (e.g. the use of
shared memory). This raises the question whether the search
space for energy tuning, compared to tuning execution time,
is only larger, or whether energy is actually harder to optimize
with optimization algorithms.

The proportion of PageRank centrality [70] quantifies search
difficulty for blind optimization algorithms. Here, a fitness flow
graph (FFG) is created where all the points in the search
space are represented as nodes, and a directed edge from a
node to its neighbour is added if the neighbour has better
fitness (energy or time). A random walk across the FFG has
the property that it mimics a randomized first-improvement
local search algorithm. The PageRank centrality of a local
minimum in the FFG is the proportion of arrivals in that

minimum for a random walk, i.e., the proportion of arrivals
of a first-improvement local searcher during optimization.
Since local searchers terminate in local minima, the proportion
of centrality metric considers the fraction of centrality of
“suitably good” local minima, among all minima in the space.
In other words, it gives the expected fraction of local search
terminations in “good” local minima. If near-optimal minima
have high centrality, a local searcher will find a close to
optimal solution in fewer evaluations. Here, “suitably good”
means that the fitness of the minimum is within p · foptimal

for some p ≥ 1.

In Figure 5, we plot the proportion of centrality as a function
of p for GEMM, for the RTX A4000, RTX A6000, and Tesla
A100 GPUs. For every GPU we plot the proportion of cen-
trality curve for performance (time) tuning, energy tuning with
clock frequency, and energy tuning with power limits. There
does not appear to be a significant difference in difficulty for
the RTX A4000 GPU. For the RTX A6000 GPU, the minima
with more than 125% runtime of the optimum are less central.

6



250 500 750 1000 1250 1500 1750
Core Frequency [MHz]

100

150

200

250

300

Po
we

r [
W

]

Titan RTX

frequency tuning
power limit tuning

200 400 600 800 1000 1200
Core Frequency [MHz]

50

75

100

125

150

175

200

225

250

Tesla A100

400 600 800 1000 1200
Core Frequency [MHz]

80

90

100

110

120

130

140

RTX A4000

Fig. 6: Tuning using a power limit (triangles) versus tuning using frequency (circles) for TITAN RTX (left), Tesla A100 (middle) and RTX A4000 (right) for a synthetic workload
that fully occupies the GPU. For all three GPUs, the power consumption coincides with the configured power limit (indicated with the dashed lines). Moreover, we observe that for
this workload, the TITAN RTX and RTX A4000 can not sustain their maximum advertised turbo clock frequency of 1770 MHz and 1560 MHz, respectively.

0.0 0.5 1.0 1.5 2.0
Energy (J)

RTX
A4000

RTX
A6000

Tesla
A100

frequency tuning
power limit tuning

0.0 0.5 1.0 1.5 2.0
Energy (J)

TITAN
RTX

Fig. 7: Lowest found energy for power capping or frequency tuning for GEMM,
for the RTX A4000, RTX A6000, Tesla A100, and TITAN RTX GPUs. The energy
measurements for the TITAN RTX were acquired using the PowerSensor2 instead of the
NVML energy.

However, as these minima are already significantly worse
than the near-optimal solutions, we conclude that performance
tuning is not significantly harder than energy tuning for the
RTX A6000. For the Tesla A100, we find that energy tuning
is significantly harder than performance tuning. For minima
≤ 110% of optimal fitness, a local search algorithm is 2-
4× less likely to terminate in these minima when minimizing
energy.

Overall, in our experiments, energy tuning is either similar
in tuning difficulty or harder depending on the GPU. As such,
these search spaces remain infeasibly large to traverse fully
within a day, and picking many sampling clock frequencies or
power limits will compound this problem.

C. Power capping versus frequency tuning

In this section, we compare two methods that frequently
appear in the literature; power capping [57], which is fixing the
power limit of the GPU, and frequency tuning [31], [32], [33],

[34], [35], [36], which aims to find the optimal application-
specific GPU clock frequency.

In Figure 6, we analyse the impact of both frequency tuning
and power capping on GPU power consumption. At the same
measured frequencies, power consumption seems a bit higher
when using a fixed clock frequency compared to setting a
power limit. We observe that power capping does not cover
the entire range of clock frequencies supported by the GPU.
Therefore, using frequency tuning, we can reduce the power
consumption below the minimum power limit, which may be
beneficial for some applications. Moreover, by operating at a
fixed clock frequency (below the point where throttling may
occur), GPU behaviour is more predictable.

To compare the two methods globally, we add to the existing
tunable GEMM parameters either a set of power limits or clock
frequencies. We take a 7-point equidistant sample from the
range of power limits in case of power capping, and the range
of supported SM clock frequencies in case of frequency tuning.
Using these parameters, we have performed a full combined
search space exploration of the GEMM application on the RTX
A4000, RTX A6000, Tesla A100 and TITAN RTX GPUs.
On the Titan RTX, we measured power consumption using
PowerSensor2 instead of NVML.

The lowest measured energy for power capping and fre-
quency tuning is given in Figure 7. For the RTX A4000
and A6000 GPUs, power capping results in a marginally
lower energy configuration, but not for the Tesla A100. For
the TITAN RTX, where we used 20 sampling points for
frequency tuning (300 MHz to 2100 MHz in steps of 75
MHz) and 9 for power capping (100 W to 300 W in steps
of 25 W), we see that frequency tuning finds a significantly
more energy efficient configuration. This seems to suggest
that given sufficient sampling points, due to the increased
frequency range, frequency tuning can result in a more energy
efficient configuration. However, this leads to an increase in
search points in an already large search space. To combat
this, in Section V-D, we investigate the relationship between
frequency and voltage, and how this can be used to steer fine-
grained frequency tuning.

7



250 500 750 1000 1250 1500 1750 2000
Core Frequency [MHz]

700

750

800

850

900

950

1000

1050

Co
re

 V
ol

ta
ge

 (m
V)

765 MHz

735 MHz
1020 MHz

1305 MHz

1410 MHz

1875 MHzTesla A100
RTX A4000

250 500 750 1000 1250 1500 1750 2000
Core Frequency [MHz]

0.2

0.4

0.6

0.8

1.0

Es
tim

at
ed

 p
er

fo
rm

an
ce

72%

70%

Fig. 8: Left: GPU core frequency versus voltage curves for Tesla A100 and RTX A4000. The base clock frequency, the ridge point and peak frequency for each GPU are highlighted
with a dashed line and label. Right: estimated performance under the assumption that GPU performance scales linearly with the clock frequency up to the point where throttling
(if any) occurs. Estimated performance is normalized according to the performance for the highest possible clock frequency.

D. Model-steered frequency tuning

In this section, we analyse the impact of clock frequency
scaling on the power consumption of the GPU, with the
goal of identifying a range of suitable clock frequencies that
likely results in energy-efficient configurations. The GPU core
voltage can be queried by calling NVIDIA-smi -q -d
VOLTAGE. In our experience, this option is only available with
fairly recent NVIDIA drivers (510 and newer) in combination
with Ampere GPUs (e.g. A100, A4000, A6000).

We plot the frequency-voltage curves for Tesla A100 and
RTX A4000 in Figure 8. We observe that there is indeed
a non-linear relation between core frequency and voltage,
as discussed in Section III-A. For both the Tesla A100 and
RTX A4000, the voltage remains unchanged for a range of
core frequencies, after which the voltage increases seemingly
quadratically. We will refer to the point where this increase
occurs as the ridge point. The RTX A4000 seems to be capped
at 1875 MHz, as the core voltage does not increase beyond
this point. This is likely due to its power limit of 140W.
This is not observed for the Tesla A100, potentially due to its
lower maximum operating frequency and higher power limit of
250W. At the ridge points, the clock frequency for the GPUs is
72% and 70% of the peak clock frequency, for the Tesla A100
and RTX A4000 respectively. Interestingly, for both GPUs, the
ridge point does not coincide with the base frequency.

1) Estimating GPU power consumption: Equation 1 shows
that the power consumption of a GPU can be modelled as
the sum of the idle power and the dynamic power. In our
model we take the idle power consumption as a constant, and
the dynamic power consumption has a linear dependence on
frequency, and a quadratic dependence on voltage. Moreover,
for GPUs that are prone to power-limit throttling (e.g. RTX
A4000), the power consumption of the GPU is capped. The
model for estimated GPU power consumption is

P ∗
load = min(Pmax, P

∗
idle + α ∗ f ∗ v2). (2)

P ∗
load, Pmax, and P ∗

idle denote the estimated, maximum and
idle power consumption of a GPU respectively. An initial value
for Pmax can be obtained by measuring the maximum power
consumption observed when executing a kernel that fully loads

the GPU, or simply by looking up the TDP of the device. Pidle

can be obtained by measuring the power consumption when
no kernel is being executed. α is a constant, f is the core
frequency of the GPU, and v denotes the GPU core voltage.

2) Estimating GPU core voltage: For GPUs that do not
support voltage readings, such as the Tesla V100 and Titan
RTX, we extend the methodology outlined above to include a
voltage estimate as a function of core frequency. We assume
based on our observations that for these GPUs there exists a
threshold τft after which the voltage increases with a rate β.
As input, our method requires a number of power measure-
ments for a uniform sample of all the clock frequencies that
the GPU supports. These data points are used to fit equation
2 to estimate Pload, where v is substituted by:

v(f) =

{
1 f < τft

β ∗ (f − τft) f >= τft
(3)

3) Fitting the model: We test our model by configuring
Kernel Tuner to record core frequency and power usage while
running a simple synthetic kernel (array dot product) that fully
loads the GPU. We only need a few samples, spaced uniformly
along the supported core frequencies. Using the measurements
obtained with Kernel Tuner, for every GPU, we fit equation
2 to the data as outlined in section III-A. When fitting the
model for P ∗

load, the frequency f runs till the highest clock
frequency before throttling (if any) occurs.

The left plot in Figure 9 illustrates that the estimated power
consumption closely follows the power consumption measured
using NVML. Next, the estimated power consumption is
used to compute estimated energy usage as a function of
absolute power (P ∗

load) divided by clock frequency (f ). For
each of the GPUs, there is a core frequency that minimizes
estimated energy usage, see Figure 9 (right). For both the Tesla
A100 and RTX A4000, the predicted most energy-efficient
clock frequencies (985 MHz and 1298 MHz) are close to
the observed ridge points at 1025 MHz and 1290 MHz as
identified in Figure 8.

Reducing the clock frequency beyond the ridge point does
not make the GPU more energy efficient, as performance
drops with f while v is constant below the ridge point.

8



250 500 750 1000 1250 1500 1750 2000
Core Frequency [MHz]

50

100

150

200

250

Po
we

r C
on

su
m

pt
io

n 
[W

]

Titan RTX
Tesla A100
Tesla V100
RTX A6000
RTX A4000

250 500 750 1000 1250 1500 1750 2000
Core Frequency [MHz]

0.5

1.0

1.5

2.0

2.5

3.0

En
er

gy

1324 MHz

985 MHz

950 MHz
1336 MHz

1298 MHz

Fig. 9: Left: Power consumption of dot product kernel that fully loads the GPU, for the Tesla A100, RTX A4000, RTX A6000, Tesla V100, and Titan RTX. The dots indicate
measurements, while the lines show the modelled power consumption (equation 2). Right: Corresponding estimated energy usage, with frequency that leads to minimal energy usage.

GOPs/W GOPs/W GOPs/W TOP/s TOP/s TOP/s Tuned
GPU Kernel (before) (after) gained (before) (after) gained frequency

Tesla A100

Gridder 64.7 102.6 58.6% 16.3 12.0 -26.5% 1035 MHz
Degridder 59.8 97.5 63.1% 14.5 10.7 -26.2% 1035 MHz
FD Dedispersion 62.2 92.8 49.1% 9.7 7.3 -24.6% 1035 MHz
TD Dedispersion 13.3 21.5 61.3% 3.4 2.5 -26.4 % 1035 MHz
Tensor-Core Correlator 684.8 1264.2 84.6% 148.4 135.2 -8.9% 1035 MHz
LOFAR Correlator 58.9 125.8 113.8% 12.2 10.7 -12.0% 1035 MHz

RTX A4000

Gridder 77.6 107.5 38.6% 11.0 8.1 -25.8% 1200 MHz
Degridder 90.8 131.6 44.9% 10.2 9.4 -8.1% 1470 MHz
FD Dedispersion 77.6 111.9 44.3% 8.3 6.7 -19.2% 1290 MHz
TD Dedispersion 12.9 17.2 33.0% 1.5 1.1 -22.2% 1200 MHz
Tensor-Core Correlator 571.2 606.8 6.2% 57.2 55.2 -3.6% 1290 MHz
LOFAR Correlator 98.9 119.3 20.6% 8.7 8.4 -4.2% 1470 MHz

TITAN RTX

Gridder 55.2 68.6 24.2% 14.3 9.0 -37.2% 1260 MHz
Degridder 48.4 65.6 35.4% 13.7 8.2 -39.7% 1155 MHz
FD Dedispersion 39.9 59.9 50.2% 10.2 5.5 -45.4% 1050 MHz
TD Dedispersion 8.0 12.1 50.7% 2.1 1.3 -40.0% 1050 MHz
Tensor-Core Correlator 140.5 209.5 49.1% 34.7 23.4 -32.6% 1155 MHz
LOFAR Correlator 51.5 78.0 51.6% 12.8 7.2 -43.4% 1155 MHz

Tesla V100

Gridder 59.6 73.6 23.6% 11.6 9.5 -18.0% 1110 MHz
Degridder 61.7 74.2 20.2% 11.0 8.8 -19.9% 1110 MHz
FD Dedispersion 58.6 69.2 18.1% 7.4 6.0 -19.2% 1110 MHz
TD Dedispersion 11.6 15.7 34.9% 2.2 1.3 -37.8% 1110 MHz
Tensor-Core Correlator 260.8 301.5 15.6% 34.2 27.7 -18.9% 1110 MHz
LOFAR Correlator 74.7 86.8 16.3% 9.9 7.6 -23.5% 1110 MHz

TABLE II: Energy efficiency (GOPs/W) and compute performance (TOP/s) before and after model-steered frequency tuning, i.e., select the most energy-efficient frequency within
±10% MHz of the ridge points found in Figure 9. All kernels use floating point operations (FLOPs) except the Tensor-Core correlator, which uses 16-bit integer operations.
∗Note: The before measurements are already tuned for time by a domain expert.

This leads to a higher total energy usage for non-zero Pidle.
On the other hand, there is a trade-off between performance
and energy when considering higher clock frequencies than
the ridge point, up to the point where throttling starts to
occur (at about 1700 MHz for the RTX A4000 and 2000
MHz for Titan RTX). As energy increases quadratically with
voltage, and compute performance linearly with frequency, it
is unnecessary to consider frequencies significantly higher than
the ridge point.

To conclude, prior to energy tuning a particular GPU kernel,
we recommend running a kernel that fully loads the GPU for
a range of clock frequencies. Our model can then be used to
fit a power consumption curve and find an estimate for the
most energy-efficient frequency. Next, energy tuning can be

run with a fine-grained sampling of clock frequencies around
the estimated optimal frequency. This feature is included in
Kernel Tuner2 (version 0.4.4). In this work, we use a range of
±10% of the optimal frequency estimated with the model.

E. Practical efficiency gain for radio astronomy kernels

To verify the energy gains on a real-world high-throughput
pipeline, we apply our model-steered frequency tuning method
to the six radio astronomy LOFAR kernels (see section IV)
currently running on the DAS-6 system [62], and LOFAR
COBALT-2 system [63] (can receive more than 1 Tbit/s). By
using model-steered frequency tuning we reduce the size of
the searchspaces by 82.4%, 78.9%, 77.8%, and 80.0% for

2https://github.com/KernelTuner/kernel tuner

9



500 1000
Core Frequency [MHz]

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
En

er
gy

 (J
)

889 MHz

950 MHz

950 MHz

Tesla V100

500 1000 1500 2000
Core Frequency [MHz]

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1360 MHz

1306 MHz

1342 MHz

Titan RTX

500 1000
Core Frequency [MHz]

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

985 MHz

985 MHz

Tesla A100

500 1000 1500 2000
Core Frequency [MHz]

0.8

1.0

1.2

1.4

1.6

1298 MHz

1527 MHz

1314 MHz

RTX A4000

correlatorlofar correlatortensor idggridder idgdegridder dedispersionfd dedispersiontd

Fig. 10: Modelled energy usage (J) with power consumption model for core clock frequencies (MHz) of LOFAR kernels for the Tesla V100, Titan RTX, Tesla A100 and RTX
A4000 GPUs.

the Tesla A100, RTX A4000, Titan RTX, and Tesla V100
respectively. The measured compute performance and energy
efficiency before and after model-steered tuning is given in
Table II. Note that all six kernels have previously been
optimized for compute performance, which means that the
reduction in compute performance may be more severe than
in most cases.

After model-steered frequency tuning, the LOFAR kernels
gained between ∼15–113% in energy efficiency, while losing
∼3–45% compute performance. Gains in energy efficiency,
and losses in compute performance, varied significantly be-
tween GPU models and kernels. Two notable outliers are the
Tensor-Core correlator on the RTX A4000, where efficiency
increased only 6%, and the LOFAR correlator on the Tesla
A100, where an efficiency gain of 113.8% was achieved
while losing only 12% compute performance. Overall, the
mean energy efficiency gain was 42.0± 24.1%, and the mean
compute performance loss was −24.3± 12.1%.

The estimated energy usage curves for each application
using the power consumption model are given in Figure 10.
We can see that sometimes the estimated optimal frequency
is close to the measured optimal frequency in Table II, and
sometimes differs more significantly. In future work, we plan
to expand the model by adding memory- and temperature-
dependent terms.

VI. CONCLUSIONS

We have investigated several GPU kernel tuning approaches
for improving energy efficiency, and extended Kernel Tuner’s
capabilities for measuring GPU power consumption and for
tuning energy usage. On a commonly-used benchmark ma-
trix multiplication kernel (GEMM) – designed for compute
performance without energy-specific tunable parameters – we
found that with a speed reduction of 27.5% an increase in
energy efficiency of 50.9% is possible on the Tesla A100. Ad-
ditionally, the combined search space of all tunable parameters

(including clock frequency) contains a globally lower energy
configuration, compared to tuning for performance and then
tuning clock frequency separately. However, for most GPUs
tuning the frequency separately did lead to a close to optimal
energy usage. When investigating energy tuning methods, we
found that clock frequency tuning gives more fine-grained
control over GPU power consumption than power capping,
and enables a larger (and lower) range of power consumption.

Due to the prohibitively large search spaces when tuning
both kernel parameters and clock frequency, we introduced a
model to estimate GPU power consumption. We show that a
single core clock frequency is the most energy efficient when
the other tunable parameters are constant. This clock frequency
can easily be estimated using our power consumption model.
We verified the potential energy efficiency gains when tuning
around ±10% of our estimated frequency on a number of real-
world radio astronomy kernels, and increased energy efficiency
more than two fold at a loss of 12% compute performance.
Overall, the mean energy efficiency gain was 42.0 ± 24.1%,
and the mean compute performance loss was −24.3± 12.1%.
Using our model-steered frequency tuning approach, we were
able to dramatically reduce the size of the auto-tuning search
spaces by 77.8− 82.4%.

ACKNOWLEDGMENT

This research was carried out within the CORTEX project,
funded by the Dutch Research Council (NWO) in the frame-
work of the NWA-ORC Call (file number NWA.1160.18.316).
The DAS-6 cluster is funded through NWO-M and Open
Competition (617.001.204) grants.

REFERENCES

[1] D. R. Danilak. Why energy is a big and rapidly growing problem for
data centers.

[2] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green AI,”
arXiv:1907.10597 [cs, stat], 2019.

10



[3] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consid-
erations for deep learning in NLP,” arXiv:1906.02243 [cs], 2019.

[4] P. Dewdney, W. Turner, R. Millenaar, R. McCool, J. Lazio, and T. Corn-
well, “SKA1 system baseline design,” Document number SKA-TEL-
SKO-DD-001 Revision, 2013.

[5] P. J. Pavan, M. S. Serpa, E. D. Carreño, V. Martı́nez, E. L. Padoin,
P. O. Navaux, J. Panetta, and J.-F. Mehaut, “Improving performance
and energy efficiency of geophysics applications on GPU architectures,”
in Latin American High Performance Computing Conference, 2018.

[6] Xizhou Feng, Rong Ge, and K. Cameron, “Power and energy profiling
of scientific applications on distributed systems,” in 19th IEEE Interna-
tional Parallel and Distributed Processing Symposium, 2005.

[7] M. Stachowski, A. Fiebig, and T. Rauber, “Autotuning based on fre-
quency scaling toward energy efficiency of blockchain algorithms on
graphics processing units,” JOURNAL OF SUPERCOMPUTING, 2020.

[8] T. Dong, V. Dobrev, T. Kolev, R. Rieben, S. Tomov, and J. Dongarra, “A
step towards energy efficient computing: Redesigning a hydrodynamic
application on CPU-GPU,” in 2014 IEEE 28th International Parallel
and Distributed Processing Symposium, 2014.

[9] Y. Li, J. Dongarra, and S. Tomov, “A note on auto-tuning GEMM for
GPUs,” in International Conference on Computational Science, 2009.

[10] S. Ryoo, C. Rodrigues, S. Stone, S. Baghsorkhi, S. Ueng, J. Stratton,
and W. Hwu, “Program optimization space pruning for a multithreaded
GPU,” in Code generation and optimization. International Symposium
on, 2008.

[11] C. Nugteren and V. Codreanu, “CLTune: A generic auto-tuner for
OpenCL kernels,” in 2015 IEEE 9th International Symposium on Em-
bedded Multicore/Many-core Systems-on-Chip, 2015.

[12] K. Spafford, J. Meredith, and J. Vetter, “Maestro: Data orchestration and
tuning for OpenCL devices,” in Euro-Par 2010 - Parallel Processing,
ser. Lecture Notes in Computer Science, 2010.

[13] R. V. Lim, B. Norris, and A. D. Malony, “Autotuning GPU kernels via
static and predictive analysis,” arXiv preprint arXiv:1701.08547, 2017.

[14] D. Grewe and A. Lokhmotov, “Automatically generating and tuning
GPU code for sparse matrix-vector multiplication from a high-level
representation,” in Proceedings of the Fourth Workshop on General
Purpose Processing on Graphics Processing Units, 2011.

[15] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, “Dense linear algebra
solvers for multicore with GPU accelerators,” in Parallel & Distributed
Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE Interna-
tional Symposium on, 2010.

[16] Y. Zhang and F. Mueller, “Auto-generation and auto-tuning of 3D stencil
codes on GPU clusters,” in Proceedings of the Tenth International
Symposium on Code Generation and Optimization, 2012.

[17] A. Mametjanov, D. Lowell, C.-C. Ma, and B. Norris, “Autotuning
stencil-based computations on GPUs,” in Cluster Computing (CLUS-
TER), 2012 IEEE International Conference on, 2012.

[18] B. van Werkhoven, “Kernel Tuner: A search-optimizing GPU code auto-
tuner,” Future Generation Computer Systems, vol. 90, 2019.

[19] J. Filipovič, F. Petrovič, and S. Benkner, “Autotuning of OpenCL kernels
with global optimizations,” in Proceedings of the 1st workshop on
autotuning and aDaptivity approaches for energy efficient HPC systems,
2017.

[20] A. Rasch, R. Schulze, M. Steuwer et al., “Efficient Auto-Tuning of
Parallel Programs with Interdependent Tuning Parameters via Auto-
Tuning Framework (ATF),” ACM Trans. Archit. Code Optim., vol. 18,
no. 1, 2021.

[21] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano, “A
survey on compiler autotuning using machine learning,” ACM Comput.
Surv., vol. 51, no. 5, sep 2018.

[22] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe, “OpenTuner: An extensible frame-
work for program autotuning,” in Proceedings of the 23rd international
conference on Parallel architectures and compilation, 2014.

[23] J. Filipovič, J. Hozzová, A. Nezarat, J. Ol’ha, and F. Petrovič, “Using
hardware performance counters to speed up autotuning convergence on
GPUs,” arXiv preprint arXiv:2102.05297, 2021.

[24] L. Nardi, A. Souza, D. Koeplinger, and K. Olukotun, “Hypermapper:
a practical design space exploration framework,” in 2019 IEEE 27th
International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS). IEEE, 2019.

[25] Z. Wang, X. Xu, N. Xiong, L. T. Yang, and W. Zhao, “Analysis
of parallel algorithms for energy conservation with GPU,” in 2010

IEEE/ACM Int’l Conference on Green Computing and Communications
& Int’l Conference on Cyber, Physical and Social Computing, 2010.

[26] C. Timm, F. Weichert, P. Marwedel, and H. Müller, “Design space ex-
ploration towards a realtime and energy-aware GPGPU-based analysis of
biosensor data,” Computer Science-Research and Development, vol. 27,
no. 4, 2012.

[27] H. Park, Y. W. Ko, J. So, and J.-G. Lee, “Performance/power design
space exploration and analysis for GPU based software,” International
Journal of Control and Automation, vol. 6, no. 6, 2013.

[28] T. Connors, A. Qasem, and Q. Yi, “Modeling the impact of thread
configuration on power and performance of GPUs,” Machine Learning:
Theory and Applications, 2015.

[29] C.-S. Lin, S.-M. Teng, and P.-A. Hsiung, “Auto-tuning for GPGPU
applications using performance and energy model,” Journal of Systems
Architecture, vol. 62, 2016.

[30] H. H. Holm, A. R. Brodtkorb, and M. L. Sætra, “GPU computing with
Python: Performance, energy efficiency and usability,” Computation,
vol. 8, no. 1, 2020.

[31] X. Mei, L. S. Yung, K. Zhao, and X. Chu, “A measurement study of
GPU DVFS on energy conservation,” in Proceedings of the Workshop
on Power-Aware Computing and Systems, 2013.

[32] R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher, and Z. Zong,
“Effects of dynamic voltage and frequency scaling on a K20 GPU,” in
2013 42nd International Conference on Parallel Processing, 2013.

[33] D. C. Price, M. A. Clark, B. R. Barsdell, R. Babich, and L. J. Greenhill,
“Optimizing performance-per-watt on GPUs in high performance com-
puting,” Computer Science-Research and Development, vol. 31, no. 4,
2016.

[34] S. Akiki, Z. Yang, C. Liu, J. Tang, and S. Liu, “Energy-aware au-
tomatic tuning of many-core platform via gradient descent,” in 2018
IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced &
Trusted Computing, Scalable Computing & Communications, Cloud &
Big Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2018.

[35] K. Fan, B. Cosenza, and B. Juurlink, “Accurate energy and performance
prediction for frequency-scaled GPU kernels,” Computation, vol. 8,
no. 2, 2020.

[36] E. Calore, S. F. Schifano, and R. Tripiccione, “Energy-performance
tradeoffs for HPC applications on low power processors,” in European
Conference on Parallel Processing, 2015.

[37] T. Miyazaki, I. Sato, and N. Shimizu, “Bayesian Optimization of HPC
Systems for Energy Efficiency,” in International Conference on High
Performance Computing, 2018.

[38] J. Coplin and M. Burtscher, “Effects of source-code optimizations on
GPU performance and energy consumption,” in Proceedings of the 8th
Workshop on General Purpose Processing using GPUs, 2015.

[39] E. Saxe, “Power-efficient software,” Communications of the ACM,
vol. 53, no. 2, 2010.

[40] K. W. Cameron, “Energy oddities, part 2: Why green computing
is odd,” Computer, vol. 46, no. 3, 2013. [Online]. Available:
http://ieeexplore.ieee.org/document/6489956/

[41] G. Procaccianti, P. Lago, A. Vetro, D. M. Fernandez, and R. Wieringa,
“The Green Lab: Experimentation in Software Energy Efficiency,” in
2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, 2015.

[42] W. Jia, E. Garza, K. A. Shaw, and M. Martonosi, “GPU performance and
power tuning using regression trees,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 12, no. 2, 2015.

[43] J. Guerreiro, A. Ilic, N. Roma, and P. Tomás, “Multi-kernel auto-
tuning on GPUs: Performance and energy-aware optimization,” in 2015
23rd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, 2015.

[44] L. Li and C. Kessler, “MeterPU: a generic measurement abstraction
API enabling energy-tuned skeleton backend selection,” in 2015 IEEE
Trustcom/BigDataSE/ISPA, vol. 3, 2015.

[45] A. B. Hayes, L. Li, D. Chavarrı́a-Miranda, S. L. Song, and E. Z. Zhang,
“Orion: A framework for GPU occupancy tuning,” in Proceedings of
the 17th International Middleware Conference, 2016.

[46] P. Schiffmann, D. Martin, G. Haase, and G. Offner, “Optimizing a RBF
interpolation solver for energy on heterogeneous systems,” in Parallel
Computing is Everywhere, Proceedings of the International Conference
on Parallel Computing, ParCo 2017, 12-15 September 2017, Bologna,
Italy, ser. Advances in Parallel Computing, vol. 32, 2017.

11



[47] R. Suda, L. Cheng, and T. Katagiri, “A mathematical method for online
autotuning of power and energy consumption with corrected temperature
effects,” Procedia Computer Science, vol. 18, 2013.

[48] D.-Q. Ren and R. Suda, “Global optimization model on power efficiency
of GPU and multicore processing element for SIMD computing with
CUDA,” Computer Science-Research and Development, vol. 27, no. 4,
2012.

[49] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Pat-
terson, J. Shalf, and K. Yelick, “Stencil computation optimization and
auto-tuning on state-of-the-art multicore architectures,” in Proceedings
of the 2008 ACM/IEEE conference on Supercomputing, 2008.

[50] S. Huang, S. Xiao, and W.-c. Feng, “On the energy efficiency of graphics
processing units for scientific computing,” in 2009 IEEE International
Symposium on Parallel & Distributed Processing, 2009.

[51] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams, “An auto-tuning
framework for parallel multicore stencil computations,” in 2010 IEEE
International Symposium on Parallel & Distributed Processing (IPDPS),
2010.

[52] D. Hackenberg, T. Ilsche, J. Schuchart, R. Schöne, W. E. Nagel,
M. Simon, and Y. Georgiou, “Hdeem: High definition energy efficiency
monitoring,” in 2014 Energy Efficient Supercomputing Workshop, 2014,
pp. 1–10.

[53] J. W. Romein and B. Veenboer, “PowerSensor 2: A fast power
measurement tool,” in 2018 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2018.
[Online]. Available: https://ieeexplore.ieee.org/document/8366941/

[54] H. Anzt, B. Haugen, J. Kurzak, P. Luszczek, and J. Dongarra, “Ex-
periences in autotuning matrix multiplication for energy minimization
on GPUs,” Concurrency and Computation: Practice and Experience,
vol. 27, no. 17, 2015.

[55] A. Sclocco, H. E. Bal, J. Hessels, J. v. Leeuwen, and R. V. v. Nieuwpoort,
“Auto-tuning dedispersion for many-core accelerators,” in Parallel and
Distributed Processing Symposium, 2014 IEEE 28th International, 2014.

[56] A. Chaparala, C. Novoa, and A. Qasem, “Autotuning GPU-accelerated
QAP solvers for power and performance,” in 2015 IEEE 17th Inter-

[69] Bassa, C. G., Romein, J. W., Veenboer, B., van der Vlugt, S., and
Wijnholds, S. J., “Fourier-domain dedispersion,” A&A, vol. 657, p. A46,
2022.

national Conference on High Performance Computing and Communica-
tions, 2015 IEEE 7th International Symposium on Cyberspace Safety and
Security, and 2015 IEEE 12th International Conference on Embedded
Software and Systems, 2015.

[57] A. Krzywaniak and P. Czarnul, “Performance/energy aware optimization
of parallel applications on GPUs under power capping,” in International
Conference on Parallel Processing and Applied Mathematics, 2019.

[58] J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc, “A roofline model of
energy,” in 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing, 2013.

[59] J. Mor,́ “The Levenberg-Marquardt algorithm: Implementation and
theory,” in Numerical Analysis, ser. Lecture Notes in Mathematics.
Springer Berlin Heidelberg, 1978, vol. 630, pp. 105–116.

[60] NVIDIA. (2011) Nvidia management library (nvml). [Online].
Available: https://developer.nvidia.com/nvidia-management-library-nvml

[61] M. Burtscher, I. Zecena, and Z. Zong, “Measuring GPU power with the
K20 built-in sensor,” in Proceedings of Workshop on General Purpose
Processing Using GPUs, 2014.

[62] H. Bal et al., “A Medium-Scale Distributed System for Computer
Science Research: Infrastructure for the Long Term,” IEEE Computer,
vol. 49, no. 5, pp. 54–63, May 2016.

[63] P. Broekema, J. Mol, R. Nijboer, A. Amesfoort, M. Brentjens, M. Loose,
W. Klijn, and J. Romein, “Cobalt: A GPU-based correlator and beam-
former for LOFAR,” Astronomy and Computing, vol. 23, 01 2018.

[64] M. P. van Haarlem et al., “LOFAR: The LOw-Frequency ARray,”
Astronomy & Astrophysics, vol. 556, 2013.

[65] C. Nugteren, “CLBlast: A tuned OpenCL BLAS library,” in Proceedings
of the International Workshop on OpenCL, ser. IWOCL ’18, 2018.

[66] Romein, John W., “The Tensor-Core Correlator,” A&A, vol. 656, p. A52,
2021.

[67] B. Veenboer and J. Romein, “Radio-astronomical imaging on graphics
processors,” Astronomy and Computing, vol. 32, p. 100386, jul 2020.

[68] B. Veenboer and J. W. Romein, “Radio-astronomical imaging: FPGAs
vs GPUs,” in European Conference on Parallel Processing, 2019.

[70] R. Schoonhoven, B. van Werkhoven, and K. J. Batenburg, “Bench-
marking optimization algorithms for auto-tuning GPU kernels,” IEEE
Transactions on Evolutionary Computation, 2022.

12


